WorldWideScience

Sample records for projective polarized surface

  1. Quantifying Microbe-Mineral Interactions Leading to Remotely Detectable Induced Polarization Signals (Final Project Report)

    Energy Technology Data Exchange (ETDEWEB)

    Moysey, Stephen [Clemson University; Dean, Delphine [Clemson University; Dimitrios, Ntarlagiannis [Rutgers University

    2013-11-13

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealized systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for

  2. Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents

    Science.gov (United States)

    Li, Ming; Brant, Jonathan A.

    2018-02-01

    Furthering the development of nanocomposite structures, namely membranes for water treatment applications, requires that methods be developed to ensure nanoparticle dispersion in polar and non-polar solvents, as both are widely used in associated synthesis techniques. Here, we report on a two-step method to graft polyvinylpyrrolidone (PVP), and a one-step method for octadecylphosphonic acid (OPA), onto the outer surfaces of imogolite nanotubes. The goal of these approaches was to improve and maintain nanotube dispersion in polymer compatible polar and non-polar solvents. The PVP coating modified the imogolite surface charge from positive to weakly negative at pH ≤ 9; the OPA made it weakly positive at acidic pH values to negative at pH ≥ 7. The PVP surface coating stabilized the nanotubes through steric hindrance in polar protic, dipolar aprotic, and chloroform. In difference to the PVP, the OPA surface coating allowed the nanotubes to be dispersed in n-hexane and chloroform, but not in the polar solvents. The lack of miscibility in the polar solvents, as well as the better dispersion in n-hexane, was attributed to the stronger hydrophobicity of the OPA polymer relative to the PVP. [Figure not available: see fulltext.

  3. Projective geometry for polarization in geometric quantization

    International Nuclear Information System (INIS)

    Campbell, P.; Dodson, C.T.J.

    1976-12-01

    It is important to know the extent to which the procedure of geometric quantization depends on a choice of polarization of the symplectic manifold that is the classical phase space. Published results have so far been restricted to real and transversal polarizations. Here we also consider these cases by presenting a formulation in terms of projective geometry. It turns out that there is a natural characterization of real transversal polarizations and maps among them using projective concepts. We give explicit constructions for Rsup(2n)

  4. Effect of polar surfaces on organic molecular crystals

    Science.gov (United States)

    Sharia, Onise; Tsyshevskiy, Roman; Kuklja, Maija; University of Maryland College Park Team

    Polar oxide materials reveal intriguing opportunities in the field of electronics, superconductivity and nanotechnology. While behavior of polar surfaces has been widely studied on oxide materials and oxide-oxide interfaces, manifestations and properties of polar surfaces in molecular crystals are still poorly understood. Here we discover that the polar catastrophe phenomenon, known on oxides, also takes place in molecular materials as illustrated with an example of cyclotetramethylene tetranitramine (HMX) crystals. We show that the surface charge separation is a feasible compensation mechanism to counterbalance the macroscopic dipole moment and remove the electrostatic instability. We discuss the role of surface charge on degradation of polar surfaces, electrical conductivity, optical band-gap closure and surface metallization. Research is supported by the US ONR (Grants N00014-16-1-2069 and N00014-16-1-2346) and NSF. We used NERSC, XSEDE and MARCC computational resources.

  5. Surface polarization, rumpling, and domain ordering of strained ultrathin BaTiO_3(001) films with in-plane and out-of-plane polarization

    International Nuclear Information System (INIS)

    Dionot, Jelle; Mathieu, Claire; Barrett, Nick; Geneste, Gregory

    2014-01-01

    BaTiO_3 ultrathin films (thickness ≅1.6 nm) with in- and out-of-plane polarization are studied by first-principles calculations. Out-of-plane polarization is simulated using the method proposed by Shimada et al. [Phys. Rev. B 81, 144116 (2010)], which consists in building a supercell containing small domains with alternating up and down polarization. This allows one to investigate the properties of defect free BaTiO_3 ultrathin films with polarization perpendicular to the surface, as a function of in-plane lattice constant, i.e., epitaxial strain. The configurations with polarization perpendicular to the surface (c phase) are found stable under compressive strain, while under tensile strain, the polarization tends to lie in-plane (aa phase), along [110]. In the c phase, the most stable domain width is predicted to be 1 to 2 lattice constants, and the magnitude of the surface rumpling varies according to the direction of the polarization (upwards versus downwards), though its sign is unchanged, the oxygen anions pointing in all cases outwards. Finally, all the surfaces studied are found to be insulating. Analysis of the atom-projected electronic density of states gives insight into the surface contributions to the electronic structure. An important reduction of the Kohn-Sham band gap is predicted at TiO_2 terminations in the c phase (≅1 eV with respect to the aa phase). The Madelung potential at the surface plays the dominant role in modifications of the surface electronic structure. (authors)

  6. Polarization-controlled asymmetric excitation of surface plasmons

    KAUST Repository

    Xu, Quan

    2017-08-28

    Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling the directionality of the excited SPs. The recently reported polarization-controlled asymmetric excitation of SPs in metasurfaces has attracted much attention for its promise in developing innovative plasmonic devices. However, the unit elements in these works were purposely designed in certain orthogonal polarizations, i.e., linear or circular polarizations, resulting in limited two-level polarization controllability. Here, we introduce a coupled-mode theory to overcome this limit. We demonstrated theoretically and experimentally that, by utilizing the coupling effect between a pair of split-ring-shaped slit resonators, exotic asymmetric excitation of SPs can be obtained under the x-, y-, left-handed circular, and right-handed circular polarization incidences, while the polarization information of the incident light can be preserved in the excited SPs. The versatility of the presented design scheme would offer opportunities for polarization sensing and polarization-controlled plasmonic devices.

  7. IDENTIFYING SURFACE CHANGES ON HRSC IMAGES OF THE MARS SOUTH POLAR RESIDUAL CAP (SPRC

    Directory of Open Access Journals (Sweden)

    A. R. D. Putri

    2016-06-01

    Orthorectified Images (ORIs and projected into polar stereographic projection using DLR (Deutsches Zentrum für Luft- und Raumfahrt; German Aerospace Center’s VICAR and GIS software with modifications developed by Kim & Muller (2009. Surface changes are identified in the Mars SPRC region and analysed based on their appearance in the HRSC images.

  8. The impacts of surface polarity on the solubility of nanoparticle

    International Nuclear Information System (INIS)

    Zhu, Jianzhuo; Su, Jiguo; Ou, Xinwen; Li, Jingyuan

    2016-01-01

    In order to study the dependence of water solubility and hydration behavior of nanoparticles on their surface polarity, we designed polar nanoparticles with varying surface polarity by assigning atomic partial charge to the surface of C60. The water solubility of the nanoparticle is enhanced by several orders of magnitude after the introduction of surface polarity. Nevertheless, when the atomic partial charge grows beyond a certain value (q M ), the solubility continuously decreases to the level of nonpolar nanoparticle. It should be noted that such q M is comparable with atomic partial charge of a variety of functional groups. The hydration behaviors of nanoparticles were then studied to investigate the non-monotonic dependence of solubility on the surface polarity. The interaction between the polar nanoparticle and the hydration water is stronger than the nonpolar counterpart, which should facilitate the dissolution of the nanoparticles. On the other hand, the surface polarity also reduces the interaction of hydration water with the other water molecules and enhances the interaction between the nanoparticles which may hinder their dispersion. Besides, the introduction of surface polarity disturbs and even rearranges the hydration structure of nonpolar nanoparticle. Interestingly, the polar nanoparticle with less ordered hydration structure tends to have higher water solubility.

  9. NMR investigations of surfaces and interfaces using spin-polarized xenon

    International Nuclear Information System (INIS)

    Gaede, H.C.; Lawrence Berkeley Lab., CA

    1995-07-01

    129 Xe NMR is potentially useful for the investigation of material surfaces, but has been limited to high surface area samples in which sufficient xenon can be loaded to achieve acceptable signal to noise ratios. In Chapter 2 conventional 129 Xe NMR is used to study a high surface area polymer, a catalyst, and a confined liquid crystal to determine the topology of these systems. Further information about the spatial proximity of different sites of the catalyst and liquid crystal systems is determined through two dimensional exchange NMR in Chapter 3. Lower surface area systems may be investigated with spin-polarized xenon, which may be achieved through optical pumping and spin exchange. Optically polarized xenon can be up to 10 5 times more sensitive than thermally polarized xenon. In Chapter 4 highly polarized xenon is used to examine the surface of poly(acrylonitrile) and the formation of xenon clathrate hydrates. An attractive use of polarized xenon is as a magnetization source in cross polarization experiments. Cross polarization from adsorbed polarized xenon may allow detection of surface nuclei with drastic enhancements. A non-selective low field thermal mixing technique is used to enhance the 13 C signal of CO 2 of xenon occluded in solid CO 2 by a factor of 200. High-field cross polarization from xenon to proton on the surface of high surface area polymers has enabled signal enhancements of ∼1,000. These studies, together with investigations of the efficiency of the cross polarization process from polarized xenon, are discussed in Chapter 5. Another use of polarized xenon is as an imaging contrast agent in systems that are not compatible with traditional contrast agents. The resolution attainable with this method is determined through images of structured phantoms in Chapter 6

  10. On polars of mixed projection bodies

    Science.gov (United States)

    Zhao, Chang-Jian; Leng, Gang-Song

    2006-04-01

    Recently, Lutwak established general Minkowski inequality, Brunn-Minkowski inequality and Aleksandrov-Fenchel inequality for mixed projection bodies. In this paper, following Lutwak, we established their polar forms. As applications, we prove some interrelated results.

  11. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Science.gov (United States)

    Hamilton, Stephen G; Castro de la Guardia, Laura; Derocher, Andrew E; Sahanatien, Vicki; Tremblay, Bruno; Huard, David

    2014-01-01

    Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus) have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling. Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands. Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  12. On the use of polar coordinate system in the projective graphic drawings

    Directory of Open Access Journals (Sweden)

    Ivashchenko Andrey Viktorovich

    2016-11-01

    Full Text Available Projective graphics is a polyhedra simulation method, which is based on the use of trace diagrams of initial polyhedron. Previously developed computer software allows using Cartesian coordinates. In some cases it is advisable to use polar coordinate system for description of projective graphics drawings. Using the example of icosahedron the authors analyzed the advantages of using projective graphics drawings in the polar coordinate system. The transition to the polar coordinate system is a tool that allows using certain patterns of projective graphics drawings in the process of calculation. When using polar coordinate system the search of Polar correspondence for the directs is simplified. In order to analyze the two lines in the polar coordinate system it is enough to compare the corresponding coefficients of the equations of these lines. The authors consider a diagram of the icosahedron in polar coordinates, and a corresponding fragment of calculation program in the Mathematica system. Some examples of forming based on icosahedrons are offered. Optimization of computer programs using polar coordinate system will simplifies the calculations of projective graphics drawings, accelerates the process of constructing three-dimensional models, which expand the possibilities of selecting original solutions. Finally, the authors conclude that it is appropriate to use the polar coordinate system only in the construction of projective graphics diagrams of the planes system having rich symmetry. All Platonic and Archimedean solids, Catalan solid possess this property.

  13. LINEARLY POLARIZED PROBES OF SURFACE CHIRALITY

    NARCIS (Netherlands)

    VERBIEST, T; KAURANEN, M; MAKI, JJ; TEERENSTRA, MN; SCHOUTEN, AJ; NOLTE, RJM; PERSOONS, A

    1995-01-01

    We present a new nonlinear optical technique to study surface chirality. We demonstrate experimentally that the efficiency of second-harmonic generation from isotropic chiral surfaces is different for excitation with fundamental light that is +45 degrees and -45 degrees linearly polarized with

  14. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Directory of Open Access Journals (Sweden)

    Stephen G Hamilton

    Full Text Available Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling.Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands.Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  15. Surface chemistry and electronic structure of nonpolar and polar GaN films

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna, T.C. Shibin; Aggarwal, Neha; Gupta, Govind, E-mail: govind@nplindia.org

    2015-08-01

    Highlights: • Surface chemistry and electronic structure of polar and nonpolar GaN is reported. • Influence of polarization on electron affinity of p & np GaN films is investigated. • Correlation between surface morphology and polarity has been deduced. - Abstract: Photoemission and microscopic analysis of nonpolar (a-GaN/r-Sapphire) and polar (c-GaN/c-Sapphire) epitaxial gallium nitride (GaN) films grown via RF-Molecular Beam Epitaxy is reported. The effect of polarization on surface properties like surface states, electronic structure, chemical bonding and morphology has been investigated and correlated. It was observed that polarization lead to shifts in core level (CL) as well as valence band (VB) spectra. Angle dependent X-ray Photoelectron Spectroscopic analysis revealed higher surface oxide in polar GaN film compared to nonpolar GaN film. On varying the take off angle (TOA) from 0° to 60°, the Ga−O/Ga−N ratio varied from 0.11–0.23 for nonpolar and 0.17–0.36 for polar GaN film. The nonpolar film exhibited N-face polarity while Ga-face polarity was perceived in polar GaN film due to the inherent polarization effect. Polarization charge compensated surface states were observed on the polar GaN film and resulted in downward band bending. Ultraviolet photoelectron spectroscopic measurements revealed electron affinity and ionization energy of 3.4 ± 0.1 eV and 6.8 ± 0.1 eV for nonpolar GaN film and 3.8 ± 0.1 eV and 7.2 ± 0.1 eV for polar GaN film respectively. Field Emission Scanning Electron Microscopy measurements divulged smooth morphology with pits on polar GaN film. The nonpolar film on the other hand showed pyramidal structures having facets all over the surface.

  16. Polarization-controlled asymmetric excitation of surface plasmons

    KAUST Repository

    Xu, Quan; Zhang, Xueqian; Yang, Quanlong; Tian, Chunxiu; Xu, Yuehong; Zhang, Jianbing; Zhao, Hongwei; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-01-01

    Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling

  17. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva; Viger-Gravel, Jasmine; Abou-Hamad, Edy; Samantaray, Manoja; Hamzaoui, Bilel; Gurinov, Andrei; Anjum, Dalaver H.; Gajan, David; Lesage, Anne; Bendjeriou-Sedjerari, Anissa; Emsley, Lyndon; Basset, Jean-Marie

    2016-01-01

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  18. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva

    2016-08-15

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  19. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sen; Zhang, Yan, E-mail: yzhang@mail.cnu.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Beijing Key Laboratory for Metamaterials and Devices, and Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Wang, Xinke [Beijing Key Laboratory for Metamaterials and Devices, and Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Kan, Qiang [State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Qu, Shiliang [Optoelectronics Department, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2015-12-14

    A practical circular polarization analyzer (CPA) that can selectively focus surface plasmon polaritons (SPPs) at two separate locations, according to the helicity of the circularly polarized light, is designed and experimentally verified in the terahertz frequency range. The CPA consists of fishbone-slit units and is designed using the simulated annealing algorithm. By differentially detecting the intensities of the two SPPs focuses, the helicity of the incident circularly polarized light can be obtained and the CPA is less vulnerable to the noise of incident light. The proposed device may also have wide potential applications in chiral SPPs photonics and the analysis of chiral molecules in biology.

  20. Effect of solution and leaf surface polarity on droplet spread area and contact angle.

    Science.gov (United States)

    Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M

    2016-03-01

    How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Radiotherapy high energy surface dose measurements: effects of chamber polarity

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: The effects of chamber polarity have been investigated for the measurement of 6MV and 18MV x-ray surface dose using a parallel plate ionization chamber. Results have shown that a significant difference in measured ionization is recorded between to polarities at 6MV and 18MV at the phantom surface. A polarity ratio ranging from 1 062 to 1 005 is seen for 6MV x-rays at the phantom surface for field sizes 5cm x 5cm to 40cm x 40cm when comparing positive to negative polarity. These ratios range from 1.024 to 1.004 for 18MV x-rays with the same field sizes. When these charge reading are compared to the D max readings of the same polarity it is found that these polarity effects are minimal for the calculation of percentage dose results with variations being less than 1% of maximum. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  2. Evaluation of Extraction Protocols for Simultaneous Polar and Non-Polar Yeast Metabolite Analysis Using Multivariate Projection Methods

    Directory of Open Access Journals (Sweden)

    Nicolas P. Tambellini

    2013-07-01

    Full Text Available Metabolomic and lipidomic approaches aim to measure metabolites or lipids in the cell. Metabolite extraction is a key step in obtaining useful and reliable data for successful metabolite studies. Significant efforts have been made to identify the optimal extraction protocol for various platforms and biological systems, for both polar and non-polar metabolites. Here we report an approach utilizing chemoinformatics for systematic comparison of protocols to extract both from a single sample of the model yeast organism Saccharomyces cerevisiae. Three chloroform/methanol/water partitioning based extraction protocols found in literature were evaluated for their effectiveness at reproducibly extracting both polar and non-polar metabolites. Fatty acid methyl esters and methoxyamine/trimethylsilyl derivatized aqueous compounds were analyzed by gas chromatography mass spectrometry to evaluate non-polar or polar metabolite analysis. The comparative breadth and amount of recovered metabolites was evaluated using multivariate projection methods. This approach identified an optimal protocol consisting of 64 identified polar metabolites from 105 ion hits and 12 fatty acids recovered, and will potentially attenuate the error and variation associated with combining metabolite profiles from different samples for untargeted analysis with both polar and non-polar analytes. It also confirmed the value of using multivariate projection methods to compare established extraction protocols.

  3. Polarization Patterns of Transmitted Celestial Light under Wavy Water Surfaces

    Directory of Open Access Journals (Sweden)

    Guanhua Zhou

    2017-03-01

    Full Text Available This paper presents a model to describe the polarization patterns of celestial light, which includes sunlight and skylight, when refracted by wavy water surfaces. The polarization patterns and intensity distribution of refracted light through the wave water surface were calculated. The model was validated by underwater experimental measurements. The experimental and theoretical values agree well qualitatively. This work provides a quantitative description of the repolarization and transmittance of celestial light transmitted through wave water surfaces. The effects of wind speed and incident sources on the underwater refraction polarization patterns are discussed. Scattering skylight dominates the polarization patterns while direct solar light is the dominant source of the intensity of the underwater light field. Wind speed has an influence on disturbing the patterns under water.

  4. The International Polar Year in Portugal: A New National Polar Programme and a Major Education and Outreach project

    Science.gov (United States)

    Mendes-Victor, L.; Vieira, G.; Xavier, J.; Canario, A.

    2008-12-01

    Before the International Polar Year, in Portugal polar research was conducted by a very small group of scientists integrated in foreign projects or research institutions. Portugal was not member of the Scientific Committee for Antarctic Research (SCAR), the European Polar Board (EPB), neither a subscriber of the Antarctic Treaty. In 2004 Portuguese Polar researchers considered the IPY as an opportunity to change this situation and organized the national Committee for the IPY. The objectives were ambitious: to answer the aforementioned issues in defining and proposing a National Polar Programme. In late 2008, close to the end of the IPY, the objectives were attained, except the Antarctic Treaty signature that is, however, in an advanced stage, having been approved by consensus at the National Parliament in early 2007. Portugal joined SCAR in July 2006, the EPB in 2007 and a set of 5 Antarctic research projects forming the roots of the National Polar Programme (ProPolar) have been approved by the Foundation for Science and Technology (FCT-MCTES). Scientifically, the IPY can already be considered a major success in Portugal with an improvement in polar scientific research, in the number of scientists performing field work in the Antarctic, organizing polar science meetings and producing an expected increase in the number of polar science peer- reviewed papers. The Portuguese IPY scientific activities were accompanied by a major education and outreach project funded by the Agencia Ciência Viva (MCTES): LATITUDE60! Education for the Planet in the IPY. This project lead by the universities of Algarve, Lisbon and by the Portuguese Association of Geography Teachers is heavily interdisciplinary, programmed for all ages, from kindergarten to adults, and hoped to bring together scientists and society. LATITUDE60! was a major success and focussed on showing the importance of the polar regions for Earth's environment, emphasising on the implications of polar change for

  5. Photoassisted Kelvin probe force microscopy at GaN surfaces: The role of polarity

    Science.gov (United States)

    Wei, J. D.; Li, S. F.; Atamuratov, A.; Wehmann, H.-H.; Waag, A.

    2010-10-01

    The behavior of GaN surfaces during photoassisted Kelvin probe force microscopy is demonstrated to be strongly dependant on surface polarity. The surface photovoltage of GaN surfaces illuminated with above-band gap light is analyzed as a function of time and light intensity. Distinct differences between Ga-polar and N-polar surfaces could be identified, attributed to photoinduced chemisorption of oxygen during illumination. These differences can be used for a contactless, nondestructive, and easy-performable analysis of the polarity of GaN surfaces.

  6. Polar surface energies of iono-covalent materials: implications of a charge-transfer model tested on Li2FeSiO4 surfaces.

    Science.gov (United States)

    Hörmann, Nicolas G; Groß, Axel

    2014-07-21

    The ionic compounds that are used as electrode materials in Li-based rechargeable batteries can exhibit polar surfaces that in general have high surface energies. We derive an analytical estimate for the surface energy of such polar surfaces assuming charge redistribution as a polarity compensating mechanism. The polar contribution to the converged surface energy is found to be proportional to the bandgap multiplied by the surface charge necessary to compensate for the depolarization field, and some higher order correction terms that depend on the specific surface. Other features, such as convergence behavior, coincide with published results. General conclusions are drawn on how to perform polar surface energy calculations in a slab configuration and upper boundaries of "purely" polar surface energies are estimated. Furthermore, we compare these findings with results obtained in a density functional theory study of Li(2)FeSiO(4) surfaces. We show that typical polar features are observed and provide a decomposition of surface energies into polar and local bond-cutting contributions for 29 different surfaces. We show that the model is able to explain subtle differences of GGA and GGA+U surface energy calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Four-parameter model for polarization-resolved rough-surface BRDF.

    Science.gov (United States)

    Renhorn, Ingmar G E; Hallberg, Tomas; Bergström, David; Boreman, Glenn D

    2011-01-17

    A modeling procedure is demonstrated, which allows representation of polarization-resolved BRDF data using only four parameters: the real and imaginary parts of an effective refractive index with an added parameter taking grazing incidence absorption into account and an angular-scattering parameter determined from the BRDF measurement of a chosen angle of incidence, preferably close to normal incidence. These parameters allow accurate predictions of s- and p-polarized BRDF for a painted rough surface, over three decades of variation in BRDF magnitude. To characterize any particular surface of interest, the measurements required to determine these four parameters are the directional hemispherical reflectance (DHR) for s- and p-polarized input radiation and the BRDF at a selected angle of incidence. The DHR data describes the angular and polarization dependence, as well as providing the overall normalization constraint. The resulting model conserves energy and fulfills the reciprocity criteria.

  8. Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy

    Science.gov (United States)

    Huynh, Ruby N.; Nehmetallah, George; Raub, Christopher B.

    2017-06-01

    Articular surface damage occurs to cartilage during normal aging, osteoarthritis, and in trauma. A noninvasive assessment of cartilage microstructural alterations is useful for studies involving cartilage explants. This study evaluates polarized reflectance microscopy as a tool to assess surface damage to cartilage explants caused by mechanical scraping and enzymatic degradation. Adult bovine articular cartilage explants were scraped, incubated in collagenase, or underwent scrape and collagenase treatments. In an additional experiment, cartilage explants were subject to scrapes at graduated levels of severity. Polarized reflectance parameters were compared with India ink surface staining, features of histological sections, changes in explant wet weight and thickness, and chondrocyte viability. The polarized reflectance signal was sensitive to surface scrape damage and revealed individual scrape features consistent with India ink marks. Following surface treatments, the reflectance contrast parameter was elevated and correlated with image area fraction of India ink. After extensive scraping, polarized reflectance contrast and chondrocyte viability were lower than that from untreated explants. As part of this work, a mathematical model was developed and confirmed the trend in the reflectance signal due to changes in surface scattering and subsurface birefringence. These results demonstrate the effectiveness of polarized reflectance microscopy to sensitively assess surface microstructural alterations in articular cartilage explants.

  9. Polarization singularities of the object field of skin surface

    International Nuclear Information System (INIS)

    Angelsky, O V; Ushenko, A G; Ushenko, Yu A; Ushenko, Ye G

    2006-01-01

    The paper deals with the investigation of formation mechanisms of laser radiation polarization structure scattered by an optically thin surface layer of human skin in two registration zones: a boundary field and a far zone of Fraunhofer diffraction. The conditions of forming polarization singularities by such an object in the scattered radiation field have been defined. Statistical and fractal polarization structure of object fields of physiologically normal and pathologically changed skin has been studied. It has been shown that polarization singularities of radiation scattered by physiologically normal skin samples have a fractal coordinate structure. It is characteristic for fields of pathologically changed skin to have a statistical coordinate structure of polarization singularities in all diffraction zones

  10. Localized surface phonon polariton resonances in polar gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Kaijun, E-mail: kfeng@nd.edu; Islam, S. M.; Verma, Jai; Hoffman, Anthony J. [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Streyer, William; Wasserman, Daniel [Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)

    2015-08-24

    We demonstrate the excitation of localized surface phonon polaritons in an array of sub-diffraction pucks fabricated in an epitaxial layer of gallium nitride (GaN) on a silicon carbide (SiC) substrate. The array is characterized via polarization- and angle-dependent reflection spectroscopy in the mid-infrared, and coupling to several localized modes is observed in the GaN Reststrahlen band (13.4–18.0 μm). The same structure is simulated using finite element methods and the charge density of the modes are studied; transverse dipole modes are identified for the transverse electric and magnetic polarizations and a quadrupole mode is identified for the transverse magnetic polarization. The measured mid-infrared spectrum agrees well with numerically simulated spectra. This work could enable optoelectronic structures and devices that support surface modes at mid- and far-infrared wavelengths.

  11. Effect of cathodic polarization on coating doxycycline on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J., E-mail: h.j.haugen@odont.uio.no

    2016-06-01

    Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. - Highlights: • Titanium hydride was found not to be involved in immobilization of doxycycline. • Doxycycline coating was strongly bound to a modified surface oxide layer. • Effect of coatings tested using a dynamic bacteria assay based on bioluminescence. • Topmost layer of adsorbed doxycycline was shown to have strong antibacterial effect.

  12. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    KAUST Repository

    Zhang, Qian; Mi, Wenbo; Wang, Xiaocha; Wang, Xuhui

    2015-01-01

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

  13. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    KAUST Repository

    Zhang, Qian

    2015-05-27

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

  14. Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines

    Science.gov (United States)

    Laidre, K. L.; Regehr, E. V.; Akcakaya, H. R.; Amstrup, S. C.; Atwood, T.; Lunn, N.; Obbard, M.; Stern, H. L., III; Thiemann, G.; Wiig, O.

    2016-12-01

    Loss of Arctic sea ice due to climate change is the most serious threat to polar bears (Ursus maritimus) throughout their circumpolar range. We performed a data-based sensitivity analysis with respect to this threat by evaluating the potential response of the global polar bear population to projected sea-ice conditions. We conducted 1) an assessment of generation length for polar bears, 2) developed of a standardized sea-ice metric representing important habitat characteristics for the species; and 3) performed population projections over three generations, using computer simulation and statistical models representing alternative relationships between sea ice and polar bear abundance. Using three separate approaches, the median percent change in mean global population size for polar bears between 2015 and 2050 ranged from -4% (95% CI = -62%, 50%) to -43% (95% CI = -76%, -20%). Results highlight the potential for large reductions in the global population if sea-ice loss continues. They also highlight the large amount of uncertainty in statistical projections of polar bear abundance and the sensitivity of projections to plausible alternative assumptions. The median probability of a reduction in the mean global population size of polar bears greater than 30% over three generations was approximately 0.71 (range 0.20-0.95. The median probability of a reduction greater than 50% was approximately 0.07 (range 0-0.35), and the probability of a reduction greater than 80% was negligible.

  15. North Polar Cap

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour. In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime. The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap. Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  16. Spin polarization of graphene and h -BN on Co(0001) and Ni(111) observed by spin-polarized surface positronium spectroscopy

    Science.gov (United States)

    Miyashita, A.; Maekawa, M.; Wada, K.; Kawasuso, A.; Watanabe, T.; Entani, S.; Sakai, S.

    2018-05-01

    In spin-polarized surface positronium annihilation measurements, the spin polarizations of graphene and h -BN on Co(0001) were higher than those on Ni(111), while no significant differences were seen between graphene and h -BN on the same metal. The obtained spin polarizations agreed with those expected from first-principles calculations considering the positron wave function and the electron density of states from the first surface layer to the vacuum region. The higher spin polarizations of graphene and h -BN on Co(0001) as compared to Ni(111) simply reflect the spin polarizations of these metals. The comparable spin polarizations of graphene and h -BN on the same metal are attributed to the creation of similar electronic states due to the strong influence of the metals: the Dirac cone of graphene and the band gap of h -BN disappear as a consequence of d -π hybridization.

  17. A numerical assessment of rough surface scattering theories. I - Horizontal polarization. II - Vertical polarization

    Science.gov (United States)

    Rodriguez, Ernesto; Kim, Yunjin; Durden, Stephen L.

    1992-01-01

    A numerical evaluation is presented of the regime of validity for various rough surface scattering theories against numerical results obtained by employing the method of moments. The contribution of each theory is considered up to second order in the perturbation expansion for the surface current. Considering both vertical and horizontal polarizations, the unified perturbation method provides best results among all theories weighed.

  18. Diversiform hybrid-polarization surface plasmon polaritons in a dielectric–metal metamaterial

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2017-04-01

    Full Text Available Hybrid-polarization surface plasmon polaritons (HSPPs at the interface between an isotropic medium and a one-dimensional metal–dielectric metamaterial (MM were discussed, where the metal-layer permittivity was described with the improved Drude model. From the obtained dispersion equations, we predicated five types of HSPPs. One type is the Dyakonov-like surface polariton and another type is the tradition-like surface polarton. The others are new types of HSPPs. We establish a numerical simulation method of the attenuated total reflection (ATR measurement to examine these HSPPs. The results from the ATR spectra are consistent with those from the dispersion equations and indicate the different polarization features of these HSPPs. The numerical results also demonstrate that the observation of each type of HSPPs requires different conditions dictated by the material parameters and the polarization direction of incident light used in the ATR spectra. These results may further widen the space of potential applications of surface plasmon polaritons.

  19. Diffraction efficiency calculations of polarization diffraction gratings with surface relief

    Science.gov (United States)

    Nazarova, D.; Sharlandjiev, P.; Berberova, N.; Blagoeva, B.; Stoykova, E.; Nedelchev, L.

    2018-03-01

    In this paper, we evaluate the optical response of a stack of two diffraction gratings of equal one-dimensional periodicity. The first one is a surface-relief grating structure; the second, a volume polarization grating. This model is based on our experimental results from polarization holographic recordings in azopolymer films. We used films of commercially available azopolymer (poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]), shortly denoted as PAZO. During the recording process, a polarization grating in the volume of the material and a relief grating on the film surface are formed simultaneously. In order to evaluate numerically the optical response of this “hybrid” diffraction structure, we used the rigorous coupled-wave approach (RCWA). It yields stable numerical solutions of Maxwell’s vector equations using the algebraic eigenvalue method.

  20. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  1. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    International Nuclear Information System (INIS)

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-01-01

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O"2"− lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta"+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta"+; the sp"3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the

  2. The Effects of Spherical Surface and Laser Polarization on the Photodetachment Cross Section of H−

    International Nuclear Information System (INIS)

    Haneef Muhammad; Arif Suneela; Akbar Jehan; Shamim Aneela; Shah Nasrullah; Zahir Muhammad; Ullah Hameed

    2013-01-01

    We report the combined effects of laser polarization and curvature of the spherical surface on the detached electron spectra from H − . The Theoretical imaging method is used as a tool of investigation. The photodetachment cross sections for various polarization angles, radii of curvatures and inter ion surface distances are displayed. The analysis of the spectra reveals that the laser polarization angle θ L , curvature of the surface r c and inter ion surface distance d strongly affect oscillations in the spectra. Therefore, a fine control on the laser polarization and that of curvature in the surface can be used to control oscillations in the photodetachment of negative ions. (atomic and molecular physics)

  3. Another way of looking at bonding on bimetallic surfaces: the role of spin polarization of surface metal d states

    International Nuclear Information System (INIS)

    Escano, M C; Nguyen, T Q; Nakanishi, H; Kasai, H

    2009-01-01

    The nature of electronic and chemical properties of an unstrained Pt monolayer on a 3d transition metal substrate, M (M = Cr, Mn, Fe), is studied using spin-polarized density functional theory calculations. High spin polarization of Pt d states is noted, verifying the magnetization induced on Pt, which is observed to be responsible for redirecting the analysis of bond formation on a metal surface towards a different perspective. While the shift in the Pt d band center (the average energy of the Pt d band, commonly used to predict the reactivity of surfaces) does give the expected trend in adsorbate (oxygen) chemisorption energy across the bimetallic surfaces in this work, our results show that for spin-polarized Pt d states, the variation in strength of adsorption with respect to the Fermi level density of states is more predictive of Pt chemisorption properties. Hence, this study introduces a scheme for analyzing trends in reactivity of bimetallic surfaces where adsorption energies are used as reactivity parameters and where spin polarization effects cannot be neglected. (fast track communication)

  4. Analysis of polarization in hydrogen bonded complexes: An asymptotic projection approach

    Science.gov (United States)

    Drici, Nedjoua

    2018-03-01

    The asymptotic projection technique is used to investigate the polarization effect that arises from the interaction between the relaxed, and frozen monomeric charge densities of a set of neutral and charged hydrogen bonded complexes. The AP technique based on the resolution of the original Kohn-Sham equations can give an acceptable qualitative description of the polarization effect in neutral complexes. The significant overlap of the electron densities, in charged and π-conjugated complexes, impose further development of a new functional, describing the coupling between constrained and non-constrained electron densities within the AP technique to provide an accurate representation of the polarization effect.

  5. Effect of polar and non-polar surfaces of ZnO nanostructures on photocatalytic properties

    International Nuclear Information System (INIS)

    Yang Jinghai; Wang Jian; Li Xiuyan; Lang Jihui; Liu Fuzhu; Yang Lili; Zhai Hongju; Gao Ming; Zhao Xiaoting

    2012-01-01

    Highlights: ► Large-scale arrayed ZnO nanocrystals including ZnO hexagonal platforms and hamburger-like samples have been successfully fabricated by a simple hydrothermal method. ► ZnO with hexagonal platform-like morphology exhibited higher photocatalytic activity compared with that of the hamburger-like ZnO nanostructures. ► The theories of expose surfaces and oxygen vacancies were utilized to explain the photocatalytic mechanism. - Abstract: Large-scale arrayed ZnO nanocrystals with two different expose surfaces, including ZnO hexagonal nanoplatforms with the major expose plane of (0 0 0 1) and hamburger-like samples with the nonpolar planes of {101 ¯ 0} mainly exposed, were successfully fabricated by a simple hydrothermal method. Mechanisms for compare the photocatalytic activity of two typical ZnO nanostructures were systematic explained as the key point in the paper. Compared with the hamburger-like ZnO nanostructures, the ZnO with hexagonal platform-like morphology exhibited improved ability on the photocatalytic degradation of Rhodamine B (RhB) in aqueous solution under UV radiation. The relative higher photocatalytic activity of the ZnO hexagonal nanoplatforms was attributed to the exposed polar surfaces and the content of oxygen vacancy on the nanostructures surface. The Zn-terminated (0 0 0 1) polar face and the surface defects are facile to adsorb O 2− and OH − ions, resulting in a greater production rate of O 2 · − and OH· − , hence promoting the photocatalysis reaction.

  6. Stabilization mechanism for the polar ZnO(0001̅)-O surface

    DEFF Research Database (Denmark)

    Wahl, Roman; Lauritsen, Jeppe Vang; Besenbacher, Flemming

    2013-01-01

    When wurtzite ZnO is sliced perpendicular to the (0001) axis, two different polar surfaces, the (0001)-Zn and (0001̅ )-O terminated surfaces, are formed. In a simple ionic picture, both surfaces are electrostatically unstable due to a diverging electrostatic energy. Although the ionic picture...

  7. Surface magnetism studied by polarized light emission after He+ scattering

    NARCIS (Netherlands)

    Manske, J; Dirska, M; Lubinski, G; Schleberger, M; Narmann, A; Hoekstra, R

    Surface magnetism is studied by means of an ion beam of low energy (2-15 keV) scattered off the surface under grazing incidence conditions. During the scattering, a small fraction of the ions is neutralized into excited states which decay subsequently by light emission. The circular polarization of

  8. Covalent Surface Modification of Silicon Oxides with Alcohols in Polar Aprotic Solvents.

    Science.gov (United States)

    Lee, Austin W H; Gates, Byron D

    2017-09-05

    Alcohol-based monolayers were successfully formed on the surfaces of silicon oxides through reactions performed in polar aprotic solvents. Monolayers prepared from alcohol-based reagents have been previously introduced as an alternative approach to covalently modify the surfaces of silicon oxides. These reagents are readily available, widely distributed, and are minimally susceptible to side reactions with ambient moisture. A limitation of using alcohol-based compounds is that previous reactions required relatively high temperatures in neat solutions, which can degrade some alcohol compounds or could lead to other unwanted side reactions during the formation of the monolayers. To overcome these challenges, we investigate the condensation reaction of alcohols on silicon oxides carried out in polar aprotic solvents. In particular, propylene carbonate has been identified as a polar aprotic solvent that is relatively nontoxic, readily accessible, and can facilitate the formation of alcohol-based monolayers. We have successfully demonstrated this approach for tuning the surface chemistry of silicon oxide surfaces with a variety of alcohol containing compounds. The strategy introduced in this research can be utilized to create silicon oxide surfaces with hydrophobic, oleophobic, or charged functionalities.

  9. Atmosphere-surface interactions over polar oceans and heterogeneous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Vihma, T.

    1995-12-31

    Processes of interaction between the atmospheric boundary layer and the planetary surface have been studied with special emphasis on polar ocean surfaces: the open ocean, leads, polynyas and sea ice. The local exchange of momentum, heat and moisture has been studied experimentally both in the Weddell Sea and in the Greenland Sea. Exchange processes over heterogeneous surfaces are addressed by modelling studies. Over a homogeneous surface, the local turbulent fluxes can be reasonably well estimated using an iterative flux-profile scheme based on the Monin-Obukhov similarity theory. In the Greenland Sea, the near-surface air temperature and the generally small turbulent fluxes over the open ocean were affected by the sea surface temperature fronts. Over the sea ice cover in the Weddell Sea, the turbulent sensible heat flux was generally downwards, and together with an upward oceanic heat flux through the ice it compensated the heat loss from the surface via long-wave radiation. The wind dominated on time scales of days, while the current became important on longer time scales. The drift dynamics showed apparent spatial differences between the eastern and western regions, as well as between the Antarctic Circumpolar Current and the rest of the Weddell Sea. Inertial motion was present in regions of low ice concentration. The surface heterogeneity, arising e.g. from roughness or temperature distribution, poses a problem for the parameterization of surface exchange processes in large-scale models. In the case of neutral flow over a heterogeneous terrain, an effective roughness length can be used to parameterize the roughness effects

  10. Atmosphere-surface interactions over polar oceans and heterogeneous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Vihma, T

    1996-12-31

    Processes of interaction between the atmospheric boundary layer and the planetary surface have been studied with special emphasis on polar ocean surfaces: the open ocean, leads, polynyas and sea ice. The local exchange of momentum, heat and moisture has been studied experimentally both in the Weddell Sea and in the Greenland Sea. Exchange processes over heterogeneous surfaces are addressed by modelling studies. Over a homogeneous surface, the local turbulent fluxes can be reasonably well estimated using an iterative flux-profile scheme based on the Monin-Obukhov similarity theory. In the Greenland Sea, the near-surface air temperature and the generally small turbulent fluxes over the open ocean were affected by the sea surface temperature fronts. Over the sea ice cover in the Weddell Sea, the turbulent sensible heat flux was generally downwards, and together with an upward oceanic heat flux through the ice it compensated the heat loss from the surface via long-wave radiation. The wind dominated on time scales of days, while the current became important on longer time scales. The drift dynamics showed apparent spatial differences between the eastern and western regions, as well as between the Antarctic Circumpolar Current and the rest of the Weddell Sea. Inertial motion was present in regions of low ice concentration. The surface heterogeneity, arising e.g. from roughness or temperature distribution, poses a problem for the parameterization of surface exchange processes in large-scale models. In the case of neutral flow over a heterogeneous terrain, an effective roughness length can be used to parameterize the roughness effects

  11. Quantifying microbe-mineral interactions leading to remotely detectable induced polarization signals

    Energy Technology Data Exchange (ETDEWEB)

    Ntarlagiannis, Dimitrios; Moysey, Stephen; Dean, Delphine

    2013-11-14

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealized systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for

  12. Modifications of Surface Wave Discrimination Filter Based on the Polarization Properties

    International Nuclear Information System (INIS)

    Kutlu, Y. A.; Sayil, N.

    2007-01-01

    The polarization properties of Love and Rayleigh waves are utilized to design Surface Wave Discrimination Filter. Filtering process for a selected window length and moving interval is that the amplitudes at each frequency on vertical, radial and transverse components are weighted according to how closely the theoretical three-dimensional particle motion pattern. In this study, weighted functions have been modified for epicenteral distances smaller than about 2200 km to corresponding with angular distribution of polarization parameters obtained from computed synthetic seismograms. Modified Surface Wave Discrimination Filter has been tested on synthetic seismograms and digital three-components broadband records at Trabzon earthquake station

  13. Inspiring students through an authentic polar science expedition: the RESEt Project

    Science.gov (United States)

    Cattadori, Matteo

    2016-04-01

    RESEt (Research and Education Svalbard Experience www.resetsvalbard.it) is an ongoing educational project focusing mainly on polar and climate system topics. It started in 2014 and will end in 2017 with the high school diploma of the 22 students (16 y. o.) making the participant class. This class attend a school (Liceo Filzi, Rovereto, Trento. Italy) with a primary focus on disciplines like philosophy and education, rather then STEM (Science, Technology, Engineering, and Mathematics). Nevertheless their science curricula include climate topics that are rather challenging to grasp and, at the same time, crucial for their scientific citizenship. Some questions arise: How to foster their interest in geosciences topics? How to engage them in authentic scientific knowledge? How to increase their interest in scientific university courses during their post-secondary career? RESEt project will attempt to answer these questions through the development of integrated activities distributed over the last three years of their high school cycle. The most important moment will be an educational scientific expedition at the Svalbard, an archipelago located in the Arctic. The expedition be entirely organized, planned, and directed by students. In Svalbard, students will visit the main scientific facilities devoted to climate studies including those of Italian CNR (National Research Council) and they will perform some environmental measurement using data-loggers. Students are even involved in the fundraising process to raise more than ten thousand Euros needed to for travel expenses. This work is aimed mainly at presenting some of the preliminary data collected during the RESEt project, including the fundraising aspects. The management of the RESEt project strongly relies on the experience and network gained by the abstract author during the participation to the Education and Public Outreach (EPO) program of International Polar Year (IPY) 2007-2009 as well as the support of Polar

  14. Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines

    Science.gov (United States)

    Regehr, Eric V.; Laidre, Kristin L.; Akçakaya, H. Resit; Amstrup, Steven C.; Atwood, Todd C.; Lunn, Nicholas J.; Obbard, Martyn E.; Stern, Harry; Thiemann, Gregory W.; Wiig, Øystein

    2016-01-01

    Loss of Arctic sea ice owing to climate change is the primary threat to polar bears throughout their range. We evaluated the potential response of polar bears to sea-ice declines by (i) calculating generation length (GL) for the species, which determines the timeframe for conservation assessments; (ii) developing a standardized sea-ice metric representing important habitat; and (iii) using statistical models and computer simulation to project changes in the global population under three approaches relating polar bear abundance to sea ice. Mean GL was 11.5 years. Ice-covered days declined in all subpopulation areas during 1979–2014 (median −1.26 days year−1). The estimated probabilities that reductions in the mean global population size of polar bears will be greater than 30%, 50% and 80% over three generations (35–41 years) were 0.71 (range 0.20–0.95), 0.07 (range 0–0.35) and less than 0.01 (range 0–0.02), respectively. According to IUCN Red List reduction thresholds, which provide a common measure of extinction risk across taxa, these results are consistent with listing the species as vulnerable. Our findings support the potential for large declines in polar bear numbers owing to sea-ice loss, and highlight near-term uncertainty in statistical projections as well as the sensitivity of projections to different plausible assumptions.

  15. Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines.

    Science.gov (United States)

    Regehr, Eric V; Laidre, Kristin L; Akçakaya, H Resit; Amstrup, Steven C; Atwood, Todd C; Lunn, Nicholas J; Obbard, Martyn; Stern, Harry; Thiemann, Gregory W; Wiig, Øystein

    2016-12-01

    Loss of Arctic sea ice owing to climate change is the primary threat to polar bears throughout their range. We evaluated the potential response of polar bears to sea-ice declines by (i) calculating generation length (GL) for the species, which determines the timeframe for conservation assessments; (ii) developing a standardized sea-ice metric representing important habitat; and (iii) using statistical models and computer simulation to project changes in the global population under three approaches relating polar bear abundance to sea ice. Mean GL was 11.5 years. Ice-covered days declined in all subpopulation areas during 1979-2014 (median -1.26 days year -1 ). The estimated probabilities that reductions in the mean global population size of polar bears will be greater than 30%, 50% and 80% over three generations (35-41 years) were 0.71 (range 0.20-0.95), 0.07 (range 0-0.35) and less than 0.01 (range 0-0.02), respectively. According to IUCN Red List reduction thresholds, which provide a common measure of extinction risk across taxa, these results are consistent with listing the species as vulnerable. Our findings support the potential for large declines in polar bear numbers owing to sea-ice loss, and highlight near-term uncertainty in statistical projections as well as the sensitivity of projections to different plausible assumptions. © 2016 The Authors.

  16. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    International Nuclear Information System (INIS)

    Wei, Feng; Xu, Yanyan; Guo, Yuan; Liu, Shi-lin; Wang, Hongfei

    2009-01-01

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG-VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm -1 spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and (25.4±1.3)%, respectively.

  17. Oblique Projection Polarization Filtering-Based Interference Suppressions for Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Cao Bin

    2010-01-01

    Full Text Available The interferences coming from the radar members degrade the detection and recognition performance of the radar sensor networks (RSNs if the waveforms of the radar members are nonorthogonal. In this paper, we analyze the interferences by exploring the polarization information of the electromagnetic (EM waves. Then, we propose the oblique projection polarization filtering- (OPPF- based scheme to suppress the interferences while keeping the amplitude and phase of its own return in RSNs, even if the polarized states of the radar members are not orthogonal. We consider the cooperative RSNs environment where the polarization information of each radar member is known to all. The proposed method uses all radar members' polarization information to establish the corresponding filtering operator. The Doppler-shift and its uncertainty are independent of the polarization information, which contributes that the interferences can be suppressed without the utilization of the spatial, the temporal, the frequency, the time-delay and the Doppler-shift information. Theoretical analysis and the mathematical deduction show that the proposed scheme is a valid and simple implementation. Simulation results also demonstrate that this method can obtain a good filtering performance when dealing with the problem of interference suppressions for RSNs.

  18. Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.

    Science.gov (United States)

    Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray

    2002-04-01

    Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE.

  19. Dark Material at the Surface of Polar Crater Deposits on Mercury

    Science.gov (United States)

    Neumann, Gregory A.; Cavanaugh, John F.; Sun, Xiaoli; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.; Paige, Daid A.

    2012-01-01

    Earth-based radar measurements [1-3] have yielded images of radar-bright material at the poles of Mercury postulated to be near-surface water ice residing in cold traps on the permanently shadowed floors of polar impact craters. The Mercury Laser Altimeter (MLA) on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has now mapped much of the north polar region of Mercury [4] (Fig. 1). Radar-bright zones lie within polar craters or along poleward-facing scarps lying mainly in shadow. Calculations of illumination with respect to solid-body motion [5] show that at least 0.5% of the surface area north of 75deg N lies in permanent shadow, and that most such permanently shadowed regions (PSRs) coincide with radar-bright regions. MLA transmits a 1064-nm-wavelength laser pulse at 8 Hz, timing the leading and trailing edges of the return pulse. MLA can in some cases infer energy and thereby surface reflectance at the laser wavelength from the returned pulses. Surficial exposures of water ice would be optically brighter than the surroundings, but persistent surface water ice would require temperatures over all seasons to remain extremely low (Mercury s eccentric orbit, 3:2 spin-orbit resonance, and near-zero obliquity generally do not support such conditions in all permanently shadowed craters but suggest that water ice buried near the surface ( 1 Gy. We describe measurements of reflectivity derived from MLA pulse returns. These reflectivity data show that surface materials in the shadowed regions are darker than their surroundings, enough to strongly attenuate or extinguish laser returns. Such measurements appear to rule out widespread surface exposures of water ice. We consider explanations for the apparent low reflectivity of these regions involving other types of volatile deposit.

  20. Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod

    Science.gov (United States)

    Cheng, Mu-Tian; Liu, Shao-Ding; Wang, Qu-Quan

    2008-04-01

    We theoretically investigated the dynamics of exciton populations [ρyy(t ) and ρxx(t )] on two orthogonal polarization eigenstates (∣x⟩ and ∣y⟩) and the polarization ratio P(t )=[ρyy(t )-ρxx(t )]/[ρyy(t )+ρxx(t )] of an anisotropic InGaAs quantum dot modulated by the surface plasmon of an Au nanorod (NR). In the resonance of longitudinal surface plasmon of AuNR, the polarization ratio P(t ) increases from 0.22 to 0.99 during the excitation due to the efficient enhancement of Rabi frequency of the transition between the ∣y⟩ and vacuum states, and decreases from 0.02 to -0.92 after the excitation pulse due to the enhancement of decay rate of the ∣y⟩ state. This offers an approach to modulate the dynamic polarization ratio of radiative emissions.

  1. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory, EMSP Project No. 73836

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, F. Dale; Sogade, John

    2004-12-14

    This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28

  2. Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface

    Science.gov (United States)

    Yang, Jin; Zhang, Cheng; Ma, Hui Feng; Zhao, Jie; Dai, Jun Yan; Yuan, Wei; Yang, Liu Xi; Cheng, Qiang; Cui, Tie Jun

    2018-05-01

    We propose a strategy to convert a linearly polarized wave from a single point source to an orbital angular momentum (OAM) wave by arbitrary polarization via an anisotropic frequency selective surface (FSS) in the microwave frequency. By tailoring the geometries of FSS elements, reflection-phases in x and y polarizations are engineered and encoded independently, which allows us to design the eventual polarization state of the generated OAM vortex beam by elaborately selecting individual coding sequences for each polarization. Two types of FSSs are designed and experimentally characterized to demonstrate the capability of OAM generation with circular and linear polarizations, respectively, showing excellent performance in a wide bandwidth from 14 to 16 GHz. This method provides opportunities for polarization multiplexing in microwave OAM communication systems.

  3. The Polar Crust Project- BSC Diversity and Variability in the Arctic and Antarctica

    Science.gov (United States)

    Williams, Laura; Borchhardt, Nadine; Komisc-Buchmann, Karin; Becker, Burkhard; Karsten, Ulf; Büdel, Burkhard

    2015-04-01

    The Polar Crust Project is a newly funded DFG initiative that aims to provide a precise evaluation of the biodiversity of eukaryotic green microalgae and cyanobacteria in Biological Soil Crusts (BSC) isolated from the Antarctic Peninsula and Arctic Svalbard. This project will include a thorough investigation into the composition of BSC in the Polar regions, this especially is important for Svalbard due to the severe lack of any previous research on such communities in this area. During our expedition to Spitsbergen, Svalbard in August 2014 we were particularly surprised to find that the coverage of BSC is extremely high and is certainly the dominant vegetation type around Ny Ålesund. Due to this discovery the project has now been extended to include long term measurements of CO2 gas exchange in order to gain exact seasonal carbon fixation rates and therefore discovering how the BSC contributes to the ecosystems carbon balance. The research areas of Spitsbergen were centred around 2 localities: Ny-Ålesund is a research town, home to the AWIPEV station, on the Brøgger peninsula. Longyearbyen, which is the largest settlement on the island, is found in the valley Longyeardalen on the shore of Adventfjorden. Areas where BSC is the prevalent vegetation type were identified, 6 around Ny-Ålesund and 4 for Longyearbyen, and vegetation surveys were conducted. This entailed 625 single point measurements at each site and identifying the crust/or other cover type. For example, green algal lichen, cyanobacterial crust, higher plant, open soil. Samples were also taken at every location in order to study the green algal and cyanobacterial diversity. The vegetation survey will allow us to get a good overview of the BSC composition at the different sites. In January 2015 an expedition to the Antarctic Peninsular took place, here the sampling method was repeated and therefore both Polar Regions BSC composition can be described and compared. Here, we wish to introduce the Polar

  4. Excitation of a surface wave by an s-polarized electromagnetic wave incident upon a boundary of a dense magnetoactive plasma

    International Nuclear Information System (INIS)

    Dragila, R.; Vukovic, S.

    1988-01-01

    The properties of surfave waves that are associated with a boundary between a rare plasma and a dense magnetoactive plasma and that propagate along a dc magnetic field are investigated. It is shown that the presence of the magnetic field introduces symmetry in terms of the polarization of the incident electromagnetic wave that excites the surface waves. A surface wave excited by an incident p-polarized (s-polarized) electromagnetic wave leaks in the form of an s-polarized (p-polarized) electromagnetic wave. The rate of rotation of polarization is independent of the polarization of the incident wave. Because a surface wave can leak in the form of an s-polarized electromagnetic wave, it can also be pumped by such a wave, and conditions were found for excitation of a surface wave by an s-polarized incident electromagnetic wave

  5. Multiplexed Holograms by Surface Plasmon Propagation and Polarized Scattering.

    Science.gov (United States)

    Chen, Ji; Li, Tao; Wang, Shuming; Zhu, Shining

    2017-08-09

    Thanks to the superiority in controlling the optical wave fronts, plasmonic nanostructures have led to various striking applications, among which metasurface holograms have been well developed and endowed with strong multiplexing capability. Here, we report a new design of multiplexed plasmonic hologram, which allows for reconstruction of multiple holographic images in free space by scatterings of surface plasmon polariton (SPP) waves in different propagation directions. Besides, the scattered polarization states can be further modulated by arranging the orientations of nanoscatterers. By incorporation of the SPP propagation and polarized scattering, a 4-fold hologram with low crosstalk is successfully demonstrated, which breaks the limitation of only two orthogonal states in conventional polarization multiplexers. Moreover, our design using the near-field SPP as reference wave holds the advantage for compact integration. This holographic approach is expected to inspire new photonic designs with enhanced information capacity and integratability.

