Sample records for projection moire interferometry

  1. Projection moire interferometry measurements of micro air vehicle wings

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.


    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat's wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  2. Advances in Projection Moire Interferometry Development for Large Wind Tunnel Applications

    Fleming, Gary A.; Soto, Hector L.; South, Bruce W.; Bartram, Scott M.


    An instrument development program aimed at using Projection Moire Interferometry (PMI) for acquiring model deformation measurements in large wind tunnels was begun at NASA Langley Research Center in 1996. Various improvements to the initial prototype PMI systems have been made throughout this development effort. This paper documents several of the most significant improvements to the optical hardware and image processing software, and addresses system implementation issues for large wind tunnel applications. The improvements have increased both measurement accuracy and instrument efficiency, promoting the routine use of PMI for model deformation measurements in production wind tunnel tests.

  3. New Methods in Moire Interferometry

    Czarnek, Robert

    Experimental observations and measurements are the essential source of information necessary for correct development of mathematical models of real materials. Moire interferometry offers high sensitivity in full-field measurements of the in-plane displacements on the surface of the specimen. The (+OR-)45(DEGREES) method of moire interferometry increases the efficiency of a three-beam interferometer making its use outside of an optical laboratory more practical. Analysis of the (+OR-)45(DEGREES) method is provided. A concept of the vector representation of the fringe gradient is introduced and used in the analysis. Although existing systems require coherent light, the proposed system can use a relatively broad spectral bandwidth. Features that are related to the vibration sensitivity of such an instrument are investigated analytically. The basic concepts of an achromatic moire interferometry system are developed. Attachment of the critical elements of the system to the specimen solves the problem of relative rigid body motions, including vibrations, between the specimen and the virtual reference grating. Application of a laser diode light source reduces size, weight and cost of the interferometer making moire interferometry more practical for most materials testing laboratories. Laboratory tests confirmed the developed methods. This work enhances the probability of successful construction of a portable moire interferometer for measurements outside of the optical laboratory, in a mechanical testing or field environment.

  4. Measurement of Rotorcraft Blade Deformation Using Projection Moiré Interferometry

    Gary A. Fleming


    Full Text Available Projection Moiré Interferometry (PMI has been used to obtain near instantaneous, quantitative blade deformation measurements of a generic rotorcraft model at several test conditions. These laser-based measurements provide quantitative, whole field, dynamic blade deformation profiles conditionally sampled as a function of rotor azimuth. The instantaneous nature of the measurements permits computation of the mean and unsteady blade deformation, blade bending, and twist. The PMI method is presented, and the image processing steps required to obtain quantitative deformation profiles from PMI interferograms are described. Experimental results are provided which show blade bending, twist, and unsteady motion. This initial proof-of-concept test has demonstrated the capability of PMI to acquire accurate, full field rotorcraft blade deformation data.

  5. Moire interferometry with increased sensitivity

    Han, Bongtae; Post, Daniel

    The basic sensitivity of moire interferometry was increased beyond the previously conceived theoretical limit. This was accomplished by creating the virtual reference grating inside a refractive medium instead of air, thus shortening the wavelength of light. A very compact four-beam moire interferometer in a refractive medium was developed for microscopic viewing, which produced a basic sensitivity of 208 nm per fringe order, corresponding to moire with 4800 lines per mm. Its configuration made it inherently stable and relatively insensitive to environmental disturbances. An optical microscope was employed as the image recording system to obtain high spatial resolution. The method was demonstrated for deformation of a thick graphite/epoxy composite at the 0/90 deg ply interface.

  6. Vibration analysis using moire interferometry

    Asundi, A.; Cheung, M. T.

    The present use of moire interferometry for low amplitude vibration and analysis demonstrates the possibility of obtaining out-of-plane displacement contours whose sensitivity is comparable to that of holographic methods. A major advantage of the present system, is the obviation of prior knowledge of resonant frequencies, as called for in time-average holography. The experimental apparatus employed encompasses a laser beam, a parabolic mirror, a high frequency (600 line/mm) grating, and a camera, in addition to the test model.

  7. The Development and Hover Test Application of a Projection Moire Interferometry Blade Displacement Measurement System

    Sekula, Martin K.


    Projection moir interferometry (PMI) was employed to measure blade deflections during a hover test of a generic model-scale rotor in the NASA Langley 14x22 subsonic wind tunnel s hover facility. PMI was one of several optical measurement techniques tasked to acquire deflection and flow visualization data for a rotor at several distinct heights above a ground plane. Two of the main objectives of this test were to demonstrate that multiple optical measurement techniques can be used simultaneously to acquire data and to identify and address deficiencies in the techniques. Several PMI-specific technical challenges needed to be addressed during the test and in post-processing of the data. These challenges included developing an efficient and accurate calibration method for an extremely large (65 inch) height range; automating the analysis of the large amount of data acquired during the test; and developing a method to determinate the absolute displacement of rotor blades without a required anchor point measurement. The results indicate that the use of a single-camera/single-projector approach for the large height range reduced the accuracy of the PMI system compared to PMI systems designed for smaller height ranges. The lack of the anchor point measurement (due to a technical issue with one of the other measurement techniques) limited the ability of the PMI system to correctly measure blade displacements to only one of the three rotor heights tested. The new calibration technique reduced the data required by 80 percent while new post-processing algorithms successfully automated the process of locating rotor blades in images, determining the blade quarter chord location, and calculating the blade root and blade tip heights above the ground plane.

  8. Edge effects in composites by moire interferometry

    Czarnek, R.; Post, D.; Herakovich, C.


    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  9. Moire interferometry for vibration analysis of plates

    Asundi, A.; Cheung, M. T.


    Moire interferometry is used to locate nodal regions and measure vibration amplitudes of sinusoidally vibrating square plates. The high sensitivity afforded by this technique makes possible the study of plate vibrations at high frequencies and low amplitudes. The initial pattern is modulated by the zero-order Bessel function representing the vibratory motion. The fringe (or fringes) with best contrast indicate the nodal regions, while the higher order fringes, describing loci of points vibrating with the same amplitude, have decreasing contrast which is improved by spatial filtering.

  10. High sensitivity moiré interferometry with compact achromatic interferometry

    Czarnek, Robert

    Experimental observations and measurements are the sources of information essential for correct development of mathematical models of real structural materials. Moiré interferometry offers high sensitivity in full-field measurements of in-plane displacements on the surface of a specimen. Although it is a powerful method in experimental stress analysis, it has some shortcomings. One is that existing systems require highly coherent light. The only sufficient source of light for this application is a long cavity laser, which is relatively expensive and at best cumbersome. Another shortcoming is that measurements must be performed in a vibration-free environment, such as that found on a holographic table. These requirements limit the use of existing moiré interferometers to a holographic laboratory. In this paper a modified concept of compensation is presented, which permits the use of a chromatic source of light in a compact moiré system. The compensator provides order in the angles of incident light for each separate wavelength, so that the virtual reference grating created by each wavelength in a continuous spectrum is identical in frequency and spatial position. The result is a virtual reference grating that behaves exactly like that created in coherent light. With this development the use of a laser diode, which is a non-coherent light source of tiny dimensions, becomes practical. The special configuration of the optics that create the virtual grating allows its synchronization with the specimen grating and leads to an interferometer design that is relatively insensitive to the vibrations found in a mechanical testing laboratory. Sensitivity to relative motion is analyzed theoretically. This development provides the oppurtunity to apply moiré interferometry to solid mechanics problems that cannot be studied in an optics laboratory. Experimental verification of the optical concepts is provided. A compact moiré interferometer based on the presented idea was

  11. A Composite Grating for Moire Interferometry.


    shown in Figure 7 in which two virtual reference gratings of frequencies 2400 and 600 lines/mm were used. This arrangement corresponds to a fringe...fields at the two virtual reference grating frequencies of 2400/600 lines/mm. The light paths of the two virtual reference gratings are controlled by...frequencies were selectively recorded. Figure 10 and 11 shows two moire fringe patterns for virtual reference grating frequencies of 2400 lines/mm and 600

  12. Experimental Investigation of Textile Composite Materials Using Moire Interferometry

    Ifju, Peter G.


    The viability as an efficient aircraft material of advanced textile composites is currently being addressed in the NASA Advanced Composites Technology (ACT) Program. One of the expected milestones of the program is to develop standard test methods for these complex material systems. Current test methods for laminated composites may not be optimum for textile composites, since the architecture of the textile induces nonuniform deformation characteristics on the scale of the smallest repeating unit of the architecture. The smallest repeating unit, also called the unit cell, is often larger than the strain gages used for testing of tape composites. As a result, extending laminated composite test practices to textiles can often lead to pronounced scatter in material property measurements. It has been speculated that the fiber architectures produce significant surface strain nonuniformities, however, the magnitudes were not well understood. Moire interferometry, characterized by full-field information, high displacement sensitivity, and high spatial resolution, is well suited to document the surface strain on textile composites. Studies at the NASA Langley Research Center on a variety of textile architectures including 2-D braids and 3-D weaves, has evidenced the merits of using moire interferometry to guide in test method development for textile composites. Moire was used to support tensile testing by validating instrumentation practices and documenting damage mechanisms. It was used to validate shear test methods by mapping the full-field deformation of shear specimens. Moire was used to validate open hole tension experiments to determine the strain concentration and compare then to numeric predictions. It was used for through-the-thickness tensile strength test method development, to verify capabilities for testing of both 2-D and 3-D material systems. For all of these examples, moire interferometry provided vision so that test methods could be developed with less

  13. Residual stress measurement in silicon sheet by shadow moire interferometry

    Kwon, Y.; Danyluk, S.; Bucciarelli, L.; Kalejs, J. P.


    A shadow moire interferometry technique has been developed to measure residual strain in thin silicon sheet. The curvature of a segment of sheet undergoing four-point bending is analyzed to include the applied bending moments, the in-plane residual stresses, and the 'end effect' of the sheet since it is of finite length. The technique is applied to obtain residual stress distributions for silicon sheet grown by the edge-defined film-fed growth technique.

  14. Hole-drilling method using grating rosette and Moire interferometry

    Jubing Chen; Yongsheng Peng; Shexu Zhao


    The hole-drilling method is one of the most well-known methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stress, then the strains resulting from the hole drilling is measured. The strains may be acquired from interpreting the Moire signature around the hole. In crossed grating Moire interferometry, the horizontal and vertical displacement fields (u and v) can be obtained to determinate two strain fields and one sheafing strain field. In this paper, by means of Moire interferometry and three directions grating (grating rosette) developed by the authors, three displacement fields (u, v and s) are obtained to acquire three strain fields. As a practical application, the hole-drilling method is adopted to measure the relief strains for aluminum and fiber reinforced composite. It is a step by step method; in each step a single laminate or equivalent depth is drilled to find some relationships between the drilling depth and the residual strains relieved in the fiber reinforced composite materials.

  15. Developments in moire interferometry for out-of-plane displacement measurement

    Asundi, A.; Cheung, M. T.

    Moire interferometry is used to measure out-of-plane displacements with very high sensitivity. The experimental set-up is similar to that used for in-plane displacement measurement with a small modification. In the in-plane method, the deformed real specimen grating interferes with the fixed virtual reference grating to produce the moire fringes; while for the out-of-plane displacement method, the deformed virtual grating interferes with a real reference grating to produce the moire pattern.

  16. Strain analysis of a bonded, dissimilar, composite material T-joint using moiré interferometry

    Gascoigne, H. E.; Abdallah, M. G.

    High-sensitivity moiré interferometry and finite-element analysis are used to analyze the state of deformation and stress in the region of contact between a plane orthotropic rectangular punch bonded to a foundation with dissimilar elastic properties which models a highly loaded region of a composite material rocket motor casing. Stress distributions are presented for the contact region and an estimate of the maximum shear stress in the foundation is given. The displacement components show good qualitative agreement between analysis and experiment. The lack of quantitative agreement between the experimental and the finite-element analysis is attributed to uncertainty of the material properties.

  17. Study of tin-silver-copper alloy reliability through material microstructure evolution and laser moire interferometry

    Tunga, Krishna Rajaram

    This research aims to understand the reliability of Sn-Ag-Cu solder interconnects used in plastic ball grid array (PBGA) packages using microstructure evolution, laser moire interferometry and finite-element modeling. A particle coarsening based microstructure evolution of the solder joint material during thermal excursions was studied for extended periods of time lasting for several months. The microstructure evolution and particle coarsening was quantified, and acceleration factors were determined between benign field-use conditions and accelerated thermal cycling (ATC) conditions for PBGA packages with different form factors and for two different lead-free solder alloys. A new technique using laser moire interferometry was developed to assess the deformation behavior of Sn-Ag-Cu based solder joints during thermal excursions. This technique can used to estimate the fatigue life of solder joints quickly in a matter of few days instead of months and can be extended to cover a wide range of temperature regimes. Finite-element analysis (FEA) in conjunction with experimental data from the ATC for different lead-free PBGA packages was used to develop a fatigue life model that can be used to predict solder joint fatigue life for any PBGA package. The proposed model will be able to predict the mean number of cycles required for crack initiation and crack growth rate in a solder joint.

  18. Determination of residual stresses within plasma spray coating using Moiré interferometry method

    Yi, Jiang; Bin-shi, Xu; Hai-dou, Wang; Ming, Liu; Yao-hui, Lu


    In this paper, residual stresses of the Ni-Cr-B-Si coatings prepared by supersonic plasma spray processing were measured by moiré interferometry and X-ray diffraction method. Moiré interferometry method was used in measuring the distribution of residual stresses of the Ni-Cr-B-Si coatings alongside the specimen thickness direction, then the distribution of residual stresses both in the substrate and the coating was also analyzed. Experimental results showed that residual stresses in the coating and the substrate are tensile and compressive separately; residual stresses of the coating are diminished with the increase of the distance from the coating surface and almost zero at the coating-substrate interface; the maximum of compressive residual stresses of the substrate are present to the vicinity of the coating-substrate interface. It could be concluded that residual stresses in the specimen would result from the dismatch of thermophysical properties between the coating and substrate during the spray process, and the distribution of residual stresses of the substrate would be influenced by the sandblasting prior to spraying.

  19. Cross-Sectional Residual Stresses in Thermal Spray Coatings Measured by Moiré Interferometry and Nanoindentation Technique

    Zhu, Jianguo; Xie, Huimin; Hu, Zhenxing; Chen, Pengwan; Zhang, Qingming


    A plasma-sprayed thermal barrier coating (TBC) was deposited on a stainless steel substrate. The residual stresses were firstly measured by moiré interferometry combined with a cutting relaxation method. The fringe patterns in the cross-section of the specimen clearly demonstrate the deformation caused by the residual stress in thermal spray coatings. However, restricted by the sensitivity of moiré interferometry, there are few fringes in the top coat, and large errors may exist in evaluating the residual stress in the top coat. Then, the nanoindentation technique was used to estimate the residual stresses across the coating thickness. The stress/depth profile shows that the process-induced stresses after thermal spray are compressive in the top coat and a tendency to a more compressive state toward the interface. In addition, the stress gradient in the substrate is nonlinear, and tensile and compressive stresses appear simultaneously for self-equilibrium in the cross-section.

  20. Virtual fields method coupled with moiré interferometry: Special considerations and application

    Zhou, Mengmeng; Xie, Huimin; Wu, Lifu


    The virtual fields method (VFM) is a novel highly efficient non-iterative tool for the identification of the constitutive parameters of materials. The VFM can obtain several constitutive parameters based on the full-field deformation of the specimen measured in a single test. However, the available results demonstrate that the accuracy of the identification result is strongly dependent on the quality of the deformation field, which is generally measured using optical methods. Especially, in the case where a small deformation is applied under elastic loading, the image noise and measurement error will exhibit a significant influence on the identification results. By combining the VFM with moiré interferometry (MI), a MI-based VFM is used to identify the parameters of an orthotropic linear elastic material. A numerical experiment is conducted to examine the feasibility of this method. From the analysis results, we determine that two factors exhibit an influence on the identification accuracy. The reinforcement direction of the orthotropic material is one factor, and the other is the noise in the deformation field. This MI-based VFM is then applied to determine the mechanical parameters of a unidirectional carbon fiber composite material. In the measurement, a three-point bending load is applied to the specimens. A high density grating with a frequency of 1200 line/mm grating is replicated on the specimen surface and used for measuring the in-plane deformation fields using a moiré interferometer. The obtained deformation fields are taken as the inputs of the VFM identification process, and the elastic properties of the materials are identified. The obtained results verify the advantage of the proposed method with respect to high accuracy and good noise immunity.

  1. Optical/Digital Fringe Multiplication in Projection Moiré

    MAO Ling-tao; AN Li-qian; FANG Cui-chang


    In this paper, the optical/digital fringe multiplication (O/DFM) is realized in projection moiré using digital image processing (DIP). Both deformed grating and reference grating are captured using a CCD camera. The reference grating can also be produced using DIP. With the O/DFM, the pattern is multiplied with an image processing software, which is developed using MATLAB 6.5. Also with DIP, the phase shifting can become much simpler, and the automation can be adopted. The multiplied pattern is much thinner and easier to read, and sensitivity of measurement can be enhanced.

  2. Phase extraction using multi-directional moiré fringes for multi-lateral shearing interferometry

    Liu, Ke; Ji, Zhenbo; Chen, Chen; Li, Yanqiu


    The multi-lateral shearing interferometers (multi-LSIs) are featured in the improved accuracy and noise resistance of wavefront reconstruction using phase differences in multiple directions. Nowadays the multidirectional phase differences are usually extracted from multi-LSIs' interferogram using the fast Fourier transform (FFT) method, whose accuracy is limited by spectral leakage effect. To improve the measurement accuracy of multi-LSIs, a phase extraction method developed from moiré technique is proposed in this paper. Using virtual gratings with properly large carrier frequencies, the desired phase information in each of the multiple directions can be modulated into low-frequency domain of the corresponding moiré pattern with larger separations between unnecessary side lobes. In this way, low-pass filters with higher cut-off frequencies can be applied in moiré technique to reduce the inaccuracy induced by spectral leakage effect. Meanwhile, phase shifting method can be applied to extract phase information from a single fringe pattern with better noise resistance by easily introducing phase shifts in computer generated virtual gratings. Simulation results show that the proposed method has higher accuracy and better anti-noise performance than the FFT method when spectral leakage effect exists. To demonstrate accuracy of the proposed method, a null test experiment of the quadriwave LSI has been conducted and experimental results show that measurement accuracy of the quadriwave LSI can be significantly improved by substituting the FFT method with the proposed method in phase extraction process.

  3. Residual Stress Measurement for Ion-implanted NiTi Alloy by Using Moiré Interferometry and Hole-drilling Combined Method

    WANG Qiang; WANG Biao; MA De-cai; DAI Fu-long


    Residual stresses in ion-implanted NiTi alloy are measured by a combined method of Moiré interferometry and hole-drilling. Oxygen ions are implanted into the NiTi alloy under a voltage of 30 kV by a dose of 1.0×1017 ions/cm2 for one hour. Subsequently, in order to avoid dimensional error, a hole is drilled exactly in the center of the sample. The distribution of residual stresses around the hole is measured. It is indicated that the method which combines the Moiré interferometry with hole-drilling is able to be used to measure residual stresses produced by ion implantation.

  4. Projection of phase singularities in moiré fringe onto a light field

    Ohno, Seigo


    A moiré pattern, which is a kind of spatial interference between two periodic patterns, is regarded as a spatial modulation of a "field." By defining the displacement field, we reveal that moiré patterns can have a topological phase singularity, similar to a disclination in liquid crystal and, more generally, a vector field treated in the singular optics. We propose that topological singularities in the moiré displacement field can be projected by passing an electromagnetic field through a metasurface. We designed a metasurface constructed from two layers of a metal disk array operating in the terahertz band; then we numerically estimated the spatial distribution of its transmission properties. The phase singularities in the electromagnetic fields coincided with the singularities appearing in the moiré pattern. We found two kinds of singularities, and the phase of the electromagnetic field changed by 2π or 4π around them. These phase changes were independent of the light frequency, implying that the topological properties of the moiré fields were projected onto the electromagnetic field. This feature of moiré metasurfaces can potentially be exploited in spiral phase plate arrays with no frequency dispersion of the phase change.

  5. A Technique of Deformed Specimen Grating Replication for In-Situ Measurement of Moiré Interferometry%云纹干涉法现场测量中的变形试件栅复制技术

    邬柱; 戴福隆


    An in-situ measurement method of moiré interferometry is investigated in this paper. In the method, deformed specimen grating is replicated during an in-situ measurement.The replicated grating containing the load induced deformation. This deformation can be extracted easily by moiré interferometry. This practical method maintains all the advantages of moité interferometry but it make moiré interferometry extended to other application fields out of optical laboratories.%本文研究了云纹干涉法的现场测量技术.该方法在现场测量过程中复制变形的试件栅.试件栅上保留了载荷引起的变形信息,通过云纹干涉法可以得到这些变形信息.该方法不但具有云纹干涉法的所有优点,并且使云纹干涉法可以在光学实验室以外场合中应用.

  6. 云纹干涉法测量不同载荷条件下金属-瓷标本的位移%Application of moiré interferometry method in measurement of displacement of metal-porcelain restorations



    BACKGROUND: Moiré interferometry method which belongs to the range of experiment mechanics is a modern photo-mechanics test technique. On the other hand, metal-porcelain restorations characterized as beautiful, compatible and stable properties are widely used in oral medicine domain. Moiré interferometry technique is applied in the oral restoration and some mechanics data can be obtained. It can be realized in discipline complementation and interaction between mechanics and bio-medicine engineering. OBJECTIVE: To introduce the moiré interferometry technique in details, and to study the displacement of metal-porcelain restorations under different loads by using the moiré interferometry technique as it is found that porcelains often flake off from the base of restorations in oral clinic. METHODS: The horizontal and vertical displacement of metal-porcelain restorations were measured by using the moiré interferometry method which is sensitive and easy to operate, and suitable for in-plane displacement measurement. The displacement was shown in the form of interferometry patterns. RESULTS and CONCLUSION: The interferometry patterns which represented the in-plane displacement of specimens were obtained and the displacement was linearly related with the loading changes. Moiré interferometry method can be used in measuring the displacement of restorations. Operation is simple and results are shown by interferometry patterns.%背景:云纹干涉法是现代光力学测试技术,是实验力学范畴.另外,金瓷修复体以其较好的生物相容性,色泽美观,坚固而广泛应用于临床,将云纹干涉技术应用口腔领域得到医学工程中所需位移量,体现学科交叉,较好的实现学科互补.目的:详细介绍了云纹干涉法原理以及试件栅的复制,针对临床经常发现口腔中瓷剥落等破坏行为,应用云纹干涉法来研究金瓷复合材料受力后的位移量.方法:采用云纹干涉技术测试金瓷试件在不同

  7. Novel Polarimetric SAR Interferometry Algorithms Project

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  8. Novel Polarimetric SAR Interferometry Algorithms Project

    National Aeronautics and Space Administration — Polarimetric SAR interferometry (PolInSAR) is a recently developed synthetic aperture radar (SAR) imaging mode that combines the capabilities of radar polarimetry...

  9. High-contrast Nulling Interferometry Techniques Project

    National Aeronautics and Space Administration — "We are developing rotating-baseline nulling-interferometry techniques and algorithms on the single-aperture Hale and Keck telescopes at near-infrared wavelengths,...

  10. Validation and intercomparison of Persistent Scatterers Interferometry: PSIC4 project results

    Raucoules, D.; Bourgine, B.; Michele, M. de; Le Cozannet, G.; Closset, L.; Bremmer, C.; Veldkamp, H.; Tragheim, D.; Bateson, L.; Crosetto, M.; Agudo, M.; Engdahl, M.


    This article presents the main results of the Persistent Scatterer Interferometry Codes Cross Comparison and Certification for long term differential interferometry (PSIC4) project. The project was based on the validation of the PSI (Persistent Scatterer Interferometry) data with respect to levellin

  11. Moire Butterflies

    Bistritzer, R.; MacDonald, A. H.


    The Hofstadter butterfly spectral patterns of lattice electrons in an external magnetic field yield some of the most beguiling images in physics. Here we explore the magneto-electronic spectra of systems with moire spatial patterns, concentrating on the case of twisted bilayer graphene. Because long-period spatial patterns are accurately formed at small twist angles, fractal butterfly spectra and associated magneto-transport and magneto-mechanical anomalies emerge at accessible magnetic field...

  12. Application of Phase Shifting Projection Moire on Solid Regular Figures and Plant Organs Three Dimensional Digital Model Generation

    Lino, A. C. L.; Dal Fabbro, I. M.


    The conception of a tridimensional digital model of solid figures and plant organs started from topographic survey of virtual surfaces [1], followed by topographic survey of solid figures [2], fruit surface survey [3] and finally the generation of a 3D digital model [4] as presented by [1]. In this research work, i.e. step number [4] tested objects included cylinders, cubes, spheres and fruits. A Ronchi grid named G1 was generated in a PC, from which other grids referred as G2, G3, and G4 were set out of phase by 1/4, 1/2 and 3/4 of period from G1. Grid G1 was then projected onto the samples surface. Projected grid was named Gd. The difference between Gd and G1 followed by filtration generated de moiré fringes M1 and so on, obtaining the fringes M2, M3 and M4 from Gd. Fringes are out of phase one from each other by 1/4 of period, which were processed by the Rising Sun Moiré software to produce packed phase and further on, the unpacked fringes. Tested object was placed on a goniometer and rotate to generate four surfaces topography. These four surveyed surfaces were assembled by means of a SCILAB software, obtaining a three column matrix, corresponding to the object coordinates xi, also having elevation values and coordinates corrected as well. The work includes conclusions on the reliability of the proposed method as well as the setup simplicity and of low cost.

  13. Range Surveillance Using Radio Interferometry and TDOA Techniques Project

    National Aeronautics and Space Administration — The proposed innovation will utilize a small network of remote sensors to perform Radio Interferometry (RI) and Time Difference of Arrival (TDOA) techniques to...

  14. Range Surveillance Using Radio Interferometry and TDOA Techniques Project

    National Aeronautics and Space Administration — The proposed innovation will utilize a small network of remote sensors (Figure 2.1) to perform Radio Interferometry (RI) and Time Difference of Arrival (TDOA)...

  15. Advancing a smart air cushion system for preventing pressure ulcers using projection Moiré for large deformation measurements

    Cheng, Sheng-Lin; Tsai, Tsung-Heng; Lee, Carina Jean-Tien; Hsu, Yu-Hsiang; Lee, Chih-Kung


    A pressure ulcer is one of the most important concerns for wheelchair bound patients with spinal cord injuries. A pressure ulcer is a localized injury near the buttocks that bear ischial tuberosity oppression over a long period of time. Due to elevated compression to blood vessels, the surrounding tissues suffer from a lack of oxygen and nutrition. The ulcers eventually lead to skin damage followed by tissue necrosis. The current medical strategy is to minimize the occurrence of pressure ulcers by regularly helping patients change their posture. However, these methods do not always work effectively or well. As a solution to fundamentally prevent pressure ulcers, a smart air cushion system was developed to detect and control pressure actively. The air cushion works by automatically adjusting a patient's sitting posture to effectively relieve the buttock pressure. To analyze the correlation between the dynamic pressure profiles of an air cell with a patient's weight, a projection Moiré system was adopted to measure the deformation of an air cell and its associated stress distribution. Combining a full-field deformation imaging with air pressure measured within an air cell, the patient's weight and the stress distribution can be simultaneously obtained. By integrating a full-field optical metrology with a time varying pressure sensor output coupled with different active air control algorithms for various designs, we can tailor the ratio of the air cells. Our preliminary data suggests that this newly developed smart air cushion has the potential to selectively reduce localized compression on the tissues at the buttocks. Furthermore, it can take a patient's weight which is an additional benefit so that medical personnel can reference it to prescribe the correct drug dosages.

  16. Circular gratings' moiré effect for projection measurement in volume optical computerized tomography with two-step phase-shifting method

    Wang, Jia; Song, Yang; Li, Zhen-hua; He, An-zhi


    Volume optical computerized tomography (VOCT), which can realize real 3D measurement rather than traditional 2D OCT, has great superiority in quantitatively measuring the thermo physical parameters of transient flow field. Among the refractive index reconstruction techniques, filtered back-projection (FBP) method performs better than algebraic reconstruction techniques (ARTs) with higher accuracy and computationally efficient. In order to apply FBP to VOCT, the radial second-order derivative of projection wave front passes through the tested phase object should be obtained firstly. In this paper, a projection device with two circular gratings is established. In particular, owing to an inherent phase shift exists between moiré fringes of +1 and -1 diffraction orders, a two-step phase-shifting algorithm is utilized to extract the wave front's radial first-order derivative which is contained in the moiré fringes. The reliability of the two-step phase-shifting algorithm is proved by a computer simulation. Finally, the radial first-order derivative of wave front passing through a propane flame is measured and retrieved by these methods.

  17. MOIR/uots

    Liu, Kuien; Yang, Bin; Shang, Shuo;


    to travelers without off-road vehicles. To accommodate various user preferences, we develop MOIR/UOTS, a trip recommendation system that supports User Oriented Trajectory Search (UOTS) [5], [7] based on our previous MOIR platform [2], [4]. Meanwhile, MOIR/UOTS also functions as a test-bed system for exploring......Trajectory search plays an important role in various applications such as trip planning and recommendation. However, most existing studies only focus on spatial proximity but ignore individual users' preferences. For example, it is inappropriate to recommend a route containing gravel roads...... and evaluating novel trajectory searching algorithms. In particular, we demonstrate how ordinary users can interact with MOIR/UOTS to search for trajectories with their preferences, and how MOIR/UOTS helps researchers to evaluate the performance of various algorithms...

  18. Dynamic moire patterns for profilometry applications

    De Oliveira, G N [Pos-graduacao em Engenharia Mecanica, TEM/PGMEC, Universidade Federal Fluminense, Rua Passos da Patria, 156, Niteroi, R.J., Cep.: 24.210-240 (Brazil); De Oliveira, M E; Dos Santos, P A M, E-mail: [Instituto de Fisica, Laboratorio de Optica Nao-linear e Aplicada, Universidade Federal Fluminense, Av. Gal. Nilton Tavares de Souza, s/n, Gragoata, Niteroi, R.J., Cep.:24.210-346 (Brazil)


    In the present work is proposed that dynamic moire-like fringe patterns produced by photorefraction, with low spatial frequencies, could be used for profile determination of small objects. The Fourier transform profilometry technique is applied in the projected moire fringe pattern onto an object surface. Basically, the Fourier transform of the projected fringes is obtained. After that, a phase map is generated. Then, the optical profile of object is obtained using phase unwrapping. So, the entire process can be indicated to measure, with good accuracy degree, profile of small objects in sub-micrometer scale in optical mechanical systems.

  19. Thermal Strain Analysis using Moire Interferometry,


    virtual reference grating of 2400 lines/mm. A four-beam interferometer illustrated if Pig. 3 was used to obtain the U (horizontal) and V (vertical...information. For the room temperature observations, the virtual reference grating frequency was not fixed with respect to the specimen grating

  20. A compact, robust and versatile moiré interferometer

    Mollenhauer, D. H.; Ifju, P. G.; Han, B.

    A moiré interferometer was designed and constructed based on a general system design using a reflective crossed-line diffraction grating to produce the four beams of light necessary for moiré interferometry. The design concept, basic design and tuning procedures are discussed. The important features of the interferometer, i.e. compactness, versatility, polarization insensitivity, relaxed collimation requirements, low laser power and remote optics, are addressed. Several such interferometers have been constructed and successfully applied to engineering problems. These include examining the displacement fields surrounding drilled and preformed holes in composite laminates loaded in tension, and the evaluation of nonhomogeneous behavior in textile composites.

  1. Moire topography in odontology

    Moreno Yeras, A.


    For several decades measurement optical techniques have been used in different branches of Science and Technology and in medicine. One of these techniques is the so-called Moire topography that allows the accurate measurement of different parts of the human body topography. This investigation presents the measurement of topographies of teeth and gums using an automated system of shadow moire, with which precision can be reached up to the order of the microns by the phase shift instrumentation in an original way. Advantages and disadvantages of using the Moire topography and its comparison with other techniques used in the optical metrology are presented. Also, some positive and negative aspects of the implementation of this technique are shown in dentistry.

  2. Gb-Sar Interferometry for Structure Monitoring during Infrastructure Projects

    Serrano Juan, A.; Vázquez-Suñé, E.; Monserrat, O.; Crosetto, M.; Hoffman, C.; Ledesma, A.; Criollo, R.; Pujades, E.; Velasco, V.; García, A.


    Monitoring is a necessary task for infrastructure projects. Ground-based synthetic aperture radar (GB-SAR) has been used in a large variety of displacement measurements. However, it has not yet been applied as a monitoring tool during construction projects. This paper aims to demonstrate that GB-SAR can be very helpful for understanding the mechanisms that control structure deformations and for identifying unexpected events and sensitive areas during construction projects. This could be done in a cost-effective way, which complements the traditional displacement measurements. An experiment was performed in the future railway station of La Sagrera, Barcelona (Spain) to demonstrate the utility of GB-SAR on structure monitoring during construction projects. In this experiment, GB-SAR precisely quantified wall displacements induced by dewatering. Manual data and numerical models have been used to confirm the measurements with a correlation analysis and by comparing measurements and deformation patterns, which have produced similar results. These results validate the use of the GB-SAR technique as a monitoring tool during construction projects.

  3. An Introduction to Moire Methods with Applications in Composite Materials


    creating a virtual reference grating is schematically shown in Figure 12 where a lens is shown as a means of collimating the laser beam; however, a...SPEC. GRATING, £ LOADING FIXTURE S• CAMERA APERTURE • virtual reference MIRROR grating Figure 12. Moire interferometry optical arrangement using a...plane mirror to form the virtual reference grating, (Ref. 8). Specimen Camera / ~~Beam of •\\- Cam Collimated C,𔃺 B Laser Light I A’ I I Figure 13. Four

  4. Four beam interferometer manual: Operating instructions for the INEL diffraction Moire interferometer

    Deason, V.A.


    Moire interferometry is an interferometric method for measuring changes of in-plane geometry. It is essentially insensitive to out-of-plane topography or changes in that topography. Changes in geometry are referenced to a particular moment in time when the moire` sensor, a diffraction grating, was attached to the specimen. Distortions experienced by the specimen prior to that time are not directly detectable, although they may be inferred from specimen behavior or condition. In its most common form, moire interferometry is not well suited to large (> 50 mm square), curved (< 300 mm diameter) or high temperature (> 200 C) regions. However, various efforts have been made to handle each of these conditions. In general, the moire` process is most straightforward for flat, 25 mm diameter regions of coverage and room temperature. Much smaller or larger regions require more specialized optics, which can become very expensive. This report will discuss various aspects of moire interferometry. In particular, a new four beam (bi-axial) interferometer is described in detail. Issues involved in safety, assembly, calibration and use are fully explained.

  5. Demonstration of X-ray talbot interferometry

    Momose, A; Kawamoto, S; Hamaishi, Y; Takai, K; Suzuki, Y


    First Talbot interferometry in the hard X-ray region was demonstrated using a pair of transmission gratings made by forming gold stripes on glass plates. By aligning the gratings on the optical axis of X-rays with a separation that caused the Talbot effect by the first grating, moire fringes were produced inclining one grating slightly against the other around the optical axis. A phase object placed in front of the first grating was detected by moire-fringe bending. Using the technique of phase-shifting interferometry, the differential phase corresponding to the phase object could also be measured. This result suggests that X-ray Talbot interferometry is a novel and simple method for phase-sensitive X-ray radiography. (author)

  6. Three-Dimensional Moire Pattern

    Juday, Richard D.


    Use of moire patterns to determine positions extended to three dimensions. Concept requires two moire templates or grids, separated from each other. Template on side closer to observer contains alternating black and transparent areas. Template farther from observer contains alternating black and white areas. Observer determines position of center of perspective, also receiving indication of depth even without stereoscopic view. Used in rangefinding applications in which precision not required. Also used to gauge location of mobile robot in environment hostile to humans.

  7. Geohazard monitoring and modelling using Persistent Scatterer Interferometry in the framework of the European project Terrafirma

    Cooksley, Geraint; Arnaud, Alain; Banwell, Marie-Josée


    Increasingly, geohazard risk managers are looking to satellite observations as a promising option for supporting their risk management and mitigation strategies. The Terrafirma project, aimed at supporting civil protection agencies, local authorities in charge of risk assessment and mitigation is a pan-European ground motion information service funded by the European Space Agency's Global Monitoring for Environment and Security initiative. Over 100 services were delivered to organizations over the last ten years. Terrafirma promotes the use of Synthetic Aperture Radar Interferometry (InSAR) and Persistent Scatterer InSAR (PSI) within three thematic areas for terrain motion analysis: Tectonics, Flooding and Hydrogeology (ground water, landslides and inactive mines), as well as the innovative Wide Area mapping service, aimed at measuring land deformation over very large areas. Terrafirma's thematic services are based on advanced satellite interferometry products; however they exploit additional data sources, including non-EO, coupled with expert interpretation specific to each thematic line. Based on the combination of satellite-derived ground-motion information products with expert motion interpretation, a portfolio of services addressing geo-hazard land motion issues was made available to users. Although not a thematic in itself, the Wide Area mapping product constitutes the fourth quarter of the Terrafirma activities. The wide area processing chain is nearly fully automatic and requires only a little operator interaction. The service offers an operational PSI processing for wide-area mapping with mm accuracy of ground-deformation measurement at a scale of 1:250,000 (i.e. one cm in the map corresponds to 2.5 Km on the ground) on a country or continent level. The WAP was demonstrated using stripmap ERS data however it is foreseen to be a standard for the upcoming Sentinel-1 mission that will be operated in Terrain Observation by Progressive Scan (TOPS) mode. Within

  8. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry Project

    National Aeronautics and Space Administration — We propose to build a compact, high-precision single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Based on...

  9. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry Project

    National Aeronautics and Space Administration — We propose to design a compact, high-precision, single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Our...

  10. Externally Dispersed Interferometry for Precision Radial Velocimetry

    Erskine, D J; Muterspaugh, M W; Edelstein, J; Lloyd, J; Herter, T; Feuerstein, W M; Muirhead, P; Wishnow, E


    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic spectral comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. The moire pattern shifts in phase in response to a Doppler shift. Moire patterns are broader than the underlying spectral features and more easily survive spectrograph blurring and common distortions. Thus, the EDI technique allows lower resolution spectrographs having relaxed optical tolerances (and therefore higher throughput) to return high precision velocity measurements, which otherwise would be imprecise for the spectrograph alone.

  11. Externally Dispersed Interferometry for Precision Radial Velocimetry

    Erskine, D J; Edelstein, J; Lloyd, J; Herter, T; Feuerstein, W M; Muirhead, P; Wishnow, E


    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic spectral comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. The moire pattern shifts in phase in response to a Doppler shift. Moire patterns are broader than the underlying spectral features and more easily survive spectrograph blurring and common distortions. Thus, the EDI technique allows lower resolution spectrographs having relaxed optical tolerances (and therefore higher throughput) to return high precision velocity measurements, which otherwise would be imprecise for the spectrograph alone.

  12. Digital atomic force microscope Moire method

    Liu, C.-M. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Chen, L.-W. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)]. E-mail:


    In this study, a novel digital atomic force microscope (AFM) moire method is established to measure the displacement and strain fields. The moire pattern is generated by the interference between the specimen grating and the virtual reference grating formed by digital image processes. The overlapped image is filtered by the 2-D wavelet transformation to obtain clear interference moire patterns. From moire patterns, the displacement and strain fields can be analyzed. The experimental results show that the digital AFM moire method is very sensitive and easy to realize in nanoscale measurements.

  13. SAR interferometry monitoring along the ancient Rome City Walls -the PROTHEGO project case study

    Carta, Cristina; Cimino, Maria gabriella; Leoni, Gabriele; Marcelli, Marina; Margottini, Claudio; Spizzichino, Daniele


    Led by the Italian Institute for Environmental Protection and Research, in collaboration with NERC British Geological Survey, Geological and Mining Institute of Spain, University of Milano-Bicocca and Cyprus University of Technology, the PROTHEGO project, co-funded in the framework of JPI on Cultural Heritage EU program (2015-2018), brings an innovative contribution towards the analysis of geo-hazards in areas of cultural heritage in Europe. The project apply InSAR techniques to monitor monuments and sites that are potentially unstable due to natural geo-hazard. After the remote sensing investigation, detailed geological interpretation, hazard analysis, local-scale monitoring, advanced modeling and field surveying for some case studies is implemented. The selected case studies are: the Alhambra in Granada (ES); the Choirokoitia village (CY); the Derwent Valley Mills (UK); the Pompei archaeological site and Historical centre of Rome (IT). In this work, in particular, we will focus on ground deformation measurements (obtained by satellite SAR Interferometry) and on their interpretation with respect to the ancient Rome City Walls. The research activities carried out jointly with the Superintendence's technicians, foresee the implementation of a dedicated web GIS platform as a final repository for data storage and spatial data elaboration. The entire circuit of the ancient city walls (both Mura Aureliane and Mura Gianicolensi), was digitalized and georeferenced. All the elements (towers, gates and wall segments) were drawn and collected in order to produce a map of elements at risk. A detailed historical analysis (during the last twenty years) of the ground and structural deformations were performed. A specific data sheet of ruptures was created and fulfilled in order to produce a geographic inventory of past damage. This data sheet contains the following attributes: triggering data; typology of damage; dimension, triggering mechanism; presence of restoration works

  14. Development of a wafer warpage measurement technique using Moiré-based method.

    Hsieh, Hung-Lin; Huang, Yung-Guang; Tsai, Yu-Hsuan; Huang, Yao-Hui


    This paper reports on a novel technique for measuring wafer warpage, using the design concepts of moiré shift, digital moiré, autocollimator, and the scanning profiling method. The measurement system is divided into two parts: an optical moiré system and a phase analysis system. The optical arrangement can be adjusted to control the projection of a linear grating image onto the surface of a wafer to be reflected back into a CCD camera. The grating image acquired by the CCD camera is used for measurement whereas a reference grating image is obtained using the digital moiré method. By overlapping the two images of the measurement and the reference gratings, the corresponding moiré fringes are formed. The phase of the moiré fringes will change proportionally to the degree of warpage in the wafer, which can be measured by detecting variations in the phase shift of the moiré fringes in the scanning profile across the surface of the entire wafer. Measurement resolution can be controlled by adjusting the pitch size of the grating or the focal length of the focusing lens, or by adjusting the angle between the images of the measurement and reference gratings. Experiment results demonstrate that the proposed method is able to achieve an angular resolution of 0.2 μrad. As compared to the current warpage measurement techniques, the proposed method has the ability of high measurement resolution, high stability, and high flexibility.