  6. Polarity control and growth mode of InN on yttria-stabilized zirconia (111) surfaces

    International Nuclear Information System (INIS)

    Kobayashi, Atsushi; Okubo, Kana; Ohta, Jitsuo; Oshima, Masaharu; Fujioka, Hiroshi

    2012-01-01

    We have found that polarity of epitaxial InN layers has been controlled by choice of a capping material during high-temperature annealing of yttria-stabilized zirconia (YSZ) (111) substrates in air. Angle-resolved X-ray photoelectron spectroscopy has revealed that the amount of segregation of Y atoms to the YSZ surface depended on the capping material of the substrates. In-polar and N-polar InN have been reproducibly grown on Y-segregated and Y-segregation-free YSZ surfaces, respectively. We have also found that the growth of the first monolayer (ML) of N-polar InN proceeds in a step-flow mode which then switches to layer-by-layer mode after the coverage by 1-ML-thick InN. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Rostgaard, Carsten; Rubio, A.

    2009-01-01

    On the basis of first-principles G0W0 calculations we systematically study how the electronic levels of a benzene molecule are renormalized by substrate polarization when physisorbed on different metallic and semiconducting surfaces. The polarization-induced reduction in the energy gap between oc...... find that error cancellations lead to remarkably good agreement between the G0W0 and Kohn-Sham energies for the occupied orbitals of the adsorbed molecule....

  8. Calibration of the Chemcatcher passive sampler for monitoring selected polar and semi-polar pesticides in surface water

    International Nuclear Information System (INIS)

    Gunold, Roman; Schaefer, Ralf Bernhard; Paschke, Albrecht; Schueuermann, Gerrit; Liess, Matthias

    2008-01-01

    Passive sampling is a powerful method for continuous pollution monitoring, but calibration experiments are still needed to generate sampling rates in order to estimate water concentrations for polar compounds. We calibrated the Chemcatcher device with an uncovered SDB-XC Empore disk as receiving phase for 12 polar and semi-polar pesticides in aquatic environments in flow-through tank experiments at two water flow velocities (0.135 m/s and 0.4 m/s). In the 14-day period of exposure the uptake of test substances in the sampler remained linear, and all derived sampling rates R s were in the range of 0.1 to 0.5 L/day. By additionally monitoring the release of two preloaded polar pesticides from the SDB-XC disks over time, very high variation in release kinetics was found, which calls into question the applicability of performance reference compounds. Our study expands the applicability of the Chemcatcher for monitoring trace concentrations of pesticides with frequent occurrence in water. - We calibrated the Chemcatcher passive sampler for current-use polar pesticides in surface waters, allowing its application in future monitoring studies

  9. Anti-parallel polarization switching in a triglycine sulfate organic ferroelectric insulator: The role of surface charges

    Science.gov (United States)

    Ma, He; Wu, Zhuangchun; Peng, Dongwen; Wang, Yaojin; Wang, Yiping; Yang, Ying; Yuan, Guoliang

    2018-04-01

    Four consecutive ferroelectric polarization switchings and an abnormal ring-like domain pattern can be introduced by a single tip bias of a piezoresponse force microscope in the (010) triglycine sulfate (TGS) crystal. The external electric field anti-parallel to the original polarization induces the first polarization switching; however, the surface charges of TGS can move toward the tip location and induce the second polarization switching once the tip bias is removed. The two switchings allow a ring-like pattern composed of the central domain with downward polarization and the outer domain with upward polarization. Once the two domains disappear gradually as a result of depolarization, the other two polarization switchings occur one by one at the TGS where the tip contacts. However, the backswitching phenomenon does not occur when the external electric field is parallel to the original polarization. These results can be explained according to the surface charges instead of the charges injected inside.

  10. Biphotonic holographic gratings in azobenzene polyesters: Surface relief phenomena and polarization effects

    DEFF Research Database (Denmark)

    Sánchez, C.; Alcalá, R.; Hvilsted, Søren

    2000-01-01

    Biphotonic holographic gratings have been recorded in a side-chain azobenzene liquid crystalline polyester using a blue incoherent source and a He-Ne laser. Intensity gratings and the appearance of surface relief have been observed when two linearly polarized beams from a He-Ne laser are made...... to interfere on a film illuminated with blue light. Polarized holographic gratings are also created with two orthogonally circularly polarized He-Ne beams. All these gratings are stable in darkness but can be erased with blue light. (C) 2000 American Institute of Physics....

  11. IPRT polarized radiative transfer model intercomparison project - Three-dimensional test cases (phase B)

    Science.gov (United States)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2018-04-01

    Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http

  12. Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Hurtado, A.; Al Seyab, R. K.; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2014-11-03

    We experimentally demonstrate the control of the light polarization emitted by a 1310 nm dilute nitride spin-Vertical Cavity Surface Emitting Laser (VCSEL) at room temperature. This is achieved by means of a combination of polarized optical pumping and polarized optical injection. Without external injection, the polarization of the optical pump controls that of the spin-VCSEL. However, the addition of the externally injected signal polarized with either left- (LCP) or right-circular polarization (RCP) is able to control the polarization of the spin-VCSEL switching it at will to left- or right-circular polarization. A numerical model has been developed showing a very high degree of agreement with the experimental findings.

  13. How Can Polarization States of Reflected Light from Snow Surfaces Inform Us on Surface Normals and Ultimately Snow Grain Size Measurements?

    Science.gov (United States)

    Schneider, A. M.; Flanner, M.; Yang, P.; Yi, B.; Huang, X.; Feldman, D.

    2016-12-01

    The Snow Grain Size and Pollution (SGSP) algorithm is a method applied to Moderate Resolution Imaging Spectroradiometer data to estimate snow grain size from space-borne measurements. Previous studies validate and quantify potential sources of error in this method, but because it assumes flat snow surfaces, however, large scale variations in surface normals can cause biases in its estimates due to its dependence on solar and observation zenith angles. To address these variations, we apply the Monte Carlo method for photon transport using data containing the single scattering properties of different ice crystals to calculate polarization states of reflected monochromatic light at 1500nm from modeled snow surfaces. We evaluate the dependence of these polarization states on solar and observation geometry at 1500nm because multiple scattering is generally a mechanism for depolarization and the ice crystals are relatively absorptive at this wavelength. Using 1500nm thus results in a higher number of reflected photons undergoing fewer scattering events, increasing the likelihood of reflected light having higher degrees of polarization. In evaluating the validity of the model, we find agreement with previous studies pertaining to near-infrared spectral directional hemispherical reflectance (i.e. black-sky albedo) and similarities in measured bidirectional reflectance factors, but few studies exist modeling polarization states of reflected light from snow surfaces. Here, we present novel results pertaining to calculated polarization states and compare dependences on solar and observation geometry for different idealized snow surfaces. If these dependencies are consistent across different ice particle shapes and sizes, then these findings could inform the SGSP algorithm by providing useful relationships between measurable physical quantities and solar and observation geometry to better understand variations in snow surface normals from remote sensing observations.

  14. Polarization-sensitive surface plasmon enhanced ellipsometry biosensor using the photoelastic modulation technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Ho, Ho Pui; Wu, S.Y.

    2009-01-01

    A surface plasmon enhanced ellipsometry (SPEE) biosensor scheme based on the use of a photoelastic modulator (PEM) is reported. We show that the polarization parameters of a laser beam, tan , cos and ellipse orientation angle , can be directly measured by detecting the modulation signals at the f......A surface plasmon enhanced ellipsometry (SPEE) biosensor scheme based on the use of a photoelastic modulator (PEM) is reported. We show that the polarization parameters of a laser beam, tan , cos and ellipse orientation angle , can be directly measured by detecting the modulation signals...... at the first and second harmonics of the modulated frequency under a certain birefringence geometry. This leads to accurate measurement of refractive index variations within the evanescent field region close to the gold sensor surface, thereby enabling biosensing applications. Our experimental results confirm...

  15. Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Kuntumalla, Mohan; Srikanth, Vadali V. S. S., E-mail: vvsssse@uohyd.ernet.in [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Rajamudili, Kuladeep; Rao Desai, Narayana [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2014-04-21

    Deep sub-wavelength (Λ/λ = ∼0.22) periodic features are induced uniformly on a nanodiamond (ND) thin film surface using femtosecond (fs) laser irradiation (pulse duration = ∼110 fs and central wavelength of ∼800 nm). The topography of the surface features is controlled by the laser polarization. Orientation of features is perpendicular to laser polarization. Periodicity (spatial periodicity of < λ/4) of the surface features is less than the laser wavelength. This work gives an experimental proof of polarization controlled surface plasmon-fs laser coupling mechanism prompting the interaction between fs laser and solid matter (here ND thin film) which in turn is resulting in the periodic surface features. Scanning electron microscopy in conjunction with micro Raman scattering, X-ray diffraction, and atomic force microscopy are carried out to extract surface morphology and phase information of the laser irradiated regions. This work demonstrates an easy and efficient surface fabrication technique.

  16. Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters

    DEFF Research Database (Denmark)

    Naydenova, I; Nikolova, L; Todorov, T

    1998-01-01

    We investigate the polarization properties of holographic gratings in side-chain azobenzene polyesters in which an anisotropic grating that is due to photoinduced linear and circular birefringence is recorded in the volume of the material and a relief grating appears on the surface. A theoretical...... model is proposed to explain the experimental results, making it possible to understand the influence of the different photoinduced effects. It is shown that at low intensity the polarization properties of the diffraction at these gratings are determined by the interaction of the linear and circular...... photobirefringences, and at larger intensity the influence of the surface relief dominates the effect of the circular anisotropy. Owing to the high recording efficiency of the polyesters, the +/-1-order diffracted waves change the polarization interference pattern during the holographic recording, resulting...

  17. Characterization of as-grown and adsorbate-covered N-polar InN surfaces using in situ photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Eisenhardt, Anja; Himmerlich, Marcel; Krischok, Stefan

    2012-01-01

    The surface electronic properties and adsorption behaviour of as-grown and oxidized N-polar InN films are characterized by photoelectron spectroscopy (XPS, UPS). The epitaxial growth of the InN layers was performed by plasma-assisted molecular beam epitaxy on GaN/6H-SiC(000-1). After growth and in situ characterization the InN surfaces were exposed to molecular oxygen to evaluate the adsorption behaviour of O 2 on N-polar InN and to study its impact on the surface electronic properties of the III-nitride material. The results are compared with studies on In-polar InN on GaN/sapphire templates. The as-grown N-polar InN surface exhibits a pronounced surface state at a binding energy of ∝1.6 eV. The valence band minimum lies about 0.8-1.0 eV below the surface Fermi level. Additionally, the XPS core level binding energies for InN(000-1) are reduced compared to InN(0001) films, indicating different surface band bending for clean N-polar and In-polar InN, respectively. The interaction of molecular oxygen with the InN(000-1) surface leads to a downward band bending by 0.1 eV compared to the initial state. Additional adsorption of species from the residual gas of the UHV chamber increases the surface downward band bending. Furthermore two pronounced oxygen related states with an energy distance of ∝5 eV could be detected in the valence band region. The adsorbed oxygen results in an additional component in the N1s core level spectra, which is interpreted as formation of NO x bonds. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Semi-polar GaN heteroepitaxy an high index Si-surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ravash, Roghaiyeh; Blaesing, Juergen; Hempel, Thomas; Dadgar, Armin; Christen, Juergen; Krost, Alois [Otto-von-Guericke-University Magdeburg, FNW/IEP/AHE, Magdeburg (Germany)

    2011-07-01

    Due to the lack of GaN homosubstrates, the growth of GaN-based devices is usually performed on heterosubstrates as sapphire or SiC. These substrates are either insulating or expensive, and both unavailable in large diameters. Meanwhile, silicon can meet the requirements for a low price and thermally well conducting substrate and also enabling the integration of optoelectronic devices with Si-based electronics. Up to now, the good matching of hexagonal GaN with the three-fold symmetry of Si(111) greatly promotes the c-axis orientated growth of GaN on this surface plane. A large spontaneous and piezoelectric polarization oriented along the c-axis exists in such hexagonal structure leading to low efficiencies for thick quantum wells. The attention to the growth of non-polar or semi-polar GaN based epitaxial structures has been increased recently because of reducing the effect of the polarization fields in these growth directions. Therefore we studied semi-polar GaN epilayers grown by metalorganic vapor phase epitaxy on silicon substrates with different orientations from Si(211) to Si(711). We observed that AlN seeding layer growth time play a significant role in obtaining the different GaN texture.

  19. Subsurface hydrogen bonds at the polar Zn-terminated ZnO(0001) surface

    DEFF Research Database (Denmark)

    Hellström, Matti; Beinik, Igor; Broqvist, Peter

    2016-01-01

    techniques, we find that the polar Zn-terminated ZnO(0001) surface becomes excessively Zn deficient during high-temperature annealing (780 K) in ultrahigh vacuum (UHV). The Zn vacancies align themselves into rows parallel to the [10-10] direction, and the remaining surface Zn ions alternately occupy wurtzite...

  20. Control of Electronic Conduction at an Oxide Heterointerface using Surface Polar Adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Christopher

    2011-08-19

    We study the effect of the surface adsorption of a variety of common laboratory solvents on the conductivity at the interface between LaAlO{sub 3} and SrTiO{sub 3}. This interface possesses a range of intriguing physics, notably a proposed connection between the surface state of the LaAlO{sub 3} and the conductivity buried in the SrTiO{sub 3}. We show that the application of chemicals such as acetone, ethanol, and water can induce a large change (factor of three) in the conductivity. This phenomenon is observed only for polar solvents. These data provide experimental evidence for a general polarization-facilitated electronic transfer mechanism.

  1. Research on generating various polarization-modes in polarized illumination system

    Science.gov (United States)

    Huang, Jinping; Lin, Wumei; Fan, Zhenjie

    2013-08-01

    With the increase of the numerical aperture (NA), the polarization of light affects the imaging quality of projection lens more significantly. On the contrary, according to the mask pattern, the resolution of projection lens can be improved by using the polarized illumination. That is to say, using the corresponding polarized beam (or polarization-mode) along with the off-axis illumination will improve the resolution and the imaging quality of the of projection lens. Therefore, the research on the generation of various polarization modes and its conversion methods become more and more important. In order to realize various polarization modes in polarized illumination system, after read a lot of references, we provide a way that fitting for the illumination system with the wavelength of 193nm.Six polarization-modes and a depolarized mode are probably considered. Wave-plate stack is used to generate linearly polarization-mode, which have a higher degree polarization. In order to generate X-Y and Y-X polarization mode, the equipment consisting of four sectors of λ/2 wave plate was used. We combined 16 sectors of λ/2 wave plate which have different orientations of the "slow" axis to generate radial and azimuthal polarization. Finally, a multi-polarization control device was designed. Using the kind of multi-polarization control device which applying this method could help to choose the polarization modes conveniently and flexibility for the illumination system.

  2. n-Alkane adsorption to polar silica surfaces.

    Science.gov (United States)

    Brindza, Michael R; Ding, Feng; Fourkas, John T; Walker, Robert A

    2010-03-21

    The structures of medium-length n-alkane species (C(8)-C(11)) adsorbed to a hydrophilic silica/vapor interface were examined using vibrational sum frequency spectroscopy. Experiments sampling out-of-plane orientation show a clear pattern in vibrational band intensities that implies chains having primarily all-trans conformations lying flat along the interface. Further analysis shows that the methylene groups of the alkane chains have their local symmetry axes directed into and away from the surface. Spectra acquired under different polarization conditions interlock to reinforce this picture of interfacial structure and organization. Variation in signal intensities with chain length suggests that correlation between adsorbed monomers weakens with increasing chain length. This result stands in contrast with alkane behavior at neat liquid/vapor interfaces where longer length alkanes show considerably more surface induced ordering than short chain alkanes.

  3. Web-based Tools for Educators: Outreach Activities of the Polar Radar for Ice Sheet Measurements (PRISM) Project

    Science.gov (United States)

    Braaten, D. A.; Holvoet, J. F.; Gogineni, S.

    2003-12-01

    The Radar Systems and Remote Sensing Laboratory at the University of Kansas (KU) has implemented extensive outreach activities focusing on Polar Regions as part of the Polar Radar for Ice Sheet Measurements (PRISM) project. The PRISM project is developing advanced intelligent remote sensing technology that involves radar systems, an autonomous rover, and communications systems to measure detailed ice sheet characteristics, and to determine bed conditions (frozen or wet) below active ice sheets in both Greenland and Antarctica. These measurements will provide a better understanding of the response of polar ice sheets to global climate change and the resulting impact the ice sheets will have on sea level rise. Many of the research and technological development aspects of the PRISM project, such as robotics, radar systems, climate change and exploration of harsh environments, can kindle an excitement and interest in students about science and technology. These topics form the core of our K-12 education and training outreach initiatives, which are designed to capture the imagination of young students, and prompt them to consider an educational path that will lead them to scientific or engineering careers. The K-12 PRISM outreach initiatives are being developed and implemented in a collaboration with the Advanced Learning Technology Program (ALTec) of the High Plains Regional Technology in Education Consortium (HPR*TEC). ALTec is associated with the KU School of Education, and is a well-established educational research center that develops and hosts web tools to enable teachers nationwide to network, collaborate, and share resources with other teachers. An example of an innovative and successful web interface developed by ALTec is called TrackStar. Teachers can use TrackStar over the Web to develop interactive, resource-based lessons (called tracks) on-line for their students. Once developed, tracks are added to the TrackStar database and can be accessed and modified

  4. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    International Nuclear Information System (INIS)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-01-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function. (paper)

  5. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    Science.gov (United States)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-02-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.

  6. Investigation of the near-surface structures of polar InN films by chemical-state-discriminated hard X-ray photoelectron diffraction

    International Nuclear Information System (INIS)

    Yang, A. L.; Yamashita, Y.; Kobata, M.; Yoshikawa, H.; Sakata, O.; Kobayashi, K.; Matsushita, T.; Píš, I.; Imura, M.; Yamaguchi, T.; Nanishi, Y.

    2013-01-01

    Near-surface structures of polar InN films were investigated by laboratory-based hard X-ray photoelectron diffraction (HXPD) with chemical-state-discrimination. HXPD patterns from In 3d 5/2 and N 1s core levels of the In-polar and N-polar InN films were different from each other and compared with the simulation results using a multiple-scattering cluster model. It was found that the near-surface structure of the In-polar InN film was close to the ideal wurtzite structure. On the other hand, on the N-polar InN film, defects-rich surface was formed. In addition, the existence of the In-polar domains was observed in the HXPD patterns.

  7. Imaging Local Polarization in Ferroelectric Thin Films by Coherent X-Ray Bragg Projection Ptychography

    Science.gov (United States)

    Hruszkewycz, S. O.; Highland, M. J.; Holt, M. V.; Kim, Dongjin; Folkman, C. M.; Thompson, Carol; Tripathi, A.; Stephenson, G. B.; Hong, Seungbum; Fuoss, P. H.

    2013-04-01

    We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.7 nm demonstrated here establishes BPP as an important tool for nanoscale ferroelectric domain imaging, especially in complex environments accessible with hard x rays.

  8. Effect of magnetic polarity on surface roughness during magnetic field assisted EDM of tool steel

    Science.gov (United States)

    Efendee, A. M.; Saifuldin, M.; Gebremariam, MA; Azhari, A.

    2018-04-01

    Electrical discharge machining (EDM) is one of the non-traditional machining techniques where the process offers wide range of parameters manipulation and machining applications. However, surface roughness, material removal rate, electrode wear and operation costs were among the topmost issue within this technique. Alteration of magnetic device around machining area offers exciting output to be investigated and the effects of magnetic polarity on EDM remain unacquainted. The aim of this research is to investigate the effect of magnetic polarity on surface roughness during magnetic field assisted electrical discharge machining (MFAEDM) on tool steel material (AISI 420 mod.) using graphite electrode. A Magnet with a force of 18 Tesla was applied to the EDM process at selected parameters. The sparks under magnetic field assisted EDM produced better surface finish than the normal conventional EDM process. At the presence of high magnetic field, the spark produced was squeezed and discharge craters generated on the machined surface was tiny and shallow. Correct magnetic polarity combination of MFAEDM process is highly useful to attain a high efficiency machining and improved quality of surface finish to meet the demand of modern industrial applications.

  9. Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses

    Science.gov (United States)

    Fraggelakis, F.; Stratakis, E.; Loukakos, P. A.

    2018-06-01

    We demonstrate the capability to exercise advanced control on the laser-induced periodic surface structures (LIPSS) on silicon by combining the effect of temporal shaping, via tuning the interpulse temporal delay between double femtosecond laser pulses, along with the independent manipulation of the polarization state of each of the individual pulses. For this, cross-polarized (CP) as well as counter-rotating (CR) double circularly polarized pulses have been utilized. The pulse duration was 40 fs and the central wavelength of 790 nm. The linearly polarized double pulses are generated by a modified Michelson interferometer allowing the temporal delay between the pulses to vary from Δτ = -80 ps to Δτ = +80 ps with an accuracy of 0.2 fs. We show the significance of fluence balance between the two pulse components and its interplay with the interpulse delay and with the order of arrival of the individually polarized pulse components of the double pulse sequence on the final surface morphology. For the case of CR pulses we found that when the pulses are temporally well separated the surface morphology attains no axial symmetry. But strikingly, when the two CP pulses temporally overlap, we demonstrate, for the first time in our knowledge, the detrimental effect that the phase delay has on the ripple orientation. Our results provide new insight showing that temporal pulse shaping in combination with polarization control gives a powerful tool for drastically controlling the surface nanostructure morphology.

  10. Surface and bulk polaritons in a PML-type magnetoelectric multiferroic with canted spins: TE and TM polarization

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, V; Stamps, R L, E-mail: slamev01@student.uwa.edu.au [School of Physics M013, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia)

    2011-03-16

    We present a theory for surface polaritons on ferroelectric-antiferromagnetic materials with canted spin structure. A small uniform canted moment is allowed, resulting in a weak ferromagnetism directed in the plane parallel to the surface. Surface and bulk polariton modes for a semi-infinite film are calculated for the case of transverse electric (TE) and transverse magnetic (TM) polarization. Example results are presented using parameters appropriate for BaMnF{sub 4}. We find that the surface modes are non-reciprocal for the TE polarization due to the magnetoelectric interaction, and the non-reciprocity can be controlled by an applied electric field. Example results for attenuated total reflection (ATR) are calculated. The magnetoelectric interaction also gives rise to 'leaky' surface modes in the case of TM polarization. These are pseudo-surface waves that exist in the pass band, and dissipate energy into the bulk of the material. We show that these pseudo-surface mode frequencies and properties can be modified by temperature and the application of external electric or magnetic fields.

  11. Wideband, Low-Profile, Dual-Polarized Slot Antenna with an AMC Surface for Wireless Communications

    Directory of Open Access Journals (Sweden)

    Wei Hu

    2016-01-01

    Full Text Available A wideband dual-polarized slot antenna loaded with artificial magnetic conductor (AMC is proposed for WLAN/WIMAX and LTE applications. The slot antenna mainly consists of two pairs of arrow-shaped slots along the diagonals of the square patch. Stepped microstrip feedlines are placed orthogonally to excite the horizontal and vertical polarizations of the antenna. To realize unidirectional radiation and low profile, an AMC surface composed of 7 × 7 unit cells is designed underneath a distance of 0.09λ0 (λ0 being the wavelength in free space at 2.25 GHz from the slot antenna. Both the dual-polarized slot antenna and the AMC surface are fabricated and measured. Experimental results demonstrate that the proposed antenna achieves for both polarizations a wide impedance bandwidth (return loss 10 dB of 36.7%, operating from 1.96 to 2.84 GHz. The isolation between the two input ports keeps higher than 29 dB whereas the cross-polarization levels basically maintain lower than −30 dB across the entire frequency band. High front-to-back ratios better than 22 dB and a stable gain higher than 8 dBi are obtained over the whole band.

  12. Infrared polarization measurements and modeling applied to surface-laid antipersonel landmines

    NARCIS (Netherlands)

    Cremer, F.; Jong, W. de; Schutte, K.

    2002-01-01

    Linear polarization of thermal infrared (TIR) radiation occurs when radiation is reflected or emitted from a smooth surface (such as the top of a landmine) and observed from a grazing angle. The background (soil and vegetation) is generally much rougher and therefore shows less pronounced linearly

  13. Polarization Dependence of Surface Enhanced Raman Scattering on a Single Dielectric Nanowire

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Our measurements of surface enhanced Raman scattering (SERS on Ga2O3 dielectric nanowires (NWs core/silver composites indicate that the SERS enhancement is highly dependent on the polarization direction of the incident laser light. The polarization dependence of the SERS signal with respect to the direction of a single NW was studied by changing the incident light angle. Further investigations demonstrate that the SERS intensity is not only dependent on the direction and wavelength of the incident light, but also on the species of the SERS active molecule. The largest signals were observed on an NW when the incident 514.5 nm light was polarized perpendicular to the length of the NW, while the opposite phenomenon was observed at the wavelength of 785 nm. Our theoretical simulations of the polarization dependence at 514.5 nm and 785 nm are in good agreement with the experimental results.

  14. Analysis of method of polarization surveying of water surface oil pollution

    Science.gov (United States)

    Zhukov, B. S.

    1979-01-01

    A method of polarization surveying of oil films on the water surface is analyzed. Model calculations of contrasted oil and water obtained with different orientations of the analyzer are discussed. The model depends on the spectral range, water transparency and oil film, and the selection of observational direction.

  15. Influence of refraction of p-polarized light on photoemission from metallic surface states

    International Nuclear Information System (INIS)

    Bagchi, A.; Barrera, R.G.

    1979-01-01

    The refraction of p-polarized light at a metal surface leads, under certain circumstances, to a large peak in the spatial distribution of the normal component of the electric field near the surface. The origin of this peak is explained both in terms of a classical correspondence and in terms of a theory based on the non-local dielectric response of the metal surface. The significance of the large magnitude and rapid variation of the surface electric field in exciting photoelectrons from surface states is discussed [pt

  16. Modified polarized geometrical attenuation model for bidirectional reflection distribution function based on random surface microfacet theory.

    Science.gov (United States)

    Liu, Hong; Zhu, Jingping; Wang, Kai

    2015-08-24

    The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.

  17. Surface and interface properties of polar gallium nitride layers; Oberflaechen- und Grenzflaecheneigenschaften von polaren Galliumnitrid-Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Pierre

    2010-07-09

    The material properties of group III-nitrides allows manifold applications. Especially for the GaN-based gas and biosensor technology, an understanding of the GaN surfaces and their interaction with molecules is crucial for the successful development of sensor systems. Especially the influence of crystal orientation, surface termination and reconstruction on the interaction was analysed. To study the interaction of the GaN surface with molecules the reproducible and controllable preparation of GaN surfaces is necessary. Polar GaN layers were grown by molecular beam epitaxy. The surface reconstruction and termination could be selectively adjusted by the growth parameters or further preparation steps. On the Ga-polar surface, gallium-induced and nitrogen-induced 2 x 2 reconstructed as well as non-reconstructed surface modifications could be generated and on the N-polar surface non-reconstructed. The different surface modifications differ considerably in the formation of surface states. The Ga-induced and N-induced 2 x 2 reconstructed surfaces presented two surface states (SS) at 1.4 eV and 3 eV as well as 2 eV and 3 eV, respectively. The non-reconstructed GaN(0001) presented three SS (1.5 eV, 2.5 eV and 3.4 eV) and the GaN(000-1) one SS (2.5 eV). The theoretical predicted surfaces sates (density functional theory) shows a good agreement with the measurements. The analysis revealed a dependence of the interaction of GaN surfaces with O{sub 2} and H{sub 2}O on the orientation, reconstruction, and surface termination of the films. The GaN(000-1) surface is much more reactive to oxygen and water than the (0001) orientated surfaces, while GaN is in general significantly more sensitive to water than to oxygen. The chemical bond configuration of the adsorbed species shows a significant dependence on surface termination. The measurements presented that the formation of nitrogen oxide and/or gallium oxide bonds depends on the surface modification. Furthermore the interaction

  18. Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis

    Science.gov (United States)

    Park, Sunyoung; Ishii, Miaki

    2018-06-01

    A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.

  19. Cloud Masking and Surface Temperature Distribution in the Polar Regions Using AVHRR and other Satellite Data

    Science.gov (United States)

    Comiso, Joey C.

    1995-01-01

    Surface temperature is one of the key variables associated with weather and climate. Accurate measurements of surface air temperatures are routinely made in meteorological stations around the world. Also, satellite data have been used to produce synoptic global temperature distributions. However, not much attention has been paid on temperature distributions in the polar regions. In the polar regions, the number of stations is very sparse. Because of adverse weather conditions and general inaccessibility, surface field measurements are also limited. Furthermore, accurate retrievals from satellite data in the region have been difficult to make because of persistent cloudiness and ambiguities in the discrimination of clouds from snow or ice. Surface temperature observations are required in the polar regions for air-sea-ice interaction studies, especially in the calculation of heat, salinity, and humidity fluxes. They are also useful in identifying areas of melt or meltponding within the sea ice pack and the ice sheets and in the calculation of emissivities of these surfaces. Moreover, the polar regions are unique in that they are the sites of temperature extremes, the location of which is difficult to identify without a global monitoring system. Furthermore, the regions may provide an early signal to a potential climate change because such signal is expected to be amplified in the region due to feedback effects. In cloud free areas, the thermal channels from infrared systems provide surface temperatures at relatively good accuracies. Previous capabilities include the use of the Temperature Humidity Infrared Radiometer (THIR) onboard the Nimbus-7 satellite which was launched in 1978. Current capabilities include the use of the Advance Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. Together, these two systems cover a span of 16 years of thermal infrared data. Techniques for retrieving surface temperatures with these sensors in the polar regions have

  20. Rich Support for Heterogeneous Polar Data in RAMADDA

    Science.gov (United States)

    McWhirter, J.; Crosby, C. J.; Griffith, P. C.; Khalsa, S.; Lazzara, M. A.; Weber, W. J.

    2013-12-01

    VE Science Definition Team and Project Office. See: http://above.nasa.gov - UNAVCO Terrestrial Laser Scanning (TLS): UNAVCO's Polar program provides support for terrestrial laser scanning field projects. We are using RAMADDA to archive these field projects, with over 40 projects ingested to date. - NASA-IceBridge: As part of the NASA LiDAR Access System (NLAS) project, RAMADDA supports numerous airborne and satellite LiDAR data sets - GLAS, LVIS, ATM, Paris, McORDS, etc. - Antarctic Meteorological Research Center (AMRC): Satellite and surface observation network - Support for numerous other data from AON-ACADIS, Greenland GC-Net, NOAA-GMD, AmeriFlux, etc. In this talk we will discuss some of the challenges that Polar data brings to geoinformatics and describe the approaches we have taken to address these challenges in RAMADDA.

  1. Illuminating "spin-polarized" Bloch wave-function projection from degenerate bands in decomposable centrosymmetric lattices

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-03-01

    The combination of space inversion and time-reversal symmetries results in doubly degenerate Bloch states with opposite spin. Many lattices with these symmetries can be constructed by combining a noncentrosymmetric potential (lacking this degeneracy) with its inverted copy. Using simple models, we unravel the evolution of local spin splitting during this process of inversion symmetry restoration, in the presence of spin-orbit interaction and sublattice coupling. Importantly, through an analysis of quantum mechanical commutativity, we examine the difficulty of identifying states that are simultaneously spatially segregated and spin polarized. We also explain how surface-sensitive experimental probes (such as angle-resolved photoemission spectroscopy, or ARPES) of "hidden spin polarization" in layered materials are susceptible to unrelated spin splitting intrinsically induced by broken inversion symmetry at the surface.

  2. Surface Tension of Binary Mixtures Including Polar Components Modeled by the Density Gradient Theory Combined with the PC-SAFT Equation of State

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Planková, Barbora; Hrubý, Jan

    2013-01-01

    Roč. 34, č. 5 (2013), s. 792-812 ISSN 0195-928X R&D Projects: GA AV ČR IAA200760905; GA ČR(CZ) GPP101/11/P046; GA ČR GA101/09/1633 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : chemical polarity * gradient theory * surface tension Subject RIV: BJ - Thermodynamics Impact factor: 0.623, year: 2013 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10765-012-1207-z

  3. Magnetic properties of polar ZnO surfaces from ab-initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Guntram; Adeagbo, Waheed; Hergert, Wolfram [University Halle, Halle (Germany); Ernst, Arthur [Max-Planck-Institute of Microstructure Physics, Halle (Germany); Sanchez, Nadia; Mu noz, Carmen [Instituto de Ciencia de Materiales de Madrid, Madrid (Spain); Szotek, Zdzislawa; Temmerman, Walter [Daresbury Laboratory, Warrington (United Kingdom)

    2011-07-01

    We have investigated a magnetic moment formation of three oxygen-terminated polar ZnO surfaces. Specifically, these are the (000-1) surface, the (0001) surface with an oxygen atom on top of the Zn atom [(0001)-t], and the (0001) surface with an oxygen atom in a threefold hollow site [(0001)-h]. In this study we have used a multi-code approach allowing us to relax the surface structure and calculate the Heisenberg exchange parameters via a magnetic force theorem. Also, the influence of applying self-interaction corrections (SIC) to the oxygen p orbitals has been investigated. Our calculations show that all three surfaces are magnetic. In addition, we find that applying SIC is necessary to correctly describe the top oxygen atom of the (0001)-h and (0001)-t surfaces, for both of which we find Curie temperatures to be larger than room temperature. The latter have been derived from Monte Carlo simulations based on the calculated exchange parameters.

  4. Monolayer alignment on azobenzene surfaces during UV light irradiation: Analysis of optical polarized absorption measurement results and theoretical treatment

    International Nuclear Information System (INIS)

    Zakharov, A.V.; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2006-01-01

    The influence of the charge separation during the trans-cis conformational change on the surface of azobenzene 6Az10PVA monolayer on the polar liquid-crystal monolayer film, such as 4-n-pentyl-4 ' -cyanobiphenyl(5CB), is investigated. The effective anchoring energy (in the Rapini-Papolar form) is phenomenologically described in the framework of the molecular model, which takes into account the interaction between the surface polarization and surface electric field, for number of conformational states of the boundary surface. It is shown, using the experimental data for the voltage across the 6Az10PVA+5CB film, provided by the surface-potential technique, that the charge separation during the conformational changing, caused by the UV irradiation, may lead to changing of the surface alignment of liquid-crystalline molecules. The influence of the photoisomerization process on the orientational order parameter S 2 (t) using the optical polarized absorption measurement is also investigated

  5. Spatial distribution of spin polarization in a channel on the surface of a topological insulator

    International Nuclear Information System (INIS)

    Zhou Xiaoying; Shao Huaihua; Liu Yiman; Tang Dongsheng; Zhou Guanghui

    2012-01-01

    We study the spatial distribution of electron spin polarization for a gate-controlled T-shaped channel on the surface of a three-dimensional topological insulator (3D TI). We demonstrate that an energy gap depending on channel geometry parameters is definitely opened due to the spatial confinement. Spin surface locking in momentum space for a uniform wide channel with Hamiltonian linearity in the wavevector is still kept, but it is broken with Hamiltonian nonlinearity in the wavevector, like that for two-dimensional surface states widely studied in the literature. However, the spin surface locking for a T-shaped channel is broken even with Hamiltonian linearity in the wavevector. Interestingly, the magnitude and direction of the in-plane spin polarization are spatially dependent in all regions due to the breaking of translational symmetry of the T-shaped channel system. These interesting findings for an electrically controlled nanostructure based on the 3D TI surface may be testable with the present experimental technique, and may provide further understanding the nature of 3D TI surface states. (paper)

  6. Lateral polarity control of III-nitride thin film and application in GaN Schottky barrier diode

    Science.gov (United States)

    Li, Junmei; Guo, Wei; Sheikhi, Moheb; Li, Hongwei; Bo, Baoxue; Ye, Jichun

    2018-05-01

    N-polar and III-polar GaN and AlN epitaxial thin films grown side by side on single sapphire substrate was reported. Surface morphology, wet etching susceptibility and bi-axial strain conditions were investigated and the polarity control scheme was utilized in the fabrication of Schottky barrier diode where ohmic contact and Schottky contact were deposited on N-polar domains and Ga-polar domains, respectively. The influence of N-polarity on on-state resistivity and I–V characteristic was discussed, demonstrating that lateral polarity structure of GaN and AlN can be widely used in new designs of optoelectronic and electronic devices. Project partially supported by the National Key Research and Development Program of China (No. 2016YFB0400802), the National Natural Science Foundation of China (No. 61704176), and the Open project of Zhejiang Key Laboratory for Advanced Microelectronic Intelligent Systems and Applications (No. ZJUAMIS1704).

  7. Spin polarized electron source technology transferred from HE accelerators to electron microscopes

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2009-01-01

    For many years, we have developed a technology of spin-polarized-electron-source (PES) for a future linear collider project (ILC). Various new techniques for achieving high polarization, high quantum efficiency, high current density, sub-nanosecond multi-bunch generation etc. were developed. Two fundamental technologies; reduction of dark current and preparation of extremely high vacuum environment to protect the Negative Electron Affinity (NEA) surface have been also developed. Using these PES technologies and a new transmission type photocathode, we recently succeeded in producing the high brightness and high polarization electron beam for the low energy electron microscope (LEEM). Our Spin-LEEM system enables the world-first dynamic observation of surface magnetic domain formed by evaporation on the metal substrate with ∼ 20 nm space resolutions. (author)

  8. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  9. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2001-01-01

    It is insufficient to know coordinates and momentum to describe a state of a neutron. It is necessary to define a spin orientation. As far as it is known from quantum mechanics, a half spin has a projection in the positive direction or in the negative direction. The probability of both projections in an unpolarized beam is equal. If a direction exists, in which the projection is more probably then beam is called polarized in this direction. It is essential to know polarization of neutrons for characteristics of a neutron source, which is emitting it. The question of polarization of fast neutrons came up in 50's. The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li (p,n) 7 Be, T(p,n) 3 He reactions. (authors)

  10. Transient surface liquid in Titan's south polar region from Cassini

    Science.gov (United States)

    Hayes, A.G.; Aharonson, O.; Lunine, J.I.; Kirk, R.L.; Zebker, H.A.; Wye, L.C.; Lorenz, R.D.; Turtle, E.P.; Paillou, P.; Mitri, Giuseppe; Wall, S.D.; Stofan, E.R.; Mitchell, K.L.; Elachi, C.

    2011-01-01

    Cassini RADAR images of Titan's south polar region acquired during southern summer contain lake features which disappear between observations. These features show a tenfold increases in backscatter cross-section between images acquired one year apart, which is inconsistent with common scattering models without invoking temporal variability. The morphologic boundaries are transient, further supporting changes in lake level. These observations are consistent with the exposure of diffusely scattering lakebeds that were previously hidden by an attenuating liquid medium. We use a two-layer model to explain backscatter variations and estimate a drop in liquid depth of approximately 1-m-per-year. On larger scales, we observe shoreline recession between ISS and RADAR images of Ontario Lacus, the largest lake in Titan's south polar region. The recession, occurring between June 2005 and July 2009, is inversely proportional to slopes estimated from altimetric profiles and the exponential decay of near-shore backscatter, consistent with a uniform reduction of 4 ± 1.3 m in lake depth. Of the potential explanations for observed surface changes, we favor evaporation and infiltration. The disappearance of dark features and the recession of Ontario's shoreline represents volatile transport in an active methane-based hydrologic cycle. Observed loss rates are compared and shown to be consistent with available global circulation models. To date, no unambiguous changes in lake level have been observed between repeat images in the north polar region, although further investigation is warranted. These observations constrain volatile flux rates in Titan's hydrologic system and demonstrate that the surface plays an active role in its evolution. Constraining these seasonal changes represents the first step toward our understanding of longer climate cycles that may determine liquid distribution on Titan over orbital time periods.

  11. Averaged subtracted polarization imaging for endoscopic diagnostics of surface microstructures on translucent mucosae

    Science.gov (United States)

    Kanamori, Katsuhiro

    2016-07-01

    An endoscopic image processing technique for enhancing the appearance of microstructures on translucent mucosae is described. This technique employs two pairs of co- and cross-polarization images under two different linearly polarized lights, from which the averaged subtracted polarization image (AVSPI) is calculated. Experiments were then conducted using an acrylic phantom and excised porcine stomach tissue using a manual experimental setup with ring-type lighting, two rotating polarizers, and a color camera; better results were achieved with the proposed method than with conventional color intensity image processing. An objective evaluation method that uses texture analysis was developed and used to evaluate the enhanced microstructure images. This paper introduces two types of online, rigid-type, polarimetric endoscopic implementations using a polarized ring-shaped LED and a polarimetric camera. The first type uses a beam-splitter-type color polarimetric camera, and the second uses a single-chip monochrome polarimetric camera. Microstructures on the mucosa surface were enhanced robustly with these online endoscopes regardless of the difference in the extinction ratio of each device. These results show that polarimetric endoscopy using AVSPI is both effective and practical for hardware implementation.

  12. Coherence and polarization speckle generated by a rough-surfaced retardation plate depolarizer

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Takeda, Mitsuo

    2015-01-01

    of position introducing random phase differences between the two orthogonal components of the electric vector. Under the assumption of Gaussian statistics with zero mean, the surface model for the depolarizer of the rough-surfaced retardation plate is obtained. The propagation of the modulated fields through...... any quadratic optical system is examined within the framework of the complex ABCD matrix theory to show how the degree of coherence and polarization of the beam changes on propagation, including propagation in free space...

  13. Versatile spin-polarized electron source

    Science.gov (United States)

    Jozwiak, Chris; Park, Cheol -Hwan; Gotlieb, Kenneth; Louie, Steven G.; Hussain, Zahid; Lanzara, Alessandra

    2015-09-22

    One or more embodiments relate generally to the field of photoelectron spin and, more specifically, to a method and system for creating a controllable spin-polarized electron source. One preferred embodiment of the invention generally comprises: method for creating a controllable spin-polarized electron source comprising the following steps: providing one or more materials, the one or more materials having at least one surface and a material layer adjacent to said surface, wherein said surface comprises highly spin-polarized surface electrons, wherein the direction and spin of the surface electrons are locked together; providing at least one incident light capable of stimulating photoemission of said surface electrons; wherein the photon polarization of said incident light is tunable; and inducing photoemission of the surface electron states.

  14. New POLDI - project of reincarnation of a polarized neutron diffractometer at the reactor PIK

    Science.gov (United States)

    Zobkalo, I.; Gavrilov, S.; Matveev, V.; Fenske, J.

    2017-06-01

    The project of a considerable modernization of the polarized neutron diffractometer POLDI is discussed. It assumes the adoption of POLDI to a broader range of magnetic investigations such as determination of magnetic structures, detailed investigation of complex magnetic structures, studies of magnetic domains, study of the magnetization density maps, magnetic form-factor particularities, local susceptibility, etc. The flexible construction should permit to use either spherical neutron polarimetry technique or flipping ratio technique. Different types of polarization system were analyzed. Original focusing fan-like bender is proposed as polarizer unit. Our simulations give evidence that for the wavelength range 1.3 - 3 Å and with suitable size, such a device can give much better efficiency than 3He cells, which are often in use. The higher flux at the sample position of a factor of at least 3.3, with lower divergence and good polarization degree from 98% (1.3 Å) to above 94% (3 Å) makes the bender set-up favorable over the layout with a 3He-cell.

  15. Polar decomposition of the Mueller matrix: a polarimetric rule of thumb for square-profile surface structure recognition.

    Science.gov (United States)

    Sanz, J M; Saiz, J M; González, F; Moreno, F

    2011-07-20

    In this research, the polar decomposition (PD) method is applied to experimental Mueller matrices (MMs) measured on two-dimensional microstructured surfaces. Polarization information is expressed through a set of parameters of easier physical interpretation. It is shown that evaluating the first derivative of the retardation parameter, δ, a clear indication of the presence of defects either built on or dug in the scattering flat surface (a silicon wafer in our case) can be obtained. Although the rule of thumb thus obtained is established through PD, it can be easily implemented on conventional surface polarimetry. These results constitute an example of the capabilities of the PD approach to MM analysis, and show a direct application in surface characterization. © 2011 Optical Society of America

  16. Significant electrical control of amorphous oxide thin film transistors by an ultrathin Ti surface polarity modifier

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byungsu [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 (Korea, Republic of); Choi, Yonghyuk; Shin, Seokyoon [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Heeyoung [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Seo, Hyungtak, E-mail: hseo@ajou.ac.kr [Department of Materials Science and Engineering and Energy Systems Research, Ajou University, Suwon 443-739 (Korea, Republic of); Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-01-27

    We demonstrate an enhanced electrical stability through a Ti oxide (TiO{sub x}) layer on the amorphous InGaZnO (a-IGZO) back-channel; this layer acts as a surface polarity modifier. Ultrathin Ti deposited on the a-IGZO existed as a TiO{sub x} thin film, resulting in oxygen cross-binding with a-IGZO surface. The electrical properties of a-IGZO thin film transistors (TFTs) with TiO{sub x} depend on the surface polarity change and electronic band structure evolution. This result indicates that TiO{sub x} on the back-channel serves as not only a passivation layer protecting the channel from ambient molecules or process variables but also a control layer of TFT device parameters.

  17. Enhancement of molecular NMR signal induced by polarization transfer from laser-polarized 129Xe

    International Nuclear Information System (INIS)

    Sun Xianping

    2001-01-01

    There is a large non-equilibrium nuclear polarization and a longer relaxation time in the laser-polarized 129 Xe produced by means of optical pumping and spin exchange. The characteristics of the laser-polarized 129 Xe permit the transfer of the polarization to enhance the atomic nuclear spin in liquid, solid and surface of solid molecules. Therefore, the sensitivity in nuclear magnetic resonance measurements for the molecules is enhanced and applications in the investigations of materials and surface sciences are expanded. The progress in the investigations of materials and surface sciences are expanded. The progress in the investigations of the polarization transfer between laser-polarized 129 Xe and the atomic nuclei in the molecules, the relative physics and the measurement of some parameters are introduced

  18. Kv7.1 surface expression is regulated by epithelial cell polarization

    DEFF Research Database (Denmark)

    Andersen, Martin N; Olesen, Søren-Peter; Rasmussen, Hanne Borger

    2011-01-01

    The potassium channel K(V)7.1 is expressed in the heart where it contributes to the repolarization of the cardiac action potential. In addition, K(V)7.1 is expressed in epithelial tissues where it plays a role in salt and water transport. Mutations in the kcnq1 gene can lead to long QT syndrome...... and deafness, and several mutations have been described as trafficking mutations. To learn more about the basic mechanisms that regulate K(V)7.1 surface expression, we have investigated the trafficking of K(V)7.1 during the polarization process of the epithelial cell line Madin-Darby Canine Kidney (MDCK) using...... is regulated by signaling mechanisms involved in epithelial cell polarization in particular signaling cascades involving protein kinase C and PI3K....

  19. Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO{sub 3} with different polar surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jun [Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Mechanics Engineering, Nanjing Institute of Industry Technology, Nanjing, 210023 (China); Zhang, Jun, E-mail: zhangjun@njtech.edu.cn [Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China)

    2016-12-01

    Graphical abstract: - Highlights: • The non-polar and short vinyl groups can greatly reduce G′ of HDPE composites. • Long chains on BaTiO{sub 3} surface enhance the interaction of BaTiO{sub 3} with HDPE. • Polar amino groups on BaTiO{sub 3} surface raise the interaction of BaTiO{sub 3} with HDPE. • Polar amino groups can boost the dielectric constant of HDPE composites. • The potential use in electronic equipment of the KH550 composites is obtained. - Abstract: In this work, three types of coupling agents: isopropyl trioleic titanate (NDZ105), vinyltriethoxysilane (SG-Si151), 3-aminopropyltriethoxysilane (KH550) were applied to modify the surface tension of Barium titanate (BaTiO{sub 3}) particles. The Fourier transform infrared (FT-IR) spectra confirm the chemical adherence of coupling agents to the particle surface. The long hydrocarbon chains in NDZ105 can cover the particle surface and reduce the polar surface tension of BaTiO{sub 3} from 37.53 mJ/m{sup 2} to 7.51 mJ/m{sup 2}, turning it from hydrophilic to oleophilic properties. The short and non-polar vinyl groups in SG-Si151 does not influence the surface tension of BaTiO{sub 3}, but make BaTiO{sub 3} have both hydrophilic and oleophilic properties. The polar amino in KH550 can keep BaTiO{sub 3} still with hydrophilic properties. It is found that SG-Si151 modified BaTiO{sub 3} has the lowest interaction with HDPE matrix, lowering the storage modulus of HDPE composites to the greatest extent. As for mechanical properties, the polar amino groups in KH550 on BaTiO{sub 3} surface can improve the adhesion of BaTiO{sub 3} with HDPE matrix, which increases the elongation at break of HDPE composites to the greatest extent. In terms of electrical properties, the polar amino groups on surface of BaTiO{sub 3} can boost the dielectric properties of HDPE/BaTiO{sub 3} composites and decrease the volume resistivity of HDPE/BaTiO{sub 3} composites. The aim of this study is to investigate how functional groups

  20. Influence of the voltage polarity on the properties of a nanosecond surface barrier discharge in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Nudnova, M. M.; Aleksandrov, N. L.; Starikovskii, A. Yu.

    2010-01-01

    The properties of a surface barrier discharge in atmospheric-pressure air at different polarities of applied voltage were studied experimentally. The influence of the voltage polarity on the spatial structure of the discharge and the electric field in the discharge plasma was determined by means of spectroscopic measurements. It is found that the energy deposited in the discharge does not depend on the voltage polarity and that discharges of positive polarity are more homogenous and the electric fields in them are higher.

  1. Surface topography effects on energy-resolved polar angular distributions of electrons induced in heavy ion-Al collisions: experiments and models

    International Nuclear Information System (INIS)

    Mischler, J.; Banouni, M.; Banazeth, C.; Negre, M.; Benazeth, N.

    1986-01-01

    The influence of the surface topography on the polar angular distributions of secondary electrons emitted in Ar + (and Xe - )-Al collisions was studied. After each set of experiments, the surface target was viewed by scanning electron microscope. Under normal incidence, continuum background and Al L 23 VV Auger electron polar angular distributions were not modified by the topography and closely followed a cosine law. For Al L 23 MM Auger electrons, experimental angular distributions as a function of the emission polar angle theta, either were near a constant law or followed a decreasing law depending on the irradiation conditions. The N(theta) curves calculated from the models showed that the isotropic angular distributions obtained for electrons generated outside the crystal from a flat surface could be strongly modified by the surface topography. (author)

  2. Graphics of polar figure; Graficado de figura polar

    Energy Technology Data Exchange (ETDEWEB)

    Macias B, L.R

    1991-11-15

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  3. Ab initio-based bulk and surface thermodynamics of InGaN alloys. Investigating the effects of strain and surface polarity

    Energy Technology Data Exchange (ETDEWEB)

    Duff, Andrew I.; Lymperakis, Liverios; Neugebauer, Joerg [Max-Planck-Institut fuer Eisenforschung, Duesseldorf (Germany)

    2015-05-15

    The growth of high In content InGaN with sufficiently high crystal quality is challenging due to the differences in the GaN and InN thermodynamics. The surprisingly different thermodynamics is due to a complex competition between strain and chemistry and mediated by the different indium and gallium atomic radii as well as their different bonding enthalpies with nitrogen. In the present work, we investigate bulk and surface thermodynamics of molecular beam epitaxial (MBE) growth of In{sub x}Ga{sub 1-x}N for the technologically relevant (0001) and (000 anti 1) growth planes by means of density functional theory calculations. Our calculations confirm that coherent growth fully suppresses phase separation through spinodal decomposition. However, the biaxial strain is found to have a marginal effect on the critical temperatures for In{sub x}Ga{sub 1-x}N decomposition. Furthermore, the thermal stability of excess indium is found to be remarkably higher on N-polar surfaces than on the Ga-polar surfaces. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Interfacial polarization phenomena in organic molecular films

    International Nuclear Information System (INIS)

    Iwamoto, Mitsumasa; Manaka, Takaaki

    2006-01-01

    Electrostatic phenomena occurring at the interface between metal/organic and organic/organic materials are discussed from the viewpoint of dielectrics physics. Focusing on two important origins of surface polarization phenomena, orientational ordering of polar molecules and displacement of excess charges at the interface, surface polarization phenomena of organic thin films are discussed. To define the orientational order of polar molecules, orientational order parameters are introduced, and surface polarization due to the alignment of dipoles is expressed. The generation of Maxwell displacement current (MDC) and optical second harmonic generation (SHG) that are specific for surface organic monomolecular films are discussed, and some experimental evidence are shown. As an extension of the concept of surface Fermi level introduced to discuss the electrostatic phenomena due to electron transfer at the interface between metal-organic insulators, the surface Fermi level is extended to the discussion on the electrostatic phenomena of organic semiconductor materials on metals. In this paper, some experimental evidence of surface polarization originating from polar molecules and displacement of excess charges are shown. After that, with consideration of these surface phenomena, single electron tunneling of organic films are briefly discussed in association with surface polarization phenomena

  5. Chaos synchronization in vertical-cavity surface-emitting laser based on rotated polarization-preserved optical feedback.

    Science.gov (United States)

    Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna

    2016-01-01

    In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θp. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θp. The maximum value of the cross-correlation coefficient achieved is -0.99 with a zero time delay over a wide range of θp beyond 65° with a poor synchronization dynamic at θp less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θp. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.

  6. Electron spin polarization effects in low-energy electron diffraction, ion neutralization, and metastable-atom deexcitation at solid surfaces. Progress report No. 3, January 1-December 31, 1983

    International Nuclear Information System (INIS)

    Walters, G.K.; Dunning, F.B.

    1983-01-01

    The importance of electron spin polarization (ESP) effects in the various spectroscopies used to study solid surfaces has become increasingly apparent in recent years. Recent low energy electron diffraction (LEED) investigations in this laboratory and elsewhere have shown that a great deal of new information contributing to the understanding of the geometrical arrangements of atoms at a surface can be obtained if the polarization of the various LEED beams is measured, or if the incident electron beam is polarized. Polarized LEED studies have shown large polarization features that are very sensitive to the presence of adsorbed layers, surface reconstruction, etc. In addition, theory suggests that polarization measurements can provide a more sensitive test of many of the parameters used in a surface model than can conventional LEED intensity measurements alone. Polarized LEED has also been applied to the study of surface magnetism. In the present contract year, polarized LEED has been used, together with Auger analysis and LEED intensity measurements, as a diagnostic to characterize Ni(001) surfaces produced by laser annealing

  7. Impact of optical feedback on current-induced polarization behavior of 1550 nm vertical-cavity surface-emitting lasers.

    Science.gov (United States)

    Deng, Tao; Wu, Zheng-Mao; Xie, Yi-Yuan; Wu, Jia-Gui; Tang, Xi; Fan, Li; Panajotov, Krassimir; Xia, Guang-Qiong

    2013-06-01

    Polarization switching (PS) between two orthogonal linearly polarized fundamental modes is experimentally observed in commercial free-running 1550 nm vertical-cavity surface-emitting lasers (VCSELs) (Raycan). The characteristics of this PS are strongly modified after introducing a polarization-preserved (PP) or polarization-orthogonal (PO) optical feedback. Under the case that the external cavity is approximately 30 cm, the PP optical feedback results in the PS point shifting toward a lower injection current, and the region within which the two polarization modes coexist is enlarged with the increase of the PP feedback strength. Under too-strong PP feedback levels, the PS disappears. The impact of PO optical feedback on VCSEL polarization behavior is quite similar to that of PP optical feedback, but larger feedback strength is needed to obtain similar results.

  8. Parametric plasma surface instabilities with p-polarized radiation

    International Nuclear Information System (INIS)

    Rappaport, H.L.

    1994-01-01

    The authors argue that parametric plasma surface mode excitation is a viable broadband instability mechanism in the microwave regime since the wavelength of incident radiation can be large compared to plasma ion density gradient scale lengths. The authors restrict their attention to plasmas which are uniform in the planes perpendicular to the density gradients. The boundary region is characterized by three parameters: (1) the ion density gradient length; (2) the electron Debye length; and (3) the excursion of boundary electrons as they move in response to monochromatic p-polarized radiation. A thin vacuum plasma transition layer, in which the ion density gradient scale length is large compared with the Debye length and the electron excursion, is included in the analysis of plasma stability. The recently proposed Lagrangian Frame Two-Plasmon Decay mode (LFTPD) is investigated in the regime in which the instability is not resonantly coupled to surface waves propagating along the boundary region. In this case they have found both spatially dependent growth rate profiles and spatially dependent transit layer magnetic fields due to nonlinear surface currents. LFTPD growth rate profiles are displayed as a function of pump amplitude. The results of a time domain simulation of this mode is also shown

  9. Angular dependent XPS study of surface band bending on Ga-polar n-GaN

    Science.gov (United States)

    Huang, Rong; Liu, Tong; Zhao, Yanfei; Zhu, Yafeng; Huang, Zengli; Li, Fangsen; Liu, Jianping; Zhang, Liqun; Zhang, Shuming; Dingsun, An; Yang, Hui

    2018-05-01

    Surface band bending and composition of Ga-polar n-GaN with different surface treatments were characterized by using angular dependent X-ray photoelectron spectroscopy. Upward surface band bending of varying degree was observed distinctly upon to the treatment methods. Besides the nitrogen vacancies, we found that surface states of oxygen-containing absorbates (O-H component) also contribute to the surface band bending, which lead the Fermi level pined at a level further closer to the conduction band edge on n-GaN surface. The n-GaN surface with lower surface band bending exhibits better linear electrical properties for Ti/GaN Ohmic contacts. Moreover, the density of positively charged surface states could be derived from the values of surface band bending.

  10. Uranium Mill Tailings Remedial Action Project surface project management plan

    International Nuclear Information System (INIS)

    1994-09-01

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials

  11. Gigantic 2D laser-induced photovoltaic effect in magnetically doped topological insulators for surface zero-bias spin-polarized current generation

    Science.gov (United States)

    Shikin, A. M.; Voroshin, V. Yu; Rybkin, A. G.; Kokh, K. A.; Tereshchenko, O. E.; Ishida, Y.; Kimura, A.

    2018-01-01

    A new kind of 2D photovoltaic effect (PVE) with the generation of anomalously large surface photovoltage up to 210 meV in magnetically doped topological insulators (TIs) has been studied by the laser time-resolved pump-probe angle-resolved photoelectron spectroscopy. The PVE has maximal efficiency for TIs with high occupation of the upper Dirac cone (DC) states and the Dirac point located inside the fundamental energy gap. For TIs with low occupation of the upper DC states and the Dirac point located inside the valence band the generated surface photovoltage is significantly reduced. We have shown that the observed giant PVE is related to the laser-generated electron-hole asymmetry followed by accumulation of the photoexcited electrons at the surface. It is accompanied by the 2D relaxation process with the generation of zero-bias spin-polarized currents flowing along the topological surface states (TSSs) outside the laser beam spot. As a result, the spin-polarized current generates an effective in-plane magnetic field that is experimentally confirmed by the k II-shift of the DC relative to the bottom non-spin-polarized conduction band states. The realized 2D PVE can be considered as a source for the generation of zero-bias surface spin-polarized currents and the laser-induced local surface magnetization developed in such kind 2D TSS materials.

  12. Adenovirus entry from the apical surface of polarized epithelia is facilitated by the host innate immune response.

    Directory of Open Access Journals (Sweden)

    Poornima L N Kotha

    2015-03-01

    Full Text Available Prevention of viral-induced respiratory disease begins with an understanding of the factors that increase or decrease susceptibility to viral infection. The primary receptor for most adenoviruses is the coxsackievirus and adenovirus receptor (CAR, a cell-cell adhesion protein normally localized at the basolateral surface of polarized epithelia and involved in neutrophil transepithelial migration. Recently, an alternate isoform of CAR, CAREx8, has been identified at the apical surface of polarized airway epithelia and is implicated in viral infection from the apical surface. We hypothesized that the endogenous role of CAREx8 may be to facilitate host innate immunity. We show that IL-8, a proinflammatory cytokine and a neutrophil chemoattractant, stimulates the protein expression and apical localization of CAREx8 via activation of AKT/S6K and inhibition of GSK3β. Apical CAREx8 tethers infiltrating neutrophils at the apical surface of a polarized epithelium. Moreover, neutrophils present on the apical-epithelial surface enhance adenovirus entry into the epithelium. These findings suggest that adenovirus evolved to co-opt an innate immune response pathway that stimulates the expression of its primary receptor, apical CAREx8, to allow the initial infection the intact epithelium. In addition, CAREx8 is a new target for the development of novel therapeutics for both respiratory inflammatory disease and adenoviral infection.

  13. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Directory of Open Access Journals (Sweden)

    Miklos Blaho

    Full Text Available The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt and species (mayflies, dolichopodids, tabanids. (ii Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries than matt black finish. (iii The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a matt car-paints are highly polarization reflecting, and (b these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  14. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Science.gov (United States)

    Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  15. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification

    Science.gov (United States)

    Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.

    2017-11-01

    We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.

  16. Parametric plasma surface instabilities with s-polarized radiation

    International Nuclear Information System (INIS)

    Rappaport, H.L.

    1994-01-01

    The authors argue that parametric plasma surface mode excitation is a viable broadband instability mechanism in the microwave regime since the wavelength of incident radiation ca be large compared to plasma ion density gradient scale lengths. They restrict their attention to plasmas which are uniform in the planes perpendicular to the density gradients. The boundary is characterized by three parameters: (1) the ion density gradient scale length, (2) the electron Debye length, and (3) the excursion of boundary electrons as they move in response to monochromatic radiation. For s-polarized radiation, equilibrium fluid motion is parallel to the boundary when the ratio of the pump quiver velocity to the speed of light is small. In this case, an abruptly bounded plasma may be modeled with no transition width. If in this case the cold fluid approximation is used as well, the specular and diffuse boundary approximations become the same. A new formation is presented in which pump induced perturbations are expressed as an explicit superposition of linear and non-linear plasma half-space modes. A four-wave interaction is found to produce instability as well as surface wave frequency-shift. This mode is compared against other modes known to exist in this geometry. The theory of surface wave linear mode conversion is reviewed with special attention paid to power flow and energy conservation in this system

  17. Peculiarities of annihilation of polarized positronium in polarized media

    International Nuclear Information System (INIS)

    Silenko, A.Ya.

    2005-01-01

    Features of positronium annihilation (PA) in polarized media are investigated. Strong exchange interaction with nonpaired electrons of paramagnetic atoms essentially accelerates the PA in comparison with annihilation of free positrons. The value of the spin projection on the direction of polarized nonpaired electrons has essential effect on the orthopositronium lifetime and on the width of the gamma spectrum annihilation line. It is shown that these features of PA permit to use it for studying the paramagnetic polarization [ru

  18. Arctic amplification: does it impact the polar jet stream?

    Directory of Open Access Journals (Sweden)

    Valentin P. Meleshko

    2016-10-01

    Full Text Available It has been hypothesised that the Arctic amplification of temperature changes causes a decrease in the northward temperature gradient in the troposphere, thereby enhancing the oscillation of planetary waves leading to extreme weather in mid-latitudes. To test this hypothesis, we study the response of the atmosphere to Arctic amplification for a projected summer sea-ice-free period using an atmospheric model with prescribed surface boundary conditions from a state-of-the-art Earth system model. Besides a standard global warming simulation, we also conducted a sensitivity experiment with sea ice and sea surface temperature anomalies in the Arctic. We show that when global climate warms, enhancement of the northward heat transport provides the major contribution to decrease the northward temperature gradient in the polar troposphere in cold seasons, causing more oscillation of the planetary waves. However, while Arctic amplification significantly enhances near-surface air temperature in the polar region, it is not large enough to invoke an increased oscillation of the planetary waves.

  19. CT image reconstruction of steel pipe section from few projections using the method of rotating polar-coordinate

    International Nuclear Information System (INIS)

    Peng Shuaijun; Wu Zhifang

    2008-01-01

    Fast online inspection in steel pipe production is a big challenge. Radiographic CT imaging technology, a high performance non-destructive testing method, is quite appropriate for inspection and quality control of steel pipes. The method of rotating polar-coordinate is used to reconstruct the steel pipe section from few projections with the purpose of inspecting it online. It reduces the projection number needed and the data collection time, and accelerates the reconstruction algorithm and saves the inspection time evidently. The results of simulation experiment and actual experiment indicate that the image quality and reconstruction time of rotating polar-coordinate method meet the requirements of inspecting the steel tube section online basically. The study is of some theoretical significance and the method is expected to be widely used in practice. (authors)

  20. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 - Part 2: Antarctica (1979-2016)

    Science.gov (United States)

    Melchior van Wessem, Jan; van de Berg, Willem Jan; Noël, Brice P. Y.; van Meijgaard, Erik; Amory, Charles; Birnbaum, Gerit; Jakobs, Constantijn L.; Krüger, Konstantin; Lenaerts, Jan T. M.; Lhermitte, Stef; Ligtenberg, Stefan R. M.; Medley, Brooke; Reijmer, Carleen H.; van Tricht, Kristof; Trusel, Luke D.; van Ulft, Lambertus H.; Wouters, Bert; Wuite, Jan; van den Broeke, Michiel R.

    2018-04-01

    We evaluate modelled Antarctic ice sheet (AIS) near-surface climate, surface mass balance (SMB) and surface energy balance (SEB) from the updated polar version of the regional atmospheric climate model, RACMO2 (1979-2016). The updated model, referred to as RACMO2.3p2, incorporates upper-air relaxation, a revised topography, tuned parameters in the cloud scheme to generate more precipitation towards the AIS interior and modified snow properties reducing drifting snow sublimation and increasing surface snowmelt. Comparisons of RACMO2 model output with several independent observational data show that the existing biases in AIS temperature, radiative fluxes and SMB components are further reduced with respect to the previous model version. The model-integrated annual average SMB for the ice sheet including ice shelves (minus the Antarctic Peninsula, AP) now amounts to 2229 Gt y-1, with an interannual variability of 109 Gt y-1. The largest improvement is found in modelled surface snowmelt, which now compares well with satellite and weather station observations. For the high-resolution ( ˜ 5.5 km) AP simulation, results remain comparable to earlier studies. The updated model provides a new, high-resolution data set of the contemporary near-surface climate and SMB of the AIS; this model version will be used for future climate scenario projections in a forthcoming study.

  1. Electrochemical Cathodic Polarization, a Simplified Method That Can Modified and Increase the Biological Activity of Titanium Surfaces: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Jose Carlos Bernedo Alcazar

    Full Text Available The cathodic polarization seems to be an electrochemical method capable of modifying and coat biomolecules on titanium surfaces, improving the surface activity and promoting better biological responses.The aim of the systematic review is to assess the scientific literature to evaluate the cellular response produced by treatment of titanium surfaces by applying the cathodic polarization technique.The literature search was performed in several databases including PubMed, Web of Science, Scopus, Science Direct, Scielo and EBSCO Host, until June 2016, with no limits used. Eligibility criteria were used and quality assessment was performed following slightly modified ARRIVE and SYRCLE guidelines for cellular studies and animal research.Thirteen studies accomplished the inclusion criteria and were considered in the review. The quality of reporting studies in animal models was low and for the in vitro studies it was high. The in vitro and in vivo results reported that the use of cathodic polarization promoted hydride surfaces, effective deposition, and adhesion of the coated biomolecules. In the experimental groups that used the electrochemical method, cellular viability, proliferation, adhesion, differentiation, or bone growth were better or comparable with the control groups.The use of the cathodic polarization method to modify titanium surfaces seems to be an interesting method that could produce active layers and consequently enhance cellular response, in vitro and in vivo animal model studies.

  2. Spin-Polarized Hybridization at the interface between different 8-hydroxyquinolates and the Cr(001) surface

    Science.gov (United States)

    Wang, Jingying; Deloach, Andrew; Dougherty, Daniel B.; Dougherty Lab Team

    Organic materials attract a lot of attention due to their promising applications in spintronic devices. It is realized that spin-polarized metal/organic interfacial hybridization plays an important role to improve efficiency of organic spintronic devices. Hybridized interfacial states help to increase spin injection at the interface. Here we report spin-resolved STM measurements of single tris(8-hydroxyquinolinato) aluminum molecules adsorbed on the antiferromagnetic Cr(001). Our observations show a spin-polarized interface state between Alq3 and Cr(001). Tris(8-hydroxyquinolinato) chromium has also been studied and compared with Alq3, which exhibits different spin-polarized hybridization with the Cr(001) surface state than Alq3. We attribute the differences to different character of molecular orbitals in the two different quinolates.

  3. POLARIZATION REMOTE SENSING PHYSICAL MECHANISM, KEY METHODS AND APPLICATION

    Directory of Open Access Journals (Sweden)

    B. Yang

    2017-09-01

    Full Text Available China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains,it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1 Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2 Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3 Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.

  4. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    DEFF Research Database (Denmark)

    Clarkson, R B; Odintsov, B M; Ceroke, P J

    1998-01-01

    ; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the nuclear spin population...

  5. Ultracompact 1×4 TM-polarized beam splitter based on photonic crystal surface mode.

    Science.gov (United States)

    Jiang, Bin; Zhang, Yejin; Wang, Yufei; Liu, Anjin; Zheng, Wanhua

    2012-05-01

    We provide an improved surface-mode photonic crystal (PhC) T-junction waveguide, combine it with an improved PhC bandgap T-junction waveguide, and then provide an ultracompact 1×4 TM-polarized beam splitter. The energy is split equally into the four output waveguides. The maximal transmission ratio of each output waveguide branch equals 24.7%, and the corresponding total transmission ratio of the ultracompact 1×4 beam splitter equals 98.8%. The normalized frequency of maximal transmission ratio is 0.397(2πc/a), and the bandwidth of the ultracompact 1×4 TM-polarized beam splitter is 0.0106(2πc/a). To the best of our knowledge, this is the first time such a high-efficiency 1×4 beam splitter exploiting the nonradiative surface mode as a guided mode has been proposed. Although we only employed a 1×4 beam splitter, our design can easily be extended to other 1×n beam splitters.

  6. Polarization preservation in the AGS

    International Nuclear Information System (INIS)

    Ratner, L.G.

    1983-01-01

    The successful operation of a high energy polarized beam at the Argonne Zero Gradient Synchrotron (ZGS) with the concommitant development of depolarizing resonance correction techniques has led to the present project of commissioning such a beam at the Brookhaven Alternating Gradient Synchrotron (AGS). A description of the project was presented at the 1981 National Accelerator Conference. I would like to now present a more detailed description of how we plan to preserve the polarization during acceleration, and to present our game plan for tuning through some 50 resonances and reaching our goal of a 26 GeV polarized proton beam with greater than 60% polarization

  7. Few-mode vertical-cavity surface-emitting laser: Optional emission of transverse modes with different polarizations

    Science.gov (United States)

    Zhong, Chuyu; Zhang, Xing; Hofmann, Werner; Yu, Lijuan; Liu, Jianguo; Ning, Yongqiang; Wang, Lijun

    2018-05-01

    Few-mode vertical-cavity surface-emitting lasers that can be controlled to emit certain modes and polarization states simply by changing the biased contacts are proposed and fabricated. By directly etching trenches in the p-doped distributed Bragg reflector, the upper mesa is separated into several submesas above the oxide layer. Individual contacts are then deposited. Each contact is used to control certain transverse modes with different polarization directions emitted from the corresponding submesa. These new devices can be seen as a prototype of compact laser sources in mode division multiplexing communications systems.

  8. Polarized luminescence of nc-Si-SiO x nanostructures on silicon substrates with patterned surface

    Science.gov (United States)

    Michailovska, Katerina; Mynko, Viktor; Indutnyi, Ivan; Shepeliavyi, Petro

    2018-05-01

    Polarization characteristics and spectra of photoluminescence (PL) of nc-Si-SiO x structures formed on the patterned and plane c-Si substrates are studied. The interference lithography with vacuum chalcogenide photoresist and anisotropic wet etching are used to form a periodic relief (diffraction grating) on the surface of the substrates. The studied nc-Si-SiO x structures were produced by oblique-angle deposition of Si monoxide in vacuum and the subsequent high-temperature annealing. The linear polarization memory (PM) effect in PL of studied structure on plane substrate is manifested only after the treatment of the structures in HF and is explained by the presence of elongated Si nanoparticles in the SiO x nanocolumns. But the PL output from the nc-Si-SiO x structure on the patterned substrate depends on how this radiation is polarized with respect to the grating grooves and is much less dependent on the polarization of the exciting light. The measured reflection spectra of nc-Si-SiO x structure on the patterned c-Si substrate confirmed the influence of pattern on the extraction of polarized PL.

  9. GaN polarity determination by photoelectron diffraction

    Czech Academy of Sciences Publication Activity Database

    Romanyuk, Olexandr; Jiříček, Petr; Paskova, T.; Bieloshapka, Igor; Bartoš, Igor

    2013-01-01

    Roč. 103, č. 9 (2013), "091601-1"-"091601-4" ISSN 0003-6951 R&D Projects: GA ČR(CZ) GBP108/12/G108 Grant - others:AV ČR(CZ) M100101201 Institutional support: RVO:68378271 Keywords : GaN * photoelectron diffraction * wurtzite * surface polarity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.515, year: 2013 http://apl.aip.org/resource/1/applab/v103/i9/p091601_s1?isAuthorized=no

  10. Transverse and polarization effects in index-guided vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Torre, M. S.; Masoller, C.; Mandel, Paul

    2006-01-01

    We study numerically the polarization dynamics of vertical-cavity surface-emitting lasers (VCSEL's) operating in the fundamental transverse mode. We use an extension of the spin-flip model that not only accounts for the vector nature of the laser field, but also considers spatial transverse effects. The model assumes two orthogonal, linearly polarized fields, which are coupled to two carrier populations, associated with different spin sublevels of the conduction and valence bands in the quantum-well active region. Spatial effects are taken into account by considering transverse profiles for the two polarizations, for the two carrier populations, and for the carrier diffusion. The optical profile is the LP 01 mode, suitable for describing index-guided VCSEL's with cylindrical symmetry emitting on the fundamental transverse mode for both polarizations. We find that in small-active-region VCSEL's, fast carrier diffusion induces self-sustained oscillations of the total laser output, which are not present in larger-area devices or with slow carrier diffusion. These self-pulsations appear close to threshold, and, as the injection current increases, they grow in amplitude; however, there is saturation and the self-pulsations disappear at higher injection levels. The dependence of the oscillation amplitude on various laser parameters is investigated, and the results are found to be in good qualitative agreement with those reported by Van der Sande et al. [Opt. Lett. 29, 53 (2004)], based on a rate-equation model that takes into account transverse inhomogeneities through an intensity-dependent confinement factor

  11. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide

    Science.gov (United States)

    Jin, Lin; Wen, Long; Liang, Li; Chen, Qin; Sun, Yunfei

    2018-02-01

    CMOS-compatible plasmonic modulators operating at the telecom wavelength are significant for a variety of on-chip applications. Relying on the manipulation of the transverse magnetic (TM) mode excited on the metal-dielectric interface, most of the previous demonstrations are designed to response only for specific polarization state. In this case, it will lead to a high polarization dependent loss, when the polarization-sensitive modulator integrates to a fiber with random polarization state. Herein, we propose a plasmonic modulator utilizing a metal-oxide indium tin oxide (ITO) wrapped around the silicon waveguide and investigate its optical modulation ability for both the vertical and horizontal polarized guiding light by tuning electro-absorption of ITO with the field-induced carrier injection. The electrically biased modulator with electron accumulated at the ITO/oxide interface allows for epsilon-near-zero (ENZ) mode to be excited at the top or lateral portion of the interface depending on the polarization state of the guiding light. Because of the high localized feature of ENZ mode, efficient electro-absorption can be achieved under the "OFF" state of the device, thus leading to large extinction ratio (ER) for both polarizations in our proposed modulator. Further, the polarization-insensitive modulation is realized by properly tailoring the thickness of oxide in two different stacking directions and therefore matching the ER values for device operating at vertical and horizontal polarized modes. For the optimized geometry configuration, the difference between the ER values of two polarization modes, i.e., the ΔER, as small as 0.01 dB/μm is demonstrated and, simultaneously with coupling efficiency above 74%, is obtained for both polarizations at a wavelength of 1.55 μm. The proposed plasmonic-combined modulator has a potential application in guiding and processing of light from a fiber with a random polarization state.

  12. Development of spin polarized electron beam

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2001-01-01

    Physical structure of the polarized electron beam production is explained in this paper. Nagoya University group has been improving the quality of beam. The present state of quality and the development objects are described. The new results of the polarized electron reported in 'RES-2000 Workshop' in October 2000, are introduced. The established ground of GaAs type polarized electron beam source, observation of the negative electron affinity (NEA) surface, some problems of NEA surface of high energy polarized electron beam such as the life, time response, the surface charge limited phenomena of NEA surface are explained. The interested reports in the RES-2000 Workshop consisted of observation by SPLEEM (Spin Low Energy Electron Microscope), Spin-STM and Spin-resolved Photoelectron Spectroscopy. To increase the performance of the polarized electron source, we will develop low emittance and large current. (S.Y.)

  13. GPI-anchored proteins are confined in subdiffraction clusters at the apical surface of polarized epithelial cells.

    Science.gov (United States)

    Paladino, Simona; Lebreton, Stéphanie; Lelek, Mickaël; Riccio, Patrizia; De Nicola, Sergio; Zimmer, Christophe; Zurzolo, Chiara

    2017-12-01

    Spatio-temporal compartmentalization of membrane proteins is critical for the regulation of diverse vital functions in eukaryotic cells. It was previously shown that, at the apical surface of polarized MDCK cells, glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are organized in small cholesterol-independent clusters of single GPI-AP species (homoclusters), which are required for the formation of larger cholesterol-dependent clusters formed by multiple GPI-AP species (heteroclusters). This clustered organization is crucial for the biological activities of GPI-APs; hence, understanding the spatio-temporal properties of their membrane organization is of fundamental importance. Here, by using direct stochastic optical reconstruction microscopy coupled to pair correlation analysis (pc-STORM), we were able to visualize and measure the size of these clusters. Specifically, we show that they are non-randomly distributed and have an average size of 67 nm. We also demonstrated that polarized MDCK and non-polarized CHO cells have similar cluster distribution and size, but different sensitivity to cholesterol depletion. Finally, we derived a model that allowed a quantitative characterization of the cluster organization of GPI-APs at the apical surface of polarized MDCK cells for the first time. Experimental FRET (fluorescence resonance energy transfer)/FLIM (fluorescence-lifetime imaging microscopy) data were correlated to the theoretical predictions of the model. © 2017 The Author(s).

  14. Significantly improved surface morphology of N-polar GaN film grown on SiC substrate by the optimization of V/III ratio

    Science.gov (United States)

    Deng, Gaoqiang; Zhang, Yuantao; Yu, Ye; Yan, Long; Li, Pengchong; Han, Xu; Chen, Liang; Zhao, Degang; Du, Guotong

    2018-04-01

    In this paper, N-polar GaN films with different V/III ratios were grown on vicinal C-face SiC substrates by metalorganic chemical vapor deposition. During the growth of N-polar GaN film, the V/III ratio was controlled by adjusting the molar flow rate of ammonia while keeping the trimethylgallium flow rate unchanged. The influence of the V/III ratio on the surface morphology of N-polar GaN film has been studied. We find that the surface root mean square roughness of N-polar GaN film over an area of 20 × 20 μm2 can be reduced from 8.13 to 2.78 nm by optimization of the V/III ratio. Then, using the same growth conditions, N-polar InGaN/GaN multiple quantum wells (MQWs) light-emitting diodes (LEDs) were grown on the rough and the smooth N-polar GaN templates, respectively. Compared with the LED grown on the rough N-polar GaN template, dramatically improved interface sharpness and luminescence uniformity of the InGaN/GaN MQWs are achieved for the LED grown on the smooth N-polar GaN template.

  15. Projections onto the Pareto surface in multicriteria radiation therapy optimization

    International Nuclear Information System (INIS)

    Bokrantz, Rasmus; Miettinen, Kaisa

    2015-01-01

    Purpose: To eliminate or reduce the error to Pareto optimality that arises in Pareto surface navigation when the Pareto surface is approximated by a small number of plans. Methods: The authors propose to project the navigated plan onto the Pareto surface as a postprocessing step to the navigation. The projection attempts to find a Pareto optimal plan that is at least as good as or better than the initial navigated plan with respect to all objective functions. An augmented form of projection is also suggested where dose–volume histogram constraints are used to prevent that the projection causes a violation of some clinical goal. The projections were evaluated with respect to planning for intensity modulated radiation therapy delivered by step-and-shoot and sliding window and spot-scanned intensity modulated proton therapy. Retrospective plans were generated for a prostate and a head and neck case. Results: The projections led to improved dose conformity and better sparing of organs at risk (OARs) for all three delivery techniques and both patient cases. The mean dose to OARs decreased by 3.1 Gy on average for the unconstrained form of the projection and by 2.0 Gy on average when dose–volume histogram constraints were used. No consistent improvements in target homogeneity were observed. Conclusions: There are situations when Pareto navigation leaves room for improvement in OAR sparing and dose conformity, for example, if the approximation of the Pareto surface is coarse or the problem formulation has too permissive constraints. A projection onto the Pareto surface can identify an inaccurate Pareto surface representation and, if necessary, improve the quality of the navigated plan

  16. Projections onto the Pareto surface in multicriteria radiation therapy optimization.

    Science.gov (United States)

    Bokrantz, Rasmus; Miettinen, Kaisa

    2015-10-01

    To eliminate or reduce the error to Pareto optimality that arises in Pareto surface navigation when the Pareto surface is approximated by a small number of plans. The authors propose to project the navigated plan onto the Pareto surface as a postprocessing step to the navigation. The projection attempts to find a Pareto optimal plan that is at least as good as or better than the initial navigated plan with respect to all objective functions. An augmented form of projection is also suggested where dose-volume histogram constraints are used to prevent that the projection causes a violation of some clinical goal. The projections were evaluated with respect to planning for intensity modulated radiation therapy delivered by step-and-shoot and sliding window and spot-scanned intensity modulated proton therapy. Retrospective plans were generated for a prostate and a head and neck case. The projections led to improved dose conformity and better sparing of organs at risk (OARs) for all three delivery techniques and both patient cases. The mean dose to OARs decreased by 3.1 Gy on average for the unconstrained form of the projection and by 2.0 Gy on average when dose-volume histogram constraints were used. No consistent improvements in target homogeneity were observed. There are situations when Pareto navigation leaves room for improvement in OAR sparing and dose conformity, for example, if the approximation of the Pareto surface is coarse or the problem formulation has too permissive constraints. A projection onto the Pareto surface can identify an inaccurate Pareto surface representation and, if necessary, improve the quality of the navigated plan.

  17. The Effect of Thermal Radiation on Entropy Generation Due to Micro-Polar Fluid Flow Along a Wavy Surface

    Directory of Open Access Journals (Sweden)

    Kuei-Hao Chang

    2011-09-01

    Full Text Available In this study, the effect of thermal radiation on micro-polar fluid flow over a wavy surface is studied. The optically thick limit approximation for the radiation flux is assumed. Prandtl’s transposition theorem is used to stretch the ordinary coordinate system in certain directions. The wavy surface can be transferred into a calculable plane coordinate system. The governing equations of micro-polar fluid along a wavy surface are derived from the complete Navier-Stokes equations. A simple transformation is proposed to transform the governing equations into boundary layer equations so they can be solved numerically by the cubic spline collocation method. A modified form for the entropy generation equation is derived. Effects of thermal radiation on the temperature and the vortex viscosity parameter and the effects of the wavy surface on the velocity are all included in the modified entropy generation equation.

  18. Bouncing continents: insights into the physics of the polar regions of the Earth from the POLENET project in the International Polar Year

    International Nuclear Information System (INIS)

    Reading, Anya M

    2008-01-01

    When ice sheets melt, and reduce the load on the surface of the Earth, the land areas beneath them bounce back up. New, accurate observations are needed to investigate this uplift and its implications effectively. This article provides a topical starting point for investigating some applications of physics applied to the polar regions of the Earth, and interaction between the solid Earth, ice and oceans

  19. GaN quantum dot polarity determination by X-ray photoelectron diffraction

    Czech Academy of Sciences Publication Activity Database

    Romanyuk, Olexandr; Bartoš, Igor; Brault, J.; De Mierry, P.; Paskova, T.; Jiříček, Petr

    2016-01-01

    Roč. 389, Dec (2016), s. 1156-1160 ISSN 0169-4332 R&D Projects: GA ČR GA15-01687S; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : GaN * semipolar GaN * quantum dots * X-ray photoelectron diffraction * surface polarity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.387, year: 2016

  20. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. I. Polarization Phenomena

    International Nuclear Information System (INIS)

    Llopis, J.; Gamboa, J. M.; Arizmendi, L.

    1961-01-01

    Radioactive stearic acid ( 1 4C) has been used to determine the number of molecular layers present on copper electrode surfaces and its distribution. The stability of these layers under the experimental conditions has been studied and it has been shown that its presence has no influence on the anodic and cathodic polarization. an increase of these polarizations has been observed with mixed multilayers of stearic acid and sterolamide. (Author) 13 refs

  1. Photochemical dynamics of surface oriented molecules

    International Nuclear Information System (INIS)

    Ho, W.

    1992-01-01

    The period 8/01/91-7/31/92 is the first year of a new project titled ''Photochemical Dynamics of Surface Oriented Molecules'', initiated with DOE Support. The main objective of this project is to understand the dynamics of elementary chemical reactions by studying photochemical dynamics of surface-oriented molecules. In addition, the mechanisms of photon-surface interactions need to be elucidated. The strategy is to carry out experiments to measure the translational energy distribution, as a function of the angle from the surface normal, of the photoproducts by time-of-flight (TOF) technique by varying the photon wavelength, intensity, polarization, and pulse duration. By choosing adsorbates with different bonding configuration, the effects of adsorbate orientation on surface photochemical dynamics can be studied

  2. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.; Morozovska, Anna N.

    2018-01-25

    For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical-electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this.

  3. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures

    Science.gov (United States)

    Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.; Morozovska, Anna N.

    2018-03-01

    For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical–electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this. ).

  4. Electron spin polarization effects in low energy electron diffraction, ion neutralization and metastable atom deexcitation at solid surfaces. Progress report No. 4, 1 January-31 December 1984

    International Nuclear Information System (INIS)

    1984-01-01

    In the present contract year, a GaAs polarized electron source has been used to undertake a polarized LEED study of order-disorder transformations at Cu 3 Au (100) and (111) surfaces. A polarized LEED study of Cu (100) has also been initiated. A polarized MDS study of Ni(110) surface magnetism has been completed. Spin dependences in the Auger electron yield were observed that provide a measure of the surface magnetism and were used to probe the dependence of surface magnetism on temperature and adsorbate coverage. A similar study using a ferromagnetic glass is now underway. A Mott polarization analyzer, constructed to measure the ESP of the ejected electrons, is also being installed on the apparatus. Such measurements provide direct information concerning the dynamics of secondary electron ejection and the details of adsorbate-substrate bonding

  5. Corrosion Behavior of Surface-Treated Implant Ti-6Al-4V by Electrochemical Polarization and Impedance Studies

    Science.gov (United States)

    Paul, Subir; Yadav, Kasturi

    2011-04-01

    Implant materials for orthopedic and heart surgical services demand a better corrosion resistance material than the presently used titanium alloys, where protective oxide layer breaks down on a prolonged stay in aqueous physiological human body, giving rise to localized corrosion of pitting, crevice, and fretting corrosion. A few surface treatments on Ti alloy, in the form of anodization, passivation, and thermal oxidation, followed by soaking in Hank solution have been found to be very effective in bringing down the corrosion rate as well as producing high corrosion resistance surface film as reflected from electrochemical polarization, cyclic polarization, and Electrochemical Impedance Spectroscopy (EIS) studies. The XRD study revealed the presence of various types of oxides along with anatase and rutile on the surface, giving rise to high corrosion resistance film. While surface treatment of passivation and thermal oxidation could reduce the corrosion rate by 1/5th, anodization in 0.3 M phosphoric acid at 16 V versus stainless steel cathode drastically brought down the corrosion rate by less than ten times. The mechanism of corrosion behavior and formation of different surface films is better understood from the determination of EIS parameters derived from the best-fit equivalent circuit.

  6. Influence of solvent polarization and non-uniform ion size on electrostatic properties between charged surfaces in an electrolyte solution

    Science.gov (United States)

    Sin, Jun-Sik

    2017-12-01

    In this paper, we study electrostatic properties between two similar or oppositely charged surfaces immersed in an electrolyte solution by using the mean-field approach accounting for solvent polarization and non-uniform size effects. Applying a free energy formalism accounting for unequal ion sizes and orientational ordering of water dipoles, we derive coupled and self-consistent equations to calculate electrostatic properties between charged surfaces. Electrostatic properties for similarly charged surfaces depend on the counterion size but not on the coion size. Moreover, electrostatic potential and osmotic pressure between similarly charged surfaces are found to be increased with increasing counterion size. On the other hand, the corresponding ones between oppositely charged surfaces are related to both sizes of positive and negative ions. For oppositely charged surfaces, the electrostatic potential, number density of solvent molecules, and relative permittivity of an electrolyte having unequal ion sizes are not symmetric about the centerline between the charged surfaces. For either case, the consideration of solvent polarization results in a decrease in the electrostatic potential and the osmotic pressure compared to the case without the effect.

  7. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  8. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K. F.; Yang, Fang; Song, Y. R. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Xiaole [Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Xianfeng [The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Canhua; Qian, Dong; Gao, C. L., E-mail: clgao@sjtu.edu.cn; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China); Luo, Weidong, E-mail: wdluo@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China)

    2016-02-08

    Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations.

  9. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Zhang, K. F.; Yang, Fang; Song, Y. R.; Zhang, Xiaole; Chen, Xianfeng; Liu, Canhua; Qian, Dong; Gao, C. L.; Jia, Jin-Feng; Luo, Weidong

    2016-01-01

    Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations

  10. Giant thermally-enhanced electrostriction and polar surface phase in L a2M o2O9 oxygen ion conductors

    Science.gov (United States)

    Li, Qian; Lu, Teng; Schiemer, Jason; Laanait, Nouamane; Balke, Nina; Zhang, Zhan; Ren, Yang; Carpenter, Michael A.; Wen, Haidan; Li, Jiangyu; Kalinin, Sergei V.; Liu, Yun

    2018-04-01

    Ferroelectrics possess spontaneous electric polarization at macroscopic scales which nonetheless imposes strict limitations on the material classes. Recent discoveries of untraditional symmetry-breaking phenomena in reduced material dimensions have indicated feasibilities to extend polar properties to broader types of materials, potentially opening up the freedom for designing materials with hybrid functionalities. Here, we report the unusual electromechanical properties of L a2M o2O9 (LAMOX) oxygen ion conductors, systematically investigated at both bulk and surface length levels. We first observed giant electrostriction effects in L a2M o2O9 bulk ceramics that are thermally enhanced in concert with their low-energy oxygen-vacancy hopping dynamics. Moreover, while no clear bulk polarization was detected, the surface phases of LAMOX were found to be manifestly polar, likely originating from the coupling between the intrinsic structural flexibilities with strain gradients (i.e., flexoelectricity) and/or chemical heterogeneities present in the materials. These findings identify L a2M o2O9 as a promising electromechanical material system and suggest that the flexible structural and chemical configurations in ionically active materials could enable fundamentally different venues to accommodate electric polarization.

  11. Optimized design of polarizers with low ohmic loss and any polarization state for the 28 GHz QUEST ECH/ECCD system

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Toru Ii, E-mail: tsujimura.tohru@nifs.ac.jp [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292 (Japan); Idei, Hiroshi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan); Kubo, Shin; Kobayashi, Sakuji [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292 (Japan)

    2017-01-15

    Highlights: • Ohmic loss was calculated on the grooved mirror surface in simulated polarizers. • Polarizers with a low ohmic loss feature were optimally designed for 28 GHz. • Smooth rounded-rectangular grooves were made by mechanical machining. • The designed polarizers can realize all polarization states. - Abstract: In a high-power long-pulse millimeter-wave transmission line for electron cyclotron heating and current drive (ECH/ECCD), the ohmic loss on the grooved mirror surface of polarizers is one of the important issues for reducing the transmission loss. In this paper, the ohmic loss on the mirror surface is evaluated in simulated real-scale polarizer miter bends for different groove parameters under a linearly-polarized incident wave excitation. The polarizers with low ohmic loss are optimally designed for a new 28 GHz transmission line on the QUEST spherical tokamak. The calculated optimum ohmic loss is restricted to only less than 1.5 times as large as the theoretical loss for a copper flat mirror at room temperature. The copper rounded-rectangular grooves of the polarizers were relatively easy to make smooth in mechanical machining and the resultant surface roughness was not more than 0.15 μm, which is only 0.38 times as large as the skin depth. The combination of the designed elliptical polarizer and the polarization rotator can also realize any polarization state of the reflected wave.

  12. Polarization effects. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.

    1981-01-01

    The use of polarized proton beams in ISABELLE is important for several general reasons: (1) With a single longitudinally polarized proton beam, effects involving parity violation can be identified and hence processes involving weak interactions can be separated from those involving strong and electromagnetic interactions. (2) Spin effects are important in the strong interactions and can be useful for testing QCD. The technique for obtaining polarized proton beams in ISABELLE appears promising, particularly in view of the present development of a polarized proton beam for the AGS. Projections for the luminosity in ISABELLE for collisions of polarized protons - one or both beams polarized with longitudinal or transverse polarization - range from 1/100 to 1 times the luminosity for unpolarized protons.

  13. Arbitrary beam control using passive lossless metasurfaces enabled by orthogonally polarized custom surface waves

    Science.gov (United States)

    Kwon, Do-Hoon; Tretyakov, Sergei A.

    2018-01-01

    For passive, lossless impenetrable metasurfaces, a design technique for arbitrary beam control of receiving, guiding, and launching is presented. Arbitrary control is enabled by a custom surface wave in an orthogonal polarization such that its addition to the incident (input) and the desired scattered (output) fields is supported by a reactive surface impedance everywhere on the reflecting surface. Such a custom surface wave (SW) takes the form of an evanescent wave propagating along the surface with a spatially varying envelope. A growing SW appears when an illuminating beam is received. The SW amplitude stays constant when power is guided along the surface. The amplitude diminishes as a propagating wave (PW) is launched from the surface as a leaky wave. The resulting reactive tensor impedance profile may be realized as an array of anisotropic metallic resonators printed on a grounded dielectric substrate. Illustrative design examples of a Gaussian beam translator-reflector, a probe-fed beam launcher, and a near-field focusing lens are provided.

  14. Nonabelian Jacobian of projective surfaces geometry and representation theory

    CERN Document Server

    Reider, Igor

    2013-01-01

    The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces. Just like its classical counterpart, our nonabelian Jacobian relates to vector bundles (of rank 2) on a surface as well as its Hilbert scheme of points. But it also comes equipped with the variation of Hodge-like structures, which produces a sheaf of reductive Lie algebras naturally attached to our Jacobian. This constitutes a nonabelian analogue of the (abelian) Lie algebra structure of the classical Jacobian. This feature naturally relates geometry of surfaces with the representation theory of reductive Lie algebras/groups. This work’s main focus is on providing an in-depth study of various aspects of this relation. It presents a substantial body of evidence that the sheaf of Lie algebras on the nonabelian Jacobian is an effic...

  15. Nonlinear interaction of s-polarized surface waves at the boundary of a semibounded magnetized plasma

    International Nuclear Information System (INIS)

    Amein, W.H.; El-Siragy, N.M.; Nagy, O.Z.; Sayed, Y.A.

    1981-01-01

    Nonlinear interaction of S-Polarized surface waves at the boundary of a semibounded magnetized plasma is investigated. The expressions of the amplitudes of the generated waves are found. It is shown that, the generated waves with combined frequencies are equally radiated from the transient layer into plasma and vacuum

  16. P-polarized surface waves in a slab waveguide with left-handed material for sensing applications

    International Nuclear Information System (INIS)

    Taya, Sofyan A.

    2015-01-01

    In this paper, surface waves excited at the interface between left-handed and right-handed materials are employed for sensing applications. The propagation of p-polarized (TM) surface waves in a three-layer slab waveguide structure with air core layer as an analyte and anisotropic left-handed materials as claddings is investigated for detection of any changes in the refractive index of the analyte. The dispersion equations and the sensitivity of the effective refractive index to any change in the air layer index are derived, plotted, and discussed in details. The field profile is also explored. It is found that the sensitivity of the proposed surface wave sensor is almost independent of the wavelength of the propagating wave. A considerable sensitivity improvement can be obtained with the increase of transverse components of the left-handed material permittivity. - Highlights: • P-polarized surface waves in a three-layer slab waveguide are employed for sensing applications. • The structure contains air core layer as an analyte and anisotropic left-handed material in the claddings. • The sensitivity is found to be almost independent of the wavelength of the propagating wave. • Unusual sensitivity enhancement is observed as the transverse components of the LHM permittivity increase. • The asymmetric waveguide structure exhibits much higher sensitivity compared to the symmetric one

  17. Adaptive pixel-to-pixel projection intensity adjustment for measuring a shiny surface using orthogonal color fringe pattern projection

    Science.gov (United States)

    Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua

    2018-05-01

    Three-dimensional (3D) shape measurement based on fringe pattern projection techniques has been commonly used in various fields. One of the remaining challenges in fringe pattern projection is that camera sensor saturation may occur if there is a large range of reflectivity variation across the surface that causes measurement errors. To overcome this problem, a novel fringe pattern projection method is proposed to avoid image saturation and maintain high-intensity modulation for measuring shiny surfaces by adaptively adjusting the pixel-to-pixel projection intensity according to the surface reflectivity. First, three sets of orthogonal color fringe patterns and a sequence of uniform gray-level patterns with different gray levels are projected onto a measured surface by a projector. The patterns are deformed with respect to the object surface and captured by a camera from a different viewpoint. Subsequently, the optimal projection intensity at each pixel is determined by fusing different gray levels and transforming the camera pixel coordinate system into the projector pixel coordinate system. Finally, the adapted fringe patterns are created and used for 3D shape measurement. Experimental results on a flat checkerboard and shiny objects demonstrate that the proposed method can measure shiny surfaces with high accuracy.

  18. Comments to a polar bear population model

    OpenAIRE

    Øritsland, Nils Are

    1985-01-01

    Larsen, T. & Ugland, K. I. (Polar Research 2 n.s., 117-118) note correctly that a Leslie matrix model treats cubs and females as independent units which is not the case for polar bears. Population projections using the Leslie model with hunting mortalities added are instructive first approximations in evaluations of field data, however, and are recommended as exercises also for polar bear biologists. An APL programme for such projections is available.

  19. Spin-polarized photoemission

    International Nuclear Information System (INIS)

    Johnson, Peter D.

    1997-01-01

    Spin-polarized photoemission has developed into a versatile tool for the study of surface and thin film magnetism. In this review, we examine the methodology of the technique and its application to a number of different problems, including both valence band and core level studies. After a detailed review of spin-polarization measurement techniques and the related experimental requirements we consider in detail studies of the bulk properties both above and below the Curie temperature. This section also includes a discussion of observations relating to unique metastable phases obtained via epitaxial growth. The application of the technique to the study of surfaces, both clean and adsorbate covered, is reviewed. The report then examines, in detail, studies of the spin-polarized electronic structure of thin films and the related interfacial magnetism. Finally, observations of spin-polarized quantum well states in non-magnetic thin films are discussed with particular reference to their mediation of the oscillatory exchange coupling in related magnetic multilayers. (author)

  20. The Polarization of Achernar

    Science.gov (United States)

    McDavid, D.

    2005-11-01

    Recent near-infrared measurements of the angular diameter of Achernar (the bright Be star alpha Eridani) with the ESO VLT interferometer have been interpreted as the detection of an extremely oblate photosphere, with a ratio of equatorial to polar radius of at least 1.56 ± 0.05 and a minor axis orientation of 39° ± 1° (from North to East). The optical linear polarization of this star during an emission phase in 1995 September was 0.12 ± 0.02% at position angle 37° ± 8° (in equatorial coordinates), which is the direction of the projection of the rotation axis on the plane of the sky according to the theory of polarization by electron scattering in an equatorially flattened circumstellar disk. These two independent determinations of the orientation of the rotation axis are therefore in agreement. The observational history of correlations between Hα emission and polarization as found in the literature is that of a typical Be star, with the exception of an interesting question raised by the contrast between Schröder's measurement of a small polarization perpendicular to the projected rotation axis in 1969--70 and Tinbergen's measurement of zero polarization in 1974.5, both at times when emission was reportedly absent.

  1. Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors

    KAUST Repository

    Ryno, Sean

    2016-05-16

    The polarizable environment surrounding charge carriers in organic semiconductors impacts the efficiency of the charge transport process. Here, we consider two representative organic semiconductors, tetracene and rubrene, and evaluate their polarization energies in the bulk and at the organic-vacuum interface using a polarizable force field that accounts for induced-dipole and quadrupole interactions. Though both oligoacenes pack in a herringbone motif, the tetraphenyl substituents on the tetracene backbone of rubrene alter greatly the nature of the packing. The resulting change in relative orientations of neighboring molecules is found to reduce the bulk polarization energy of holes in rubrene by some 0.3 eV when compared to tetracene. The consideration of model organic-vacuum interfaces highlights the significant variation in the electrostatic environment for a charge carrier at a surface although the net change in polarization energy is small; interestingly, the environment of a charge even just one layer removed from the surface can be viewed already as representative of the bulk. Overall, it is found that in these herringbone-type layered crystals the polarization energy has a much stronger dependence on the intralayer packing density than interlayer packing density.

  2. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Gregorčič, Peter, E-mail: peter.gregorcic@fs.uni-lj.si [Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana (Slovenia); Sedlaček, Marko; Podgornik, Bojan [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia); Reif, Jürgen [Brandenburgische Technische Universitaet – BTU Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany)

    2016-11-30

    Highlights: • Low number of differently polarized ps laser pulses is superimposed on tool steel. • Last pulses determine the ripples orientation for single spot and coherent traces. • Previously formed structures are overridden by later incident pulses. • Ripples contrast depends on total exposure, independent on pulses’ polarization. • Weak role of pre-formed structures makes interference scenarios questionable. - Abstract: Laser-induced periodic surface structures (LIPSS) are produced on cold work tool steel by irradiation with a low number of picosecond laser pulses. As expected, the ripples, with a period of about 90% of the laser wavelength, are oriented perpendicular to the laser polarization. Subsequent irradiation with the polarization rotated by 45° or 90° results in a corresponding rotation of the ripples. This is visible already with the first pulse and becomes almost complete – erasing the previous orientation – after as few as three pulses. The phenomenon is not only observed for single-spot irradiation but also for writing long coherent traces. The experimental results strongly defy the role of surface plasmon-polaritons as the predominant key to LIPSS formation.

  3. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber

    Science.gov (United States)

    Yan, Bei; Wang, Anran; Liu, Exian; Tan, Wei; Xie, Jianlan; Ge, Rui; Liu, Jianjun

    2018-04-01

    A novel polarization filter based on a sunflower-type photonic quasi-crystal fiber (PQF) is proposed in this paper. We also discuss different methods to tune the filter wavelength. The proposed filter can efficiently produce polarized light with visible wavelengths by using the resonance between the second-order surface plasmon polariton mode and the core mode of the PQF. The filtered wavelength can be tuned between 0.55 µm and 0.68 µm by adjusting the thickness of the gold film. When the thickness of the gold film is 25.3 nm, the resonance loss in the y-polarized direction reaches 11707 dB m‑1 for a wavelength of 0.6326 µm, and the full width at half maximum is only 5 nm. Due to the flexible design and absence of both polarization coupling and polarization dispersion, this polarization filter can be used in devices that require narrow-band filtering.

  4. Experimental research of the NN scattering with polarized particles at the VdG accelerator of Charles University. Project 'NN interactions'

    International Nuclear Information System (INIS)

    Borisov, N.S.; Broz, J.; Cerny, J.

    2002-01-01

    The purpose of the project is to study three-nucleon interactions using 14-16 MeV polarized neutron beam in conjunction with polarized deuteron target. Spin-dependent total cross-section differences Δρ L and Δρ T will be measured in the energy range, where there are no experimental data, with sufficient accuracy to check the contribution of the three-nucleon forces. In the test run, the obtained deuteron vector polarizations were P - = (- 39.5 ± 2)% and P + = (32.9 ± 2)%. The proposed experiment is the continuation of the preceding measurements of the same quantities in the np scattering at the Van de Graaff accelerator of Charles University

  5. Radiometric calibration of a polarization-sensitive sensor

    International Nuclear Information System (INIS)

    Ahmad, S.P.; Markham, B.L.

    1992-01-01

    The radiometric accuracy of a sensor is adversely affected by scene polarization if its optical system is sensitive to polarization. Tests performed on the reflective bands of the NS001 Thematic Mapper simulator, an aircraft multispectral scanner, show that it is very sensitive to the polarization state of the incoming radiations. For 100 percent linearly polarized light, errors in the measured intensity vary from -40 to +40 percent, depending on the scan angle and spectral band. To estimate polarization-induced errors in the intensity measured at aircraft level, the intensity and polarization of the atmospheric radiances were simulated using a realistic earth-atmosphere radiative transfer model. For the polarization of atmospheric radiances in the solar meridian plane over a vegetated target, intensity errors may range from -10 to + 10 percent. The polarization-induced errors are highest in the shortest NS001 spectral band (0.450-0.525 microns) because of large atmospheric polarizations contributed by Rayleigh particles and small diluting effects caused by the small contributions of weakly polarized radiations coming from aerosols and the surface. Depending on the illumination and view angles, the errors in derived surface reflectance due to the radiance errors can be very large. In particular, for large off-nadir view angles in the forward scattered direction when the sun is low, the relative errors in the derived surface reflectance can be as large as 4 to 5 times the relative error in the radiances. Polarization sensitivity errors cannot be neglected for the shorter wavelengths when the surface reflectance contribution to atmospheric radiances is very small. 40 refs

  6. Photodegradation and polarization properties of vertical external surface-emitting organic laser

    International Nuclear Information System (INIS)

    Leang, Tatiana

    2014-01-01

    Although organic solid-state dye lasers can provide wavelength tunability in the whole visible spectrum and offers perspectives of low-cost compact lasers, they are still limited by several drawbacks, especially photodegradation. The geometry of a Vertical External Cavity Surface-emitting Organic Laser (VECSOL) enables organic lasers to reach high energies, excellent conversion efficiencies and good beam quality, it also enables an external control on many parameters, a feature that we have used here to study the photodegradation phenomenon as well as some polarization properties of organic solid-state lasers. In the first part of this thesis, we studied the lifetime of the laser upon varying several parameters (pump pulse-width, repetition rate, output coupling,...) and we found that the intracavity laser intensity, independently of the pump intensity, had a major on photodegradation rate. Moreover, we observed that the profile of the laser beam was also degrading with time: while it is Gaussian in the beginning it gradually shifts to an annular shape. In the second part, we investigated the polarization properties of VECSOLs, with a special emphasis on fluorescence properties of some typical dyes used in lasers. The crucial role played by resonant non-radiative energy transfers between dye molecules (HOMO-FRET) is evidenced and enables explaining the observed fluorescence depolarization, compared to the expected limiting fluorescence anisotropy. Energy transfers happen to play a negligible role above laser threshold, as the organic laser beam is shown to be linearly polarized in a wide range of experimental conditions when excitation occurs in the first singlet state. (author) [fr

  7. Graphics of polar figure

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-11-01

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  8. 2011 Joint Science Education Project: Research Experience in Polar Science

    Science.gov (United States)

    Wilkening, J.; Ader, V.

    2011-12-01

    The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on

  9. A revised surface age for the North Polar Layered Deposits of Mars

    Science.gov (United States)

    Landis, Margaret E.; Byrne, Shane; Daubar, Ingrid J.; Herkenhoff, Kenneth E.; Dundas, Colin M.

    2016-01-01

    The North Polar Layered Deposits (NPLD) of Mars contain a complex stratigraphy that has been suggested to retain a record of past eccentricity- and obliquity-forced climate changes. The surface accumulation rate in the current climate can be constrained by the crater retention age. We scale NPLD crater diameters to account for icy target strength and compare surface age using a new production function for recent small impacts on Mars to the previously used model of Hartmann (2005). Our results indicate that ice is accumulating in these craters several times faster than previously thought, with a 100 m diameter crater being completely infilled within centuries. Craters appear to have a diameter-dependent lifetime, but the data also permit a complete resurfacing of the NPLD at ~1.5 ka.

  10. Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric Imager

    Directory of Open Access Journals (Sweden)

    David J. Diner

    2012-12-01

    Full Text Available Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument’s bands (470, 660, and 865 nm. A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof, possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.

  11. The HIP 79977 debris disk in polarized light

    Science.gov (United States)

    Engler, N.; Schmid, H. M.; Thalmann, Ch.; Boccaletti, A.; Bazzon, A.; Baruffolo, A.; Beuzit, J. L.; Claudi, R.; Costille, A.; Desidera, S.; Dohlen, K.; Dominik, C.; Feldt, M.; Fusco, T.; Ginski, C.; Gisler, D.; Girard, J. H.; Gratton, R.; Henning, T.; Hubin, N.; Janson, M.; Kasper, M.; Kral, Q.; Langlois, M.; Lagadec, E.; Ménard, F.; Meyer, M. R.; Milli, J.; Mouillet, D.; Olofsson, J.; Pavlov, A.; Pragt, J.; Puget, P.; Quanz, S. P.; Roelfsema, R.; Salasnich, B.; Siebenmorgen, R.; Sissa, E.; Suarez, M.; Szulagyi, J.; Turatto, M.; Udry, S.; Wildi, F.