  15. Automatic Fringe Detection Of Dynamic Moire Patterns

    Fang, Jing; Su, Xian-ji; Shi, Hong-ming


    Fringe-carrier method is used in automatic fringe-order numbering of dynamic in-plane moire patterns. In experiment both static carrier and dynamic moire patterns are recorded. The image files corresponding to instants are set up to assign fringe orders automatically. Subtracting the carrier image from the modulated ones, the moire patterns due to the dynamic deformations are restored with fringe-order variation displayed by different grey levels.

  16. Moiré Nanosphere Lithography.

    Chen, Kai; Rajeeva, Bharath Bangalore; Wu, Zilong; Rukavina, Michael; Dao, Thang Duy; Ishii, Satoshi; Aono, Masakazu; Nagao, Tadaaki; Zheng, Yuebing


    We have developed moiré nanosphere lithography (M-NSL), which incorporates in-plane rotation between neighboring monolayers, to extend the patterning capability of conventional nanosphere lithography (NSL). NSL, which uses self-assembled layers of monodisperse micro/nanospheres as masks, is a low-cost, scalable nanofabrication technique and has been widely employed to fabricate various nanoparticle arrays. Combination with dry etching and/or angled deposition has greatly enriched the family of nanoparticles NSL can yield. In this work, we introduce a variant of this technique, which uses sequential stacking of polystyrene nanosphere monolayers to form a bilayer crystal instead of conventional spontaneous self-assembly. Sequential stacking leads to the formation of moiré patterns other than the usually observed thermodynamically stable configurations. Subsequent O2 plasma etching results in a variety of complex nanostructures. Using the etched moiré patterns as masks, we have fabricated complementary gold nanostructures and studied their optical properties. We believe this facile technique provides a strategy to fabricate complex nanostructures or metasurfaces.

  17. J-Estimation Procedure Based on Moire Interferometry Data.


    copes) Narol S. Systoo Commad Profesor F.A. ,cClmntocs Profeso r 0.K. 0ua :$*eren Stot Wilhiho. ISC 2030s lpt of ernloicoL 1n~inooran, UAioersity of...Statio. leo.l 77643 1nn1!OlaII* I 21402 el20 1i r System$ Coemnd itn: Code 26 Oot, rn4ioo. K 20361 Profesor 1.1. Daniael Attn: C6d 72 Dept of mechanical

  18. Characteristics of Surface Deformation Detected by X-band SAR Interferometry over Sichuan-Tibet Grid Connection Project Area, China

    Yunshan Meng


    Full Text Available The Sichuan-Tibet grid connection project is a national key project implemented in accordance with the developmental needs of Tibet and the living requirements of 700 thousand local residents. It is the first grid project with special high voltage that passes through eastern margin of the Tibetan Plateau. The ground deformation due to widely distributed landslides and debris flow in this area is the major concern to the safety of the project. The multi-temporal interferometry technique is applied to retrieve the surface deformation information using high resolution X-band SAR imagery. The time series of surface deformation is obtained through the sequential high spatial and temporal resolution TerraSAR images (20 scenes of X-band TerraSAR SLC images acquired from 5 January 2014 to 12 December 2014. The results have been correlated with the permafrost activities and intensive precipitation. They show that the study area is prone to slow to moderate ground motion with the range of −30 to +30 mm/year. Seasonal movement is observed due to the freeze-thaw cycle effect and intensive precipitation weather condition. Typical region analysis suggests that the deformation rate tends to increase dramatically during the late spring and late autumn while slightly during the winter time. The correlations of surface deformations with these two main trigger factors were further discussed. The deformation curves of persistent scatterers in the study area showing the distinct seasonal characteristics coincide well with the effect of freeze-thaw cycle and intensive precipitation. The movement occurring at late spring is dominated by the freeze-thaw cycle which is a common phenomenon in such a high-elevated area as the Tibetan Plateau. Intensive precipitation plays more important role in triggering landsides in the summer season. The combining effect of both factors results in fast slope movement in May. The results also suggest that the movement often occur at

  19. Two Dimensional Plasmonic Cavities on Moire Surfaces

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla


    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  20. Dynamical holographic Moirés in a TEM

    Gatel, C.; Houdellier, F.; Snoeck, E.


    A new electron interferometry method has been developed and implemented in a transmission electron microscope to quantitatively analyse magnetic and electric properties emanating from objects using holograms free of artifacts and with a frequential sensitivity. This method, called dynamical holographic Moirés (DHM), is based on the double-exposure technique consisting in the superimposition of two different holograms. We improved this technique by acquiring the superimposed holograms for two well-defined excitation states of the sample and with a control of the superimposition frequency. The variations of magnetic and electrostatic fields between both excitation states can then be extracted directly from the amplitude part of the so-called interferogram. We demonstrate the efficiency of this method by studying quantitatively the magnetic field generated by a hard disk drive writing head excited by a DC and an AC current. Double exposure measurements have also been performed to study in situ electrostatic properties of a biased carbon nanocone tip. Our method opens the route to dynamical studies using the unique combination of nanoscale resolution and electromagnetic sensitivity of electron interferometry.

  1. Closed-loop phase stabilizing and phase stepping methods for fiber-optic projected-fringe digital interferometry.

    Chao, Zhang; Fa-Jie, Duan


    Closed-loop active homodyne control can be used to make an interferometer steady against phase fluctuating followed by, for example, temperature gradients. This technology is introduced to stabilize π/2 -rad phase steps in a full-field interferometer. Two beams emitted from a fiber-optic coupler are combined to form an interference fringe pattern on a diffusely reflecting object. Fresnel reflections from the distal fiber ends undergo a double pass in the fibers and interference at the fourth port of the coupler which formed a Michelson interferometer. We suggested two means of ac phase tracking (PTAC) and dc phase tracking (PTDC) to maintain the interference intensity at quadrature by feedback control. Stepping between quadrature positions forces a π/2 -rad phase step. A method based on the ratio of harmonic of the interference signal was proposed to estimate phase step accuracy. A root-mean-square phase stability of 1.5 mrad and phase step accuracy of 2.6 mrad were measured with PTAC and a root-mean-square phase stability of 2 mrad and phase step accuracy of 13.8 mrad were measured with PTDC for the fiber-optic projected-fringe digital interferometry following the same condition. It worked well in two hours without resetting the integrator.

  2. Application of moiré technique on strain analysis in farm machinery elements

    Kelen Cristiane Cardoso

    Full Text Available Development and optimization of projects for agricultural machinery involve the analysis of stress and strain. Moiré photomechanical techniques provide a complete displacement field of the specimen under test, and can aid in understanding the mechanical behavior of parts with complex geometry. Hybrid methods combine fringe patterns of displacement with distribution maps of stress and strain through concepts of the theory of elasticity. The objective of this work was to analyse the use of the shadow moiré technique in the qualitative determination of stress and strain distribution in geometrically complex machine elements. The results were compared with those from an electrical extensometer and a computer simulation. The results demonstrated that the shadow moire technique was quite reliable in analysing the mechanical behavior of geometrically complex machine elements.

  3. Fiber-optic project-fringe interferometry with sinusoidal phase modulating system

    Zhang, Fukai; Duan, Fajie; Lv, Changrong; Duan, Xiaojie; Bo, En; Feng, Fan


    A fiber-optic sinusoidal phase-modulating (SPM) interferometer for fringe projection is presented. The system is based on the SPM technique and makes use of the Mach-Zehnder interferometer structure and Young's double pinhole interference principle to achieve interference fringe projection. A Michelson interferometer, which contains the detection of Fresnel reflection on its fiber end face and interference at one input port of a 3 dB coupler, is utilized to achieve feedback precise control of the fringe phase, which is sensitive to phase drifting produced by the nature of the fiber. The phase diversity for the closed-loop SPM system can be real-time measured with a precision of 3 mrad. External disturbances mainly caused by temperature fluctuations can be reduced to 57 mrad for the fringe map. The experimental results have shown the usefulness of the system.

  4. Plasmonic Coupled Cavities on Moire Surfaces

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla


    We investigate surface plasmon polariton (SPP) coupled cavity modes on Moire surfaces. An experimental study has been made of the propagation of SPPs on a thin silver surface that is textured with Moire surface pattern using interference lithography. The Moire surface contains periodic array of one dimensional cavities. The distance between the cavities can be controlled by changing the periodicities of Moire surface. When the SPP cavity separation is sufficiently small, we show splitting of strongly coupled plasmonic cavity modes through numerical simulations. Conversely, when the SPP cavity separation is sufficiently large, SPP cavity modes are found to be localized and do not show splitting of SPP cavity modes . This splitting of SPP cavity modes are well explained with a tight binding model that has been succesfully applied in photonic coupled cavities. Reflection measurements and numerical simulation of a large number of adjacent SPP cavities have shown a coupled resonator optical waveguide (CROW) type plasmonic waveguide band formation within the band gap region of unperturbed uniform grating.

  5. A simplified holographic-interferometry technique for real-time flow visualization and analysis

    Long, S. A.; Spencer, R. C.


    A holographic-interferometry technique for flow visualization and analysis that produces real-time moire fringes is described from both experimental and application considerations. It has three chief advantages: real-time data for continuous observation and photography, ease of optical adjustment, and capability of using ordinary-glass test-section windows without affecting the results. A theoretical discussion is presented describing the formation of the fringes in holographic terms and then comparing this result to that which is obtained from a conventional moire approach. A discussion on obtaining density information from the fringe pattern is also included.

  6. Digital moiré interferometric analysis on the effect of nanoparticle conditioning on the mechanical deformation in dentin

    Li, Fang Chi; Kishen, Anil


    Dentin is a biological composite that forms the major bulk of tooth structure. Understanding the biomechanical response of dentin structure to forces is essential to restore the loss of mechanical integrity associated with dentin loss during disease or treatment procedures. Moiré interferometry is an optical interferometry based method, which allows wholefield, real-time analysis of dental structures with high-sensitivity. The aim of this study was to investigate the deformation gradients in dentin during function and subsequent to surface conditioning with bioactive biopolymeric nanoparticle. Slab shaped dentin specimens were prepared and a customized loading jig was used to compressively load the specimens from 10 N to 50 N. Specific regions of interest was chosen on the dentin specimens for strain analysis. The digital moiré interferometry experiments showed a distinct deformation pattern in dentin in the direction perpendicular to the dentinal tubules, which increased with increase in dentin loss. The dentin conditioned with nanoparticles did not display marked increase in strain gradients with loads. The current photomechanical experiment highlighted the impact of nanoparticle treatment to improve the mechanical integrity of dentin.

  7. Atomic Interferometry Project

    National Aeronautics and Space Administration — Vertical cavity surface emitting lasers (VCSELs) is a new technology which can be used for developing high performance laser components for atom-based sensors...

  8. Moiré topography in odontology

    Moreno Yeras, A.


    For several decades, measurement of optical techniques has been used in different branches of science and technology. One of these techniques is the so-called moiré topography (MT) that enables the accurate measurement of different parts of the human body topography. This investigation presents the measurement of topographies of teeth and gums using an automated system of shadow moiré and the phase shift method in an original way. The fringe patterns used to compute the shape and the shape matrix itself are presented in the article. The phase shift method ensures precisions up to the order of microns. Advantages and disadvantages of using the MT are included. Besides, some positive and negative aspects concerned with the implementation of this technique in odontology are shown in the article.

  9. Externally Dispersed Interferometry for Resolution Boosting and Doppler Velocimetry

    Erskine, D J


    Externally dispersed interferometry (EDI) is a rapidly advancing technique for wide bandwidth spectroscopy and radial velocimetry. By placing a small angle-independent interferometer near the slit of an existing spectrograph system, periodic fiducials are embedded on the recorded spectrum. The multiplication of the stellar spectrum times the sinusoidal fiducial net creates a moire pattern, which manifests high detailed spectral information heterodyned down to low spatial frequencies. The latter can more accurately survive the blurring, distortions and CCD Nyquist limitations of the spectrograph. Hence lower resolution spectrographs can be used to perform high resolution spectroscopy and radial velocimetry (under a Doppler shift the entire moir{acute e} pattern shifts in phase). A demonstration of {approx}2x resolution boosting (100,000 from 50,000) on the Lick Obs. echelle spectrograph is shown. Preliminary data indicating {approx}8x resolution boost (170,000 from 20,000) using multiple delays has been taken on a linear grating spectrograph.

  10. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    Edelstein, J; Erskine, D J


    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  11. 100-Picometer Interferometry for EUVL

    Sommargren, G E; Phillion, D W; Johnson, M A; Nguyen, N O; Barty, A; Snell, F J; Dillon, D R; Bradsher, L S


    Future extreme ultraviolet lithography (EWL) steppers will, in all likelihood, have six-mirror projection cameras. To operate at the diffraction limit over an acceptable depth of focus each aspheric mirror will have to be fabricated with an absolute figure accuracy approaching 100 pm rms. We are currently developing visible light interferometry to meet this need based on modifications of our present phase shifting diffraction interferometry (PSDI) methodology where we achieved an absolute accuracy of 250pm. The basic PSDI approach has been further simplified, using lensless imaging based on computational diffractive back-propagation, to eliminate auxiliary optics that typically limit measurement accuracy. Small remaining error sources, related to geometric positioning, CCD camera pixel spacing and laser wavelength, have been modeled and measured. Using these results we have estimated the total system error for measuring off-axis aspheric EUVL mirrors with this new approach to interferometry.

  12. Charge transport through one-dimensional Moiré crystals

    Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Rocca, Maria Luisa Della; Lafarge, Philippe; Charlier, Jean-Christophe


    Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations.

  13. An electron moiré method for a common SEM

    Y.M.Xing; S.Kishimoto; Y.R.Zhao


    In the electron moiré method,a high-frequency grating is used to measure microscopic deformation,which promises significant potential applications for the method in the microscopic analysis of materials.However,a special beam scanning control device is required to produce a grating and generate a moiré fringe pattern for the scanning electron microscope (SEM).Because only a few SEMs used in the material science studies are equipped with this device,the use of the electron moiré method is limited.In this study,an electron moiré method for a common SEM without the beam control device is presented.A grating based on a multi-scanning concept is fabricated in any observing mode.A real-time moiré pattern can also be generated in the SEM or an optical filtering system.Without the beam control device being a prerequisite,the electron moiré method can be more widely used.The experimental results from three different types of SEMS show that high quality gratings with uniform lines and less pitch error can be fabricated by this method,and moiré patterns can also be correctly generated.

  14. Charge transport through one-dimensional Moiré crystals.

    Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Della Rocca, Maria Luisa; Lafarge, Philippe; Charlier, Jean-Christophe


    Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations.

  15. Moiré assisted fractional quantum Hall state spectroscopy

    Wu, Fengcheng; MacDonald, A. H.


    Intra-Landau level excitations in the fractional quantum Hall regime are not accessible via optical absorption measurements. We point out that optical probes are enabled by the periodic potentials produced by a moiré pattern. Our observation is motivated by the recent observations of fractional quantum Hall incompressible states in moiré-patterned graphene on a hexagonal boron nitride substrate, and is theoretically based on f -sum rule considerations supplemented by a perturbative analysis of the influence of the moiré potential on many-body states.

  16. Profiling of aspherical surfaces using moire deflectometry

    Uitterdijk, T.; Frankena, Hans J.; Smorenburg, Kees


    An elegant measuring setup for contouring strong aspherical surfaces is introduced. Moire deflectometry is chosen as the measuring method because the configuration is simple, robust, and variable in sensitivity. The instrument is capable of measuring height deviations between an aspherical surface and its best fitting sphere ranging from minimally 1 micrometers to maximally 30 micrometers with a relative accuracy of 10%, which is useful for the production of surfaces in infrared optics. It is possible to measure transparent as well as reflecting surfaces, both convex and concave. A CCD-camera and a PC make part of the setup to automate the measurements. The short measurement time of less than 60 seconds makes the instrument useful in the manual production of aspherical surfaces.

  17. A moiré deflectometer for antimatter

    Aghion, S; Amsler, C; Ariga, A; Ariga, T; Belov, A S; Berggren, K; Bonomi, G; Braunig, P; Bremer, J; Brusa, R S; Cabaret, L; Canali, C; Caravita, R; Castelli, F; Cerchiari, G; Cialdi, S; Comparat, D; Consolati, G; Derking, H; Di Domizio, S; Di Noto, L; Doser, M; Dudarev, A; Ereditato, A; Ferragut, R; Fontana, A; Genova, P; Giammarchi, M; Gligorova, A; Gninenko, S N; Haider, S; Huse, T; Jordan, E; Jørgensen, L V; Kaltenbacher, T; Kawada, J; Kellerbauer, A; Kimura, M; Knecht, A; Krasnicky, D; Lagomarsino, V; Lehner, S; Magnani, A; Malbrunot, C; Mariazzi, S; Matveev, V A; Moia, F; Nebbia, G; Nedelec, P; Oberthaler, M K; Pacifico, N; Petracek, V; Pistillo, C; Prelz, F; Prevedelli, M; Regenfus, C; Riccardi, C; Røhne, O; Rotondi, A; Sandaker, H; Scampoli, P; Storey, J; Subieta Vasquez, M A; Spacek, M; Testera, G; Vaccarone, R; Widmann, E; Zavatarelli, S; Zmeskal, J


    The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational inter- action is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics—the moire ́ deflectometer—for a measurement of the acceleration of slow antiprotons. The setup con- sists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleratio...

  18. Digital phase-shifting atomic force microscope Moire method

    Liu Chiaming; Chen Lienwen [Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 70101 (China)


    In this study, the digital atomic force microscope (AFM) Moire method with phase-shifting technology is established to measure the in-plane displacement and strain fields. The Moire pattern is generated by the interference between the specimen grating and the virtual reference grating formed by digital image processes. The overlapped image is filtered by two-dimensional wavelet transformation to obtain the clear interference Moire patterns. The four-step phase-shifting method is realized by translating the phase of the virtual reference grating from 0 to 2{pi}. The principle of the digital AFM Moire method and the phase-shifting technology are described in detail. Experimental results show that this method is convenient to use and efficient in realizing the microscale measurement.

  19. Optical Interferometry with Flexible Coherent Fiber Bundle for Measuring Deposits or Contamination on Surfaces and Inside Tubes Project

    National Aeronautics and Space Administration — This project involves a demonstration for a new environmentally safe and accurate cleaning method for removing contaminants (oil films, fungi,) in enclosed areas...

  20. Deskrypcja kąta szpotawości i koślawości piątego palca stóp dzieci i młodzieży w wieku od 4 do 18 lat w świetle mory projekcyjnej = Description the varus and valgus angle on the fifth finger of the foot of children and youth aged 4 to 18 years in the light of the moiré projection

    Mrozkowiak, Mirosław


    Mrozkowiak Mirosław. Deskrypcja kąta szpotawości i koślawości piątego palca stóp dzieci i młodzieży w wieku od 4 do 18 lat w świetle mory projekcyjnej = Description the varus and valgus angle on the fifth finger of the foot of children and youth aged 4 to 18 years in the light of the moiré projection. Journal of Education, Health and Sport. 2015;5(9):245-260. ISSN 2391-8306. DOI 10.5281/zenodo.30538

  1. On-Axis Digital Moire Optoelectronic Telemetrology

    Meilan, Pablo F.; Laquidara, Aníbal P.; Bava, José A.; Garavaglia, Mario


    In previous papers [2,3,4,5] we introduced an operation based on digital moiré pattern processing to measure the distance to an object and its size. The method uses a sequence of digital photographic operations to capture two pictures of the scene with the CCD camera placed at two near and well defined positions along the optical axis of the camera. The distance ΔL between both camera positions is of the order of 1-10% of the distance L from the camera to the selected object in the scene. The teleoperation process algoritm requires to introduce ΔL to determine the distance L. Now we will report a simple and powerful optical system: an optical delay line with an optical path equal to 1.5 m, introduced in the line of sight from the camera to the selected object in the scene. With this optical system it is possible to capture the observed object at distances L and L+ΔL simultaneously in the same picture. The uncertainty in measuring L is of the order of 1%.

  2. Moire Ct technique and its application on laser flexible manufacture

    Li, Tianze; Hou, Luan; Jiang, Chuan; Zhang, Xia


    In the paper, the main properties of Moire fringe, such as average effect, amplification effect, corresponding relation are elaborated, and the principle of Moire Ct technique is represented. On the basis of main features of Moire fringe, multidirectional Moire Ct deflection system is designed using high accuracy Ccd, grating, filter, lens, planar mirror and optical splitter. The system has simple light path, and can be easily made into the one that has large caliber.It can analyze multidirectional records of the probe at the same time, and can obtain clear interference patterns.The iterative technique combined with computer chromatography algorithms is used to achieve inversion of multidirectional clear interference patterns so that the required parameters can be acquired. Moire Ct technique is applied to laser flexible manufacture. Produced parts are delaminated on the paper, and are stratified manufactured until they are connected to forming. Cad/Cam system is adopted to construct Spatial three-dimensional geometric model, and the data files are formed. Then by using the Small triangle plane, the inner and outer surfaces of the data files are discretized. Discretized parts model is made chromatography with mathematical methods using Cam software. A series of parallel horizontal intersecting planes are generated. The problems of filtering arrangement tangent points are solved by recombining the shape and structure relationship among the triangular mesh. Several conclusions are presented.

  3. Hex-square moire patterns in imagers using microchannel plates

    Lawrence, George M.


    In electronic imaging detectors using microchannel plates, the mismatch between the pixels on a square mesh and the microchannels on a hexagonal mesh produces moire image defects. Theoretical statistical estimates of the sizes of the microposition offsets and the flat field intensity errors are calculated, showing the trade-off between resolution and position accuracy. A distinction is made between moments of spot images and moments of the single-pixel-response functions. As the resolution between the hex and square meshes is improved, the detector resolution is improved, but at the expense of an about 10 percent moire pattern. These moire patterns will not be properly corrected by dividing by the flat field image.

  4. Synthetic Aperture Radar Interferometry

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.


    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  5. Slowing Down Surface Plasmons on a Moiré Surface

    Kocabas, Askin; Senlik, S. Seckin; Aydinli, Atilla


    We have demonstrated slow propagation of surface plasmons on metallic Moiré surfaces. The phase shift at the node of the Moiré surface localizes the propagating surface plasmons and adjacent nodes form weakly coupled plasmonic cavities. Group velocities around vg=0.44c at the center of the coupled cavity band and almost a zero group velocity at the band edges are observed. A tight binding model is used to understand the coupling behavior. Furthermore, the sinusoidally modified amplitude about the node suppresses the radiation losses and reveals a relatively high quality factor (Q=103).

  6. The Analysis of Deformations and Strains in Composites by Moire Interferometry.


    coherent light from C’ and 0’ intersect at an angle of 2a in the horizontal plane and form a virtual reference grating with its grating lines...perpendicular to the x direction. Beams from A’ and BI intersect at 2az in a vertical plane and form a virtual reference grating with lines perpendicular to...the y direction. The frequency of each virtual reference grating is f = (2sina)/x, where x is the wavelength of the light. Each reference grating

  7. A Moiré Cavity Plasmonic Dye Laser

    Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun; Aydinli, Atilla


    From its first conception to its first demonstration, plasmonic lasers have been an intriguing topic of research. In this work, Moiré gratings which manifest a cavity state in the SPP dispersion curve. We used a reverse Kretschmann setup to decouple the amplified light component of SPPs. We employed a Moiré cavity with 250 +256 nm periodicity together with a Styryl 7 laser dye dissolved in ethylene glycol in 5 mM concentration and obtained a lasing at 718 nm. Pumping threshold was 1.5 mJ/cm2 with FWHM of 2.8 nm. Furthermore, periodicities of 242 +248 nm and 260 +266 nm resulted in proportional shift of the lasing peak. We did not observe any lasing action on samples with Au and Ti coatings, although solely Au coated samples showed plasmonic modes in the spectrum. Resulting lasing peak is highly TM polarized. Reflection map measurements confirm that lasing mode is supported with the cavity state of the metallic Moiré cavity and simulations support reflection map measurements. Thus, we demonstrated, to our knowledge, the first plasmonic dye laser on a Moiré cavity. TUBITAK 110T790, 110T589, 112T091.

  8. Moiré Effect: Index and the Digital Image

    Stella Baraklianou


    Full Text Available The moiré effect and phenomena are natural occurring geometric formations that appear during the super-position of grid structures. Most widely recognisable in colour printing practices, generally viewed on screens (computer and TV they are in most cases examples of interference within a signal or a code, unwanted visual mis-alignment. Especially in digital image capture, moiré patternings appear when a geometrically even pattern, like a fabric or close-up of fine texture, has an appearance of rippled water with blue or red hues of concentric circle formations. The intriguing pattern formation in this case points back not only to the mis-alignment of frequencies, but can be further seen as the intersection point of a speculative ontology for the index of the digital image. Moiré not only as a visually reproducible phenomenon or effect, but a field of vision that blurs the boundaries between analogue and digital, perception and affect, manifesting the photographic as a constant site of becoming, a site of immanence. The philosophy of Henri Bergson, Brian Massumi and Francois Laruelle will be explored alongside the moiré image and phenomenon, to see if there is such a speculative site underlining the becoming of the digital image and its repercussions in contemporary digital culture.

  9. James Moir (1874–1929) Pioneering Chemical Analyst in South ...


    commemorated by Chemistry students for the 'James Moir Medal', awarded annually to the top BSc (Hons) or .... was elected President in that year he stated in his Presidential .... President of the Chemical Institute, Dr H.H. Green,11 for the.

  10. Sub-Nyquist artefacts and sampling moiré effects.

    Amidror, Isaac


    Sampling moiré effects are well known in signal processing. They occur when a continuous periodic signal g(x) is sampled using a sampling frequency f s that does not respect the Nyquist condition, and the signal-frequency f folds over and gives a new, false low frequency in the sampled signal. However, some visible beating artefacts may also occur in the sampled signal when g(x) is sampled using a sampling frequency f s which fully respects the Nyquist condition. We call these phenomena sub-Nyquist artefacts. Although these beating effects have already been reported in the literature, their detailed mathematical behaviour is not widely known. In this paper, we study the behaviour of these phenomena and compare it with analogous results from the moiré theory. We show that both sampling moirés and sub-Nyquist artefacts obey the same basic mathematical rules, in spite of the differences between them. This leads us to a unified approach that explains all of these phenomena and puts them under the same roof. In particular, it turns out that all of these phenomena occur when the signal-frequency f and the sampling frequency f s satisfy f≈(m/n)f s with integer m, n, where m/n is a reduced integer ratio; cases with n=1 correspond to true sampling moiré effects.

  11. Noise Studies of Externally Dispersed Interferometry for Doppler Velocimetry

    Erskine, D J; Edelstein, J; Lloyd, J; Muirhead, P


    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. Both regular and high-frequency spectral components can be recovered from the data--the moire component carries additional information that increases the signal to noise for velocimetry and spectroscopy. Here we present simulations and theoretical studies of the photon limited Doppler velocity noise in an EDI. We used a model spectrum of a 1600K temperature star. For several rotational blurring velocities 0, 7.5, 15 and 25 km/s we calculated the dimensionless Doppler quality index (Q) versus wavenumber v. This is the normalized RMS of the derivative of the spectrum and is proportional to the photon-limited Doppler signal to noise ratio.

  12. Asymmetric Talbot-Lau interferometry for inertial sensing

    Sala, Simone; Giammarchi, Marco; Olivares, Stefano


    We study in detail a peculiar configuration of the Talbot-Lau matter wave interferometer, characterized by unequal distances between the two diffraction gratings and the observation plane. We refer to this apparatus as the "asymmetric Talbot-Lau setup." Particular attention is given to its capabilities as an inertial sensor for particle and atomic beams, also in comparison with the classical moiré deflectometer. The present paper is motivated by possible experimental applications in the context of antimatter wave interferometry, including the measurement of the gravitational acceleration of antimatter particles. Therefore we focus our analysis on the current state of the art. To support our findings, we have also performed numerical simulations of realistic particle beams with varying speed distributions.

  13. Moiré Fibre Bragg Grating Written on Strained Fibres

    孙磊; 冯新焕; 刘艳格; 张伟刚; 袁树忠; 开桂云; 董孝义


    Moiré fibre Bragg gratings are made in a single mode fibre and a polarization-maintaining fibre respectively, using an excimer KrF laser and a phase mask. Two gratings are written at the same location of the optical fibre. The wavelength spacing can be finely tuned from 0 to 1.86nm by straining the optical fibre during UV illumination.

  14. The Dogon as lieu de mémoire

    Strachan, John


    Focussing on ethnography, literature, aesthetics and museums, this essay explores the shifting—and heretofore understudied—place of the Dogon people of Mali in the definition, redefinition and stabilization of French identity in the late colonial and postcolonial eras. It suggests that French thinking about the Dogon merits a place among the lieux de mémoire that Pierre Nora has identified at the heart of the modern nation-state.

  15. Sensing Characteristics of A Precision Aligner Using Moire Gratings for Precision Alignment System

    ZHOU Lizhong; Hideo Furuhashi; Yoshiyuki Uchida


    Sensing characteristics of a precision aligner using moire gratings for precision alignment sysem has been investigated. A differential moire alignment system and a modified alignment system were used. The influence of the setting accuracy of the gap length and inclination of gratings on the alignment accuracy has been studied experimentally and theoretically. Setting accuracy of the gap length less than 2.5μm is required in modified moire alignment. There is no influence of the gap length on the alignment accuracy in the differential alignment system. The inclination affects alignment accuracies in both differential and modified moire alignment systems.

  16. Evaluation of solar mirror figure by moire contouring

    Griffin, J.W.; Lind, M.A.


    Moire topography is applied to the figure assessment of solar mirrors. The technique is demonstrated on component facets of a six-meter diameter, four-meter focal length, parabolic dish collector. The relative ease of experimental implementation and subsequent data analysis suggests distinct advantages over the more established laser ray trace or BCS/ICS technique for many applications. The theoretical and experimental considerations necessary to fully implement moire topography on mirror surfaces are detailed. A procedure to de-specularize the mirror is demonstrated which conserves the surface morphology without damaging the reflective surface. The moire fringe patterns observed for the actual mirror facets are compared with theoretical contours generated for representative dish facets using a computer simulation algorithm. A method for evaluating the figure error of the real facet is presented in which the error parameter takes the form of an average absolute deviation of the surface slope from theoretical. The experimental measurement system used for this study employs a 200 line/inch Ronchi transmission grating. The mirror surface is illuminated by a collimated beam at 60/sup 0/. The fringe observation is performed normal to the grating. These parameters yield contour intervals for the fringe patterns of 0.073 mm. The practical considerations for extending the techniques to higher resolution are discussed.

  17. Le parcours d’un juste: mémoires politiques, mémoires militantes

    Alexandra Borsari


    Full Text Available Avocat engagé, Robert Badinter s'est retrouvé en situation de mettre en pratique ses idéaux. Son dernier livre, Les épines et les roses, publié chez Fayard (Paris, 2011 est le récit de son parcours de ministre de la Justice. Cet ouvrage soulève ainsi des questions sur les rapports entre mémoires rédigées et image de soi, mais aussi entre la mémoire du sujet et la mémoire collective à laquelle il participe. En racontant sa version du passé, l'auteur entend influencer la lecture de celui-ci et contrôler, en partie, le souvenir qui en sera gardé dans l'opinion. Car, bien qu'il se présente tout au long de l'ouvrage comme un homme ordinaire, arrivé de manière inattendue au pouvoir, Robert Badinter omet de rappeler que tout son parcours postérieur à cette expérience de ministre s'est déroulée à des niveaux de responsabilité en lien étroit avec le pouvoir politique. Après cet accès momentané au pouvoir exécutif, Robert Badinter a ainsi été président du Conseil constitutionnel, fonction à forte dimension politique, avant d'accéder à des fonctions prestigieuses au niveau international. Enfin, son parcours politique s'est poursuivi par son élection au Sénat et donc par une participation directe à l'exercice du pouvoir législatif. Bien sûr, les responsabilités ne sont pas les mêmes, et pour quelqu'un qui s'est souvent refusé à parler de lui, se mettre en scène en tant que garde des Sceaux revêt une signification particulière. Il s'agit ainsi de rendre pérenne le souvenir d'un combat et d'une action dont les résultats les plus forts – abolition de la peine de mort et réforme du code pénal – continuent de façonner, à leur manière, la société française. Mais au-delà du bilan, ce retour sur le passé est également l'occasion de s'ériger en juge du temps présent. Le combat n'est pas terminé et cet ouvrage se veut aussi une oeuvre militante. En analysant cette volonté de se présenter en

  18. Astronomical Optical Interferometry. I. Methods and Instrumentation

    Jankov, S.


    Full Text Available Previous decade has seen an achievement of large interferometricprojects including 8-10m telescopes and 100m class baselines. Modern computerand control technology has enabled the interferometric combination of lightfrom separate telescopes also in the visible and infrared regimes. Imagingwith milli-arcsecond (mas resolution and astrometry with micro-arcsecond($mu$as precision have thus become reality. Here, I review the methods andinstrumentation corresponding to the current state in the field ofastronomical optical interferometry. First, this review summarizes thedevelopment from the pioneering works of Fizeau and Michelson. Next, thefundamental observables are described, followed by the discussion of the basicdesign principles of modern interferometers. The basic interferometrictechniques such as speckle and aperture masking interferometry, aperture synthesisand nulling interferometry are disscused as well. Using the experience ofpast and existing facilities to illustrate important points, I considerparticularly the new generation of large interferometers that has beenrecently commissioned (most notably, the CHARA, Keck, VLT and LBTInterferometers. Finally, I discuss the longer-term future of opticalinterferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  19. HBT Interferometry: Historical Perspective

    Padula, S S


    I review the history of HBT interferometry, since its discovery in the mid 50's, up to the recent developments and results from BNL/RHIC experiments. I focus the discussion on the contributions to the subject given by members of our Brazilian group.

  20. Induction and Mentoring of New Teachers: Q&A with Ellen Moir. REL Mid-Atlantic Teacher Effectiveness Webinar Series

    Regional Educational Laboratory Mid-Atlantic, 2013


    In this webinar, Ellen Moir, CEO and founder of the New Teacher Center, shared research that shows evidence of the effectiveness of the NTC induction model in raising student achievement and its potential for reducing teacher attrition (Moir, 2009). This Q&A addressed the questions participants had for Ellen Moir following the webinar. The…

  1. Micro/Nano-scale Strain Distribution Measurement from Sampling Moiré Fringes.

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi


    This work describes the measurement procedure and principles of a sampling moiré technique for full-field micro/nano-scale deformation measurements. The developed technique can be performed in two ways: using the reconstructed multiplication moiré method or the spatial phase-shifting sampling moiré method. When the specimen grid pitch is around 2 pixels, 2-pixel sampling moiré fringes are generated to reconstruct a multiplication moiré pattern for a deformation measurement. Both the displacement and strain sensitivities are twice as high as in the traditional scanning moiré method in the same wide field of view. When the specimen grid pitch is around or greater than 3 pixels, multi-pixel sampling moiré fringes are generated, and a spatial phase-shifting technique is combined for a full-field deformation measurement. The strain measurement accuracy is significantly improved, and automatic batch measurement is easily achievable. Both methods can measure the two-dimensional (2D) strain distributions from a single-shot grid image without rotating the specimen or scanning lines, as in traditional moiré techniques. As examples, the 2D displacement and strain distributions, including the shear strains of two carbon fiber-reinforced plastic specimens, were measured in three-point bending tests. The proposed technique is expected to play an important role in the non-destructive quantitative evaluations of mechanical properties, crack occurrences, and residual stresses of a variety of materials.

  2. Electron beam moiré fringes imaging by image converter tube with a magnetic lens

    Liao, Yubo; Lei, Yunfei; Cai, Houzhi; Bai, Yanli; Liu, Jinyuan


    An image converter tube with a magnetic lens was used to obtain static images of moiré fringes formed by electron beam. These moiré fringes are formed due to the interference between the anode mesh and the photocathode containing slits of various spatial frequencies. Moiré fringes are observed at an accelerating voltage of 3.5 kV requiring the magnetic excitation condition of ˜550 ampere-turns. Not only the features of the fringes are analyzed but also the change of fringe spacing as a function of the rotation angle is investigated. The experimental results are found well in agreement with the theoretical analysis. By changing the rotation angle or adjusting the excitation condition of the magnetic lens, we were able to record parallel moiré and secondary moiré fringes too. The secondary moiré fringes can be observed in the rotation angle range of -39.5° to -50.6°. The theoretical analysis indicates that the secondary moiré is formed by the interference between the photocathode slits and the 2-D periodic structure of the anode mesh. Combining our proposed moiré method with the pulse-dilation technique may potentially open the door for future applications, in various fields including, but not limited to, ultrafast electrical pulse diagnostics.

  3. Moiré pattern from a multiple Bragg–Laue interferometer

    Hirano, Kenji, E-mail:; Fukamachi, Tomoe; Kanematsu, Yoshinobu; Jongsukswat, Sukswat; Negishi, Riichirou; Ju, Dongying [Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0293 (Japan); Hirano, Keiichi [Institute of Material Structure Science, KEK-PF, High Energy Accelerator Research Organization, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Kawamura, Takaaki [Department of Mathematics and Physics, University of Yamanashi, Kofu, Yamanashi 400-8510 (Japan)


    A moiré pattern is observed by dividing the incident beam into two and formed by multiple Bragg–Laue interference fringes corresponding to the two incident beams. The coherency of X-rays from a bending-magnet beamline is evaluated using the moiré pattern. In X-ray section topography of Si 220 diffraction in a multiple Bragg–Laue mode, a moiré pattern is observed when the incident beam is divided into two parts by inserting a platinum wire in the middle of the beam. The moiré pattern can be explained by the summation of two interference fringes corresponding to the two incident beams. The coherency of the X-rays from the bending-magnet beamline is estimated using the moiré pattern.

  4. Formation of Three-Way Scanning Electron Microscope Moiré on Micro/Nanostructures

    Qinghua Wang


    Full Text Available Three-way scanning electron microscope (SEM moiré was first generated using a designed three-way electron beam (EB in an SEM. The spot-type three-way SEM moiré comes from the interference between the three-way EB and the specimen grating in which the periodic cells are arranged in a triangular manner. The deformation and the structure information of the specimen grating in three directions can be simultaneously obtained from the three-way SEM moiré. The design considerations of the three-way EB were discussed. As an illustration, the three-way SEM moiré spots produced on a silicon slide were presented. The proposed three-way SEM moiré method is expected to characterize micro/nanostructures in triangular or hexagonal arrangements in three directions at the same time.

  5. Reconstructing the Poynting vector skew angle and wave-front of optical vortex beams via two-channel moir\\'e deflectometery

    Yeganeh, Mohammad; Dashti, Mohsen; Slussarenko, Sergei; Santamato, Enrico; Karimi, Ebrahim


    A novel approach based on the two-channel moir\\'e deflectometry has been used to measure both wave-front and transverse component of the Poynting vector of an optical vortex beam. Generated vortex beam by the q-plate, an inhomogeneous liquid crystal cell, has been analyzed with such technique. The measured topological charge of generated beams are in an excellent agreement with theoretical prediction.

  6. A novel sensor system for mobile robot using moire technique

    Lee, Hyunki; Cho, Hyungsuck


    Nowadays a major research issue of mobile robots is to develop a robust 3D environment sensing for navigation and task execution. To achieve this, a variety of techniques have been developed for the determination of the 3D scene geometric information such as stereo vision, laser structured light, laser range finder and so on. But these methods have many limitations. To overcome these limitations we introduce a new sensing algorithm, which is based on the moire technique and stereo vision. To verify the performance of this sensor system we conducted a series of simulation for various simple environments. The result shows the feasibility of successful perception with several environments.

  7. Iterative supervirtual refraction interferometry

    Al-Hagan, Ola


    In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.

  8. Geometric Time Delay Interferometry

    Vallisneri, Michele


    The space-based gravitational-wave observatory LISA, a NASA-ESA mission to be launched after 2012, will achieve its optimal sensitivity using Time Delay Interferometry (TDI), a LISA-specific technique needed to cancel the otherwise overwhelming laser noise in the inter-spacecraft phase measurements. The TDI observables of the Michelson and Sagnac types have been interpreted physically as the virtual measurements of a synthesized interferometer. In this paper, I present Geometric TDI, a new an...

  9. High-speed photography of high-resolution moire patterns

    Whitworth, Martin B.; Huntley, Jonathan M.; Field, John E.


    The techniques of high resolution moire photography and high speed photography have been combined to allow measurement of the in-plane components of a transient displacement field with microsecond time resolution. Specimen gratings are prepared as casts in a thin layer of epoxy resin on the surface of a specimen. These are illuminated with a flash tube and imaged onto a reference grating with a specially modified camera lens, which incorporates a slotted mask in the aperture plane. For specimen gratings of 75 lines mm1, this selects the +1 and -1 order diffracted beams, thus doubling the effective grating frequency to 150 lines mm1. The resulting real-time moire fringes are recorded with a Hadland 792 image converter camera (Imacon) at an inter-frame time of 2-5ts. The images are digitised and an automatic fringe analysis technique based on the 2-D Fourier transform method is used to extract the displacement information. The technique is illustrated by the results of an investigation into the transient deformation of composite disc specimens, impacted with rectangular metal sliders fired from a gas gun.