    2017-11-01

    Context. Debris disks are observed around 10 to 20% of FGK main-sequence stars as infrared excess emission. They are important signposts for the presence of colliding planetesimals and therefore provide important information about the evolution of planetary systems. Direct imaging of such disks reveals their geometric structure and constrains their dust-particle properties. Aims: We present observations of the known edge-on debris disk around HIP 79977 (HD 146897) taken with the ZIMPOL differential polarimeter of the SPHERE instrument. We measure the observed polarization signal and investigate the diagnostic potential of such data with model simulations. Methods: SPHERE-ZIMPOL polarimetric data of the 15 Myr-old F star HIP 79977 (Upper Sco, 123 pc) were taken in the Very Broad Band (VBB) filter (λc = 735 nm, Δλ = 290 nm) with a spatial resolution of about 25 mas. Imaging polarimetry efficiently suppresses the residual speckle noise from the AO system and provides a differential signal with relatively small systematic measuring uncertainties. We measure the polarization flux along and perpendicular to the disk spine of the highly inclined disk for projected separations between 0.2'' (25 AU) and 1.6'' (200 AU). We perform model calculations for the polarized flux of an optically thin debris disk which are used to determine or constrain the disk parameters of HIP 79977. Results: We measure a polarized flux contrast ratio for the disk of (Fpol)disk/F∗ = (5.5 ± 0.9) × 10-4 in the VBB filter. The surface brightness of the polarized flux reaches a maximum of SBmax = 16.2 mag arcsec-2 at a separation of 0.2''-0.5'' along the disk spine with a maximum surface brightness contrast of 7.64 mag arcsec-2. The polarized flux has a minimum near the star 1''. This can be explained by a radial blow-out of small grains. The data are modelled as a circular dust belt with a well defined disk inclination I = 85( ± 1.5)° and a radius between r0 = 60 and 90 AU. The radial

  12. Projection of curves on B-spline surfaces using quadratic reparameterization

    KAUST Repository

    Yang, Yijun

    2010-09-01

    Curves on surfaces play an important role in computer aided geometric design. In this paper, we present a hyperbola approximation method based on the quadratic reparameterization of Bézier surfaces, which generates reasonable low degree curves lying completely on the surfaces by using iso-parameter curves of the reparameterized surfaces. The Hausdorff distance between the projected curve and the original curve is controlled under the user-specified distance tolerance. The projected curve is T-G 1 continuous, where T is the user-specified angle tolerance. Examples are given to show the performance of our algorithm. © 2010 Elsevier Inc. All rights reserved.

  13. Inertial polarization of dielectrics

    OpenAIRE

    Zavodovsky, A. G.

    2011-01-01

    It was proved that accelerated motion of a linear dielectric causes its polarization. Accelerated translational motion of a dielectric's plate leads to the positive charge of the surface facing the direction of motion. Metal plates of a capacitor were used to register polarized charges on a dielectric's surface. Potential difference between the capacitor plates is proportional to acceleration, when acceleration is constant potential difference grows with the increase of a dielectric's area, o...

  14. Project of the Year Submittal SY-101 Surface Level Rise Remediation Project

    International Nuclear Information System (INIS)

    BAUER, R.E.

    2001-01-01

    CH2M HILL Hanford Group is pleased to nominate the SY-101 Surface Level Rise Remediation Project (SLRRP) for the Project Management Institute's consideration as International Project of the Year for 2001. We selected this project as being our best recent example of effective project management, having achieved and exceeded our client's expectations in resolving urgent safety issues related to the storage of high level nuclear waste. In reflection, we consider the SY-101 SLRRP to be a prime example of safe and effective project delivery. The pages that follow present the tools and techniques employed to manage this complex and technically challenging project. Our objective in submitting this nomination is twofold--to share the lessons we have learned with other organizations, and to honor the men and women who contributed to this endeavor. It was by their diligent effort that the successes we relate here were accomplished 10 months ahead of schedule and one million dollars below the authorized budget

  15. Lunar polar rover science operations: Lessons learned and mission architecture implications derived from the Mojave Volatiles Prospector (MVP) terrestrial field campaign

    Science.gov (United States)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Lim, Darlene; Deans, Matthew; Cook, Amanda; Roush, Ted; Skok, J. R.; Button, Nicole E.; Karunatillake, S.; Stoker, Carol; Marquez, Jessica J.; Shirley, Mark; Kobayashi, Linda; Lees, David; Bresina, John; Hunt, Rusty

    2016-08-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal of producing critical knowledge for conducting robotic exploration of the Moon. Specifically, MVP focuses on studying a lunar mission analog to characterize the form and distribution of lunar volatiles. Although lunar volatiles are known to be present near the poles of the Moon, the three dimensional distribution and physical characteristics of lunar polar volatiles are largely unknown. A landed mission with the ability to traverse the lunar surface is thus required to characterize the spatial distribution of lunar polar volatiles. NASA's Resource Prospector (RP) mission is a lunar polar rover mission that will operate primarily in sunlit regions near a lunar pole with near-real time operations to characterize the vertical and horizontal distribution of volatiles. The MVP project was conducted as a field campaign relevant to the RP lunar mission to provide science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. To achieve these goals, the MVP project conducted a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural environment with an unknown volatile distribution within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon.

  16. Slim planar apparatus for converting LED light into collimated polarized light uniformly emitted from its top surface.

    Science.gov (United States)

    Teng, Tun-Chien; Tseng, Li-Wei

    2014-10-20

    This study proposes a slim planar apparatus for converting nonpolarized light from a light-emitting diode (LED) into an ultra-collimated linearly polarized beam uniformly emitted from its top surface. The apparatus was designed based on a folded-bilayer configuration comprising a light-mixing collimation element, polarization conversion element, and polarization-preserving light guide plate (PPLGP) with an overall thickness of 5 mm. Moreover, the apparatus can be extended transversally by connecting multiple light-mixing collimation elements and polarization conversion elements in a side-by-side configuration to share a considerably wider PPLGP, so the apparatus can have theoretically unlimited width. The simulation results indicate that the proposed apparatus is feasible for the maximal backlight modules in 39-inch liquid crystal panels. In the case of an apparatus with a 480 × 80 mm emission area and two 8-lumen LED light sources, the average head-on polarized luminance and spatial uniformity over the emission area was 5000 nit and 83%, respectively; the vertical and transverse angular distributions of the emitting light were only 5° and 10°, respectively. Moreover, the average degree of polarization and energy efficiency of the apparatus were 82% and 72%, respectively. As compared with the high-performance ultra-collimated nonpolarized backlight module proposed in our prior work, not only did the apparatus exhibit outstanding optical performance, but also the highly polarized light emissions actually increased the energy efficiency by 100%.

  17. A Comparative Study of Molecular Structure, pKa, Lipophilicity, Solubility, Absorption and Polar Surface Area of Some Antiplatelet Drugs

    Directory of Open Access Journals (Sweden)

    Milan Remko

    2016-03-01

    Full Text Available Theoretical chemistry methods have been used to study the molecular properties of antiplatelet agents (ticlopidine, clopidogrel, prasugrel, elinogrel, ticagrelor and cangrelor and several thiol-containing active metabolites. The geometries and energies of most stable conformers of these drugs have been computed at the Becke3LYP/6-311++G(d,p level of density functional theory. Computed dissociation constants show that the active metabolites of prodrugs (ticlopidine, clopidogrel and prasugrel and drugs elinogrel and cangrelor are completely ionized at pH 7.4. Both ticagrelor and its active metabolite are present at pH = 7.4 in neutral undissociated form. The thienopyridine prodrugs ticlopidine, clopidogrel and prasugrel are lipophilic and insoluble in water. Their lipophilicity is very high (about 2.5–3.5 logP values. The polar surface area, with regard to the structurally-heterogeneous character of these antiplatelet drugs, is from very large interval of values of 3–255 Å2. Thienopyridine prodrugs, like ticlopidine, clopidogrel and prasugrel, with the lowest polar surface area (PSA values, exhibit the largest absorption. A high value of polar surface area (PSA of cangrelor (255 Å2 results in substantial worsening of the absorption in comparison with thienopyridine drugs.

  18. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  19. Formation of polar surfaces in microstructured ZnO by doping with Cu and applications in photocatalysis using visible light

    International Nuclear Information System (INIS)

    Pawar, Rajendra C.; Choi, Da-Hyun; Lee, Jai-Sung; Lee, Caroline S.

    2015-01-01

    We report the synthesis of copper-doped zinc oxide microstructures with a large amount of polar surfaces using a single-step facile chemical method by collecting powders of zinc oxide (ZnO) microstructures. It was found that rod-like morphology of ZnO transformed into disk and sphere-like structure with nanosheets. Hollow disk-like structures were formed due to the surface etching properties of Cl − ions in the copper chloride precursor. The photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB) dyes was measured under irradiation with visible light using the structures as catalysts. The Cu-doped ZnO exhibited better photodegradation properties than did undoped ZnO. The enhanced performance is attributed to the existence of (001) polar surfaces, oxygen vacancies, and increased optical absorbance at visible wavelengths, which is consistent with the field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), room temperature photoluminescence (PL), and optical absorbance measurements. These favorable photocatalytic properties of the doped microstructures demonstrate their potential for use in wastewater treatment. - Graphical abstract: Graphical abstract shows the electron transfer mechanism under visible light for Cu-doped ZnO microstructures and the photocatalytic degradation of dye. - Highlights: • Cu induced microstructures of ZnO with polar surfaces. • Methylene blue degradation under visible light irradiation. • Room temperature ferromagnetism due to oxygen vacancies in ZnO. • 7% Cu–ZnO has highest photocatalytic activity

  20. Thermodynamics of polarized relativistic matter

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,PO Box 1700 STN CSC, Victoria BC, V8W 2Y2 (Canada)

    2016-07-05

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  1. Low-cost rural surface alternatives : demonstration project.

    Science.gov (United States)

    2015-06-01

    The goals of this project were to implement several stabilization methods for preventing or mitigating freeze-thaw damage to : granular surfaced roads and identify the most effective and economical methods for the soil and climate conditions of Iowa....

  2. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Rathnasekara, Renuka; El Rassi, Ziad

    2017-07-28

    Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF 3 .ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Method of surface error visualization using laser 3D projection technology

    Science.gov (United States)

    Guo, Lili; Li, Lijuan; Lin, Xuezhu

    2017-10-01

    In the process of manufacturing large components, such as aerospace, automobile and shipping industry, some important mold or stamped metal plate requires precise forming on the surface, which usually needs to be verified, if necessary, the surface needs to be corrected and reprocessed. In order to make the correction of the machined surface more convenient, this paper proposes a method based on Laser 3D projection system, this method uses the contour form of terrain contour, directly showing the deviation between the actually measured data and the theoretical mathematical model (CAD) on the measured surface. First, measure the machined surface to get the point cloud data and the formation of triangular mesh; secondly, through coordinate transformation, unify the point cloud data to the theoretical model and calculate the three-dimensional deviation, according to the sign (positive or negative) and size of the deviation, use the color deviation band to denote the deviation of three-dimensional; then, use three-dimensional contour lines to draw and represent every coordinates deviation band, creating the projection files; finally, import the projection files into the laser projector, and make the contour line projected to the processed file with 1:1 in the form of a laser beam, compare the Full-color 3D deviation map with the projection graph, then, locate and make quantitative correction to meet the processing precision requirements. It can display the trend of the machined surface deviation clearly.

  4. Projective and superconformal structures on surfaces

    International Nuclear Information System (INIS)

    Harvey, W.J.

    1990-01-01

    Much attention has recently been given to the study of super Riemann surfaces. Detailed accounts of these objects and their infinitesimal deformation theory are referenced where they are fitted into the framework of complex supermanifolds, superconformal structures and graded sheaves. One difficulty, which seems even more of a barrier than in the case of classical deformations of Riemann surface structure, is the lack of a good global description of super-moduli spaces. In this note, we outline an approach which places the theory in the classical setting of projective structures on variable Riemann surfaces. We explain how to construct a distribution (family of vector subspaces) inside the holomorphic cotangent space to the moduli space M g of Riemann surfaces with genus g and furnished with a level-4 homology structure, such that the corresponding rank-(2g-2) complex vector bundle models the soul deformations of a family of super-Riemann surfaces. The keystone in this construction is the existence of holomorphic sections for the space of non-singular odd theta characteristics on C g the universal curve over M g . (author)

  5. The PolarSEEDS project: communicating Greenland melting through visualization and sonification

    Science.gov (United States)

    Tedesco, M.; Perl, J.; Saltz, I.; Ham, E.

    2013-12-01

    During fall of 2011 a group of faculty at the City College of New York from the Science and Art Divisions drafted a concept for a project about communicating results from his research concerning the melting of the Greenland ice sheet through 'unconventional' venues, such as Visual Arts and Music. The opportunity to build a team and perform a project came to reality when the City College of New York (CCNY) called for the City SEED call proposal (therefore the name POLARSEEDS). The call was looking to fund innovative interdisciplinary work that could create connections among different disciplines within CCNY. The faculty members of the project were affiliated with the Dept. of Earth and Atmospheric Sciences (Tedesco), the Music Dept. and the Sonic Arts Center (Perl) and Art Dept. (Saltz and Ham). The PolarSEEDS project involved also six students at graduate and master level from the three departments. The project culminated in an exhibition at CCNY in which soundscapes obtained from sounds recorded during fieldwork in Greenland were combined with sonifications of the outputs of a climate model used to study melting in Greenland to generate ambient sounds. At the exhibit, many sonifications of the model outputs were available at computer stations together with the explanation of the different approaches undertaken to generate them. Large aerial photos of supraglacial streams and lakes over Greenland were exhibited together with infographics addressing some of the causes and implications of melting. Videos showing either footage of melting features or the impact of albedo on melting (through ad hoc experiments carried out in laboratory and filmed for the exhibit) were also exhibited. Lastly, the visitors had the opportunity to play an interactive web game developed for the project in which they had to balance the amount of clouds, solar radiation, rain and snow to keep the Greenland ice sheet from melting completely and flood New York City. In my presentation, I will

  6. Opportunity's Surroundings on Sol 1818 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,818th Martian day, or sol, of Opportunity's surface mission (March 5, 2009). South is at the center; north at both ends. This view is presented as a polar projection with geometric seam correction. North is at the top. The rover had driven 80.3 meters (263 feet) southward earlier on that sol. Tracks from the drive recede northward in this view. The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  7. Exploiting the flexibility and the polarization of ferroelectric perovskite surfaces to achieve efficient photochemistry and enantiospecificity

    Energy Technology Data Exchange (ETDEWEB)

    Rappe, Andrew [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2017-01-06

    This research project explored the catalytic properties of complex surfaces of functional materials. The PI used first-principles density functional theory (DFT) calculations to explore a tightly integrated set of properties. The physical properties of complex functional materials that influence surface chemistry were explored, including bulk and surface electric dipoles, and surface conductivity. The energetic, compositional, electronic, and chemical properties of the surfaces of these materials were explored in detail, and connections between material properties and chemical reactivity were established. This project led to 28 publications, including Nat. Comm., JACS, 3 PRL, 7 PRB, 2 ACS Nano, 2 Nano Lett., 4 JPCL, 2 JCP, Chem. Mater., ACS Appl. Mater. Interfaces, Phys. Rev. Appl., and a U.S. Patent on surface catalysts. The key accomplishments in this project involved work in six coordinated areas: pioneering ways to control bulk dipoles in order to dynamically affect catalysis, exploring novel ways of bringing charge to the surface for redox catalysis, nonstoichiometric surfaces offering new sites for heterogeneous catalysis, illustrating how surface catalysis responds to applied pressure, catalytic growth of carbon-based materials, and new computational methods allowing more accurate exploration of molecule-surface interactions

  8. Thermal stability study of Cr/Au contact formed on n-type Ga-polar GaN, N-polar GaN, and wet-etched N-polar GaN surfaces

    International Nuclear Information System (INIS)

    Choi, Yunju; Kim, Yangsoo; Ahn, Kwang-Soon; Kim, Hyunsoo

    2014-01-01

    Highlights: • The Cr/Au contact on n-type Ga-polar (0 0 0 1) GaN, N-polar (0 0 0 −1) GaN, and wet-etched N-polar GaN were investigated. • Thermal annealing led to a significant degradation of contact formed on N-polar n-GaN samples. • Contact degradation was shown to be closely related to the increase in the electrical resistivity of n-GaN. • Out-diffusion of Ga and N atoms was clearly observed in N-polar samples. - Abstract: The electrical characteristics and thermal stability of a Cr/Au contact formed on n-type Ga-polar (0 0 0 1) GaN, N-polar GaN, and wet-etched N-polar GaN were investigated. As-deposited Cr/Au showed a nearly ohmic contact behavior for all samples, i.e., the specific contact resistance was 3.2 × 10 −3 , 4.3 × 10 −4 , and 1.1 × 10 −3 Ω cm 2 for the Ga-polar, flat N-polar, and roughened N-polar samples, respectively. However, thermal annealing performed at 250 °C for 1 min in a N 2 ambient led to a significant degradation of contact, i.e., the contact resistance increased by 186, 3260, and 2030% after annealing for Ga-polar, flat N-polar, and roughened N-polar samples, respectively. This could be due to the different disruption degree of Cr/Au and GaN interface after annealing, i.e., the insignificant interfacial reaction occurred in the Ga-polar sample, while out-diffusion of Ga and N atoms was clearly observed in N-polar samples

  9. Thermal stability study of Cr/Au contact formed on n-type Ga-polar GaN, N-polar GaN, and wet-etched N-polar GaN surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yunju [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Suncheon Center, Korea Basic Science Institute, Suncheon 540-742 (Korea, Republic of); Kim, Yangsoo [Suncheon Center, Korea Basic Science Institute, Suncheon 540-742 (Korea, Republic of); Ahn, Kwang-Soon, E-mail: kstheory@ynu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Kim, Hyunsoo, E-mail: hskim7@jbnu.ac.kr [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-10-30

    Highlights: • The Cr/Au contact on n-type Ga-polar (0 0 0 1) GaN, N-polar (0 0 0 −1) GaN, and wet-etched N-polar GaN were investigated. • Thermal annealing led to a significant degradation of contact formed on N-polar n-GaN samples. • Contact degradation was shown to be closely related to the increase in the electrical resistivity of n-GaN. • Out-diffusion of Ga and N atoms was clearly observed in N-polar samples. - Abstract: The electrical characteristics and thermal stability of a Cr/Au contact formed on n-type Ga-polar (0 0 0 1) GaN, N-polar GaN, and wet-etched N-polar GaN were investigated. As-deposited Cr/Au showed a nearly ohmic contact behavior for all samples, i.e., the specific contact resistance was 3.2 × 10{sup −3}, 4.3 × 10{sup −4}, and 1.1 × 10{sup −3} Ω cm{sup 2} for the Ga-polar, flat N-polar, and roughened N-polar samples, respectively. However, thermal annealing performed at 250 °C for 1 min in a N{sub 2} ambient led to a significant degradation of contact, i.e., the contact resistance increased by 186, 3260, and 2030% after annealing for Ga-polar, flat N-polar, and roughened N-polar samples, respectively. This could be due to the different disruption degree of Cr/Au and GaN interface after annealing, i.e., the insignificant interfacial reaction occurred in the Ga-polar sample, while out-diffusion of Ga and N atoms was clearly observed in N-polar samples.

  10. Thermal conductance of a surface phonon-polariton crystal made up of polar nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez-Miranda, Jose; Joulain, Karl; Ezzahri, Younes [Univ. de Poitiers, Futuroscope Chasseneuil (France). Inst. Pprime, CNRS

    2017-05-01

    We demonstrate that the energy transport of surface phonon-polaritons can be large enough to be observable in a crystal made up of a three-dimensional assembly of nanorods of silicon carbide. The ultralow phonon thermal conductivity of this nanostructure along with its high surface area-to-volume ratio allows the predominance of the polariton energy over that generated by phonons. The dispersion relation, propagation length, and thermal conductance of polaritons are numerically determined as functions of the radius and temperature of the nanorods. It is shown that the thermal conductance of a crystal with nanorods at 500 K and diameter (length) of 200 nm (20 μm) is 0.55 nW.K{sup -1}, which is comparable to the quantum of thermal conductance of polar nanowires.

  11. Galectin-3 modulates the polarized surface delivery of β1-integrin in epithelial cells.

    Science.gov (United States)

    Hönig, Ellena; Ringer, Karina; Dewes, Jenny; von Mach, Tobias; Kamm, Natalia; Kreitzer, Geri; Jacob, Ralf

    2018-05-10

    Epithelial cells require a precise intracellular transport and sorting machinery in order to establish and maintain their polarized architecture. This machinery includes beta-galactoside binding galectins for glycoprotein targeting to the apical membrane. Galectin-3 sorts cargo destined for the apical plasma membrane into vesicular carriers. After delivery of cargo to the apical milieu, galectin-3 recycles back into sorting organelles. We analyzed the role of galectin-3 in the polarized distribution of β1-integrin in MDCK cells. Integrins are located primarily at the basolateral domain of epithelial cells. We demonstrate that a minor pool of β1-integrin interacts with galectin-3 at the apical plasma membrane. Knockdown of galectin-3 decreases apical delivery of β1-integrin. This loss is restored by supplementation with recombinant galectin-3 and galectin-3 overexpression. Our data suggest that galectin-3 targets newly synthesized β1-integrin to the apical membrane and promotes apical delivery of β1-integrin internalized from the basolateral membrane. In parallel, galectin-3 knockout results in a reduction in cell proliferation and an impairment in proper cyst development. Our results suggest that galectin-3 modulates the surface distribution of β1-integrin and affects the morphogenesis of polarized cells. © 2018. Published by The Company of Biologists Ltd.

  12. Material and device studies for the development of ultra-violet light emitting diodes (UV-LEDS) along polar, non-polar and semi-polar directions

    Science.gov (United States)

    Chandrasekaran, Ramya

    Over the past few years, significant effort was dedicated to the development of ultraviolet light emitting diodes (UV-LEDs) for a variety of applications. Such applications include chemical and biological detection, water purification and solid-state lighting. III-Nitride LEDs based on multiple quantum wells (MQWs) grown along the conventional [0001] (polar) direction suffer from the quantum confined Stark effect (QCSE), due to the existence of strong electric fields that arise from spontaneous and piezoelectric polarization. Thus, there is strong motivation to develop MQW-based III-nitride LED structures grown along non-polar and semi-polar directions. The goal of this dissertation is to develop UV-LEDs along the [0001] polar and [11 2¯ 0] non-polar directions by the method of Molecular Beam Epitaxy (MBE). The polar and non-polar LEDs were grown on the C-plane and R-plane sapphire substrates respectively. This work is a combination of materials science studies related to the nucleation, growth and n- and p-type doping of III-nitride films on these two substrates, as well as device studies related to fabrication and characterization of UV-LEDs. It was observed that the crystallographic orientation of the III-nitride films grown on R-plane sapphire depends strongly on the kinetic conditions of growth of the Aluminum Nitride (AIN) buffer. Specifically, growth of the AIN buffer under group III-rich conditions leads to nitride films having the (11 2¯ 0) non polar planes parallel to the sapphire surface, while growth of the buffer under nitrogen rich conditions leads to nitride films with the (11 2¯ 6) semi-polar planes parallel to the sapphire surface. The electron concentration and mobility for the films grown along the polar, non-polar and semi-polar directions were investigated. P-type doping of Gallium Nitride (GaN) films grown on the nonpolar (11 2¯ 0) plane do not suffer from polarity inversion and thus the material was doped p-type with a hole concentration

  13. A one stop website for sharing sea ice, ocean and ice sheet data over the polar regions

    Science.gov (United States)

    Chen, Z.; Cheng, X.; Liu, J.; Hui, F.; Ding, Y.

    2017-12-01

    The polar regions, including the Arctic and Antarctic, are changing rapidly. Our capabilities to remotely monitor the state of the polar regions are increasing greatly. Satellite and airborne technologies have been deployed and further improvements are underway. Meanwhile, various algorithms have been developed to retrieve important parameters to maximize the effectiveness of available remote sensing data. These technologies and algorithms promise to greatly increase our understanding of variations in sea ice, ocean and ice sheet. However, so much information is scattered out there. It is challenging to find exactly what you are looking for by just searching it through the network. Therefore, we try to establish a common platform to sharing some key parameters for the polar regions. A group of scientists from Beijing Normal University and University at Albany developed a website as a "one-stop shop" for the current state of the polar regions. The website provides real-time (or near real-time) key parameters derived from a variety of operational satellites in an understandable, accessible and credible way. Three types of parameter, which are sea ice, ocean and ice sheet respectively, are shown and available to be downloaded in the website. Several individual parameters are contained in a specific type of parameter. The parameters of sea ice include sea ice concentration, sea ice thickness, melt pond, sea ice leads and sea ice drift. The ocean parameters contain sea surface temperature and sea surface wind. Ice sheet balance, ice velocity and some other parameters are classified into the type of ice sheet parameter. Some parameters are well-calibrated and available to be obtained from other websites, such as sea ice concentration, sea ice thickness sea surface temperature. Since these parameters are retrieved from different sensors, such as SSMI, AMSR2 etc., data format, spatial resolution of the parameters are not unified. We collected and reprocessed these

  14. Numerical modeling of polar mesocyclones generation mechanisms

    Science.gov (United States)

    Sergeev, Dennis; Stepanenko, Victor

    2013-04-01

    Polar mesocyclones, commonly referred to as polar lows, remain of great interest due to their complicated dynamics. These mesoscale vortices are small short-living objects that are formed over the observation-sparse high-latitude oceans, and therefore, their evolution can hardly be observed and predicted numerically. The origin of polar mesoscale cyclones is still a matter of uncertainty, though the recent numerical investigations [3] have exposed a strong dependence of the polar mesocyclone development upon the magnitude of baroclinicity. Nevertheless, most of the previous studies focused on the individual polar low (the so-called case studies), with too many factors affecting it simultaneously. None of the earlier studies suggested a clear picture of polar mesocyclone generation within an idealized experiment, where it is possible to look deeper into each single physical process. The present paper concentrates on the initial triggering mechanism of the polar mesocyclone. As it is reported by many researchers, some mesocyclones are formed by the surface forcing, namely the uneven distribution of heat fluxes. That feature is common on the ice boundaries [2], where intense air stream flows from the cold ice surface to the warm sea surface. Hence, the resulting conditions are shallow baroclinicity and strong surface heat fluxes, which provide an arising polar mesocyclone with potential energy source converting it to the kinetic energy of the vortex. It is shown in this paper that different surface characteristics, including thermal parameters and, for example, the shape of an ice edge, determine an initial phase of a polar low life cycle. Moreover, it is shown what initial atmospheric state is most preferable for the formation of a new polar mesocyclone or in maintaining and reinforcing the existing one. The study is based on idealized high-resolution (~2 km) numerical experiment in which baroclinicity, stratification, initial wind profile and disturbance, surface

  15. Orientation-dependent chemistry and band-bending of Ti on polar ZnO surfaces.

    Science.gov (United States)

    Borghetti, Patrizia; Mouchaal, Younes; Dai, Zongbei; Cabailh, Gregory; Chenot, Stéphane; Lazzari, Rémi; Jupille, Jacques

    2017-04-19

    Orientation-dependent reactivity and band-bending are evidenced upon Ti deposition (1-10 Å) on polar ZnO(0001)-Zn and ZnO(0001[combining macron])-O surfaces. At the onset of the Ti deposition, a downward band-bending was observed on ZnO(0001[combining macron])-O while no change occurred on ZnO(0001)-Zn. Combining this with the photoemission analysis of the Ti 2p core level and Zn L 3 (L 2 )M 45 M 45 Auger transition, it is established that the Ti/ZnO reaction is of the form Ti + 2ZnO → TiO 2 + 2Zn on ZnO(0001)-Zn and Ti + yZnO → TiZn x O y + (y - x)Zn on ZnO(0001[combining macron])-O. Consistently, upon annealing thicker Ti adlayers, the metallic zinc is removed to leave ZnO(0001)-Zn surfaces covered with a TiO 2 -like phase and ZnO(0001[combining macron])-O surfaces covered with a defined (Ti, Zn, O) compound. Finally, a difference in the activation temperature between the O-terminated (500 K) and Zn-terminated (700 K) surfaces is observed, which is tentatively explained by different electric fields in the space charge layer at ZnO surfaces.

  16. PolarHub: A Global Hub for Polar Data Discovery

    Science.gov (United States)

    Li, W.

    2014-12-01

    This paper reports the outcome of a NSF project in developing a large-scale web crawler PolarHub to discover automatically the distributed polar dataset in the format of OGC web services (OWS) in the cyberspace. PolarHub is a machine robot; its goal is to visit as many webpages as possible to find those containing information about polar OWS, extract this information and store it into the backend data repository. This is a very challenging task given huge data volume of webpages on the Web. Three unique features was introduced in PolarHub to make it distinctive from earlier crawler solutions: (1) a multi-task, multi-user, multi-thread support to the crawling tasks; (2) an extensive use of thread pool and Data Access Object (DAO) design patterns to separate persistent data storage and business logic to achieve high extendibility of the crawler tool; (3) a pattern-matching based customizable crawling algorithm to support discovery of multi-type geospatial web services; and (4) a universal and portable client-server communication mechanism combining a server-push and client pull strategies for enhanced asynchronous processing. A series of experiments were conducted to identify the impact of crawling parameters to the overall system performance. The geographical distribution pattern of all PolarHub identified services is also demonstrated. We expect this work to make a major contribution to the field of geospatial information retrieval and geospatial interoperability, to bridge the gap between data provider and data consumer, and to accelerate polar science by enhancing the accessibility and reusability of adequate polar data.

  17. Polarizer design for millimeter-wave plasma diagnostics

    DEFF Research Database (Denmark)

    Leipold, Frank; Salewski, Mirko; Jacobsen, Asger Schou

    2013-01-01

    Radiation from magnetized plasmas is in general elliptically polarized. In order to convert the elliptical polarization to linear polarization, mirrors with grooved surfaces are currently employed in our collective Thomson scattering diagnostic at ASDEX Upgrade. If these mirrors can be substituted...

  18. Surface modification of β-Type titanium alloy by electrochemical potential pulse polarization

    International Nuclear Information System (INIS)

    Fujimoto, Shinji; Raman, Vedarajan; Tsuchiya, Hiroaki

    2009-01-01

    In the present work, we report the formation of a porous oxide/hydroxide surface layer on the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy achieved by the combination of an alkali immersion and a potential pulse polarisation process. The alkali treatment has been employed for pure titanium to produce amorphous and porous layer prior to hydroxyapatite (HAp) growth. But, in the case of TNTZ, immersion in 5M NaOH at the open circuit potential (OCP) at 60 deg. C for 24 hours, did not yield any uniform layer, instead a thick deposited layer with highly cracked one. The cracks were attributed to the growth of a tantalum enriched particulate. In order to avoid the crack formation, the electrochemical behaviour of the alloy and the pure alloying elements (Ti, Nb, Ta and Zr) was investigated to produce a uniform surface with the application of a square wave modulated potential pulse polarization, leading to the formation of a relatively uniform porous layer on the alloy.

  19. Surface modification of {beta}-Type titanium alloy by electrochemical potential pulse polarization

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Shinji; Raman, Vedarajan; Tsuchiya, Hiroaki [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: fujimoto@mat.eng.osaka-u.ac.jp

    2009-05-01

    In the present work, we report the formation of a porous oxide/hydroxide surface layer on the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy achieved by the combination of an alkali immersion and a potential pulse polarisation process. The alkali treatment has been employed for pure titanium to produce amorphous and porous layer prior to hydroxyapatite (HAp) growth. But, in the case of TNTZ, immersion in 5M NaOH at the open circuit potential (OCP) at 60 deg. C for 24 hours, did not yield any uniform layer, instead a thick deposited layer with highly cracked one. The cracks were attributed to the growth of a tantalum enriched particulate. In order to avoid the crack formation, the electrochemical behaviour of the alloy and the pure alloying elements (Ti, Nb, Ta and Zr) was investigated to produce a uniform surface with the application of a square wave modulated potential pulse polarization, leading to the formation of a relatively uniform porous layer on the alloy.

  20. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement.

    Science.gov (United States)

    Li, Dong; Kofman, Jonathan

    2014-04-21

    In fringe-projection 3D surface-shape measurement, image saturation results in incorrect intensities in captured images of fringe patterns, leading to phase and measurement errors. An adaptive fringe-pattern projection (AFPP) method was developed to adapt the maximum input gray level in projected fringe patterns to the local reflectivity of an object surface being measured. The AFPP method demonstrated improved 3D measurement accuracy by avoiding image saturation in highly-reflective surface regions while maintaining high intensity modulation across the entire surface. The AFPP method can avoid image saturation and handle varying surface reflectivity, using only two prior rounds of fringe-pattern projection and image capture to generate the adapted fringe patterns.

  1. The GODAE High Resolution Sea Surface Temperature Pilot Project (GHRSST-PP)

    Science.gov (United States)

    Donlon, C.; Ghrsst-Pp Science Team

    2003-04-01

    This paper summarises Development and Implementation Plan of the GODAE High Resolution Sea Surface Temperature Pilot Project (GHRSST-PP). The aim of the GHRSST-PP is to coordinate a new generation of global, multi-sensor, high-resolution (better than 10 km and 12 hours) SST products for the benefit of the operational and scientific community and for those with a potential interest in the products of GODAE. The GHRSST-PP project will deliver a demonstration system that integrates data from existing international satellite and in situ data sources using state-of-the-art communications and analysis tools. Primary GHRSST-PP products will be generated by fusing infrared and microwave satellite data obtained from sensors in near polar, geostationary and low earth orbits, constrained by in situ observations. Surface skin SST, sub-surface SST and SST at depth will be produced as both merged and analysed data products. Merged data products have a common grid but all input data retaining their error statistics whereas analysed data products use all data to derive a best estimate data source having one set of error statistics. Merged SST fields will not be interpolated thereby preserving the integrity of the source data as much as possible. Products will be first produced and validated using in situ observations for regional areas by regional data assembly centres (RDAC) and sent to a global data analysis centre (GDAC) for integration with other data to provide global coverage. GDAC and RDAC will be connected together with other data using a virtual dynamic distributed database (DDD). The GDAC will merge and analyse RDAC data together with other data (from the GTS and space agencies) to provide global coverage every 12 hours in real time. In all cases data products will be accurate to better than 0.5 K validated using data collected at globally distributed diagnostic data set (DDS) sites. A user information service (UIS) will work together with user applications and services

  2. Polarity analysis of GaN nanorods by photo-assisted Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiandong; Neumann, Richard; Wang, Xue; Li, Shunfeng; Fuendling, Soenke; Merzsch, Stephan; Al-Suleiman, Mohamed A.M.; Soekmen, Uensal; Wehmann, Hergo-H.; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig (Germany)

    2011-07-15

    Polarity dependence (N-polar (000-1) and Ga-polar (0001)) of surface photovoltage of epitaxially grown, vertically aligned GaN nanorods has been investigated by photo-assisted Kelvin probe force microscopy (KPFM). Commercial GaN substrates with known polarities are taken as reference samples. The polarity of GaN substrates can be well distinguished by the change in surface photovoltage upon UV illumination in air ambient. These different behaviors of Ga- and N-polar surfaces are attributed to the polarity-related surface-bound charges and photochemical reactivity. GaN nanorods were grown on patterned SiO{sub 2}/sapphire templates by metal-organic vapor phase epitaxy (MOVPE). In order to analyze the bottom surface of the grown GaN nanorods, a technique known from high power electronics and joining techniques is applied to remove the substrate. The top and bottom surfaces of the GaN nanorods are identified to be N-polar and Ga-polar according to the KPFM results, respectively. Our experiments demonstrate that KPFM is a simple and suitable method capable to identify the polarity of GaN nanorods. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    Surface composition and surface properties of water hyacinth ( Eichhornia ... (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, ... polar organic solvents and non-polar n-alkane hydrocarbons is discussed.

  4. Opportunity's Surroundings on Sol 1798 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. This view is presented as a polar projection with geometric seam correction. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  5. Opportunity's Surroundings on Sol 1687 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 360-degree view of the rover's surroundings on the 1,687th Martian day, or sol, of its surface mission (Oct. 22, 2008). Opportunity had driven 133 meters (436 feet) that sol, crossing sand ripples up to about 10 centimeters (4 inches) tall. The tracks visible in the foreground are in the east-northeast direction. Opportunity's position on Sol 1687 was about 300 meters southwest of Victoria Crater. The rover was beginning a long trek toward a much larger crater, Endeavour, about 12 kilometers (7 miles) to the southeast. This view is presented as a polar projection with geometric seam correction.

  6. Photoluminescence of CdSe/ZnS/TOPO nanocrystals expanded on silica glass substrates: Adsorption and desorption effects of polar molecules on nanocrystal surfaces

    International Nuclear Information System (INIS)

    Oda, Masaru; Tsukamoto, Junpei; Hasegawa, Atsushi; Iwami, Noriya; Nishiura, Ken; Hagiwara, Izumi; Ando, Naohisa; Horiuchi, Hiromi; Tani, Toshiro

    2006-01-01

    We have investigated photoluminescence (PL) properties of CdSe/ZnS/TOPO nanocrystals (NCs) in various kinds of gases at one atmospheric pressure. Increase of PL intensity with spectral shift is observed under 488 nm cw light irradiation in all cases. Especially, the PL intensity increases more than twice after 1200 s irradiation in nitrogen gases saturated with vapor of polar molecules, such as H 2 O and NH 3 . The increased PL intensity with the spectral shift mostly recovers to its previous values when the sample is evacuated under continuous light irradiation. These results indicate that photo-adsorption of the polar molecules onto NC surfaces provides some reversible restoring functions to the PL quenching defects or trap sites on or near the surfaces. The existence of the trap sites on NC surfaces is already widely introduced for describing e.g., blinking phenomena. Assuming part of these traps being charged, we propose the photo-induced effects can be understood as charge-compensated inactivation of the trap sites due to the adsorption of the polar molecules consistently

  7. Polarization Characterization of a Multi-Moded Feed Structure

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarization Characterization of a Multi-Moded Feed Structure projects characterize the polarization response of a multi-moded feed horn as an innovative...

  8. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  9. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  10. Disseminated Museum Displays and Participation of Students from Underrepresented Populations in Polar Research: Education and Outreach for Joint Projects in GPS and Seismology Solid Earth Science Community

    Science.gov (United States)

    Eriksson, S. C.; Wilson, T. J.; Anandakrishnan, S.; Aster, R. C.; Johns, B.; Anderson, K.; Taber, J.

    2006-12-01

    Two Antarctic projects developed by solid earth scientists in the GPS and seismology communities have rich education and outreach activities focused on disseminating information gleaned from this research and on including students from underrepresented groups. Members of the UNAVCO and IRIS research consortia along with international partners from Australia, Canada, Chile, Germany, Italy, New Zealand and the U.K. aim to deploy an ambitious GPS/seismic network to observe the Antarctic glaciological and geologic system using a multidisciplinary and internationally coordinated approach. The second project supports this network. UNAVCO and IRIS are designing and building a reliable power and communication system for autonomous polar station operation which use the latest power and communication technologies for ease of deployment and reliable multi-year operation in severe polar environments. This project will disseminate research results through an IPY/POLENET web-based museum style display based on the next-generation "Museum Lite" capability primarily supported by IRIS. "Museum Lite" uses a standard PC, touch-screen monitor, and standard Internet browsers to exploit the scalability and access of the Internet and to provide customizable content in an interactive setting. The unit is suitable for research departments, public schools, and an assortment of public venues, and can provide wide access to real-time geophysical data, ongoing research, and general information. The POLENET group will work with members of the two consortia to provide content about the project and polar science in general. One unit is to be installed at Barrow's Ilisagvit College through the Barrow Arctic Science Consortium, one at McMurdo Station in Antarctica, and two at other sites to be determined (likely in New Zealand/Australia and in the U.S.). In January, 2006, Museum Lite exhibit was installed at the Amundsen-Scott South Pole Station. Evaluation of this prototype is underway. These

  11. Sources of polarized ions and atoms

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1988-01-01

    In this presentation we discuss methods of producing large quantities of polarized atoms and ions (Stern-Gerlach separation, optical pumping, and spin-exchange) as well as experimental methods of measuring the degree of polarization of atomic systems. The usefulness of polarized atoms in probing the microscopic magnetic surface properties of materials will also be discussed. 39 refs., 5 figs., 2 tabs

  12. Partial Polarization in Interfered Plasmon Fields

    Directory of Open Access Journals (Sweden)

    P. Martínez Vara

    2014-01-01

    Full Text Available We describe the polarization features for plasmon fields generated by the interference between two elemental surface plasmon modes, obtaining a set of Stokes parameters which allows establishing a parallelism with the traditional polarization model. With the analysis presented, we find the corresponding coherence matrix for plasmon fields incorporating to the plasmon optics the study of partial polarization effects.

  13. On a new compactification of moduli of vector bundles on a surface. III: Functorial approach

    International Nuclear Information System (INIS)

    Timofeeva, Nadezhda V

    2011-01-01

    A new compactification for the scheme of moduli for Gieseker-stable vector bundles with prescribed Hilbert polynomial on the smooth projective polarized surface (S,L) is constructed. We work over the field k=k-bar of characteristic zero. Families of locally free sheaves on the surface S are completed with locally free sheaves on schemes which are modifications of S. The Gieseker-Maruyama moduli space has a birational morphism onto the new moduli space. We propose the functor for families of pairs 'polarized scheme-vector bundle' with moduli space of such type. Bibliography: 16 titles.

  14. Mapping possible flowpaths of contaminants through surface and cross-borehole spectral time-domain induced polarization

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Fiandaca, Gianluca; Maurya, Pradip Kumar

    Traditional methods for mapping possible flowpaths of contaminants in sedimentary environments by boreholes may often be insufficient. Additional information may be acquired by geophysical methods. In the present study, cross-borehole and surface measurements were performed using time-domain indu......-domain induced polarization (TDIP). After measurements the entire test site was dug out, and the geology was described. A 2D spectral inversion of the combined dataset is presented, which is in great correspondence with the observed geology....

  15. A polarized alkali ion source

    International Nuclear Information System (INIS)

    Boettger, R.; Tungate, G.; Bauer, B.; Egelhof, P.; Moebius, K.H.; Steffens, E.

    1978-01-01

    The beam foil technique has been applied to detect nuclear vector polarization of a 10 keV 23 Na + beam. The result was about 70% of the atomic beam polarization thus limiting the depolarization by the surface ionizer to at most 30%. In a Coulomb excitation experiment with a tensor polarized 42 MeV 23 Na 7+ beam an effect of 0.011 +- 0.003 was measured yielding a value of t 20 approx. 0.04 for the beam polarization. The depolarization during the acceleration process can be estimated to be about 0.8. (orig.) [de

  16. UMTRA Surface Project management action process document: Final. Revision 2

    International Nuclear Information System (INIS)

    1996-06-01

    Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designed sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project. Since its inception through March 1996, the Surface Project (hereinafter called the Project) has cleaned up 16 of the 24 designated processing sites and approximately 5,000 VPs, reducing the risk to human health and the environment posed by the uranium mill tailings. Two of the 24 sites, Belfield and Bowman, North Dakota, will not be remediated at the request of the state, reducing the total number of sites to 22. By the start of FY1998, the remaining 6 processing sites and associated VPs will be cleaned up. The remedial action activities to be funded in FY1998 by the FY1998 budget request are remediation of the remaining Grand Junction, Colorado, VPs; closure of the Cheney disposal cell in Grand Junction, Colorado; and preparation of the completion reports for 4 completed sites

  17. UMTRA Surface Project management action process document: Final. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designed sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project. Since its inception through March 1996, the Surface Project (hereinafter called the Project) has cleaned up 16 of the 24 designated processing sites and approximately 5,000 VPs, reducing the risk to human health and the environment posed by the uranium mill tailings. Two of the 24 sites, Belfield and Bowman, North Dakota, will not be remediated at the request of the state, reducing the total number of sites to 22. By the start of FY1998, the remaining 6 processing sites and associated VPs will be cleaned up. The remedial action activities to be funded in FY1998 by the FY1998 budget request are remediation of the remaining Grand Junction, Colorado, VPs; closure of the Cheney disposal cell in Grand Junction, Colorado; and preparation of the completion reports for 4 completed sites.

  18. Optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1986-01-01

    The current status and future prospects for the optically pumped polarized H - ion source are discussed. At the present time H - ion currents of 60 μA and with a polarization of 65% have been produced. The ion current and polarization can be increased significantly if the optically pumped Na charge exchange target density and polarization can be increased. Studies of wall surfaces that permit many bounces before depolarizing the Na electron spin and studies of radiation trapping in optically pumped Na indicate that the Na target density and polarization can be increased substantially. 27 refs., 6 figs., 2 tabs

  19. Evidence for Surface Water Ice in the Lunar Polar Regions Using Reflectance Measurements from the Lunar Orbiter Laser Altimeter and Temperature Measurements from the Diviner Lunar Radiometer Experiment

    Science.gov (United States)

    Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.; hide

    2017-01-01

    We find that the reflectance of the lunar surface within 5 deg of latitude of theSouth Pole increases rapidly with decreasing temperature, near approximately 110K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5 deg from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10 deg to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al. 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200K and possibly at 300K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. 2015 based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.

  20. Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment

    Science.gov (United States)

    Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.; Paige, David A.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    We find that the reflectance of the lunar surface within 5° of latitude of the South Pole increases rapidly with decreasing temperature, near ∼110 K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5° from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10° to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110 K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al., 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200 K and possibly at 300 K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. (2015) based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.

  1. Axi-symmetric patterns of active polar filaments on spherical and composite surfaces

    Science.gov (United States)

    Srivastava, Pragya; Rao, Madan

    2014-03-01

    Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.

  2. Comparison of the surface ion density of silica gel evaluated via spectral induced polarization versus acid-base titration

    Science.gov (United States)

    Hao, Na; Moysey, Stephen M. J.; Powell, Brian A.; Ntarlagiannis, Dimitrios

    2016-12-01

    Surface complexation models are widely used with batch adsorption experiments to characterize and predict surface geochemical processes in porous media. In contrast, the spectral induced polarization (SIP) method has recently been used to non-invasively monitor in situ subsurface chemical reactions in porous media, such as ion adsorption processes on mineral surfaces. Here we compare these tools for investigating surface site density changes during pH-dependent sodium adsorption on a silica gel. Continuous SIP measurements were conducted using a lab scale column packed with silica gel. A constant inflow of 0.05 M NaCl solution was introduced to the column while the influent pH was changed from 7.0 to 10.0 over the course of the experiment. The SIP measurements indicate that the pH change caused a 38.49 ± 0.30 μS cm- 1 increase in the imaginary conductivity of the silica gel. This increase is thought to result from deprotonation of silanol groups on the silica gel surface caused by the rise in pH, followed by sorption of Na+ cations. Fitting the SIP data using the mechanistic model of Leroy et al. (Leroyet al., 2008), which is based on the triple layer model of a mineral surface, we estimated an increase in the silica gel surface site density of 26.9 × 1016 sites m- 2. We independently used a potentiometric acid-base titration data for the silica gel to calibrate the triple layer model using the software FITEQL and observed a total increase in the surface site density for sodium sorption of 11.2 × 1016 sites m- 2, which is approximately 2.4 times smaller than the value estimated using the SIP model. By simulating the SIP response based on the calibrated surface complexation model, we found a moderate association between the measured and estimated imaginary conductivity (R2 = 0.65). These results suggest that the surface complexation model used here does not capture all mechanisms contributing to polarization of the silica gel captured by the SIP data.

  3. Proceedings of the meeting on the acceleration of polarized beams

    International Nuclear Information System (INIS)

    Takagi, Akira; Mori, Yoshiharu

    1980-08-01

    The project for accelerating polarized proton beam with the 12 GeV synchrotron in the National Laboratory for High Energy Physics was started in full scale, and the development of a polarized ion source of high intensity and the analysis of reduced polarization problem on the way to accelerate in the booster or the main ring have been carried out. On the other hand, with the cyclotrons in the Research Center for Nuclear Physics, Osaka University, and the Institute for Nuclear Research, University of Tokyo, and with the tandem machine in the Accelerator Center, Tsukuba University, polarized beams have already been accelerated, and the steady operations have been continued. Taking this opportunity, this study meeting was planned, considering that it is necessary to exchange informations among the researchers on polarized beam. It was the significant study meeting as unexpectedly many persons took part and the useful advices to the polarized beam project in this Laboratory were obtained. The construction of the preaccelerator for polarized protons was commenced in this year in the National Laboratory for High Energy Physics. In the proceedings, the introduction, the foreword, and eight papers are summarized. The progress of polarized beam researches in the world was mentioned in the introduction, and the project for proton acceleration in this Laboratory was explained in the foreword. (Kako, I.)

  4. Geomorphometric analysis of selected Martian craters using polar coordinate transformation

    Science.gov (United States)

    Magyar, Zoltán; Koma, Zsófia; Székely, Balázs

    2016-04-01

    Centrally symmetric landform elements are very common features on the surface of the planet Mars. The most conspicuous ones of them are the impact craters of various size. However, a closer look on these features reveals that they show often asymmetric patterns as well. These are partially related to the geometry of the trajectory of the impacting body, but sometimes it is a result of surface processes (e.g., freeze/thaw cycles, mass movements). Geomorphometric studies have already been carried out to reveal these pecularities. Our approach, the application of polar coordinate transformation (PCT) very sensitively enhances the non-radial and non-circular shapes. We used digital terrain models (DTMs) derived from the ESA Mars Express HRSC imagery. The original DTM or its derivatives (e.g. slope angle or aspect) are PCT transformed. We analyzed the craters inter alia with scattergrams in polar coordinates. The resulting point cloud can be used directly for the analysis, but in some cases an interpolation should be applied to enhance certain non-circular features (especially in case of smaller craters). Visual inspection of the crater slopes, coloured by the aspect, reveals smaller features. Some of them are processing artefacts, but many of them are related to local undulations in the topography or indications of mass movements. In many cases the undulations of the crater rim are due to erosional processes. The drawbacks of the technology are related to the uneven resolution of the projected image: features in the crater centre should be left out from the analysis because PCT has a low resolution around the projection center. Furthermore, the success of the PCT depends on the correct definition of the projection centre: erroneously centered images are not suitable for analysis. The PCT transformed images are also suitable for radial averaging and calculation of standard deviations, resulting in typical, comparable craters shapes. These studies may lead to a deeper

  5. Measurement of electron beam polarization at the SLC

    International Nuclear Information System (INIS)

    Steiner, H.; California Univ., Berkeley

    1988-01-01

    One of the unique features of the SLC is its capability to accelerate longitudinally polarized electrons. The SLC polarization group has been performed to implement the polarization program at the SLC. Technically the polarization project consists of three main parts: (1) a polarized source, (2) spin-rotating superconducting solenoid magnets to be used to manipulate the direction of the electron spin, and (3) the polarimeters needed to monitor and measure the electron beam polarization. It is this last topic that will concern us here. Two types of polarimeters will be used - Compton and Moeller. (orig./HSI)

  6. Polarization Of Light In The Natural Environment

    Science.gov (United States)

    Coulson, Kinsell L.

    1990-01-01

    This paper provides a characterization of the fields of light polarization with which the optical designer or user of optical devices in the natural environment must be concerned. After a brief historical outline of the principal developments in polarization theory and observations during the last two centuries, the main emphasis is on the two primary processes responsible for the polarization of light in nature--scattering of light by particles of the atmosphere and reflection from soils, vegetation, snow, and water at the earth's surface. Finally, a seven minute film on polarization effects which can be seen in everyday surroundings will be shown. Scattering by atmospheric particles is responsible for high values of polarization in various atmospheric conditions and at certain scattering geometries. Such scattering particles include molecules of the atmospheric gases, aerosols of dust, haze, and air pollution, water droplets of fog and clouds, and the ice crystals of cirrus. It is seen that development of the theory of scattering by such particles has outstripped the measurements necessary for validation of the theory, a fact which points up the importance of symposia such as the present one. The reverse is true, however, for the polarizing properties of natural surfaces. Only in the case of still water is the theory of reflection adequate to characterize in a quantitative fashion the polarizing effects produced by the reflection of light from such natural surfaces. Polarization of light by reflection from vegetation is of prime importance in a remote sensing context, but much further work is needed to characterize vegetative reflectance for the purpose. The short film on polarization effects provides a good visualization technique and training aid for students interested in the field.

  7. Polarization-dependent optics using gauge-field metamaterials

    International Nuclear Information System (INIS)

    Liu, Fu; Xiao, Shiyi; Li, Jensen; Wang, Saisai; Hang, Zhi Hong

    2015-01-01

    We show that effective gauge field for photons with polarization-split dispersion surfaces, being realized using uniaxial metamaterials, can be used for polarization control with unique opportunities. The metamaterials with the proposed gauge field correspond to a special choice of eigenpolarizations on the Poincaré sphere as pseudo-spins, in contrary to those from either conventional birefringent crystals or optical active media. It gives rise to all-angle polarization control and a generic route to manipulate photon trajectories or polarizations in the pseudo-spin domain. As demonstrations, we show beam splitting (birefringent polarizer), all-angle polarization control, unidirectional polarization filter, and interferometer as various polarization control devices in the pseudo-spin domain. We expect that more polarization-dependent devices can be designed under the same framework

  8. APC: A New Code for Atmospheric Polarization Computations

    Science.gov (United States)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2014-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface.

  9. Co-ordinated ozone and UV project COZUV

    International Nuclear Information System (INIS)

    Braathen, Geir

    1999-01-01

    The project encompasses all the major Norwegian research groups in the field of stratospheric ozone and UV research. the duration is from the 1st January 1999 to the 31st December 2000. The tasks carried out will include investigations of the ozone layer over the North Polar and middle latitudes, 3-D chemical modelling, diagnosis of chemical ozone loss, investigations of transport mechanisms between the polar vortex and middle latitudes, study of the coupling between ozone change and climate change in the stratosphere and upper troposphere, scenario calculations in order to investigate the consequences of temperature change in the stratosphere, development of methods to measure global, direct and radiance distribution of UV, to improve UV dose calculations, investigate the influence of clouds on the surface UV radiation and to use existing surface UV radiation measurements together with existing radiation models to investigate the connection between UV radiation and ozone, clouds and surface albedo. The results will be published in various publications, progress reports, by participation in international conferences, through information to the environmental authorities and through information on the Internet

  10. Microbiological and ecological responses to global environmental changes in polar regions (MERGE): An IPY core coordinating project

    Science.gov (United States)

    Naganuma, Takeshi; Wilmotte, Annick

    2009-11-01

    An integrated program, “Microbiological and ecological responses to global environmental changes in polar regions” (MERGE), was proposed in the International Polar Year (IPY) 2007-2008 and endorsed by the IPY committee as a coordinating proposal. MERGE hosts original proposals to the IPY and facilitates their funding. MERGE selected three key questions to produce scientific achievements. Prokaryotic and eukaryotic organisms in terrestrial, lacustrine, and supraglacial habitats were targeted according to diversity and biogeography; food webs and ecosystem evolution; and linkages between biological, chemical, and physical processes in the supraglacial biome. MERGE hosted 13 original and seven additional proposals, with two full proposals. It respected the priorities and achievements of the individual proposals and aimed to unify their significant results. Ideas and projects followed a bottom-up rather than a top-down approach. We intend to inform the MERGE community of the initial results and encourage ongoing collaboration. Scientists from non-polar regions have also participated and are encouraged to remain involved in MERGE. MERGE is formed by scientists from Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Egypt, Finland, France, Germany, Italy, Japan, Korea, Malaysia, New Zealand, Philippines, Poland, Russia, Spain, UK, Uruguay, USA, and Vietnam, and associates from Chile, Denmark, Netherlands, and Norway.