  10. White Light Heterodyne Interferometry SNR


    for Research and Engineering under Air Force Contract FA8721-05-C-0002. Approved for public release; distribution is unlimited. White Light ...White Light Heterodyne Interferometry SNR J.B. Ashcom Group 91...public release; distribution is unlimited. ii ABSTRACT White light heterodyne interferometry is a powerful technique for obtaining high-angular

  11. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    Tietje, I C; Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Testera, G; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Turbabin, A; Castelli, F; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Nesteruk, K P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Fesel, J V; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  12. Basics of interferometry

    Hariharan, P


    This book is for those who have some knowledge of optics, but little or no previous experience in interferometry. Accordingly, the carefully designed presentation helps readers easily find and assimilate the interferometric techniques they need for precision measurements. Mathematics is held to a minimum, and the topics covered are also summarized in capsule overviews at the beginning and end of each chapter. Each chapter also contains a set of worked problems that give a feel for numbers.The first five chapters present a clear tutorial review of fundamentals. Chapters six and seven discus

  13. La mémoire de la France Antarctique

    Frank Lestringan


    Full Text Available Les fortunes de la France Antarctique du Brésil sont sans commune mesure avec la brièveté d'une expérience coloniale d'un lustre à peine, de novembre 1555 à mars 1560, restreinte de surcroît à un îlot et à l'immédiate proximité du littoral de la baie de Rio de Janeiro. Je partirai du jugement de l'abbé Prévost, l'auteur de l'immortelle Manon Lescaut, mais aussi de l'Histoire générale des voyages pour retracer la mémoire de la France Antarctique dans l'historiographie française.

  14. Influence of misorientation on graphene Moiré patterns

    Smirman, Marie; Taha, Doaa; Singh, Arunima K.; Huang, Zhi-Feng; Elder, K. R.


    In this work the influence of film-substrate misorientation on the strain-induced ordering of graphene films on various metallic surfaces is examined using a mesoscopic continuum model and first-principles atomistic calculations. The periodicity and free energy of the Moiré patterns that emerge are studied as a function of film-substrate adhesion strength for misfit strains far from and close to an incommensurate-commensurate phase transition. Interestingly the lowest energy states are found to be at small but finite misorientation even though these states have a higher domain wall density than the zero-misorientation states. First-principles density functional theory calculations are used to connect the results with experimental findings in graphene epitaxy. This combination of mesoscopic and atomistic approaches can be applied to the study of a wide range of strained 2D material systems including the III-nitride monolayer systems.

  15. Fabrication of micro-scale gratings for moiré method with a femtosecond laser

    Gaosheng Yan


    Full Text Available Fabrication of micro gratings using a femtosecond laser exposure system is experimentally investigated for the electron moiré method. Micro holes and lines are firstly etched for parameter study. Grating profile is theoretically optimized to form high quality moiré patterns. For a demonstration, a parallel grating is fabricated on a specimen of quartz glass. The minimum line width and the distance between two adjacent lines are both set to be 1μm, and the frequency of grating is 500lines/mm. The experimental results indicate that the quality of gratings is good and the relative error of the gratings pitch is about 1.5%. Based on moiré method, scanning electron microscope (SEM moiré patterns are observed clearly, which manifests that gratings fabricated with the femtosecond laser exposure is suitable for micro scale deformation measurement.

  16. Time-Delay Interferometry

    Massimo Tinto


    Full Text Available Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI. This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.

  17. Mask Design for the Space Interferometry Mission Internal Metrology

    Marx, David; Zhao, Feng; Korechoff, Robert


    This slide presentation reviews the mask design used for the internal metrology of the Space Interferometry Mission (SIM). Included is information about the project, the method of measurements with SIM, the internal metrology, numerical model of internal metrology, wavefront examples, performance metrics, and mask design

  18. Moiré method applied to sediment transport in a small-scale braided river

    Leduc, P.; Bellot, H.; Recking, A.


    Braided river patterns and sediment supply interactions are significant. Small-scale braided rivers were studied in a rectangular flume with an adjustable slope to investigate these relationships and to gain insight into the effect of grain sorting on bedform formation and migration. We used a 1.20-m-wide and 4.5-m-long flume and a mixture of fine and coarse sand ranging from 0.5 mm to 1.5 mm and from 1.5 to 3 mm (with median sizes 1 and 2 mm, respectively). The sediment feed rate and water discharge were maintained constant. The initial bed was flat with a 3% slope. The mean bed load discharge was calculated by weighing output sediments. The experiment produced bedforms and braided patterns. Equilibrium was reached with a constant number of moving bars. The Moiré method was used to study the bed topography and bedform migration precisely. This optical method considers deformations of grey fringes projected by a video projector on the bed topography. These deformations were recorded with a digital camera and analysed using the phase shifting method (with a special algorithm adapted to the experimental setup). Data produced by this algorithm were mapped with GIS software such as ArcGis. We chose the Moiré method among other methods (laser, photogrammetric, point gauge, etc.) because of its high spatial resolution and its simplicity. However, several technical aspects had to be resolved. Bed topography accuracy depends on the distance between the camera's focal plane and a reference plane parallel to the flume. As the flume and the rail supporting the camera were not parallel, this distance changed along the flume. Instead of moving constantly along a physical reference plane, two wedges were placed on the flume sides to create a virtual reference plane: a 2-cm-wide surface on the top of each wedge was extracted from photographs using image processing software, and these surfaces were used to extrapolate a single virtual reference plane for the whole flume. Two

  19. The compact and inexpensive arrowhead setup for holographic interferometry

    Ladera, Celso L; Donoso, Guillermo, E-mail: clladera@usb.v [Departamento de Fisica, Universidad Simon BolIvar, Apdo. 89000, Caracas 1086 (Venezuela, Bolivarian Republic of)


    Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that requires neither a collimator nor a beam-splitter, and whose layout is reminiscent of an arrowhead. We show that this inexpensive setup is a good alternative for the study and applications of scientific holography by measuring small displacements and deformations of a body. The arrowhead setup will be found particularly useful for holography and holographic interferometry experiments and projects in teaching laboratories.

  20. Fast optimization of a bimorph mirror using x-ray grating interferometry.

    Wang, Hongchang; Sawhney, Kawal; Berujon, Sebastien; Sutter, John; Alcock, Simon G; Wagner, Ulrich; Rau, Christoph


    An x-ray grating interferometer was employed for in situ optimization of an x-ray bimorph mirror. Unlike many other at-wavelength techniques, only a single interferogram image, captured out of the focal plane, is required, enabling the optical surface to be quickly optimized. Moiré fringe analysis was used to calculate the wavefront slope error, which is proportional to the mirror's slope error. Using feedback from grating interferometry, the slope error of a bimorph mirror was reduced to <200  nrad (rms) in only two iterations. This technique has the potential to create photon beams with spatially homogeneous intensities for use in synchrotron and free electron laser beam lines.

  1. A position sensitive silicon detector for AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy)

    Gligorova, A


    The AEḡIS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is located at the Antiproton Decelerator (AD) at CERN and studies antimatter. The main goal of the AEḡIS experiment is to carry out the first measurement of the gravitational acceleration for antimatter in Earth’s gravitational field to a 1% relative precision. Such a measurement would test the Weak Equivalence Principle (WEP) of Einstein’s General Relativity. The gravitational acceleration for antihydrogen will be determined using a set of gravity measurement gratings (Moiré deflectometer) and a position sensitive detector. The vertical shift due to gravity of the falling antihydrogen atoms will be detected with a silicon strip detector, where the annihilation of antihydrogen will take place. This poster presents part of the development process of this detector.

  2. Bandwidth in bolometric interferometry

    Charlassier, R; Hamilton, J -Ch; Kaplan, J; Malu, S


    Bolometric Interferometry is a technology currently under development that will be first dedicated to the detection of B-mode polarization fluctuations in the Cosmic Microwave Background. A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers in order to be competitive with imaging experiments. A crucial concern is that interferometers are presumed to be importantly affected by a spoiling effect known as bandwidth smearing. In this paper, we investigate how the bandwidth modifies the work principle of a bolometric interferometer and how it affects its sensitivity to the CMB angular power spectra. We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. Using an angular power spectrum estimator ...

  3. Decoherence Free Neutron Interferometry

    Pushin, Dmitry A; Cory, David G


    Perfect single-crystal neutron interferometers are adversely sensitive to environmental disturbances, particularly mechanical vibrations. The sensitivity to vibrations results from the slow velocity of thermal neutrons and the long measurement time that are encountered in a typical experiment. Consequently, to achieve a good interference solutions for reducing vibration other than those normally used in optical experiments must be explored. Here we introduce a geometry for a neutron interferometer that is less sensitive to low-frequency vibrations. This design may be compared with both dynamical decoupling methods and decoherence-free subspaces that are described in quantum information processing. By removing the need for bulky vibration isolation setups, this design will make it easier to adopt neutron interferometry to a wide range of applications and increase its sensitivity.

  4. Phase Referencing in Optical Interferometry

    Mercedes E. Filho; Garcia, Paulo; Duvert, Gilles; Duchene, Gaspard; Thiebaut, Eric; Young, John; Absil, Olivier; Berger, Jean-Phillipe; Beckert, Thomas; Hoenig, Sebastian; Schertl, Dieter; Weigelt, Gerd; Testi, Leonardo; Tatuli, Eric; Borkowski, Virginie


    One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce...

  5. [The most common faulty postures among boys aged 13-16 years measured by Moiré's photogrammetric method].

    Wilczyński, Jacek


    The project concerns faulty postures. The aim of the study was to evaluate postures among boys aged 13-16 years by Moir's photogrammetric method. The study covered 191 boys, including 52 pupils aged 13 years attending the Primary School No. 11 in Starachowice, and 139 students (49, 45 and 45 boys aged 14, 15, and 16 years, respectively) of the Grammar School No.3 in Starachowice The study was carried out in April 2004. The most common lateral curvanture of the spine was observed in 131 (69%) boys, posture asymmetry in 60 (15%) boys, among defects in the sagittal plane concave back was found in 28 (15%) boys, flat back in 24 (13%), and round back in 2 boys aged 16 years. In view of a large proportion of lateral curvanture of the spine (69%), there is an urgent need to intensify prophylaxis and medical treatment in teenagers. Moreover, the issue of body posture needs further investigations.

  6. Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation

    Liu, C-M [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Chen, L-W [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wang, C-C [Institute of Manufacturing Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)


    A digital nano-moire method with wavelet transformation is explored to measure nanoscale in-plane displacement fields. By applying e-beam lithography, a periodic PMMA nanostructure array is fabricated directly on the specimen and used as the specimen grating. Moire patterns are generated by overlapping the images of the PMMA specimen grating obtained from AFM scanning and the virtual reference grating produced by a digital image generating process. Then, the overlapped images are filtered by the 2D wavelet transformation (WT) to capture the target moire patterns. Existing methods, by overlapping the monitor-generated scanning lines with the image of the specimen grating, cause a mismatch problem. Previously, the carrier moire method was explored with the aim of curing the mismatch problem. Unfortunately, the carrier moire method, in addition to suffering from increased complexity of mathematical calculations, is incapable of directly obtaining the displacement field. Thus, the mismatch problem will result in inconveniences and restrictions in the practical application. Instead of using monitor-generated scanning lines, the proposed method applies the virtual reference grating, and thus puts the mismatch problem to rest. Nevertheless, the resultant moire image suffers from low contrast which, if left untreated, might distort the measurement result. Therefore, the WT, known for its sharpened abilities of characteristic and edge detection, is used to capture the target moire patterns and improve the measurement accuracy. The proposed method has been carried out in the laboratory. Experimental results have shown that the proposed method is convenient and efficient for nanoscale displacement measurement.

  7. Three-dimensional effects in nonlinear fracture explored with interferometry

    Pfaff, Richard D.

    The prospects for understanding fracture mechanics in terms of a general material constitutive description are explored. The effort consists of three distinct components.First, optical interferometry, in its various forms (Twyman-Green, diffraction moire, etc.), can potentially be used under a wide range of conditions to very accurately measure the displacement and strain fields associated with the deformation surrounding a cracktip. To broaden the range of fracture problems to which interferometry may be applied, certain of the necessary experimental improvements have been developed:1. High speed camera designs capable of extremely high (> 10(9) frames/second) framing rates with large array sizes, (> 4000 x 4000 pixels per frame) so that the application of optical techniques to solid mechanics may be considered without limitation on the rate of deformation.2. An accurate and adaptable device for dynamic loading of fracture specimens to high load levels utilizing electromagnetic (Lorentz force) loading with ultrahigh (> 2,000,000 Amp/cm(2)) current flux densities.3. Implementation of high sensitivity (2 nm), large range (2 nm x 3,200,000) interferometry achieved with wide field array sizes of 50,000 x 50,000 and 8 bit gray scale (error restricted to 1 bit) for surface deformation measurements on fracture specimens.Second, functional descriptions for certain aspects of the displacement fields associated with fracture specimens are developed. It is found that the fully three-dimensional crack tip field surrounding a through-thickness crack in a plate of elastic-plastic material shows a hierarchical structure of organization and that the primary aspects of the deformation field would seem to have a relatively simple form of expression if the deformation is viewed in a properly normalized form.Third, a comparison is made between interferometrically measured surface displacements for a notched 3-point-bend speciemn of a ductile heat treatment of 4340 steel and a

  8. Application of "parallel" moiré deflectometry and the single beam Z-scan technique in the measurement of the nonlinear refractive index.

    Rasouli, Saifollah; Ghasemi, H; Tavassoly, M T; Khalesifard, H R


    In this paper, the application of "parallel" moiré deflectometry in measuring the nonlinear refractive index of materials is reported. In "parallel" moiré deflectometry the grating vectors are parallel, and the resulting moiré fringes are also parallel to the grating lines. Compared to "rotational" moiré deflectometry and the Z-scan technique, which cannot easily determine the moiré fringe's angle of rotation and is sensitive to power fluctuations, respectively, "parallel" moiré deflectometry is more reliable, which allows one to measure the radius of curvature of the light beam by measuring the moiré fringe spacing. The nonlinear refractive index of the sample, including the sense of the change, is obtained from the moiré fringe spacing curve. The method is applied for measuring the nonlinear refractive index of ferrofluids.

  9. Extreme ultraviolet interferometry

    Goldberg, Kenneth A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics


    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for the measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources

  10. Indexing moiré patterns of metal-supported graphene and related systems: strategies and pitfalls

    Zeller, Patrick; Ma, Xinzhou; Günther, Sebastian


    We report on strategies for characterizing hexagonal coincidence phases by analyzing the involved spatial moiré beating frequencies of the pattern. We derive general properties of the moiré regarding its symmetry and construct the spatial beating frequency {K}\\text{moir{\\'e}} as the difference between two reciprocal lattice vectors {k}i of the two coinciding lattices. Considering reciprocal lattice vectors {k}{i}, with lengths of up to n times the respective (1, 0) beams of the two lattices, readily increases the number of beating frequencies of the nth-order moiré pattern. We predict how many beating frequencies occur in nth-order moirés and show that for one hexagonal lattice rotating above another the involved beating frequencies follow circular trajectories in reciprocal-space. The radius and lateral displacement of such circles are defined by the order n and the ratio x of the two lattice constants. The question of whether the moiré pattern is commensurate or not is addressed by using our derived concept of commensurability plots. When searching potential commensurate phases we introduce a method, which we call cell augmentation, and which avoids the need to consider high-order beating frequencies as discussed using the reported (6\\sqrt{3}× 6\\sqrt{3}){R}{30^\\circ } moiré of graphene on SiC(0001). We also show how to apply our model for the characterization of hexagonal moiré phases, found for transition metal-supported graphene and related systems. We explicitly treat surface x-ray diffraction-, scanning tunneling microscopy- and low-energy electron diffraction data to extract the unit cell of commensurate phases or to find evidence for incommensurability. For each data type, analysis strategies are outlined and avoidable pitfalls are discussed. We also point out the close relation of spatial beating frequencies in a moiré and multiple scattering in electron diffraction data and show how this fact can be explicitly used to extract high

  11. Improved grid-noise removal in single-frame digital moiré 3D shape measurement

    Mohammadi, Fatemeh; Kofman, Jonathan


    A single-frame grid-noise removal technique was developed for application in single-frame digital-moiré 3D shape measurement. The ability of the stationary wavelet transform (SWT) to prevent oscillation artifacts near discontinuities, and the ability of the Fourier transform (FFT) applied to wavelet coefficients to separate grid-noise from useful image information, were combined in a new technique, SWT-FFT, to remove grid-noise from moiré-pattern images generated by digital moiré. In comparison to previous grid-noise removal techniques in moiré, SWT-FFT avoids the requirement for mechanical translation of optical components and capture of multiple frames, to enable single-frame moiré-based measurement. Experiments using FFT, Discrete Wavelet Transform (DWT), DWT-FFT, and SWT-FFT were performed on moiré-pattern images containing grid noise, generated by digital moiré, for several test objects. SWT-FFT had the best performance in removing high-frequency grid-noise, both straight and curved lines, minimizing artifacts, and preserving the moiré pattern without blurring and degradation. SWT-FFT also had the lowest noise amplitude in the reconstructed height and lowest roughness index for all test objects, indicating best grid-noise removal in comparison to the other techniques.

  12. Landau-Zener-Stueckelberg interferometry

    Shevchenko, S.N., E-mail: sshevchenko@ilt.kharkov.u [B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov (Ukraine); RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Ashhab, S.; Nori, Franco [RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Department of Physics, The University of Michigan, Ann Arbor, MI (United States)


    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.

  13. L’inventaire des lieux de mémoire de la Nouvelle-France au Québec

    Daniel Lauzon


    Full Text Available Un projet d’inventaire du patrimoine immobilier issu de l’époque de la Nouvelle–France a été amorcé en 1998 par le ministère de la Culture et des Communications du Québec, à l’instigation de la Commission franco–québécoise des lieux de mémoire communs. L’article présente les enjeux conceptuels d’un projet pilote qui explore des axes novateurs en terme d’inventaire, que ce soit sur le plan des fondements scientifiques (conception élargie du patrimoine, mise en relation des lieux et phénomènes historiques, de la réalisation (une collaboration internationale Québec–France ou de sa diffusion (utilisation des technologies de l’information.In 1998, the Ministère de la Culture et des Communications du Québec initiated an inventory of architectural and archaeological heritage from the New France period at the instigation of the Commission franco–québécoise des lieux de mémoire communs. This article describes the conceptual issues that arose in the course of a pilot project aimed at exploring innovative approaches to inventory work, be they related to its scientific bases (broader concept of heritage, relationship between historic sites and historic events, realization (international collaboration between Québec and France or the dissemination of its results (use of information technology.

  14. Paris, Berlin : la mémoire de la Première Guerre mondiale (1914-1933

    Elise Julien


    Full Text Available Cette thèse étudie la mémoire de la Première Guerre mondiale à Paris et à Berlin de 1914 au début des années trente. Elle pose la question suivante : y a-t-il une mémoire de la guerre qui soit spécifique de Paris et Berlin, c’est-à-dire une mémoire qui caractérise ces villes et qui soit issue d’une dynamique qui leur est propre ? Cette question relève d’une relation dialectique entre les capitales et la mémoire : la mémoire de la guerre transforme-t-elle les capitales ? Les capitales contribu...

  15. Moiré method analysis for tensile strain field of 2024 aluminum alloy welded joint

    徐文立; 魏艳红; 刘雪松; 方洪渊; 赵敏; 田锡唐


    Using experimental mechanics method of moiré analysis, strain field distributions of 2024 aluminum alloy welded joints under different conditions were investigated. The results show that moiré stripes of welded joint without trailing peening just before fracture are not only few and scattered but also uneven, and the stress mainly concentrates on the poor position-welded toes during the tensioning process with the relatively poor mechanical properties of welded joints; When the method of welding with trailing peening is adopted, moiré stripes of welded joint just before fracture are relatively thick and even due to the strengthening welded toes during the welding process, and fracture position transfers from the welded toes to weld, at the same time the mechanical properties of welded joints are improved greatly than conventional welding which can show that the technology of trailing peening is effective to strengthen welded joints of aluminum alloy with high strength.

  16. Moiré-reduction method for slanted-lenticular-based quasi-three-dimensional displays

    Zhuang, Zhenfeng; Surman, Phil; Zhang, Lei; Rawat, Rahul; Wang, Shizheng; Zheng, Yuanjin; Sun, Xiao Wei


    In this paper we present a method for determining the preferred slanted angle for a lenticular film that minimizes moiré patterns in quasi-three-dimensional (Q3D) displays. We evaluate the preferred slanted angles of the lenticular film for the stripe-type sub-pixel structure liquid crystal display (LCD) panel. Additionally, the sub-pixels mapping algorithm of the specific angle is proposed to assign the images to either the right or left eye channel. A Q3D display prototype is built. Compared with the conventional SLF, this newly implemented Q3D display can not only eliminate moiré patterns but also provide 3D images in both portrait and landscape orientations. It is demonstrated that the developed slanted lenticular film (SLF) provides satisfactory 3D images by employing a compact structure, minimum moiré patterns and stabilized 3D contrast.

  17. Visual modeling of laser Doppler anemometer signals by moiré fringes.

    Durst, F; Stevenson, W H


    This report describes the employment of moiré patterns to model visually interference phenomena in general and laser Doppler anemometer signals in particular. The modeling includes signals created in dual beam and reference beam anemometers by both single particles and particle pairs. The considerations are extended to visual modeling of multiparticle signals and the decay of signal quality in the presence of many particles. The fringe model of the laser Doppler anemometer is also considered, and moiré patterns are employed to demonstrate the interference fringes in the crossover region of two intersecting laser beams. Gaussian beam properties are taken into account to allow the effects of improperly designed optical systems to be studied. Instructions for using computer generated transparencies to produce the different moiré patterns are provided to allow the reader to study in detail the various interference phenomena described.

  18. Phase Referencing in Optical Interferometry

    Filho, Mercedes E; Duvert, Gilles; Duchene, Gaspard; Thiebaut, Eric; Young, John; Absil, Olivier; Berger, Jean-Phillipe; Beckert, Thomas; Hoenig, Sebastian; Schertl, Dieter; Weigelt, Gerd; Testi, Leonardo; Tatuli, Eric; Borkowski, Virginie; de Becker, Michael; Surdej, Jean; Aringer, Bernard; Hron, Joseph; Lebzelter, Thomas; Chiavassa, Andrea; Corradi, Romano; Harries, Tim


    One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce images. Such techniques allow only to achieve modest dynamic ranges. However, with high contrast objects, for faint targets or when structure detail is needed, phase referencing techniques as used in radio interferometry, should theoretically achieve higher dynamic ranges for the same number of telescopes. Our approach is not to provide evidence either for or against the hypothesis that phase referenced imaging gives better dynamic range than closure phase imaging. Instead we wish to explore the potential of this techniq...

  19. Moiré scaling of the sliding force in twisted bilayer graphene

    Koren, E.; Duerig, U.


    The weak interlayer binding in two-dimensional layered materials such as graphite gives rise to distinguished low-friction properties if the atomic lattices at the interface are rotated with respect to one another. The lack of crystal symmetry leads to poorly understood correlations and cancelations of the interlayer atomic forces. Here we report on a powerful tiling method based on the moiré superstructure which allows us to study the intricate interplay of the interlayer forces in a systematic manner. Based on numerical simulation data for a circular graphene flake on an infinite graphene substrate, it is shown that the sliding force is dominated by a rim area consisting of incomplete moiré tiles. This rim force, which scales with the number of atoms in a moiré tile and as the radius to the power of 0.5, is minimal whenever the sliding structure can be approximated by a hexagon composed of an integer number Nt of moiré tiles. Intriguingly, the corresponding area force scales as Nt to the power of 0.25, i.e., it increases with size, whereas it has been often argued that interlayer forces should add up to a zero value for large twisted systems. However, at specific twist angles the moiré structure is commensurate with the graphene lattice, leading to a perfect force correlation in the moiré tiles. Correspondingly, the area force becomes dominant and scales as Nt, i.e., as the radius to the power of 2.

  20. Bandwidth in bolometric interferometry

    Charlassier, R.; Bunn, E. F.; Hamilton, J.-Ch.; Kaplan, J.; Malu, S.


    Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polarization fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are assumed to be significantly affected by a spoiling effect known as bandwidth smearing. Aims: We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the CMB angular power spectra. Methods: We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. If the phase shifters produce shifts that are constant with respect to frequency, the instrument works like its monochromatic version (the modulation matrix is not modified), while if they vary (linearly or otherwise) with respect to frequency, one has to perform a special reconstruction scheme, which allows the visibilities to be reconstructed in frequency subbands. Using an angular power spectrum estimator that accounts for the bandwidth, we finally calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation is performed that confirms the analytical results. Results: We conclude that (i) broadband bolometric interferometers allow broadband visibilities to be reconstructed regardless of the type of phase shifters used and (ii) for dedicated B-mode bolometric interferometers, the sensitivity loss caused by bandwidth smearing is quite acceptable, even for wideband instruments (a factor of 2 loss for a typical 20% bandwidth experiment).

  1. Techniques in Broadband Interferometry

    Erskine, D J


    This is a compilation of my patents issued from 1997 to 2002, generally describing interferometer techniques that modify the coherence properties of broad-bandwidth light and other waves, with applications to Doppler velocimetry, range finding, imaging and spectroscopy. Patents are tedious to read in their original form. In an effort to improve their readability I have embedded the Figures throughout the manuscript, put the Figure captions underneath the Figures, and added section headings. Otherwise I have resisted the temptation to modify the words, though I found many places which could use healthy editing. There may be minor differences with the official versions issued by the US Patent and Trademark Office, particularly in the claims sections. In my shock physics work I measured the velocities of targets impacted by flyer plates by illuminating them with laser light and analyzing the reflected light with an interferometer. Small wavelength changes caused by the target motion (Doppler effect) were converted into fringe shifts by the interferometer. Lasers having long coherence lengths were required for the illumination. While lasers are certainly bright sources, and their collimated beams are convenient to work with, they are expensive. Particularly if one needs to illuminate a wide surface area, then large amounts of power are needed. Orders of magnitude more power per dollar can be obtained from a simple flashlamp, or for that matter, a 50 cent light bulb. Yet these inexpensive sources cannot practically be used for Doppler velocimetry because their coherence length is extremely short, i.e. their bandwidth is much too wide. Hence the motivation for patents 1 & 2 is a method (White Light Velocimetry) for allowing use of these powerful but incoherent lamps for interferometry. The coherence of the illumination is modified by passing it through a preparatory interferometer.

  2. L'influence sociale dans une tâche de mémoire prospective

    Detry, Larissa


    La mémoire prospective est la capacité cognitive complexe permettant aux individus de se rappeler d’accomplir des actions futures (Brandimonte, Ferrante, Bianco & Grazia Villani, 2010). Le rappel prospectif est influencé par de nombreux mécanismes. Plus particulièrement, la dynamique sociale est un facteur essentiel dans la mesure où la majorité des intentions sont formées et initées dans un contexte social spécifique (Brandimonte &Ferrante, 2008). Le présent mémoire a pour objet d’examiner l...

  3. Thermal Warpage Measurement of Electronic Packages by Shadow Moiré with Phase Stepping Technique

    Yinyan Wang


    Phase-stepping technique is applied to the analysis of fringe patterns of shadow moiré of electronic packages.Sensitivity of the fringe pattern analysis is demonstrated to be significantly increased. Thermally induced warpage of electronic packages is successfully measured in real-time as the sample is driven through a simulated reflow process.The paper discusses the technique of phase stepping,noise filtering and its application to the shadow moiré method.Applications of the technology are presented.

  4. Phase estimation in optical interferometry

    Rastogi, Pramod


    Phase Estimation in Optical Interferometry covers the essentials of phase-stepping algorithms used in interferometry and pseudointerferometric techniques. It presents the basic concepts and mathematics needed for understanding the phase estimation methods in use today. The first four chapters focus on phase retrieval from image transforms using a single frame. The next several chapters examine the local environment of a fringe pattern, give a broad picture of the phase estimation approach based on local polynomial phase modeling, cover temporal high-resolution phase evaluation methods, and pre

  5. Future Gravitational Wave Detectors Based on Atom Interferometry

    Geiger, Remi


    We present the perspective of using atom interferometry for gravitational wave (GW) detection in the mHz to about 10 Hz frequency band. We focus on light-pulse atom interferometers which have been subject to intense developments in the last 25 years. We calculate the effect of the GW on the atom interferometer and present in details the atomic gradiometer configuration which has retained more attention recently. The principle of such a detector is to use free falling atoms to measure the phase of a laser, which is modified by the GW. We highlight the potential benefits of using atom interferometry compared to optical interferometry as well as the challenges which remain for the realization of an atom interferometry based GW detector. We present some of the important noise sources which are expected in such detectors and strategies to cirucumvent them. Experimental techniques related to cold atom interferometers are briefly explained. We finally present the current progress and projects in this rapidly evolvin...

  6. Virtual Reference Interferometry: Theory & Experiment

    Galle, Michael Anthony

    This thesis introduces the idea that a simulated interferogram can be used as a reference for an interferometer. This new concept represents a paradigm shift from the conventional thinking, where a reference is the phase of a wavefront that traverses a known path. The simulated interferogram used as a reference is called a virtual reference. This thesis develops the theory of virtual reference interferometry and uses it for the characterization of chromatic dispersion in short length (virtual reference combines the advantages of these techniques so that it is both accurate and easy to operate. Chromatic dispersion measurements based on virtual reference interferometry have similar accuracy as the best conventional measurement techniques due to the ability to measure first and second order dispersion directly from the interference pattern. Unique capabilities of virtual reference interferometry are demonstrated, followed by a derivation of the operational constraints and system parameters. The technique is also applied to the characterization of few-mode fibers, a hot topic in telecommunications research where mode division multiplexing promises to expand network bandwidth. Also introduced is the theory of dispersive virtual reference interferometry, which can be used to overcome the bandwidth limitations associated with the measurement of near-zero dispersion-length optical components via compression of the interference pattern. Additionally, a method for utilizing the virtual reference interferometer in a low-coherence setup is introduced, enabling characterization in new wavelength ranges and further reducing the cost of characterization.

  7. AIPY: Astronomical Interferometry in PYthon

    Parsons, Aaron


    AIPY collects together tools for radio astronomical interferometry. In addition to pure-python phasing, calibration, imaging, and deconvolution code, this package includes interfaces to MIRIAD (ascl:1106.007) and HEALPix (ascl:1107.018), and math/fitting routines from SciPy.

  8. In-plane motion measurement by using digital sampling moiré method

    Chen, Xinxing; Chang, Chih-Chen


    Digital sampling moiré (DSM) method is a newly developed vision-based technique that uses the phase information of moiré fringes to measure movement of an object. The moiré fringes are generated from a sequence of digital images, containing a cosinusoidal grating pattern attached to the object, through down-sampling and interpolation. As the moiré fringes can magnify the pattern's movement, this technique is expected to provide more accurate displacement measurement than the other vision based approaches. In this study, a method combining DSM with monocular videogrammetric technique is proposed to measure in-plane rotation and translation of structures. In this method, images of a two-dimensional (2D) grating pattern attached to a moving structure are acquired and decomposed into two perpendicular gratings through Fourier transform. The DSM method is used to obtain 2D phase distributions of the gratings which provide an estimation of physical coordinates for those points on the grating pattern. A previously developed monocular videogrammetric technique can then be used to obtain the rotation angle and the translation of the grating pattern. The proposed method is validated using both numerical simulation and laboratory tests.

  9. A Pitch-variation Moiré Fringes Method of Temporal Phase Unwrapping Profilometry

    Tian Jin-dong; Peng Xiang; Zhao Xiao-bo


    A method of pitch-variation moiré fringes is proposed to realize the temporal phase unwrapping for three-dimensional pattern by rotating two gratings. Furthermore a five-point fitting method is used to automatically compute the central duced to process the three-dimensional reconstruction. The theoretical analysis and experimental results show the validity of the proposed method.

  10. Concealed holographic coding for security applications by using a moire technique

    Zhang, Xiangsu; Dalsgaard, Erik


    We present an optical coding technique that enhances the anticounterfeiting power of security holograms. The principles of the technique is based on the moire phenomenon. The code in the hologram has a phase pattern that is invisible and cannot be detected by optical equipment, so that imitation...

  11. Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets

    Liao, Yunlong; Cao, Wei; Connell, John W.; Chen, Zhongfang; Lin, Yi


    Two-dimensional (2D) van der Waals (vdW) superstructures, or vdW solids, are formed by the precise restacking of 2D nanosheet lattices, which can lead to unique physical and electronic properties that are not available in the parent nanosheets. Moiré patterns formed by the crystalline mismatch between adjacent nanosheets are the most direct features for vdW superstructures under microscopic imaging. In this article, transmission electron microscopy (TEM) observation of hexagonal Moiré patterns with unusually large micrometer-sized lateral areas (up to ~1 μm2) and periodicities (up to ~50 nm) from restacking of liquid exfoliated hexagonal boron nitride nanosheets (BNNSs) is reported. This observation was attributed to the long range crystallinity and the contaminant-free surfaces of these chemically inert nanosheets. Parallel-line-like Moiré fringes with similarly large periodicities were also observed. The simulations and experiments unambiguously revealed that the hexagonal patterns and the parallel fringes originated from the same rotationally mismatched vdW stacking of BNNSs and can be inter-converted by simply tilting the TEM specimen following designated directions. This finding may pave the way for further structural decoding of other 2D vdW superstructure systems with more complex Moiré images.

  12. A digital sampling moiré method for two-dimensional displacement measurement

    Chen, Xinxing; Chang, Chih-Chen


    Measuring static and dynamic displacements for in-service structures is an important issue for the purpose of design validation, performance monitoring and safety assessment of structures. Currently available techniques can be classified into indirect measurement and direct measurement. These methods however have their own problems and limitations Digital sampling moiré method is a newly developed vision-based technique for direct displacement measurement. It uses one camera to capture digital images containing a grating pattern. The images are subsampled and interpolated to generate moiré patterns whose phase information can then be used to calculate displacements of the grating pattern. As the moiré patterns can magnify the pattern's movement, this technique is expected to provide more accurate displacement measurement than the other vision based approaches. In this study, a digital sampling moiré technique is proposed for measuring two-dimensional structural displacements using a designed grating pattern. The pattern contains two orthogonally inclined gratings and does not have to be perfectly aligned with the image plane. A series of simulation and laboratory tests are conducted to validate the accuracy of the proposed technique. Results show that the technique can achieve accuracy in the order of 10 micrometers in the laboratory. Also, the technique does not seem to suffer from the issue of misalignment between the camera and the pattern and exhibits a potential for accurate measurement of displacement for civil engineering structures.

  13. Fourier Transform Moire Deflectometry for Measuring the 3-D Temperature Field

    MA Li; WANG Ming; LIU Song; QI Xiaopin


    Fourier transform evaluation of fringe phase is applied to Moire deflectometry. 3-D gas temperature distribution for a given layer is reconstructed by optical tomography. The results show that the high-precise and automatic measurement for the 3-D gas temperature field can be realized by this technique.

  14. Moiré interferences in the map of orbits of the Mandelbrot Set

    Alcover, Pedro María


    This article shows the presence of Moiré Interference patterns in the map of periods of the Mandelbrot Set. It describes the requirements for their appearance and shows that such interferences are highly sensitive to the original conditions that define their calculation. The specific case herein studied shows that the Moiré interference patterns appearing in a picture of a section of the map of orbits are unpredictable, even if we obtain different maps from very similar original conditions. It begins with a brief description of the Mandelbrot Set and some of the characteristics of its orbits, the Moiré Patterns, as well as a concise introduction to a description of the Discrete Wavelet Transform. In order to develop the proposed specific case, a Multi-resolution Analysis method based on the Discrete Wavelet Transform has been used. It is significant that Moiré Interference Patterns always appear when the order of magnitudes reaches a certain limit where, what is considered as hypothetically continuous, behaves as a discrete pattern. The patterns as shown by the Wavelet analysis change drastically at the slightest modification in the original calculation conditions and it does not seem possible to predict their shape beforehand. This article ends with some conclusions and suggestions.

  15. Nonlinear Interferometry via Fock State Projection

    Khoury, G; Eisenberg, H S; Fonseca, E J S


    We use a photon-number resolving detector to monitor the photon number distribution of the output of an interferometer, as a function of phase delay. As inputs we use coherent states with mean photon number up to seven. The postselection of a specific Fock (photon-number) state effectively induces high-order optical non-linearities. Following a scheme by Bentley and Boyd [S.J. Bentley and R.W. Boyd, Optics Express 12, 5735 (2004)] we explore this effect to demonstrate interference patterns a factor of five smaller than the Rayleigh limit.

  16. Nonlinear Interferometry via Fock-State Projection

    Khoury, G.; Eisenberg, H. S.; Fonseca, E. J. S.; Bouwmeester, D.


    We use a photon-number-resolving detector to monitor the photon-number distribution of the output of an interferometer, as a function of phase delay. As inputs we use coherent states with mean photon number up to seven. The postselection of a specific Fock (photon-number) state effectively induces high-order optical nonlinearities. Following a scheme by Bentley and Boyd [Opt. Express 12, 5735 (2004).OPEXFF1094-408710.1364/OPEX.12.005735], we explore this effect to demonstrate interference patterns a factor of 5 smaller than the Rayleigh limit.

  17. A demonstrator for bolometric interferometry

    Ghribi, Adnan; Galli, Silvia; Piat, Michel; Breelle, Eric; Hamilton, Jean-Christophe; Spinelli, Sebastiano; Gervasi, Massimo; Zannoni, Mario


    Bolometric Interferometry (BI) is one of the most promising techniques for precise measurements of the Cosmic Microwave Background polarization. In this paper, we present the results of DIBO (Demonstrateur d'Interferometrie Bolometrique), a single-baseline demonstrator operating at 90 GHz, built to proof the validity of the BI concept applied to a millimeter-wave interferometer. This instrument has been characterized in the laboratory with a detector at room temperature and with a 4 K bolometer. This allowed us to measure interference patterns in a clean way, both (1) rotating the source and (2) varying with time the phase shift among the two interferometer's arms. Detailed modelisation has also been performed and validated with measurements.

  18. Two-dimensional Moiré phase analysis for accurate strain distribution measurement and application in crack prediction.

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Koyama, Motomichi; Tsuzaki, Kaneaki


    Aimed at the low accuracy problem of shear strain measurement in Moiré methods, a two-dimensional (2D) Moiré phase analysis method is proposed for full-field deformation measurement with high accuracy. A grid image is first processed by the spatial phase-shifting sampling Moiré technique to get the Moiré phases in two directions, which are then conjointly analyzed for measuring 2D displacement and strain distributions. The strain especially the shear strain measurement accuracy is remarkably improved, and dynamic deformation is measurable from automatic batch processing of single-shot grid images. As an application, the 2D microscale strain distributions of a titanium alloy were measured, and the crack occurrence location was successfully predicted from strain concentration.

  19. Holographic interferometry in construction analysis

    Hartikainen, T.


    In this work techniques for visualizing phase and opaque objects by ruby laser interferometry are introduced. A leakage flow as a phase object is studied by holographic interferometry and the intensity distribution of the interferograms presenting the leakage flow are computer-simulated. A qualitative and quantitative analysis of the leakage flow is made. The analysis is based on the experimental and theoretical results presented in this work. The holographic setup and the double pass method for visualizing leakage flow are explained. A vibrating iron plate is the opaque object. Transient impact waves are generated by a pistol bullet on the iron plate and visualized by holographic interferometry. An apparatus with the capability of detecting and calculating the delays necessary for laser triggering is introduced. A time series of interferograms presenting elastic wave formation in an iron plate is shown. A computer-simulation of the intensity distributions of these interferograms is made. An analysis based on the computer-simulation and the experimental data of the transient elastic wave is carried out and the results are presented. (author)

  20. Interferometry with Strontium Ions

    Jackson, Jarom; Lambert, Enoch; Otterstrom, Nils; Jones, Tyler; Durfee, Dallin


    We describe progress on a cold ion matter-wave interferometer. Cold Strontium atoms are extracted from an LVIS. The atoms will be photo-ionized with a two-photon transition to an auto-ionizing state in the continuum. The ions will be split and recombined using stimulated Raman transitions from a pair of diode lasers injection locked to two beams from a master laser which have been shifted up and down by half the hyperfine splitting. We are developing laser instrumentation for this project including a method to prevent mode-hopping by analyzing laser frequency noise, and an inexpensive, robust wavelength meter. Supported by NSF Award No. 1205736.

  1. Interferometry using undulator sources (invited, abstract)

    Beguiristain, R.; Goldberg, K. A.; Tejnil, E.; Bokor, J.; Medecki, H.; Attwood, D. T.; Jackson, K.


    Optical systems for extreme ultraviolet (EUV) lithography need to use optical components with subnanometer surface figure error tolerances to achieve diffraction-limited performance [M.D. Himel, in Soft X-Ray Projection Lithography, A.M. Hawryluk and R.H. Stulen, eds. (OSA, Washington, D.C., 1993), 18, 1089, and D. Attwood et al., Appl. Opt. 32, 7022 (1993)]. Also, multilayer-coated optics require at-wavelength wavefront measurement to characterize phase effects that cannot be measured by conventional optical interferometry. Furthermore, EUV optical systems will additionally require final testing and alignment at the operational wavelength for adjustment and reduction of the cumulative optical surface errors. Therefore, at-wavelength interferometric measurement of EUV optics will be the necessary metrology tool for the successful development of optics for EUV lithography. An EUV point diffraction interferometer (PDI) has been developed at the Center for X-Ray Optics (CXRO) and has been already in operation for a year [K. Goldberg et al., in Extreme Ultra Lithography, D.T. Attwood and F. Zernike, eds. (OSA, Washington, D.C., 1994), K. Goldberg et al., Proc. SPIE 2437, to be published, and K. Goldberg et al., J. Vac. Sci. Technol. B 13, 2923 (1995)] using an undulator radiation source and coherent optics beamline at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. An overview of the PDI interferometer and some EUV wavefront measurements obtained with this instrument will be presented. In addition, future developments planned for EUV interferometry at CXRO towards the measurement of actual EUV lithography optics will be shown.

  2. A Novel Strategy for Quantum Image Steganography Based on Moiré Pattern

    Jiang, Nan; Wang, Luo


    Image steganography technique is widely used to realize the secrecy transmission. Although its strategies on classical computers have been extensively researched, there are few studies on such strategies on quantum computers. Therefore, in this paper, a novel, secure and keyless steganography approach for images on quantum computers is proposed based on Moiré pattern. Algorithms based on the Moiré pattern are proposed for binary image embedding and extraction. Based on the novel enhanced quantum representation of digital images (NEQR), recursive and progressively layered quantum circuits for embedding and extraction operations are designed. In the end, experiments are done to verify the validity and robustness of proposed methods, which confirms that the approach in this paper is effective in quantum image steganography strategy.

  3. Passive seismic interferometry by multidimensional deconvolution

    Wapenaar, C.P.A.; Van der Neut, J.R.; Ruigrok, E.N.


    We introduce seismic interferometry of passive data by multidimensional deconvolution (MDD) as an alternative to the crosscorrelation method. Interferometry by MDD has the potential to correct for the effects of source irregularity, assuming the first arrival can be separated from the full response.

  4. Progress in Interferometry for LISA at JPL

    Spero, Robert; de Vine, Glenn; Dickson, Jeffrey; Klipstein, William; Ozawa, Tetsuo; McKenzie, Kirk; Shaddock, Daniel; Robison, David; Sutton, Andrew; Ware, Brent


    Recent advances at JPL in experimentation and design for LISA interferometry include the demonstration of Time Delay Interferometry using electronically separated end stations, a new arm-locking design with improved gain and stability, and progress in flight readiness of digital and analog electronics for phase measurements.

  5. Progress in interferometry for LISA at JPL

    Spero, Robert; Bachman, Brian; De Vine, Glenn; Dickson, Jeffrey; Klipstein, William; Ozawa, Tetsuo; McKenzie, Kirk; Shaddock, Daniel; Robison, David; Ware, Brent [Jet Propulsion Laboratory (JPL), California Institute of Technology, 4800 Oak Grove Drive Pasadena, CA 91109 (United States); Sutton, Andrew, E-mail: [Centre for Gravitational Physics, The Australian National University, ACT 0200 (Australia)


    Recent advances at JPL in experimentation and design for LISA interferometry include the demonstration of time delay interferometry using electronically separated end stations, a new arm-locking design with improved gain and stability, and progress in flight readiness of digital and analog electronics for phase measurements.

  6. A system for airborne SAR interferometry

    Madsen, Søren Nørvang; Skou, Niels; Granholm, Johan


    Interferometric synthetic aperture radar (INSAR) systems have already demonstrated that elevation maps can be generated rapidly with single pass airborne across-track interferometry systems (XTT), and satellite repeat track interferometry (RTT) techniques have been used to map both elevation and ...

  7. Moire superlattice effects in graphene/boron-nitride van der Waals heterostructures

    Wallbank, John R.; Chen, Xi; Fal' ko, Vladimir I. [Department of Physics, Lancaster University, Lancaster (United Kingdom); Mucha-Kruczynski, Marcin [Department of Physics, University of Bath (United Kingdom)


    Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moire superlattice for graphene's Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadter's butterfly. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. La mémoire en jeu vidéo dans Level five (1996

    Thibaut Garcia


    Full Text Available Abstract (E: The theory of digital arts today is almost always articulated around the dichotomy
    real/virtual. The universe of video games is generally perceived as a parallel reality, the time of play as
    time that can be reversed. In Level five, Chris Marker uses computer techniques highlighting their
    dimension of memory rather than their “virtuality”: preserving the complete memory of the past, the
    video game about the battle of Okinawa returns the player to his own ineffaceable memory and to the
    inescapable character of what, in reality, “is played” once and for all. The computer memory becomes
    the double of the human memory.
    Abstract (F: Aujourd’hui, la théorie des arts numériques s’articule presque toujours autour de la
    dichotomie réel/virtuel. L’univers des jeux vidéo est généralement perçu comme une réalité parallèle,
    le temps du jeu comme un temps réversible. Dans Level five, Chris Marker utilise les techniques
    informatiques en mettant en avant leur dimension « mémorielle » plutôt que « virtuelle » : conservant
    toute la mémoire du passé, le jeu vidéo sur la bataille d’Okinawa renvoie le joueur à sa propre
    moire ineffaçable et au caractère inéluctable de ce qui, dans la réalité, est « joué » une fois pour
    toutes. La mémoire informatique devient le double de la mémoire humaine.

  9. Investigation of a Moire Based Crack Detection Technique for Propulsion Health Monitoring

    Woike, Mark R.; Abudl-Aziz, Ali; Fralick, Gustave C.; Wrbanek, John D.


    The development of techniques for the health monitoring of the rotating components in gas turbine engines is of major interest to NASA s Aviation Safety Program. As part of this on-going effort several experiments utilizing a novel optical Moir based concept along with external blade tip clearance and shaft displacement instrumentation were conducted on a simulated turbine engine disk as a means of demonstrating a potential optical crack detection technique. A Moir pattern results from the overlap of two repetitive patterns with slightly different periods. With this technique, it is possible to detect very small differences in spacing and hence radial growth in a rotating disk due to a flaw such as a crack. The experiment involved etching a circular reference pattern on a subscale engine disk that had a 50.8 mm (2 in.) long notch machined into it to simulate a crack. The disk was operated at speeds up to 12 000 rpm and the Moir pattern due to the shift with respect to the reference pattern was monitored as a means of detecting the radial growth of the disk due to the defect. In addition, blade displacement data were acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the data obtained from the optical technique. The results of the crack detection experiments and its associated analysis are presented in this paper.

  10. Stepwise self-assembly of C₆₀ mediated by atomic scale moiré magnifiers.

    Gruznev, D V; Matetskiy, A V; Bondarenko, L V; Utas, O A; Zotov, A V; Saranin, A A; Chou, J P; Wei, C M; Lai, M Y; Wang, Y L


    Self-assembly of atoms or molecules on a crystal surface is considered one of the most promising methods to create molecular devices. Here we report a stepwise self-assembly of C₆₀ molecules into islands with unusual shapes and preferred sizes on a gold-indium-covered Si(111) surface. Specifically, 19-mer islands prefer a non-compact boomerang shape, whereas hexagonal 37-mer islands exhibit extraordinarily enhanced stability and abundance. The stepwise self-assembly is mediated by the moiré interference between an island with its underlying lattice, which essentially maps out the adsorption-energy landscape of a C₆₀ on different positions of the surface with a lateral magnification factor and dictates the probability for the subsequent attachment of C₆₀ to an island's periphery. Our discovery suggests a new method for exploiting the moiré interference to dynamically assist the self-assembly of particles and provides an unexplored tactic of engineering atomic scale moiré magnifiers to facilitate the growth of monodispersed mesoscopic structures.

  11. CURIE: Cubesat Radio Interferometry Experiment

    Sundkvist, D. J.; Saint-Hilaire, P.; Bain, H. M.; Bale, S. D.; Bonnell, J. W.; Hurford, G. J.; Maruca, B.; Martinez Oliveros, J. C.; Pulupa, M.


    The CUbesat Radio Interferometry Experiment (CURIE) is a proposed two-element radio interferometer, based on proven and developed digital radio receivers and designed to fit within a Cubesat platform. CURIE will launch as a 6U Cubesat and then separate into two 3U Cubesats once in orbit. CURIE measures radio waves from 0.1-19MHz, which must be measured from space, as those frequencies fall below the cutoff imposed by Earth's ionosphere. The principal science objective for CURIE is to use radio interferometry to study radio burst emissions from solar eruptive events such as flares and coronal mass ejections (CMEs) in the inner heliosphere, providing observations important for our understanding of the heliospheric space weather environment. The influence of space weather can be felt at Earth and other planets, as radiation levels increase and lead to auroral activity and geomagnetic effects. CURIE will be able to determine the location and size of radio burst source regions and then to track their movement outward from the Sun. In addition to the primary objective CURIE will measure the gradients of the local ionospheric density and electron temperature on the spatial scale of a few kilometers, as well as create an improved map of the radio sky at these unexplored frequencies. A space based radio interferometry observatory has long been envisioned, in orbit around the Earth or the Moon, or on the far side of the Moon. Beyond its important science objectives, CURIE will prove that the concept of a dedicated space-based interferometer can be realized by using relatively cheap Cubesats. CURIE will therefore not only provide new important science results but also serve as a pathfinder in the development of new space-based radio observation techniques for helio- and astro-physics.

  12. Radar interferometry persistent scatterer technique

    Kampes, Bert M


    Only book on Permanent Scatterer technique of radar interferometryExplains the Permanent Scatterer technique in detail, possible pitfalls, and details a newly developed stochastic model and estimator algorithm to cope with possible problems for the application of the PS techniqueThe use of Permanent Scatterer allows very precise measurements of the displacement of hundreds of points per square kilometerDescribes the only technique currently able to perform displacement measurements in the past, utilizing the ERS satellite data archive using data acquired from 1992-prese

  13. Golographic interferometry of physical processes

    Ostrovskaya, G. V.


    This paper is devoted to the contribution of Yuri Ostrovsky to holographic interferometry, one of the fundamental scientific and practical applications of holography. The title of this paper is the same as the title of his doctoral thesis that he defended in 1974, and, as it seems to me, reflects most of the specific features of the majority of his scientific publications, viz., an inseparable link of the methods developed by him with the results obtained with the help of these methods in a wide range of investigations of physical processes and phenomena.

  14. An Interferometry Imaging Beauty Contest

    Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Monnier, John D.; Zhaod, Ming; Young, John S.; Thorsteinsson, Hrobjartur; Meimon, Serge C.; Mugnier, Laurent; LeBesnerais, Guy; Thiebaut, Eric; Tuthill, Peter G.; Hani, Christopher A.; Pauls, Thomas; DuvertI, Gilles; Garcia, Paulo; Kuchner, Marc


    We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Six different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formated in the interferometry Data Exchange Standard and is designed to simulate a specific problem relevant to long-baseline imaging. The data are calibrated power spectra and bispectra measured with a ctitious array, intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.

  15. Full field residual stress determination using hole-drilling and electronic speckle pattern interferometry (ESPI with phase unwrapping method

    Lyu B.I.


    Full Text Available The hole-drilling strain gauge technique has become a standard method in measuring residual stresses [1]. Moiré interferometry combining hole-drilling method opens additional opportunity for full-field residual stress measurement using optical interferometry [2]. The optical moiré method has a non-contact feature comparing with strain gauge method. Yet Moiré interferometry suffers a drawback in its complicated grating preparation on one hand and it is difficult to be applied to work piece with complicated geometry on the other hand. Electronic speckle pattern interferometry (ESPI provides information about the displacement field of a surface and it can be conveniently used on asreceived surfaces without special surface preparation and can be applied to work piece with complicated geometry that may be unsuitable for applying strain gauge or gratings. Studies on combining ESPI with hole-drilling show that is feasible to obtain reasonable residual stress values [3, 4]. The purpose of this study was to demonstrate the detail of hole-drilling technique combining ESPI with phase unwrapping method to reveal the full field stress distribution and to measure the associated stress field on a thin specimen exerted by a uni-axial load. This study also demonstrates the noise reduction achieved by Gaussian low pass filter and a successful phase unwrapping resulted from five-step phase shifting and cellular automata method. Figure 1 shows the experimental setup of the ESPI system and the hole-drilling system. The light from a laser source is split into two beams. One split beam emerges from a PZT-stage to provide stepwise phase shifting and it further interferes with the other split image beam on the specimen surface to produce speckle patterns onto the CCD camera. By recording the speckle images of stepwise phase shifting before and after hole-drilling, the fringe patterns at each step can be obtained. Through a uniaxial loading fixture loads with

  16. Bibliography of spatial interferometry in optical astronomy

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude


    The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.

  17. Numerical evaluation of moiré pattern in touch sensor module with electrode mesh structure in oblique view

    Pournoury, M.; Zamiri, A.; Kim, T. Y.; Yurlov, V.; Oh, K.


    Capacitive touch sensor screen with the metal materials has recently become qualified for substitution of ITO; however several obstacles still have to be solved. One of the most important issues is moiré phenomenon. The visibility problem of the metal-mesh, in touch sensor module (TSM) is numerically considered in this paper. Based on human eye contract sensitivity function (CSF), moiré pattern of TSM electrode mesh structure is simulated with MATLAB software for 8 inch screen display in oblique view. Standard deviation of the generated moiré by the superposition of electrode mesh and screen image is calculated to find the optimal parameters which provide the minimum moiré visibility. To create the screen pixel array and mesh electrode, rectangular function is used. The filtered image, in frequency domain, is obtained by multiplication of Fourier transform of the finite mesh pattern (product of screen pixel and mesh electrode) with the calculated CSF function for three different observer distances (L=200, 300 and 400 mm). It is observed that the discrepancy between analytical and numerical results is less than 0.6% for 400 mm viewer distance. Moreover, in the case of oblique view due to considering the thickness of the finite film between mesh electrodes and screen, different points of minimum standard deviation of moiré pattern are predicted compared to normal view.

  18. Vertical ground movements in the Polish and Lithuanian Baltic coastal area as measured by satellite interferometry

    Graniczny, M.; Cyziene, J.; van Leijen, F.J.; Minkevicius, W.; Mikulenas, V.; Satkunas, J.; Przylucka, M.; Kowalski, Z.; Uscinowicz, S.; Jeglinski, W.; Hanssen, R.F.


    The article contains results obtained from realization of the Polish and Lithuanian Baltic case study within the EU – FP 7 SubCoast project, which one of the primary aims was analysis of vertical ground movements, potentially causing geohazards in the coastal areas. To reach this goal Interferometri

  19. Precision Gravity Tests with Atom Interferometry in Space

    Tino, G. M.; Sorrentino, F.; Aguilera, D.; Battelier, B.; Bertoldi, A.; Bodart, Q.; Bongs, K.; Bouyer, P.; Braxmaier, C.; Cacciapuoti, L.; Gaaloul, N.; Gürlebeck, N.; Hauth, M.; Herrmann, S.; Krutzik, M.; Kubelka, A.; Landragin, A.; Milke, A.; Peters, A.; Rasel, E. M.; Rocco, E.; Schubert, C.; Schuldt, T.; Sengstock, K.; Wicht, A.


    Atom interferometry provides extremely sensitive and accurate tools for the measurement of inertial forces. Operation of atom interferometers in microgravity is expected to enhance the performance of such sensors. This paper presents two possible implementations of a dual 85Rb-87Rb atom interferometer to perform differential gravity measurements in space, with the primary goal to test the Weak Equivalence Principle. The proposed scheme is in the framework of two projects of the European Space Agency, namely Q-WEP and STE-QUEST. The paper describes the baseline experimental configuration, and discusses the technology readiness, noise and error budget for the two proposed experiments.

  20. Precision Gravity Tests with Atom Interferometry in Space

    Tino, G.M.; Sorrentino, F. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Aguilera, D. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Battelier, B.; Bertoldi, A. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Bodart, Q. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Bongs, K. [Midlands Ultracold Atom Research Centre School of Physics and Astronomy University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Bouyer, P. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Braxmaier, C. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Cacciapuoti, L. [European Space Agency, Research and Scientific Support Department, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Gaaloul, N. [Institute of Quantum Optics, Leibniz Universitaet Hannover, Welfengarten 1, D 30167 Hannover (Germany); Gürlebeck, N. [University of Bremen, Centre of Applied Space Technology and Microgravity (ZARM), Am Fallturm, D - 29359 Bremen (Germany); Hauth, M. [Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); and others


    Atom interferometry provides extremely sensitive and accurate tools for the measurement of inertial forces. Operation of atom interferometers in microgravity is expected to enhance the performance of such sensors. This paper presents two possible implementations of a dual {sup 85}Rb-{sup 87}Rb atom interferometer to perform differential gravity measurements in space, with the primary goal to test the Weak Equivalence Principle. The proposed scheme is in the framework of two projects of the European Space Agency, namely Q-WEP and STE-QUEST. The paper describes the baseline experimental configuration, and discusses the technology readiness, noise and error budget for the two proposed experiments.

  1. The African Very Long Baseline Interferometry Network:The Ghana Antenna Conversion

    Copley, C J; Loots, A; Bangani, S; Cloete, K; Combrinck, L; Gioio, S; Ludick, J; Nicolson, G; Pollak, A W; Pretorius, P; Quick, J F H; Taylor, G; Ebrahim, F; Humphreys, C; Maake, K; Maganane, R; Majinjiva, R; Mapunda, A; Manzini, M; Mogakwe, N; Moseki, A; Qwabe, N; Royi, N; Rosie, K; Smith, J; Schietekat, S; Toruvanda, O; Tong, C; van Niekerk, B; Walbrugh, W; Zeeman, W


    The African Very Long Baseline Interferometry Network (AVN) is a pan-African project that will develop Very Long Baseline Interferometry (VLBI) observing capability in several countries across the African continent, either by conversion of existing telecommunications antennas into radio telescopes, or by building new ones. This paper focuses on the conversion of the Nkutunse satellite communication station (near Accra, Ghana), specifically the early mechanical and infrastructure upgrades, together with the development of a custom ambient receiver and digital backend. The paper concludes with what remains to be done, before the station can be commissioned as an operational VLBI station.

  2. Binary Cepheids from optical interferometry

    Gallenne, A; Mérand, A; Monnier, J D; Pietrzyński, J Breitfelder G; Gieren, W


    Classical Cepheid stars have been considered since more than a century as reliable tools to estimate distances in the universe thanks to their Period-Luminosity (P-L) relationship. Moreover, they are also powerful astrophysical laboratories, providing fundamental clues for studying the pulsation and evolution of intermediate-mass stars. When in binary systems, we can investigate the age and evolution of the Cepheid, estimate the mass and distance, and constrain theoretical models. However, most of the companions are located too close to the Cepheid (1-40 mas) to be spatially resolved with a 10-meter class telescope. The only way to spatially resolve such systems is to use long-baseline interferometry. Recently, we have started a unique and long-term interferometric program that aims at detecting and characterizing physical parameters of the Cepheid companions, with as main objectives the determination of accurate masses and geometric distances.

  3. Parasitic interference in nulling interferometry

    Matter, Alexis; Danchi, William C; Lopez, Bruno; Absil, Olivier


    Nulling interferometry aims to detect faint objects close to bright stars. Its principle is to produce a destructive interference along the line-of-sight so that the stellar flux is rejected, while the flux of the off-axis source can be transmitted. In practice, various instrumental perturbations can degrade the nulling performance. Any imperfection in phase, amplitude, or polarization produces a spurious flux that leaks to the interferometer output and corrupts the transmitted off-axis flux. One of these instrumental pertubations is the crosstalk phenomenon, which occurs because of multiple parasitic reflections inside transmitting optics, and/or diffraction effects related to beam propagation along finite size optics. It can include a crosstalk of a beam with itself, and a mutual crosstalk between different beams. This can create a parasitic interference pattern, which degrades the intrinsic transmission map - or intensity response - of the interferometer. In this context, we describe how this instrumental ...

  4. Fundamental physics research and neutron interferometry

    Ioffe, A. [Hahn-Meitner-Institut Berlin GmbH (Germany)


    The possibility of the use of an extremely sensitive neutron interferometry technique for the study of electromagnetic structure of the neutron and the parity non-conservative effects in neutron spin rotation is discussed. (author)

  5. Some applications of holographic interferometry in biomechanics

    Ebbeni, Jean P. L.


    Holographic interferometry is well adapted for the determination of 2D strain fields in osseous structures. The knowledge of those strain fields is important for the understanding of structure behavior such as arthrosis.

  6. Theoretical error analysis of the sampling moiré method and phase compensation methodology for single-shot phase analysis.

    Ri, Shien; Muramatsu, Takashi


    Recently, a rapid and accurate single-shot phase measurement technique called the sampling moiré method has been developed for small-displacement distribution measurements. In this study, the theoretical phase error of the sampling moiré method caused by linear intensity interpolation in the case of a mismatch between the sampling pitch and the original grating pitch is analyzed. The periodic phase error is proportional to the square of the spatial angular frequency of the moiré fringe. Moreover, an effective phase compensation methodology is developed to reduce the periodic phase error. Single-shot phase analysis can perform accurately even when the sampling pitch is not matched to the original grating pitch exactly. The primary simulation results demonstrate the effectiveness of the proposed phase compensation methodology.

  7. A median-Gaussian filtering framework for Moiré pattern noise removal from X-ray microscopy image.

    Wei, Zhouping; Wang, Jian; Nichol, Helen; Wiebe, Sheldon; Chapman, Dean


    Moiré pattern noise in Scanning Transmission X-ray Microscopy (STXM) imaging introduces significant errors in qualitative and quantitative image analysis. Due to the complex origin of the noise, it is difficult to avoid Moiré pattern noise during the image data acquisition stage. In this paper, we introduce a post-processing method for filtering Moiré pattern noise from STXM images. This method includes a semi-automatic detection of the spectral peaks in the Fourier amplitude spectrum by using a local median filter, and elimination of the spectral noise peaks using a Gaussian notch filter. The proposed median-Gaussian filtering framework shows good results for STXM images with the size of power of two, if such parameters as threshold, sizes of the median and Gaussian filters, and size of the low frequency window, have been properly selected.

  8. Nanoscale optical interferometry with incoherent light

    Dongfang Li,; Jing Feng; Domenico Pacifici


    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of...

  9. Fringe formation in dual-hologram interferometry

    Burner, A. W.


    Reference-fringe formation in nondiffuse dual-hologram interferometry is described by combining a first-order geometrical hologram treatment with interference fringes generated by two point sources. The first-order imaging relationships can be used to describe reference-fringe patterns for the geometry of the dual-hologram interferometry. The process can be completed without adjusting the two holograms when the reconstructing wavelength is less than the exposing wavelength, and the process is found to facilitate basic intereferometer adjustments.

  10. Les disparus politiques en Uruguay, entre l’histoire et la mémoire

    Eugenia Allier Montaño


    Full Text Available Depuis un certain temps, les discussions sur les passés récents et violents, connus lors des années 1960-1980, sont l’un des enjeux majeurs des espaces publics dans plusieurs pays de l’Amérique du Sud. L’Uruguay, ayant vécu un régime civique militaire fortement répressif entre 1973 et 1985, n’a pas été l’exception. Pourtant, bien que les mémoires publiques sur ce passé aient traversé différentes périodes, c’est la disparition des personnes qui conduit presque toute l’histoire des luttes autour de la mémoire du pays. Dans ce texte, nous nous attelons à tracer l’histoire de la mémoire des disparus politiques dans l’arène publique en Uruguay pour connaître les motifs qu’ont faits des disparus de l’image du passé récent.Discussions on violence during the years 1960-1980 in South America have for some time been a central issue in the public space of many South American countries. Uruguay, having gone through a strongly repressive civic-military regime between 1973 and 1985, was no exception. While public memories on this period have gone through different phases, the forced disappearances have always been the main focus of the struggles for memory. This article attempts to trace the history of the remembering of these victims of forced disappearance in the Uruguayan public arena in order to determine memory patterns in the image of a recent past.

  11. Cell force mapping using a double-sided micropillar array based on the moiré fringe method

    Zhang, F.; Anderson, S.; Zheng, X.; Roberts, E.; Qiu, Y.; Liao, R.; Zhang, X.


    The mapping of traction forces is crucial to understanding the means by which cells regulate their behavior and physiological function to adapt to and communicate with their local microenvironment. To this end, polymeric micropillar arrays have been used for measuring cell traction force. However, the small scale of the micropillar deflections induced by cell traction forces results in highly inefficient force analyses using conventional optical approaches; in many cases, cell forces may be below the limits of detection achieved using conventional microscopy. To address these limitations, the moiré phenomenon has been leveraged as a visualization tool for cell force mapping due to its inherent magnification effect and capacity for whole-field force measurements. This Letter reports an optomechanical cell force sensor, namely, a double-sided micropillar array (DMPA) made of poly(dimethylsiloxane), on which one side is employed to support cultured living cells while the opposing side serves as a reference pattern for generating moiré patterns. The distance between the two sides, which is a crucial parameter influencing moiré pattern contrast, is predetermined during fabrication using theoretical calculations based on the Talbot effect that aim to optimize contrast. Herein, double-sided micropillar arrays were validated by mapping mouse embryo fibroblast contraction forces and the resulting force maps compared to conventional microscopy image analyses as the reference standard. The DMPA-based approach precludes the requirement for aligning two independent periodic substrates, improves moiré contrast, and enables efficient moiré pattern generation. Furthermore, the double-sided structure readily allows for the integration of moiré-based cell force mapping into microfabricated cell culture environments or lab-on-a-chip devices.

  12. Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities

    Balci, Sinan; Kocabas, Askin; Kocabas, Coskun; Aydinli, Atilla


    In view of the progress on the confinement of light, we report on the dispersion characteristics of surface plasmon polaritons (SPPs) on two-dimensional Moiré surfaces in the visible part of the electromagnetic spectrum. Polarization dependent spectroscopic reflection measurements show omnidirectional confinement of SPPs. The resonance wavelength of SPP cavity modes can be adjusted by tuning the propagation direction of SPPs. The results may have an impact on the control of spontaneous emission and absorption with applications in light emitting diodes and solar cells, as well as in quantum electrodynamics experiments.

  13. Trapping and rotating microparticles and bacteria with moiré-based optical propelling beams.

    Zhang, Peng; Hernandez, Daniel; Cannan, Drake; Hu, Yi; Fardad, Shima; Huang, Simon; Chen, Joseph C; Christodoulides, Demetrios N; Chen, Zhigang


    We propose and demonstrate trapping and rotation of microparticles and biological samples with a moiré-based rotating optical tweezers. We show that polystyrene beads, as well as Escherichia coli cells, can be rotated with ease, while the speed and direction of rotation are fully controllable by a computer, obviating mechanical movement or phase-sensitive interference. Furthermore, we demonstrate experimentally the generation of white-light propelling beams and arrays, and discuss the possibility of optical tweezing and particle micro-manipulation based on incoherent white-light rotating patterns.

  14. Measurement of residual stress for ITO/PET substrates by the double beam shadow moiré interferometer.

    Chen, Hsi-Chao; Huang, Kuo-Ting; Lo, Yen-Ming


    This study constructed a measurement system that can quickly and accurately analyze the residual stress of flexible electronics. A double beam shadow moiré interferometer was set up to measure and evaluate the residual stress of tin-doped indium oxide films on a polyethylene terephthalate substrate. However, this system required only two symmetrical fringes to evaluate the residual stress of transparent conductive oxide films on flexible substrate. Applying the grating translation techniques to the double beam shadow moiré interferometer greatly improved the measurement resolution and accuracy, and the relative error was reduced to 1.2%.

  15. Reproducible strain measurement in electronic devices by applying integer multiple to scanning grating in scanning moiré fringe imaging

    Suhyun Kim


    Full Text Available Scanning moiré fringe (SMF imaging by high-angle annular dark field scanning transmission electron microscopy was used to measure the strain field in the channel of a transistor with a CoSi2 source and drain. Nanometer-scale SMFs were formed with a scanning grating size of ds at integer multiples of the Si crystal lattice spacing dl (ds ∼ ndl, n = 2, 3, 4, 5. The moiré fringe formula was modified to establish a method for quantifying strain measurement. We showed that strain fields in a transistor measured by SMF images were reproducible with an accuracy of 0.02%.

  16. Application of Geometric Moiré to the Analysis of Large Deformation in Three-dimensional Models

    Cicinelli, V.; Pappalettere, C.; Sun, W. M.; Surace, L.

    The application of geometric moiré in large deformation of 3-D models is discussed. Different aspects of the method, such as mismatch technique and mechanical differentiation, are taken into consideration for the measurement. An application of the method is given to the cushion disk of an artificial knee joint in whose axis-symmetric cross section a cross specimen grating of 0.5mm pitch was replicated. The analysis shows the applicability of the geometric moiré, together with its various approaches, in the large deformation measurement giving the whole field quantitative definition.

  17. Synthetic aperture radar and interferometry development at Sandia National Laboratories



    Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must be acquired in inclement weather or during night as well as day. Synthetic aperture radar (SAR) provides such a capability. SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high resolution imagery. SAR complements photographic and other optical imaging capabilities because of the minimum constrains on time-of-day and atmospheric conditions and because of the unique responses of terrain and cultural targets to radar frequencies. Interferometry is a method for generating a three-dimensional image of terrain. The height projection is obtained by acquiring two SAR images from two slightly differing locations. It is different from the common method of stereoscopic imaging for topography. The latter relies on differing geometric projections for triangulation to define the surface geometry whereas interferometry relies on differences in radar propagation times between the two SAR locations. This paper presents the capabilities of SAR, explains how SAR works, describes a few SAR applications, provides an overview of SAR development at Sandia, and briefly describes the motion compensation subsystem.

  18. Theory of supervirtual refraction interferometry

    Bharadwaj, Pawan


    Inverting for the subsurface velocity distribution by refraction traveltime tomography is a well-accepted imaging method by both the exploration and earthquake seismology communities. A significant drawback, however, is that the recorded traces become noisier with increasing offset from the source position, and so accurate picking of traveltimes in far-offset traces is often prevented. To enhance the signal-to-noise ratio (SNR) of the far-offset traces, we present the theory of supervirtual refraction interferometry where the SNR of far-offset head-wave arrivals can be theoretically increased by a factor proportional to; here, N is the number of receiver or source positions associated with the recording and generation of the head-wave arrival. There are two steps to this methodology: correlation and summation of the data to generate traces with virtual head-wave arrivals, followed by the convolution of the data with the virtual traces to create traces with supervirtual head-wave arrivals. This method is valid for any medium that generates head-wave arrivals recorded by the geophones. Results with both synthetic traces and field data demonstrate the feasibility of this method. There are at least four significant benefits of supervirtual interferometry: (1) an enhanced SNR of far-offset traces so the first-arrival traveltimes of the noisy far-offset traces can be more reliably picked to extend the useful aperture of the data, (2) the SNR of head waves in a trace that arrive later than the first arrival can be enhanced for accurate traveltime picking and subsequent inversion by later-arrival traveltime tomography, (3) common receiver-pair gathers can be analysed to detect the presence of diving waves in the first arrivals, which can be used to assess the nature of the refracting boundary, and (4) the source statics term is eliminated in the correlation operations so that the timing of the virtual traces is independent of the source excitation time. This suggests the

  19. submitter Probing electric and magnetic fields with a Moiré deflectometer

    Lansonneur, P; Demetrio, A; Müller, S R; Nedelec, P; Oberthaler, M K


    A new contact-free approach for measuring simultaneously electric and magnetic field is reported, which considers the use of a low energy ion source, a set of three transmission gratings and a position sensitive detector. Recently tested with antiprotons (Aghion et al., 2014) [1] at the CERN Antiproton Decelerator facility, this paper extends the proof of principle of a moiré deflectometer (Oberthaler et al., 1996) [2] for distinguishing electric from magnetic fields and opens the route to precision measurements when one is not limited by the ion source intensity. The apparatus presented, whose resolution is mainly limited by the shot noise is able to measure fields as low as 9 mVm−1 Hz−1/2 for electric component and 100 μG Hz−1/2 for the magnetic component. Scaled to 100 nm pitch for the gratings, accessible with current state-of-the-art technology [3], the moiré fieldmeter would be able to measure fields as low as 22 μVm−1 Hz−1/2 and 0.2 μG Hz−1/2.

  20. Magic C60 islands forming due to moiré interference between islands and substrate

    Olyanich, D. A.; Mararov, V. V.; Utas, T. V.; Utas, O. A.; Gruznev, D. V.; Zotov, A. V.; Saranin, A. A.


    Recently proposed mechanism for self-organized formation of magic islands [Nat.Comm. 4(2013)1679] has received a new experimental confirmation. According to this mechanism, self-assembly is mediated by the moiré interference between an island and underlying substrate lattice. It was first detected at C60 island growth on In-adsorbed Si(111)√{ 3} ×√{ 3}-Au surface. Changing In adsorbate for Tl results in lowering the corrugations of the surface potential relief due to a greater surface metallization. This allows formation of the C60 arrays with novel moiré pattern. As a result, a new set of magic C60 islands is formed on Tl-adsorbed Au/Si(111) surface differing from that observed on In-adsorbed surface. For example, the 19-C60 magic island which has a non-compact boomerang shape on In-adsorbed Au/Si(111) surfaces adopts a shape of a regular hexagon on Tl-adsorbed surface.

  1. Neutron interferometry with cold stage

    Mineeva, Taisiya; Arif, M.; Huber, M. G.; Shahi, C. B.; Clark, C. W.; Cory, D. G.; Nsofini, J.; Sarenac, D.; Pushin, D. A.

    Neutron interferometry (NI) is amongst the most precise methods for characterizing neutron interactions by measuring the relative difference between two neutron paths, one of which contains a sample-of-interest. Because neutrons carry magnetic moment and are deeply penetrating, they are excellent probes to investigate properties of magnetic materials. The advantage of NI is its unique sensitivity which allows to directly measure magnetic and structural transitions in materials. Up to now NI has been sparingly used in material research due to its sensitivity to environmental noise. However, recent successes in implementing Quantum Error Correction principles lead to an improved NI design making it robust against mechanical vibrations. Following these advances, a new user facility at the National Institute for Standards and Technology was built to study condensed matter applications, biology and quantum physics. Incorporating cold sample stage inside NI is the first of its kind experiment which can be carried out on large range of temperatures down to 4K. Upon successful realization, it will open new frontiers to characterize magnetic domains, phase transitions and spin properties in a variety of materials such as, for example, iron-based superconductors and spintronic materials. Supported in part by CERC, CIFAR, NSERC and CREATE.

  2. Parsimonious Refraction Interferometry and Tomography

    Hanafy, Sherif


    We present parsimonious refraction interferometry and tomography where a densely populated refraction data set can be obtained from two reciprocal and several infill shot gathers. The assumptions are that the refraction arrivals are head waves, and a pair of reciprocal shot gathers and several infill shot gathers are recorded over the line of interest. Refraction traveltimes from these shot gathers are picked and spawned into O(N2) virtual refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. The virtual traveltimes can be inverted to give the velocity tomogram. This enormous increase in the number of traveltime picks and associated rays, compared to the many fewer traveltimes from the reciprocal and infill shot gathers, allows for increased model resolution and a better condition number with the system of normal equations. A significant benefit is that the parsimonious survey and the associated traveltime picking is far less time consuming than that for a standard refraction survey with a dense distribution of sources.

  3. Calibração da técnica de moiré aplicada a perfilometria de protótipos mecânicos Calibration method applied to a moiré technique in experiments of mechanical archetypes

    Túlio Seabra Gomes


    Full Text Available A perfilometria é uma técnica amplamente utilizada na construção de mapas e gráficos de relevos aplicados a uma vasta área do conhecimento. Frente às necessidades de suprir a demanda da indústria e da área de desenvolvimento de protótipos quanto a técnicas não invasivas na investigação da superfície de materiais em geral, o presente trabalho buscou propor uma metodologia de calibração aplicada à técnica de moiré para investigações perfilométricas em protótipos mecânicos buscando baixos custos e flexibilidade. A técnica de moiré consiste na comparação de dois retículos periódicos, onde um segue o comportamento da superfície do objeto (retículo modelo - Rm e outro não está deformado, seguindo o comportamento de um plano de referência, (retículo de referência - Rr. A luz que passa entre os retículos se sobrepõe formando padrões de moiré ou franjas de moiré que se comportam como ondas senoidais. Nos ensaios de calibração, usou-se um cone de relevo conhecido para a determinação de uma constante de correção de mapas gerados digitalmente. Os ensaios realizados aplicaram a metodologia para a determinação do perfil de um mouse de computador e para a determinação da deformação de uma chapa metálica. A metodologia proposta para a calibração da técnica de moiré mostrouse capaz de realizar os mapeamentos, com resolução máxima na ordem de centésimos de milímetros, podendo então ser usada em aplicações com níveis de precisão inferiores a essa ordem.Profilometry is a measurement technique widely used in map and relief graphic construction, being applied to vast areas of knowledge. The aim of the present investigation was to introduce a calibration method applied to a moiré technique in experiments of mechanical archetypes, with low cost and flexibility, due to the need for supplying demands from both industry and mechanical archetype development for non-invasive techniques. The moir

  4. Progress in electron- and ion-interferometry

    Hasselbach, Franz [Institut fuer Angewandte Physik der Universitaet Tuebingen, Auf der Morgenstelle 10, D-72076 Tuebingen (Germany)], E-mail:


    In the 1970s the prominent goal was to overcome the limitations of electron microscopy caused by aberrations of electron lenses by the development of electron holography. In the meantime this problem has been solved, not only in the roundabout way of holography, but directly by correcting the aberrations of the lenses. Nevertheless, many quantitative electron microscopical measurement methods-e.g. mapping and visualization of electric and magnetic fields-were developed within the context of holography and have become fields of their own. In this review we focus on less popular electron interferometric experiments which complement the field of electron holography. The paper is organized as follows. After a short sketch of the development of electron biprism interferometry after its invention in 1954, recent advances in technology are discussed that made electron biprism interferometry an indispensable tool for solving fundamental and applied questions in physics: the development and preparation of conventional and single-atom field electron and field ion sources with their extraordinary properties. Single- and few-atom sources exhibit spectacular features: their brightness at 100 keV exceeds that of conventional field emitters by two orders in magnitude. Due to the extremely small aberrations of diode field emitter extraction optics, the virtual source size of single-atom tips is on the order of 0.2 nm. As a consequence it illuminates an area 7 cm in diameter on a screen at a distance of 15 cm coherently. Projection electron micrographs taken with these sources reach spatial resolutions of atomic dimensions and in-line holograms are-due to the absence of lenses with their aberrations-not blurred. Their reconstruction is straightforward. By addition of a carbon nanotube biprism into the beam path of a projection microscope a lensless electron interferometer has been realized. In extremely ultrahigh vacuum systems flicker noise is practically absent in the new sources

  5. Real time measurement of very small transverse displacements of diffuse objects by random moiré, 2: Experiments.

    Joyeux, D


    We first briefly describe a realization of the random moiré displacement transducer (Part 1 of this paper). The principal problems arising in practical measurements, namely, stability and noise, are then discussed. Finally, results of several vibration measurements are presented, with various waveforms and amplitudes (2 A to 3 microm peak to peak).

  6. The Lindley paradox in optical interferometry

    Mauri, Camillo [Quantum Technology Lab, Dipartimento di Fisica, Università degli Studi di Milano, I-20133 Milano (Italy); Paris, Matteo G.A., E-mail: [Quantum Technology Lab, Dipartimento di Fisica, Università degli Studi di Milano, I-20133 Milano (Italy); CNISM, Unità Milano Statale, I-20133 Milano (Italy); INFN, Sezione di Milano, I-20133 Milano (Italy)


    The so-called Lindley paradox is a counterintuitive statistical effect where the Bayesian and frequentist approaches to hypothesis testing give radically different answers, depending on the choice of the prior distribution. In this paper we address the occurrence of the Lindley paradox in optical interferometry and discuss its implications for high-precision measurements. In particular, we focus on phase estimation by Mach–Zehnder interferometers and show how to mitigate the conflict between the two approaches by using suitable priors. - Highlights: • We address the occurence of Lindley paradox in interferometry and discuss its implications for high-precision measurements. • We show how to mitigate the conflict between Bayesian and frequentist approach to interferometry using suitable priors. • Our results apply to calibration of homodyne detectors for quantum tomography.

  7. The Wide Field Imaging Interferometry Testbed

    Zhang, X; Leisawitz, D T; Leviton, D B; Martino, A J; Mather, J C; Zhang, Xiaolei; Feinberg, Lee; Leisawitz, Dave; Leviton, Douglas B.; Martino, Anthony J.; Mather, John C.


    We are developing a Wide-Field Imaging Interferometry Testbed (WIIT) in support of design studies for NASA's future space interferometry missions, in particular the SPIRIT and SPECS far-infrared/submillimeter interferometers. WIIT operates at optical wavelengths and uses Michelson beam combination to achieve both wide-field imaging and high-resolution spectroscopy. It will be used chiefly to test the feasibility of using a large-format detector array at the image plane of the sky to obtain wide-field interferometry images through mosaicing techniques. In this setup each detector pixel records interferograms corresponding to averaging a particular pointing range on the sky as the optical path length is scanned and as the baseline separation and orientation is varied. The final image is constructed through spatial and spectral Fourier transforms of the recorded interferograms for each pixel, followed by a mosaic/joint-deconvolution procedure of all the pixels. In this manner the image within the pointing range ...

  8. Optical Intensity Interferometry through Atmospheric Turbulence

    Tan, Peng Kian; Kurtsiefer, Christian


    Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrowband spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photon detectors (APDs), the Solar $g^{(2)}(\\tau)$ signature was directly measured. We observe an averaged photon bunching signal of $g^{(2)}(\\tau) = 1.693 \\pm 0.003$ from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement scheme...

  9. Optical intensity interferometry through atmospheric turbulence

    Tan, P. K.; Chan, A. H.; Kurtsiefer, C.


    Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrow-band spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photodiodes, the Solar g(2)(τ) signature was directly measured. We observe an averaged photon bunching signal of g(2)(τ) = 1.693 ± 0.003 from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement schemes with both large baselines and long integration times.