  11. Multiplexed infrared plasmonic surface lattice resonances

    Science.gov (United States)

    Gutha, Rithvik R.; Sadeghi, Seyed M.; Sharp, Christina; Wing, Waylin J.

    2018-01-01

    We demonstrate that arrays of flat gold nanodisks with rectangular lattices can support a tunable hybrid frequency gap formed by the surface lattice resonances in the substrate ((+1, 0)sub) and the superstrate ((-1, 0)sup). For a certain polarization, rotation of the arrays reduces this gap, forming a band crossing (degenerate state) wherein both surface lattice resonances happen around a single wavelength (˜1300 nm). This highlights a situation wherein hybridization of the Rayleigh anomaly with localized surface plasmon resonances with different multipolar natures happens around the same wavelength. We demonstrate that for a different polarization of the incident light the arrays support the formation of a photonic-plasmonic state at about 1650 nm. Our results show that as the projection of the wave vector of the incident light on the planes of the nanodisk arrays increases, within a given wavelength range, the (+1, 0) mode of this state becomes amplified. Under this condition, this mode can undergo a significant blue shift without broadening, while its amplitude increases.

  12. Polar Applications of Spaceborne Scatterometers

    Science.gov (United States)

    Long, David G.

    2017-01-01

    Wind scatterometers were originally developed for observation of near-surface winds over the ocean. They retrieve wind indirectly by measuring the normalized radar cross section (σo) of the surface, and estimating the wind via a geophysical model function relating σo to the vector wind. The σo measurements have proven to be remarkably capable in studies of the polar regions where they can map snow cover; detect the freeze/thaw state of forest, tundra, and ice; map and classify sea ice; and track icebergs. Further, a long time series of scatterometer σo observations is available to support climate studies. In addition to fundamental scientific research, scatterometer data are operationally used for sea-ice mapping to support navigation. Scatterometers are, thus, invaluable tools for monitoring the polar regions. In this paper, a brief review of some of the polar applications of spaceborne wind scatterometer data is provided. The paper considers both C-band and Ku-band scatterometers, and the relative merits of fan-beam and pencil-beam scatterometers in polar remote sensing are discussed. PMID:28919936

  13. A Closer Look at Some of Mercury's North Polar Deposits: Three Craters that Could Have Extensive Surface Ice but Don't?

    Science.gov (United States)

    Chabot, N. L.; Neumann, G. A.; Ernst, C. M.; Mazarico, E. M.; Shread, E. E.

    2018-05-01

    We investigate three of Mercury's north polar craters that are predicted from their thermal conditions to be conducive to the presence of extensive water ice at the surface, but that may lack such ice.

  14. Interfacial B-site atomic configuration in polar (111) and non-polar (001) SrIrO3/SrTiO3 heterostructures

    Science.gov (United States)

    Anderson, T. J.; Zhou, H.; Xie, L.; Podkaminer, J. P.; Patzner, J. J.; Ryu, S.; Pan, X. Q.; Eom, C. B.

    2017-09-01

    The precise control of interfacial atomic arrangement in ABO3 perovskite heterostructures is paramount, particularly in cases where the subsequent electronic properties of the material exhibit geometrical preferences along polar crystallographic directions that feature inevitably complex surface reconstructions. Here, we present the B-site interfacial structure in polar (111) and non-polar (001) SrIrO3/SrTiO3 interfaces. The heterostructures were examined using scanning transmission electron microscopy and synchrotron-based coherent Bragg rod analysis. Our results reveal the preference of B-site intermixing across the (111) interface due to the polarity-compensated SrTiO3 substrate surface prior to growth. By comparison, the intermixing at the non-polar (001) interface is negligible. This finding suggests that the intermixing may be necessary to mitigate epitaxy along heavily reconstructed and non-stoichiometric (111) perovskite surfaces. Furthermore, this preferential B-site configuration could allow the geometric design of the interfacial perovskite structure and chemistry to selectively engineer the correlated electronic states of the B-site d-orbital.

  15. Interfacial B-site atomic configuration in polar (111 and non-polar (001 SrIrO3/SrTiO3 heterostructures

    Directory of Open Access Journals (Sweden)

    T. J. Anderson

    2017-09-01

    Full Text Available The precise control of interfacial atomic arrangement in ABO3 perovskite heterostructures is paramount, particularly in cases where the subsequent electronic properties of the material exhibit geometrical preferences along polar crystallographic directions that feature inevitably complex surface reconstructions. Here, we present the B-site interfacial structure in polar (111 and non-polar (001 SrIrO3/SrTiO3 interfaces. The heterostructures were examined using scanning transmission electron microscopy and synchrotron-based coherent Bragg rod analysis. Our results reveal the preference of B-site intermixing across the (111 interface due to the polarity-compensated SrTiO3 substrate surface prior to growth. By comparison, the intermixing at the non-polar (001 interface is negligible. This finding suggests that the intermixing may be necessary to mitigate epitaxy along heavily reconstructed and non-stoichiometric (111 perovskite surfaces. Furthermore, this preferential B-site configuration could allow the geometric design of the interfacial perovskite structure and chemistry to selectively engineer the correlated electronic states of the B-site d-orbital.

  16. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Science.gov (United States)

    Amstrup, Steven C.; Deweaver, E.T.; Douglas, David C.; Marcot, B.G.; Durner, George M.; Bitz, C.M.; Bailey, D.A.

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the worlds polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  17. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence.

    Science.gov (United States)

    Amstrup, Steven C; Deweaver, Eric T; Douglas, David C; Marcot, Bruce G; Durner, George M; Bitz, Cecilia M; Bailey, David A

    2010-12-16

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  18. Polar bears and sea ice habitat change

    Science.gov (United States)

    Durner, George M.; Atwood, Todd C.; Butterworth, Andy

    2017-01-01

    The polar bear (Ursus maritimus) is an obligate apex predator of Arctic sea ice and as such can be affected by climate warming-induced changes in the extent and composition of pack ice and its impacts on their seal prey. Sea ice declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater ice drift, ice fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic seas will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear sea ice that has been typical in that region is being replaced by thinner annual ice. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in sea ice will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.

  19. Polarization profile of RF-sputtered self-polarized PZT thin films

    Czech Academy of Sciences Publication Activity Database

    Suchaneck, G.; Koehler, R.; Sandner, T.; Gerlach, G.; Deineka, Alexander; Jastrabík, Lubomír; Kosarev, A. I.; Andronov, A. N.

    2001-01-01

    Roč. 32, - (2001), s. 861-869 ISSN 1058-4587 R&D Projects: GA ČR GA202/00/1425 Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : self-polarization * electrode interaction * interface layer Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.512, year: 2001

  20. Polarization Utilization in Radar Target Reconstruction: C-Wide (Multi-Frequency) Band Relationship of a Target’s Characteristic Operators with Its Unique Set of Natural Eigenfrequencies.

    Science.gov (United States)

    1983-12-14

    the left half of the s- plane . These are representation independent. We shall be interested in these poles only. These poles are the complex...on the Left Half Plane Asymptotic Behavior of the SEM Expansion of Surface Currents, Published in Special Issue on the Singularity Expansion Method...precisely, the polarization chart is an orthogonal projection of the Poincare Sphere on a plane , having polar coordinates p= cos (2-) and

  1. Dynamically Polarized Sample for Neutron Scattering At the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pierce, Josh; Zhao, J. K.; Crabb, Don

    2009-01-01

    The recently constructed Spallation Neutron Source at the Oak Ridge National Laboratory is quickly becoming the world's leader in neutron scattering sciences. In addition to the world's most intense pulsed neutron source, we are continuously constructing state of the art neutron scattering instruments as well as sample environments to address today and tomorrow's challenges in materials research. The Dynamically Polarized Sample project at the SNS is aimed at taking maximum advantage of polarized neutron scattering from polarized samples, especially biological samples that are abundant in hydrogen. Polarized neutron scattering will allow us drastically increase the signal to noise ratio in experiments such as neutron protein crystallography. The DPS project is near completion and all key components have been tested. Here we report the current status of the project.

  2. Spin-polarized scanning tunneling microscopy and spectroscopy study of chromium on a Cr(001) surface.

    Science.gov (United States)

    Lagoute, J; Kawahara, S L; Chacon, C; Repain, V; Girard, Y; Rousset, S

    2011-02-02

    Several tens of chromium layers were deposited at 250 °C on a Cr(001) surface and investigated by spin-polarized scanning tunneling microscopy (SP-STM), Auger electron spectroscopy (AES) and scanning tunneling spectroscopy (STS). Chromium is found to grow with a mound-like morphology resulting from the stacking of several monolayers which do not uniformly cover the whole surface of the substrate. The terminal plane consists of an irregular array of Cr islands with lateral sizes smaller than 20 × 20 nm(2). Combined AES and STS measurements reveal the presence of a significant amount of segregants prior to and after deposition. A detailed investigation of the surface shows that it consists of two types of patches. Thanks to STS measurements, the two types of area have been identified as being either chromium pure or segregant rich. SP-STM experiments have evidenced that the antiferromagnetic layer coupling remains in the chromium mounds after deposition and is not significantly affected by the presence of the segregants.

  3. Surface topology caused by dislocations in polar, semipolar, and nonpolar InGaN/GaN heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schade, L.; Schwarz, U.T. [Fraunhofer Institute for Applied Solid State Physics IAF, Freiburg (Germany); Department of Microsystems Engineering (IMTEK), University of Freiburg (Germany); Wernicke, T.; Rass, J.; Ploch, S. [Institute of Solid State Physics, TU Berlin (Germany); Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, TU Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Berlin (Germany)

    2014-04-15

    The impact of dislocations on surface topology as well as on quantum well emission in c-plane, semipolar, and nonpolar InGaN/GaN heterostructures is being analyzed by micro-photoluminescence and white-light-interferometry. V-pits with (10 anti 11) and (10 anti 1 anti 4) side facets are identified in a (10 anti 12) semipolar heterostructure. Hillocks formed by spiral growth around screw dislocations change from hexagonal to triangular to rectangular shape in polar, semipolar, and nonpolar heterostructures, respectively, reflecting the symmetry of the individual surface. The emission in semipolar quantum wells, grown homoepitaxially on bulk GaN substrates, show dark stripes aligned with misfit dislocations. For (11 anti 22) and (20 anti 21) orientation, these dark stripes are perpendicular and parallel, respectively, to surface striation. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Polarized Photocathode R&D for Future Linear Collliders

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F; Brachmann, A.; Maruyama, T.; Sheppard, J.C.; /SLAC

    2009-01-23

    It is a challenge to generate full charge electrons from the electron sources without compromising polarization for the proposed ILC and CLIC. It is essential to advance polarized photocathodes to meet the requirements. SLAC has worldwide unique dedicated test facilities, Cathode Test System and dc-Gun Test Laboratory, to fully characterize polarized photocathodes. Recent systematic measurements on a strained-well InAlGaAs/AlGaAs cathode at the facilities show that 87% polarization and 0.3% QE are achieved. The QE can be increased to {approx}1.0% with atomic hydrogen cleaning. The surface charge limit at a very low current intensity and the clear dependence of the polarization on the surface charge limit are observed for the first time. On-going programs to develop photocathodes for the ILC and CLIC are briefly introduced.

  5. Terahertz broadband polarization converter based on metamaterials

    Science.gov (United States)

    Li, Yonghua; Zhao, Guozhong

    2018-01-01

    Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.

  6. Determination of the spin polarization of a 4He+ ion beam

    International Nuclear Information System (INIS)

    Suzuki, T.; Yamauchi, Y.

    2008-01-01

    It was demonstrated that the spin polarization of a 4 He + ion beam (P He + ) can be determined from the spin dependence of the electron emission in the deexcitation process of spin-polarized He metastable atoms (He*, 2 3 S 1 ) and spin-polarized He + ions on Fe (100) surfaces. On Fe (100) surfaces, both He* and He + deexcite via Auger neutralization, and therefore, the spin asymmetry obtained from spin-polarized He + ion neutralization spectroscopy should be equal to that from spin-polarized metastable He* deexcitation spectroscopy. The spin polarization of He* was obtained from Stern-Gerlach measurements. P He + was finally determined to be 0.19±0.02

  7. Rode's iterative calculation of surface optical phonon scattering limited electron mobility in N-polar GaN devices

    International Nuclear Information System (INIS)

    Ghosh, Krishnendu; Singisetti, Uttam

    2015-01-01

    N-polar GaN channel mobility is important for high frequency device applications. Here, we report theoretical calculations on the surface optical (SO) phonon scattering rate of two-dimensional electron gas (2DEG) in N-polar GaN quantum well channels with high-k dielectrics. Rode's iterative calculation is used to predict the scattering rate and mobility. Coupling of the GaN plasmon modes with the SO modes is taken into account and dynamic screening is employed under linear polarization response. The effect of SO phonons on 2DEG mobility was found to be small at >5 nm channel thickness. However, the SO mobility in 3 nm N-polar GaN channels with HfO 2 and ZrO 2 high-k dielectrics is low and limits the total mobility. The SO scattering for SiN dielectric on GaN was found to be negligible due to its high SO phonon energy. Using Al 2 O 3 , the SO phonon scattering does not affect mobility significantly only except the case when the channel is too thin with a low 2DEG density

  8. Polar Polygons

    Science.gov (United States)

    2005-01-01

    18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  9. Predicting 21st-century polar bear habitat distribution from global climate models

    Science.gov (United States)

    Durner, George M.; Douglas, David C.; Nielson, R.M.; Amstrup, Steven C.; McDonald, T.L.; Stirling, I.; Mauritzen, Mette; Born, E.W.; Wiig, O.; Deweaver, E.; Serreze, Mark C.; Belikov, Stanislav; Holland, M.M.; Maslanik, J.; Aars, Jon; Bailey, D.A.; Derocher, A.E.

    2009-01-01

    Projections of polar bear (Ursus maritimus) sea ice habitat distribution in the polar basin during the 21st century were developed to understand the consequences of anticipated sea ice reductions on polar bear populations. We used location data from satellitecollared polar bears and environmental data (e.g., bathymetry, distance to coastlines, and sea ice) collected from 1985 to 1995 to build resource selection functions (RSFs). RSFs described habitats that polar bears preferred in summer, autumn, winter, and spring. When applied to independent data from 1996 to 2006, the RSFs consistently identified habitats most frequently used by polar bears. We applied the RSFs to monthly maps of 21st-century sea ice concentration projected by 10 general circulation models (GCMs) used in the Intergovernmental Panel of Climate Change Fourth Assessment Report, under the A1B greenhouse gas forcing scenario. Despite variation in their projections, all GCMs indicated habitat losses in the polar basin during the 21st century. Losses in the highest-valued RSF habitat (optimal habitat) were greatest in the southern seas of the polar basin, especially the Chukchi and Barents seas, and least along the Arctic Ocean shores of Banks Island to northern Greenland. Mean loss of optimal polar bear habitat was greatest during summer; from an observed 1.0 million km2 in 1985-1995 (baseline) to a projected multi-model mean of 0.32 million km2 in 2090-2099 (-68% change). Projected winter losses of polar bear habitat were less: from 1.7 million km2 in 1985-1995 to 1.4 million km2 in 2090-2099 (-17% change). Habitat losses based on GCM multi-model means may be conservative; simulated rates of habitat loss during 1985-2006 from many GCMs were less than the actual observed rates of loss. Although a reduction in the total amount of optimal habitat will likely reduce polar bear populations, exact relationships between habitat losses and population demographics remain unknown. Density and energetic

  10. Pulsed diode source of polarized ions

    International Nuclear Information System (INIS)

    Katzenstein, J.; Rostoker, N.

    1983-01-01

    The advantages of polarized nuclei for fusion reactors have recently been described. We propose a pulsed source of polarized nuclei that consists of an ion diode with a polarized anode. With magnetic resonance techniques the nuclear spins of the protons of solid NH 3 can be made about 90 to 95% polarized. This material would be used for the anode. The diode would be pulsed with a voltage of 1-200K-volts for 1-2 μ sec. Flashover of the anode produces a surface plasma from which the polarized protons would be extracted to form a beam. Depolarization could be detected by comparing reaction cross sections and/or distribution of reaction products with similar results for unpolarized beams

  11. Identification of tectonic deformations on the south polar surface of the moon

    Science.gov (United States)

    Mukherjee, Saumitra; Singh, Priyadarshini

    2015-07-01

    Recent extensional and contractional tectonic features present globally over the lunar surface have been studied to infer lunar crustal tectonism. Investigation of indicators of recent crustal tectonics, such as fault lines, thrust fault scarps, and dislocation of debris along the identified fault planes, primarily using data from the miniature-synthetic aperture radar (mini-SAR) aboard CHANDRAYAAN-1 mission and Narrow angle camera (NAC) images, are the focus of this study. Spatial orientation of these tectonic features helps to elucidate the change in the interior geological dynamics of any planetary body with time. The ability of microwave sensors to penetrate the lunar regolith, along with application of m-χ decomposition method on Mini-SAR data has been used to reveal unique features indicative of hidden tectonics. The m-χ decomposition derived radar images expose hidden lineaments and lobate scarps present within shadowed crater floors as well as over the illuminated regions of the lunar surface. The area around and within Cabeus B crater in the South Polar Region contains lobate scarps, hidden lineaments and debris avalanches (associated with the identified lineaments) indicative of relatively recent crustal tectonism.

  12. High-resolution projections of surface water availability for Tasmania, Australia

    Directory of Open Access Journals (Sweden)

    J. C. Bennett

    2012-05-01

    Full Text Available Changes to streamflows caused by climate change may have major impacts on the management of water for hydro-electricity generation and agriculture in Tasmania, Australia. We describe changes to Tasmanian surface water availability from 1961–1990 to 2070–2099 using high-resolution simulations. Six fine-scale (∼10 km2 simulations of daily rainfall and potential evapotranspiration are generated with the CSIRO Conformal Cubic Atmospheric Model (CCAM, a variable-resolution regional climate model (RCM. These variables are bias-corrected with quantile mapping and used as direct inputs to the hydrological models AWBM, IHACRES, Sacramento, SIMHYD and SMAR-G to project streamflows.

    The performance of the hydrological models is assessed against 86 streamflow gauges across Tasmania. The SIMHYD model is the least biased (median bias = −3% while IHACRES has the largest bias (median bias = −22%. We find the hydrological models that best simulate observed streamflows produce similar streamflow projections.

    There is much greater variation in projections between RCM simulations than between hydrological models. Marked decreases of up to 30% are projected for annual runoff in central Tasmania, while runoff is generally projected to increase in the east. Daily streamflow variability is projected to increase for most of Tasmania, consistent with increases in rainfall intensity. Inter-annual variability of streamflows is projected to increase across most of Tasmania.

    This is the first major Australian study to use high-resolution bias-corrected rainfall and potential evapotranspiration projections as direct inputs to hydrological models. Our study shows that these simulations are capable of producing realistic streamflows, allowing for increased confidence in assessing future changes to surface water variability.

  13. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    Science.gov (United States)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  14. Recording polarization gratings with a standing spiral wave

    Science.gov (United States)

    Vernon, Jonathan P.; Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J.; Tabiryan, Nelson V.

    2013-11-01

    A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques.

  15. Recording polarization gratings with a standing spiral wave

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Jonathan P.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J. [Air Force Research Laboratory, Materials and Manufacturing Directorate, 3005 Hobson Way, Suite 1, Wright-Patterson Air Force Base, Ohio 45433 (United States); Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tabiryan, Nelson V., E-mail: nelson@beamco.com [BEAM Engineering for Advanced Measurements Company, 809 South Orlando Avenue, Suite I, Winter Park, Florida 32789 (United States)

    2013-11-11

    A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques.

  16. Recording polarization gratings with a standing spiral wave

    International Nuclear Information System (INIS)

    Vernon, Jonathan P.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J.; Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tabiryan, Nelson V.

    2013-01-01

    A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques

  17. Complementary analyses on the local polarity in lateral polarity-inverted GaN heterostructure on sapphire (0001) substrate

    International Nuclear Information System (INIS)

    Katayama, Ryuji; Kuge, Yoshihiro; Onabe, Kentaro; Matsushita, Tomonori; Kondo, Takashi

    2006-01-01

    The fabrication of the lateral polarity-inverted GaN heterostructure on sapphire (0001) using a radio-frequency-plasma-enhanced molecular beam epitaxy is demonstrated. Its microscopic properties such as surface potentials, piezoelectric polarizations, and residual carrier densities were investigated by Kelvin force microscopy and micro-Raman scattering. The inversion from Ga polarity to N polarity in a specific domain and its higher crystal perfection had been unambiguously confirmed by these complementary analyses. The results were also fairly consistent with that of KOH etching, which suggests the applicability of these processes to the fabrication of photonic nanostructures

  18. Descriptive and Computer Aided Drawing Perspective on an Unfolded Polyhedral Projection Surface

    Science.gov (United States)

    Dzwierzynska, Jolanta

    2017-10-01

    The aim of the herby study is to develop a method of direct and practical mapping of perspective on an unfolded prism polyhedral projection surface. The considered perspective representation is a rectilinear central projection onto a surface composed of several flat elements. In the paper two descriptive methods of drawing perspective are presented: direct and indirect. The graphical mapping of the effects of the representation is realized directly on the unfolded flat projection surface. That is due to the projective and graphical connection between points displayed on the polyhedral background and their counterparts received on the unfolded flat surface. For a significant improvement of the construction of line, analytical algorithms are formulated. They draw a perspective image of a segment of line passing through two different points determined by their coordinates in a spatial coordinate system of axis x, y, z. Compared to other perspective construction methods that use information about points, for computer vision and the computer aided design, our algorithms utilize data about lines, which are applied very often in architectural forms. Possibility of drawing lines in the considered perspective enables drawing an edge perspective image of an architectural object. The application of the changeable base elements of perspective as a horizon height and a station point location enable drawing perspective image from different viewing positions. The analytical algorithms for drawing perspective images are formulated in Mathcad software, however, they can be implemented in the majority of computer graphical packages, which can make drawing perspective more efficient and easier. The representation presented in the paper and the way of its direct mapping on the flat unfolded projection surface can find application in presentation of architectural space in advertisement and art.

  19. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    Science.gov (United States)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  20. Development of spin-polarized transmission electron microscope

    International Nuclear Information System (INIS)

    Kuwahara, M; Saitoh, K; Tanaka, N; Takeda, Y; Ujihara, T; Asano, H; Nakanishi, T

    2011-01-01

    In order to study spin related phenomena in nano-size materials, spin-polarized electron source (PES) has been employed for the incident beam in transmission electron microscope (TEM). The PES has been designed and constructed with optimizing for spin-polarized TEM. The illuminating system of TEM is also designed to focus the spin-polarized electron beam emitted from a semiconductor photocathode with a negative electron affinity (NEA) surface. The beam energy is set to below 40 keV which is lower energy type as a TEM, because the spin interaction with condensed matters is very small corresponding with a Coulomb interaction. The polarized electron gun has realized in an extra high vacuum (XHV) condition and high field gradient of 4 MV/m on a surface of photocathode. Furthermore, it demonstrated that 40-keV polarized electron beam was operated with a sub-milli second pulse mode by using the backside excitation type photocathode. This high performance PES will make it possible to observe dynamically a magnetic field images with high contrast and highspeed temporal imaging in TEM.

  1. Current activities and plans for polarized neutron instruments of the JSNS/J-PARC project

    International Nuclear Information System (INIS)

    Furusaka, M.

    2005-01-01

    Neutron polarization is one of the key technologies for the next generation megawatt-class pulsed spallation neutron sources, such as SNS in the US and the JSNS in Japan. To polarize or analyze neutron spin, several techniques are under development in Japan: a small d-spacing magnetic multilayer mirror, spin exchange type He-3 filter and a dynamical proton polarizer. Several application techniques related to polarized neutrons are also under development, such as, a microwave-induced optical nuclear polarization technique, which allows us to polarize protons in naphtalene doped with pentacene at 77 K; neutron focusing-SANS instrument utilizing a focusing magnet; a Drabkin spin-filter instrument that has two filters in series for neutron-pulse shaping

  2. Transient reflection and transmission of E polarized electromagnetic waves at boundary surface between air and moving isotropic plasma

    International Nuclear Information System (INIS)

    Saito, Yukimasa

    1977-01-01

    The transient reflection and transmission waves of E polarized electromagnetic waves coming into the boundary surface between air and moving isotropic plasma were theoretically investigated. By using the Laplace transformation in the moving system, the formulae of Lorentz and inverse Lorentz transformations concerning electromagnetic field were transformed, thus the transient reflection and transmission waves were obtained. These waves were normalized with the angular frequency of the incident waves, and the variation of the wave form was obtained. Examples of the numerical calculation of reflected waves are shown for the plasma moving in parallel to the boundary surface. (Kato, T.)

  3. Canted magnetic moments at the Gd(0001) surface

    International Nuclear Information System (INIS)

    Li Donggi; Zhang Jiandi; Dowben, P.A.; Tang, H.; Walker, T.G.; Hopster, H.

    1993-01-01

    With spin polarized electron spectroscopies, the authors have investigated ordered Gd(0001) films deposited on W(110). The photoemission features of the gadolinium 5d surface state, the 4f levels, and the background exhibit considerable spin polarization along the same direction in the plane of the film, indicative of ferromagnetic coupling between the surface and the bulk. The 4f spin polarized photoemission data provides strong evidence that the surface 4f polarization differs from the bulk 4f polarization for Gd(0001). The temperature dependent measurements with spin polarized secondary electron spectroscopy conclusively establishes that the surface of clean Gd(0001) possesses a perpendicular polarization component which persists to an enhanced surface Curie temperature. Small amounts of contamination at the surface result in the disappearance of the perpendicular component and, therefore, a more perfect ferromagnetic coupling between the surface and the bulk

  4. Atmospheric Polarization Imaging with Variable Aerosols, Clouds, and Surface Albedo

    Science.gov (United States)

    2013-07-01

    values found in this region only during episodes of intense wildfire smoke. Detailed analysis of the aerosols in this smoke plume and their effect...Continuous outdoor operation of an all-sky polarization imager,” Proc. SPIE 7672 (Polarization: Measurement, Analysis , and Remote Sensing IX), 76720A-1-7, 7...Pust, “ Lunar corona in ice wave cloud,” 10th International Meeting on Light and Color in Nature, St. Mary’s College of Maryland, 16-20 June 2010. 2

  5. Gold Photoluminescence: Wavelength and Polarization Engineering

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Pors, Anders Lambertus; Bozhevolnyi, Sergey I.

    2015-01-01

    We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes...... and dimensions of gold nanoparticles influences the GSPR wavelength and polarization characteristics, thereby allowing us to enhance and spectrally mold the plasmon-assisted PL while simultaneously controlling its polarization. In order to understand the underlying physics behind the plasmon-enhanced PL, we...

  6. Versatile Ion-polarized Techniques On-line (VITO) experiment at ISOLDE-CERN

    Energy Technology Data Exchange (ETDEWEB)

    Stachura, M., E-mail: monika.stachura@cern.ch [CERN, 1211 Geneva 23 (Switzerland); Gottberg, A. [CERN, 1211 Geneva 23 (Switzerland); Johnston, K. [CERN, 1211 Geneva 23 (Switzerland); Universität des Saarlandes, Experimentalphysik, 66123 Saabrucken (Germany); Bissell, M.L.; Garcia Ruiz, R.F. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Martins Correia, J.; Granadeiro Costa, A.R. [Centro de Ciências e Tecnologias Nucleares - C" 2TN, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS (Portugal); Dehn, M. [Technische Universität München, Physics Department, James-Franck-Str. 1, 85748 Garching (Germany); Deicher, M. [Universität des Saarlandes, Experimentalphysik, 66123 Saabrucken (Germany); Fenta, A. [CICECO, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Hemmingsen, L. [Kemisk Institut, Københavns Universitet, Universtetsparken 5, 2100 København (Denmark); Mølholt, T.E. [CERN, 1211 Geneva 23 (Switzerland); Munch, M. [Institut for Fysik og Astronomi, Aarhus Universitet, Ny Munkegade 120, 8000 Aarhus C (Denmark); Neyens, G. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); and others

    2016-06-01

    The VITO (Versatile Ion-polarized Techniques Online) project is a new experimental setup at the ISOLDE facility at CERN. VITO is a dedicated beam line for producing laser-induced spin-polarized beams of both, atoms and ions, and it has been commissioned in response to the continuously growing demand for the use of spin-polarized beams. The new VITO beam line is a modification of the formerly existing ultra-high vacuum beam line, connecting ASPIC (Apparatus for Surface Physics and Interfaces at CERN), and it has been under construction since the beginning of 2014. Once fully commissioned, VITO will open up numerous possibilities for carrying out multidisciplinary experiments in the areas of nuclear and solid state physics, fundamental interaction physics and biophysics. In its final stage the VITO beam line will provide three fully independent experimental stations: UHV chamber for material science applications, a β-asymmetry station where highly-polarized ions will be available, and a central open-end station suitable for travelling experiments. The VITO beam line will operate in two different modes providing either beams of spin-polarized atoms or ions, or non-polarized ion beams to all three end stations operating from 10{sup −10} mbar to 50 mbar. Recent experimental campaigns with stable and radioactive beams have allowed for testing VITO’s constituent parts and have demonstrated 96% of ion beam transmission to the collection chamber installed on the central station. The first experimental results obtained with on-line Perturbed Angular Correlation (PAC) spectroscopy using {sup 68m}Cu ion-beams will be briefly discussed.

  7. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Ghent, D.; Rayner, N. A.

    2017-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-2018, https://www.eustaceproject.eu) we have developed an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. This includes developing new "Big Data" analysis methods as the data volumes involved are considerable. We will present recent progress along this road in the EUSTACE project, i.e.: • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  8. Modelling molecular adsorption on charged or polarized surfaces: a critical flaw in common approaches.

    Science.gov (United States)

    Bal, Kristof M; Neyts, Erik C

    2018-03-28

    A number of recent computational material design studies based on density functional theory (DFT) calculations have put forward a new class of materials with electrically switchable chemical characteristics that can be exploited in the development of tunable gas storage and electrocatalytic applications. We find systematic flaws in almost every computational study of gas adsorption on polarized or charged surfaces, stemming from an improper and unreproducible treatment of periodicity, leading to very large errors of up to 3 eV in some cases. Two simple corrective procedures that lead to consistent results are proposed, constituting a crucial course correction to the research in the field.

  9. An assessment of ten ocean reanalyses in the polar regions

    Science.gov (United States)

    Uotila, Petteri

    2017-04-01

    Ocean reanalysis (ORA) combines observations either statistically or with a hydrodynamical model, to reconstruct historical changes in the ocean. Global and regional ORA products are increasingly used in polar research, but their quality remains to be systematically assessed. To address this, the Polar ORA Intercomparison Project (PORA-IP) has been established following on from the ORA-IP project (Balmaseda et al. 2015, with other papers in a special issue of Climate Dynamics). The PORA-IP is constituted under the COST EOS initiative with plans to review reanalyses products in both the Arctic and Antarctic, and is endorsed by YOPP - the Year of Polar Prediction project. Currently, the PORA-IP team consists of 21 researchers from 15 institutes and universities. The ORA-IP products with polar physics, such as sea ice, have been updated where necessary and collected in a public database. In addition to model output, available observational polar climatologies are collected and used in the assessments. Due to the extensive variety of products, this database should become a valuable resource outside the PORA-IP community. For a comprehensive evaluation of the ten ORA products (CGLORSv5, ECDA3.1, GECCO2, Glorys2v4, GloSea5_GO5, MOVEG2i, ORAP5, SODA3.3.1, TOPAZ4 and UR025.4) in the Arctic and Southern Oceans several specific diagnostics are assessed. The PORA-IP diagnostics target the following topics: hydrography; heat, salinity and freshwater content; ocean transports and surface currents; mixed layer depth; sea-ice concentration and thickness; and snow thickness over sea ice. Based on these diagnostics, ORA product biases against observed data and their mutual spread are quantified, and possible reasons for discrepancies discussed. So far, we have identified product outliers and evaluated the multi-model mean. We have identified the importance of the atmospheric forcing, air-ocean coupling protocol and sea-ice data assimilation for the product performance. Moreover, we

  10. Polarization electric dipole moment in nonaxial nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.; Davidovskaya, O.I.

    1996-01-01

    An expression for the macroscopic polarization electric dipole moment is obtained for nonaxial nuclei whose radii of the proton and neutron surfaces are related by a linear equation. Dipole transitions associated with the polarization electric dipole moment are analyzed for static and dynamical multipole deformations

  11. Polarization waves in dielectric films with spatial dispersion

    International Nuclear Information System (INIS)

    Jardin, Jean-Pierre; Moch, Philippe; Dvorak, Vladimir

    2002-01-01

    The polarization waves propagating in a slab-shaped or in a semi-infinite dielectric medium with spatial dispersion characterized by a volume free-energy density and by a boundary-surface energy density are studied, taking into account Maxwell's equations, in the framework of the Landau-Ginzburg formalism. It is shown that two independent extrapolation lengths providing for the required additional boundary conditions need to be specified at each surface limiting the medium. Complete calculations are performed in the electrostatic approximation: they provide evidence of the differences between the transverse in-plane polarized modes (s modes) and the sagittal plane polarized modes (p modes). True surface modes exist only in the case of negative extrapolation lengths. A detailed analysis of the symmetry properties of the surface and of the guided bulk modes in a slab is developed. Finally, our results are compared with those from previous models describing the boundary conditions in media where spatial dispersion is present. (author)

  12. Temporal formation of optical anisotropy and surface relief during polarization holographic recording in polymethylmethacrylate with azobenzene side groups

    Science.gov (United States)

    Sasaki, Tomoyuki; Izawa, Masahiro; Noda, Kohei; Nishioka, Emi; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-03-01

    The formation of polarization holographic gratings with both optical anisotropy and surface relief (SR) deformation was studied for polymethylmethacrylate with azobenzene side groups. Temporal contributions of isotropic and anisotropic phase gratings were simultaneously determined by observing transitional intensity and polarization states of the diffraction beams and characterizing by means of Jones calculus. To clarify the mechanism of SR deformation, cross sections of SR were characterized based on the optical gradient force model; experimental observations were in good agreement with the theoretical expectation. We clarified that the anisotropic phase change originating in the reorientation of the azobenzene side groups was induced immediately at the beginning of the holographic recording, while the response time of the isotropic phase change originating in the molecular migration due to the optical gradient force was relatively slow.

  13. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces.

    Science.gov (United States)

    Yu, Liping; Zunger, Alex

    2014-10-13

    The discovery of conductivity and magnetism at the polar-nonpolar interfaces of insulating nonmagnetic oxides such as LaAlO3 and SrTiO3 has raised prospects for attaining interfacial functionalities absent in the component materials. Yet, the microscopic origin of such emergent phenomena remains unclear, posing obstacles to design of improved functionalities. Here we present first principles calculations of electronic and defect properties of LaAlO3/SrTiO3 interfaces and reveal a unifying mechanism for the origins of both conductivity and magnetism. We demonstrate that the polar discontinuity across the interface triggers thermodynamically the spontaneous formation of certain defects that in turn cancel the polar field induced by the polar discontinuity. The ionization of the spontaneously formed surface oxygen vacancy defects leads to interface conductivity, whereas the unionized Ti-on-Al antisite defects lead to interface magnetism. The proposed mechanism suggests practical design principles for inducing and controlling both conductivity and magnetism at general polar-nonpolar interfaces.

  14. 1.3 μm wavelength vertical cavity surface emitting laser fabricated by orientation-mismatched wafer bonding: A prospect for polarization control

    Science.gov (United States)

    Okuno, Yae L.; Geske, Jon; Gan, Kian-Giap; Chiu, Yi-Jen; DenBaars, Steven P.; Bowers, John E.

    2003-04-01

    We propose and demonstrate a long-wavelength vertical cavity surface emitting laser (VCSEL) which consists of a (311)B InP-based active region and (100) GaAs-based distributed Bragg reflectors (DBRs), with an aim to control the in-plane polarization of output power. Crystal growth on (311)B InP substrates was performed under low-migration conditions to achieve good crystalline quality. The VCSEL was fabricated by wafer bonding, which enables us to combine different materials regardless of their lattice and orientation mismatch without degrading their quality. The VCSEL was polarized with a power extinction ratio of 31 dB.

  15. Layered magnets: polarized neutron reflection studies

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, H; Schreyer, A [Ruhr-Univ. Bochum, Lehrstuhl fuer Experimentalphysik/Festkoerperphysik, Bochum (Germany)

    1996-11-01

    Neutron reflectivity measurements from extended surfaces, thin films and superlattices provide information on the chemical profile parallel to the film normal, including film thicknesses, average composition and interfacial roughness parameters. Reflectivity measurements with polarized neutrons are particularly powerful for analyzing the magnetic density profiles in thin films and superlattices in addition to chemical profiles. The basic theory of polarized neutron reflectivity is provided, followed by some examples and more recent applications concerning polarized neutron reflectivity studies from exchange coupled Fe/Cr superlattices. (author) 5 figs., 13 refs.

  16. Rotatable spin-polarized electron source for inverse-photoemission experiments

    International Nuclear Information System (INIS)

    Stolwijk, S. D.; Wortelen, H.; Schmidt, A. B.; Donath, M.

    2014-01-01

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111) highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces

  17. Estimation of Melt Pond Fractions on First Year Sea Ice Using Compact Polarization SAR

    Science.gov (United States)

    Li, Haiyan; Perrie, William; Li, Qun; Hou, Yijun

    2017-10-01

    Melt ponds are a common feature on Arctic sea ice. They are linked to the sea ice surface albedo and transmittance of energy to the ocean from the atmosphere and thus constitute an important process to parameterize in Arctic climate models and simulations. This paper presents a first attempt to retrieve the melt pond fraction from hybrid-polarized compact polarization (CP) SAR imagery, which has wider swath and shorter revisit time than the quad-polarization systems, e.g., from RADARSAT-2 (RS-2). The co-polarization (co-pol) ratio has been verified to provide estimates of melt pond fractions. However, it is a challenge to link CP parameters and the co-pol ratio. The theoretical possibility is presented, for making this linkage with the CP parameter C22/C11 (the ratio between the elements of the coherence matrix of CP SAR) for melt pond detection and monitoring with the tilted-Bragg scattering model for the ocean surface. The empirical transformed formulation, denoted as the "compact polarization and quad-pol" ("CPQP") model, is proposed, based on 2062 RS-2 quad-pol SAR images, collocated with in situ measurements. We compared the retrieved melt pond fraction with CP parameters simulated from quad-pol SAR data with results retrieved from the co-pol ratio from quad-pol SAR observations acquired during the Arctic-Ice (Arctic-Ice Covered Ecosystem in a Rapidly Changing Environment) field project. The results are shown to be comparable for observed melt pond measurements in spatial and temporal distributions. Thus, the utility of CP mode SAR for melt pond fraction estimation on first year level ice is presented.

  18. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    International Nuclear Information System (INIS)

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements

  19. Spin-polarized scanning tunneling spectroscopy of self-organized nanoscale Co islands on Au(111) surfaces.

    Science.gov (United States)

    Schouteden, K; Muzychenko, D A; Van Haesendonck, C

    2008-07-01

    Magnetic monolayer and bilayer Co islands of only a few nanometer in size were grown by atomic deposition on atomically flat Au(111) films. The islands were studied in situ by scanning tunneling microscopy (STM) and spectroscopy at low temperatures. Spin-resolved tunneling spectroscopy, using an STM tip with a magnetic coating, revealed that the Co islands exhibit a net magnetization perpendicular to the substrate surface due to the presence of spin-polarized d-states. A random distribution of islands with either upward or downward pointing magnetization was observed, without any specific correlation of magnetization orientation with island size or island height.

  20. 'Unstructured Data' Practices in Polar Institutions and Networks: a Case Study with the Arctic Options Project

    Directory of Open Access Journals (Sweden)

    Paul Arthur Berkman

    2014-10-01

    Full Text Available Arctic Options: Holistic Integration for Arctic Coastal-Marine Sustainability is a new three-year research project to assess future infrastructure associated with the Arctic Ocean regarding: (1 natural and living environment; (2 built environment; (3 natural resource development; and (4 governance. For the assessments, Arctic Options will generate objective relational schema from numeric data as well as textual data. This paper will focus on the ‘long tail of smaller, heterogeneous, and often unstructured datasets’ that ‘usually receive minimal data management consideration’,as observed in the 2013 Communiqué from the International Forum on Polar Data Activities in Global Data Systems.

  1. Optics. Observation of optical polarization Möbius strips.

    Science.gov (United States)

    Bauer, Thomas; Banzer, Peter; Karimi, Ebrahim; Orlov, Sergej; Rubano, Andrea; Marrucci, Lorenzo; Santamato, Enrico; Boyd, Robert W; Leuchs, Gerd

    2015-02-27

    Möbius strips are three-dimensional geometrical structures, fascinating for their peculiar property of being surfaces with only one "side"—or, more technically, being "nonorientable" surfaces. Despite being easily realized artificially, the spontaneous emergence of these structures in nature is exceedingly rare. Here, we generate Möbius strips of optical polarization by tightly focusing the light beam emerging from a q-plate, a liquid crystal device that modifies the polarization of light in a space-variant manner. Using a recently developed method for the three-dimensional nanotomography of optical vector fields, we fully reconstruct the light polarization structure in the focal region, confirming the appearance of Möbius polarization structures. The preparation of such structured light modes may be important for complex light beam engineering and optical micro- and nanofabrication. Copyright © 2015, American Association for the Advancement of Science.

  2. Interaction of cysteine and copper ions on the surface of iron: EIS, polarization and XPS study

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.

    2011-01-01

    Highlights: → The current study demonstrates a comprehensive study for Cysteine + Cu(II) ions as an efficient inhibitor as demonstrated by EIS, XPS and potentiodynamic polarization measurements, in addition to traditional weight loss measurements. → The novelty of the current work originates from the combined use of an eco-friendly compound (i.e., cysteine) with a minute amount of copper ions (in the micro molar range) as a corrosion inhibitor for low carbon steel in acidic medium. To this end, cysteine shows only moderate inhibition ca. 60% for iron which jumps up to more than 95% in the presence of micro molar range of Cu(II) ions. → Cysteine-Cu(II) blends are found superior to benzotriazole (BTAH)-Cu(II) blends in terms of their long-term stability in addition to the avoidance of the use of the well-reported highly toxic BTAH. - Abstract: This study addresses the enhancing effect of copper ions on the inhibition efficiency (IE) of cysteine (an eco-friendly compound) against the corrosion of iron in 0.5 M sulphuric acid. Electrochemical impedance spectroscopy (EIS) data revealed a significant increase in the polarization resistance (R p ) of the iron/solution interface in the presence of cysteine and Cu(II) ions instead of cysteine alone. That is, IE of 95% is obtained in the presence of 5 mM cysteine and 25 μM Cu(II) ions, compared to 66% in absence of Cu(II) ions. Moreover, electrochemical polarization measurements indicate that cysteine and Cu(II) ions blends act as mixed-type inhibitors for the corrosion of iron. The formation of Cu(I)-cysteinate complex and/or cysteine SAM at Cu atop the iron surface (as evident from X-ray photoelectron spectroscopy (XPS)) blocks the underlying iron surface and imparts a pronounced protection against its corrosion. IE of cysteine-Cu(II) blend remains effectively unchanged with immersion time indicating its high stability in the used acidic medium.

  3. Time reversal tests in polarized neutron reactions

    International Nuclear Information System (INIS)

    Asahi, Koichiro; Bowman, J.D.; Crawford, B.

    1998-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In recent years the nuclear weak interaction has been studied in the compound nucleus via parity violation. The observed parity-violating effects are strongly enhanced by nuclear structure. The predictions are that the interaction of polarized neutrons with polarized nuclear targets could be also used to perform sensitive tests of time-reversal-violation because of the nuclear enhancements. The author has designed experiments to search for time-reversal violation in neutron-nucleus interactions. He has also developed techniques to polarize neutrons with laser-polarized 3 He gas targets. Using the polarized 3 He neutron spin filter, he has performed two experiments at LANSCE: an absolute neutron beam polarization measurement with an accuracy of 0.2--0.3% and a neutron spin-rotation measurement on a 139 La sample

  4. Polarity Control in Group-III Nitrides beyond Pragmatism

    Science.gov (United States)

    Mohn, Stefan; Stolyarchuk, Natalia; Markurt, Toni; Kirste, Ronny; Hoffmann, Marc P.; Collazo, Ramón; Courville, Aimeric; Di Felice, Rosa; Sitar, Zlatko; Vennéguès, Philippe; Albrecht, Martin

    2016-05-01

    Controlling the polarity of polar semiconductors on nonpolar substrates offers a wealth of device concepts in the form of heteropolar junctions. A key to realize such structures is an appropriate buffer-layer design that, in the past, has been developed by empiricism. GaN or ZnO on sapphire are prominent examples for that. Understanding the basic processes that mediate polarity, however, is still an unsolved problem. In this work, we study the structure of buffer layers for group-III nitrides on sapphire by transmission electron microscopy as an example. We show that it is the conversion of the sapphire surface into a rhombohedral aluminum-oxynitride layer that converts the initial N-polar surface to Al polarity. With the various AlxOyNz phases of the pseudobinary Al2O3 -AlN system and their tolerance against intrinsic defects, typical for oxides, a smooth transition between the octahedrally coordinated Al in the sapphire and the tetrahedrally coordinated Al in AlN becomes feasible. Based on these results, we discuss the consequences for achieving either polarity and shed light on widely applied concepts in the field of group-III nitrides like nitridation and low-temperature buffer layers.

  5. Membrane Transport across Polarized Epithelia.

    Science.gov (United States)

    Garcia-Castillo, Maria Daniela; Chinnapen, Daniel J-F; Lencer, Wayne I

    2017-09-01

    Polarized epithelial cells line diverse surfaces throughout the body forming selective barriers between the external environment and the internal milieu. To cross these epithelial barriers, large solutes and other cargoes must undergo transcytosis, an endocytic pathway unique to polarized cell types, and significant for the development of cell polarity, uptake of viral and bacterial pathogens, transepithelial signaling, and immunoglobulin transport. Here, we review recent advances in our knowledge of the transcytotic pathway for proteins and lipids. We also discuss briefly the promise of harnessing the molecules that undergo transcytosis as vehicles for clinical applications in drug delivery. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    International Nuclear Information System (INIS)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro; Suárez, D. Orozco; Schmidt, W.; Pillet, V. Martínez; Knölker, M.

    2017-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  7. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: chitta@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  8. Moduli spaces of convex projective structures on surfaces

    DEFF Research Database (Denmark)

    Fock, V. V.; Goncharov, A. B.

    2007-01-01

    We introduce explicit parametrisations of the moduli space of convex projective structures on surfaces, and show that the latter moduli space is identified with the higher Teichmüller space for defined in [V.V. Fock, A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, math.......AG/0311149]. We investigate the cluster structure of this moduli space, and define its quantum version....

  9. ispace's Polar Ice Explorer: Commerically Exploring the Poles of the Moon

    Science.gov (United States)

    Calzada-Diaz, A.; Acierno, K.; Rasera, J. N.; Lamamy, J.-A.

    2018-04-01

    This work provides the background, rationales, and scientific objectives for the ispace Polar Ice Explorer Project, an ISRU exploratory mission that aims to provide data about the lunar polar environment.

  10. The CERN polarized atomic hydrogen beam target project

    International Nuclear Information System (INIS)

    Kubischta, W.; Dick, L.

    1990-01-01

    The UA6-experiment at the CERN p bar p Colider is at present using an unpolarized hydrogen cluster target with a thickness up to 5.10 14 atoms/cm 2 . It is planned to replace this target by a polarized atomic hydrogen beam target with a thickness up to about 10 13 atoms/cm 2 . This paper discusses basic requirements and results of atom optical calculations

  11. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    International Nuclear Information System (INIS)

    Clarkson, R.B.; Odintsov, B.M.; Ceroke, P.J.; Ardenkjaer-Larsen, J.H.; Fruianu, M.; Belford, R.L.

    1998-01-01

    Carbon chars have been synthesized in our laboratory from a variety of starting materials, by means of a highly controlled pyrolysis technique. These chars exhibit electron paramagnetic resonance (EPR) line shapes which change with the local oxygen concentration in a reproducible and stable fashion; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the 1 H nuclear spin population in conjunction with electron Zeeman pumping. Low-frequency EPR, DNP and DNP-enhanced MRI all show promise as oximetry methods when used with carbon chars. (author)

  12. Modeling optical and UV polarization of AGNs. IV. Polarization timing

    Science.gov (United States)

    Rojas Lobos, P. A.; Goosmann, R. W.; Marin, F.; Savić, D.

    2018-03-01

    Context. Optical observations cannot resolve the structure of active galactic nuclei (AGN), and a unified model for AGN was inferred mostly from indirect methods, such as spectroscopy and variability studies. Optical reverberation mapping allowed us to constrain the spatial dimension of the broad emission line region and thereby to measure the mass of supermassive black holes. Recently, reverberation was also applied to the polarized signal emerging from different AGN components. In principle, this should allow us to measure the spatial dimensions of the sub-parsec reprocessing media. Aim. We conduct numerical modeling of polarization reverberation and provide theoretical predictions for the polarization time lag induced by different AGN components. The model parameters are adjusted to the observational appearance of the Seyfert 1 galaxy NGC 4151. Methods: We modeled scattering-induced polarization and tested different geometries for the circumnuclear dust component. Our tests included the effects of clumpiness and different dust prescriptions. To further extend the model, we also explored the effects of additional ionized winds stretched along the polar direction, and of an equatorial scattering ring that is responsible for the polarization angle observed in pole-on AGN. The simulations were run using a time-dependent version of the STOKES code. Results: Our modeling confirms the previously found polarization characteristics as a function of the observer`s viewing angle. When the dust adopts a flared-disk geometry, the lags reveal a clear difference between type 1 and type 2 AGN. This distinction is less clear for a torus geometry where the time lag is more sensitive to the geometry and optical depth of the inner surface layers of the funnel. The presence of a scattering equatorial ring and ionized outflows increased the recorded polarization time lags, and the polar outflows smooths out dependence on viewing angle, especially for the higher optical depth of the

  13. APC: A new code for Atmospheric Polarization Computations

    International Nuclear Information System (INIS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2013-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface. -- Highlights: •A new code, APC, has been developed. •The code was validated against well-known codes. •The BPDF for an arbitrary Mueller matrix is computed

  14. Ab initio density functional theory study of non-polar (10-10), (11-20) and semipolar {20-21} GaN surfaces

    Czech Academy of Sciences Publication Activity Database

    Mutombo, Pingo; Romanyuk, Olexandr

    2014-01-01

    Roč. 115, č. 20 (2014), "203508-1"-"203508-5" ISSN 0021-8979 Grant - others:AVČR(CZ) M100101201 Institutional support: RVO:68378271 Keywords : non-polar GaN * semipolar GaN * surface reconstructions * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2014

  15. Opportunity's Surroundings After Sol 1820 Drive (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,820th to 1,822nd Martian days, or sols, of Opportunity's surface mission (March 7 to 9, 2009). This view is presented as a polar projection with geometric seam correction. North is at the top. The rover had driven 20.6 meters toward the northwest on Sol 1820 before beginning to take the frames in this view. Tracks from that drive recede southwestward. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and small exposures of lighter-toned bedrock.

  16. The establishment of polarized membrane traffic in Xenopus laevis embryos.

    Science.gov (United States)

    Roberts, S J; Leaf, D S; Moore, H P; Gerhart, J C

    1992-09-01

    Delineation of apical and basolateral membrane domains is a critical step in the epithelialization of the outer layer of cells in the embryo. We have examined the initiation of polarized membrane traffic in Xenopus and show that membrane traffic is not polarized in oocytes but polarized membrane domains appear at first cleavage. The following proteins encoded by injected RNA transcripts were used as markers to monitor membrane traffic: (a) VSV G, a transmembrane glycoprotein preferentially inserted into the basolateral surface of polarized epithelial cells; (b) GThy-1, a fusion protein of VSV G and Thy-1 that is localized to the apical domains of polarized epithelial cells; and (c) prolactin, a peptide hormone that is not polarly secreted. In immature oocytes, there is no polarity in the expression of VSV G or GThy-1, as shown by the constitutive expression of both proteins at the surface in the animal and vegetal hemispheres. At meiotic maturation, membrane traffic to the surface is blocked; the plasma membrane no longer accepts the vesicles synthesized by the oocyte (Leaf, D. L., S. J. Roberts, J. C. Gerhart, and H.-P. Moore. 1990. Dev. Biol. 141:1-12). When RNA transcripts are injected after fertilization, VSV G is expressed only in the internal cleavage membranes (basolateral orientation) and is excluded from the outer surface (apical orientation, original oocyte membrane). In contrast, GThy-1 and prolactin, when expressed in embryos, are inserted or released at both the outer membrane derived from the oocyte and the inner cleavage membranes. Furthermore, not all of the cleavage membrane comes from an embryonic pool of vesicles--some of the cleavage membrane comes from vesicles synthesized during oogenesis. Using prolactin as a marker, we found that a subset of vesicles synthesized during oogenesis was only released after fertilization. However, while embryonic prolactin was secreted from both apical and basolateral surfaces, the secretion of oogenic prolactin

  17. Wind-Sculpted Vicinity After Opportunity's Sol 1797 Drive (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 111 meters (364 feet) on the 1,797th Martian day, or sol, of Opportunity's surface mission (Feb. 12, 2009). North is at the center; south at both ends. Tracks from the drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. Patches of lighter-toned bedrock are visible on the left and right sides of the image. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). This view is presented as a polar projection with geometric seam correction.

  18. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    Science.gov (United States)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  19. Polar clouds and radiation in satellite observations, reanalyses, and climate models

    NARCIS (Netherlands)

    Lenaerts, JTM; Van Tricht, Kristof; Lhermitte, S.L.M.; L'Ecuyer, T.S.

    2017-01-01

    Clouds play a pivotal role in the surface energy budget of the polar regions. Here we use two largely independent data sets of cloud and surface downwelling radiation observations derived by satellite remote sensing (2007–2010) to evaluate simulated clouds and radiation over both polar ice sheets

  20. Polarizer reflectivity variations

    International Nuclear Information System (INIS)

    Ozarski, R.G.; Prior, J.