  10. An Adaptive Iterated Nonlocal Interferometry Filtering Method

    Lin Xue


    Full Text Available Interferometry filtering is one of the key steps in obtain high-precision Digital Elevation Model (DEM and Digital Orthophoto Map (DOM. In the case of low-correlation or complicated topography, traditional phase filtering methods fail in balancing noise elimination and phase preservation, which leads to inaccurate interferometric phase. This paper proposed an adaptive iterated nonlocal interferometry filtering method to deal with the problem. Based on the thought of nonlocal filtering, the proposed method filters the image with utilization of the image redundancy information. The smoothing parameter of the method is adaptive to the interferometry, and automatic iteration, in which the window size is adjusted, is applied to improve the filtering precision. Validity of the proposed method is verified by simulated and real data. Comparison with existed methods is given at the same time.

  11. Frictional sliding in layered rock model: Preliminary experiments. Yucca Mountain Site Characterization Project

    Perry, K.E. Jr.; Buescher, B.J.; Anderson, D.; Epstein, J.S. [Idaho National Engineering Lab., Idaho Falls, ID (United States)


    An important aspect of determining the suitability of Yucca Mountain as a possible nuclear waste repository requires understanding the mechanical behavior of jointed rock-masses. To this end we have studied the frictional sliding between simulated rock joints in the laboratory using the technique of phase shifting moire interferometry. The models were made from stacks of Lexan plates and contained a central hole to induce slip between the plates when the models were loaded in compression. These preliminary results confirm the feasibility of the approach and show a clear evolution of slip as function of load.

  12. Comment on "Nonlinear refraction measurements of materials using the moiré deflectometry"

    Rashidian Vaziri, M. R.


    In an influential paper Jamshidi-Ghaleh and Mansour [1] (Opt. Commun. 234 (2004) 419), have reported on a new method for measuring the nonlinear refractive index of materials using the rotational moiré deflectometry technique. In the cited work, the authors apply the ray matrix theory for finding the beam deflection angle on the plane of the first grating in the used geometry. To this end, using the parabolic approximation, the exponential term in the beam irradiance is expanded and retaining the first two resultant terms, the nonlinear sample is treated as a thin lens with a position dependent focal length. In this comment, the effective focal length of the nonlinear sample has been rederived in detail using the Gaussian beam theory and it is shown that it must contain a correction factor. The relative error introduced by ignoring this factor can be as large as 73.5-84.4% in determining the nonlinear refractive index of thin samples.

  13. Benjamin sociographe de la mémoire collective ? Benjamin, sociographer of collective memory ?

    Marc Berdet


    Full Text Available Walter Benjamin est-il un sociographe de la mémoire collective  ? Une comparaison des thèmes morphologique, phénoménologique et politique de la sociologie halbwachsienne de la mémoire et de l’écriture benjaminienne de Paris permet de répondre à cette question. Morphologique : il s’agit principalement de voir comment la mémoire collective peut se cristalliser dans son espace urbain. Phénoménologique : le processus de remémoration suppose la rencontre d’un pluralisme temporel et de représentations collectives dans des images auxquelles cet espace urbain n’est pas étranger. Politique : un type de remémoration doit être mis à profit par cette image pour le progrès de la civilisation, notamment contre le fascisme. Au terme de ce cheminement, apparaît le rôle décisif de la métathéorie pour la théorie qui fait voir la différence profonde entre nos deux auteurs que le combat épistémologique qu’il entraînait avait rapprochés. Car si la mémoire collective est réifiée dans la ville, c’est selon une représentation singulière du temps dont elle-même découle. Or c’est précisément au nom d’une représentation du temps que le sociologue français et le philosophe allemand veulent fonder d’une part la science, d’autre part l’action.Is Walter Benjamin a sociographer of collective memory ? A comparison between the morphological, phenomenological and political topics of Halbwach’s sociology of memory and Benjamin’s writing on Paris allows us to answer this question. Morphological: it is mainly a question of seeing how collective memory can crystallize in its urban setting. Phenomenological: the process of recollection supposes an encounter between a temporal pluralism and collective representations in images from which that urban space is not disconnected. Political: a type of recollection must be put to use by this image for the progress of civilization, especially against Fascism. At the end of

  14. Rôle de la mémoire didactique de l'enseignant

    Brousseau, Guy; Julia, Centeno


    International audience; Dans quelle mesure le système didactique (le maître, par exemple) est-il contraint de gérer une représentation des comportements effectifs (et donc variés et provisoires) des élèves et de leurs connaissances transitoires ? Comment satisfait-il cette exigence et/ou comment peut-il y échapper ou en minimiser les contraintes ? Comment opère-t-il pour cela: sur le savoir (transpositions locales) ; sur l'élève (sa mémoire); sur le milieu, etc.? Le système didactique a-t-il ...

  15. La mémoire de l’immigration comme politique sociale ?

    Frigoli, Gilles


    Cet article porte sur les tensions que provoque, dans une petite ville touristique de l’arrière-pays azuréen, l’entreprise mémorielle dans laquelle s’est lancée une association désireuse d’établir et de publiciser une histoire de l’immigration locale en provenance des pays du Maghreb. L’enquête montre ce que ces tensions doivent à l’entrechoquement de trois mémoires : celle qui célèbre le passé patrimonial d’une localité qui trouve là une ressource dans la fabrication d’une image touristique ...

  16. Moiré fringe method of using warping deformation measurement of electronic components

    Huang, Yanping; Huang, Biaobing; Xu, Hongji; Yan, Dongmei; Li, Wenpeng


    Computers, mobile phones, cameras and video equipment and other electronic products, Moving in the light, thin, small, high speed, high reliability, multi-functional aspects of development, Namely, 3G technology and the SOC of. Therefore, the various components of the packaging technology have become increasingly demanding, Electronic components of residual stress after encapsulation and the use of temperature changes during, Body will be made electronic packaging warpage, Seriously affect the quality of the product. Therefore, to establish a set of micron, sub-micron-level detection method for testing. In this paper, Moiré fringe method to measure warpage of electronic packages body volume, Was first proposed application of Rayleigh-Sommerfeld diffraction theory, Proof presented in this paper with a small spacing diffraction grating problems arising from the assumption can be overcome, Greatly improved the precision deformation measurement of electronic components.

  17. La mémoire méditerranéenne de Constantin Cavafy

    André-Alain Morello


    Full Text Available Résolument tournée vers l’Antiquité gréco-romaine, l’œuvre de Constantin Cavafy, poète grec d’Alexandrie (1863-1933 puise aux sources de la culture méditerranéenne. Il doit sa notoriété en France à Marguerite Yourcenar, éprise d’hellénisme, qui a traduit ses poèmes et lui a consacré un long texte dans Sous bénéfice d’inventaire. L’œuvre de Cavafy est une poésie brûlante de la Méditerranée et de la mémoire.

  18. Precision measurements with atom interferometry

    Schubert, Christian; Abend, Sven; Schlippert, Dennis; Ertmer, Wolfgang; Rasel, Ernst M.


    Interferometry with matter waves enables precise measurements of rotations, accelerations, and differential accelerations [1-5]. This is exploited for determining fundamental constants [2], in fundamental science as e.g. testing the universality of free fall [3], and is applied for gravimetry [4], and gravity gradiometry [2,5]. At the Institut für Quantenoptik in Hannover, different approaches are pursued. A large scale device is designed and currently being set up to investigate the gain in precision for gravimetry, gradiometry, and fundamental tests on large baselines [6]. For field applications, a compact and transportable device is being developed. Its key feature is an atom chip source providing a collimated high flux of atoms which is expected to mitigate systematic uncertainties [7,8]. The atom chip technology and miniaturization benefits from microgravity experiments in the drop tower in Bremen and sounding rocket experiments [8,9] which act as pathfinders for space borne operation [10]. This contribution will report about our recent results. The presented work is supported by the CRC 1227 DQ-mat, the CRC 1128 geo-Q, the RTG 1729, the QUEST-LFS, and by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557. [1] P. Berg et al., Phys. Rev. Lett., 114, 063002, 2015; I. Dutta et al., Phys. Rev. Lett., 116, 183003, 2016. [2] J. B. Fixler et al., Science 315, 74 (2007); G. Rosi et al., Nature 510, 518, 2014. [3] D. Schlippert et al., Phys. Rev. Lett., 112, 203002, 2014. [4] A. Peters et al., Nature 400, 849, 1999; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016. [5] J. M. McGuirk et al., Phys. Rev. A 65, 033608, 2002; P. Asenbaum et al., arXiv:1610.03832. [6] J. Hartwig et al., New J. Phys. 17, 035011, 2015. [7] H. Ahlers et al., Phys. Rev. Lett. 116, 173601


    亚敏; 戴福隆; 谢惠民; 吕坚


    Hole-drilling method is one of the most convenient methods for engineering residual ment data, hole-drilling technique can be used to solve non-uniform residual stress problems, both (MIIHD) for non-uniform residual stress measurement is introduced. Three dimensional finite element model is constructed by ABAQUS to obtain the coefficients for the residual stress calculation.An experimental system including real-time measurement, automatic data processing and residual stresses calculation is established. Two applications for non-uniform in-depth residual stress of surface nanocrystalline material and non-uniform in-plane residual stress of friction stir welding are presented.Experimental results show that MIIHD is effective for both non-uniform in-depth and in-plane residual stress measurements.

  20. Monitoring civil infrastructure using satellite radar interferometry

    Chang, L.


    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new,

  1. Airborne Repeat Pass Interferometry for Deformation Measurements

    Groot, J.; Otten, M.; Halsema, E. van


    In ground engineering the need for deformation measurements is urgent. SAR interferometry can be used to measure small (sub-wavelength) deformations. An experiment to investigate this for dike deformations was set up, using the C-band SAR system PHARUS (PHased ARray Universal SAR). This paper descri

  2. Basic radio interferometry for future lunar missions

    Aminaei, Amin; Klein Wolt, Marc; Chen, Linjie; Bronzwaer, Thomas; Pourshaghaghi, Hamid Reza; Bentum, Mark J.; Falcke, Heino


    In light of presently considered lunar missions, we investigate the feasibility of the basic radio interferometry (RIF) for lunar missions. We discuss the deployment of two-element radio interferometer on the Moon surface. With the first antenna element is envisaged to be placed on the lunar lander,

  3. Constraining symmetron fields with atom interferometry

    Burrage, Clare; Stevenson, James; Thrussell, Ben


    We apply the new constraints from atom-interferometry searches for screening mechanisms to the symmetron model, finding that these experiments exclude a previously unexplored region of parameter space. We discuss the possibility of networks of domain walls forming in the vacuum chamber, and how this could be used to discriminate between models of screening.

  4. High-Performance Image Synthesis for Radio Interferometry

    Muscat, Daniel


    A radio interferometer indirectly measures the intensity distribution of the sky over the celestial sphere. Since measurements are made over an irregularly sampled Fourier plane, synthesising an intensity image from interferometric measurements requires substantial processing. Furthermore there are distortions that have to be corrected. In this thesis, a new high-performance image synthesis tool (imaging tool) for radio interferometry is developed. Implemented in C++ and CUDA, the imaging tool achieves unprecedented performance by means of Graphics Processing Units (GPUs). The imaging tool is divided into several components, and the back-end handling numerical calculations is generalised in a new framework. A new feature termed compression arbitrarily increases the performance of an already highly efficient GPU-based implementation of the w-projection algorithm. Compression takes advantage of the behaviour of oversampled convolution functions and the baseline trajectories. A CPU-based component prepares data ...

  5. « Histoire, mémoire de l’humanité ». L’influence de Bergson sur la conception de l’histoire et celle de la mémoire de Charles Péguy

    Camille Creyghton


    Full Text Available Cet article montre comment Charles Péguy dans son premier texte sur l’histoire, le Compte-rendu de congrès de 1901, essaie de surmonter l’opposition classique en historiographie de la mémoire à l’histoire. Il apparaîtra que la réflexion de Péguy sur l’histoire et sur la mémoire est très influencée par la philosophie du temps et de la mémoire de Bergson. Ainsi, Péguy donne-t-il une réponse originale et fondée sur la philosophie à une question qui occupe beaucoup les historiens aujourd’hui.This paper shows how Charles Péguy in his first text about history, the Compte rendu de congrès of 1901, tries to overcome the classical opposition of history and memory in historiography. It makes clear that Bergson’s philosophy of time and of memory had a substantial influence on Péguy’s thoughts on history and memory. Thus, by basing his reflections on philosophy, Péguy provides an original answer to a question that actually seems urgent to many historians.

  6. Jacques Roubaud, piéton de Paris - échantillons de mémoire urbaine

    Christophe Reig


    Full Text Available Jacques Roubaud sillonne depuis plus de cinquante ans le labyrinthe parisien en forme d’escargot. La prose de mémoire du Grand Incendie de Londres, les poèmes de La Forme d’une ville change plus vite, hélas, que le cœur des humains… chantent une capitale tour à tour honnie et acclimatée, un Paris pluriel qui suscite le pari d’un art poétique prouvant le mouvement en marchant, sans faire l’économie du rythme. Après Baudelaire, Apollinaire, Queneau et bien d’autres encore, Roubaud court et recourt les rues de Paris, en quête de lui-même, planifiant dans la Capitale autant de parcours de mémoire que de trajets poétiques.

  7. The Lattice-Based Screen Set: A Square N -Color All-Orders Moiré-Free Screen Set.

    Yung-Yao Chen; Kashti, Tamar; Fischer, Mani; Shaked, Doron; Ulichney, Robert; Allebach, Jan P


    Periodic clustered-dot screens are widely used for electrophotographic printers due to their print stability. However, moiré is a ubiquitous problem that arises in color printing due to the beating together of the clustered-dot, periodic halftone patterns that are used to represent different colorants. The traditional solution in the graphic arts and printing industry is to rotate identical square screens to angles that are maximally separated from each other. However, the effectiveness of this approach is limited when printing with more than four colorants, i.e., N -color printing, where N > 4 . Moreover, accurately achieving the angles that have maximum angular separation requires a very high-resolution plate writer, as is used in commercial offset printing. Commercially available high-end digital printers cannot achieve this resolution. In this paper, we propose a systematic way to design color screen sets for periodic, clustered-dot screens that offer more explicit control of the moiré properties of the resulting screens when used in color printing. We develop a principled approach for the moiré-free screen design that is called lattice-based screen design. The basic concept behind our approach is the creation of the screen set on a 2D lattice in the frequency domain, and then picking each fundamental frequency vector of the individual colorant planes in the created spectral lattice according to the desired properties. The lattice-based screen design offers more flexibility in designing N -color screen sets with different halftone geometries, and all of them are guaranteed to be all-orders moiré-free. We demonstrate the efficacy of our proposed method by introducing several new screen designs, and a comparison with published screen designs.

  8. Moiré-related in-gap states in a twisted MoS2/graphite heterojunction

    Lu, Chun-I


    This report presents a series of low-temperature (4.5 K) scanning tunneling microscopy and spectroscopy experimental results on monolayer MoS2 deposited on highly oriented pyrolytic graphite using chemical vapor deposition. To reveal the detailed connection between atomic morphology and conductivity in twisted MoS2/graphite heterojunctions, we employ high-sensitivity tunneling spectroscopy measurements by choosing a reduced tip-sample distance. We discern previously unobserved conductance peaks within the band gap range of MoS2, and by comparing the tunneling spectra from MoS2 grains of varying rotation with respect to the substrate, show that these features have small but non-negligible dependence on the moiré superstructure. Furthermore, within a single moiré supercell, atomically resolved tunneling spectroscopy measurements show that the spectra between the moiré high and low areas are also distinct. These in-gap states are shown to have an energy shift attributed to their local lattice strain, matching corresponding behavior of the conduction band edge, and we therefore infer that these features are intrinsic to the density of states, rather than experimental artifacts, and attribute them to the twisted stacking and local strain energy of the MoS2/graphite heterointerface.

  9. Towards the Intensity Interferometry Stellar Imaging System

    Daniel, M; Dravins, D; Kieda, D; Le Bohec, S; Núñez, P; Ribak, E


    The imminent availability of large arrays of large light collectors deployed to exploit atmospheric Cherenkov radiation for gamma-ray astronomy at more than 100GeV, motivates the growing interest in application of intensity interferometry in astronomy. Indeed, planned arrays numbering up to one hundred telescopes will offer close to 5,000 baselines, ranging from less than 50m to more than 1000m. Recent and continuing signal processing technology developments reinforce this interest. Revisiting Stellar Intensity Interferometry for imaging is well motivated scientifically. It will fill the short wavelength (B/V bands) and high angular resolution (< 0.1mas) gap left open by amplitude interferometers. It would also constitute a first and important step toward exploiting quantum optics for astronomical observations, thus leading the way for future observatories. In this paper we outline science cases, technical approaches and schedule for an intensity interferometer to be constructed and operated in the visible...

  10. Kinetic titration series with biolayer interferometry.

    Frenzel, Daniel; Willbold, Dieter


    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1-42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations.

  11. Kinetic titration series with biolayer interferometry.

    Daniel Frenzel

    Full Text Available Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1-42. Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i circumvents problems in data evaluation caused by unavoidable sensor differences, ii saves resources and iii increases throughput if screening a multitude of different analyte/ligand combinations.

  12. Freeform metrology using subaperture stitching interferometry

    Supranowitz, Chris; Lormeau, Jean-Pierre; Maloney, Chris; Murphy, Paul; Dumas, Paul


    As applications for freeform optics continue to grow, the need for high-precision metrology is becoming more of a necessity. Currently, coordinate measuring machines (CMM) that implement touch probes or optical probes can measure the widest ranges of shapes of freeform optics, but these measurement solutions often lack sufficient lateral resolution and accuracy. Subaperture stitching interferometry (SSI™) extends traditional Fizeau interferometry to provide accurate, high-resolution measurements of flats, spheres, and aspheres, and development is currently on-going to enable measurements of freeform surfaces. We will present recent freeform metrology results, including repeatability and cross-test data. We will also present MRF® polishing results where the stitched data was used as the input "hitmap" to the deterministic polishing process.

  13. Nanoscale optical interferometry with incoherent light

    Li, Dongfang; Feng, Jing; Pacifici, Domenico


    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications. PMID:26880171

  14. Joint Multi-baseline SAR Interferometry

    S. Tebaldini


    Full Text Available We propose a technique to provide interferometry by combining multiple images of the same area. This technique differs from the multi-baseline approach in literature as (a it exploits all the images simultaneously, (b it performs a spectral shift preprocessing to remove most of the decorrelation, and (c it exploits distributed targets. The technique is mainly intended for DEM generation at centimetric accuracy, as well as for differential interferometry. The problem is framed in the contest of single-input multiple-output (SIMO channel estimation via the cross-relations (CR technique and the resulting algorithm provides significant improvements with respect to conventional approaches based either on independent analysis of single interferograms or multi-baselines phase analysis of single pixels of current literature, for those targets that are correlated in all the images, like for long-term coherent areas, or for acquisitions taken with a short revisit time (as those gathered with future satellite constellations.

  15. A system for airborne SAR interferometry

    Madsen, Søren Nørvang; Skou, Niels; Granholm, Johan


    Interferometric synthetic aperture radar (INSAR) systems have already demonstrated that elevation maps can be generated rapidly with single pass airborne across-track interferometry systems (XTT), and satellite repeat track interferometry (RTT) techniques have been used to map both elevation...... and perturbations of the surface of the Earth. The Danish Center for Remote Sensing (DCRS) has experimented with airborne INSAR since 1993. Multiple track data are collected in a special mode in which the radar directly steers the aircraft which allows for very precise control of the flight path. Such data sets...... have been acquired at both L- and C-band. During 1994/95 the system was further modified to add the capability to perform single pass interferometric data acquisitions at C-band. This paper will discuss: (1) the general principles of INSAR systems and their application to topographic mapping and (2...

  16. Time-average dynamic speckle interferometry

    Vladimirov, A. P.


    For the study of microscopic processes occurring at structural level in solids and thin biological objects, a method of dynamic speckle interferometry successfully applied. However, the method has disadvantages. The purpose of the report is to acquaint colleagues with the method of averaging in time in dynamic speckle - interferometry of microscopic processes, allowing eliminating shortcomings. The main idea of the method is the choice the averaging time, which exceeds the characteristic time correlation (relaxation) the most rapid process. The method theory for a thin phase and the reflecting object is given. The results of the experiment on the high-cycle fatigue of steel and experiment to estimate the biological activity of a monolayer of cells, cultivated on a transparent substrate is given. It is shown that the method allows real-time visualize the accumulation of fatigue damages and reliably estimate the activity of cells with viruses and without viruses.

  17. A New Neutron Interferometry Facility at NCNR

    Shahi, Chandra; Wietfeldt, Fred; Huber, Michael; Pushin, Dmitry; Arif, Muhammad


    A neutron interferometer splits an incoming neutron beam into two coherent partial beams, which travel on different paths and then recombine to form an interference pattern. This pattern is used to precisely determine the phase shift of a sample in one of the paths, thus the neutron interaction potential in the sample can be measured with high precision. A new neutron interferometry setup (NIOFa) has been constructed at the NIST Center for Neutron Research (NCNR). This new facility is mainly focused on spin based interferometry, which will expand its applications in both quantum computation and material research. New spin-control mechanisms are being tested; including thin-film spin flippers and efficient polarizing double cavity super mirrors. Doubling the neutron's degrees of freedom inside the interferometer promises exciting new quantum mechanical experiments and research capabilities. This work is supported by the National Science Foundation.

  18. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  19. Optical interferometry for biology and medicine

    Nolte, David D


    This book presents the fundamental physics of optical interferometry as applied to biophysical, biological and medical research. Interference is at the core of many types of optical detection and is a powerful probe of cellular and tissue structure in interfererence microscopy and in optical coherence tomography. It is also the root cause of speckle and other imaging artefacts that limit range and resolution. For biosensor applications, the inherent sensitivity of interferometry enables ultrasensitive detection of molecules in biological samples for medical diagnostics. In this book, emphasis is placed on the physics of light scattering, beginning with the molecular origins of refraction as light propagates through matter, and then treating the stochastic nature of random fields that ultimately dominate optical imaging in cells and tissue. The physics of partial coherence plays a central role in the text, with a focus on coherence detection techniques that allow information to be selectively detected out of ...

  20. La bataille des mémoires. Herinneringen aan de Slag om Algiers in Historia Magazine

    Désirée Schyns


    Full Text Available  Entre 1971 et 1974 Yves Courrière, rédacteur en chef de l‟hebdomadaire Historia Magazine, fait paraître une série de numéros spéciaux sur la guerre d‟Algérie. La revue est un objet d‟études intéressant, parce qu‟elle ne donne pas une représentation historique („objective‟, mais plutôt mémorielle („subjective‟ de cette guerre de décolonisation. Elle donne la parole à des partisans de l‟Algérie française, mais aussi à ceux qui se sont battus pour une Algérie indépendante. Il est frappant que ce soient surtout des officiers français qui donnent leur vision sur le passé récent et douloureux. Des pages de la revue émane de temps en temps une idéologie coloniale qui n‟est pas mise en question. Ma contribution s‟insère dans le cadre plus large de l‟évolution de la mémoire de la guerre d‟Algérie et se concentre sur la bataille d‟Alger (1957 en particulier. En guise d‟exemple, j‟analyse un article du général Jacquin qui montre la vision de cet ancien militaire sur la bataille et qui met en question l‟usage de la torture par les Français. Je compare cet article au film La Bataille d'Alger (Gillo Pontecorvo, 1966, qui donne une toute autre représentation de cet épisode historique. L‟analyse et la comparaison démontrent que Historia Magazine se trouvait au coeur d‟une bataille des mémoires.

  1. Fundamental Stellar Properties from Optical Interferometry

    van Belle, Gerard T; Boyajian, Tabetha; Harper, Graham; Hummel, Christian; Pedretti, Ettore; Baines, Ellyn; White, Russel; Ravi, Vikram; Ridgway, Steve


    High-resolution observations by visible and near-infrared interferometers of both single stars and binaries have made significant contributions to the foundations that underpin many aspects of our knowledge of stellar structure and evolution for cool stars. The CS16 splinter on this topic reviewed contributions of optical interferometry to date, examined highlights of current research, and identified areas for contributions with new observational constraints in the near future.

  2. Lateral shear interferometry with holo shear lens

    Joenathan, C.; Mohanty, R. K.; Sirohi, R. S.


    A simple method for obtaining lateral shear using holo shear lenses (HSL) has been discussed. This simple device which produces lateral shears in the orthogonal directions has been used for lens testing. The holo shear lens is placed at or near the focus of the lens to be tested. It has also been shown that HSL can be used in speckle shear interferometry as it performs both the functions of shearing and imaging.

  3. Measuring Close Binary Stars with Speckle Interferometry


    telescope has access to an adaptive optics system, and those telescopes utilize a prior method developed in 1970 by Antoine Labeyrie [2]. This method...23019+4220. a) b) c) 3. SPECKLE INTERFEROMETRY In 1970, Antoine Labeyrie [2] developed a technique to detect double stars that are closer than the...resulting in a simple product of cosine squared with no additive constant . The effects of a non- zero additive constant will become apparent in section 5

  4. Large momentum beamsplitting in atom interferometry

    G; D; McDonald; P; M; anju; P; B; Wigley; P; J; Everitt; WEI; Chunhua; M; A; Sooriyabandara; M; Boozarjmehr; A; Kordbacheh; C; Quinlivan; C; N; Kuhn; J; E; Debs; K; S; Hardman; N; P; Robins


    Large momentum transfer( LM T) beamsplitting in atom interferometry is review ed,focusing on the use of Bloch Oscillations to achieve high momentum separation w ithout loss of visibility. Phase sensitivity w ith a fringe visibility of 7% is observed in a horizontally guided,acceleration-sensitive atom interferometer w ith a momentum separation of 80k betw een its arms.In addition,a 510 k beamsplitter is demonstrated.

  5. Holographic interferometry for security and forensic applications

    Ambadiyil, Sajan; R. C., Sreelekshmi; Mahadevan Pillai, V. P.; Prabhu, Radhakrishna


    Security holograms having unique 3D images are one of the tools for enhancing the security for product and personnel authentication and anti-counterfeiting. Apart from the high technology that is required, the uniqueness of a 3D object presents a significant additional threshold for the counterfeiting of such security holograms. But, due to the development of 3D printing technology, the hurdles are disabled and allow the chances of counterfeiting. In order to overcome this, holographic interferometry is effectively utilized and the object is recorded twice before and after the state of random object change. At the time of reconstruction, two signal waves generated simultaneously interfere each other, resulting in a fringe modulation. This fringe modulation in 3D image hologram with respect to the random object change is exploited to generate a rigid and unique anticounterfeit feature. Though holographic interferometry techniques are being widely used for the non-destructive evaluation, the applicability of this technology for the security and forensic activity is less exploited. This paper describes our efforts to introduce holographic interferometry in 3D image holograms for security and forensic applications.

  6. GPS radio interferometry of travelling ionospheric disturbances

    Afraimovich, E. L.; Palamartchouk, K. S.; Perevalova, N. P.


    This paper presents some results investigating the new possibilities of radio interferometry of Travelling Ionospheric Disturbances (TIDs) that are based on exploiting standard measurements of transionospheric radio signal characteristics and coordinate-time measurements using dual-frequency multichannel receivers of the Global Positioning System (GPS). A Statistical Angle-of-arrival and Doppler Method for GPS radio interferometry (SADM-GPS) is proposed for determining the characteristics of the TIDs dynamics by measuring variations of GPS phase derivatives with respect to time and spatial coordinates. These data are used to calculate corresponding values of the velocity vector, in view of a correction for satellite motions based on the current information available regarding the angular coordinates of the satellites. Subsequently, velocity and direction distributions are constructed and analyzed to verify the hypothesis of whether there is a predominant displacement. If it exists, then the pattern can be considered to be travelling, and the mean travel velocity can be determined from the velocity distribution. Through a computer simulation it was shown that multi-satellite GPS radio interferometry in conjunction with the SADM-GPS algorithm allows the detection and measurement of the velocity vector of TIDs in virtually the entire azimuthal range of possible TID propagation directions. The use of the proposed method is exemplified by an investigation of TIDs during the solar eclipse of 9 March 1997, using the GPS-radio interferometer GPSINT at Irkutsk.

  7. Holographic Interferometry Applications In External Osteosynthesis

    Jacquot, P.; Rastogi, P. K.; Pflug, L.


    In order to maintain fragments of fractured bones in a state of immobilization, the use of an external rigid frame has proved to be very advantageous. Confronted by contradictory requirements, the conception of external fixation has, however, been a difficult task. The present paper aims to show, through three examples of varied bearings, the interest of holographic interferometry in external osteosynthesis. The first example deals with the mechanical behavior of a key element of the fixation device the ball joint submitted to realistic loads. The last two examples compare two models of ball joints as to their characteristics of rigidity and of resistance to slipping. Whereas in the former case holographic interferometry primarily fulfills the function of a prelude to the modelization work, in the latter cases it serves to formulate an engineering diagnostic. The findings relate to the remarkable elastic behavior of the ball joint, to the effectiveness of a lightened bowl design, and to the fact that cousin models may behave quite differently as to their resistance to slipping rotations of the bar. In comparison with other experimental methods, holographic interferometry appears to be very competitive and result-oriented and, as such, is expected to multiply applications in similar evaluation tasks.

  8. Gravitational wave detection using atom interferometry

    Hogan, Jason


    The advent of gravitational wave astronomy promises to provide a new window into the universe. Low frequency gravitational waves below 10 Hz are expected to offer rich science opportunities both in astrophysics and cosmology, complementary to signals in LIGO's band. Detector designs based on atom interferometry have a number of advantages over traditional approaches in this band, including the possibility of substantially reduced antenna baseline length in space and high isolation from seismic noise for a terrestrial detector. In particular, atom interferometry based on the clock transition in group II atoms offers tantalizing new possibilities. Such a design is expected to be highly immune to laser frequency noise because the signal arises strictly from the light propagation time between two ensembles of atoms. This would allow for a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry in a 10-meter drop tower has enabled observation of matter wave interference with atomic wavepacket separations exceeding 50 cm and interferometer durations of more than 2 seconds. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.

  9. Interferometry and synthesis in radio astronomy

    Thompson, A Richard; Swenson Jr , George W


    This book is open access under a CC BY-NC 4.0 license. The third edition of this indispensable book in radio interferometry provides extensive updates to the second edition, including results and technical advances from the past decade; discussion of arrays that now span the full range of the radio part of the electromagnetic spectrum observable from the ground, 10 MHz to 1 THz; an analysis of factors that affect array speed; and an expanded discussion of digital signal-processing techniques and of scintillation phenomena and the effects of atmospheric water vapor on image distortion, among many other topics. With its comprehensiveness and detailed exposition of all aspects of the theory and practice of radio interferometry and synthesis imaging, this book has established itself as a standard reference in the field. It begins with an overview of the basic principles of radio astronomy, a short history of the development of radio interferometry, and an elementary discussion of the operation of an interferomete...

  10. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    Baker, John; Thorpe, Ira


    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  11. Relative astrometry of compact flaring structures in Sgr A* with polarimetric very long baseline interferometry

    Johnson, Michael D.; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fish, Vincent L. [Haystack Observatory, Massachusetts Institute of Technology, Route 40, Westford, MA 01886 (United States); Broderick, Avery E. [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Wardle, John F. C. [Department of Physics MS-057, Brandeis University, Waltham, MA 02454-0911 (United States); Marrone, Daniel P., E-mail: [Arizona Radio Observatory, Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States)


    We demonstrate that polarimetric interferometry can be used to extract precise spatial information about compact polarized flares of Sgr A*. We show that, for a faint dynamical component, a single interferometric baseline suffices to determine both its polarization and projected displacement from the quiescent intensity centroid. A second baseline enables two-dimensional reconstruction of the displacement, and additional baselines can self-calibrate using the flare, enhancing synthesis imaging of the quiescent emission. We apply this technique to simulated 1.3 mm wavelength observations of a 'hot spot' embedded in a radiatively inefficient accretion disk around Sgr A*. Our results indicate that, even with current sensitivities, polarimetric interferometry with the Event Horizon Telescope can achieve ∼5 μas relative astrometry of compact flaring structures near Sgr A* on timescales of minutes.

  12. Software system design for the non-null digital Moiré interferometer

    Chen, Meng; Hao, Qun; Hu, Yao; Wang, Shaopu; Li, Tengfei; Li, Lin


    Aspheric optical components are an indispensable part of modern optics systems. With the development of aspheric optical elements fabrication technique, high-precision figure error test method of aspheric surfaces is a quite urgent issue now. We proposed a digital Moiré interferometer technique (DMIT) based on partial compensation principle for aspheric and freeform surface measurement. Different from traditional interferometer, DMIT consists of a real and a virtual interferometer. The virtual interferometer is simulated with Zemax software to perform phase-shifting and alignment. We can get the results by a series of calculation with the real interferogram and virtual interferograms generated by computer. DMIT requires a specific, reliable software system to ensure its normal work. Image acquisition and data processing are two important parts in this system. And it is also a challenge to realize the connection between the real and virtual interferometer. In this paper, we present a software system design for DMIT with friendly user interface and robust data processing features, enabling us to acquire the figure error of the measured asphere. We choose Visual C++ as the software development platform and control the ideal interferometer by using hybrid programming with Zemax. After image acquisition and data transmission, the system calls image processing algorithms written with Matlab to calculate the figure error of the measured asphere. We test the software system experimentally. In the experiment, we realize the measurement of an aspheric surface and prove the feasibility of the software system.

  13. Monitoring Land Subsidence over Mining Areas with Sentinel-1 Differential SAR Interferometry

    Mirek, Katarzna


    This paper presents possibilities for monitoring man- made surface deformation on example of two areas (Fig. 1): Upper Silesian Coal Basin and Lubelskie Coal Basin (Poland). Synthetic Aperture Radar (SAR) images acquired by Sentinel-1A satellite are utilized in subsidence studies. Satellite radar interferometry technique (InSAR) was used to detecting and monitoring subsidence. There are clearly visible on obtained interferograms subsidence troughs as a distinctive concentric fringes. This study is a part of initiated the SSUMMO project (Surface Subsidence Multidisciplinary Monitoring). The project will provide multidisciplinary monitoring of mining areas and it will prepare the methodology and research software for continuous observation of the impact of exploitation on surface.

  14. A novel raster-scanning method to fabricate ultra-fine cross-gratings for the generation of electron beam moiré fringe patterns

    Lang, F. C.; Zhao, Y. R.; Xing, Y. M.; Liu, F.; Hou, X. H.; Zhu, J.; Li, J. J.; Yang, S. T.


    The resolution of the electron beam moiré method depends on the line frequency of the grating. Recently, more and more effort has been devoted to increase the frequency, and a novel method for producing high-resolution electron beam gratings is presented in this work. Cross-gratings with a frequency up to 14,832 lines/mm (67 nm pitch) were successfully fabricated using a common scanning electron microscope without a dedicated pattern generation system. The quality of the grating was high enough to produce high-quality moiré fringe patterns. In this method, the ultra-fine cross-grating can be fabricated only through one-directional scanning on the resist, which can improve the grating quality and significantly reduces the fabrication time. The number of control parameters for grating fabrication could be reduced to two compared to the six parameters required by conventional methods, which facilitates the use of the electron beam moiré method. The frequency of the fabricated grating is linearly proportional to the exposure magnification. Thus, the frequency of the grating can be accurately predetermined, and the null field can be easily obtained in the electron beam moiré method. The quality of the fabricated gratings was illustrated by the obtained micrographs and moiré fringe patterns. The full-field local strain near an induced crack was studied to verify the application potential of this method.

  15. Polarimetric SAR interferometry applied to land ice: modeling

    Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning


    This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...

  16. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    Kohel, James M.


    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  17. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    Kohel, James M.


    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  18. La préservation du patrimoine culturel en République populaire de Chine : pour quelle mémoire ?

    Bellocq, Maylis


    Dans un pays où la mémoire demeure fortement contrôlée, le patrimoine culturel joue un rôle particulier. À partir d’une enquête de terrain réalisée dans un bourg protégé du Jiangsu, il a été possible de dégager différentes formes de mémoire véhiculées par le patrimoine bâti. La mémoire dominante demeure celle proposée par le discours officiel, mais les modalités de sa réappropriation par les habitants varie selon les générations.

  19. Large radius of curvature measurement based on virtual quadratic Newton rings phase-shifting moiré-fringes measurement method in a nonnull interferometer.

    Yang, Zhongming; Wang, Kailiang; Cheng, Jinlong; Gao, Zhishan; Yuan, Qun


    We have proposed a virtual quadratic Newton rings phase-shifting moiré-fringes measurement method in a nonnull interferometer to measure the large radius of curvature for a spherical surface. In a quadratic polar coordinate system, linear carrier testing Newton rings interferogram and virtual Newton rings interferogram form the moiré fringes. It is possible to retrieve the wavefront difference data between the testing and standard spherical surface from the moiré fringes after low-pass filtering. Based on the wavefront difference data, we deduced a precise formula to calculate the radius of curvature in the quadratic polar coordinate system. We calculated the retrace error in the nonnull interferometer using the multi-configuration model of the nonnull interferometric system in ZEMAX. Our experimental results indicate that the measurement accuracy is better than 0.18% for a spherical mirror with a radius of curvature of 41,400 mm.

  20. Synchronous two-wavelength temporal interferometry

    Zhang, Xiaoqiong; Gao, Zhan; Qin, Jie; Li, Guangyu; Feng, Ziang; Wang, Shengjia


    Interferometry is an optical measuring method with the character of non-destructive, high sensitivity and high accuracy. However, its measurement range is limited by the phase ambiguity. Hence the method with two separate different wavelengths light source is introduced to enlarge the measurement range. As for the two-wavelength interferometry case, phase shifting is the traditional way to acquire the phase map, it needs to repeat the measurement twice, which means the measurement cannot be accomplished in real time. Hence to solve the problem, a temporal sequence interferometry has been used. This method can obtain the desired phase information in real time by using the Fourier transform methods of the interferogram recorded in a sequence while the object is being deformed. But, it is difficult to retrieve the phase information directly due to the multi extreme points in one period of the cosine function. In this paper, an algorithm based on the wavelet ridge analysis is adopted to retrieve the two wavelength phase fluctuation caused by the displacement simultaneously. The preliminary experiment is conducted and the results are compared with theoretical simulations to validate the proposed approach. The laser emits light with two wavelengths 532 nm and 473 nm, two separated interference patterns in time sequence are detected by the CCD camera in the same time. The overlapped interferograms of two colors are analyzed by this algorithm and the corresponding phase information are obtained. The maximum error value between the simulation and theory is 0.03 um and the relative error is 0.33%.

  1. Stitching algorithm for annular subaperture interferometry

    Xi Hou; Fan Wu; Li Yang; Shibin Wu; Qiang Chen


    @@ Annular subaperture interferometry (ASI) has been developed for low cost and flexible test of rotationally symmetric aspheric surfaces, in which accurately combining the subaperture measurement data corrupted by misalignments and noise into a complete surface figure is the key problem. By introducing the Zernike annular polynomials which are orthogonal over annulus, a method that eliminates the coupling problem in the earlier algorithm based on Zernike circle polynomials is proposed. Vector-matrix notation is used to simplify the description and calculations. The performance of this reduction method is evaluated by numerical simulation. The results prove this method with high precision and good anti-noise capability.

  2. Atomic Interferometry Test of Dark Energy

    Brax, Philippe


    Atomic interferometry can be used to probe dark energy models coupled to matter. We consider the constraints coming from recent experimental results on models generalising the inverse power law chameleons such as $f(R)$ gravity in the large curvature regime, the environmentally dependent dilaton and symmetrons. Using the tomographic description of these models, we find that only symmetrons with masses smaller than the dark energy scale can be efficiently tested. In this regime, the resulting constraints complement the bounds from the E\\"otwash experiment and exclude small values of the symmetron self-coupling.

  3. Frequency scanning interferometry for CLIC component fiducialisation

    Kamugasa, Solomon William; Mainaud Durand, Helene; CERN. Geneva. ATS Department


    We present a strategy for the fiducialisation of CLIC’s Main Beam Quadrupole (MBQ) magnets using Frequency Scanning Interferometry (FSI). We have developed complementary device for a commercial FSI system to enable coordinate determination via multilateration. Using spherical high index glass retroreflectors with a wide acceptance angle, we optimise the geometry of measurement stations with respect to fiducials -- thus improving the precision of coordinates. We demonstrate through simulations that the 10 μm uncertainty required in the vertical and lateral axes for the fiducialisation of the MBQ can be attained using FSI multilateration.

  4. Probing Dark Energy with Atom Interferometry

    Burrage, Clare; Hinds, E A


    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  5. Report on ''European Radio Interferometry School 2015''

    Laing, R.; Richards, A.


    The sixth European Interferometry School (ERIS2015) was held at ESO for the first time. As usual the school was aimed at graduate students and early-career postdocs, but this year the emphasis was on enhanced wide-bandwidth interferometers covering metre to submillimetre wavebands. More than 100 participants attended ERIS2015. The topics of the school are briefly described here. They covered a wide range, from an introduction to radio interferometric techniques through packages for data reduction and analysis to hands-on workshop sessions and proposal writing.

  6. Neutron interferometry constrains dark energy chameleon fields

    H. Lemmel


    Full Text Available We present phase shift measurements for neutron matter waves in vacuum and in low pressure Helium using a method originally developed for neutron scattering length measurements in neutron interferometry. We search for phase shifts associated with a coupling to scalar fields. We set stringent limits for a scalar chameleon field, a prominent quintessence dark energy candidate. We find that the coupling constant β is less than 1.9×107 for n=1 at 95% confidence level, where n is an input parameter of the self-interaction of the chameleon field φ inversely proportional to φn.

  7. Atom Interferometry in a Warm Vapor

    Biedermann, G W; Rakholia, A V; Jau, Y -Y; Wheeler, D R; Sterk, J D; Burns, G R


    We demonstrate matterwave interference in a warm vapor of rubidium atoms. Established approaches to light pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. This interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.

  8. 波纹照像术早期诊断脊椎侧弯%Moire Photography Screening for Early Spinal Deformity

    房论光; 张帮添; 马承宣; 李浩宇; 张喜思; 严柏生; 哈流柱; 赵达尊


    Moire photgraphy is a new technique whi-ch has been usel in screening for early diagn-osis of spinal deformities. It is an optical bio-stereometric method to give a three dimensio-ned image of the back. By its sensitivity, even minor asymetricity between the two sides of the back can be disclosed. Normally the moire shadow of both shoulder blades, hips and lumbars should be exactly symmetrical. 1055 children from 4 primary schools, aged between 6-14 were investigated. 598 were boys and 466 girls. Moire fringe asymmetry was observed in 65 of them (16.2%). X-ray films were taken in 55 of these 65 asymmetric children, and proved them to have a 5°-20° scoliosis. Moire photography as a non-traumatic technique is feasible in school-screening program for pupils with any observed asymmetry of the back. X-ray films should be taken in positive cases. When the Moire photography displays 2 Moire fringes of asymmetry while X-ray films shows a curve more than 10°, orthopedic treatment combined with exercises under medical supervision should be advised.%@@ 青少年脊柱侧弯症在我国发病率仍然很高(1),近十年来,国外采用波纹照像的方法,为早期诊断脊柱侧弯提供可靠依据.近年来,我院与北京工业学院共同研制出一套波纹照像仪,并普查了1,055名学生及应用于临床.发现对轻型脊柱侧弯儿童阳性分辨率高.

  9. Histoire, mémoire et tribus ou les aarch de 2001 en Kabylie

    Nassim Amrouche


    Full Text Available Les émeutes qui ont ensanglanté la Kabylie au cours du printemps 2001 ont soulevé différentes problématiques. Au-delà du drame humain qui a fait plus d’une centaine de morts et plus d’un millier de blessés, cette contestation s’est formulée autour d’une organisation anachronique : les aarch. Système sociopolitique ancien dont les dernières traces d’existence remontent à la fin du XIXe siècle, il a mobilisé dans et par la tribu reconfigurée selon les besoins contemporains. Cette utilisation d’une organisation sociale maghrébine a permis de une inscription dans le temps par la mémoire mobilisée par la tribu.En effet, dans une perspective politique, les aarch, pour contester le présent, ont mis en exergue des patrimoines historiques et mémoriels effacés par l’État nation algérien. Mobilisant ainsi l’histoire de la guerre de décolonisation, fondatrice de l’État indépendant, les aarch se sont directement attaqués au vouloir vivre ensemble, redéfinissant les bases constitutives de la nation. Cette dynamique mémorielle et historique a aussi permis aux militants et partisans de revisiter un passé plus lointain : crises au sein du mouvement nationaliste, mouvements sociaux post Indépendance, etc. Ce remaniement des mémoires, dont la culture et la langue restent les socles, a permis d’envisager des territoires culturels, identitaires dépassant les frontières stato-nationales.Si ces données sont celles du politique, des militants, les bases sociales du mouvement, qui a mobilisé jusqu’à 1,5 million de personnes, ont réutilisé ces outils de la contestation pour les transformer en sources du malaise socioéconomique contemporain.The riots that have bloodstained Kabylie in the spring of 2001 have raised different problematics. Beyond the human drama which has resulted in more than a hundred deaths and a thousand wounded, this contestation formulated itself around an anachronic organization: the

  10. Travail, Mémoires et Femmes dans la ceinture industrielle de Lisbonne (Portugal.

    Inês Fonseca


    Full Text Available Au sein de la population féminine de Baixa da Banheira (bourg ouvrier à la périphérie de Lisbonne une énigme persiste : Quelles sont les usines qui ont fait appel au travail de ces femmes ? Et quels noms figuraient sur les étiquettes qu’elles cousaient ?Pendant près de deux décennies, ces femmes ont été rémunérées en échange de la fabrication d’articles sur des machines à tricoter. Durant les périodes de crise et pour de nombreux foyers, ce travail constituait une importante source de revenu. Pourtant, dans les histoires de vie de ces femmes, l’activité qu’elles ont développée et son importance sont confinées à l’oubli.Nous rendons compte ici d’une enquête ethnographique portant sur la population de Baixa da Banheira et ses différents parcours professionnels. Les récits recueillis sur le travail des tricoteuses ont attiré notre attention sur la question de la mémoire collective des femmes et sur les questions méthodologiques liées à l’étude des processus de remémoration.Dans cette analyse, nous considérons que ces processus révèlent non seulement un temps passé, mais qu’ils rendent aussi compte des opérations de la mémoire (oubli ou survalorisation des événements, de ses significations et de son importance. Il nous intéresse ici de nous interroger sur l’origine du silence qui entoure le travail des tricoteuses et nous avançons l’hypothèse que celui-ci est lié à l’invisibilité sociale des activités féminines dans leur ensemble et à la position subalterne que cette activité a occupée dans l’insertion de ces femmes dans le processus industriel capitaliste de la région.Among the women from Baixa da Banheira (a parish in the industrial belt of Lisbon one mystery persists: which plants use to employ the feminine work force?The whole industrial belt underwent a swift process of industrialization however the stability that this offered to this working class population was

  11. Angles morts de la mémoire, de brefs regards sur le contexte immédiat

    Jocelyn Gadbois


    Full Text Available Une conception traditionnelle du temps attribue souvent au passé une qualité de prédécesseur qui institue (spécifiquement en Occident un ordre symbolique (hiérarchique ou non ou plus justement une ligne du temps, ancrant la mémoire dans une filiation, dans une histoire, dans un territoire et marquant l’identitaire. Cette lecture linéaire de l’antécédence demeure d’une grande importance dans la discipline historienne. La défense de sa spécificité disciplinaire repose souvent sur la mise à l’...

  12. Combined ARPES and STM study of Pb/Au(111) Moiré structure: One overlayer, two symmetries

    Crepaldi, A.; Pons, S.; Frantzeskakis, E.; Calleja, F.; Etzkorn, M.; Seitsonen, A. P.; Kern, K.; Brune, H.; Grioni, M.


    The structural and electronic properties of a Pb monolayer (ML) grown on Au(111) are investigated by scanning tunneling microscopy (STM) and angle resolved photoelectron spectroscopy (ARPES). We find an incommensurate Moiré structure with an approximate (5.77×5.77) R21.5∘ unit cell, and two rotational domains. We observe three Pb-derived bands of p orbital character. The symmetry properties and sharpness of their Fermi surfaces are remarkably different. They reflect the different degrees of hybridization of these bands with the Au(111) bulk continuum.

  13. Maximum and minimum amplitudes of the moiré patterns in one- and two-dimensional binary gratings in relation to the opening ratio.

    Saveljev, Vladimir; Kim, Sung-Kyu; Lee, Hyoung; Kim, Hyun-Woo; Lee, Byoungho


    The amplitude of the moiré patterns is estimated in relation to the opening ratio in line gratings and square grids. The theory is developed; the experimental measurements are performed. The minimum and the maximum of the amplitude are found. There is a good agreement between the theoretical and experimental data. This is additionally confirmed by the visual observation. The results can be applied to the image quality improvement in autostereoscopic 3D displays, to the measurements, and to the moiré displays.

  14. Astronomical optical interferometry, II: Astrophysical results

    Jankov S.


    Full Text Available Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milliarcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at microarcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  15. Infrared Interferometry of Auroral Ionosphere-Thermosphere Energetics Project

    National Aeronautics and Space Administration —  The FWMI prototype development is underway at USU/SDL. To develop the FWMI, USU/SDL is leveraging the successful implementation of a rocket-borne Michelson...

  16. Fault-Tolerant Precision Formation Guidance for Interferometry Project

    National Aeronautics and Space Administration — A methodology is to be developed that will allow the development and implementation of fault-tolerant control system for distributed collaborative spacecraft. The...

  17. Subaperture Stitching Interferometry for Large Convex Aspheric Surfaces Project

    National Aeronautics and Space Administration — The size and accuracy specifications of telescope mirrors are ever more demanding. This is particularly true for secondary mirrors, as they are convex and thus...

  18. Atom Interferometry for detection of Gravity Waves-a Project

    National Aeronautics and Space Administration — Atom interferometers are more sensitive to inertial effects. This is because atoms in their inertial frame are ideal test masses for detection of gravity effects...

  19. A position sensor based on grating projection with spatial filtering and polarization modulation

    Jianming Hu; Aijun Zeng; Xiangzhao Wang


    A position sensor based on grating projection with spatial filtering and polarization modulation is presented. A grating is projected onto the object to be measured through a 4f optical system with a spatial filter. After reflected by the object, the grating projection is imaged on a detection grating through an other 4f optical system to form moit(e) fringes.The polarization modulated moir(e) signal is deteted to obtain the position of object.The measurement is independent of the incident intensity on the projection grating and the reflectivity of the object to be measured. In experiments, the effectiveness of the position sensor is proved, and the root mean square (RMS) error at each measurement position is less than 13 nm.

  20. SIM PlanetQuest: Science with the Space Interferometry Mission

    Unwin, Stephen (Editor); Turyshev, Slava (Editor)


    SIM - the Space Interferometry Mission - will perform precision optical astrometry on objects as faint as R magnitude 20. It will be the first space-based astrometric interferometer, operating in the optical band with a 10-m baseline. The Project is managed by the Jet Propulsion Laboratory, California Institute of Technology, in close collaboration with two industry partners, Lockheed Martin Missiles and Space, and TRW Inc., Space and Electronics Group. Launch of SIM is currently planned for 2009. In its wide-angle astrometric mode, SIM will yield 4 microarcsecond absolute position and parallax measurements. Astrometric planet searches will be done in a narrow-angle mode, with an accuracy of 4 microarcseconds or better in a single measurement. As a pointed rather than a survey instrument, SIM will maintain.its astrometric accuracy down to the faintest, magnitudes, opening up the opportunity for astrometry of active galactic nuclei to better than 10 pas. SIM will define a new astrometric reference frame, using a grid of approximately 1500 stars with positions accurate to 4 microarcseconds. The SIM Science Team comprises the Principal Investigators of ten Key Projects, and five Mission Scientists contributing their expertise to specific areas of the mission. Their science programs cover a wide range of topics in Galactic and extragalactic astronomy. They include: searches for low-mass planets - including analogs to our own solar system - tlie formation and dynamics of our Galaxy, calibration of the cosmic distance scale, and fundamental stellar astrophysics. All of the science observing on SIM is competitively awarded; the Science Team programs total about 40% of the total available, and the remainder will be assigned via future NASA competitions. This report is a compilation of science summaries by members of the Science Team, and it illustrates the wealth of scientific problems that microarcsecond-precision astrometry can contribute to. More information on SIM

  1. Preparations for EUV interferometry of the 0.3 NA MET optic

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Denham, Paul E.; Rekawa, Senajith B.; Jackson, Keith H.; Liddle, J. Alexander; Harteneck, Bruce; Gullikson, Eric; Anderson, Erik H.


    An at-wavelength interferometer is being created for the measurement and alignment of the 0.3 numerical aperture Micro Exposure Tool projection optic at EUV wavelengths. The prototype MET system promises to provide early learning from EUV lithographic imaging down to 20-nm feature size. The threefold increase to 0.3 NA in the image-side numerical aperture presents several challenges for the extension of ultra-high-accuracy interferometry, including pinhole fabrication and the calibration and removal of systematic error sources.

  2. Generalized interferometry - I: theory for interstation correlations

    Fichtner, Andreas; Stehly, Laurent; Ermert, Laura; Boehm, Christian


    We develop a general theory for interferometry by correlation that (i) properly accounts for heterogeneously distributed sources of continuous or transient nature, (ii) fully incorporates any type of linear and nonlinear processing, such as one-bit normalization, spectral whitening and phase-weighted stacking, (iii) operates for any type of medium, including 3-D elastic, heterogeneous and attenuating media, (iv) enables the exploitation of complete correlation waveforms, including seemingly unphysical arrivals, and (v) unifies the earthquake-based two-station method and ambient noise correlations. Our central theme is not to equate interferometry with Green function retrieval, and to extract information directly from processed interstation correlations, regardless of their relation to the Green function. We demonstrate that processing transforms the actual wavefield sources and actual wave propagation physics into effective sources and effective wave propagation. This transformation is uniquely determined by the processing applied to the observed data, and can be easily computed. The effective forward model, that links effective sources and propagation to synthetic interstation correlations, may not be perfect. A forward modelling error, induced by processing, describes the extent to which processed correlations can actually be interpreted as proper correlations, that is, as resulting from some effective source and some effective wave propagation. The magnitude of the forward modelling error is controlled by the processing scheme and the temporal variability of the sources. Applying adjoint techniques to the effective forward model, we derive finite-frequency Fréchet kernels for the sources of the wavefield and Earth structure, that should be inverted jointly. The structure kernels depend on the sources of the wavefield and the processing scheme applied to the raw data. Therefore, both must be taken into account correctly in order to make accurate inferences on

  3. Dynamic measurement of deformation using Fourier transform digital holographic interferometry

    Gao, Xinya; Wu, Sijin; Yang, Lianxiang


    Digital holographic interferometry (DHI) is a well-established optical technique for measurement of nano-scale deformations. It has become more and more important due to the rapid development of applications in aerospace engineering and biomedicine. Traditionally, phase shift technique is used to quantitatively measure the deformations in DHI. However, it cannot be applied in dynamic measurement. Fourier transform phase extraction method, which can determine the phase distribution from only a single hologram, becomes a promising method to extract transient phases in DHI. This paper introduces a digital holographic interferometric system based on 2D Fourier transform phase extraction method, with which deformations of objects can be measured quickly. In the optical setup, the object beam strikes a CCD via a lens and aperture, and the reference beam is projected on the CCD through a single-mode fiber. A small inclination angle between the diverging reference beam and optical axial is introduced in order to physically separate the Fourier components in frequency domain. Phase maps are then obtained by the utilization of Fourier transform and windowed inverse Fourier transform. The capability of the Fourier transform DHI is discussed by theoretical discussion as well as experiments.

  4. Digital holographic interferometry as a tool to obtain shapes

    Uribe López, Ubaldo; Hernández-Montes, María. del Socorro; Muñoz-Solís, Silvino


    This work describes a new method to obtain shapes on surfaces based on digital holographic interferometry (DHI). Research has been reported with different methods, such as fringe projection. DHI, being a full-field technique, decreases the number of images to capture and the processing time, besides having a high resolution. Our proposed method consists in obtaining the shape of the object and a reference plane using an out-of-plane interferometer. The phase difference of the recorded holograms is achieved by means of the Fourier transform method. This resulting phase has a tilt produced by the angle of the object beam relative to the optical axis, which is removed by subtracting the phase difference from the reference plane. The method was tested in two cylinders, one with dimensions of 17.5x23.4mm reconstructed with a height sensitivity of 4.1mm, and another with two levels: one half with dimensions of 16.08x12.75mm, and the other half of 19.07x12.75mm; the result was a successfully reconstructed shape, with a height sensitivity of 2.7mm.

  5. Topographic and electronic contrast of the graphene moir´e on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy

    Sun, Z.; Hämäläinen, K.; Sainio, K.; Lahtinen, J.; Vanmaekelbergh, D.A.M.; Liljeroth, P.


    Epitaxial graphene grown on transition-metal surfaces typically exhibits a moir´e pattern due to the lattice mismatch between graphene and the underlying metal surface. We use both scanning tunneling microscopy (STM) and atomic force microscopy (AFM) to probe the electronic and topographic contrast

  6. Identités collectives ; territoires et mémoires Collective Identities, Places, MemoryAnalysing working lives and social identities changes through local Memory

    Sylvie Contrepois


    Full Text Available Quel éclairage spécifique apportent les productions et les initiatives visant à préserver la mémoire locale dans l’analyse des transformations qui affectent les sociétés contemporaines ? Nous abordons cette question à partir d’une recherche menée dans le cadre d’un projet européen portant sur l’articulation des identités régionales, nationales et européennes au travers du travail et des communautés d’appartenance dans des régions subissant des processus de restructurations et de transformations économiques (Projet SPHERE : La conduite de ce projet repose notamment sur la mise en place de comités de pilotage dans chacun des pays partenaires et doit déboucher sur d’importants efforts de valorisation en direction des populations locales.Le terrain d’enquête retenu en France est constitué par deux communautés d’agglomérations voisines de la région parisienne, celles d’Evry et celle de Corbeil-Essonnes. Si la première symbolise l’ère du tertiaire et le renouveau urbain apporté par les villes nouvelles, la seconde porte encore les traces d’un passé industriel prestigieux. Leur contiguïté représente une formidable opportunité d’analyser les continuités et discontinuités de l’histoire des transformations du travail et des identités sociales.Les président(es de quatre associations d’histoire et de mémoire locale ont été mobilisés pour ce faire au sein du comité de pilotage de la recherche. Pour la première fois les matériaux et connaissances produits par chacune des associations sont directement confrontés et exploités ensemble, simultanément aux données produites par le chercheur. Nous rendons compte ici de cette démarche et de ses résultats.To what extent do attempts to preserve local memory help highlight the ways contemporary societies change ? This question is at the core of a European research project on the historical and contemporary articulations

  7. On safe ground? Analysis of European urban geohazards using satellite radar interferometry

    Capes, Renalt; Teeuw, Richard


    Urban geological hazards involving ground instability can be costly, dangerous, and affect many people, yet there is little information about the extent or distribution of geohazards within Europe's urban areas. A reason for this is the impracticality of measuring ground instability associated with the many geohazard processes that are often hidden beneath buildings and are imperceptible to conventional geological survey detection techniques. Satellite radar interferometry, or InSAR, offers a remote sensing technique to map mm-scale ground deformation over wide areas given an archive of suitable multi-temporal data. The EC FP7 Space project named PanGeo (2011-2014), used InSAR to map areas of unstable ground in 52 of Europe's cities, representing ∼15% of the EU population. In partnership with Europe's national geological surveys, the PanGeo project developed a standardised geohazard-mapping methodology and recorded 1286 instances of 19 types of geohazard covering 18,000 km2. Presented here is an analysis of the results of the PanGeo-project output data, which provides insights into the distribution of European urban geohazards, their frequency and probability of occurrence. Merging PanGeo data with Eurostat's GeoStat data provides a systematic estimate of population exposures. Satellite radar interferometry is shown to be as a valuable tool for the systematic detection and mapping of urban geohazard phenomena.

  8. Radio sources - Very, Very Long Baseline Interferometry

    Roberts, D. H.


    With resolution of a thousandth of an arcsecond, the radio technique of Very Long Baseline Interferometry (VLBI) provides astronomers with their highest-resolution view of the universe. Data taken with widely-separated antennas are combined, with the help of atomic clocks, to form a Michelson interferometer whose size may be as great as the earth's diameter. Extraordinary phenomena, from the birth of stars as signaled by the brilliant flashes of powerful interstellar masers to the 'faster-than-light' expansion of the cores of distant quasars, are being explored with this technique. However, earth-bound VLBI suffers from several restrictions due to the location of the component antennas at fixed places on the earth's surface. The use of one or more antennas in space in concert with ground-based equipment will greatly expand the technical and scientific capabilities of VLBI, leading to a more complete and even higher resolution view of cosmic phenomena.

  9. Self-calibrating common-path interferometry.

    Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramirez-San-Juan, Julio C; Ramos-Garcia, Ruben


    A quantitative phase measuring technique is presented that estimates the object phase from a series of phase shifted interferograms that are obtained in a common-path configuration with unknown phase shifts. The derived random phase shifting algorithm for common-path interferometers is based on the Generalized Phase Contrast theory [pl. Opt.40(2), 268 (2001)10.1063/1.1404846], which accounts for the particular image formation and includes effects that are not present in two-beam interferometry. It is shown experimentally that this technique can be used within common-path configurations employing nonlinear liquid crystal materials as self-induced phase filters for quantitative phase imaging without the need of phase shift calibrations. The advantages of such liquid crystal elements compared to spatial light modulator based solutions are given by the cost-effectiveness, self-alignment, and the generation of diminutive dimensions of the phase filter size, giving unique performance advantages.

  10. Endoscopic low coherence interferometry in upper airways

    Delacrétaz, Yves; Boss, Daniel; Lang, Florian; Depeursinge, Christian


    We introduce Endoscopic Low Coherence Interferometry to obtain topology of upper airways through commonly used rigid endoscopes. Quantitative dimensioning of upper airways pathologies is crucial to provide maximum health recovery chances, for example in order to choose the correct stent to treat endoluminal obstructing pathologies. Our device is fully compatible with procedures used in day-to-day examinations and can potentially be brought to bedside. Besides this, the approach described here can be almost straightforwardly adapted to other endoscopy-related field of interest, such as gastroscopy and arthroscopy. The principle of the method is first exposed, then filtering procedure used to extract the depth information is described. Finally, demonstration of the method ability to operate on biological samples is assessed through measurements on ex-vivo pork bronchi.

  11. Chameleon Dark Energy and Atom Interferometry

    Elder, Benjamin; Haslinger, Philipp; Jaffe, Matt; Müller, Holger; Hamilton, Paul


    Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a 3-dimensional nonlinear partial differential equation (PDE). In this paper, we introduce a new technique for calculating the chameleonic force, using a numerical relaxation scheme on a uniform grid. This technique is more general than previous work, which assumed spherical symmetry to reduce the PDE to a 1-dimensional ordinary differential equation (ODE). We examine the effects of approximations made in previous efforts on this subject, and calculate the chameleonic force in a set-up that closely mimics the recent experiment of Hamilton et al. Specifically, we simulate the vacuum chamber as a cylinder with dimensions matching those of the experiment, taking into account the backreaction of the source mass, its o...

  12. Frequency Scanned Interferometry for ILC Tracker Alignment

    Yang, Hai-Jun; Riles, Keith


    In this paper, we report high-precision absolute distance and vibration measurements performed with frequency scanned interferometry. Absolute distance was determined by counting the interference fringes produced while scanning the laser frequency. High-finesse Fabry-Perot interferometers were used to determine frequency changes during scanning. A dual-laser scanning technique was used to cancel drift errors to improve the absolute distance measurement precision. A new dual-channel FSI demonstration system is also presented which is an interim stage toward practical application of multi-channel distance measurement. Under realistic conditions, a precision of 0.3 microns was achieved for an absolute distance of 0.57 meters. A possible optical alignment system for a silicon tracker is also presented.

  13. Shell deformation studies using holographic interferometry

    Parmerter, R. R.


    The buckling of shallow spherical shells under pressure has been the subject of many theoretical and experimental papers. Experimental data above the theoretical buckling load of Huang have given rise to speculation that shallow shell theory may not adequately predict the stability of nonsymmetric modes in higher-rise shells which are normally classified as shallow by the Reissner criterion. This article considers holographic interferometry as a noncontact, high-resolution method of measuring prebuckling deformations. Prebuckling deformations of a lambda = 9, h/b = 0.038 shell are Fourier-analyzed. Buckling is found to occur in an N = 5 mode as predicted by Huang's theory. The N = 4 mode was unusually stable, suggesting that even at this low value of h/b, stabilizing effects may be at work.

  14. Compressed sensing imaging techniques for radio interferometry

    Wiaux, Y; Puy, G; Scaife, A M M; Vandergheynst, P


    Radio interferometry probes astrophysical signals through incomplete and noisy Fourier measurements. The theory of compressed sensing demonstrates that such measurements may actually suffice for accurate reconstruction of sparse or compressible signals. We propose new generic imaging techniques based on convex optimization for global minimization problems defined in this context. The versatility of the framework notably allows introduction of specific prior information on the signals, which offers the possibility of significant improvements of reconstruction relative to the standard local matching pursuit algorithm CLEAN used in radio astronomy. We illustrate the potential of the approach by studying reconstruction performances on simulations of two different kinds of signals observed with very generic interferometric configurations. The first kind is an intensity field of compact astrophysical objects. The second kind is the imprint of cosmic strings in the temperature field of the cosmic microwave backgroun...

  15. Interferometry with Photon-Subtracted Thermal Light

    Rafsanjani, Seyed Mohammad Hashemi; Magana-Loaiza, Omar S; Gard, Bryan T; Birrittella, Richard; Koltenbah, B E; Parazzoli, C G; Capron, Barbara A; Gerry, Christopher C; Dowling, Jonathan P; Boyd, Robert W


    We propose and implement a quantum procedure for enhancing the sensitivity with which one can determine the phase shift experienced by a weak light beam possessing thermal statistics in passing through an interferometer. Our procedure entails subtracting exactly one (which can be generalized to m) photons from the light field exiting an interferometer containing a phase-shifting element in one of its arms. As a consequence of the process of photon subtraction, and somewhat surprisingly, the mean photon number and signal-to-noise ratio of the resulting light field are thereby increased, leading to enhanced interferometry. This method can be used to increase measurement sensitivity in a variety of practical applications, including that of forming the image of an object illuminated only by weak thermal light.

  16. Intensity interferometry: Optical imaging with kilometer baselines

    Dravins, Dainis


    Optical imaging with microarcsecond resolution will reveal details across and outside stellar surfaces but requires kilometer-scale interferometers, challenging to realize either on the ground or in space. Intensity interferometry, electronically connecting independent telescopes, has a noise budget that relates to the electronic time resolution, circumventing issues of atmospheric turbulence. Extents up to a few km are becoming realistic with arrays of optical air Cherenkov telescopes (primarily erected for gamma-ray studies), enabling an optical equivalent of radio interferometer arrays. Pioneered by Hanbury Brown and Twiss, digital versions of the technique have now been demonstrated, reconstructing diffraction-limited images from laboratory measurements over hundreds of optical baselines. This review outlines the method from its beginnings, describes current experiments, and sketches prospects for future observations.

  17. Phase difference enhancement with classical intensity interferometry

    Shirai, Tomohiro


    It is demonstrated theoretically and experimentally that, as a novel function of classical intensity interferometry, a phase difference distribution recorded in the form of an interferogram can be enhanced by a factor of 2 on the basis of the classical intensity correlation. Such phase difference enhancement which is also referred to as phase difference amplification is, in general, known to be practically important since it increases sensitivity and accuracy in interferometric measurements. The method proposed in this study prevails over the existing methods in the sense that it can be readily implemented without difficulty in comparison with all other methods so far proposed, although the phase difference enhancement is limited to a factor of 2 in our method and thus so is the improvement of sensitivity and accuracy.

  18. Pulsed-Source Interferometry in Acoustic Imaging

    Shcheglov, Kirill; Gutierrez, Roman; Tang, Tony K.


    A combination of pulsed-source interferometry and acoustic diffraction has been proposed for use in imaging subsurface microscopic defects and other features in such diverse objects as integrated-circuit chips, specimens of materials, and mechanical parts. A specimen to be inspected by this technique would be mounted with its bottom side in contact with an acoustic transducer driven by a continuous-wave acoustic signal at a suitable frequency, which could be as low as a megahertz or as high as a few hundred gigahertz. The top side of the specimen would be coupled to an object that would have a flat (when not vibrating) top surface and that would serve as the acoustical analog of an optical medium (in effect, an acoustical "optic").

  19. Ultrafast electrooptic dual-comb interferometry

    Duran, Vicente; Torres-Company, Victor


    The femtosecond laser frequency comb has enabled the 21st century revolution in optical synthesis and metrology. A particularly compelling technique that relies on the broadband coherence of two laser frequency combs is dual-comb interferometry. This method is rapidly advancing the field of optical spectroscopy and empowering new applications, from nonlinear microscopy to laser ranging. Up to now, most dual-comb interferometers were based on modelocked lasers, whose repetition rates have restricted the measurement speed to ~ kHz. Here we demonstrate a novel dual-comb interferometer that is based on electrooptic frequency comb technology and measures consecutive complex spectra at a record-high refresh rate of 25 MHz. These results pave the way for novel scientific and metrology applications of frequency comb generators beyond the realm of molecular spectroscopy, where the measurement of ultrabroadband waveforms is of paramount relevance.

  20. Real-time color holographic interferometry

    Desse, Jean-Michel; Albe, Felix; Tribillon, Jean-Louis


    A new optical technique based on real-time color holographic interferometry has been developed for analyzing unsteady aerodynamic wakes in fluid mechanics or for measuring displacements and deformations in solid mechanics. The technique's feasibility is demonstrated here. It uses three coherent wavelengths produced simultaneously by a cw laser (mixed argon and krypton). Holograms are recorded on single-layer panchromatic silver halide (Slavich PFG 03C) plates. Results show the optical setup can be adjusted to obtain a uniform background color. The interference fringe pattern visualized is large and colored and exhibits a single central white fringe, which makes the zero order of the interferogram easy to identify. An application in a subsonic wind tunnel is presented, in which the unsteady wake past a cylinder is recorded at high rate.

  1. Experiments on diffusion in liquids using holographic interferometry

    Fenichel, Henry; Frankena, Hans; Groen, Fokke


    An experiment is described which uses the technique of holographic interferometry to study diffusion in liquids. The diffusion process can be recorded on double exposed holograms or it can be observed and recorded in real time using video techniques.

  2. Digital speckle pattern shearing interferometry: Limitations and prospects

    Owner-Petersen, Mette


    requires optical processing of double exposed interferograms. Hence the technique is not in real time. This paper explores the possibilities and limitations for real time shearing fringe observation using the electronic speckle pattern interferometry technique. Prospects for quantitative determination...

  3. Depth profilometry via multiplexed optical high-coherence interferometry

    Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B; Hajian, Arsen R


    ... such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument...

  4. Blog : un journal intime comme mémoire de soi

    Nolwenn Hénaff


    Full Text Available Tenir un journal est devenu, pour un individu, une manière possible de vivre, ou d’accompagner un moment de sa vie (Lejeune, 2006. Les usages sont donc multiples : construction d’une identité narrative, fixation du temps, libération du moi, introspection, outil de contrôle, de soutien, méthode d’organisation de la pensée, plaisir d’écrire. Si l’écriture papier reste la forme la plus courante du récit biographique, d’autres supports médiatiques comme la télévision ou la radio sont venus offrir de nouveaux terrains d’expérimentation de ces récits de soi. Plus récemment, l’avènement d’Internet et de ses outils simplifiés de publication ont fait émerger des formes biographiques innovantes. Pourtant, qu’il s’agisse de traverser une crise, de garder la mémoire d’une expérience forte, ou, plus ordinairement, de relater ses vacances et ses voyages, le journal se positionne avant tout, et résolument, comme un espace de liberté : on écrit quand on veut, comme on veut. Le « Souci de soi » comme dirait Foucault, l’espace dominé par les sensations, et la temporalité marquée par la notion d’instants, de moments ayant une connotation expressément personnelle sont autant d’indices révélant la pratique de l’écriture intime en ligne. Le blog apparaît à des moments de vie et accompagne souvent des tournants biographiques (ruptures, questionnement mais aussi nouveaux apprentissages, nouvelles rencontres, etc.. Nous proposons dans cet article d’analyser le blog en tant que support de mémoire personnelle et d’étudier à travers des exemples concrets les stratégies développées par les blogueurs pour se créer via ce dispositif communicationnel innovant un « espace de conserverie de soi » en ligne.Keeping a journal has become a way of live, or to moment a moment in one’s life (Lejeune, 2006. It has multiple uses: construction of a narrative identity, marking time, liberating the

  5. Interferometry by deconvolution of multicomponent multioffset GPR data

    Slob, E.C.


    Interferometric techniques are now well known to retrieve data between two receivers by the cross correlation of the data recorded by these receivers. Cross-correlation methods for interferometry rely mostly on the assumption that the medium is loss free and that the sources are all around the receivers. A recently developed method introduced interferometry by deconvolution that is insensitive to loss mechanisms by principle and requires sources only on one side of the receivers. In this pape...

  6. Développement de la mémoire de travail et traitement des phrases complexes : Quelle relation ?

    Frauenfelder Ulrich


    Full Text Available La complexité syntaxique d’une phrase en langage oral peut se caractériser par le nombre et la nature des opérations syntaxiques nécessaires à son élaboration, et notamment par la profondeur de son enchâssement. Cette complexité influence l’âge d’acquisition des différentes structures syntaxiques, les énoncés les plus complexes étant maîtrisés plus tardivement par l’enfant. Certains auteurs attribuent cette acquisition de la syntaxe complexe à des contraintes développementales externes au système linguistique lui-même et notamment à des limitations dans les capacités de mémoire de travail (Jakubowicz, 2007. Ainsi, le traitement d’une phrase complexe engendrerait un coût cognitif important et constituerait une surcharge pour des capacités de mémoire de travail davantage limitées chez le jeune enfant. La maturation normale de ce système mnémonique permettrait ensuite à l’enfant de comprendre et de produire des énoncés de plus en plus complexes. La présente recherche a pour objectif d’éclaircir les liens entre le développement de la mémoire de travail et le traitement des phrases complexes chez l’enfant tout-venant âgé de 5 à 12 ans. Suivant le modèle de la mémoire de travail de Baddeley & Hitch (1986 et les travaux de Barrouillet & Camos (2001, 2007, nous avons appréhendé les compétences de la boucle phonologique via des épreuves d’empans simples (empan direct de chiffres, répétition de mots et de pseudo-mots et la mémoire de travail verbale via des tâches d’empans complexes (empan indirect de chiffres, counting span et running span. Les habiletés syntaxiques des enfants ont été évaluées en compréhension et en répétition d’énoncés complexes. Une analyse d’échantillons de langage spontané a enfin permis de récolter les données liées à l’utilisation de la syntaxe complexe en contexte écologique (LME, taux de subordination et taux d’enchâssement profond. Les

  7. Extra Wideband Polarimetry, Interferometry and Polarimetric Interferometry in Synthetic Aperture Remote Sensing(Special Issue on Advances in Radar Systems)

    Boerner, Wolfgang-Martin; Yamaguchi, Yoshio


    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly. Whereas with radar polarimetry, the textural fine-structure, target orientation, symmetries and material constituents can be recovered with considerable improvement above that of standard amplitude-only radar; with radar interferometry the spatial(in depth)structure can be explored. In Polarimetric Interferometric Synthetic Aperture Radar(POL-IN-SAR)Imaging, it is possible to recover such co-registered textura...

  8. Consolidation en mémoire et plasticité cérébrale dans le vieillissement normal

    Mary, Alison


    Résumé (FR)Cette thèse s’articule autour de cinq études ayant pour objectif principal de tenter de mieux comprendre les processus de plasticité cérébrale prenant place après un apprentissage, ainsi que les modifications apparaissant au cours du vieillissement normal. La magnétoencéphalographie (MEG) et l’électroencéphalographie (EEG) ont été utilisées pour investiguer les mécanismes électrophysiologiques de la consolidation en mémoire procédurale et déclarative durant la veille et le sommeil,...

  9. Multi-wavelength fiber ring laser based on a chirped moiré fiber grating and a semiconductor optical amplifier

    Shaohua Lu; Ou Xu; Suchun Feng; Shuisheng Jian


    A simple and cost-effective multi-wavelength fiber ring laser based on a chirped Moire fiber grating (CMFG)arid a semiconductor optical amplifier (SOA) is proposed.Stable triple-wavelength lasing oscillations at room temperature are experimentally demonstrated.The measured optical signal-to-noise ratio (SNR) reaches the highest value of 50 dB and the power fluctuation of each wavelength is less than 0.2 dB within a 1-h period.To serve as a wavelength selective element,the CMFG possesses excellent comb-like filtering chaxacteristics including stable wavelength interval arid ultra-narrow passband,and its fabrication method is easy and flexible.The lasing oscillation shows a narrower bandwidth than SOA-based multi-wavelength fibcr lasers utilizing some other kinds of wavelength selective components.Methods to optimize the laser performance are also discussed.

  10. Histoire, mémoire et fiction dans le cinéma américain contemporain

    Elie Yazbek


    Full Text Available Le rapport entre l’Histoire et le cinéma, soit entre une référence du passé et sa représentation écranique reste un sujet qui fascine. Cependant, l’étude de ce rapport sans référence au récepteur, donc au spectateur, ne permet pas de cerner tous les tenants et les aboutissants de ce sujet car elle occulte ainsi la problématique de la mémoire spectatorielle et de sa position face à un événement spécifique et, surtout, face à l’image de cet événement. Cette étude se penche sur la question essentielle du rapport qu’entretiennent l’Histoire, sa représentation au cinéma et le positionnement du spectateur au sein d’un dispositif qui fait appel à ses affects, à son « flot mémoriel », à ses souvenirs, dispositif qui tente de palier à « l’oubli » qui est l’une des caractéristiques de la mémoire.The relation between cinema and history, between the past as we know it and its representation on the screen is a fascinating subject. However, inducing this topic without a reference to the viewer cannot be as complete as it should be because it neglects the problematical theme of the spectator’s memory, his situation facing a specific event and in front of the image of this event. This essential issue about the connection between history, its representation in films and the condition of the viewer involved into a scheme in which his “ memory flow”, emotions, and souvenirs are concerned, a scheme trying to replace the elapsed memories, is the subject if this essay.

  11. Influência do diâmetro e umidade no tratamento preservativo de moirões de Eucalyptus

    Lucas Soares Amaral


    Full Text Available Objetivou-se avaliar os efeitos da classe diamétrica e das umidades geral e do alburno sobre a retenção de CCA-C (arseniato de cobre cromatado tipo C na madeira de clone de Eucalyptus urophylla preservada em autoclave. Foram utilizados 36 moirões pertencentes às classes diamétricas de 7, 9, 11 e 13 cm, que foram separados e expostos a três tempos de secagem ao ar livre: 20, 40 e 70 dias. Determinaram-se os valores de umidade pré-tratamento, geral e apenas do alburno, por classe diamétrica e por tempo de secagem. Após a preservação em autoclave, foi feito o controle de qualidade do tratamento preservativo, por meio da análise de retenção do CCA-C. A retenção nos moirões da classe de 7 cm foi superior à das classes de 9, 11 e 13 cm, que não variaram estatisticamente entre si. O aumento do tempo de secagem de 20 para 40 dias proporcionou incremento significativo na retenção média de 5,70 para 6,67 kg I.A*m-3. As variações médias das umidades geral e do alburno se mostraram significativas com a variação da retenção, apresentando boa correlação entre os fatores. A correlação entre a umidade geral e a retenção de CCA-C (r = -0,86 foi mais forte que a correlação entre a umidade do alburno e a retenção (r = -0,70.

  12. Marguerite Andersen et le moi en l’absence de l’autre : De mémoire de femme

    Julie Tennier


    Full Text Available Depuis la fin du XXe siècle, les recherches menées sur l’autobiographie et l’autofiction soulignent les effets du discours postmoderne sur la notion d’identité. Chez Marguerite Andersen, romancière franco-ontarienne d’origine allemande, qui se représente dans quatre livres – le roman « semi-autobiographique » De mémoire de femme, le récit autobiographique Parallèles, la prose poétique Bleu sur blanc et le roman autobiographique Le figuier sur le toit – de même que dans certaines nouvelles des Crus de l’Esplanade, cette construction s’avère être un processus dynamique et créatif de mise au monde de soi. Nous nous pencherons sur De mémoire de femme pour explorer comment l’éloignement de différentes figures d’altérité à un moment particulier dans la vie de la protagoniste incite chez elle le désir de se raconter et d’ajuster en quelque sorte son tir en ce qui concerne son identité. À l’aide des théories énoncées par Éric Landowski, Charles Taylor et Julia Kristeva, nous verrons comment l’exercice narratif est mis en branle par le déséquilibre provoqué par l’absence de l’autre que l’écrivaine cherche à combler dans le but de s’épanouir.

  13. Histoire officielle et mémoires en conflit dans le Sud du Mont-Liban : les affrontements druzo-chrétiens du xixe siècle

    Dima de Clerck


    Full Text Available L’espace libanais est caractérisé par l’absence d’une mémoire collective nationale au profit de plusieurs mémoires sociales portées par les différents groupes identitaires confessionnels et élaborées en fonction des relations conflictuelles ou conviviales qu’ils entretenaient entre eux. Ces mémoires rivalisent entre elles et avec une autre mémoire, construite à partir du début du xxe siècle par des tenants de la coexistence et hissée au rang d’histoire officielle, dans une vaine tentative de promouvoir une vision fédératrice de l’histoire du pays. Les mémoires élaborées autour des affrontements druzo-chrétiens du xixe siècle sont particulièrement illustratives de cette disjonction. Le fait que ce moment fondateur de la question du Liban, soit le produit d’un conflit sanglant est presque passé sous silence dans l’histoire officielle. Un sondage des mémoires communautaires chrétienne et druze pour la période 1820-61 permet de saisir comment ces mémoires vives, elles-mêmes en conflit, ont sapé l’histoire officielle, rendant compte d’un échec des historiens de la coexistence à imposer un récit censuré et pudique comme base d’une mémoire historique commune.

  14. Bounding the Higgs boson width through interferometry.

    Dixon, Lance J; Li, Ye


    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.

  15. Time Delay Interferometry with Moving Spacecraft Arrays

    Tinto, M; Armstrong, J W; Tinto, Massimo; Estabrook, Frank B.; Armstrong, adn J.W.


    Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-travel-times will necessarily be unequal, time-varying, and (due to aberration) have different time delays on up- and down-links. Reduction of data from moving interferometric laser arrays in solar orbit will in fact encounter non-symmetric up- and downlink light time differences that are about 100 times larger than has previously been recognized. The time-delay interferometry (TDI) technique uses knowledge of these delays to cancel the otherwise dominant laser phase noise and yields a variety of data combinations sensitive to gravitational waves. Under the assumption that the (different) up- and downlink time delays are constant, we derive the TDI expressions for those combinations that rely only on four inter-spacecraft phase measurements. We then turn to the general problem that encompasses time-dependence of the light...