    1980-01-01

    On Shiva the beam energy along the chain is monitored using available reflections and/or transmission through beam steering, splitting, and polarizing optics without the intrusion of any additional glass for diagnostics. On the preamp table the diagnostic signal is obtained from the signal transmitted through turning mirrors. At the input of each chain the signal is obtained from the transmission through one of the mirrors used for the chain input alignment sensor (CHIP). At the chain output the transmission through the final turning mirror is used. These diagnostics have proved stable and reliable. However, one of the prime diagnostic locations is at the output of the beta rod. The energy at this location is measured by collecting small reflections from the last polarizer surface of the beta Pockels cell polarizer package. Unfortunately, calibration of this diagnostic has varied randomly, seldom remaining stable for a week or more. The cause of this fluctuation has been investigated for the past year and'it has been discovered that polarizer reflectivity varies with humidity. This report will deal with the possible causes that were investigated, the evidence that humidity is causing the variation, and the associated mechanism

  1. Multiband Circular Polarizer Based on Fission Transmission of Linearly Polarized Wave for X-Band Applications

    Directory of Open Access Journals (Sweden)

    Farman Ali Mangi

    2016-01-01

    Full Text Available A multiband circular polarizer based on fission transmission of linearly polarized wave for x-band application is proposed, which is constructed of 2 × 2 metallic strips array. The linear-to-circular polarization conversion is obtained by decomposing the linearly incident x-polarized wave into two orthogonal vector components of equal amplitude and 90° phase difference between them. The innovative approach of “fission transmission of linear-to-circular polarized wave” is firstly introduced to obtain giant circular dichroism based on decomposition of orthogonal vector components through the structure. It means that the incident linearly polarized wave is converted into two orthogonal components through lower printed metallic strips layer and two transmitted waves impinge on the upper printed strips layer to convert into four orthogonal vector components at the end of structure. This projection and transmission sequence of orthogonal components sustain the chain transmission of electromagnetic wave and can achieve giant circular dichroism. Theoretical analysis and microwave experiments are presented to validate the performance of the structure. The measured results are in good agreement with simulation results. In addition, the proposed circular polarizer exhibits the optimal performance with respect to the normal incidence. The right handed circularly polarized wave is emitted ranging from 10.08 GHz to 10.53 GHz and 10.78 GHz to 11.12 GHz, while the left handed circular polarized wave is excited at 10.54 GHz–10.70 GHz and 11.13 GHz–11.14 GHz, respectively.

  2. Potential Sources of Polarized Light from a Plant Canopy

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Field measurements have demonstrated that sunlight polarized during a first surface reflection by shiny leaves dominates the optical polarization of the light reflected by shiny-leafed plant canopies having approximately spherical leaf angle probability density functions ("Leaf Angle Distributions" - LAD). Yet for other canopies - specifically those without shiny leaves and/or spherical LADs - potential sources of optically polarized light may not always be obvious. Here we identify possible sources of polarized light within those other canopies and speculate on the ecologically important information polarization measurements of those sources might contain.

  3. DMSP SSM/I Daily and Monthly Polar Gridded Bootstrap Sea Ice Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — DMSP SSM/I Daily and Monthly Polar Gridded Bootstrap Sea Ice Concentrations in polar stereographic projection currently include Defense Meteorological Satellite...

  4. Proceedings of the Japan-US workshop on plasma polarization spectroscopy and the fourth international symposium on plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi; Beiersdorfer, Peter [eds.

    2004-07-01

    The international meeting on Plasma Polarization Spectroscopy (PPS) was held at Kyoto University during February 4-6, 2004. This Proceedings book includes the summaries of the talks given in that meeting. Starting with the Overview talk by Csanak, the subjects cover: x-ray polarization experiments on z-pinches (plasma foci), and an x-pinch, a laser-produced plasma in a gas atmosphere, an interpretation of the polarized 1<- 0 x-ray laser line, polarization observation from various laser-produced plasmas including a recombining phase plasma, a report on the on-going project of a laser facility, several polarization observations on magnetically confined plasmas including the Large Helical Device and an ECR plasma, a new laser-induced fluorescence diagnostic method. On atomic physics side given are: various polarization measurements on EBIT, precision spectroscopy on the TEXTOR, user-friendly atomic codes. Instrumentation is also a subject of this book. The 18 of the presented papers are indexed individually. (J.P.N.)

  5. XPS study of Li/Nb ratio in LiNbO{sub 3} crystals. Effect of polarity and mechanical processing on LiNbO{sub 3} surface chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Skryleva, E.A., E-mail: easkryleva@gmail.com; Kubasov, I.V., E-mail: kubasov.ilya@gmail.com; Kiryukhantsev-Korneev, Ph.V., E-mail: kiruhancev-korneev@yandex.ru; Senatulin, B.R., E-mail: borisrs@yandex.ru; Zhukov, R.N., E-mail: rom_zhuk@mail.ru; Zakutailov, K.V., E-mail: zakkonst@gmail.com; Malinkovich, M.D., E-mail: malinkovich@yandex.ru; Parkhomenko, Yu.N., E-mail: parkh@rambler.ru

    2016-12-15

    Highlights: • XPS Li/Nb ratio measurement uncertainty in LNbO3 specimens was obtained. • The effect of polarization on surface chemistry was observed only on cleaves. • Li/Nb ratio on positive cleave surface is higher than on negative one. • The positive cleave surface adsorbs fluorine more efficiently than negative one. • Mechanical processing of crystals reduces surface Li/Nb. - Abstract: Different sections of congruent lithium niobate (CLN) crystals have been studied using X-ray photoelectron spectroscopy (XPS). We have developed a method for measuring the lithium-to-niobium atomic ratio Li/Nb from the ratio of the Li1s and Nb4s spectral integral intensities with an overall error of within 8 %. Polarity and mechanical processing affect the Li/Nb ratio on CLN crystal surfaces. The Li/Nb ratio is within the tolerance (0.946 ± 0.074) on the negative cleave surface Z, and there is excess lithium (Li/Nb = 1.25 ± 0.10) on the positive surface. The positive surfaces of the 128° Y cut plates after long exposure to air exhibit LiOH formation indications (obvious lithium excess, higher Li1s spectral binding energy and a wide additional peak in the O1s spectrum produced by nonstructural oxygen). XPS and glow discharge optical electron spectroscopy showed that mechanical processing of differently oriented crystals (X, Z and 128° Y) and different polarities dramatically reduces the Li/Nb ratio. In situ fluorine adsorption experiments revealed the following regularities: fluorine adsorption only occurred on crystal cleaves and was not observed for mechanically processed specimens. Positive cleave surfaces have substantially higher fluorine adsorption capacity compared to negative ones.

  6. UMTRA Surface Project management action process document. Final report: Revision 1

    International Nuclear Information System (INIS)

    1996-04-01

    A critical mission of the US Department of Energy (DOE) is the planning, implementation, and completion of environmental restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC) from the late 1940s into the 1970s. Among these facilities are the 24 former uranium mill sites designed in the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC section 7901 et seq.) Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designated sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project only; a separate MAP document has been prepared for the UMTRA Ground Water Project

  7. POLAR-PALOOZA Polar Researchers and Arctic Residents Engage, Inform and Inspire Diverse Public Audiences by sharing Polar Science and Global Connections during the International Polar Year, using a New Model of Informal Science Education

    Science.gov (United States)

    Haines-Stiles, G.; Akuginow, E.

    2006-12-01

    (Please note that the POLAR-PALOOZA initiative described in this Abstract is-as of 9/7/2006-"pending" for possible support from NSF and NASA as part of this year's IPY solicitation. Subject to decisions expected by 9/30, this presentation would either be withdrawn, or amplified with specific participants, locations and dates.) Despite the success of well-regarded movies like "March of the Penguins", the polar regions remain a great unknown for most people. Public knowledge about the Arctic and Antarctic, and the critical role of the Poles in the entire Earth system, is nonexistent, incomplete or burdened with misperceptions. The International Polar Years of 2007-2009-and associated "I*Y" science years such as IHY, IYPE and eGY-present a unique opportunity to change this. The people who can best effect this change are those who know the Poles best, through living or working there. Based on innovative but proven models, POLAR-PALOOZA will use three complementary strategies to engage, inform and inspire large public audiences. (1) A national tour, under the working title "Stories from a Changing Planet", will include in-person presentations at science centers, museums, libraries and schools across North America, including Canada and Mexico. The presentations will be augmented by High Definition Video taped on location at the Poles, audio and video podcasts, and special education and outreach activities for targeted audiences. "Stories from a Changing Planet" will provide diverse audiences with an exciting opportunity to meet and interact directly with polar experts, and to appreciate why the Poles and the research done there are directly relevant to their lives. (2) The "HiDef Video Science Story Capture Corps" is a team of professional videographers, using the latest generation of low-cost, high-quality cameras, deployed to both Poles. They will document the work of multiple researchers and projects, rather than focusing on one topic for a single broadcast program

  8. Spin polarized electronic states and spin textures at the surface of oxygen-deficient SrTiO3

    Science.gov (United States)

    Jeschke, Harald O.; Altmeyer, Michaela; Rozenberg, Marcelo; Gabay, Marc; Valenti, Roser

    We investigate the electronic structure and spin texture at the (001) surface of SrTiO3 in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ~ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ~ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through grants SFB/TR 49 and FOR 1346.

  9. Difference in surface reactions between titanium and zirconium in Hanks' solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization

    International Nuclear Information System (INIS)

    Tsutsumi, Y.; Nishimura, D.; Doi, H.; Nomura, N.; Hanawa, T.

    2009-01-01

    Titanium and zirconium were immersed in Hanks' solution with and without calcium and phosphate ions, and the surfaces were characterized with X-ray photoelectron spectroscopy (XPS) to determine the mechanism of calcium phosphate formation on titanium in simulated body fluids and in a living body. In addition, they were cathodically polarized in the above solutions. XPS characterization and cathodic polarization revealed differences in the surface properties in the ability of calcium phosphate formation between titanium and zirconium. The surface oxide film on titanium is not completely oxidized and is relatively reactive; that on zirconium is more passive and protective than that on titanium. Neither calcium nor phosphate stably exists alone on titanium, and calcium phosphate is naturally formed on it; calcium phosphate formed on titanium is stable and protective. On the other hand, calcium is never incorporated on zirconium, while zirconium phosphate, which is easily formed on zirconium, is highly stable and protective. Our study presents new information regarding the surface property of titanium and demonstrates that the characteristics of titanium and zirconium may be applied to various medical devices and new surface modification techniques.

  10. Polarity Control of Heteroepitaxial GaN Nanowires on Diamond.

    Science.gov (United States)

    Hetzl, Martin; Kraut, Max; Hoffmann, Theresa; Stutzmann, Martin

    2017-06-14

    Group III-nitride materials such as GaN nanowires are characterized by a spontaneous polarization within the crystal. The sign of the resulting sheet charge at the top and bottom facet of a GaN nanowire is determined by the orientation of the wurtzite bilayer of the different atomic species, called N and Ga polarity. We investigate the polarity distribution of heteroepitaxial GaN nanowires on different substrates and demonstrate polarity control of GaN nanowires on diamond. Kelvin Probe Force Microscopy is used to determine the polarity of individual selective area-grown and self-assembled nanowires over a large scale. At standard growth conditions, mixed polarity occurs for selective GaN nanowires on various substrates, namely on silicon, on sapphire and on diamond. To obtain control over the growth orientation on diamond, the substrate surface is modified by nitrogen and oxygen plasma exposure prior to growth, and the growth parameters are adjusted simultaneously. We find that the surface chemistry and the substrate temperature are the decisive factors for obtaining control of up to 93% for both polarity types, whereas the growth mode, namely selective area or self-assembled growth, does not influence the polarity distribution significantly. The experimental results are discussed by a model based on the interfacial bonds between the GaN nanowires, the termination layer, and the substrate.

  11. Graphene-based magnetless converter of terahertz wave polarization

    Science.gov (United States)

    Melnikova, Veronica S.; Polischuk, Olga V.; Popov, Vyacheslav V.

    2016-04-01

    The polarization conversion of terahertz radiation by the periodic array of graphene nanoribbons located at the surface of a high-refractive-index dielectric substrate (terahertz prism) is studied theoretically. Giant polarization conversion at the plasmon resonance frequencies takes place without applying external DC magnetic field. It is shown that the total polarization conversion can be reached at the total internal reflection of THz wave from the periodic array of graphene nanoribbons even at room temperature.

  12. On a new compactification of the moduli of vector bundles on a surface

    International Nuclear Information System (INIS)

    Timofeeva, N V

    2008-01-01

    A new compactification of the moduli scheme of Gieseker-stable vector bundles with prescribed Hilbert polynomial on a smooth projective polarized surface (S,H) defined over a field k=k-bar of characteristic zero is constructed. The families of locally free sheaves on the surface S are completed by locally free sheaves on surfaces that are certain modifications of S. The new moduli space has a birational morphism onto the Gieseker-Maruyama moduli space. The case when the Gieseker-Maruyama space is a fine moduli space is considered. Bibliography: 12 titles.

  13. Nonlinear electrodynamics and CMB polarization

    Energy Technology Data Exchange (ETDEWEB)

    Cuesta, Herman J. Mosquera [Departmento de Física Universidade Estadual Vale do Acaraú, Avenida da Universidade 850, Campus da Betânia, CEP 62.040-370, Sobral, Ceará (Brazil); Lambiase, G., E-mail: herman@icra.it, E-mail: lambiase@sa.infn.it [Dipartimento di Fisica ' ' E.R. Caianiello' ' , Università di Salerno, 84081 Baronissi (Italy)

    2011-03-01

    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.

  14. Polarization optics of the Brewster's dark patch visible on water surfaces versus solar height and sky conditions: theory, computer modeling, photography, and painting.

    Science.gov (United States)

    Takács, Péter; Barta, András; Pye, David; Horváth, Gábor

    2017-10-20

    When the sun is near the horizon, a circular band with approximately vertically polarized skylight is formed at 90° from the sun, and this skylight is only weakly reflected from the region of the water surface around the Brewster's angle (53° from the nadir). Thus, at low solar heights under a clear sky, an extended dark patch is visible on the water surface when one looks toward the north or south quarter perpendicular to the solar vertical. In this work, we study the radiance distribution of this so-called Brewster's dark patch (BDP) in still water as functions of the solar height and sky conditions. We calculate the pattern of reflectivity R of a water surface for a clear sky and obtain from this idealized situation the shape of the BDP. From three full-sky polarimetric pictures taken about a clear, a partly cloudy, and an overcast sky, we determine the R pattern and compose from that synthetic color pictures showing how the radiance distribution of skylight reflected at the water surface and the BDPs would look under these sky conditions. We also present photographs taken without a linearly polarizing filter about the BDP. Finally, we show a 19th century painting on which a river is seen with a dark region of the water surface, which can be interpreted as an artistic illustration of the BDP.

  15. Commissioning of polarized-proton and antiproton beams at Fermilab

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1988-01-01

    The author described the polarized-proton and polarized-antiproton beams up to 200 GeV/c at Fermilab. The beam line, called MP, consists of the 400-m long primary and 350-m long secondary beam line followed by 60-m long experimental hall. We discuss the characteristics of the polarized beams. The Fermilab polarization projects are designated at E-581/704 initiated and carried out by an international collaboration, Argonne (US), Fermilab (US), Kyoto-Kyushu-Hiroshima-KEK (Japan), LAPP (France), Northwestern University (US), Los Alamos Laboratory (US), Rice (US), Saclay (France), Serpukhov (USSR), INFN Trieste (Italy), and University of Texas (US)

  16. Study of the Correlation Between Contact Angle Values with the Polarity of Liquids

    OpenAIRE

    Syahara, Muhammad Alwi; Kurniawan, Fredy; Anggriawan, Wahyu

    2015-01-01

    Contact angle measurement is a technique which can be used to determine the surface properties of a substance and observe the interaction of surfaces. When polar liquid dropped on a non-polar solid, it will make an interaction that can observed from the contact angle. In simple way, the different polarity of the solid and the liquid sample will affect to the contact angle obtained. In this work the value of contact angle will be correlated to the polarity of the sample. The results showed tha...

  17. Tetrahedral cluster and pseudo molecule: New approaches to Calculate Absolute Surface Energy of Zinc Blende (111)/(-1-1-1) Surface

    Science.gov (United States)

    Zhang, Yiou; Zhang, Jingzhao; Tse, Kinfai; Wong, Lun; Chan, Chunkai; Deng, Bei; Zhu, Junyi

    Determining accurate absolute surface energies for polar surfaces of semiconductors has been a great challenge in decades. Here, we propose pseudo-hydrogen passivation to calculate them, using density functional theory approaches. By calculating the energy contribution from pseudo-hydrogen using either a pseudo molecule method or a tetrahedral cluster method, we obtained (111)/(-1-1-1) surfaces energies of Si, GaP, GaAs, and ZnS with high self-consistency. Our findings may greatly enhance the basic understandings of different surfaces and lead to novel strategies in the crystal growth. We would like to thank Su-huai Wei for helpful discussions. Computing resources were provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project.

  18. Modelling Polar Self Assembly

    Science.gov (United States)

    Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.

    2001-03-01

    Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.

  19. The Polar WRF Downscaled Historical and Projected Twenty-First Century Climate for the Coast and Foothills of Arctic Alaska

    Directory of Open Access Journals (Sweden)

    Lei Cai

    2018-01-01

    Full Text Available Climate change is most pronounced in the northern high latitude region. Yet, climate observations are unable to fully capture regional-scale dynamics due to the sparse weather station coverage, which limits our ability to make reliable climate-based assessments. A set of simulated data products was therefore developed for the North Slope of Alaska through a dynamical downscaling approach. The polar-optimized Weather Research and Forecast (Polar WRF model was forced by three sources: The ERA-interim reanalysis data (for 1979–2014, the Community Earth System Model 1.0 (CESM1.0 historical simulation (for 1950–2005, and the CESM1.0 projected (for 2006–2100 simulations in two Representative Concentration Pathways (RCP4.5 and RCP8.5 scenarios. Climatic variables were produced in a 10-km grid spacing and a 3-h interval. The ERA-interim forced WRF (ERA-WRF proves the value of dynamical downscaling, which yields more realistic topographical-induced precipitation and air temperature, as well as corrects underestimations in observed precipitation. In summary, dry and cold biases to the north of the Brooks Range are presented in ERA-WRF, while CESM forced WRF (CESM-WRF holds wet and warm biases in its historical period. A linear scaling method allowed for an adjustment of the biases, while keeping the majority of the variability and extreme values of modeled precipitation and air temperature. CESM-WRF under RCP 4.5 scenario projects smaller increase in precipitation and air temperature than observed in the historical CESM-WRF product, while the CESM-WRF under RCP 8.5 scenario shows larger changes. The fine spatial and temporal resolution, long temporal coverage, and multi-scenario projections jointly make the dataset appropriate to address a myriad of physical and biological changes occurring on the North Slope of Alaska.

  20. The polar WRF downscaled historical and projected 21st century climate for the coast and foothills of Arctic Alaska

    Science.gov (United States)

    Cai, Lei; Alexeev, Vladimir A.; Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Gädeke, Anne

    2018-01-01

    Climate change is most pronounced in the northern high latitude region. Yet, climate observations are unable to fully capture regional-scale dynamics due to the sparse weather station coverage, which limits our ability to make reliable climate-based assessments. A set of simulated data products was therefore developed for the North Slope of Alaska through a dynamical downscaling approach. The polar-optimized Weather Research & Forecast (Polar WRF) model was forced by three sources: The ERA-interim reanalysis data (for 1979-2014), the Community Earth System Model 1.0 (CESM1.0) historical simulation (for 1950-2005), and the CESM1.0 projected (for 2006-2100) simulations in two Representative Concentration Pathways (RCP4.5 and RCP8.5) scenarios. Climatic variables were produced in a 10-km grid spacing and a 3-hour interval. The ERA-interim forced WRF (ERA-WRF) proves the value of dynamical downscaling, which yields more realistic topographical-induced precipitation and air temperature, as well as corrects underestimations in observed precipitation. In summary, dry and cold biases to the north of the Brooks Range are presented in ERA-WRF, while CESM forced WRF (CESM-WRF) holds wet and warm biases in its historical period. A linear scaling method allowed for an adjustment of the biases, while keeping the majority of the variability and extreme values of modeled precipitation and air temperature. CESM-WRF under RCP 4.5 scenario projects smaller increase in precipitation and air temperature than observed in the historical CESM-WRF product, while the CESM-WRF under RCP8.5 scenario shows larger changes. The fine spatial and temporal resolution, long temporal coverage, and multi-scenario projections jointly make the dataset appropriate to address a myriad of physical and biological changes occurring on the North Slope of Alaska.

  1. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  2. PolarTREC: Successful Methods and Tools for Attaining Broad Educational Impacts with Interdisciplinary Polar Science

    Science.gov (United States)

    Timm, K. M.; Warburton, J.; Owens, R.; Warnick, W. K.

    2008-12-01

    PolarTREC--Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS), is a National Science Foundation (NSF)-funded International Polar Year (IPY) project in which K-12 educators participate in hands-on field experiences in the polar regions, working closely with IPY scientists as a pathway to improving science education. Developing long-term teacher- researcher collaborations through PolarTREC ensures up-to-date climate change science content will permeate the K-12 education system long after the IPY. By infusing education with the cutting edge science from the polar regions, PolarTREC has already shown an increase in student and public knowledge of and interest in the polar regions and global climate change. Preliminary evaluations have shown that PolarTREC's program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes regarding the importance of understanding the polar regions as a person in today's world. Researchers have been overwhelmingly satisfied with PolarTREC and cited several specific strengths, including the program's crucial link between the teachers' field research experiences and their classroom and the extensive training provided to teachers prior to their expedition. This presentation will focus on other successful components of the PolarTREC program and how researchers and organizations might use these tools to reach out to the public for long-term impacts. Best practices include strategies for working with educators and the development of an internet-based platform for teachers and researchers to interact with the public, combining several communication tools such as online journals and forums, real-time Internet seminars, lesson plans, activities, audio, and other educational resources that address a broad range of scientific

  3. Polarized differential-phase laser scanning microscope

    International Nuclear Information System (INIS)

    Chou Chien; Lyu, C.-W.; Peng, L.-C.

    2001-01-01

    A polarized differential-phase laser scanning microscope, which combines a polarized optical heterodyne Mach-Zehnder interferometer and a differential amplifier to scan the topographic image of a surface, is proposed. In the experiment the differential amplifier, which acts as a PM-AM converter, in the experiment, converting phase modulation (PM) into amplitude modulation (AM). Then a novel, to our knowledge, phase demodulator was proposed and implemented for the differential-phase laser scanning microscope. An optical grating (1800 lp/mm) was imaged. The lateral and the depth resolutions of the imaging system were 0.5 μm and 1 nm, respectively. The detection accuracy, which was limited by the reflectivity variation of the test surface, is discussed

  4. Polarization of spin-1 particles without an anomalous magnetic moment in a uniform magnetic field

    OpenAIRE

    Silenko, Alexander J.

    2008-01-01

    The polarization operator projections onto four directions remain unchanged for spin-1 particles without an anomalous magnetic moment in a uniform magnetic field. The approximate conservation of the polarization operator projections onto the horizontal axes of the cylindrical coordinate system takes place.

  5. FRET structure with non-radiative acceptor provided by dye-linker-glass surface complex and single-molecule photodynamics by TIRFM-polarized imaging

    International Nuclear Information System (INIS)

    Tani, Toshiro; Mashimo, Kei; Suzuki, Tetsu; Horiuchi, Hiromi; Oda, Masaru

    2008-01-01

    We present our recent study of microscopic single-molecule imaging on the artificial complex of tetramethylrhodamine linked with a propyl chain onto silica glass surface, i.e. an asymmetric fluorescence resonance energy transfer (FRET) structure with non-radiative acceptor. In the synthesis of the complex, we used a mixture of two kinds of isomers to introduce rather small photodynamic difference among them. This isomeric structure change will provide more or less a distinctive photophysical change in e.g. non-radiative relaxation rate. Our recent observation at room temperatures, so far, shows that such contributions can be discriminated in the histograms of the fluorescent spot intensities; broad but distinctive multi-components appear. To identify the isomeric difference as a cause of structures, some configurational assumptions are necessary. One such basic prerequisite is that the transition dipoles of the chromophores should be oriented almost parallel to the glass surface. In order to make clear the modeling, we also provide preliminary experiments on the polarization dependence of the imaging under rotating polarization in epi-illumination

  6. Tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated photonic crystal fiber

    Science.gov (United States)

    Liu, Yingchao; Chen, Hailiang; Ma, Mingjian; Zhang, Wenxun; Wang, Yujun; Li, Shuguang

    2018-03-01

    We propose a tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated high birefringent photonic crystal fiber (HB-PCF). Gold film was applied to the inner walls of two cladding air holes and surface plasmon polaritons were generated on its surface. The two gold-coated cladding air holes acted as two defective cores. As the phase matching condition was satisfied, light transmitted in the fiber core and coupled to the two defective cores. The three-core PCF supported three super modes in two orthogonal polarization directions. The coupling characteristics among these modes were investigated using the finite-element method. We found that the coupling wavelengths and strength between these guided modes can be tuned by altering the structural parameters of the designed HB-PCF, such as the size of the voids, thickness of the gold-films and liquid infilling pattern. Under the optimized structural parameters, a tunable broadband polarization filter was realized. For one liquid infilling pattern, we obtained a broadband polarization filter which filtered out the light in y-polarization direction at the wavelength of 1550 nm. For another liquid infilling pattern, we filtered out light in the x-polarization direction at the wavelength of 1310 nm. Our studies on the designed HB-PCF made contributions to the further devising of tunable broadband polarization filters, which are extensively used in telecommunication and sensor systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505175 and 61475134) and the Natural Science Foundation of Hebei Province (Grant Nos. F2017203110 and F2017203193).

  7. Undulator-Based Production of Polarized Photons

    International Nuclear Information System (INIS)

    McDonald, Kirk

    2008-01-01

    'Project Title: Undulator-Based Production of Polarized Photons' DOE Contract Number: FG02-04ER41355 Principal Investigator: Prof. Kirk McDonald Period of Performance: 09/10/2004 thru 08/31/2006 This award was to fund Princeton's activity on SLAC experiment E166, 'Undulator-Based Production of Polarized Positrons' which was performed at SLAC during June and September 2005. Princeton U. fabricated a magnetic spectrometer for this experiment, and participated in the commissioning, operation, and analysis of the experiment, for which Prof. McDonald was a co-spokesperson. The experiment demonstrated that an intense positron beam with 80% longitudinal polarization could be generated by conversion of MeVenergy circularly polarized photons in a thin target, which photons were generated by passage of high-energy electrons through a helical undulator. This technique has since been adopted as the baseline for the polarized positron source of the proposed International Linear Collider. Results of the experiment have been published in Physical Review Letters, vol 100, p 210801 (2008) (see attached .pdf file), and a longer paper is in preparation.

  8. Fringe projection application for surface variation analysis on helical shaped silicon breast

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Shahimin, M. M.; Kirtsaeng, S.; Sakuntasathien, S.; Alcain, J. B.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Breast carcinoma is rated as a second collective cause of cancer associated death among adult females. Detection of the disease at an early stage would enhance the chance for survival. Established detection methods such as mammography, ultrasound and MRI are classified as non invasive breast cancer detection modality, but however they are not entire non-invasive as physical contact still occurs to the breast. Thus requirement for a complete non invasive and non contact is evident. Therefore, in this work, a novel application of digital fringe projection for early detection of breast cancer based on breast surface analysis is reported. Phase shift fringe projection technique and pixel tracing method was utilized to analyze the breast surface change due to the incidence of breast lump. Results have shown that the digital fringe projection is capable in detecting the existence of 1 cm sized lump within the breast sample.

  9. A helical optical for circular polarized UV-FEL project at the UVSOR

    Energy Technology Data Exchange (ETDEWEB)

    Hama, Hiroyuki [Institute for Molecular Science, Okazaki (Japan)

    1995-12-31

    Most of existing storage ring free electron lasers (SRFEL) are restricted those performances by degradation of mirrors in optical cavities. In general, the SRFEL gain at the short wavelength region with high energy electrons is quite low, and the high reflectivity mirrors such as dielectric multilayer mirrors are therefore required. The mirror degradation is considered as a result of irradiation of higher harmonic photons that are simultaneously emitted from planar optical klystron (OK) type undulators, which are commonly used in SRFEL. This problem is getting severer as the lasing wavelength becomes shorter. The UVSOR-FEL had been originally scheduled to be shutdown by 1996 because another undulator project for spectroscopic studies with circular polarized photon would take the FEL`s place. According to suggestion of the insertion device group of the SPring-8, we have designed a helical undulator that is able to vary degree and direction of the polarization easily. In addition, the undulator can be converted into a helical OK by replacing magnets at the center part of undulator in order to coexist with further FEL experiments. Using a calculated magnetic field for magnet configurations of the OK mode, the radiation spectrum at wide wavelength range was simulated by a Fourier transform of Lienard-Wiechert potentials. As a matter of course, some higher harmonics are radiated on the off-axis angle. However it was found out that the higher harmonics is almost negligible as far as inside a solid angle of the Gaussian laser mode. Moreover the gain at the UV region of 250 nm is expected to be much higher than our present FEL because of high brilliant fundamental radiation. The calculated spatial distribution of higher harmonics and the estimated instantaneous gain is presented. Advantages of the helical OK for SRFEL will be discussed in view of our experience, and a possibility of application two-color experiment with SR will be also mentioned.

  10. Influence of the Interaction Between Graphite and Polar Surfaces of ZnO on the Formation of Schottky Contact

    Science.gov (United States)

    Yatskiv, R.; Grym, J.

    2018-03-01

    We show that the interaction between graphite and polar surfaces of ZnO affects electrical properties of graphite/ZnO Schottky junctions. A strong interaction of the Zn-face with the graphite contact causes interface imperfections and results in the formation of laterally inhomogeneous Schottky contacts. On the contrary, high quality Schottky junctions form on the O-face, where the interaction is significantly weaker. Charge transport through the O-face ZnO/graphite junctions is well described by the thermionic emission model in both forward and reverse directions. We further demonstrate that the parameters of the graphite/ZnO Schottky diodes can be significantly improved when a thin layer of ZnO2 forms at the interface between graphite and ZnO after hydrogen peroxide surface treatment.

  11. In Azospirillum brasilense, mutations in flmA or flmB genes affect polar flagellum assembly, surface polysaccharides, and attachment to maize roots.

    Science.gov (United States)

    Rossi, Fernando Ariel; Medeot, Daniela Beatriz; Liaudat, Juan Pablo; Pistorio, Mariano; Jofré, Edgardo

    2016-09-01

    Azospirillum brasilense is a soil bacterium capable of promoting plant growth. Several surface components were previously reported to be involved in the attachment of A. brasilense to root plants. Among these components are the exopolysaccharide (EPS), lipopolysaccharide (LPS) and the polar flagellum. Flagellin from polar flagellum is glycosylated and it was suggested that genes involved in such a posttranslational modification are the same ones involved in the biosynthesis of sugars present in the O-antigen of the LPS. In this work, we report on the characterization of two homologs present in A. brasilense Cd, to the well characterized flagellin modification genes, flmA and flmB, from Aeromonas caviae. We show that mutations in either flmA or flmB genes of A. brasilense resulted in non-motile cells due to alterations in the polar flagellum assembly. Moreover, these mutations also affected the capability of A. brasilense cells to adsorb to maize roots and to produce LPS and EPS. By generating a mutant containing the polar flagellum affected in their rotation, we show the importance of the bacterial motility for the early colonization of maize roots. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. In Situ Nondestructive Analysis of Kalanchoe pinnata Leaf Surface Structure by Polarization-Modulation Infrared Reflection-Absorption Spectroscopy.

    Science.gov (United States)

    Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki; Enami, Shinichi; Shimoaka, Takafumi; Hasegawa, Takeshi

    2017-12-14

    The outermost surface of the leaves of land plants is covered with a lipid membrane called the cuticle that protects against various stress factors. Probing the molecular-level structure of the intact cuticle is highly desirable for understanding its multifunctional properties. We report the in situ characterization of the surface structure of Kalanchoe pinnata leaves using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Without sample pretreatment, PM-IRRAS measures the IR spectra of the leaf cuticle of a potted K. pinnata plant. The peak position of the CH 2 -related modes shows that the cuticular waxes on the leaf surface are mainly crystalline, and the alkyl chains are highly packed in an all-trans zigzag conformation. The surface selection rule of PM-IRRAS revealed the average orientation of the cuticular molecules, as indicated by the positive and negative signals of the IR peaks. This unique property of PM-IRRAS revealed that the alkyl chains of the waxes and the main chains of polysaccharides are oriented almost perpendicular to the leaf surface. The nondestructive, background-free, and environmental gas-free nature of PM-IRRAS allows the structure and chemistry of the leaf cuticle to be studied directly in its native environment.

  13. Spin polarized electrons in surface science

    International Nuclear Information System (INIS)

    Siegmann, H.C.

    1983-01-01

    The potentialities of spin-polarised electron beams as a probe of surface magnetic properties are outlined. Elastic as well as inelastic scattering of electrons from solid surfaces are considered. (G.Q.)

  14. Assessing the Impact of Climate Change on Land-Water-Ecosystem Quality in Polar and Mountainous Regions: A New Interregional Project (INT5153)

    Energy Technology Data Exchange (ETDEWEB)

    Dercon, Gerd [Soil and Water Management and Crop Nutrition Subprogramme, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Seibersdorf (Austria); Gerardo-Abaya, Jane [Division for Asia and the Pacific Section 2, Department of Technical Cooperation, IAEA, Vienna (Austria); Mavlyudov, Bulat [Institute of Geography, Russian Academy of Sciences, Moscow (Russian Federation); others, and

    2014-07-15

    The INT5153 project aims to improve the understanding of the impact of climate change on fragile polar and mountainous ecosystems on both a local and global scale for their better management and conservation. Seven core and five related benchmark sites have been selected from different global regions for specific assessments of the impact of climate change with the following expected outcomes and outputs: Outcomes: • Improved understanding of the impact of climate change on the cryosphere in polar and mountainous ecosystems and its effects on landwater- ecosystem quality at both local and global scales. • Recommendations for improvement of regional policies for soil and agricultural water management, conservation, and environmental protection in polar and mountainous regions. Outputs: • Specific strategies to minimize the adverse effects of, and adapt to, reduced seasonal snow and glacier covered areas on land-water-ecosystem quality in polar and mountain regions across the world. • Enhanced interregional network of laboratories and institutions competent in the assessment of climate change impacts on the cryosphere and land-water-ecosystem quality, using isotopic and nuclear techniques. • Increased number of young scientists trained in the use of isotope and nuclear techniques to assess the impact of climate change on the cryosphere and land-water-ecosystem quality in polar and mountainous ecosystems. • Platform/database with global access for continuing work and monitoring of impact of climate change on fragile polar and mountainous ecosystems at local and global scales, as well as for communicating findings to policy makers and communities. • Improved understanding of the effects of climate change disseminated through appropriate publications, policy briefs, and through a dedicated internet platform. • Methodologies and protocols for investigations in specific ecosystems and conservation/adaptation measures for agriculture areas.

  15. Assessing the Impact of Climate Change on Land-Water-Ecosystem Quality in Polar and Mountainous Regions: A New Interregional Project (INT5153)

    International Nuclear Information System (INIS)

    Dercon, Gerd; Gerardo-Abaya, Jane; Mavlyudov, Bulat

    2014-01-01

    The INT5153 project aims to improve the understanding of the impact of climate change on fragile polar and mountainous ecosystems on both a local and global scale for their better management and conservation. Seven core and five related benchmark sites have been selected from different global regions for specific assessments of the impact of climate change with the following expected outcomes and outputs: Outcomes: • Improved understanding of the impact of climate change on the cryosphere in polar and mountainous ecosystems and its effects on landwater- ecosystem quality at both local and global scales. • Recommendations for improvement of regional policies for soil and agricultural water management, conservation, and environmental protection in polar and mountainous regions. Outputs: • Specific strategies to minimize the adverse effects of, and adapt to, reduced seasonal snow and glacier covered areas on land-water-ecosystem quality in polar and mountain regions across the world. • Enhanced interregional network of laboratories and institutions competent in the assessment of climate change impacts on the cryosphere and land-water-ecosystem quality, using isotopic and nuclear techniques. • Increased number of young scientists trained in the use of isotope and nuclear techniques to assess the impact of climate change on the cryosphere and land-water-ecosystem quality in polar and mountainous ecosystems. • Platform/database with global access for continuing work and monitoring of impact of climate change on fragile polar and mountainous ecosystems at local and global scales, as well as for communicating findings to policy makers and communities. • Improved understanding of the effects of climate change disseminated through appropriate publications, policy briefs, and through a dedicated internet platform. • Methodologies and protocols for investigations in specific ecosystems and conservation/adaptation measures for agriculture areas

  16. Report on workshop "Study of the polar atmosphere and cryosphere using satellite data with surface validation observations including unmanned one"

    Directory of Open Access Journals (Sweden)

    Hiroshi Kanzawa

    1993-07-01

    Full Text Available The workshop was organized to discuss algorithms to derive parameters of the polar atmosphere and cryosphere using satellite data received mainly at Syowa Station (69°S, 40°E, Antarctica, i.e., the data from NOAA, MOS (Marine Observation Satellite-1,ERS (European Remote Sensing Satellite-1,JERS (Japanese Earth Resources Satellite-1 with validation data at the surface. It was held on 16 March 1993 at the National Institute of Polar Research (NIPR, total number of participants being about 40. The contents of the workshop are as follows : The present status of receipt and utilization of the satellite data of NOAA, MOS-1,ERS-1,JERS-1; The Atmosphere; Sea ice; The Cryosphere; Introduction to the satellite data analysis system at the Information Science Center at NIPR.

  17. Fabrication of a Polarizing Neutron Supermirror and Development of its applied Devices

    International Nuclear Information System (INIS)

    Cho, Sang Jin; Ryu, Ji Myoungi; Kim, Sangwon

    2013-02-01

    Based on the project of neutron guide development, which started in 2005, KAERI has possessed the techniques such as supermirror coating, guide element assembly, guide alignment, special tool development and guide element assembly, guide alignment, special tool development and guide maintenance. With help of multilayer coating technique from supermirror fabrication, a project called 'Development of a Polarizing Supermirror and its applied devices' started early 2011. To begin with, most used coating materials were investigated, and for using polarized beam, G-TS located at CG1 beam line (Guide Test Station: Reflectometer) was modified with adding spin flipper, polarizer, analyzer and magnetic sample holder developed by KAERI. By studying crystallization and oxidation of the FeCo alloy to minimize the layer roughness and magnetization of a magnetic layer to determine minimal magnetic field, the neutron polarizing supermirrors have been developed, which show a average reflectivity of 90% and a polarization of 95% for M=2 and a average reflectivity of 80% and a polarization of 95% for M=2.6

  18. The Rashba-split surface state of Sb{sub 2}Te{sub 3}(0 0 0 1) and its interaction with bulk states

    Energy Technology Data Exchange (ETDEWEB)

    Seibel, Christoph; Maaß, Henriette [Experimentelle Physik VII and Röntgen Research Center for Complex Materials (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Bentmann, Hendrik, E-mail: Hendrik.Bentmann@physik.uni-wuerzburg.de [Experimentelle Physik VII and Röntgen Research Center for Complex Materials (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Braun, Jürgen [Department Chemie, Physikalische Chemie, Universität München, Butenandtstrasse 5-13, D-81377 München (Germany); Sakamoto, Kazuyuki [Department of Nanomaterials Science, Chiba University, Chiba 263-8522 (Japan); Arita, Masashi; Shimada, Kenya [Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima 739-0046 (Japan); Minár, Jan [Department Chemie, Physikalische Chemie, Universität München, Butenandtstrasse 5-13, D-81377 München (Germany); New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Ebert, Hubert [Department Chemie, Physikalische Chemie, Universität München, Butenandtstrasse 5-13, D-81377 München (Germany); and others

    2015-05-15

    Highlights: • We investigate a spin–orbit split surface state on the Sb{sub 2}Te{sub 3}(0 0 0 1) surface. • The spin-splitting and dispersion follow the Rashba model at small wave vectors. • At higher wave vectors the spin-splitting shows an unsual non-monotonic evolution. • The spin-polarized surface bands connect with different bulk bands at the gap edge. - Abstract: The electronic structure of the Sb{sub 2}Te{sub 3}(0 0 0 1) surface exhibits a spin–orbit split surface state in a local energy gap of the projected bulk valence band continuum. We investigate this surface state by high-resolution angle-resolved photoemission spectroscopy (ARPES), spin-resolved ARPES and relativistic one-step photoemission calculations. At low wave vectors the dispersion and spin splitting are well-captured by the predictions of the Rashba model for a two-dimensional electron system. With increasing wave vectors, however, the surface state dispersion becomes more complex and the spin splitting size exhibits an unusual non-monotonic evolution. These deviations from the Rashba model arise from the influence of bulk continuum states near the edge of the projected gap. The spin polarization of the surface state remains intact despite the coupling to bulk states.

  19. Polarity and microstructure in InN thin layers grown by MOVPE

    International Nuclear Information System (INIS)

    Kuwano, N.; Nakahara, Y.; Amano, H.

    2006-01-01

    Microstructures in InN grown on sapphire (0001) and yttria-stabilized zirconia (YSZ) (111) by metal-organic vapor phase epitaxy (MOVPE) were analyzed by means of transmission electron microscopy (TEM) in order to clarify the growth process. Special attention was paid to the selectivity of the crystal polarity of InN. The InN thin films grown on sapphire after nitridation has a flat surface while those grown on YSZ has hillocks on the surface. The crystal polarity was determined by comparing the experimentally observed intensity distribution in convergent beam electron diffraction (CBED) disks with those simulated by the Broch-wave method. It was found that the InN grown on the sapphire has a nitrogen-polarity and the one on YSZ has a mixture of In- and N-polarities. The effect of surface-nitridation of sapphire on the growth process is also discussed (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Polarized Drell-Yan measurement at COMPASS-II

    CERN Document Server

    CERN

    2014-01-01

    The COMPASS experiment at CERN prepares a new measurement on the nucleon structure via Drell-Yan reactions using a transversely polarized ammonia target and a π− beam. This first-ever polarized Drell-Yan measurement will provide the insight into the transverse momentum depen- dent parton distribution functions such as the Sivers and Boer-Mulders functions, complementary to what is measured in the semi-inclusive deep-inelastic scattering process. The important features and status of this project are introduced.

  1. Polarized gas targets for storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1990-01-01

    It is widely recognized that polarized gas targets in electron storage rings represent a new opportunity for precision nuclear physics studies. New developments in polarized target technology specific to internal applications will be discussed. In particular, polarized gas targets have been used in the VEPP-3 electron ring in Novosibirsk. A simple storage cell was used to increase the total target thickness by a factor of 15 over the simple gas jet target from an atomic beam source. Results from the initial phase of this project will be reported. In addition, the plans for increasing the luminosity by an additional order or magnitude will be presented. The application of this work to polarized hydrogen and deuterium targets for the HERA ring will be noted. The influence of beam-induced depolarization, a phenomena encountered in short-pulse electron storage rings, will be discussed. Finally, the performance tests of laser-driven sources will be presented. 8 refs., 12 figs., 1 tab

  2. Advancing Environmental Prediction Capabilities for the Polar Regions and Beyond during The Year of Polar Prediction

    Science.gov (United States)

    Werner, Kirstin; Goessling, Helge; Hoke, Winfried; Kirchhoff, Katharina; Jung, Thomas

    2017-04-01

    Environmental changes in polar regions open up new opportunities for economic and societal operations such as vessel traffic related to scientific, fishery and tourism activities, and in the case of the Arctic also enhanced resource development. The availability of current and accurate weather and environmental information and forecasts will therefore play an increasingly important role in aiding risk reduction and safety management around the poles. The Year of Polar Prediction (YOPP) has been established by the World Meteorological Organization's World Weather Research Programme as the key activity of the ten-year Polar Prediction Project (PPP; see more on www.polarprediction.net). YOPP is an internationally coordinated initiative to significantly advance our environmental prediction capabilities for the polar regions and beyond, supporting improved weather and climate services. Scheduled to take place from mid-2017 to mid-2019, the YOPP core phase covers an extended period of intensive observing, modelling, prediction, verification, user-engagement and education activities in the Arctic and Antarctic, on a wide range of time scales from hours to seasons. The Year of Polar Prediction will entail periods of enhanced observational and modelling campaigns in both polar regions. With the purpose to close the gaps in the conventional polar observing systems in regions where the observation network is sparse, routine observations will be enhanced during Special Observing Periods for an extended period of time (several weeks) during YOPP. This will allow carrying out subsequent forecasting system experiments aimed at optimizing observing systems in the polar regions and providing insight into the impact of better polar observations on forecast skills in lower latitudes. With various activities and the involvement of a wide range of stakeholders, YOPP will contribute to the knowledge base needed to managing the opportunities and risks that come with polar climate change.

  3. InN{0001} polarity by ion scattering spectroscopy

    International Nuclear Information System (INIS)

    Walker, M.; Veal, T.D.; McConville, C.F.; Lu, Hai; Schaff, W.J.

    2005-01-01

    The polarity of a wurtzite InN thin film grown on a c-plane sapphire substrate with GaN and AlN buffer layers has been investigated by co-axial impact collision ion scattering spectroscopy (CAICISS). Time of flight (TOF) spectra of He + ions scattered from the surface of the InN film were taken as a function of the incident angles of the primary 3 keV He + ions. From the TOF spectra, the polar angle-dependence of the In scattered intensity was obtained. Comparison of the experimental polar-angle dependence of the In CAICISS signal intensity with simulated results for the various volume ratios of (0001)- and (000 anti 1)-polarity domains indicated that the InN film is approximately 75% In-polarity and 25% N-polarity. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Energy utilization in surface mining project : with case study illustration

    International Nuclear Information System (INIS)

    Sinha, D.K.; De, Amitosh

    1992-01-01

    The importance of reducing energy consumption per tonne of output in the mining projects needs an innovative approach and style to change the behaviour and postures of the technical characteristics. The need for suitable energy policy can not be overlooked with the addition of new large size surface mining projects having a lot of technological development. But the immediate prescription to the problem is to pinpoint specific high energy consuming areas prefixed by thorough diagnosis and followed by deep scientific thought into it. To that extent this paper makes a primary attempt to characterise the various problems. (author). 7 tabs

  5. Future projections of the Greenland ice sheet energy balance driving the surface melt

    Directory of Open Access Journals (Sweden)

    B. Franco

    2013-01-01

    Full Text Available In this study, simulations at 25 km resolution are performed over the Greenland ice sheet (GrIS throughout the 20th and 21st centuries, using the regional climate model MAR forced by four RCP scenarios from three CMIP5 global circulation models (GCMs, in order to investigate the projected changes of the surface energy balance (SEB components driving the surface melt. Analysis of 2000–2100 melt anomalies compared to melt results over 1980–1999 reveals an exponential relationship of the GrIS surface melt rate simulated by MAR to the near-surface air temperature (TAS anomalies, mainly due to the surface albedo positive feedback associated with the extension of bare ice areas in summer. On the GrIS margins, the future melt anomalies are preferentially driven by stronger sensible heat fluxes, induced by enhanced warm air advection over the ice sheet. Over the central dry snow zone, the surface albedo positive feedback induced by the increase in summer melt exceeds the negative feedback of heavier snowfall for TAS anomalies higher than 4 °C. In addition to the incoming longwave flux increase associated with the atmosphere warming, GCM-forced MAR simulations project an increase of the cloud cover decreasing the ratio of the incoming shortwave versus longwave radiation and dampening the albedo feedback. However, it should be noted that this trend in the cloud cover is contrary to that simulated by ERA-Interim–forced MAR for recent climate conditions, where the observed melt increase since the 1990s seems mainly to be a consequence of more anticyclonic atmospheric conditions. Finally, no significant change is projected in the length of the melt season, which highlights the importance of solar radiation absorbed by the ice sheet surface in the melt SEB.

  6. Toward an effective adsorbent for polar pollutants: Formaldehyde adsorption by activated carbon

    International Nuclear Information System (INIS)

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-01-01

    Highlights: • Activated carbon fiber with mild activation condition is useful as adsorbent for polar pollutants. • Diverse variations are investigated for developing an effective adsorbent. • Surface functional group is the most important factor for capacity as a adsorbent. • Surface functional groups on ACFs are investigated using micro-ATR FTIR. -- Abstract: Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital

  7. CELSS Antarctic Analog Project (CAAP): A New Paradigm for Polar Life Support and CELSS Research

    Science.gov (United States)

    Bubenheim, David L.; Straight, Christian; Flynn, Michael; Bates, Maynard; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    The CELSS Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and National Aeronautics and Space Administration (NASA) project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. CAAP is implemented through the joint NSF/NASA Antarctic Space Analog Program (ASAP), initiated to support the pursuit of future NASA missions and to promote the transfer of space technologies to the NSF. Under a Memorandum of Agreement, the CAAP represents an example of a working dual agency cooperative project. NASA goals are operational testing of CELSS technologies and the conduct of scientific study to facilitate . technology selection, system design and methods development, including human dynamics as required for the operation of a CELSS. Although not fully closed, food production, water purification, and waste recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. The CAAP facility will be highly integrated with the new South Pole Station infrastructure and will be composed of a deployed hardware facility and a research activity. This paper will include a description of CAAP and its functionality, conceptual designs, component selection and sizing for the crop growth chamber, crop production expectations, and a brief report on an initial on-site visit. This paper will also provide a discussion of issues associated with power and energy use and the applicability of CAAP to direct technology transfer to society in general and remote communities in particular.

  8. Atmospheric Modeling of the Martian Polar Regions: CRISM EPF Coverage During the South Polar Spring Recession

    Science.gov (United States)

    Brown, A. J.; McGuire, P.; Wolff, M. J.

    2008-03-01

    We describe efforts to model dust and ice aerosols content and soils and icy surface reflectance in the Martian southern polar region during spring recession (Ls = 152-320) using CRISM emission phase function (EPF) observations.

  9. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  10. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    Science.gov (United States)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  11. Core Technology Development of Nuclear spin polarization

    International Nuclear Information System (INIS)

    Yoo, Byung Duk; Gwon, Sung Ok; Kwon, Duck Hee; Lee, Sung Man

    2009-12-01

    In order to study nuclear spin polarization, we need several core technologies such as laser beam source to polarize the nuclear spin, low pressured helium cell development whose surface is essential to maintain polarization otherwise most of the polarized helium relaxed in short time, development of uniform magnetic field system which is essential for reducing relaxation, efficient vacuum system, development of polarization measuring system, and development of pressure raising system about 1000 times. The purpose of this study is to develop resonable power of laser system, that is at least 5 watt, 1083 nm, 4GHz tuneable. But the limitation of this research fund enforce to develop amplifying system into 5 watt with 1 watt system utilizing laser-diod which is already we have in stock. We succeeded in getting excellent specification of fiber laser system with power of 5 watts, 2 GHz linewidth, more than 80 GHz tuneable

  12. A new polarized neutrons method for studying depth-inhomogeneously magnetized magnetic films

    International Nuclear Information System (INIS)

    Korneev, D.A.

    1990-01-01

    The main specific features of the process of polarized thermal neutrons specular reflection from the surface of depth-inhomogeneously magnetic films are considered theoretically. It is shown how using the method of specular reflection of polarized thermal neutrons from such a films surface, one may restore the depth distribution of the local magnetization vector M-vector(z). 9 refs

  13. Underwater 3D Surface Measurement Using Fringe Projection Based Scanning Devices.

    Science.gov (United States)

    Bräuer-Burchardt, Christian; Heinze, Matthias; Schmidt, Ingo; Kühmstedt, Peter; Notni, Gunther

    2015-12-23

    In this work we show the principle of optical 3D surface measurements based on the fringe projection technique for underwater applications. The challenges of underwater use of this technique are shown and discussed in comparison with the classical application. We describe an extended camera model which takes refraction effects into account as well as a proposal of an effective, low-effort calibration procedure for underwater optical stereo scanners. This calibration technique combines a classical air calibration based on the pinhole model with ray-based modeling and requires only a few underwater recordings of an object of known length and a planar surface. We demonstrate a new underwater 3D scanning device based on the fringe projection technique. It has a weight of about 10 kg and the maximal water depth for application of the scanner is 40 m. It covers an underwater measurement volume of 250 mm × 200 mm × 120 mm. The surface of the measurement objects is captured with a lateral resolution of 150 μm in a third of a second. Calibration evaluation results are presented and examples of first underwater measurements are given.

  14. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    International Nuclear Information System (INIS)

    1994-12-01

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA

  15. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.

  16. A comparative study on MOVPE InN grown on Ga- and N-polarity bulk GaN

    International Nuclear Information System (INIS)

    Wang, W.J.; Miwa, H.; Hashimoto, A.; Yamamoto, A.

    2006-01-01

    The influence of substrate polarity on the growth of InN film by MOVPE was investigated using bulk GaN as a substrate. Single-crystalline In- and N-polarity InN films were obtained on Ga- and N-polarity GaN substrate, respectively. Significant difference of the morphologies between the In- and N-polarity InN films was found. For the In-polarity InN film, the morphology was similar to that grown on sapphire substrate. The film surface was consisted of grains with small facets. In contrast, for the N-polarity InN film, the surface was consisted of large hexagonal shape crystal grains with flat surface. The grain size was about 2 μm in diameter on the average, and two-dimensional growth was enhanced obviously for each crystal grain. The influence of the growth temperature on the morphology, polarity, and optical property was also investigated. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions.

    Science.gov (United States)

    Zhou, Min; Weng, Qunhong; Popov, Zakhar I; Yang, Yijun; Antipina, Liubov Yu; Sorokin, Pavel B; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2018-05-22

    Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni 3 N nanostructure (Ni 3 N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni 3 N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm -2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni 3 N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni 3 N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.

  18. Polarization of Coronal Forbidden Lines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Qu, Zhongquan [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Landi Degl’Innocenti, Egidio, E-mail: sayahoro@ynao.ac.cn [Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy)

    2017-03-20

    Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weak and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.

  19. Polarized seismic and solitary waves run-up at the sea bed

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, L. C.C.; Zainal, A. A.; Faisal, S. Y. [Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2012-09-26

    The polarization effects in hydrodynamics are studied. Hydrodynamic equation for the nonlinear wave is used along with the polarized solitary waves and seismic waves act as initial waves. The model is then solved by Fourier spectral and Runge-Kutta 4 methods, and the surface plot is drawn. The output demonstrates the inundation behaviors. Consequently, the polarized seismic waves along with the polarized solitary waves tend to generate dissimilar inundation which is more disastrous.

  20. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction.