  16. Optical interferometry from the lunar surface

    Rayman, M. D.; Saunders, R. S.

    A preliminary study was conducted to determine the feasibility of a concept for a robust and expandable lunar optical interferometer that would perform new science even with the modest first element. With a phased approach, early steps verify technology for later phases. As elements are added to the observational system, astronomical observations unachievable from the surface of Earth are made possible. The initial experiment is supported by the Lunar Ultraviolet Telescope Experiment (LUTE), a 1-meter-class transit telescope. The first interferometry element, the Lunar Interferometer Technology Experiment (LITE), will perform ultraviolet astrometry and will demonstrate critical interferometer technologies (including optical delay lines and nanometer-level metrology) in the lunar environment. Subsequent elements will add capability, building on the design and performance of both LITE and LUTE. The starlight collectors will be based on the LUTE design but will be capable of being pointed. They will relay the received light to a centrally positioned beam combiner. As more collectors are added, the system will build up from an astrometric interferometer to an imaging interferometer with 100-m-class baselines. Because discrete elements are used, if any one of the collectors fails completely, the system remains functional.

  17. High-Frame-Rate Oil Film Interferometry

    White, Jonathan C; Chen, John


    The fluid dynamics video to which this abstract relates contains visualization of the response of a laminar boundary layer to a sudden puff from a small hole. The boundary layer develops on a flat plate in a wind tunnel; the hole is located at a streamwise Reynolds number of 100,000. The visualization of the boundary layer response is accomplished using interferometry of a transparent, thin film of oil placed on the surface immediately downstream of the hole and with its leading edge perpendicular to the direction of flow. Through lubrication theory, it is understood that the rate of change of the spacing of the interference fringes is proportional to the skin friction at any instant. For reference, a small disk-shaped protrusion of the type often used to trip the boundary layer in wind model tunnel testing is also shown. Three cases with different puff strengths are included. Using a high-speed commercial camera, frame rates in excess of 1000/sec have been recorded; the video shown here was taken at 24 frame...

  18. 3D super-virtual refraction interferometry

    Lu, Kai


    Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.

  19. Lorentz symmetry and very long baseline interferometry

    Le Poncin-Lafitte, C.; Hees, A.; Lambert, S.


    Lorentz symmetry violations can be described by an effective field theory framework that contains both general relativity and the Standard Model of particle physics called the Standard Model extension (SME). Recently, postfit analysis of Gravity Probe B and binary pulsars led to an upper limit at the 10-4 level on the time-time coefficient s¯T T of the pure-gravity sector of the minimal SME. In this work, we derive the observable of very long baseline interferometry (VLBI) in SME and then implement it into a real data analysis code of geodetic VLBI observations. Analyzing all available observations recorded since 1979, we compare estimates of s¯T T and errors obtained with various analysis schemes, including global estimations over several time spans, and with various Sun elongation cutoff angles, and by analysis of radio source coordinate time series. We obtain a constraint on s¯ T T=(-5 ±8 )×10-5 , directly fitted to the observations and improving by a factor of 5 previous postfit analysis estimates.

  20. Laser Wakefield diagnostic using holographic longitudinal interferometry

    Volfbeyn, P.; Esarey, E.; Leemans, W.P.


    We propose a diagnostic technique for wakefield measurement in plasma channels. A new technique for plasma channel creation, the Ignitor Heater scheme was proposed and experimentally tested in hydrogen and nitrogen previously. It makes use of two laser pulses. The Ignitor, an ultrashort (sub 100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used to heat the existing spark via in-verse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. Laser pulses injected into such plasma channels produce a plasma wake that has a phase velocity close to the speed of light. A discussion of plasma wake measurements, using a Longitudinal Interferometry Wakefield Diagnostic Based on Time Domain Rayleigh Refractometry with Holographic Inversion, will be presented.

  1. Quasar Astrophysics with the Space Interferometry Mission

    Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn


    Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.

  2. Extending temporal coherence in speckle interferometry

    Crespo Contiñas, J. M.; Moreno de las Cuevas, V.; Gallas Torreira, M.; Calizaya Calizaya, M.


    Electronic Speckle Pattern Interferometry (ESPI) and Shearography (ESPSI) techniques have been used in the field of non-destructive testing for a long time, providing accuracy, and allowing whole field analysis of pure deformation (ESPI) or the gradient of deformation (ESPSI). One of the major weaknesses of this two techniques is linked to speckle de-correlation. When the deformation process produces a displacement greater than a certain proportion of the speckle size, there is a severe loss of coherence which limits the application of these techniques to processes with strong or fast deformations. In order to avoid this limitation, the use of a dynamically updated reference frame is tested in this work. First, in ESPI and ESPSI setups, a metacrylathe bar is used as specimen for testing procedures, and finally a human jaw bone will be used in an ESPSI setup. One basic and regular-shaped object, the bar, and a structurally 3D complex structure, the human jaw bone, with complex elastic properties are the samples to test.

  3. Glaciological Applications of Terrestrial Radar Interferometry

    Voytenko, D.; Dixon, T. H.


    Terrestrial Radar Interferometry (TRI) is a relatively new ground-based technique that combines the precision and spatial resolution of InSAR with the temporal resolution of GPS. Although TRI can be applied to a variety of fields including bridge and landslide monitoring, it is ideal for studies of the highly dynamic terminal zones of marine-terminating glaciers. Our TRI instrument is the Gamma Portable Radar Interferometer, which operates at 17.2 GHz (1.74 cm wavelength), has two receiving antennas for DEM generation, and generates amplitude and phase images at minute-scale sampling rates. Here we review preliminary results from Breiðamerkurjökull in Iceland and Helheim and Jakobshavn in Greenland. We show that the high sampling rate of the TRI can be used to observe velocity variations at the glacier terminus associated with calving, and the spatial distribution of tidal forcing. Velocity uncertainties, mainly due to atmospheric effects, are typically less than 0.05 m/d. Additionally, iceberg tracking using the amplitude imagery may provide insight into ocean currents near the terminus when fjord or lagoon conditions permit.

  4. Ball bearing measurement with white light interferometry

    Schmit, Joanna; Han, Sen; Novak, Erik


    Requirements on high-performance of ball bearings in terms of the loads they experience and their reliability are increasing as the automotive, aerospace, and power generation industries look to cut costs, reduce emissions, and improve efficiency. Most bearings are evaluated with a stylus profiler or with a bright field scopes or microscopes for form, roughness, and defect classification. Two-dimensional stylus measurements captures only very localized surface profiles unless multiple scans are performed which slow the measurement time unacceptably; this leads to inadequate sampling and sometimes greatly varying results based on location and directionality of the line scan. Bright field microscopes deliver only the lateral information about defects but not their depth, volume or surface roughness. White light interferometry can be very successfully utilized in the measurement of full field form, roughness and defect detection and is gaining adoption. They provide rapid, accurate, three-dimensional imaging compatible with the newly developed ISO 3D surface parameters which are expected to rapidly displace traditional 2D metrics. These surface parameters allow for better characterization of surface structure and better understanding of the production process and bearing and race wear. New 3D filtering techniques allow effective separation of form, waviness, and roughness for highly accurate and repeatable bearing qualification.

  5. Chameleon dark energy and atom interferometry

    Elder, Benjamin; Khoury, Justin; Haslinger, Philipp; Jaffe, Matt; Müller, Holger; Hamilton, Paul


    Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a three-dimensional nonlinear partial differential equation. This paper calculates the chameleonic force using a numerical relaxation scheme on a uniform grid. This technique is more general than previous work, which assumed spherical symmetry to reduce the partial differential equation to a one-dimensional ordinary differential equation. We examine the effects of approximations made in previous efforts on this subject and calculate the chameleonic force in a setup that closely mimics the recent experiment of Hamilton et al. Specifically, we simulate the vacuum chamber as a cylinder with dimensions matching those of the experiment, taking into account the backreaction of the source mass, its offset from the center, and the effects of the chamber walls. Remarkably, the acceleration on a test atomic particle is found to differ by only 20% from the approximate analytical treatment. These results allow us to place rigorous constraints on the parameter space of chameleon field theories, although ultimately the constraint we find is the same as the one we reported in Hamilton et al. because we had slightly underestimated the size of the vacuum chamber. This computational technique will continue to be useful as experiments become even more precise and will also be a valuable tool in optimizing future searches for chameleon fields and related theories.

  6. General Relativistic Effects in Atom Interferometry

    Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC /Stanford U., Phys. Dept.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.


    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

  7. Quasar Astrophysics with the Space Interferometry Mission

    Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn


    Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.

  8. An Approach to Persistent Scatterer Interferometry

    Núria Devanthéry


    Full Text Available This paper describes a new approach to Persistent Scatterer Interferometry (PSI data processing and analysis, which is implemented in the PSI chain of the Geomatics (PSIG Division of CTTC. This approach includes three main processing blocks. In the first one, a set of correctly unwrapped and temporally ordered phases are derived, which are computed on Persistent Scatterers (PSs that cover homogeneously the area of interest. The key element of this block is given by the so-called Cousin PSs (CPSs, which are PSs characterized by a moderate spatial phase variation that ensures a correct phase unwrapping. This block makes use of flexible tools to check the consistency of phase unwrapping and guarantee a uniform CPS coverage. In the second block, the above phases are used to estimate the atmospheric phase screen. The third block is used to derive the PS deformation velocity and time series. Its key tool is a new 2+1D phase unwrapping algorithm. The procedure offers different tools to globally control the quality of the processing steps. The PSIG procedure has been successfully tested over urban, rural and vegetated areas using X-band PSI data. Its performance is illustrated using 28 TerraSAR-X StripMap images over the metropolitan area of Barcelona.

  9. Laser wavelength comparison by high resolution interferometry.

    Layer, H P; Deslattes, R D; Schweitzer, W G


    High resolution interferometry has been used to determine the wavelength ratio between two molecularly stabilized He-Ne lasers, one locked to a methane absorption at 3.39 microm and the other locked to the k peak of (129)I(2) at 633 nm. An optical beat frequency technique gave fractional orders while a microwave sideband method yielded the integer parts. Conventional (third derivative) peak seeking servoes stabilized both laser and cavity lengths. Reproducibility of the electronic control system and optics was a few parts in 10(12), while systematic errors associated with curvature of the cavity mirrors limited the accuracy of the wavelength ratio measurement to 2 parts in 10(10). The measured wavelength ratio of the methane stabilized He-Ne laser at 3.39 microm [P(7) line, nu(3) band] to the (129)I(2) (k peak) stabilized He-Ne laser at 633 nm was 5.359 049 260 6 (0.000 2 ppm). This ratio agrees with that calculated from the (lower accuracy) results of earlier wavelength measurements made relative to the (86)Kr standard. Its higher accuracy thus permits a provisional extension of the frequency scale based on the cesium oscillator into the visible spectrum.

  10. Advancing differential atom interferometry for space applications

    Chiow, Sheng-Wey; Williams, Jason; Yu, Nan


    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. Dual atomic sensors operating in a differential mode further extend AI applicability beyond environmental disturbances. Extraction of the phase difference between dual AIs, however, typically introduces uncertainty and systematic in excess of that warranted by each AI's intrinsic noise characteristics, especially in practical applications and real time measurements. In this presentation, we report our efforts in developing practical schemes for reducing noises and enhancing sensitivities in the differential AI measurement implementations. We will describe an active phase extraction method that eliminates the noise overhead and demonstrates a performance boost of a gravity gradiometer by a factor of 3. We will also describe a new long-baseline approach for differential AI measurements in a laser ranging assisted AI configuration. The approach uses well-developed AIs for local measurements but leverage the mature schemes of space laser interferometry for LISA and GRACE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with NASA.

  11. Lorentz symmetry and Very Long Baseline Interferometry

    Poncin-Lafitte, C Le; lambert, S


    Lorentz symmetry violations can be described by an effective field theory framework that contains both General Relativity and the Standard Model of particle physics called the Standard-Model extension (SME). Recently, post-fit analysis of Gravity Probe B and binary pulsars lead to an upper limit at the $10^{-4}$ level on the time-time coefficient $\\bar s^{TT}$ of the pure-gravity sector of the minimal SME. In this work, we derive the observable of Very Long Baseline Interferometry (VLBI) in SME and then we implement it into a real data analysis code of geodetic VLBI observations. Analyzing all available observations recorded since 1979, we compare estimates of $\\bar s^{TT}$ and errors obtained with various analysis schemes, including global estimations over several time spans and with various Sun elongation cut-off angles, and with analysis of radio source coordinate time series. We obtain a constraint on $\\bar s^{TT}=(-5\\pm 8)\\times 10^{-5}$, directly fitted to the observations and improving by a factor 5 pr...

  12. Overview of marine controlled-source electromagnetic interferometry by multidimensional deconvolution

    Hunziker, J.W.; Slob, E.C.; Wapenaar, C.P.A.


    Interferometry by multidimensional deconvolution for marine Controlled-Source Electromagnetics can suppress the direct field and the airwave in order to increase the detectability of the reservoir. For monitoring, interferometry by multidimensional deconvolution can increase the source repeatability

  13. Speckle reference beam holographic and speckle photographic interferometry in non-destructive test systems

    Liu, H. K.


    The techniques of speckle beam holographic interferometry and speckle photographic interferometry are described. In particular, their practical limitations and their applications to the existing holographic nondestructive test system are discussed.

  14. Digital Double-Pulse Holographic Interferometry for Vibration Analysis

    H.J. Tiziani


    Full Text Available Different arrangements for double-pulsed holographic and speckle interferometry for vibration analysis will be described. Experimental results obtained with films (classical holographic interferometry and CCD cameras (digital holographic interferometry as storage materials are presented. In digital holography, two separate holograms of an object under test are recorded within a few microseconds using a CCD camera and are stored in a frame grabber. The phases of the two reconstructed wave fields are calculated from the complex amplitudes. The deformation is obtained from the phase difference. In the case of electronic speckle pattern interferometry (or image plane hologram, the phase can be calculated by using the sinusoid-fitting method. In the case of digital holographic interferometry, the phase is obtained by digital reconstruction of the complex amplitudes of the wave fronts. Using three directions of illumination and one direction of observation, all the information necessary for the reconstruction of the 3-dimensional deformation vector can be recorded at the same time. Applications of the method for measuring rotating objects are discussed where a derotator needs to be used.

  15. L’impact des connaissances sémantiques préexistantes en mémoire associative dans le vieillissement normal

    Folville, Adrien(*); Delhaye, Emma; Bastin, Christine


    La création d’un souvenir épisodique requiert un encodage des différents éléments composant l’événement cible, ainsi que des associations entre ces éléments individuels afin de former un souvenir global et complexe. Cette capacité à lier les éléments entre eux diminue dans le vieillissement normal engendrant un déclin en mémoire épisodique qualifié « d’associatif ». Des études suggèrent que ce déclin peut être atténué lorsque les associations à mémoriser préexistent en mémoire sémantique. Cet...

  16. Scanning White light interferometry: calibration and application to roughness assesment

    Bariani, Paolo

    This report refers to an experimental investigation recently completed. The aim was to gain some knowledge of the application of white light interferometry to surface metrology. The following issues were addressed by the present work: • How a white light interferometry microscope works, what...... similarities and differences compared to laser interferometry can be identified. • What the main error sources are, and how such an instrument should be calibrated. The possibility of using calibration standards developed for other techniques was evaluated. • The technique was then applied to assessment...... of polymer replicated EDM rough topographies. The present method resulted to be not suitable for the purpose. • Based on the matured experience, some conclusions regarding the applicability of the method to some typical surface metrology problems to be investigated at nanometer-scale were drawn This work...

  17. Radio & Optical Interferometry: Basic Observing Techniques and Data Analysis

    Monnier, John D


    Astronomers usually need the highest angular resolution possible, but the blurring effect of diffraction imposes a fundamental limit on the image quality from any single telescope. Interferometry allows light collected at widely-separated telescopes to be combined in order to synthesize an aperture much larger than an individual telescope thereby improving angular resolution by orders of magnitude. Radio and millimeter wave astronomers depend on interferometry to achieve image quality on par with conventional visible and infrared telescopes. Interferometers at visible and infrared wavelengths extend angular resolution below the milli-arcsecond level to open up unique research areas in imaging stellar surfaces and circumstellar environments. In this chapter the basic principles of interferometry are reviewed with an emphasis on the common features for radio and optical observing. While many techniques are common to interferometers of all wavelengths, crucial differences are identified that will help new practi...

  18. Resolving microstructures in Z pinches with intensity interferometry

    Apruzese, J. P. [Consultant to NRL through Engility Corp., Chantilly, Virginia 20151 (United States); Kroupp, E.; Maron, Y. [Weizmann Institute of Science, Rehovot 76100 (Israel); Giuliani, J. L.; Thornhill, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)


    Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the work of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.

  19. Temporal decorrelation model for the bistatic SAR interferometry

    Qilei Zhang; Wenge Chang


    This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar (BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic aperture radar (SAR) interferometry. The study of temporal decorrelation is chal enging, especial y for the bistatic configuration, since temporal decorrelation is related to the data acquisition geometry. To develop an appropriate theoretical model for BSAR interferometry, the existing models for monostatic SAR cases are extended, and the general BSAR geometry con-figuration is involved in the derivation. Therefore, the developed temporal decorrelation model can be seen as a general model. The validity of the theoretical model is supported by Monte Carlo simulations. Furthermore, the impacts of the system parameters and BSAR geometry configurations on the temporal decorrelation model are discussed briefly.

  20. Narrow linewidth single laser source system for onboard atom interferometry

    Theron, Fabien; Renon, Geoffrey; Bidel, Yannick; Zahzam, Nassim; Cadoret, Malo; Bresson, Alexandre


    We present an original compact and robust laser system for atom interferometry based on a frequency-doubled telecom laser. Thanks to an original stabilization architecture on a saturated absorption, we obtain a frequency agile laser system allowing fast tuning of the laser frequency over 1 GHz in few ms using only a single laser source. The different laser frequencies used for atom interferometry are created by changing dynamically the frequency of the laser and by creating sidebands using a phase modulator. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components, which are intrinsically less stable, and to make the setup compact, much less sensitive to vibrations and thermal fluctuations. This source provides spectral linewidth below 2.5 kHz required for precision atom interferometry, and particularly for an high performance atomic inertial sensor.

  1. Practical optical interferometry imaging at visible and infrared wavelengths

    Buscher, David F


    Optical interferometry is a powerful technique to make images on angular scales hundreds of times smaller than is possible with the largest telescopes. This concise guide provides an introduction to the technique for graduate students and researchers who want to make interferometric observations and acts as a reference for technologists building new instruments. Starting from the principles of interference, the author covers the core concepts of interferometry, showing how the effects of the Earth's atmosphere can be overcome using closure phase, and the complete process of making an observation, from planning to image reconstruction. This rigorous approach emphasizes the use of rules-of-thumb for important parameters such as the signal-to-noise ratios, requirements for sampling the Fourier plane and predicting image quality. The handbook is supported by web resources, including the Python source code used to make many of the graphs, as well as an interferometry simulation framework, available at www.cambridg...

  2. A publication database for optical long baseline interferometry

    Malbet, Fabien; Lawson, Peter; Taillifet, Esther; Lafrasse, Sylvain


    Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have created a database hosted by the JMMC and connected to the Optical Long Baseline Interferometry Newsletter (OLBIN) web site using MySQL and a collection of XML or PHP scripts in order to store and classify these publications. Each entry is defined by its ADS bibcode, includes basic ADS informations and metadata. The metadata are specified by tags sorted in categories: interferometric facilities, instrumentation, wavelength of operation, spectral resolution, type of measurement, target type, and paper category, for example. The whole OLBIN publication list has been processed and we present how the database is organized and can be accessed. We use this tool to generate statistical plots of interest for the community in optical long baseline interferometry.

  3. New opportunities with spectro-interferometry and spectro-astrometry

    Kraus, Stefan


    Latest-generation spectro-interferometric instruments combine a milliarcsecond angular resolution with spectral capabilities, resulting in an immensely increased information content. Here, I present methodological work and results that illustrate the fundamentally new scientific insights provided by spectro-interferometry with very high spectral dispersion or in multiple line transitions (Brackett and Pfund lines). In addition, I discuss some pitfalls in the interpretation of spectro-interferometric data. In the context of our recent studies on the classical Be stars {\\beta} CMi and {\\zeta} Tau, I present the first position-velocity diagram obtained with optical interferometry and provide a physical interpretation for a phase inversion, which has in the meantime been observed for several classical Be-stars. In the course of our study on the Herbig B[e] star V921 Sco, we combined, for the first time, spectro-interferometry and spectro-astrometry, providing a powerful and resource-efficient way to constrain the...

  4. The application of interferometry to optical astronomical imaging.

    Baldwin, John E; Haniff, Christopher A


    In the first part of this review we survey the role optical/infrared interferometry now plays in ground-based astronomy. We discuss in turn the origins of astronomical interferometry, the motivation for its development, the techniques of its implementation, examples of its astronomical significance, and the limitations of the current generation of interferometric arrays. The second part focuses on the prospects for ground-based astronomical imaging interferometry over the near to mid-term (i.e. 10 years) at optical and near-infrared wavelengths. An assessment is made of the astronomical and technical factors which determine the optimal designs for imaging arrays. An analysis based on scientific capability, technical feasibility and cost argues for an array of large numbers of moderate-sized (2 m class) telescopes rather than one comprising a small number of much larger collectors.

  5. Qualidade de moirões de eucalipto tratados comercializados em três municípios do Espírito Santo

    Juarez Benigno Paes

    Full Text Available A pesquisa consistiu na análise da qualidade de moirões de eucalipto tratados, comercializados nos municípios de Alegre, Jerônimo Monteiro e Cachoeiro de Itapemirim, no Estado do Espírito Santo. Para sua realização, compararam-se a distribuição, a penetração e a retenção do preservante arseniato de cobre cromatado (CCA nos moirões, com os parâmetros norteadores das Normas Brasileiras Regulamentadoras. Por meio de reações colorimétricas, foram avaliadas a distribuição e a penetração do cobre nas peças; por espectrofotometria de absorção atômica, quantificou-se a retenção dos elementos do preservativo empregado. De posse desses parâmetros, verificou-se que os moirões comercializados nos três municípios atendem à normatização quanto à distribuição do produto preservativo. No entanto, observou-se que alguns estabelecimentos não satisfazem as exigências quanto às penetrações e retenções mínimas exigidas pela normatização brasileira. Observaram-se as melhores retenções nos moirões comercializados nos municípios de Alegre e Jerônimo Monteiro.

  6. MO-AB-BRA-03: Calorimetry-Based Absorbed Dose to Water Measurements Using Interferometry

    Flores-Martinez, E; Malin, M; DeWerd, L [University of WI-Madison/ADCL, Madison, WI (United States)


    Purpose: Interferometry-based calorimetry is a novel technique to measure radiation-induced temperature changes allowing the measurement of absorbed dose to water (ADW). There are no mechanical components in the field. This technique also has the possibility of obtaining 2D dose distributions. The goal of this investigation is to calorimetrically-measure doses between 2.5 and 5 Gy over a single projection in a photon beam using interferometry and compare the results with doses calculated using the TG-51 linac calibration. Methods: ADW was determined by measuring radiation-induced phase shifts (PSs) of light passing through water irradiated with a 6 MV photon beam. A 9×9×9 cm{sup 3} glass phantom filled with water and placed in an arm of a Michelson interferometer was irradiated with 300, 400, 500 and 600 monitor units. The whole system was thermally insulated to achieve sufficient passive temperature control. The depth of measurement was 4.5 cm with a field size of 7×7 cm{sup 2}. The intensity of the fringe pattern was monitored with a photodiode and used to calculate the time-dependent PS curve. Data was acquired 60 s before and after the irradiation. The radiation-induced PS was calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. Results were compared to computed doses. Results: Average comparison of calculated ADW values with interferometry-measured values showed an agreement to within 9.5%. k=1 uncertainties were 4.3% for calculations and 14.7% for measurements. The dominant source of uncertainty for the measurements was a temperature drift of about 30 µK/s caused by heat conduction from the interferometer’s surroundings. Conclusion: This work presented the first absolute ADW measurements using interferometry in the dose range of linac-based radiotherapy. Future work to improve measurements’ reproducibility includes the implementation of active thermal control techniques.

  7. Single-mode fiber, velocity interferometry

    Krauter, K. G.; Jacobson, G. F.; Patterson, J. R.; Nguyen, J. H.; Ambrose, W. P. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore California 94551 (United States)


    In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, we demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats--this interference occurs between the ''recently'' shifted and ''formerly unshifted'' paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber.

  8. Super-virtual refraction interferometry: Theory

    Bharadwaj, Pawan


    Inverting for the subsurface velocity distribution by refraction traveltime tomography is a well-accepted imaging method by both the exploration and earthquake seismology communities. A significant drawback, however, is that the recorded traces become noisier with increasing offset from the source position, and so prevents accurate picking of traveltimes in far-offset traces. To enhance the signal-to-noise ratio of the far-offset traces, we present the theory of super-virtual refraction interferometry where the signal-to-noise ratio (SNR) of far-offset head-wave arrivals can be theoretically increased by a factor proportional to N; here, N is the number of receiver and source positions associated with the recording and generation of the head-wave arrival. There are two steps to this methodology: correlation and summation of the data to generate traces with virtual head-wave arrivals, followed by the convolution of the data with the virtual traces to create traces with super-virtual head-wave arrivals. This method is valid for any medium that generates head-wave arrivals. There are at least three significant benefits to this methodology: 1). enhanced SNR of far-offset traces so the first-arrival traveltimes of the noisy far-offset traces can be more reliably picked to extend the useful aperture of data, 2). the SNR of head waves in a trace that arrive after the first arrival can be enhanced for accurate traveltime picking and subsequent inversion by traveltime tomography, and 3). common receiver-pair gathers can be analyzed to detect the presence of diving waves in the first arrivals, which can be used to assess the nature of the refracting boundary. © 2011 Society of Exploration Geophysicists.

  9. Intracavity interferometry using synchronously pumped OPO

    Zavadilová, Alena; Vyhlídal, David; Kubeček, Václav; Šulc, Jan; Navrátil, Petr


    The concept of system for intracavity interferometry based on the beat note detection in subharmonic synchronously intracavity pumped optical parametrical oscillator (OPO) is presented. The system consisted of SESAM-modelocked, picosecond, diode pumped Nd:YVO4 laser, operating at wavelength 1.06 μm and tunable linear intracavity pumped OPO based on MgO:PPLN crystal, widely tunable in 1.5 μm able to deliver two independent trains of picosecond pulses. The optical length of the OPO cavity was set to be exactly twice the pumping cavity length. In this configuration the OPO produces signal pulses with the same repetition frequency as the pump laser but the signal consists of two completely independent pulse trains. For purpose of pump probe measurements the setup signal with half repetition rate and scalable amplitude was derived from the OPO signal using RF signal divider, electropotical modulator and fiber amplifier. The impact of one pump beam on the sample is detected by one probing OPO train, the other OPO train is used as a reference. The beat note measured using the intracavity interferometer is proportional to phase modulation caused by the pump beam. The bandwidth of observed beat-note was less than 1 Hz (FWHM), it corresponds to a phase shift measurement error of less than 1.5 × 10-7 rad without any active stabilization. Such compact low-cost system could be used for ultra-sensitive phase-difference measurements (e.g. nonlinear refractive index measurement) for wide range of material especially in spectral range important for telecom applications.

  10. PSP SAR interferometry monitoring of ground and structure deformations in the archeological site of Pompeii

    Costantini, Mario; Francioni, Elena; Paglia, Luca; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla; De Nigris, Bruno


    The "Major Project Pompeii" (MPP) is a great collective commitment of different institututions and people to set about solving the serious problem of conservation of the largest archeological sites in the world. The ancient city of Pompeii with its 66 hectares, 44 of which are excaveted, is divided into 9 regiones (district), subdivided in 118 insulae (blocks) and almost 1500 domus (houses), and is Unesco site since 1996. The Italian Ministry for Heritage and Cultural Activities and Tourism (MiBACT) and Finmeccanica Group have sealed an agreement whereby the Finmeccanica Group will donate innovative technologies and services for monitoring and protecting the archaeological site of Pompeii. Moreover, the Italian Institute for Environment Protection and Research (ISPRA) - Geological Survey of Italy, was also involved to support the ground based analysis and interpretation of the measurements provided by the industrial team, in order to promote an interdisciplinary approach. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on their interpretation. The satellite monitoring service is based on the processing of COSMO-SkyMed Himage data by the e-Geos proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry method characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artifacts (which are one of the main problems of SAR interferometry). Validations analyses showed that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. By means of the COSMO-SkyMed PSP SAR interferometry processing, a historical analysis of the ground and structure deformations occurred over the entire archaeological site of Pompeii in the

  11. The Use of 2D Plastic Grating for Surface Profile and Dimension Manufacture Product Measurements by Using NDT Moiré Technique

    Retno Wigajatri Purnamaningsih


    Full Text Available Research of measuring the shape and dimension of object using the moiré technique have been done. Measurement have been made by observing the moiré space as a result of interaction between grating and its shadow casted on the object's surface caused by the projector lamp with CCD camera. The acquired data was further processed by way of off-line. By successive phase shifts that is π/2, π dan 3π/2 towards the table tennis ball at the distance of 48 cm from the light source and CCD camera, with the distance between CCD Camera and light source 13,5 cm and grating space 0,5 mm. It was obtained that convex shape can be identified by resolution of 0,24 mm. It was also shown that the biggest difference between the results of using moiré technique and the use of CMM contact measurements (Coordinate Measuring Machine was 0,3 mm

  12. OIFITS 2: the 2nd version of the data exchange standard for optical interferometry

    Duvert, Gilles; Young, John; Hummel, Christian A.


    This paper describes version 2 of the Optical Interferometry exchange Format (OIFITS), the standard for exchanging calibrated data from optical (visible or infrared) interferometers. This IAU-endorsed standard has been in use for 10 years at most of the past and current optical interferometer projects, including COAST, NPOI, IOTA, CHARA, VLTI, PTI and the Keck interferometer. Software is available for reading, writing and merging OIFITS files. This version 2 provides definitions of additional data tables (for example for polarisation measurements), addressing the needs of future interferometric instruments. Also included are data columns for a more rigorous description of measurement errors and their correlations. In that, this document is a step towards the design of a common data model for optical interferometry. Finally, the main OIFITS header is expanded with several new keywords summarising the content to allow doing data base searches. We request that comments and suggestions related to OIFITS be directed to the OLBIN email list. (See for information on how to subscribe and post to the list.)

  13. Deformation Studies and Elasticity Measurements of Hydrophobic Silica Aerogels using Double Exposure Holographic Interferometry

    Chikode, Prashant; Sabale, Sandip; Chavan, Sugam


    Holographic interferometry is mainly used for the non-destructive testing of various materials and metals in industry, engineering and technological fields. This technique may used to study the elastic properties of materials. We have used the double exposure holographic interferometry (DEHI) to study the surface deformation and elastic constant such as Young's modulus of mechanically stressed aerogel samples. Efforts have been made in the past to use non-destructive techniques like sound velocity measurements through aerogels. Hydrophobic Silica aerogels were prepared by the sol-gel process followed by supercritical methanol drying. The molar ratio of tetramethoxysilane: methyltrimethoxysilane: H2O constant at 1.2:0.8:6 while the methanol / tetramethoxysilane molar ratio (M) was varied systematically from 14 to 20 to obtain hydrophobic silica aerogels. After applying the weights on the sample in grams, double exposure holograms of aerogel samples have been successfully recorded. Double exposure causes localization of interference fringes on the aerogel surface and these fringes are used to determine the surface deformation and elastic modulus of the aerogels and they are in good agreement with the experiments performed by using four point bending. University Grants Commission for Minor Research Project and Department of Science and Technology for FIST Program.

  14. Absolute distance measurement based on multiple self-mixing interferometry

    Duan, Zhiwei; Yu, Yangyang; Gao, Bingkun; Jiang, Chunlei


    To improve the precision of distance measurement using laser Self-Mixing Interferometry (SMI) and compute short distance, we propose a method of Multiple Self-Mixing Interferometry (MSMI) that is modulated with a triangular wave. The principle of this method has been described in this paper. Experiments at different distances and amplitudes of modulation current are based on the proposed method. Low-priced and easily operated experimental devices are built. Experimental results show that a resolution of 2.7 mm can be achieved for absolute distance ranging from 2.2 to 23 cm.

  15. Absolute small-angle measurement based on optical feedback interferometry

    Jingang Zhong; Xianhua Zhang; Zhixiang Ju


    We present a simple but effective method for small-angle measurement based on optical feedback inter-ferometry (or laser self-mixing interferometry). The absolute zero angle can be defined at the biggest fringe amplitude point, so this method can also achieve absolute angle measurement. In order to verify the method, we construct an angle measurement system. The Fourier-transform method is used to analysis the interference signal. Rotation angles are experimentally measured with a resolution of 10-6 rad and a measurement range of approximately from -0.0007 to +0.0007 rad.

  16. Scanning White light interferometry: calibration and application to roughness assesment

    Bariani, Paolo

    of polymer replicated EDM rough topographies. The present method resulted to be not suitable for the purpose. • Based on the matured experience, some conclusions regarding the applicability of the method to some typical surface metrology problems to be investigated at nanometer-scale were drawn This work......This report refers to an experimental investigation recently completed. The aim was to gain some knowledge of the application of white light interferometry to surface metrology. The following issues were addressed by the present work: • How a white light interferometry microscope works, what...

  17. Raconter les Highland Clearances : Fluctuations mémorielles et instrumentalisationde la mémoire

    Laurence GOURIEVIDIS


    Full Text Available Dans l’histoire écossaise moderne, peu d’événements ont autant de résonance et de charge émotionnelle que les évictions des paysans du Nord du pays et les conflits qu’elles engendrèrent entre le milieu du 18ème siècle et 1886, année où une loi garantissant l’accès à la terre à une partie de la paysannerie concernée limita considérablement le droit des propriétaires et mit un terme aux expulsions massives. Connus sous le nom de Highland Clearances, ces événementsn’ont rien perdu de leur pouvoir mobilisateur. Les adjectifs « contesté », ou « controversé » leur sont couramment appliqués ainsi qu’à leurs représentations, qu’elles soient littéraires ou historiques. Cet article s’appuie sur la notion de « mémoire culturelle », développée par Jan Assman, pour analyser le sens, les valeurs et la vision du monde cristallisés dans la mémoire collective des Clearances. S’attachant à l’historiographie des Clearances, à la production littéraire sur la période et à son appropriation politique, il met en lumière la cohérence et la stabilité de la mémoire culturelle des Clearances. Ces dernières sont, par conséquent, devenues un symbole puissant dans le discours politique écossais ; Nationalistes et Travaillistes écossais s’en sont emparés pour alimenter des argumentaires en faveur de la réforme de la propriété foncière, de l’accès à la terre, en résumé la démocratisation du système foncier.In Modern Scottish history, few events have had as much resonance and emotional charge as the Highland Clearances, i.e. the evictions of tenants and the social conflicts in northern Scotland and the Hebrides from the middle of the 18th century until 1886, when legislation put an end to large-scale removals by conferring security of tenure on crofters and considerably restricting landowning power. The Highland Clearances still retain much of their mobilizing power. The adjectives

  18. Donner sens et reconnaissance : une mémoire familiale de la répression stalinienne

    Hélène Levesque


    Full Text Available De nos jours en Russie, parmi les diverses interprétations du passé soviétique, une portion de la population tend à réactualiser la mise en valeur des réalisations technologiques, scientifiques et politiques du régime stalinien. Dans cette optique, l’histoire des répressions est préférablement mise de côté ou son importance minimisée. L’oubli est une menace constante pour les survivants des répressions mais plusieurs espèrent, malgré la diminution de l’intérêt manifesté par le public, obtenir une place dans le récit historique collectif. Certaines victimes font face à l’oubli et cherchent à donner un sens à leur expérience tragique par le biais de la narration. Lorsque ces dernières disparaissent, ce sont parfois leurs descendants qui poursuivent le travail de mémoire. La fille d’un intellectuel kazakh réprimé dans les années 1930, Larissa Kouderina, tente de rétablir la vérité sur le passé de sa famille. Elle souhaite également, dans une perspective plus vaste, faire reconnaître l’histoire de tout un groupe d’intellectuels kazakhs du début du XXe siècle. Pour réaliser ses objectifs, elle a d’abord publié les mémoires de sa mère ainsi qu’un essai qu’elle a rédigé sur l’histoire de son père et de la « première intelligentsia » à laquelle il appartenait. Depuis, elle prépare et espère un jour ouvrir un petit musée dédié à cette dernière. Ses publications et son musée constituent, dans ma perspective de recherche, les composantes d’un projet de commémoration. Ce projet est en quelque sorte une mission qu’elle s’est donnée, qui donne sens à sa vie et qui contribue à la construction de son identité. Dans cet article, j’observe comment les discours de l’histoire et de la mémoire sont conjugués à l’intérieur de son projet et comment elle s’est constituée en porte-parole non seulement de sa famille mais aussi d’une génération intellectuelle.

  19. Laser Interferometry for Harsh Environment MEMS Sensors

    Nieva, Patricia


    Silicon-based MEMS technology has enabled the fabrication of a broad range of sensor and actuator systems that are having a great impact in areas that benefit from miniaturization and increased functionality. The main advantage of Si-based MEMS technologies is their possibility of integration with microelectronics thus allowing the economical production of smart microsystems. In the automotive industry for example, there is a need for inexpensive smart MEMS sensors for engine control applications. For instance, smart MEMS sensors capable of operating ``in cylinder'', where temperatures are around 400 C, could continuously monitor the combustion quality of the cylinders of automotive engines thus leading to reduced emissions and improved fuel economy. However, when the environment temperature is too high (>180 C), conventional Si-based microelectronics suffer from severe performance degradation, thus making smart Si-based MEMS impractical. Hence, further development, in terms of new MEMS materials and/or new technologies, is needed especially where high temperature capability is crucial to realizing improved electronic control. Remote sensing through optical signal detection has major advantages for safe signal transmission in harsh environments. It is highly resistant to electromagnetic interference (EMI) and radio frequency interference (RFI) and at the same time, it eliminates the necessity of on-board electronics, which has been one of the main obstacles in the development of smart MEMS sensors for high temperature applications. An economical way to deal with higher temperatures and other aggressive environmental conditions is to build MEMS sensors out of robust materials (e.g. Silicon nitride, SiC) and integrate them with optical signal detection techniques to form MOEMS. In this paper, we review recent trends for the use of laser interferometry for MEMS sensors in the context of using them for high temperature applications. Technological challenges faced in

  20. Laser interferometry of radiation driven gas jets

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.


    In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)

  1. North and northeast Greenland ice discharge from satellite radar interferometry

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.


    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...

  2. CMOS integrator based lock-in pixel for heterodyne interferometry

    Soloviev, O.; Vdovin, G.


    This article presents a prototype of a CMOS phase sensor for high accuracy (1 Angstrom) heterodyne interferometry. Switched integrators realization of a lock-in pixel for 4-bucket phase detection algorithm is described and illustrated by experimental results. Factors that limit the accuracy of this

  3. Waveguide Zeeman interferometry for thin-film chemical sensors

    Grace, K.M.; Shrouf, K.; Johnston, R.G.; Yang, X.; Swanson, B. [Los Alamos National Lab., NM (United States); Honkanen, S.; Ayras, P.; Peyghambarian, N. [Optical Sciences Center, Univ. of Arizona, Tucson, AZ (United States); Katila, P.; Leppihalme, M. [VTT Electronics (Finland)


    A chemical sensor is demonstrated which is based on Si{sub 3}N{sub 4} optical waveguides coated with species-selective thin films and using Zeeman interferometry as the detection technique. Relative phase change between TE and TM modes is measured. Real time and reversible response to toluene is shown with ppm level sensitivity.

  4. Michelson wide-field stellar interferometry: principles and experimental verification

    Montilla, I.; Pereira, S.F.; Braat, J.J.M.


    A new interferometric technique for Michelson wide-field interferometry is presented that consists of a Michelson pupil-plane combination scheme in which a wide field of view can be achieved in one shot. This technique uses a stair-shaped mirror in the intermediate image plane of each telescope in t

  5. A new polarized neutron interferometry facility at the NCNR

    Shahi, C. B.; Arif, M.; Cory, D. G.; Mineeva, T.; Nsofini, J.; Sarenac, D.; Williams, C. J.; Huber, M. G.; Pushin, D. A.


    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  6. Finite-difference modeling experiments for seismic interferometry

    Thorbecke, J.W.; Draganov, D.


    In passive seismic interferometry, new reflection data can be retrieved by crosscorrelating recorded noise data. The quality of the retrieved reflection data is, among others, dependent on the duration and number of passive sources present during the recording time, the source distribution, and the

  7. Narrow linewidth single laser source system for onboard atom interferometry

    Theron, Fabien; Carraz, Olivier; Renon, Geoffrey; Zahzam, Nassim; Bidel, Yannick; Cadoret, Malo; Bresson, Alexandre


    A compact and robust laser system for atom interferometry based on a frequency-doubled telecom laser is presented. Thanks to the original stabilization architecture on a saturated absorption setup, we obtain a frequency agile laser system allowing fast tuning of the laser frequency over 1 GHz in few ms using a single laser source. The different laser frequencies used for atom interferometry are generated by changing dynamically the frequency of the laser and by creating sidebands using a phase modulator. A laser system for Rubidium 87 atom interferometry using only one laser source based on a frequency-doubled telecom fiber bench is then built. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components (which are intrinsically less stable) and to make the setup compact and much less sensitive to vibrations and thermal fluctuations. This source provides spectral linewidth below 2.5 kHz, which is required for precision atom interferometry and particularly for a high performance atomic inertial sensor.

  8. Defect detection in metals using electronic speckle pattern interferometry

    Andres Zarate, Esteban; Custodio G, Eden [Universidad Juarez Autonoma de Tabasco, DACB, Cunduacan, Tabasco, 86680 (Mexico); Trevino-Palacios, Carlos G. [Instituto Nacional de Astrofisica, Optica y Electronica, Puebla 72000 (Mexico); Rodriguez-Vera, Ramon; Puga-Soberanes, Hector J. [Centro de Investigaciones en Optica, Loma del Bosque 115, Leon (Mexico)


    We use the out-of-plane electronic speckle pattern interferometry (ESPI) technique to observe cracks and fracture defects on 6061 aluminum plates under thermal stress. The geometrical shape of the ESPI pattern confirmed the existence of defects. We were able to differentiate between cracks and fracture defects using a non-contact and non-destructive technique.

  9. Holographic interferometry applied to the case of large deformations.

    Schumann, W


    This investigation in holographic interferometry concerns an approach to a systematic quasi-compensation by appropriate optical modifications at the reconstruction in order that the fringes of interference become visible in the case of large unknown object deformations. The relevant relations are established by using the aberration theory for the image formation in combination with elementary intrinsic differential geometry.

  10. Interferometry by deconvolution of multicomponent multioffset GPR data

    Slob, E.C.


    Interferometric techniques are now well known to retrieve data between two receivers by the cross correlation of the data recorded by these receivers. Cross-correlation methods for interferometry rely mostly on the assumption that the medium is loss free and that the sources are all around the recei

  11. A new polarized neutron interferometry facility at the NCNR

    Shahi, C.B. [Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188 (United States); Arif, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Cory, D.G. [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Mineeva, T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Nsofini, J.; Sarenac, D. [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Williams, C.J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Huber, M.G., E-mail: [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pushin, D.A., E-mail: [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)


    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  12. Fiber-coupled displacement interferometry without periodic nonlinearity

    Ellis, J.D.; Meskers, A.J.H.; Spronck, J.W.; Munnig Schmidt, R.H.


    Displacement interferometry is widely used for accurately characterizing nanometer and subnanometer displacements in many applications. In many modern systems, fiber delivery is desired to limit optical alignment and remove heat sources from the system, but fiber delivery can exacerbate common inter

  13. On-Chip Method to Measure Mechanical Characteristics of a Single Cell by Using Moiré Fringe

    Hirotaka Sugiura


    Full Text Available We propose a method to characterize the mechanical properties of cells using a robot-integrated microfluidic chip (robochip and microscopy. The microfluidic chip is designed to apply the specified deformations to a single detached cell using an on-chip actuator probe. The reaction force is simultaneously measured using an on-chip force sensor composed of a hollow folded beam and probe structure. In order to measure the cellular characteristics in further detail, a sub-pixel level of resolution of probe position is required. Therefore, we utilize the phase detection of moiré fringe. Using this method, the experimental resolution of the probe position reaches 42 nm. This is approximately ten times smaller than the optical wavelength, which is the limit of sharp imaging with a microscope. Calibration of the force sensor is also important in accurately measuring cellular reaction forces. We calibrated the spring constant from the frequency response, by the proposed sensing method of the probe position. As a representative of mechanical characteristics, we measured the elastic modulus of Madin-Darby Cannie Kidney (MDCK cells. In spite of the rigid spring constant, the resolution and sensitivity were twice that achieved in our previous study. Unique cellular characteristics can be elucidated by the improvements in sensing resolution and accuracy.

  14. Coherently stacked MoS2/WSe2 heterostructures: Moiré pattern and its effect on interlayer couplings

    Zhang, Chendong; Li, Ming-Yang; Chuu, Chih-Piao; Chou, Mei-Yin; Li, Lain-Jong; Shih, Chih-Kang

    Vertically stacked heterojunctions (HJs) of transition metal dichalcogenides (TMDs) have been proposed as fundamental building blocks for several novel electronic and photonic devices. Although such HJs can be easily achieved by sequential transferring of different TMDs, this approach is not scalable, and the orientation relationship between the layers is difficult to control. A much more desirable approach is to directly grow one kind of TMD on top of the other. In addition to being a scalable platform, the epitaxial approach also results in a well-defined orientation relationship. A very important question to ask is ``What is the role of the interlayer coupling on the electronic structures of such a bilayer stack?'' By using scanning tunneling microscopy/spectroscopy (STM/S) and first-principles calculations, we investigate the MoS2/WSe2 vertical heterojunctions formed by direct epitaxial growth. The different lateral lattice constants between MoS2 and WSe2 lead to the formation of a well-ordered Moire pattern with a superlattice constant of ~8.5 nm. This superlattice reflects the variation of the lateral alignment between the MoS2 and WSe2 lattices. STS shows very large variations of interlayer coupling, as a function of the lateral alignment. More interestingly, depending on the location in the BZ, the interlayer coupling has very different consequences on the electronic structures.

  15. Evaluation of high grid strip densities based on the moiré artifact analysis for quality assurance: Simulation and experiment

    Je, U. K.; Park, C. K.; Lim, H. W.; Cho, H. S.; Lee, D. Y.; Lee, H. W.; Kim, K. S.; Park, S. Y.; Kim, G. A.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Woo, T. H.


    We have recently developed precise x-ray grids having strip densities in the range of 100 - 250 lines/inch by adopting the precision sawing process and carbon interspace material for the demands of specific x-ray imaging techniques. However, quality assurance in the grid manufacturing has not yet satisfactorily conducted because grid strips of a high strip density are often invisible through an x-ray nondestructive testing with a flat-panel detector of an ordinary pixel resolution (>100 μm). In this work, we propose a useful method to evaluate actual grid strip densities over the Nyquist sampling rate based on the moiré artifact analysis. We performed a systematic simulation and experiment with several sample grids and a detector having a 143- μm pixel resolution to verify the proposed quality assurance method. According to our results, the relative differences between the nominal and the evaluated grid strip densities were within 0.2% and 1.8% in the simulation and experiment, respectively, which demonstrates that the proposed method is viable with an ordinary detector having a moderate pixel resolution for quality assurance in grid manufacturing.

  16. Measurement of neutron scattering lengths using neutron interferometry

    Shahi, Chandra B.

    This thesis describes the details on building a new Neutron Interferometry and Optics Facility (NIOFa), the measurement of the incoherent neutron scattering length bi of 3He, and the measurement of the coherent neutron scattering length bc of 4He at National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). A new monochromatic beamline and facility has been installed at the NCNR devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. This new facility, NIOFa, is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The measurement of the incoherent neutron scattering length bi of 3He was done using a (220) single silicon crystal skew symmetric interferometer. This experiment requires both a polarized beam and a polarized target. We report bi = -2.35 +/- 0.014 (stat.) +/- 0.014 (syst.). This experiment is a revision of the previous experiment which was done in 2008, and partially explains the non-zero phase shift seen in 2008 experiment even if target cell was completely unpolarized. The measurement of the coherent neutron scattering length b c of the 4He was done using a (111) single silicon crystal interferometer. The neutron interferometry and optics facility at NIST had been used previously to determine the coherent scattering lengths for n- 1H, n-2H, and n-3He to less than 1% relative uncertainty. We report bc of the 4He

  17. Design and Status of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): An Interferometer at the Edge of Space

    Rinehart, Stephen A.; Barclay, Richard B.; Barry, R. K.; Benford, D. J.; Calhoun, P. C.; Fixsen, D. J.; Gorman, E. T.; Jackson, M. L.; Jhabvala, C. A.; Leisawitz, D. T.; Maher, S. F.; Mentzell, J. E.; Mundy, L. G.; Rizzo, M. J.; Silverberg, R. F.; Staguhn, J. G.


    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infraredinterferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer tosimultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  18. Investigating Cepheid $\\ell$ Carinae's Cycle-to-cycle Variations via Contemporaneous Velocimetry and Interferometry

    Anderson, R I; Kervella, P; Breitfelder, J; LeBouquin, J -B; Eyer, L; Gallenne, A; Palaversa, L; Semaan, T; Saesen, S; Mowlavi, N


    Baade-Wesselink-type (BW) techniques enable geometric distance measurements of Cepheid variable stars in the Galaxy and the Magellanic clouds. The leading uncertainties involved concern projection factors required to translate observed radial velocities (RVs) to pulsational velocities and recently discovered modulated variability. We carried out an unprecedented observational campaign involving long-baseline interferometry (VLTI/PIONIER) and spectroscopy (Euler/Coralie) to search for modulated variability in the long-period (P $\\sim$ 35.5 d) Cepheid Carinae. We determine highly precise angular diameters from squared visibilities and investigate possible differences between two consecutive maximal diameters, $\\Delta_{\\rm{max}} \\Theta$. We characterize the modulated variability along the line-of-sight using 360 high-precision RVs. Here we report tentative evidence for modulated angular variability and confirm cycle-to-cycle differences of $\\ell$ Carinae's RV variability. Two successive maxima yield $\\Delta_{\\rm...

  19. Contrast enhancement via shaped Raman pulses for thermal cold atom cloud interferometry

    Luo, Yukun; Yan, Shuhua; Hu, Qingqing; Jia, Aiai; Wei, Chunhua; Yang, Jun


    Interferometry with thermal cold atom clouds provides high particle flux and low quantum projection noise but is limited by the rapid reduction of fringe contrast. We propose an improved method based on temporally shaped pulses to address the issue of the off-resonance dispersion and enhance the contrast. Theoretical analysis and construction principle for shaped pulses are demonstrated. The fidelity of single π and π/2 pulses as well as a complete interferometer sequence are investigated. Comparisons are ade between the traditional pulse and several alternative shaped pulses to verify the feasibility and find an efficient choice among them. Practical implementation scheme and possible error sources are also discussed. The results show a great improvement in contrast and robust phase response for high atomic temperature up to several tens of μK.

  20. Laser frequency stabilization and stray light issues for LISA and other future multi-spacecraft missions Project

    National Aeronautics and Space Administration — "The Laser Interferometer Space Antenna (LISA) is a joint NASA/ESA project which will use laser interferometry between drag-free proof masses to measure...

  1. Verification of time-delay interferometry techniques using the University of Florida LISA interferometry simulator

    Mitryk, Shawn J; Wand, Vinzenz; Mueller, Guido, E-mail: smitryk@phys.ufl.ed, E-mail: mueller@phys.ufl.ed [Department of Physics, University of Florida, PO Box 118440, Gainesville, FL 32611-8440 (United States)


    Laser Interferometer Space Antenna (LISA) is a cooperative NASA/ESA mission proposed to directly measure gravitational waves (GW) in the frequency range from 30 muHz to 1 Hz with an optimal strain sensitivity of 10{sup -21}/sq root(Hz) at 3 mHz. LISA will utilize a modified Michelson interferometer to measure length changes of 40 pm/sq root(Hz) between drag-free proof masses located on three separate spacecraft (SC) separated by a distance of 5 Gm. The University of Florida has developed a hardware-in-the-loop simulator of the LISA constellation to verify the laser noise cancellation technique known as time-delay interferometry (TDI). We replicate the frequency stabilization of the laser on the local SC and the phase-locking of the lasers on the far SC. The laser photodetector beatnotes are electronically delayed, Doppler shifted and applied with a mock GW signal to simulate the laser link between the SC. The beatnotes are also measured with a LISA-like phasemeter and the data are used to extract the laser phase and residual phase-lock loop noise in post-processing through TDI. This uncovers the GW modulation signal buried under the laser noise. The results are then compared to the requirements defined by the LISA science collaboration.

  2. Development of an x-ray Talbot-Lau moire deflectometer for fast density profile measurements of dense plasmas generated by beam-target interactions

    Clayton, Dan [National Security Technol., LLC, Los Alamos, NM (United States); Berninger, M; Meidinger, A; Stutman, Dan; Valdivia, Maria Pia


    For the first time an x-ray Talbot-Lau moire deflectometer is being developed that will use a flash tube source and fast detector for dynamic density gradient measurements. In Talbot-Lau moire deflectometry, an x-ray grating makes an image of itself on a second grating (the Talbot effect) to produce a moire pattern on a detector. The test object is placed between these gratings, with variations in index of refraction changing the pattern. A third grating in front of an incoherent x-ray source produces an array of coherent sources. With a 150 kV x-ray flash tube as the source, the gratings are placed in a glancing angle setup for performance at ~60 keV. The detector is a gated CCD with a fast scintillator for x-ray conversion. This diagnostic, designed for the Dual-Axis Radiographic Hydrodynamic Test facility (DARHT) at Los Alamos National Laboratory, measures the density profile of dense plasma plumes ejected from beam-target interactions. DARHT has two high-current, pulsed, inductive linear electron accelerators with bremsstrahlung targets at the end of each beam line to create 2-D radiographic images of hydrodynamic tests. One multi-pulse accelerator has up to four beam pulses striking the same target within 2 μs. Computer simulations that model target evolution and ejected material between pulses are used to design these targets for optimal radiographic performance; the x-ray deflectometer will directly measure density gradients in the ejected plumes and provide the first experimental constraints to these models. During the first year, currently underway, the diagnostic systems are being designed. In year two, the flash tube and fast detector will be deployed at DARHT for radiographic imaging while the deflectometer is built and tested on the bench with a continuous source. Finally, in year three, the fast deflectometer will be installed on DARHT and density measurements will be performed.

  3. Habiter la mémoire à la frontière de l’oubli : la maison comme seuil

    Joana Duarte Bernardes


    Full Text Available Selon Gaston Bachelard, la maison est tantôt le coffre de nos souvenirs, tantôt un état d’âme. Cela veut dire que, même avant de devenir figure onirique ou lieu imaginé de notre passé-futur, la maison abrite et rend possible le processus de la mémoire. Et, parce qu’elle révèle une intimité, soit aux éléments extérieurs, soit aux détails intérieurs, elle fait toujours figure de présent. Renfermant un univers personnel et familier, pourtant, en même temps, exhibant des mécanismes d’ouverture, la maison trace une ligne entre le soi et les autres, entre le groupe et le pluriel. Avec ses murs, ses fenêtres et ses portes, la maison permet le dialogue. La porte, par exemple, s’ouvre à l’ami bienvenu et se resserre face à l’ennemi, ce qui fait de la maison la place de l’hospitalité aussi bien que de l’hostilité. Enfin, elle comporte le seuil, marque distinctive de l’ensemble sémantique de la maison, parce qu’il est le corridor que l’on traverse aussi bien pour entrer que pour sortir. Toujours début et fin, le seuil surpasse la face de Janus en obligeant la confrontation des deux faces, comme si l’identité ne pouvait rien voir sans l’altérité. C’est notre objectif d’éclairer le rôle que la maison accomplit comme grande mémoire de nos souvenirs, devant laquelle le seuil signale une ambiguïté pas toujours pacifique, soit du point de vue du sujet qui habite, soit du point de vue de celui qui frappe à la porte: l’hôte, l’intrus, l’étranger.  According to Gaston Bachelard, the house is sometimes our box of souvenirs, sometimes a state of mind. It means that even before becoming a dream figure or an imagined place of our past-future, the house all at once holds and makes possible the process of memory. And because the house reveals intimacy, either to exterior elements or to interior details, it always is an actor of the present. While enclosing a personal and familiar universe, it

  4. Sur deux mémoires de d'Alembert l'un concernant le calcul des probabilités, l'autre l'inoculation

    Diderot, Denis


    Extrait : ""M. d'Alembert vient de publier ses Opuscules mathématiques. Il y a dans ce recueil deux mémoires qu'il n'est pas impossible de réduire à la langue ordinaire de la raison. L'un a pour objet le calcul des probabilités ; calcul dont l'application a tant d'importance et d'étendu. C'est proprement la science physico-mathématique de la vie. L'autre traite des avantages ou désavantages de l'inoculation.""

  5. Paul Ricoeur: La mémoire, l’histoire, l’oubli, París: Seuil, 2000, 681 pp.

    Olivier Mongin


    Full Text Available La mémoire, l’histoire, l’oubli, la última gran obra de Paul Ricoeur, fue publicada en otoño del 2000. Se trata de una de las obras fundamentales que marcan el ritmo de su producción, junto con la trilogía inicial sobre la voluntad, la trilogía de Temps et récit y el escrito Soi-Même comme un autre. El libro se inicia con una advertencia en la que se anuncian claramente las preocupaciones que están en el origen de esta publicación.

  6. [Analyzing moiré pattern spectra based on the mutual transform between signals' waveform in time domain and their spectra in frequency space].

    Sun, Tao; Song, Yi-Zhong


    The mutual evolving processes of signals' waveforms and their spectra were numerically analyzed in time and frequency domains. The purpose was to research the essential relation between the signals' waveforms and their spectra. Then, the mutual transform principle was applied to analyze moiré pattern spectra, acquiring phase distribution information of the pattern. The rectangular window function was used to simulate the mutual transform between the impulse signal and direct-current waveform. Many rectangular window signals with deferent widths were obtained by changing the window width The unit impulse signal was obtained by changing the width down to zero, and the direct-current waveform obtained by changing the width up to +infinity. For smart, quick, and easy implementation of discrete Fourier transforms to rectangular pulses and obtain signals' spectra, a simple FFT system was worked out. With its calculating, the mutual evolving processes of signals' waveforms and their spectra were tracked deeply. All signals here were transformed with it. As the result, first, the spectra of rectangular window signals were in the form of sampling function [Sa(x) = sin(x)/x]. Second, with the change in the window's width, the waveform of Sa(x) changed. Third, when the width decreased, the waveform of Sa(x) extended, and vibrated more slowly. It changed into direct-current waveform when the width decreased to zero. Last, when the width increased, the waveform of Sa(x) shranked, and vibrated faster. It changed into impulse waveform when the width increased to +infinity. Signals' waveforms were in mutual transforms between the time and frequency domain. The transforming essence was considered as that the frequency component principle in Fourier series theory is reflected in the frequency domain. According to the principle of mutual transforms between signals' waveforms and their spectra, the first order spectrum of the moiré pattern was extracted out and normalized to a

  7. Disparition d'un petit carton de circuits intégrés mémoires - French version only

    Christian Pignard AB/CO


    Je recherche un carton de 1350 mémoires Toshiba SRAM 4Mb TC554001AF-7L livré par la société ARROWS/TEKELEC courant décembre 2004. Le carton a probablement disparu à Prévessin, bât. 865 ou lors de mon déménagement sur Meyrin... Le N° de commande est inscrit sur le carton : CA1339628. Merci beaucoup d'avance. Christian Pignard AB/CO 163720

  8. Photofragmentation Beam Splitters for Matter-Wave Interferometry

    Dörre, Nadine; Rodewald, Jonas; Geyer, Philipp; von Issendorff, Bernd; Haslinger, Philipp; Arndt, Markus


    Extending the range of quantum interferometry to a wider class of composite nanoparticles requires new tools to diffract matter waves. Recently, pulsed photoionization light gratings have demonstrated their suitability for high mass matter-wave physics. Here, we extend quantum interference experiments to a new class of particles by introducing photofragmentation beam splitters into time-domain matter-wave interferometry. We present data that demonstrate this coherent beam splitting mechanism with clusters of hexafluorobenzene and we show single-photon depletion gratings based both on fragmentation and ionization for clusters of vanillin. We propose that photofragmentation gratings can act on a large set of van der Waals clusters and biomolecules which are thermally unstable and often resilient to single-photon ionization.

  9. Non-linear Kalman filters for calibration in radio interferometry

    Tasse, Cyril


    We present a new calibration scheme based on a non-linear version of Kalman filter that aims at estimating the physical terms appearing in the Radio Interferometry Measurement Equation (RIME). We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. We show using simulations that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly cheap algorithm that we believe to be robust, especially in low signal-to-noise regime. Potentially the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that the effects corrupting visib...

  10. Stellar Intensity Interferometry: Prospects for sub-milliarcsecond optical imaging

    Dravins, Dainis; Jensen, Hannes; Nuñez, Paul D


    Using kilometric arrays of air Cherenkov telescopes, intensity interferometry may increase the spatial resolution in optical astronomy by an order of magnitude, enabling images of rapidly rotating stars with structures in their circumstellar disks and winds, or mapping out patterns of nonradial pulsations across stellar surfaces. Intensity interferometry (pioneered by Hanbury Brown and Twiss) connects telescopes only electronically, and is practically insensitive to atmospheric turbulence and optical imperfections, permitting observations over long baselines and through large airmasses, also at short optical wavelengths. The required large telescopes with very fast detectors are becoming available as arrays of air Cherenkov telescopes, distributed over a few square km. Digital signal handling enables very many baselines to be synthesized, while stars are tracked with electronic time delays, thus synthesizing an optical interferometer in software. Simulated observations indicate limiting magnitudes around m(v)...

  11. Homodyne digital interferometry for a sensitive fiber frequency reference.

    Ngo, Silvie; McRae, Terry G; Gray, Malcolm B; Shaddock, Daniel A


    Digitally enhanced homodyne interferometry enables robust interferometric sensitivity to be achieved in an optically simple configuration by shifting optical complexity into the digital signal processing regime. We use digitally enhanced homodyne interferometry in a simple, all-fiber Michelson interferometer to achieve a frequency reference stability of better than 20 Hz/√Hz from 10 mHz to 1 Hz, satisfying, for the first time in an all fiber system, the stability requirements for the Gravity Recovery and Climate Experiment Follow On mission. In addition, we have demonstrated stability that satisfies the future mission objectives at frequencies down to 1 mHz. This frequency domain stability translates into a fractional Allan deviation of 3.3 × 10(-17) for an integration time of 55 seconds.

  12. Stitching interferometry of a full cylinder without using overlap areas

    Peng, Junzheng; Chen, Dingfu; Yu, Yingjie


    Traditional stitching interferometry requires finding out the overlap correspondence and computing the discrepancies in the overlap regions, which makes it complex and time-consuming to obtain the 360° form map of a cylinder. In this paper, we develop a cylinder stitching model based on a new set of orthogonal polynomials, termed Legendre Fourier (LF) polynomials. With these polynomials, individual subaperture data can be expanded as a composition of the inherent form of a partial cylinder surface and additional misalignment parameters. Then the 360° form map can be acquired by simultaneously fitting all subaperture data with the LF polynomials. A metal shaft was measured to experimentally verify the proposed method. In contrast to traditional stitching interferometry, our technique does not require overlapping of adjacent subapertures, thus significantly reducing the measurement time and making the stitching algorithm simple.

  13. Picosecond resolution soft x-ray laser plasma interferometry

    Moon, S; Nilsen, J; Ng, A; Shlyaptsev, V; Dunn, J; Hunter, J; Keenan, R; Marconi, M; Filevich, J; Rocca, J; Smith, R


    We describe a soft x-ray laser interferometry technique that allows two-dimensional diagnosis of plasma electron density with picosecond time resolution. It consists of the combination of a robust high throughput amplitude division interferometer and a 14.7 nm transient inversion soft x-ray laser that produces {approx} 5 ps pulses. Due to its picosecond resolution and short wavelength scalability, this technique has potential for extending the high inherent precision of soft x-ray laser interferometry to the study of very dense plasmas of significant fundamental and practical interest, such as those investigated for inertial confined fusion. Results of its use in the diagnostics of dense large scale laser-created plasmas are presented.

  14. Photofragmentation beam splitters for matter-wave interferometry

    Dörre, Nadine; Geyer, Philipp; von Issendorff, Bernd; Haslinger, Philipp; Arndt, Markus


    Extending the range of quantum interferometry to a wider class of composite nanoparticles requires new tools to diffract matter-waves. Recently, pulsed photoionization light gratings have demonstrated their suitability for high mass matter-wave physics. Here we extend quantum interference experiments to a new class of particles by introducing photofragmentation beam splitters into time-domain matter-wave interferometry. Photofragmentation gratings can act on objects as different as van der Waals clusters and biomolecules which are thermally unstable and often resilient to single-photon ionization. We present data that demonstrate this coherent beam splitting mechanism with clusters of hexafluorobenzene and we show single-photon depletion gratings based both on fragmentation and ionization for clusters of vanillin.

  15. Demystifying back scatter interferometry: a sensitive refractive index detector

    Jepsen, Søren Terpager; Jørgensen, Thomas Martini; Trydal, Torleif


    BACKGROUND: Back Scatter Interferometry (BSI) is a sensitive method for detecting changes of the refractive index (RI) in small capillaries. The method was originally developed as an off-axial column detector for use in Liquid Chromatography or Capillary Electrophoresis systems, but it has been...... a set of NaCl standard solutions. RESULTS: Ray-tracing show that the basic interference pattern recorded with BSI can be fully described by two beams, one reflected from the surface of the capillary and a beam reflected from the back of the capillary wall. In accordance we find that the interferometric...... a common-path interferometer. The sensitivity of the BSI system is given by twice the inner diameter of the capillary times the wavenumber of the light source. Our results suggest that Back Scatter Interferometry does not provide a unique measurement principle for sensing biochemical bindings compared...

  16. Dual-wavelength laser source for onboard atom interferometry.

    Ménoret, V; Geiger, R; Stern, G; Zahzam, N; Battelier, B; Bresson, A; Landragin, A; Bouyer, P


    We present a compact and stable dual-wavelength laser source for onboard atom interferometry with two different atomic species. It is based on frequency-doubled telecom lasers locked on a femtosecond optical frequency comb. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components, which are intrinsically less stable, and to make the setup immune to vibrations and thermal fluctuations. The source provides the frequency agility and phase stability required for atom interferometry and can easily be adapted to other cold atom experiments. We have shown its robustness by achieving the first dual-species K-Rb magneto-optical trap in microgravity during parabolic flights.

  17. Hydrogen Lines in Mira Stars Through Interferometry and Polarimetry

    Fabas, N.; Chiavassa, A.; Millour, F.; Wittkowski, M.


    Balmer lines in emission are the most prominent features in Mira stars spectra and have a strong potential as a proxy to study the lower atmosphere's dynamics. In Fabas et al. ([1]), we accumulated spectropolarimetric observations of Balmer lines in emission. As the shock is propagating outwards, linear polarization rate increases and the angle of this polarization evolves. Assuming that linear polarization arises from anisotropic scattering, it has the potential of telling us about the geometric structure of the shock as it propagates and the study of such atmospheric structures can typically be performed with interferometry. In 2012, AMBER data on the Mira star omicron Ceti were collected in which the Brackett γ line is studied. The data show signatures in the interferometric observables around this line. Olivier Chesneau was in the jury evaluating the PhD thesis of N. Fabas and he was seduced by the idea to study these shock waves with interferometry and use polarimetry as a complementary study.

  18. North and northeast Greenland ice discharge from satellite radar interferometry

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.


    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...... front, because basal melting is extensive at the underside of the floating glacier sections. The results suggest that the north and northeast parts of the Greenland ice sheet may be thinning and contributing positively to sea-level rise.......Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...

  19. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    Miller, Arne; McLaughlin, W. L.


    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images and measur......Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k...

  20. Self-mixing interferometry with mutual independent orthogonal polarized light.

    Zhang, Shaohui; Zhang, Shulian; Tan, Yidong; Sun, Liqun


    A self-mixing interferometry with mutual independent orthogonal polarized light is introduced. Its most important feature is that two mutual independent orthogonal lights are used as measuring and reference light. Frequency shifting and polarization multiplexing technologies are used in the proposed optical system. Phase variation of the two orthogonal polarized beams is simultaneously measured through heterodyne demodulation with a lock-in amplifier. The phase difference of the orthogonal polarized light accurately reflects the target displacement. The target in this system is a non-cooperative object which is different from a traditional Michelson interferometer. The primary experimental results show that this kind of self-mixing interferometry is very feasible. Under typical room conditions, the system's short-term resolution is better than 2 nm.

  1. Holodiagram: elliptic visualizing interferometry, relativity, and light-in-flight.

    Abramson, Nils H


    In holographic interferometry, there is usually a static distance separating the point of illumination and the point of observation. In Special Relativity, this separation is dynamic and is caused by the velocity of the observer. The corrections needed to compensate for these separations are similar in the two fields. We use the ellipsoids of the holodiagram for measurement and in a graphic way to explain and evaluate optical resolution, gated viewing, radar, holography, three-dimensional interferometry, Special Relativity, and light-in-flight recordings. Lorentz contraction together with time dilation is explained as the result of the eccentricity of the measuring ellipsoid, caused by its velocity. The extremely thin ellipsoid of the very first light appears as a beam aimed directly at the observer, which might explain the wave or ray duality of light and entanglement. Finally, we introduce the concept of ellipsoids of observation.

  2. Dual-wavelength laser source for onboard atom interferometry

    Ménoret, Vincent; Stern, Guillaume; Zahzam, Nassim; Battelier, Baptiste; Bresson, Alexandre; Landragin, Arnaud; Bouyer, Philippe


    We present a compact and stable dual-wavelength laser source for onboard atom interferometry with two different atomic species. It is based on frequency-doubled telecom lasers locked on a femtosecond optical frequency comb. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components which are intrinsically less stable, and to make the setup immune to vibrations and thermal fluctuations. The source provides the frequency agility and phase stability required for atom interferometry and can easily be adapted to other cold atom experiments. We have shown its robustness by achieving the first dual-species K-Rb magneto optical trap in microgravity during parabolic flights.

  3. Observation of Aharonov-Bohm effects by neutron interferometry

    Werner, Samuel A [Physics Laboratory, NIST, Gaithersburg, MD 20899 (United States); Klein, Anthony G, E-mail: [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia)


    The special and unique techniques of neutron interferometry have been used to observe a number of topological effects. These include the quantum mechanical phase shift of a neutron due to the Earth's rotation (the quantum analog of the Michelson-Gale-Pearson experiment with light), the phase shift of a particle carrying a magnetic moment (a neutron) encircling a line charge (the Aharonov-Casher effect) and the scalar Aharonov-Bohm effect, observed with a pulsed magnetic field solenoid and time-of-flight neutron detection. On the occasion of the 50th anniversary of the Aharonov-Bohm paper, we provide an overview of the neutron interferometry technique and a description of these three historic experiments.

  4. Observation of Aharonov-Bohm effects by neutron interferometry

    Werner, Samuel A.; Klein, Anthony G.


    The special and unique techniques of neutron interferometry have been used to observe a number of topological effects. These include the quantum mechanical phase shift of a neutron due to the Earth's rotation (the quantum analog of the Michelson-Gale-Pearson experiment with light), the phase shift of a particle carrying a magnetic moment (a neutron) encircling a line charge (the Aharonov-Casher effect) and the scalar Aharonov-Bohm effect, observed with a pulsed magnetic field solenoid and time-of-flight neutron detection. On the occasion of the 50th anniversary of the Aharonov-Bohm paper, we provide an overview of the neutron interferometry technique and a description of these three historic experiments.

  5. Noise Characterization of Supercontinuum Sources for Low Coherence Interferometry Applications

    Brown, William J.; Kim, Sanghoon; Wax, Adam


    We examine the noise properties of supercontinuum light sources when used in low coherence interferometry applications. The first application is a multiple-scattering low-coherence interferometry (ms2/LCI) system where high power and long image acquisition times are required to image deep into tissue. For this system we compare the noise characteristics of two supercontinuum sources from different suppliers. Both sources have long term drift that limits the amount of time over which signal averaging is advantageous for reducing noise. The second application is a high resolution optical coherence tomography system where broadband light is needed for high axial resolution. For this system we compare the noise performance of the two supercontinuum sources and a light source based on four superluminescent diodes (SLDs) using imaging contrast as a comparative metric. We find that the NKT SuperK has superior noise performance compared to the Fianium SC-450-4 but neither meets the performance of the SLDs. PMID:25606759

  6. Study of tympanic membrane displacements with digital holographic interferometry

    Hernández-Montes, María del Socorro; Mendoza-Santoyo, Fernando; Muñoz-Solís, Silvino


    The study of the tympanic membrane is fundamental because it is one of the most important components of the middle ear. By finding the membrane's vibration patterns and quantifying the induced displacement, it is possible to characterize and determine its physiological state. Digital Holographic Interferometry (DHI) has proved to be a promising optical non-invasive and quasi-real time method for the investigation of different mechanical parameters of biological tissues. In this paper, we present a digital holographic interferometry setup used to measure the frequency response of the tympanic membrane in post-mortem cats subject to acoustic stimuli in the range of 485 Hz up to 10 kHz. We show the resonant vibration patterns found for this range of frequencies and the corresponding displacement amplitudes induced by the acoustic waves. The results show the potential that this method has to help improve the understanding of the tympanic membrane's working mechanisms.

  7. Plasmonic interferometry: probing launching dipoles in scanning-probe plasmonics

    Mollet, O; Genet, C; Huant, S; Drezet, A


    We develop a semi-analytical method for analyzing surface plasmon interferometry using near-field scanning optical sources. We compare our approach to Young double hole interferometry experiments using scanning tunneling microscope (STM) discussed in the literature and realize experiments with an aperture near-field scanning optical microscope (NSOM) source positioned near a ring like aperture slit milled in a thick gold film. In both cases the agreement between experiments and model is very good. We emphasize the role of dipole orientations and discuss the role of magnetic versus electric dipole contributions to the imaging process as well as the directionality of the effective dipoles associated with the various optical and plasmonic sources.

  8. Event-based simulation of neutron interferometry experiments

    De Raedt, Hans; Michielsen, Kristel


    A discrete-event approach, which has already been shown to give a cause-and-effect explanation of many quantum optics experiments, is applied to single-neutron interferometry experiments. The simulation algorithm yields a logically consistent description in terms of individual neutrons and does not require the knowledge of the solution of a wave equation. It is shown that the simulation method reproduces the results of several single-neutron interferometry experiments, including experiments which, in quantum theoretical language, involve entanglement. Our results demonstrate that classical (non-Hamiltonian) systems can exhibit correlations which in quantum theory are associated with interference and entanglement, also when all particles emitted by the source are accounted for.

  9. MAGIA - using atom interferometry to determine the Newtonian gravitational constant

    Stuhler, J; Fattori, M; Petelski, T; Tino, G M [Dipartimento di Fisica and LENS, Universita di Firenze, INFN - Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (Finland), Italy


    We describe our experiment MAGIA (misura accurata di G mediante interferometria atomica), in which we will use atom interferometry to perform a high precision measurement of the Newtonian gravitational constant G. Free-falling laser-cooled atoms in a vertical atomic fountain will be accelerated due to the gravitational potential of nearby source masses (SMs). Detecting this acceleration with techniques of Raman atom interferometry will enable us to assign a value to G. To suppress systematic effects we will implement a double-differential measurement. This includes launching two atom clouds in a gradiometer configuration and moving the SMs to different vertical positions. We briefly summarize the general idea of the MAGIA experiment and put it in the context of other high precision G-measurements. We present the current status of the experiment and report on analyses of the expected measurement accuracy.

  10. Atom Interferometry for Detection of Gravitational Waves: Progress and Prospects

    Hogan, Jason


    Gravitational wave astronomy promises to provide a new window into the universe, collecting information about astrophysical systems and cosmology that is difficult or impossible to acquire by other methods. Detector designs based on atom interferometry offer a number of advantages over traditional approaches, including access to conventionally inaccessible frequency ranges and substantially reduced antenna baselines. Atomic physics techniques also make it possible to build a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry has enabled observation of matter wave interference with atomic wavepacket separations exceeding 10 cm and interferometer durations of more than 2 seconds. These results are obtained in a 10-meter drop tower incorporating large momentum transfer atom optics. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.

  11. Distributed multi-frequency image reconstruction for radio-interferometry

    Deguignet, Jérémy; Mary, David; Ferrari, Chiara


    The advent of enhanced technologies in radio interferometry and the perspective of the SKA telescope bring new challenges in image reconstruction. One of these challenges is the spatio-spectral reconstruction of large (Terabytes) data cubes with high fidelity. This contribution proposes an alternative implementation of one such 3D prototype algorithm, MUFFIN (MUlti-Frequency image reconstruction For radio INterferometry), which combines spatial and spectral analysis priors. Using a recently proposed primal dual algorithm, this new version of MUFFIN allows a parallel implementation where computationally intensive steps are split by spectral channels. This parallelization allows to implement computationally demanding translation invariant wavelet transforms (IUWT), as opposed to the union of bases used previously. This alternative implementation is important as it opens the possibility of comparing these efficient dictionaries, and others, in spatio-spectral reconstruction. Numerical results show that the IUWT-...

  12. Integrated optics for astronomical interferometry; 1, Concept and astronomical applications

    Malbet, M; Schanen-Duport, J P; Berger, J P; Rousselet-Perraut, K; Benech, P


    We propose a new instrumental concept for long-baseline optical single-mode interferometry using integrated optics which were developed for telecommunication. Visible and infrared multi-aperture interferometry requires many optical functions (spatial filtering, beam combination, photometric calibration, polarization control) to detect astronomical signals at very high angular resolution. Since the 80's, integrated optics on planar substrate have become available for telecommunication applications with multiple optical functions like power dividing, coupling, multiplexing, etc. We present the concept of an optical / infrared interferometric instrument based on this new technology. The main advantage is to provide an interferometric combination unit on a single optical chip. Integrated optics are compact, provide stability, low sensitivity to external constrains like temperature, pressure or mechanical stresses, no optical alignment except for coupling, simplicity and intrinsic polarization control. The integra...

  13. Special topics in infrared interferometry. [Michelson interferometer development

    Hanel, R. A.


    Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.

  14. Using Atom Interferometry to Search for New Forces

    Wacker, Jay G.; /SLAC


    Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10{sup 2} and near-future advances will be able to rewrite the limits for forces with ranges from 100 {micro}m to 1km.

  15. Reconstruction of 3-D Temperature Field in Holographic Interferometry


    The tomography technique is commonly used for the reconstruction of holographic interferometry. However, the current reconstruction method doesn't consider the measurement errors which are non-avoidable in the measurement and will degrade the reconstruction quality. The factors affecting the reconstruction quality are analyzed and the distribution law of the reconstruction error with experimental errors is discussed. Finally, a method to improve the reconstruction quality—the Kalman filter method is presented.

  16. Atomic Interferometry with Detuned Counter-Propagating Electromagnetic Pulses

    Tsang, Ming -Yee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Atomic fountain interferometry uses atoms cooled with optical molasses to 1 μK, which are then launched in a fountain mode. The interferometer relies on the nonlinear Raman interaction of counter-propagating visible light pulses. We present models of these key transitions through a series of Hamiltonians. Our models, which have been verified against special cases with known solutions, allow us to incorporate the effects of non-ideal pulse shapes and realistic laser frequency or wavevector jitter.

  17. Laser Development for Gravitational-Wave Interferometry in Space

    Numata, Kenji; Camp, Jordan


    We are reporting on our development work on laser (master oscillator) and optical amplifier systems for gravitational-wave interferometry in space. Our system is based on the mature, wave-guided optics technologies, which have advantages over bulk, crystal-based, free-space optics. We are investing in a new type of compact, low-noise master oscillator, called the planar-waveguide external cavity diode laser. We made measurements, including those of noise, and performed space-qualification tests.

  18. Concept of an Effective Sentinel-1 Satellite SAR Interferometry System


    This brief study introduces a partially working concept being developed at IT4Innovations supercomputer (HPC) facility. This concept consists of several modules that form a whole body of an efficient system for observation of terrain or objects displacements using satellite SAR interferometry (InSAR). A metadata database helps to locate data stored in various storages and to perform basic analyzes. A special database has been designed to describe Sentinel-1 data, on its burst level. Custom Se...

  19. Time-domain Ramsey interferometry with interacting Rydberg atoms

    Sommer, Christian; Pupillo, Guido; Takei, Nobuyuki; Takeda, Shuntaro; Tanaka, Akira; Ohmori, Kenji; Genes, Claudiu


    We theoretically investigate the dynamics of a gas of strongly interacting Rydberg atoms subject to a time-domain Ramsey interferometry protocol. The many-body dynamics is governed by an Ising-type Hamiltonian with long-range interactions of tunable strength. We analyze and model the contrast degradation and phase accumulation of the Ramsey signal and identify scaling laws for varying interrogation times, ensemble densities, and ensemble dimensionalities.

  20. Fresnel rhombs as achromatic phase shifters for infrared nulling interferometry

    Mawet, D.; Hanot, Charles; Lenaers, C.; Riaud, Pierre; Defrere, Denis; Vandormael; Loicq, Jerôme; Fleury, K.; Plesseria, Jean-Yves; Surdej, Jean; Habraken, Serge


    We propose a new family of achromatic phase shifters for infrared nulling interferometry. These key optical components can be seen as optimized Fresnel rhombs, using the total internal reflection phenomenon, modulated or not. The total internal reflection indeed comes with a phase shift between the polarization components of the incident light. We propose a solution to implement this vectorial phase shift between interferometer arms to provide the destructive interference process needed to di...

  1. High Precision Signal Processing Algorithm for White Light Interferometry

    Kim, Jeonggon Harrison


    A new signal processing algorithm for absolute temperature measurement using white light interferometry has been proposed and investigated theoretically. The proposed algorithm determines the phase delay of an interferometer with very high precision (≪ one fringe) by identifying the zero order fringe peak of cross-correlation of two fringe scans of white light interferometer. The algorithm features cross-correlation of interferometer fringe scans, hypothesis testing and fine tuning. The hypot...

  2. Ers and Envisat Differential Sar Interferometry for subsidence monitoring

    Wegmüller, Urs; Strozzi, Tazio; Tosi, Luigi


    This paper reports on the potential of differential SAR interferometry to map land subsidence. After a presentation of the methodology, the focus will be on feasibility demonstration and accuracy assessment. The theoretical considerations are verified with the selected cases Ruhrgebiet, Mexico City, Bologna, and Euganean Geothermal Basin, representing fast (m/year) to slow (mm/year) deformation velocities. The accuracy of the generated deformation maps and the maturity of the required process...

  3. Imaging of acoustic fields using optical feedback interferometry.

    Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry


    This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.

  4. Algorithms and Array Design Criteria for Robust Imaging in Interferometry


    from the esteemed Harvard faculty. In particular, I would like to thank Prof. Yue Lu. I was very fortunate to be enrolled in the Statistical Inference