    Science.gov (United States)

    Makropoulos, Antonios; Robinson, Emma C; Schuh, Andreas; Wright, Robert; Fitzgibbon, Sean; Bozek, Jelena; Counsell, Serena J; Steinweg, Johannes; Vecchiato, Katy; Passerat-Palmbach, Jonathan; Lenz, Gregor; Mortari, Filippo; Tenev, Tencho; Duff, Eugene P; Bastiani, Matteo; Cordero-Grande, Lucilio; Hughes, Emer; Tusor, Nora; Tournier, Jacques-Donald; Hutter, Jana; Price, Anthony N; Teixeira, Rui Pedro A G; Murgasova, Maria; Victor, Suresh; Kelly, Christopher; Rutherford, Mary A; Smith, Stephen M; Edwards, A David; Hajnal, Joseph V; Jenkinson, Mark; Rueckert, Daniel

    2018-06-01

    The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Thermal analysis of a prototype cryogenic polarization modulator for use in a space-borne CMB polarization experiment

    Science.gov (United States)

    Iida, T.; Sakurai, Y.; Matsumura, T.; Sugai, H.; Imada, H.; Kataza, H.; Ohsaki, H.; Hazumi, M.; Katayama, N.; Yamamoto, R.; Utsunomiya, S.; Terao, Y.

    2017-12-01

    We report a thermal analysis of a polarization modulator unit (PMU) for use in a space-borne cosmic microwave background (CMB) project. A measurement of the CMB polarization allows us to probe the physics of early universe, and that is the best method to test the cosmic inflation experimentally. One of the key instruments for this science is to use a halfwave plate (HWP) based polarization modulator. The HWP is required to rotate continuously at about 1 Hz below 10 K to minimize its own thermal emission to a detector system. The rotating HWP system at the cryogenic environment can be realized by using a superconducting magnetic bearing (SMB) without significant heat dissipation by mechanical friction. While the SMB achieves the smooth rotation due to the contactless bearing, an estimation of a levitating HWP temperature becomes a challenge. We manufactured a one-eighth scale prototype model of PMU and built a thermal model. We verified our thermal model with the experimental data. We forecasted the projected thermal performance of PMU for a full-scale model based on the thermal model. From this analysis, we discuss the design requirement toward constructing the full-scale model for use in a space environment such as a future CMB satellite mission, LiteBIRD.

  2. Influence of aerosols, clouds, and sunglint on polarization spectra of Earthshine

    Science.gov (United States)

    Emde, Claudia; Buras-Schnell, Robert; Sterzik, Michael; Bagnulo, Stefano

    2017-08-01

    Context. Ground-based observations of the Earthshine, I.e., the light scattered by Earth to the Moon, and then reflected back to Earth, simulate space observations of our planet and represent a powerful benchmark for the studies of Earth-like planets. Earthshine spectra are strongly linearly polarized, owing to scattering by molecules and small particles in the atmosphere of the Earth and surface reflection, and may allow us to measure global atmospheric and surface properties of planet Earth. Aims: We aim to interpret already published spectropolarimetric observations of the Earthshine by comparing them with new radiative transfer model simulations including a fully realistic three-dimensional (3D) surface-atmosphere model for planet Earth. Methods: We used the highly advanced Monte Carlo radiative transfer model MYSTIC to simulate polarized radiative transfer in the atmosphere of the Earth without approximations regarding the geometry, taking into account the polarization from surface reflection and multiple scattering by molecules, aerosol particles, cloud droplets, and ice crystals. Results: We have shown that Earth spectropolarimetry is highly sensitive to all these input parameters, and we have presented simulations of a fully realistic Earth atmosphere-surface model including 3D cloud fields and two-dimensional (2D) surface property maps. Our modeling results show that scattering in high ice water clouds and reflection from the ocean surface are crucial to explain the continuum polarization at longer wavelengths as has been reported in Earthshine observations taken at the Very Large Telescope in 2011 (3.8% and 6.6% at 800 nm, depending on which part of Earth was visible from the Moon at the time of the observations). We found that the relatively high degree of polarization of 6.6% can be attributed to light reflected by the ocean surface in the sunglint region. High ice-water clouds reduce the amount of absorption in the O2A band and thus explain the weak O2

  3. Topological insulator infrared pseudo-bolometer with polarization sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Peter Anand

    2017-10-25

    Topological insulators can be utilized in a new type of infrared photodetector that is intrinsically sensitive to the polarization of incident light and static magnetic fields. The detector isolates single topological insulator surfaces and allows light collection and exposure to static magnetic fields. The wavelength range of interest is between 750 nm and about 100 microns. This detector eliminates the need for external polarization selective optics. Polarization sensitive infrared photodetectors are useful for optoelectronics applications, such as light detection in environments with low visibility in the visible wavelength regime.

  4. Multiple-band reflective polarization converter using U-shaped metamaterial

    International Nuclear Information System (INIS)

    Huang, Xiaojun; Yang, Dong; Yang, Helin

    2014-01-01

    A multiple-band metamaterial reflective polarization converter (RPC) is proposed, which is composed of the dielectric substrate sandwiched with U-shaped metallic patterns and continuous metal film. The proposed U-shaped metamaterial RPC (UMM-RPC) can convert a linearly polarized wave to its cross polarized wave at the three resonant frequencies, which also can convert the linearly polarized wave to circularly polarized wave at other three resonant frequencies. Furthermore, the proposed UMM-RPC can maintain the same conversional direction at the three resonant frequencies when incident on a circularly polarized wave. The simulated and measured results are in agreement in the entire frequency range, and the polarization conversion ratio is over 90% for both linear and circular polarizations. The surface current distributions of the UMM-RPC are discussed to look into the physical mechanism. The proposed UMM-RPC has simple geometry but more operating frequency bands compared to the previous designs and can be used in applications such as antenna radome, remote sensors, and radiometer

  5. Multiple-band reflective polarization converter using U-shaped metamaterial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaojun [College of Physical Science and Technology, Central China Normal University, Wuhan 430079 (China); Department of Physics, Kashgar Teachers College, Kashgar 844000 (China); Yang, Dong [College of Physics and Electronics Science, Hubei Normal University, Huangshi 435002 (China); Yang, Helin, E-mail: emyang@mail.ccnu.edu.cn [College of Physical Science and Technology, Central China Normal University, Wuhan 430079 (China)

    2014-03-14

    A multiple-band metamaterial reflective polarization converter (RPC) is proposed, which is composed of the dielectric substrate sandwiched with U-shaped metallic patterns and continuous metal film. The proposed U-shaped metamaterial RPC (UMM-RPC) can convert a linearly polarized wave to its cross polarized wave at the three resonant frequencies, which also can convert the linearly polarized wave to circularly polarized wave at other three resonant frequencies. Furthermore, the proposed UMM-RPC can maintain the same conversional direction at the three resonant frequencies when incident on a circularly polarized wave. The simulated and measured results are in agreement in the entire frequency range, and the polarization conversion ratio is over 90% for both linear and circular polarizations. The surface current distributions of the UMM-RPC are discussed to look into the physical mechanism. The proposed UMM-RPC has simple geometry but more operating frequency bands compared to the previous designs and can be used in applications such as antenna radome, remote sensors, and radiometer.

  6. Anomalous Surface Wave Launching by Handedness Phase Control

    KAUST Repository

    Zhang, Xueqian

    2015-10-09

    Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Anomalous Surface Wave Launching by Handedness Phase Control

    KAUST Repository

    Zhang, Xueqian; Xu, Yuehong; Yue, Weisheng; Tian, Zhen; Gu, Jianqiang; Li, Yanfeng; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [Modeling polarimetric BRDF of leaves surfaces].

    Science.gov (United States)

    Xie, Dong-Hui; Wang, Pei-Juan; Zhu, Qi-Jiang; Zhou, Hong-Min

    2010-12-01

    The purpose of the present paper is to model a physical polarimetric bidirectional reflectance distribution function (pBRDF), which can character not only the non-Lambertian but also the polarized features in order that the pBRDF can be applied to analyze the relationship between the degree of polarization and the physiological and biochemical parameters of leaves quantitatively later. Firstly, the bidirectional polarized reflectance distributions from several leaves surfaces were measured by the polarized goniometer developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. The samples of leaves include two pieces of zea mays L. leaves (young leaf and mature leaf) and a piece of E. palcherrima wild leaf. Non-Lambertian characteristics of directional reflectance from the surfaces of these three leaves are obvious. A Cook-Torrance model was modified by coupling the polarized Fresnel equations to simulate the bidirectional polarized reflectance properties of leaves surfaces. The three parameters in the modified pBRDF model, such as diffuse reflectivity, refractive index and roughness of leaf surface were inversed with genetic algorithm (GA). It was found that the pBRDF model can fit with the measured data well. In addition, these parameters in the model are related with both the physiological and biochemical properties and the polarized characteristics of leaves, therefore it is possible to build the relationships between them later.

  9. Electrical Polarization of Titanium Surfaces for the Enhancement of Osteoblast Differentiation

    Science.gov (United States)

    Gittens, Rolando A.; Olivares-Navarrete, Rene; Rettew, Robert; Butera, Robert J.; Alamgir, Faisal M.; Boyan, Barbara D.; Schwartz, Zvi

    2014-01-01

    Electrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. PMID:23996899

  10. Flare line impact polarization Na D2 589 nm line polarization in the 2001 June 15 flare

    Czech Academy of Sciences Publication Activity Database

    Hénoux, J. C.; Karlický, Marian

    2013-01-01

    Roč. 556, August (2013), A95/1-A95/8 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0103 Institutional support: RVO:67985815 Keywords : Sun * polarization * activity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  11. Polarized 3He gas circulating technologies for neutron analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Watt, David W. [Xemed, LLC, Durham, NH (United States)

    2017-10-02

    We outline our project to develop a circulating polarized helium-3 system for developing of large, quasi-continuously operating neutron analyzers. The project consisted of four areas: 1) Development of robust external cavity narrowed diode laser output with spectral line width < 0.17 nm and power of 2000 W. 2) Development of large glass polarizing cells using cell surface treatments to obtain long relaxation lifetimes. 3) Refinements of the circulation system with an emphasis on gas purification and materials testing. 4) Design/fabrication of a new polarizer system. 5) Preliminary testing of the new polarizer. 1. Developed Robust High-Power Narrowed Laser The optical configuration of the laser was discussed in the proposal and will be reviewed in the body of this report. The external cavity is configured to mutually lock the wavelength of five 10-bar laser stacks. All the logistical milestones were been met and critical subsystems- laser stack manifold and power divider, external laser cavity, and output telescope- were assembled and tested at low power. Each individual bar is narrowed to ~0.05 nm; when combined the laser has a cumulative spectral width of 0.17 nm across the entire beam due to variations of the bars central wavelength by +/- 0.1 nm, which is similar to that of Volume Bragg Grating narrowed laser bars. This configuration eliminates the free-running “pedestal” that occurs in other external cavity diode lasers. The full-scale laser was completed in 2016 and was used in both the older and newer helium polarizers. This laser was operated at 75% power for periods of up to 8 hours. Once installed, the spectrum became slightly broader (~.25 nm) at full power; this is likely due to very slight misalignments that occurred during handling. 2. Developed the processes to create uniform sintered sol-gel coatings. Our work on cell development comprised: 1) Production of large GE180 cells and explore different means of cell preparation, and 2) Development of

  12. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes

    Science.gov (United States)

    Dong, Guo-Xiang; Shi, Hong-Yu; Xia, Song; Li, Wei; Zhang, An-Xue; Xu, Zhuo; Wei, Xiao-Yong

    2016-08-01

    In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471292, 61331005, 61471388, 51277012, 41404095, and 61501365), the 111 Project, China (Grant No. B14040), the National Basic Research Program of China (Grant No. 2015CB654602), and the China Postdoctoral Science Foundation ( Grant No. 2015M580849).

  13. Effect of dynamic surface polarization on the oxidative stability of solvents in nonaqueous Li-O 2 batteries

    Science.gov (United States)

    Khetan, Abhishek; Pitsch, Heinz; Viswanathan, Venkatasubramanian

    2017-09-01

    Polarization-induced renormalization of the frontier energy levels of interacting molecules and surfaces can cause significant shifts in the excitation and transport behavior of electrons. This phenomenon is crucial in determining the oxidative stability of nonaqueous electrolytes in high-energy density electrochemical systems such as the Li-O2 battery. On the basis of partially self-consistent first-principles Sc G W0 calculations, we systematically study how the electronic energy levels of four commonly used solvent molecules, namely, dimethylsulfoxide (DMSO), dimethoxyethane (DME), tetrahydrofuran (THF), and acetonitrile (ACN), renormalize when physisorbed on the different stable surfaces of Li2O2 , the main discharge product. Using band level alignment arguments, we propose that the difference between the solvent's highest occupied molecular orbital (HOMO) level and the surface's valence-band maximum (VBM) is a refined metric of oxidative stability. This metric and a previously used descriptor, solvent's gas phase HOMO level, agree quite well for physisorbed cases on pristine surfaces where ACN is oxidatively most stable followed by DME, THF, and DMSO. However, this effect is intrinsically linked to the surface chemistry of the solvent's interaction with the surface states and defects, and depends strongly on their nature. We conclusively show that the propensity of solvent molecules to oxidize will be significantly higher on Li2O2 surfaces with defects as compared to pristine surfaces. This suggests that the oxidative stability of a solvent is dynamic and is a strong function of surface electronic properties. Thus, while gas phase HOMO levels could be used for preliminary solvent candidate screening, a more refined picture of solvent stability requires mapping out the solvent stability as a function of the state of the surface under operating conditions.

  14. Attractor hopping between polarization dynamical states in a vertical-cavity surface-emitting laser subject to parallel optical injection

    Science.gov (United States)

    Denis-le Coarer, Florian; Quirce, Ana; Valle, Angel; Pesquera, Luis; Rodríguez, Miguel A.; Panajotov, Krassimir; Sciamanna, Marc

    2018-03-01

    We present experimental and theoretical results of noise-induced attractor hopping between dynamical states found in a single transverse mode vertical-cavity surface-emitting laser (VCSEL) subject to parallel optical injection. These transitions involve dynamical states with different polarizations of the light emitted by the VCSEL. We report an experimental map identifying, in the injected power-frequency detuning plane, regions where attractor hopping between two, or even three, different states occur. The transition between these behaviors is characterized by using residence time distributions. We find multistability regions that are characterized by heavy-tailed residence time distributions. These distributions are characterized by a -1.83 ±0.17 power law. Between these regions we find coherence enhancement of noise-induced attractor hopping in which transitions between states occur regularly. Simulation results show that frequency detuning variations and spontaneous emission noise play a role in causing switching between attractors. We also find attractor hopping between chaotic states with different polarization properties. In this case, simulation results show that spontaneous emission noise inherent to the VCSEL is enough to induce this hopping.

  15. Polarized electric dipole moment of well-deformed reflection asymmetric nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    2012-01-01

    The expression for polarized electric dipole moment of well-deformed reflection asymmetric nuclei is obtained in the framework of liquid-drop model in the case of geometrically similar proton and neutron surfaces. The expression for polarized electric dipole moment consists of the first and second orders terms. It is shown that the second-order correction terms of the polarized electric dipole moment are important for well-deformed nuclei

  16. A note on polarized light from magnetars

    Energy Technology Data Exchange (ETDEWEB)

    Capparelli, L.M.; Damiano, A.; Polosa, A.D. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN, Rome (Italy); Maiani, L. [CERN, Theory Department, Geneva (Switzerland)

    2017-11-15

    In a recent paper it is claimed that vacuum birefringence has been experimentally observed for the first time by measuring the degree of polarization of visible light from a magnetar candidate, a neutron star with a magnetic field presumably as large as B ∝ 10{sup 13} G. The role of such a strong magnetic field is twofold. First, the surface of the star emits, at each point, polarized light with linear polarization correlated with the orientation of the magnetic field. Depending on the relative orientation of the magnetic axis of the star with the direction to the distant observer, a certain degree of polarization should be visible. Second, the strong magnetic field in the vacuum surrounding the star could enhance the effective degree of polarization observed: vacuum birefringence. We compare experimental data and theoretical expectations concluding that the conditions to support a claim of strong evidence of vacuum birefringence effects are not met. (orig.)

  17. Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces

    International Nuclear Information System (INIS)

    Petrishchev, Vitaly; Leonov, Sergey; Adamovich, Igor V

    2014-01-01

    Surface ionization wave discharges generated by high-voltage nanosecond pulses, propagating over a planar quartz surface and over liquid surfaces (distilled water and 1-butanol) have been studied in a rectangular cross section test cell. The discharge was initiated using a custom-made, alternating polarity, high-voltage nanosecond pulse plasma generator, operated at a pulse repetition rate of 100–500 Hz, with a pulse peak voltage and current of 10–15 kV and 7–20 A, respectively, a pulse FWHM of ∼100 ns, and a coupled pulse energy of 2–9 mJ/pulse. Wave speed was measured using a capacitive probe. ICCD camera images demonstrated that the ionization wave propagated predominantly over the quartz wall or over the liquid surface adjacent to the grounded waveguide placed along the bottom wall of the test cell. Under all experimental conditions tested, the surface plasma ‘sheet’ was diffuse and fairly uniform, both for positive and negative polarities. The parameters of ionization wave discharge propagating over distilled water and 1-butanol surfaces were close to those of the discharge over a quartz wall. No perturbation of the liquid surface by the discharge was detected. In most cases, the positive polarity surface ionization wave propagated at a higher speed and over a longer distance compared to the negative polarity wave. For all three sets of experiments (surface ionization wave discharge over quartz, water and 1-butanol), wave speed and travel distance decreased with pressure. Diffuse, highly reproducible surface ionization wave discharge was also observed over the liquid butanol–saturated butanol vapor interface, as well as over the distilled water–saturated water vapor interface, without buffer gas flow. No significant difference was detected between surface ionization discharges sustained using single-polarity (positive or negative), or alternating polarity high-voltage pulses. Plasma emission images yielded preliminary evidence of charge

  18. Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces

    Science.gov (United States)

    Gao, Xi; Yu, Xing-Yang; Cao, Wei-Ping; Jiang, Yan-Nan; Yu, Xin-Hua

    2016-12-01

    An ultrathin micro-split Jerusalem-cross metasurface is proposed in this paper, which can efficiently convert the linear polarization of electromagnetic (EM) wave into the circular polarization in ultra-wideband. By symmetrically employing two micro-splits on the horizontal arm (in the x direction) of the Jerusalem-cross structure, the bandwidth of the proposed device is significantly extended. Both simulated and experimental results show that the proposed metasurface is able to convert linearly polarized waves into circularly polarized waves in a frequency range from 12.4 GHz to 21 GHz, with an axis ratio better than 1 dB. The simulated results also show that such a broadband and high-performance are maintained over a wide range of incident angle. The presented polarization converter can be used in a number of areas, such as spectroscopy and wireless communications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61461016 and 61661012), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2014GXNSFAA118366, 2014GXNSFAA118283, and 2015jjBB7002), and the Innovation Project of Graduate Education of Guilin University of Electronic Technology, China (Grant No. 2016YJCX82).

  19. Polarization-resolved characterization of plasmon waves supported by an anisotropic metasurface

    DEFF Research Database (Denmark)

    Samusev, Anton; Mukhin, Ivan; Malureanu, Radu

    2017-01-01

    Optical metasurfaces have great potential to form a platform for manipulation of surface waves. A plethora of advanced surface-wave phenomena such as negative refraction, self-collimation and channeling of 2D waves can be realized through on-demand engineering of dispersion properties of a periodic...... metasurface. In this letter, we report on polarization-resolved measurement of dispersion of plasmon waves supported by an anisotropic metasurface. We demonstrate that a subdiffractive array of strongly coupled resonant plasmonic nanoparticles supports both TE and TM plasmon modes at optical frequencies...... polarization degree of freedom for surface waves, our results open new routes for designing planar on-chip devices for surface photonics....

  20. Efficient ionizer for polarized H- formation

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1985-01-01

    An ionizer is under development for a polarized H - source based on the resonant charge exchange reaction polarized H 0 + D - → polarized H - + D 0 . The polarized H 0 beam passes through the center of a magnetron surface-plasma source having an annular geometry, where it crosses a high current (approx.0.5 A), 200 eV D - beam. Calculations predict an H 0 → H - ionization efficiency of approx.7%, more than an order of magnitude higher than that obtained on present ground state atomic beam sources. In initial experiments using an unpolarized H 0 beam, H - currents in excess of 100 μA have been measured. While the ionization efficiency is now only about the same as other methods (Cs beam, for example), the results are encouraging since it appears that by injecting positive ions to improve the space-charge neutralization, and by improving the extraction optics, considerable gains in intensity will be made. We will then use this ionizer with a polarized H 0 beam, and measure the polarization of the resulting H - beam. If no depolarization is observed this ionizer will be combined with an atomic beam, cooled to 5 to 6 K, to give a polarized H - beam expected to be in the milliampere range for use in the AGS

  1. Method and apparatus for measuring surface movement of an object using a polarizing interferometer

    Science.gov (United States)

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-05-09

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.

  2. Scattering Polarization in Solar Flares

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Jiří; Heinzel, Petr

    2013-01-01

    Roč. 778, č. 1 (2013), L6/1-L6/6 ISSN 2041-8205 R&D Projects: GA ČR GAP209/12/1652; GA ČR GPP209/12/P741 Institutional support: RVO:67985815 Keywords : line formation * polarization * radiative transfer Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.602, year: 2013

  3. Polarized protons at the AGS

    International Nuclear Information System (INIS)

    Krisch, A.D.

    1981-01-01

    Various aspects of the project of modifying the Brookhaven AGS for the production of polarized proton beams are discussed. It is observed that pure spin state cross sections are of great importance in many investigations since differences between spin states are frequently significant. Financial and technical aspects of the modification of the Brookhaven accelerator are also discussed

  4. "POLAR-PALOOZA" and "International POLAR-PALOOZA": Taking Researchers on the Road to Engage Public Audiences across America, and Around the World

    Science.gov (United States)

    Haines-Stiles, G.; Akuginow, E.

    2010-12-01

    POLAR-PALOOZA and its companion project, "International POLAR-PALOOZA" shared the same central premise: that polar researchers, speaking for themselves, could be powerful communicators about the science and mission of the 4th International Polar Year, and could successfully engage a wide variety of public audiences across America and around the world. Supported for the US tour by NSF and NASA, and internationally by NSF alone, the project enlisted more than forty American researchers, and 14 polar scientists from Brazil, China and Australia, to participate in events at science centers and natural history museums, universities, public libraries and schools, and also for targeted outreach to special audiences such as young female researchers in Oklahoma, or the Downtown Rotary in San Diego. Evaluations by two different ISE groups found similar results domestically and internationally. When supported by HD video clips and presenting informally in teams of 3, 4, 5 and sometimes even 6 researchers as part of a fast-paced "show," the scientists themselves were almost always rated as among the most important aspects of the program. Significant understandings about polar science and global climate change resulted, along with a positive impression of the research undertaken during IPY. This presentation at Fall AGU 2010 will present results from the Summative Evaluation of both projects, show representative video clips of the public presentations, share photographs of some of the most dramatically varied venues and candid behind-the-scenes action, and share "Lessons Learned" that can be broadly applied to the dissemination of Earth and space science research. These include: collaboration with partner institutions is never easy. (Duh.) Authentic props (such as ice cores, when not trashed by TSA) make a powerful impression on audiences, and give reality to remote places and complex science. And, most importantly, that since 85% of Americans have never met a scientist, that

  5. South Polar Polygons

    Science.gov (United States)

    2005-01-01

    4 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polgyon-cracked surface, into which deep, somewhat kidney-bean-shaped pits have formed. These are landscapes of the martian south polar residual cap. This view was captured during May 2005. Location near: 86.9oS, 5.1oW Image width: 1.5 km (0.9 mi) Illumination from: upper left Season Southern Spring

  6. Investigations of the polarization behavior of quantum cascade lasers by Stokes parameters.

    Science.gov (United States)

    Janassek, Patrick; Hartmann, Sébastien; Molitor, Andreas; Michel, Florian; Elsäßer, Wolfgang

    2016-01-15

    We experimentally investigate the full polarization behavior of mid-infrared emitting quantum cascade lasers (QCLs) in terms of measuring the complete Stokes parameters, instead of only projecting them on a linear polarization basis. We demonstrate that besides the pre-dominant linear TM polarization of the emitted light as governed by the selection rules of the intersubband transition, small non-TM contributions, e.g., circularly polarized light, are present reflecting the birefringent behavior of the semiconductor quantum well waveguide. Surprisingly unique is the persistence of these polarization properties well below laser threshold. These investigations give further insight into understanding, manipulating, and exploiting the polarization properties of QCLs, both from a laser point of view and with respect toward applications.

  7. Land Surface Temperature- Comparing Data from Polar Orbiting and Geostationary Satellites

    Science.gov (United States)

    Comyn-Platt, E.; Remedios, J. J.; Good, E. J.; Ghent, D.; Saunders, R.

    2012-04-01

    Land Surface Temperature (LST) is a vital parameter in Earth climate science, driving long-wave radiation exchanges that control the surface energy budget and carbon fluxes, which are important factors in Numerical Weather Prediction (NWP) and the monitoring of climate change. Satellites offer a convenient way to observe LST consistently and regularly over large areas. A comparison between LST retrieved from a Geostationary Instrument, the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), and a Polar Orbiting Instrument, the Advanced Along Track Scanning Radiometer (AATSR) is presented. Both sensors offer differing benefits. AATSR offers superior precision and spatial resolution with global coverage but given its sun-synchronous platform only observes at two local times, ~10am and ~10pm. SEVIRI provides the high-temporal resolution (every 15 minutes) required for observing diurnal variability of surface temperatures but given its geostationary platform has a poorer resolution, 3km at nadir, which declines at higher latitudes. A number of retrieval methods are applied to the raw satellite data: First order coefficient based algorithms provided on an operational basis by the LandSAF (for SEVIRI) and the University of Leicester (for AATSR); Second order coefficient based algorithms put forward by the University of Valencia; and an optimal estimation method using the 1DVar software provided by the NWP SAF. Optimal estimation is an iterative technique based upon inverse theory, thus is very useful for expanding into data assimilation systems. The retrievals are assessed and compared on both a fine scale using in-situ data from recognised validation sites and on a broad scale using two 100x100 regions such that biases can be better understood. Overall, the importance of LST lies in monitoring daily temperature extremes, e.g. for estimating permafrost thawing depth or risk of crop damage due to frost, hence the ideal dataset would use a combination of observations

  8. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy.

    Science.gov (United States)

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-17

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al 2 O 3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al 2 O 3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al 2 O 3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N 2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  9. Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila.

    Science.gov (United States)

    Wernet, Mathias F; Velez, Mariel M; Clark, Damon A; Baumann-Klausener, Franziska; Brown, Julian R; Klovstad, Martha; Labhart, Thomas; Clandinin, Thomas R

    2012-01-10

    Linearly polarized light originates from atmospheric scattering or surface reflections and is perceived by insects, spiders, cephalopods, crustaceans, and some vertebrates. Thus, the neural basis underlying how this fundamental quality of light is detected is of broad interest. Morphologically unique, polarization-sensitive ommatidia exist in the dorsal periphery of many insect retinas, forming the dorsal rim area (DRA). However, much less is known about the retinal substrates of behavioral responses to polarized reflections. Drosophila exhibits polarotactic behavior, spontaneously aligning with the e-vector of linearly polarized light, when stimuli are presented either dorsally or ventrally. By combining behavioral experiments with genetic dissection and ultrastructural analyses, we show that distinct photoreceptors mediate the two behaviors: inner photoreceptors R7+R8 of DRA ommatidia are necessary and sufficient for dorsal polarotaxis, whereas ventral responses are mediated by combinations of outer and inner photoreceptors, both of which manifest previously unknown features that render them polarization sensitive. Drosophila uses separate retinal pathways for the detection of linearly polarized light emanating from the sky or from shiny surfaces. This work establishes a behavioral paradigm that will enable genetic dissection of the circuits underlying polarization vision. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    Directory of Open Access Journals (Sweden)

    Billy W. Day

    2010-11-01

    Full Text Available Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.

  11. On the mechanism of spin-dependent (e,2e) scattering from a ferromagnetic surface

    International Nuclear Information System (INIS)

    Samarin, S N; Sergeant, A D; Pravica, L; Cvejanovic, D; Wilkie, P; Guagliardo, P; Williams, J F; Artamonov, O M; Suvorova, A A

    2009-01-01

    A simple model is suggested for a qualitative analysis of spin-dependent (e,2e) reaction on a ferromagnetic surface. The model is based on the scattering of the primary electron with the average spin projection 1 > by the valence electron with the average spin projection 2 >. To test the model the energy distributions of correlated electron pairs are measured for parallel and anti-parallel orientations of the magnetic moment of the cobalt film and polarization vector of the incident beam. The proposed model explains qualitatively the spin-asymmetry of the measured binding energy spectrum.

  12. The first acceleration test of polarized protons in KEK PS

    International Nuclear Information System (INIS)

    Hiramatsu, Shigenori; Sato, Hikaru; Toyama, Takeshi

    1984-03-01

    The outline of the polarized proton acceleration project at KEK and the results of the first acceleration test are described. Depolarization in the 500 MeV booster synchrotron was investigated as the first step of this program. The beam polarization was measured in the 20 MeV beam transport line from the linac to the booster and in the main ring at the injection energy. About 40 % of the linac beam polarization was kept in the main ring. This acceleration test encouraged us to proceed with this program. (author)

  13. Volume sums of polar Blaschke–Minkowski homomorphisms

    Indian Academy of Sciences (India)

    In this article, we establish Minkowski and Aleksandrov–Fenchel type inequalities for the volume sum of polars of Blaschke–Minkowski homomorphisms. Keywords. Blaschke–Minkowski homomorphism; volume differences; volume sum; projection body operator. 2010 Mathematics Subject Classification. 52A40, 52A30. 1.

  14. Surfaced-based investigations plan, Volume 4: Yucca Mountain Project

    International Nuclear Information System (INIS)

    1988-12-01

    This document represents a detailed summary of design plans for surface-based investigations to be conducted for site characterization of the Yucca Mountain site. These plans are current as of December 1988. The description of surface-based site characterization activities contained in this document is intended to give all interested parties an understanding of the current plans for site characterization of Yucca Mountain. The maps presented in Volume 4 are products of the Geographic Information System (GIS) being used by the Yucca Mountain Project. The ARC/INFO GIS software, developed by Environmental Systems Research Institute, was used to digitize and process these SBIP maps. The maps were prepared using existing US Geological Survey (USGS) maps as a planimetric base. Roads and other surface features were interpreted from a variety of sources and entered into the GIS. Sources include the USGS maps, 1976 USGS orthophotoquads and aerial photography, 1986 and 1987 aerial photography, surveyed coordinates of field sites, and a combination of various maps, figures, descriptions and approximate coordinates of proposed locations for future activities

  15. Polarity in GaN and ZnO: Theory, measurement, growth, and devices

    Science.gov (United States)

    Zúñiga-Pérez, Jesús; Consonni, Vincent; Lymperakis, Liverios; Kong, Xiang; Trampert, Achim; Fernández-Garrido, Sergio; Brandt, Oliver; Renevier, Hubert; Keller, Stacia; Hestroffer, Karine; Wagner, Markus R.; Reparaz, Juan Sebastián; Akyol, Fatih; Rajan, Siddharth; Rennesson, Stéphanie; Palacios, Tomás; Feuillet, Guy

    2016-12-01

    The polar nature of the wurtzite crystalline structure of GaN and ZnO results in the existence of a spontaneous electric polarization within these materials and their associated alloys (Ga,Al,In)N and (Zn,Mg,Cd)O. The polarity has also important consequences on the stability of the different crystallographic surfaces, and this becomes especially important when considering epitaxial growth. Furthermore, the internal polarization fields may adversely affect the properties of optoelectronic devices but is also used as a potential advantage for advanced electronic devices. In this article, polarity-related issues in GaN and ZnO are reviewed, going from theoretical considerations to electronic and optoelectronic devices, through thin film, and nanostructure growth. The necessary theoretical background is first introduced and the stability of the cation and anion polarity surfaces is discussed. For assessing the polarity, one has to make use of specific characterization methods, which are described in detail. Subsequently, the nucleation and growth mechanisms of thin films and nanostructures, including nanowires, are presented, reviewing the specific growth conditions that allow controlling the polarity of such objects. Eventually, the demonstrated and/or expected effects of polarity on the properties and performances of optoelectronic and electronic devices are reported. The present review is intended to yield an in-depth view of some of the hot topics related to polarity in GaN and ZnO, a fast growing subject over the last decade.

  16. Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

    International Nuclear Information System (INIS)

    Alves, Sofia A.; Patel, Sweetu B.; Sukotjo, Cortino; Mathew, Mathew T.; Filho, Paulo N.; Celis, Jean-Pierre

    2017-01-01

    Highlights: • A new surface modification methodology for bio-functionalization of TiO2 NTs is addressed • Bone-like structured TiO2 nanotubular surfaces containing Ca and P were synthesized. • Ca/P-doped TiO2 NTs enhanced adhesion and proliferation of osteoblastic-like cells. • The bio-functionalization granted improved bio-electrochemical stability to TiO2 NTs. - Abstract: The modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO 2 ) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO 2 nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO 2 nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO 2 nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO 3 , Ca 3 (PO 4 ) 2 , CaHPO 4 and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated implants.

  17. Colliding-beams polarized ion source

    International Nuclear Information System (INIS)

    Trainor, T.A.; Douglas, J.G.; Badt, D.; Christiensen, C.; Herron, A.; Leach, D.; Olsen, J.; Osborne, J.L.; Zeps, V.

    1985-01-01

    This ion source was to be purchased from ANAC, Inc., a New Zealand-based supplier of beam optics hardware and atomic beam polarized ion sources in December 1982. Shortly before scheduled delivery ANAC went into receivership. During 1983 little work was done on the project as various steps were taken by us, first to get the ion source completed at ANAC, and then, failing that, to obtain the existing parts. In early 1984 we began work to finish the ion source in Seattle. The project is nearly complete, and this article presents progress to date. 2 refs

  18. Polar ocean stratification in a cold climate.

    Science.gov (United States)

    Sigman, Daniel M; Jaccard, Samuel L; Haug, Gerald H

    2004-03-04

    The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling.

  19. Radiative Forcing from Emissivity Response in Polar Regions

    Science.gov (United States)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Chen, X.; Yang, P.; Kuo, C.

    2016-12-01

    A detailed assessment of the radiative balance and its controlling factors in polar regions is a critical prerequisite for understanding and predicting the polar amplification of climate change. Accordingly, we investigate the role of infrared surface emissivity in polar regions as a potential feedback mechanism following Feldman et al, 2014. In this work, we investigate the climatic response of the Community Earth System Model (CESM) with spectral emissivity values that are implemented in a physically consistent manner for non-vegetated surfaces. In a control model run where 1850 CO2 volume mixing ratio (vmr) is fixed, the updated spectral emissivity values are imposed for modified surface boundary conditions in the atmospheric model component. Climatic stability in the emergent globally averaged surface temperature is observed on decadal scales for an unforced (control) run. Analytic kernels representing the change in top of the atmosphere OLR given changes in emissivity are calculated on-line during the model runs, incorporating spatially and temporally varied humidity profiles impactful to transmission. Globally averaged kernels of the sensitivity of OLR to surface emissivity calculated for control and ramped CO2 runs exhibit temporal evolution with statistically significant differences in shape. Additionally, kernel and spectrally-averaged emissivity differences between monthly-averaged maps of control and ramped runs demonstrate a seasonal cycle. Similar to the treatment of cryosphere radiative forcing in Flanner et al, 2011, we define emissivity response as the product of the emissivity kernel and the change in month-to-month emissivity. At the end of 20th century, the 10-year emissivity forcing averaged at latitudes > 60°, is found to be negative (positive) in January (July), due to increasing (decreasing) sea-ice. These findings indicate that differences in surface emissivity between frozen and unfrozen surfaces decrease wintertime and increase summertime

  20. Simultaneously improving optical absorption of both transverse-electric polarized and transverse-magnetic polarized light for organic solar cells with Ag grating used as transparent electrode

    Directory of Open Access Journals (Sweden)

    Yongbing Long

    2014-08-01

    Full Text Available Theoretical simulations are performed to investigate optical performance of organic solar cells with Ag grating electrode. It is demonstrated that optical absorption for both transverse-electric (TE polarized and transverse-magnetic(TM polarized light is simultaneously improved when compared with that for the device without the Ag grating. The improvement is respectively attributed to the resonance and the surface plasmon polaritons within the device. After an additional WO3 layer is capped on the Ag grating, absorption of TE-polarized light is further improved due to resonance of double microcavities within the device, and absorption of TM-polarized light is improved by the combined effects of the microcavity resonance and the surface plasmon polaritons. Correspondingly, the short current density for randomly polarized light is improved by 18.1% from that of the device without the Ag grating. Finally, it is demonstrated that high transmission may not be an essential prerequisite for metallic gratings when they are used as transparent electrode since absorption loss caused by low transmission can be compensated by using a capping layer to optimize optical resonance of the WMC structure within the device.

  1. NPOESS Preparatory Project (NPP) Environmental Products

    Science.gov (United States)

    Grant, K. D.; Smith, D. C.

    2011-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, the Joint Polar Satellite System replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the ground processing component of both POES and the Defense Meteorological Satellite Program (DMSP) replacement, known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The Joint Polar Satellite System satellite will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for the Joint Polar Satellite System is known as the Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and the Interface Data Processing Segment (IDPS). Both are developed by Raytheon Intelligence and Information Systems (IIS). The Interface Data Processing Segment will process Joint Polar Satellite System and Defense Weather Satellite System satellite data to provide environmental data products (aka, Environmental Data Records or EDRs) to the National Oceanic and Atmospheric Administration and Department of Defense processing centers operated by the United States government. The Interface Data Processing Segment will process Environmental Data Records beginning with the NPOESS Preparatory Project (NPP) and continue through the lifetime of the Joint Polar Satellite System and Defense Weather Satellite System programs. Under the National Polar-orbiting Operational Environmental

  2. Projective geometry and projective metrics

    CERN Document Server

    Busemann, Herbert

    2005-01-01

    The basic results and methods of projective and non-Euclidean geometry are indispensable for the geometer, and this book--different in content, methods, and point of view from traditional texts--attempts to emphasize that fact. Results of special theorems are discussed in detail only when they are needed to develop a feeling for the subject or when they illustrate a general method. On the other hand, an unusual amount of space is devoted to the discussion of the fundamental concepts of distance, motion, area, and perpendicularity.Topics include the projective plane, polarities and conic sectio

  3. Integrated surface management for pipeline construction: The Mid-America Pipeline Company Four Corners Project

    Science.gov (United States)

    Maria L. Sonett

    1999-01-01

    Integrated surface management techniques for pipeline construction through arid and semi-arid rangeland ecosystems are presented in a case history of a 412-mile pipeline construction project in New Mexico. Planning, implementation and monitoring for restoration of surface hydrology, soil stabilization, soil cover, and plant species succession are discussed. Planning...

  4. Scattering of polarized low-energy electrons by ferromagnetic metals

    International Nuclear Information System (INIS)

    Helman, J.S.

    1981-01-01

    A source of spin polarized electrons with remarkable characteristics based on negative electron affinity (NEA) GaAs has recently been developed. It constitutes a unique tool to investigate spin dependent interactions in electron scattering processes. The characteristics and working principles of the source are briefly described. Some theoretical aspects of the scattering of polarized low-energy electrons by ferromagnetic metals are discussed. Finally, the results of the first polarized low-energy electron diffraction experiment using the NEA GaAs source are reviewed; they give information about the surface magnetization of ferromagnetic Ni (110). (Author) [pt

  5. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    Energy Technology Data Exchange (ETDEWEB)

    Oosterbeek, Reece N., E-mail: reece.oosterbeek@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand); Seal, Christopher K. [Light Metals Research Centre, The University of Auckland, Private Bag 92019 (New Zealand); Hyland, Margaret M. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand)

    2014-12-01

    Highlights: • DLC coatings were modified by Ar{sup +} ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp{sup 2} content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar{sup +} ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ{sub S}{sup p})

  6. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    International Nuclear Information System (INIS)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-01-01

    Highlights: • DLC coatings were modified by Ar + ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp 2 content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar + ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ S p )

  7. Rebuttal of "Polar bear population forecasts: a public-policy forecasting audit"

    Science.gov (United States)

    Steven C. Amstrup; Hal Caswell; Eric DeWeaver; Ian Stirling; David C. Douglas; Bruce G. Marcot; Christine M. Hunter

    2009-01-01

    Observed declines in the Arctic sea ice have resulted in a variety of negative effects on polar bears (Ursus maritimus). Projections for additional future declines in sea ice resulted in a proposal to list polar bears as a threatened species under the United States Endangered Species Act. To provide information for the Department of the Interior...

  8. Performance study of the gamma-ray bursts polarimeter POLAR

    Science.gov (United States)

    Sun, J. C.; Wu, B. B.; Bao, T. W.; Batsch, T.; Bernasconi, T.; Britvitch, I.; Cadoux, F.; Cernuda, I.; Chai, J. Y.; Dong, Y. W.; Gauvin, N.; Hajdas, W.; He, J. J.; Kole, M.; Kong, M. N.; Kong, S. W.; Lechanoine-Leluc, C.; Li, Lu; Liu, J. T.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Produit, N.; Rapin, D.; Rutczynska, A.; Rybka, D.; Shi, H. L.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wen, X.; Xiao, H. L.; Xiong, S. L.; Xu, H. H.; Xu, M.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zwolinska, A.

    2016-07-01

    The Gamma-ray Burst Polarimeter-POLAR is a highly sensitive detector which is dedicated to the measurement of GRB's polarization with a large effective detection area and a large field of view (FOV). The optimized performance of POLAR will contribute to the capture and measurement of the transient sources like GRBs and Solar Flares. The detection energy range of POLAR is 50 keV 500 keV, and mainly dominated by the Compton scattering effect. POLAR consists of 25 detector modular units (DMUs), and each DMU is composed of low Z material Plastic Scintillators (PS), multi-anode photomultipliers (MAPMT) and multi-channel ASIC Front-end Electronics (FEE). POLAR experiment is an international collaboration project involving China, Switzerland and Poland, and is expected to be launched in September in 2016 onboard the Chinese space laboratory "Tiangong-2 (TG-2)". With the efforts from the collaborations, POLAR has experienced the Demonstration Model (DM) phase, Engineering and Qualification Model (EQM) phase, Qualification Model (QM) phase, and now a full Flight Model (FM) of POLAR has been constructed. The FM of POLAR has passed the environmental acceptance tests (thermal cycling, vibration, shock and thermal vacuum tests) and experienced the calibration tests with both radioactive sources and 100% polarized Gamma-Ray beam at ESRF after its construction. The design of POLAR, Monte-Carlo simulation analysis, as well as the performance test results will all be introduced in this paper.

  9. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    International Nuclear Information System (INIS)

    Figuera, Juan de la; Vergara, Lucía; N'Diaye, Alpha T.; Quesada, Adrian; Schmid, Andreas K.

    2013-01-01

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along directions. ► Magnetic domain wall structures include wide Néel-caps

  10. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); Vergara, Lucía [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); N' Diaye, Alpha T. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Quesada, Adrian [Instituto de Cerámica y Vidrio, CSIC, Calle Kelsen 5, 28049, Madrid (Spain); Schmid, Andreas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-07-15

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface <110> directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along <110> directions. ► Magnetic domain wall structures include wide Néel-caps.

  11. Optical tolerances for the PICTURE-C mission: error budget for electric field conjugation, beam walk, surface scatter, and polarization aberration

    Science.gov (United States)

    Mendillo, Christopher B.; Howe, Glenn A.; Hewawasam, Kuravi; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya

    2017-09-01

    The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph. Four leakage sources owing to the optical fabrication tolerances and optical coatings are: electric field conjugation (EFC) residuals, beam walk on the secondary and tertiary mirrors, optical surface scattering, and polarization aberration. Simulations and analysis of these four leakage sources for the PICTUREC optical design are presented here.

  12. Femtosecond laser-induced surface wettability modification of polystyrene surface

    Science.gov (United States)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  13. Protein arrangement on modified diamond-like carbon surfaces - An ARXPS study

    Science.gov (United States)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-12-01

    Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar+ ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC-protein interface; at increasing takeoff angle (further from to DLC-protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC-protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γSp).

  14. Bringing Antarctic Weddell seals to the classroom through PolarTREC

    Science.gov (United States)

    Eilers, A. A.

    2017-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is an NSF funded professional development opportunity in which K-12 teachers and informal educators participated in hands-on field research experiences in the Polar Regions. The program goal is to invigorate polar science education and understanding by bringing together educators and polar researchers. This unique opportunity for educators has two main components: a 4-6 week field experience and a classroom/community connection piece. In preparation for these experiences, museum educator Alex Eilers and science team lead Dr. Jennifer Burns planned, developed and executed extensive outreach efforts for both students and the community to highlight the Weddell seal research project during the 2012, 2014 and 2016 seasons. The following outreach activities summarize the team's most successful attempts at engaging schoolchildren, teachers and the public, creating a broader impact of the Weddell seal scientific project. On-line Daily journal entries were uploaded to the PolarTREC website encouraging an active interaction between the science team and participants. A Polar Connect event offered participants a real-time, interactive internet presentation with the team. Schools A multitude of on-site presentations were made in classrooms, at teacher workshops and faculty meetings. Two 45 minute labs were developed for students visiting the museum, Animals of the Antarctic and Journey to the Poles, the latter is now included in our ongoing program repertoire. Two travelling kits, Extreme Cold Weather Gear and The Weddell Seal, were developed by museum staff and continue to circulate through schools. A multi-lesson educational module was developed by museum staff to bridge the gap between the scientific research conducted in the field and students in grades 3-8. It contains curriculum-based lessons, field data and strategic methods to assist students in analyzing the data. Community Community-wide interest

  15. Polarization Study for NLC Positron Source Using EGS4

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C

    2000-09-20

    SLAC is exploring a polarized positron source to study new physics for the NLC project. The positron source envisioned in this paper consists of a polarized electron source, a 50-MeV electron accelerator, a thin target less-than-or-equal-to 0.2 radiation length for positron production, and a capture system for high-energy, small angular divergence positrons. The EGS4 code was used to study the yield, energy spectra, emission-angle distribution, and the mean polarization of the positrons emanating from W-Re and Ti targets hit by longitudinally polarized electron and photon beams. To account for polarization within the EGS4 code a method devised by Flottmann was used, which takes into account polarization transfer for pair production, bremsstrahlung, and Compton interactions. A mean polarization of 0.85 for positrons with energies greater than 25 MeV was obtained. Most of the high-energy positrons were emitted within a forward angle of 20 degrees. The yield of positrons above 25 MeV per incident photon was 0.034, which was about 70 times higher than that obtained with an electron beam.

  16. Invisibility cloak with image projection capability.

    Science.gov (United States)

    Banerjee, Debasish; Ji, Chengang; Iizuka, Hideo

    2016-12-13

    Investigations of invisibility cloaks have been led by rigorous theories and such cloak structures, in general, require extreme material parameters. Consequently, it is challenging to realize them, particularly in the full visible region. Due to the insensitivity of human eyes to the polarization and phase of light, cloaking a large object in the full visible region has been recently realized by a simplified theory. Here, we experimentally demonstrate a device concept where a large object can be concealed in a cloak structure and at the same time any images can be projected through it by utilizing a distinctively different approach; the cloaking via one polarization and the image projection via the other orthogonal polarization. Our device structure consists of commercially available optical components such as polarizers and mirrors, and therefore, provides a significant further step towards practical application scenarios such as transparent devices and see-through displays.

  17. The copepod Calanus spp. (Calanidae) is repelled by polarized light

    Science.gov (United States)

    Lerner, Amit; Browman, Howard I.

    2016-10-01

    Both attraction and repulsion from linearly polarized light have been observed in zooplankton. A dichotomous choice experiment, consisting of plankton light traps deployed in natural waters at a depth of 30 m that projected either polarized or unpolarized light of the same intensity, was used to test the hypothesis that the North Atlantic copepod, Calanus spp., is linearly polarotactic. In addition, the transparency of these copepods, as they might be seen by polarization insensitive vs. sensitive visual systems, was measured. Calanus spp. exhibited negative polarotaxis with a preference ratio of 1.9:1. Their transparency decreased from 80% to 20% to 30% in the unpolarized, partially polarized, and electric (e-) vector orientation domains respectively - that is, these copepods would appear opaque and conspicuous to a polarization-sensitive viewer looking at them under conditions rich in polarized light. Since the only difference between the two plankton traps was the polarization cue, we conclude that Calanus spp. are polarization sensitive and exhibit negative polarotaxis at low light intensities (albeit well within the sensitivity range reported for copepods). We hypothesize that Calanus spp. can use polarization vision to reduce their risk of predation by polarization-sensitive predators and suggest that this be tested in future experiments.

  18. Photo electron emission microscopy of polarity-patterned materials

    International Nuclear Information System (INIS)

    Yang, W-C; Rodriguez, B J; Gruverman, A; Nemanich, R J

    2005-01-01

    This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO 3 (LNO) single crystals and PbZrTiO 3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ∼4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ∼4.6 eV at the negative domain and ∼6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ∼300 deg. C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions

  19. Photo electron emission microscopy of polarity-patterned materials

    Science.gov (United States)

    Yang, W.-C.; Rodriguez, B. J.; Gruverman, A.; Nemanich, R. J.

    2005-04-01

    This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO3 (LNO) single crystals and PbZrTiO3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ~4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ~4.6 eV at the negative domain and ~6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ~300 °C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions.

  20. Discovery of highly spin-polarized conducting surface states in the strong spin-orbit coupling semiconductor Sb2Se3

    Science.gov (United States)

    Das, Shekhar; Sirohi, Anshu; Kumar Gupta, Gaurav; Kamboj, Suman; Vasdev, Aastha; Gayen, Sirshendu; Guptasarma, Prasenjit; Das, Tanmoy; Sheet, Goutam

    2018-06-01

    Majority of the A2B3 -type chalcogenide systems with strong spin-orbit coupling (SOC), such as Bi2Se3,Bi2Te3 , and Sb2Te3 , etc., are topological insulators. One important exception is Sb2Se3 where a topological nontrivial phase was argued to be possible under ambient conditions, but such a phase could be detected to exist only under pressure. In this paper, we show that Sb2Se3 like Bi2Se3 displays a generation of highly spin-polarized current under mesoscopic superconducting point contacts as measured by point-contact Andreev reflection spectroscopy. In addition, we observe a large negative and anisotropic magnetoresistance of the mesoscopic metallic point contacts formed on Sb2Se3 . Our band-structure calculations confirm the trivial nature of Sb2Se3 crystals and reveal two trivial surface states one of which shows large spin splitting due to Rashba-type SOC. The observed high spin polarization and related phenomena in Sb2Se3 can be attributed to this spin splitting.

  1. Polarization dependent femtosecond laser modification of MBE-grown III-V nanostructures on silicon

    OpenAIRE

    Zandbergen, Sander R.; Gibson, Ricky; Amirsolaimani, Babak; Mehravar, Soroush; Keiffer, Patrick; Azarm, Ali; Kieu, Khanh

    2017-01-01

    We report a novel, polarization dependent, femtosecond laser-induced modification of surface nanostructures of indium, gallium, and arsenic grown on silicon via molecular beam epitaxy, yielding shape control from linear and circular polarization of laser excitation. Linear polarization causes an elongation effect, beyond the dimensions of the unexposed nanostructures, ranging from 88 nm to over 1 um, and circular polarization causes the nanostructures to flatten out or form loops of material,...

  2. La-doped BaTiO3 heterostructures: Compensating the polarization discontinuity

    Directory of Open Access Journals (Sweden)

    D. P. Kumah

    2013-12-01

    Full Text Available We demonstrate a route to manipulate the polarization and internal electric field of a complex oxide heterostructure using a layering sequence based on the LaAlO3-SrTiO3 interface. By combining sensitive atomic-level mapping of the structure using direct x-ray phase-retrieval methods with theoretical modeling of the electrostatic charge and polarization, we have devised a novel single-domain polar heterostructure. We find that ionic rearrangement results in strain and free energy minimization, and eliminates the polarization discontinuity leading to a two-fold increase of the spontaneous polarization towards the surface of an ultra-thin single-domain BaTiO3 film.

  3. Characterization of microenvironment polarity and solvent accessibility of polysilsesquioxane xerogels by the fluorescent probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Shea, K.J.; Zhu, H.D. [Univ., of California, Irvine, CA (United States). Dept. of Chemistry; Loy, D.A. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    Poly (1, 4 bis(triethoxysilyl)benzene) (PTESB), a representative of a new type of organic-inorganic hybrid polysilsesquioxane material, was characterized by fluorescence spectroscopy for both microenvironmental polarity and solvent accessibility. A dansyl fluorescent molecule was incorporated into the bulk as well as onto the surface of both PTESB and silica materials. Information about the microenvironment polarity and accessibility of PTESB to various organic solvents was determined and compared to that of silica gel. This study found that both the bulk and surface of PTESB are less polar than that of the silica material. The silica material is accessible to polar solvents and water, while YMB is accessible to polar solvents but not to water. The hydrophobicity of PTESB differentiates these new materials from silica gel.

  4. Proceedings of the workshop on photocathodes for polarized electron sources for accelerators

    International Nuclear Information System (INIS)

    Chatwell, M.; Clendenin, J.; Maruyama, T.; Schultz, D.

    1994-04-01

    Application of the GaAs polarized electron source to studies of surface magnetism; thermal stability of Cs on NES III-V-Photocathodes and its effect on quantum efficiency; AFEL accelerator; production and detection of SPIN polarized electrons; emittance measurements on a 100-keV beam from a GaAs photocathode electron gun; modern theory of photoemission and its applications to practical photocathodes; experimental studies of the charge limit phenomenon in GaAs photocathodes; new material for photoemission electron source; semiconductor alloy InGaAsP grown on GaAs substrate; NEA photocathode surface preparation; technology and physics; metalorganic chemical vapor deposition of GaAs-GaAsP spin-polarized photocathodes; development of photocathodes injectors for JLC-ATF; effect of radiation trapping on polarization of photoelectrons from semiconductors; and energy analysis of electrons emitted by a semiconductor photocathode

  5. Simulating polarized light scattering in terrestrial snow based on bicontinuous random medium and Monte Carlo ray tracing

    International Nuclear Information System (INIS)

    Xiong, Chuan; Shi, Jiancheng

    2014-01-01

    To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing. -- Highlights: • Bicontinuous random medium were used for real snow microstructure modeling. • Photon tracing technique with polarization status tracking ability was applied. • SSA–albedo relationship of snow is close to that of sphere based medium. • Validation of albedo and BRDF showed good results. • Validation of polarized reflectance showed good agreement with experiment data

  6. Communicating polar sciences to school children through a scientific expedition

    Science.gov (United States)

    Lacarra, Maite; Lamarque, Gaelle; Koenig, Zoé; Bourgain, Pascaline; Mathilde Thierry, Anne

    2015-04-01

    APECS-France, the French national committee of the Association of Polar Early Career Scientists (APECS), was created in 2013 to improve the dissemination of polar sciences towards the general public and school children in particular, through activities developed in French for French schools. During the autumn of 2014, a young polar oceanographer from the University Pierre and Marie Curie, Zoé Koenig, participated in an expedition on board a sailing vessel in the Southern Ocean. APECS-France set up a new education and outreach project called "Zoé en Expé". Using different media, about 800 children, aged 6 to 12, and from 40 schools, were actively involved in the project. Interactions between Zoé and the students occurred before, during, and after the expedition, through a newsletter, a blog updated in real-time during the expedition, webinars (interactive video-conferences), and visits in classrooms when possible. Teachers were given a list of websites dedicated to polar and oceanographic science outreach and activities adapted to the age and level of the students were offered. Different activities were developed around the expedition, depending on teachers' objectives and children affinities. In particular, students were able to relate to the expedition by imagining a day in the life of Chippy, the mascot of the expedition. They were then asked to draw and/or write Chippy's adventures. APECS-France is now planning to edit a children's book using students' drawings as well as photographs taken during the expedition. Older students were also able to follow in real-time sensors released in the Southern Ocean by Zoé, measuring salinity and temperature. Throughout this 3-month project, children were able to study a wide range of topics (oceanography, biology, history, geography…). The expedition and the educational project allowed raising the awareness of children about the fragile and badly known Antarctic environment.

  7. Plasmaspheric hiss properties: Observations from Polar

    Czech Academy of Sciences Publication Activity Database

    Tsurutani, B. T.; Falkowski, B. J.; Pickett, J. S.; Santolík, Ondřej; Lakhina, G. S.

    2015-01-01

    Roč. 120, č. 1 (2015), s. 414-431 ISSN 2169-9380 R&D Projects: GA ČR GAP205/10/2279 Institutional support: RVO:68378289 Keywords : plasmasphere * hiss * Polar Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.318, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020518/abstract

  8. Effect of silicon, tantalum, and tungsten doping and polarization on bioactivity of hydroxyapatite

    Science.gov (United States)

    Dhal, Jharana

    Hydroxyapatite (HAp) ceramics has important applications as bone graft because of the structural and compositional similarities with bone tissue. However, inferior osteogenic capacity to bone and poor mechanical properties have been identified to be major disadvantages of synthetic HAp compared to the living bone tissue. The objective of the current study is to evaluate the effect of doping with higher valent cations (Tungsten, tantalum, and silicon) and polarization or combination of both on change in property of doped HAp and subsequent impact its bioactivity. In vitro study with human osteoblast cells was used to investigate the influences of doping and polarization on bone cell-materials interactions. The bioactivity of doped HAp was compared with pure HAp. Effect of doping and polarization on the change in HAp was investigated by monitoring change in mineral phases, stored charge, and activation energy of HAp. Activation energy of depolarization was used to explain the possible mechanism of polarization in doped samples. Bioactivity of HAp increased when doped with tantalum and tungsten. Polarization further increased the bioactivity of tungsten- and tantalum-doped samples. Increase in bioactivity on polarized and doped samples was attributed to increase in surface energy and increase in surface wettability. Whereas, an increase in bioactivity on doped unpolarized surface was attributed to change in microstructure. Polarized charge calculated from TSDC indicates that polarized charge decreases on tantalum- and tungsten-doped HAp. The decrease in polarized charge was attributed to the presence of significant amount of different phases that may hinder the ionic motion in doped samples. However, for silicon-doped HAp, TSDC study showed no difference in the mechanism of polarization between doped and undoped samples. Increase in silicon doping decreased the grain size though mechanism is not affected by grain size. Total stored charge decreased with increase in

  9. PSI: Very slow polarized muons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    At the 'pion factory' of the Swiss Paul Scherrer Institute, a collaboration of PSI, Heidelberg and Zurich (ETH) has recently produced intense beams of positive muons which have kinetic energies as low as 10 eV and with complete polarization (spin orientation). The new results were achieved at a surface muon channel, transporting positive muons from the decay of positive pions stopped at the surface of a pion production target. Surface muons with 4 MeV kinetic energy were transported by a conventional secondary beam channel and partially stopped in a moderator consisting of a layer of solidified noble gas deposited on a cold metallic substrate

  10. Polarization holographic recording in Disperse Red1 doped polyurethane polymer film

    Energy Technology Data Exchange (ETDEWEB)

    Aleksejeva, J; Gerbreders, A; Gertners, U; Reinfelde, M; Teteris, J, E-mail: aleksejeva.jelena@gmail.com [Institute of Solid State Physics, University of Latvia, Kengaraga street 8, Riga (Latvia)

    2011-06-23

    In this report holographic recording of polarisation and surface relief gratings in Disperse Red 1 (DR1) doped polyurethane polymer films was studied. In this material DR1 is chemically bounded to polyurethane polymer main chain. Polarization holographic recording was performed by two orthogonal circularly polarized 532 nm laser beams. Photoinduced birefringence is a precondition for polarization holograms recording, therefore a detailed study of a photoinduced birefringence and changes of optical properties was performed. The lasers with wavelengths of 375nm, 448nm, 532 nm and 632.8 nm were used as pumping beam for sample excitation. The photoinduced birefringence {Delta}n was measured at 532 nm and 632.8 nm wavelengths. The photoinduced birefringence dependence on the pumping beam wavelength and intensity was investigated. Surface relief grating (SRG) formation was observed during polarization holographic recording process. A profile of SRG was studied by AFM. A relationship between SRG formation and photoinduced birefringence has been discussed.

  11. Efficient ionizer for polarized H/sup -/ formation

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.G.

    1985-01-01

    An ionizer is under development for a polarized H/sup -/ source based on the resonant charge exchange reaction polarized H/sup 0/ + D/sup -/ ..-->.. polarized H/sup -/ + D/sup 0/. The polarized H/sup 0/ beam passes through the center of a magnetron surface-plasma source having an annular geometry, where it crosses a high current (approx.0.5 A), 200 eV D/sup -/ beam. Calculations predict an H/sup 0/ ..-->.. H/sup -/ ionization efficiency of approx.7%, more than an order of magnitude higher than that obtained on present ground state atomic beam sources. In initial experiments using an unpolarized H/sup 0/ beam, H/sup -/ currents in excess of 100 ..mu..A have been measured. While the ionization efficiency is now only about the same as other methods (Cs beam, for example), the results are encouraging since it appears that by injecting positive ions to improve the space-charge neutralization, and by improving the extraction optics, considerable gains in intensity will be made. We will then use this ionizer with a polarized H/sup 0/ beam, and measure the polarization of the resulting H/sup -/ beam. If no depolarization is observed this ionizer will be combined with an atomic beam, cooled to 5 to 6 K, to give a polarized H/sup -/ beam expected to be in the milliampere range for use in the AGS.

  12. Multi-band circular polarizer based on a twisted triple split-ring resonator

    International Nuclear Information System (INIS)

    Wu Song; Huang Xiao-Jun; Yang He-Lin; Xiao Bo-Xun; Jin Yan

    2014-01-01

    A multi-band circular polarizer using a twisted triple split-ring resonator (TSRR) is presented and studied numerically and experimentally. At four distinct resonant frequencies, the incident linearly polarized wave can be transformed into left/right-handed circularly polarized waves. Numerical simulation results show that a y-polarized wave can be converted into a right-handed circularly polarized wave at 5.738 GHz and 9.218 GHz, while a left-handed circularly polarized wave is produced at 7.292 GHz and 10.118 GHz. The experimental results are in agreement with the numerical results. The surface current distributions are investigated to illustrate the polarization transformation mechanism. Furthermore, the influences of the structure parameters of the circular polarizer on transmission spectra are discussed as well. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Role of polarized G protein signaling in tracking pheromone gradients

    Science.gov (United States)

    McClure, Allison W.; Minakova, Maria; Dyer, Jayme M.; Zyla, Trevin R.; Elston, Timothy C.; Lew, Daniel J.

    2015-01-01

    Summary Yeast cells track gradients of pheromones to locate mating partners. Intuition suggests that uniform distribution of pheromone receptors over the cell surface would yield optimal gradient sensing. However, yeast cells display polarized receptors. The benefit of such polarization was unknown. During gradient tracking, cell growth is directed by a patch of polarity regulators that wanders around the cortex. Patch movement is sensitive to pheromone dose, with wandering reduced on the up-gradient side of the cell, resulting in net growth in that direction. Mathematical modeling suggests that active receptors and associated G proteins lag behind the polarity patch and act as an effective drag on patch movement. In vivo, the polarity patch is trailed by a G protein-rich domain, and this polarized distribution of G proteins is required to constrain patch wandering. Our findings explain why G protein polarization is beneficial, and illuminate a novel mechanism for gradient tracking. PMID:26609960

  14. Optical polarization: background and camouflage

    Science.gov (United States)

    Škerlind, Christina; Hallberg, Tomas; Eriksson, Johan; Kariis, Hans; Bergström, David

    2017-10-01

    Polarimetric imaging sensors in the electro-optical region, already military and commercially available in both the visual and infrared, show enhanced capabilities for advanced target detection and recognition. The capabilities arise due to the ability to discriminate between man-made and natural background surfaces using the polarization information of light. In the development of materials for signature management in the visible and infrared wavelength regions, different criteria need to be met to fulfil the requirements for a good camouflage against modern sensors. In conventional camouflage design, the aimed design of the surface properties of an object is to spectrally match or adapt it to a background and thereby minimizing the contrast given by a specific threat sensor. Examples will be shown from measurements of some relevant materials and how they in different ways affect the polarimetric signature. Dimensioning properties relevant in an optical camouflage from a polarimetric perspective, such as degree of polarization, the viewing or incident angle, and amount of diffuse reflection, mainly in the infrared region, will be discussed.

  15. Polarization of lanthanum nucleus by dynamic polarization method

    International Nuclear Information System (INIS)

    Adachi, Toshikazu; Ishimoto, Shigeru; Masuda, Yasuhiro; Morimoto, Kimio

    1989-01-01

    Preliminary studies have been carried out concerning the application of a dynamic polarization method to polarizing lanthanum fluoride single crystal to be employed as target in experiments with time reversal invariance. The present report briefly outlines the dynamic polarization method and describes some preliminary studies carried out so far. Dynamic polarization is of particular importance because no techniques are currently available that can produce highly polarized static nucleus. Spin interaction between electrons and protons (nuclei) plays a major role in the dynamic polarization method. In a thermal equilibrium state, electrons are polarized almost completely while most protons are not polarized. Positively polarized proton spin is produced by applying microwave to this system. The most hopeful candidate target material is single crystal of LaF 3 containing neodymium because the crystal is chemically stable and easy to handle. The spin direction is of great importance in experiments with time reversal invariance. The spin of neutrons in the target can be cancelled by adjusting the external magnetic field applied to a frozen polarized target. In a frozen spin state, the polarity decreases slowly with a relaxation time that depends on the external magnetic field and temperature. (N.K.)

  16. Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents

    International Nuclear Information System (INIS)

    Akimoto, Takuo; Ikeshita, Yusuke; Terashima, Ryo; Karube, Isao

    2009-01-01

    Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3 o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1 o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.

  17. Princess Elisabeth Antarctica: an International Polar Year outreach and media success story

    Directory of Open Access Journals (Sweden)

    Joseph Cheek

    2011-12-01

    Full Text Available One of the priorities of the fourth International Polar Year (IPY was to increase awareness of the polar regions and polar science among the general public through education, communication and other forms of outreach. This paper reports on the media coverage of Princess Elisabeth Antarctica (PEA, Belgium's “zero-emission” Antarctic research station designed by the non-profit International Polar Foundation (IPF to run on wind and solar energy and to employ state-of-the-art forms of energy management and other “green” technology. This paper provides background information on PEA, a review of IPF's media strategy for the project, a description of media coverage of the station and a discussion of the way in which the IPF's main messages were reported in the media. IPF staff surveyed approximately 300 media reports released between February 2004, when the PEA project was announced to the general public, and June 2010, when the IPF presented their findings at the IPY conference in Oslo. PEA was featured 580 times in print and web media in Belgium, and 303 times outside Belgium. Major international agencies such as the Associated Press, Agence France Presse, the BBC, Al-Jazeera and Reuters covered the project. On television and radio, PEA was featured in news broadcasts from all four major television networks in Belgium, most major radio stations and 34 different television and radio news outlets outside Belgium. The paper concludes that the media coverage for PEA was significant and suggests reasons why the project was so widely reported.

  18. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  19. The High-Energy Polarization-Limiting Radius of Neutron Star Magnetospheres 1, Slowly Rotating Neutron Stars

    CERN Document Server

    Heyl, J S; Lloyd, D; CERN. Geneva; Heyl, Jeremy S.; Shaviv, Nir J.; Lloyd, Don

    2003-01-01

    In the presence of strong magnetic fields, the vacuum becomes a birefringent medium. We show that this QED effect decouples the polarization modes of photons leaving the NS surface. Both the total intensity and the intensity in each of the two modes is preserved along a ray's path through the neutron-star magnetosphere. We analyze the consequences that this effect has on aligning the observed polarization vectors across the image of the stellar surface to generate large net polarizations. Counter to previous predictions, we show that the thermal radiation of NSs should be highly polarized even in the optical. When detected, this polarization will be the first demonstration of vacuum birefringence. It could be used as a tool to prove the high magnetic field nature of AXPs and it could also be used to constrain physical NS parameters, such as $R/M$, to which the net polarization is sensitive.

  20. Computation of Surface Laplacian for tri-polar ring electrodes on high-density realistic geometry head model.

    Science.gov (United States)

    Junwei Ma; Han Yuan; Sunderam, Sridhar; Besio, Walter; Lei Ding

    2017-07-01

    Neural activity inside the human brain generate electrical signals that can be detected on the scalp. Electroencephalograph (EEG) is one of the most widely utilized techniques helping physicians and researchers to diagnose and understand various brain diseases. Due to its nature, EEG signals have very high temporal resolution but poor spatial resolution. To achieve higher spatial resolution, a novel tri-polar concentric ring electrode (TCRE) has been developed to directly measure Surface Laplacian (SL). The objective of the present study is to accurately calculate SL for TCRE based on a realistic geometry head model. A locally dense mesh was proposed to represent the head surface, where the local dense parts were to match the small structural components in TCRE. Other areas without dense mesh were used for the purpose of reducing computational load. We conducted computer simulations to evaluate the performance of the proposed mesh and evaluated possible numerical errors as compared with a low-density model. Finally, with achieved accuracy, we presented the computed forward lead field of SL for TCRE for the first time in a realistic geometry head model and demonstrated that it has better spatial resolution than computed SL from classic EEG recordings.

  1. A technique for the geometric modeling of underground surfaces: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    Williams, R.L.

    1988-03-01

    There is a need within the Nevada Nuclear Waste Storage Investigation (NNWSI) project to develop three-dimensional surface definitions for the subterranean stratigraphies at Yucca Mountain, Nevada. The nature of the data samples available to the project require an interpolation technique that can perform well with sparse and irregularly spaced data. Following an evaluation of the relevant existing methods, a new technique, Multi-Kernel Modulation (MKM), is presented. MKM interpolates sparse and irregularly spaced data by modulating a polynomial trend surface with a linear summation of regular surfaces (kernels). A perspective discussion of MKM, Kriging, and Multiquadric Analysis reveals that MKM has the advantage of simplicity and efficiency when used with sparse samples. An example of the use of MKM to model a complex topography is presented. 24 refs., 6 figs., 2 tabs

  2. Projections of rapidly rising surface temperatures over Africa under low mitigation

    International Nuclear Information System (INIS)

    Engelbrecht, Francois; Bopape, Mary-Jane; Naidoo, Mogesh; Garland, Rebecca; Adegoke, Jimmy; Thatcher, Marcus; McGregor, John; Katzfey, Jack; Werner, Micha; Ichoku, Charles; Gatebe, Charles

    2015-01-01

    An analysis of observed trends in African annual-average near-surface temperatures over the last five decades reveals drastic increases, particularly over parts of the subtropics and central tropical Africa. Over these regions, temperatures have been rising at more than twice the global rate of temperature increase. An ensemble of high-resolution downscalings, obtained using a single regional climate model forced with the sea-surface temperatures and sea-ice fields of an ensemble of global circulation model (GCM) simulations, is shown to realistically represent the relatively strong temperature increases observed in subtropical southern and northern Africa. The amplitudes of warming are generally underestimated, however. Further warming is projected to occur during the 21st century, with plausible increases of 4–6 °C over the subtropics and 3–5 °C over the tropics by the end of the century relative to present-day climate under the A2 (a low mitigation) scenario of the Special Report on Emission Scenarios. High impact climate events such as heat-wave days and high fire-danger days are consistently projected to increase drastically in their frequency of occurrence. General decreases in soil-moisture availability are projected, even for regions where increases in rainfall are plausible, due to enhanced levels of evaporation. The regional dowscalings presented here, and recent GCM projections obtained for Africa, indicate that African annual-averaged temperatures may plausibly rise at about 1.5 times the global rate of temperature increase in the subtropics, and at a somewhat lower rate in the tropics. These projected increases although drastic, may be conservative given the model underestimations of observed temperature trends. The relatively strong rate of warming over Africa, in combination with the associated increases in extreme temperature events, may be key factors to consider when interpreting the suitability of global mitigation targets in terms of

  3. Impact of a Vertically Polarized Undulator on LCLS Hard X-ray Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-11-14

    The LCLS-II project will install two variable gap, horizontally polarized undulators into the LCLS undulator hall. One undulator is designed to produce soft x-rays spanning an energy range of 200-1250 eV (SXU) while the other is designed for the hard spectral range of 1-25 keV (HXU). The hard x-ray LCLS instruments (X-ray Pump- Probe [XPP], X-ray correlation Spectroscopy [XCS], Coherent X-ray Imaging [CXI], Matter in Extreme Conditions [MEC]) will be repurposed to operate on the HXU line while two new soft x-ray beamlines will be created for the SXU line. An alternate HXU undulator design is being considered that could provide advantages over the present design choice. In particular, the project team is collaborating with Argonne National Laboratory to develop a vertically polarized undulator (VPU). A 1-m prototype VPU device was successfully constructed this year and a full size prototype is in process. A decision to alter the project baseline, which is the construction of a horizontally polarized device, must be made in the coming weeks to not impact the present project schedule. Please note that a change to the soft x-ray undulator is not under discussion at the moment.

  4. ACCURATE POLARIZATION CALIBRATION AT 800 MHz WITH THE GREEN BANK TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yu-Wei; Chang, Tzu-Ching; Kuo, Cheng-Yu [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astro-Math Building, AS/NTU, 1 Roosevelt Road Sec. 4, Taipei 10617, Taiwan (China); Masui, Kiyoshi Wesley [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (Canada); Oppermann, Niels; Pen, Ue-Li [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto ON, M5S 3H8 (Canada); Peterson, Jeffrey B., E-mail: ywliao@asiaa.sinica.edu.tw [McWilliams Center for Cosmology, Carnegie Mellon University, Department of Physics, 5000 Forbes Avenue, Pittsburgh PA 15213 (United States)

    2016-12-20

    Polarization leakage of foreground synchrotron emission is a critical issue in H i intensity mapping experiments. While the sought-after H i emission is unpolarized, polarized foregrounds such as Galactic and extragalactic synchrotron radiation, if coupled with instrumental impurity, can mimic or overwhelm the H i signals. In this paper, we present the methodology for polarization calibration at 700–900 MHz, applied on data obtained from the Green Bank Telescope (GBT). We use astrophysical sources, both polarized and unpolarized sources including quasars and pulsars, as calibrators to characterize the polarization leakage and control systematic effects in our GBT H i intensity mapping project. The resulting fractional errors on polarization measurements on boresight are well controlled to within 0.6%–0.8% of their total intensity. The polarized beam patterns are measured by performing spider scans across both polarized quasars and pulsars. A dominant Stokes I to V leakage feature and secondary features of Stokes I to Q and I to U leakages in the 700–900 MHz frequency range are identified. These characterizations are important for separating foreground polarization leakage from the H i 21 cm signal.

  5. ACCURATE POLARIZATION CALIBRATION AT 800 MHz WITH THE GREEN BANK TELESCOPE

    International Nuclear Information System (INIS)

    Liao, Yu-Wei; Chang, Tzu-Ching; Kuo, Cheng-Yu; Masui, Kiyoshi Wesley; Oppermann, Niels; Pen, Ue-Li; Peterson, Jeffrey B.

    2016-01-01

    Polarization leakage of foreground synchrotron emission is a critical issue in H i intensity mapping experiments. While the sought-after H i emission is unpolarized, polarized foregrounds such as Galactic and extragalactic synchrotron radiation, if coupled with instrumental impurity, can mimic or overwhelm the H i signals. In this paper, we present the methodology for polarization calibration at 700–900 MHz, applied on data obtained from the Green Bank Telescope (GBT). We use astrophysical sources, both polarized and unpolarized sources including quasars and pulsars, as calibrators to characterize the polarization leakage and control systematic effects in our GBT H i intensity mapping project. The resulting fractional errors on polarization measurements on boresight are well controlled to within 0.6%–0.8% of their total intensity. The polarized beam patterns are measured by performing spider scans across both polarized quasars and pulsars. A dominant Stokes I to V leakage feature and secondary features of Stokes I to Q and I to U leakages in the 700–900 MHz frequency range are identified. These characterizations are important for separating foreground polarization leakage from the H i 21 cm signal.

  6. 75 FR 75532 - Surface Transportation Project Delivery Pilot Program; Caltrans Audit Report

    Science.gov (United States)

    2010-12-03

    ...] Surface Transportation Project Delivery Pilot Program; Caltrans Audit Report AGENCY: Federal Highway... participating in the Pilot Program, 23 U.S.C. 327(g) mandates semiannual audits during each of the first 2 years of State participation. This notice announces and solicits comments on the fifth audit report for the...

  7. 76 FR 5237 - Surface Transportation Project Delivery Pilot Program; Caltrans Audit Report

    Science.gov (United States)

    2011-01-28

    ...] Surface Transportation Project Delivery Pilot Program; Caltrans Audit Report AGENCY: Federal Highway... participating in the Pilot Program, 23 U.S.C. 327(g) mandates semiannual audits during each of the first 2 years of State participation. This final report presents the findings from the fifth FHWA audit of the...

  8. 77 FR 26355 - Surface Transportation Project Delivery Pilot Program; Caltrans Audit Report

    Science.gov (United States)

    2012-05-03

    ...] Surface Transportation Project Delivery Pilot Program; Caltrans Audit Report AGENCY: Federal Highway... participating in the Pilot Program, 23 U.S.C. 327(g) mandates semiannual audits during each of the first 2 years of State participation. This final report presents the findings from the sixth FHWA audit of the...

  9. Energy conversion evolution at lunar polar sites

    Indian Academy of Sciences (India)

    robotic and human surface bases. Sunlight is nearly ... orientation and precession of its spin axis rela- tive to its orbit ... atoms, most likely hydrogen, that many people immediately .... to find out the real meaning of the excess polar hydrogen.

  10. The IAEA research project on improvement of safety assessment methodologies for near surface disposal facilities

    International Nuclear Information System (INIS)

    Torres-Vidal, C.; Graham, D.; Batandjieva, B.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Research Coordinated Project on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM) was launched in November 1997 and it has been underway for three years. The ISAM project was developed to provide a critical evaluation of the approaches and tools used in long-term safety assessment of near surface repositories. It resulted in the development of a harmonised approach and illustrated its application by way of three test cases - vault, borehole and Radon (a particular range of repository designs developed within the former Soviet Union) type repositories. As a consequence, the ISAM project had over 70 active participants and attracted considerable interest involving around 700 experts from 72 Member States. The methodology developed, the test cases, the main lessons learnt and the conclusions have been documented and will be published in the form of an IAEA TECDOC. This paper presents the work of the IAEA on improvement of safety assessment methodologies for near surface waste disposal facilities and the application of these methodologies for different purposes in the individual stages of the repository development. The paper introduces the main objectives, activities and outcome of the ISAM project and summarizes the work performed by the six working groups within the ISAM programme, i.e. Scenario Generation and Justification, Modelling, Confidence Building, Vault, Radon Type Facility and Borehole test cases. (author)

  11. Iterative atmospheric correction scheme and the polarization color of alpine snow

    Science.gov (United States)

    Ottaviani, Matteo; Cairns, Brian; Ferrare, Rich; Rogers, Raymond

    2012-07-01

    Characterization of the Earth's surface is crucial to remote sensing, both to map geomorphological features and because subtracting this signal is essential during retrievals of the atmospheric constituents located between the surface and the sensor. Current operational algorithms model the surface total reflectance through a weighted linear combination of a few geometry-dependent kernels, each devised to describe a particular scattering mechanism. The information content of these measurements is overwhelmed by that of instruments with polarization capabilities: proposed models in this case are based on the Fresnel reflectance of an isotropic distribution of facets. Because of its remarkable lack of spectral contrast, the polarized reflectance of land surfaces in the shortwave infrared spectral region, where atmospheric scattering is minimal, can be used to model the surface also at shorter wavelengths, where aerosol retrievals are attempted based on well-established scattering theories.In radiative transfer simulations, straightforward separation of the surface and atmospheric contributions is not possible without approximations because of the coupling introduced by multiple reflections. Within a general inversion framework, the problem can be eliminated by linearizing the radiative transfer calculation, and making the Jacobian (i.e., the derivative expressing the sensitivity of the reflectance with respect to model parameters) available at output. We present a general methodology based on a Gauss-Newton iterative search, which automates this procedure and eliminates de facto the need of an ad hoc atmospheric correction.In this case study we analyze the color variations in the polarized reflectance measured by the NASA Goddard Institute of Space Studies Research Scanning Polarimeter during a survey of late-season snowfields in the High Sierra. This insofar unique dataset presents challenges linked to the rugged topography associated with the alpine environment and

  12. Iterative atmospheric correction scheme and the polarization color of alpine snow

    International Nuclear Information System (INIS)

    Ottaviani, Matteo; Cairns, Brian; Ferrare, Rich; Rogers, Raymond

    2012-01-01

    Characterization of the Earth's surface is crucial to remote sensing, both to map geomorphological features and because subtracting this signal is essential during retrievals of the atmospheric constituents located between the surface and the sensor. Current operational algorithms model the surface total reflectance through a weighted linear combination of a few geometry-dependent kernels, each devised to describe a particular scattering mechanism. The information content of these measurements is overwhelmed by that of instruments with polarization capabilities: proposed models in this case are based on the Fresnel reflectance of an isotropic distribution of facets. Because of its remarkable lack of spectral contrast, the polarized reflectance of land surfaces in the shortwave infrared spectral region, where atmospheric scattering is minimal, can be used to model the surface also at shorter wavelengths, where aerosol retrievals are attempted based on well-established scattering theories. In radiative transfer simulations, straightforward separation of the surface and atmospheric contributions is not possible without approximations because of the coupling introduced by multiple reflections. Within a general inversion framework, the problem can be eliminated by linearizing the radiative transfer calculation, and making the Jacobian (i.e., the derivative expressing the sensitivity of the reflectance with respect to model parameters) available at output. We present a general methodology based on a Gauss-Newton iterative search, which automates this procedure and eliminates de facto the need of an ad hoc atmospheric correction. In this case study we analyze the color variations in the polarized reflectance measured by the NASA Goddard Institute of Space Studies Research Scanning Polarimeter during a survey of late-season snowfields in the High Sierra. This insofar unique dataset presents challenges linked to the rugged topography associated with the alpine environment

  13. A Lookup-Table-Based Approach to Estimating Surface Solar Irradiance from Geostationary and Polar-Orbiting Satellite Data

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2018-03-01

    Full Text Available Incoming surface solar irradiance (SSI is essential for calculating Earth’s surface radiation budget and is a key parameter for terrestrial ecological modeling and climate change research. Remote sensing images from geostationary and polar-orbiting satellites provide an opportunity for SSI estimation through directly retrieving atmospheric and land-surface parameters. This paper presents a new scheme for estimating SSI from the visible and infrared channels of geostationary meteorological and polar-orbiting satellite data. Aerosol optical thickness and cloud microphysical parameters were retrieved from Geostationary Operational Environmental Satellite (GOES system images by interpolating lookup tables of clear and cloudy skies, respectively. SSI was estimated using pre-calculated offline lookup tables with different atmospheric input data of clear and cloudy skies. The lookup tables were created via the comprehensive radiative transfer model, Santa Barbara Discrete Ordinate Radiative Transfer (SBDART, to balance computational efficiency and accuracy. The atmospheric attenuation effects considered in our approach were water vapor absorption and aerosol extinction for clear skies, while cloud parameters were the only atmospheric input for cloudy-sky SSI estimation. The approach was validated using one-year pyranometer measurements from seven stations in the SURFRAD (SURFace RADiation budget network. The results of the comparison for 2012 showed that the estimated SSI agreed with ground measurements with correlation coefficients of 0.94, 0.69, and 0.89 with a bias of 26.4 W/m2, −5.9 W/m2, and 14.9 W/m2 for clear-sky, cloudy-sky, and all-sky conditions, respectively. The overall root mean square error (RMSE of instantaneous SSI was 80.0 W/m2 (16.8%, 127.6 W/m2 (55.1%, and 99.5 W/m2 (25.5% for clear-sky, cloudy-sky (overcast sky and partly cloudy sky, and all-sky (clear-sky and cloudy-sky conditions, respectively. A comparison with other state

  14. On the large COMPASS polarized deuteron target

    Czech Academy of Sciences Publication Activity Database

    Ball, J.; Baum, G.; Doshita, N.; Finger Jr., M.; Finger, M.; Gautheron, F.; Goertz, S.; Hasegawa, T.; Heckmann, J.; Hess, C.; Horikawa, N.; Ishimoto, S.; Iwata, T.; Kisselev, Y.; Koivuniemi, J.H.; Kondo, K.; Le Goff, J.M.; Magnon, A.; Marchand, C.; Matsuda, T.; Meyer, W.; Reicherz, G.; Srnka, Aleš

    2006-01-01

    Roč. 56, Suppl. F (2006), F295-F305 ISSN 0011-4626 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : COMPASS * polarized target * Dilution refrigerator Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.568, year: 2006

  15. Fluorescence confocal polarizing microscopy: Three-dimensional ...

    Indian Academy of Sciences (India)

    journal of. August 2003 physics pp. 373–384. Fluorescence confocal polarizing ... and focal conic domains in flat samples of lamellar LCs are practically indistinguishable. ... or less) LC layer confined between two transparent plates. ... in studies of electro-optic effects such as the Frederiks effect, defects, surface anchoring,.

  16. Polarization mechanism in a ns laser-induced plasma spectroscopy of Al alloy

    Science.gov (United States)

    Aghababaei Nejad, Mahboobeh; Soltanolkotabi, Mahmood; Eslami Majd, Abdollah

    2018-01-01

    Polarization emission from aluminum alloy by ns laser-induced breakdown spectroscopy (LIBS) is carefully investigated in air using a non-gated CCD camera at integration time of 100 ms. First, the analysis reveals that the small polarization degree is the same for both continuum and discrete line emission spectra which also increases slowly with wavelength growth; second, laser fluence in the range of 347.81-550.10 J/cm2 has no significant changes in plasma polarization; and third, larger polarization in comparison with polarization introduced by preferential reflection of emission from the target surface (Fresnel reflectivity) is observed. The residual fluctuations of the anisotropic recombining plasma and the dynamic polarization of an ion's core are suggested as the possible main sources for observed polarized radiation in ns-LIBS.

  17. Surface water classification and monitoring using polarimetric synthetic aperture radar

    Science.gov (United States)

    Irwin, Katherine Elizabeth

    Surface water classification using synthetic aperture radar (SAR) is an established practice for monitoring flood hazards due to the high temporal and spatial resolution it provides. Surface water change is a dynamic process that varies both spatially and temporally, and can occur on various scales resulting in significant impacts on affected areas. Small-scale flooding hazards, caused by beaver dam failure, is an example of surface water change, which can impact nearby infrastructure and ecosystems. Assessing these hazards is essential to transportation and infrastructure maintenance. With current satellite missions operating in multiple polarizations, spatio-temporal resolutions, and frequencies, a comprehensive comparison between SAR products for surface water monitoring is necessary. In this thesis, surface water extent models derived from high resolution single-polarization TerraSAR-X (TSX) data, medium resolution dual-polarization TSX data and low resolution quad-polarization RADARSAT-2 (RS-2) data are compared. There exists a compromise between acquiring SAR data with a high resolution or high information content. Multi-polarization data provides additional phase and intensity information, which makes it possible to better classify areas of flooded vegetation and wetlands. These locations are often where fluctuations in surface water occur and are essential for understanding dynamic underlying processes. However, often multi-polarized data is acquired at a low resolution, which cannot image these zones effectively. High spatial resolution, single-polarization TSX data provides the best model of open water. However, these single-polarization observations have limited information content and are affected by shadow and layover errors. This often hinders the classification of other land cover types. The dual-polarization TSX data allows for the classification of flooded vegetation, but classification is less accurate compared to the quad-polarization RS-2 data

  18. Control the polarization state of light with symmetry-broken metallic metastructures

    International Nuclear Information System (INIS)

    Xiong, Xiang; Jiang, Shang-Chi; Hu, Yuan-Sheng; Hu, Yu-Hui; Wang, Zheng-Han; Peng, Ru-Wen; Wang, Mu

    2015-01-01

    Controlling the polarization state, the transmission direction, the amplitude and the phase of light in a very limited space is essential for the development of on-chip photonics. Over the past decades, numerous sub-wavelength metallic microstructures have been proposed and fabricated to fulfill these demands. In this article, we review our efforts in achieving negative refractive index, controlling the polarization state, and tuning the amplitude of light with two-dimensional (2D) and three-dimensional (3D) microstructures. We designed an assembly of stacked metallic U-shaped resonators that allow achieving negative refraction for pure magnetic and electric responses respectively at the same frequency by selecting the polarization of incident light. Based on this, we tune the permittivity and permeability of the structure, and achieve negative refractive index. Further, by control the excitation and radiation of surface electric current on a number of 2D and 3D asymmetric metallic metastructures, we are able to control the polarization state of light. It is also demonstrated that with a stereostructured metal film, the whole metal surfaces can be used to construct either polarization-sensitive or polarization-insensitive prefect absorbers, with the advantage of efficient heat dissipation and electric conductivity. Our practice shows that metamaterials, including metasurface, indeed help to master light in nanoscale, and are promising in the development of new generation of photonics

  19. Safety Assessment Methodologies and Their Application in Development of Near Surface Waste Disposal Facilities--ASAM Project

    International Nuclear Information System (INIS)

    Batandjieva, B.; Metcalf, P.

    2003-01-01

    Safety of near surface disposal facilities is a primary focus and objective of stakeholders involved in radioactive waste management of low and intermediate level waste and safety assessment is an important tool contributing to the evaluation and demonstration of the overall safety of these facilities. It plays significant role in different stages of development of these facilities (site characterization, design, operation, closure) and especially for those facilities for which safety assessment has not been performed or safety has not been demonstrated yet and the future has not been decided. Safety assessments also create the basis for the safety arguments presented to nuclear regulators, public and other interested parties in respect of the safety of existing facilities, the measures to upgrade existing facilities and development of new facilities. The International Atomic Energy Agency (IAEA) has initiated a number of research coordinated projects in the field of development and improvement of approaches to safety assessment and methodologies for safety assessment of near surface disposal facilities, such as NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study) and ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) projects. These projects were very successful and showed that there is a need to promote the consistent application of the safety assessment methodologies and to explore approaches to regulatory review of safety assessments and safety cases in order to make safety related decisions. These objectives have been the basis of the IAEA follow up coordinated research project--ASAM (Application of Safety Assessment Methodologies for Near Surface Disposal Facilities), which will commence in November 2002 and continue for a period of three years

  20. Polarized radiation in magnetic white dwarfs

    International Nuclear Information System (INIS)

    Rosi, L.A.; Zimmerman, R.L.; Kemp, J.C.

    1976-01-01

    A model for magnetic white dwarfs is proposed which attributes the partially polarized light to synchrotron radiation. The source of the radiation is relativistic electrons trapped in the magnetosphere of a white dwarf. The white dwarf's magnetic field is assumed to be dipolar. The Stokes parameters for the synchrotron radiation are tabulated as a function of frequency, observer's orientation, and energy and spatial distribution of the relativistic electrons. The results of the synchrotron calculations are applied to the polarization observations of Grw+70degree8247 and DQ Herculis. This model can account for the major features of the polarized radiation coming from these two magnetic white dwarfs. The calculations predict for Grw+70degree8247 that the surface magnetic field is B/sub s/approximately-less-than4 x 10 6 gauss, that the incident viewing angle is 45degreeapproximately-less-thantheta 0 approximately-less-than75degree, and that the electrons are trapped with nearly an isotropic distribution about the white dwarf. For DQ Herculis the surface magnetic field is B/sub s/approximately-less-than7 x 10 6 gauss and the trapped electrons are confined to a dislike region about the white dwarf. For both cases the density of electrons in the magnetosphere falls in the range of 10 5 approximately-less-thannapproximately-less-than10 7 cm -3 with energies of about 4--35 MeV

  1. Space-polarization Collaborative Suppression Method for Ionospheric Clutter in HFSWR

    Directory of Open Access Journals (Sweden)

    Yang Yunlong

    2016-12-01

    Full Text Available High Frequency Surface Wave Radar (HFSWR is able to receive surface target and low-flying aircraft echoes at a long-distance, but it suffers severely from ionospheric clutter. In this paper, a spacepolarization collaborative-based filter is introduced to mitigate ionospheric clutter. For parameter estimation on ionospheric clutter used for filters, a spatial parameter estimation algorithm based on compressive sensing is introduced to the DOA estimation of ionospheric clutter. In addition, a polarized parameter estimation algorithm based on statistical characteristics is proposed for ionospheric clutter in the range-Doppler spectrum. Higher estimation accuracy is achieved as a result of the range-Doppler spectrum; therefore, these two estimation algorithms enhance the performance of the space-polarization collaborative suppression method for ionospheric clutter. Experimental results of practical dual-polarized HFSWR data show the effectiveness of the two algorithms and the above mentioned filter for ionospheric clutter suppression.

  2. Multifold polar states in Zn-doped Sr0.9Ba0.1TiO3 ceramics

    Science.gov (United States)

    Guo, Yan-Yan; Guo, Yun-Jun; Wei, Tong; Liu, Jun-Ming

    2015-12-01

    We investigate the effect of Zn doping on the dielectricity and ferroelectricity of a series of polycrystalline Sr0.9-xZnxBa0.1TiO3 (0.0% ≤ x ≤ 5.0%) ceramics. It is surprisingly observed that the Zn doping will produce the multifold polar states, i.e., the Zn-doped ceramic will convert a reduced polar state into an enhanced polar state, and eventually into a stabilized polar state with increasing the doping level x. It is revealed that in the background of quantum fluctuations, the competition between the Zn-doping-induced lattice contraction and the Ba-doping-induced lattice expansion is responsible for both the reduced polar state and the enhanced polar state coming into being. Also, the addition of the antiferrodistortive effect, which is the antipolar interaction originating from the opposite tilted-TiO6 octahedra rotation, represents the core physics behind the stabilized polar state. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304158, 51431006, 51102277, and 11104118), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY213020), and the Qing Lan Project of Jiangsu Province, China.

  3. Proceedings of the workshop on photocathodes for polarized electron sources for accelerators. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Chatwell, M.; Clendenin, J.; Maruyama, T.; Schultz, D. [eds.

    1994-04-01

    Application of the GaAs polarized electron source to studies of surface magnetism; thermal stability of Cs on NES III-V-Photocathodes and its effect on quantum efficiency; AFEL accelerator; production and detection of SPIN polarized electrons; emittance measurements on a 100-keV beam from a GaAs photocathode electron gun; modern theory of photoemission and its applications to practical photocathodes; experimental studies of the charge limit phenomenon in GaAs photocathodes; new material for photoemission electron source; semiconductor alloy InGaAsP grown on GaAs substrate; NEA photocathode surface preparation; technology and physics; metalorganic chemical vapor deposition of GaAs-GaAsP spin-polarized photocathodes; development of photocathodes injectors for JLC-ATF; effect of radiation trapping on polarization of photoelectrons from semiconductors; and energy analysis of electrons emitted by a semiconductor photocathode.

  4. Extreme-Scale Alignments Of Quasar Optical Polarizations And Galactic Dust Contamination

    Science.gov (United States)

    Pelgrims, Vincent

    2017-10-01

    Almost twenty years ago the optical polarization vectors from quasars were shown to be aligned over extreme-scales. That evidence was later confirmed and enhanced thanks to additional optical data obtained with the ESO instrument FORS2 mounted on the VLT, in Chile. These observations suggest either Galactic foreground contamination of the data or, more interestingly, a cosmological origin. Using 353-GHz polarization data from the Planck satellite, I recently showed that the main features of the extreme-scale alignments of the quasar optical polarization vectors are unaffected by the Galactic thermal dust. This confirms previous studies based on optical starlight polarization and discards the scenario of Galactic contamination. In this talk, I shall briefly review the extreme-scale quasar polarization alignments, discuss the main results submitted in A&A and motivate forthcoming projects at the frontier between Galactic and extragalactic astrop hysics.

  5. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. I. Polarization Phenomena; Accion de las sustancias extranas en la superficie de los electrodos. Estudio mediante radiotrazadores

    Energy Technology Data Exchange (ETDEWEB)

    Llopis, J; Gamboa, J M; Arizmendi, L

    1961-07-01

    Radioactive stearic acid ({sup 1}4C) has been used to determine the number of molecular layers present on copper electrode surfaces and its distribution. The stability of these layers under the experimental conditions has been studied and it has been shown that its presence has no influence on the anodic and cathodic polarization. an increase of these polarizations has been observed with mixed multilayers of stearic acid and sterolamide. (Author) 13 refs.

  6. Analysing the Advantages of High Temporal Resolution Geostationary MSG SEVIRI Data Compared to Polar Operational Environmental Satellite Data for Land Surface Monitoring in Africa

    Science.gov (United States)

    Fensholt, R.; Anyamba, A.; Huber, S.; Proud, S. R.; Tucker, C. J.; Small, J.; Pak, E.; Rasmussen, M. O.; Sandholt, I.; Shisanya, C.

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on-board MSG with an imaging capability every 15 minutes which is substantially greater than any temporal resolution that can be obtained from existing polar operational environmental satellites (POES) systems currently in use for environmental monitoring. Different areas of the African continent were affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher temporal resolution cloud-free (less than 5 days) measurements of the environment as compared to existing POES systems. SEVIRI MSG 5-day continental scale composites will enable rapid assessment of environmental conditions and improved early warning of disasters for the African continent such as flooding or droughts. The high temporal resolution geostationary data will complement existing higher spatial resolution polar-orbiting satellite data for various dynamic environmental and natural resource applications of terrestrial ecosystems.

  7. Microtubules Enable the Planar Cell Polarity of Airway Cilia

    Science.gov (United States)

    Vladar, Eszter K.; Bayly, Roy D.; Sangoram, Ashvin; Scott, Matthew P.; Axelrod, Jeffrey D.

    2012-01-01

    Summary Background Airway cilia must be physically oriented along the longitudinal tissue axis for concerted, directional motility that is essential for proper mucociliary clearance. Results We show that Planar Cell Polarity (PCP) signaling specifies directionality and orients respiratory cilia. Within all airway epithelial cells a conserved set of PCP proteins shows interdependent, asymmetric junctional localization; non-autonomous signaling coordinates polarization between cells; and a polarized microtubule (MT) network is likely required for asymmetric PCP protein localization. We find that basal bodies dock after polarity of PCP proteins is established, are polarized nearly simultaneously, and refinement of basal body/cilium orientation continues during airway epithelial development. Unique to mature multiciliated cells, we identify PCP-regulated, planar polarized MTs that originate from basal bodies and interact, via their plus ends, with membrane domains associated with the PCP proteins Frizzled and Dishevelled. Disruption of MTs leads to misoriented cilia. Conclusions A conserved PCP pathway orients airway cilia by communicating polarity information from asymmetric membrane domains at the apical junctions, through MTs, to orient the MT and actin based network of ciliary basal bodies below the apical surface. PMID:23122850

  8. Structural and electronic properties of polar MnO ultrathin film grown on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Asish K., E-mail: asish.kundu@saha.ac.in; Menon, Krishnakumar S. R. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 70064 (India)

    2016-05-23

    Surface electronic structure of ultrathin polar MnO film was studied by Low-energy Electron Diffraction (LEED) and Photoemission Spectroscopic (PES) techniques. Epitaxial monolayer to facet formation with increasing film thickness has been observed by LEED. Our LEED result shows p(2x2) surface reconstruction along with facet formation, stabilize the polar MnO(111) surface. The core levels and the valence band electronic structure of MnO films have been studied as a function of film thickness using X-ray and ultraviolet photoelectron spectroscopy techniques.

  9. Developing Dual Polarization Applications For 45th Weather Squadron's (45 WS) New Weather Radar: A Cooperative Project With The National Space Science and Technology Center (NSSTC)

    Science.gov (United States)

    Roeder, W.P.; Peterson, W.A.; Carey, L.D.; Deierling, W.; McNamara, T.M.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar includes dual polarization capability, which has not been available to 45 WS previously. The 45 WS has teamed with NSSTC with funding from NASA Marshall Spaceflight Flight Center to improve their use of this new dual polarization capability when it is implemented operationally. The project goals include developing a temperature profile adaptive scan strategy, developing training materials, and developing forecast techniques and tools using dual polarization products. The temperature profile adaptive scan strategy will provide the scan angles that provide the optimal compromise between volume scan rate, vertical resolution, phenomena detection, data quality, and reduced cone-of-silence for the 45 WS mission. The mission requirements include outstanding detection of low level boundaries for thunderstorm prediction, excellent vertical resolution in the atmosphere electrification layer between 0 C and -20 C for lightning forecasting and Lightning Launch Commit Criteria evaluation, good detection of anvil clouds for Lightning Launch Commit Criteria evaluation, reduced cone-of-silence, fast volume scans, and many samples per pulse for good data quality. The training materials will emphasize the appropriate applications most important to the 45 WS mission. These include forecasting the onset and cessation of lightning, forecasting convective winds, and hopefully the inference of electrical fields in clouds. The training materials will focus on annotated radar imagery based on products available to the 45 WS. Other examples will include time sequenced radar products without annotation to simulate radar operations. This will reinforce the forecast concepts and also allow testing of the forecasters. The new dual polarization techniques and tools will focus on

  10. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  11. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  12. Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires

    KAUST Repository

    Wang, Ping

    2015-12-22

    Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires (NWs) is demonstrated on InN NWs. In-polarity InN NWs form typical hexagonal structure with pyramidal growth front, whereas N-polarity InN NWs slowly turn to the shape of hexagonal pyramid and then convert to an inverted pyramid growth, forming diagonal pyramids with flat surfaces and finally coalescence with each other. This contrary growth behavior driven by lattice-polarity is most likely due to the relatively lower growth rate of the (0001 ̅) plane, which results from the fact that the diffusion barriers of In and N adatoms on the (0001) plane (0.18 and 1.0 eV, respectively) are about two-fold larger in magnitude than those on the (0001 ̅) plane (0.07 and 0.52 eV), as calculated by first-principles density functional theory (DFT). The formation of diagonal pyramids for the N-polarity hexagonal NWs affords a novel way to locate quantum dot in the kink position, suggesting a new recipe for the fabrication of dot-based devices.

  13. Polar oceans in a changing climate.

    Science.gov (United States)

    Barnes, David K A; Tarling, Geraint A

    2017-06-05

    Most of Earth's surface is blue or white, but how much of each would depend on the time of observation. Our planet has been through phases of snowball (all frozen), greenhouse (all liquid seas) and icehouse (frozen and liquid). Even during current icehouse conditions, the extent of ice versus water has changed considerably between ice ages and interglacial periods. Water has been vital for life on Earth and has driven and been influenced by transitions between greenhouse and icehouse. However, neither the possession of water nor having liquid and frozen seas are unique to Earth (Figure 1). Frozen water oceans on the moons Enceladus and Europa (and possibly others) and the liquid and frozen hydrocarbon oceans on Titan probably represent the most likely areas to find extraterrestrial life. We know very little about life in Earth's polar oceans, yet they are the engine of the thermohaline 'conveyor-belt', driving global circulation of heat, oxygen, carbon and nutrients as well as setting sea level through change in ice-mass balance. In regions of polar seas, where surface water is particularly cold and dense, it sinks to generate a tropic-ward flow on the ocean floor of the Pacific, Atlantic and Indian Oceans. Cold water holds more gas, so this sinking water exports O 2 and nutrients, thereby supporting life in the deep sea, as well as soaking up CO 2 from the atmosphere. Water from mid-depths at lower latitudes flows in to replace the sinking polar surface water. This brings heat. The poles are cold because they receive the least energy from the sun, and this extreme light climate varies on many different time scales. To us, the current warm, interglacial conditions seem normal, yet such phases have represented only ∼10% of Homo sapiens' existence. Variations in Earth's orbit (so called 'Milankovitch cycles') have driven cyclical alternation of glaciations (ice ages) and warmer interglacials. Despite this, Earth's polar regions have been our planet's most

  14. Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses

    International Nuclear Information System (INIS)

    Allegre, O J; Perrie, W; Edwardson, S P; Dearden, G; Watkins, K G

    2012-01-01

    The use of a liquid-crystal spatial light modulator (SLM) device to convert a linearly polarized femtosecond laser beam into a radially or azimuthally polarized vortex beam is demonstrated. In order to verify the state of polarization at the focal plane, laser induced periodic surface structures (LIPSS) are produced on stainless steel, imprinting the complex vectorial polarization structures and confirming the efficacy of the SLM in producing the desired polarization modes. Stainless steel plates of various thicknesses are micromachined with the radially and azimuthally polarized vortex beams and the resulting cut-outs are analysed. The process efficiency and quality of each mode are compared with those of circular polarization. Radial polarization is confirmed to be the most efficient mode for machining high-aspect-ratio (depth/width > 3) channels thanks to its relatively higher absorptivity. Following our microprocessing tests, liquid-crystal SLMs emerged as a flexible off-the-shelf tool for producing radially and azimuthally polarized beams in existing ultrashort-pulse laser microprocessing systems. (paper)

  15. Depth-encoded all-fiber swept source polarization sensitive OCT

    Science.gov (United States)

    Wang, Zhao; Lee, Hsiang-Chieh; Ahsen, Osman Oguz; Lee, ByungKun; Choi, WooJhon; Potsaid, Benjamin; Liu, Jonathan; Jayaraman, Vijaysekhar; Cable, Alex; Kraus, Martin F.; Liang, Kaicheng; Hornegger, Joachim; Fujimoto, James G.

    2014-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of conventional OCT and can assess depth-resolved tissue birefringence in addition to intensity. Most existing PS-OCT systems are relatively complex and their clinical translation remains difficult. We present a simple and robust all-fiber PS-OCT system based on swept source technology and polarization depth-encoding. Polarization multiplexing was achieved using a polarization maintaining fiber. Polarization sensitive signals were detected using fiber based polarization beam splitters and polarization controllers were used to remove the polarization ambiguity. A simplified post-processing algorithm was proposed for speckle noise reduction relaxing the demand for phase stability. We demonstrated systems design for both ophthalmic and catheter-based PS-OCT. For ophthalmic imaging, we used an optical clock frequency doubling method to extend the imaging range of a commercially available short cavity light source to improve polarization depth-encoding. For catheter based imaging, we demonstrated 200 kHz PS-OCT imaging using a MEMS-tunable vertical cavity surface emitting laser (VCSEL) and a high speed micromotor imaging catheter. The system was demonstrated in human retina, finger and lip imaging, as well as ex vivo swine esophagus and cardiovascular imaging. The all-fiber PS-OCT is easier to implement and maintain compared to previous PS-OCT systems and can be more easily translated to clinical applications due to its robust design. PMID:25401008

  16. Lunar Polar Cold Traps: Spatial Distribution and Temperatures

    Science.gov (United States)

    Paige, David A.; Siegler, M.; Lawrence, D. J.

    2006-09-01

    We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.

  17. Quantum dot spin-V(E)CSELs: polarization switching and periodic oscillations

    Science.gov (United States)

    Li, Nianqiang; Alexandropoulos, Dimitris; Susanto, Hadi; Henning, Ian; Adams, Michael

    2017-09-01

    Spin-polarized vertical (external) cavity surface-emitting lasers [Spin-V(E)CSELs] using quantum dot (QD) material for the active region, can display polarization switching between the right- and left-circularly polarized fields via control of the pump polarization. In particular, our previous experimental results have shown that the output polarization ellipticity of the spin-V(E)CSEL emission can exhibit either the same handedness as that of the pump polarization or the opposite, depending on the experimental operating conditions. In this contribution, we use a modified version of the spin-flip model in conjunction with combined time-independent stability analysis and direct time integration. With two representative sets of parameters our simulation results show good agreement with experimental observations. In addition periodic oscillations provide further insight into the dynamic properties of spin-V(E)CSELs.

  18. Characterization of RF-spittered self-polarized PZT thin films for sensors arrays

    Czech Academy of Sciences Publication Activity Database

    Suchaneck, G.; Lin, W. M.; Koehler, R.; Sandner, T.; Gerlach, G.; Krawietz, R.; Pompe, W.; Deineka, Alexander; Jastrabík, Lubomír

    2002-01-01

    Roč. 66, - (2002), s. 473-478 ISSN 0042-207X R&D Projects: GA MŠk LN00A015; GA ČR GA202/00/1425 Institutional research plan: CEZ:AV0Z1010914 Keywords : self-polarized PZT * polarization and refractive index profiles * IR sensor array Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.723, year: 2002

  19. Estimation of land-atmosphere energy transfer over the Tibetan Plateau by a combination use of geostationary and polar-orbiting satellite data

    Science.gov (United States)

    Zhong, L.; Ma, Y.

    2017-12-01

    Land-atmosphere energy transfer is of great importance in land-atmosphere interactions and atmospheric boundary layer processes over the Tibetan Plateau (TP). The energy fluxes have high temporal variability, especially in their diurnal cycle, which cannot be acquired by polar-orbiting satellites alone because of their low temporal resolution. Therefore, it's of great practical significance to retrieve land surface heat fluxes by a combination use of geostationary and polar orbiting satellites. In this study, a time series of the hourly LST was estimated from thermal infrared data acquired by the Chinese geostationary satellite FengYun 2C (FY-2C) over the TP. The split window algorithm (SWA) was optimized using a regression method based on the observations from the Enhanced Observing Period (CEOP) of the Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) and Tibetan observation and research platform (TORP), the land surface emissivity (LSE) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the water vapor content from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) project. The 10-day composite hourly LST data were generated via the maximum value composite (MVC) method to reduce the cloud effects. The derived LST was validated by the field observations of CAMP/Tibet and TORP. The results show that the retrieved LST and in situ data have a very good correlation (with root mean square error (RMSE), mean bias (MB), mean absolute error (MAE) and correlation coefficient (R) values of 1.99 K, 0.83 K, 1.71 K, and 0.991, respectively). Together with other characteristic parameters derived from polar-orbiting satellites and meteorological forcing data, the energy balance budgets have been retrieved finally. The validation results showed there was a good consistency between estimation results and in-situ measurements over the TP, which prove the robustness of the proposed estimation

  20. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering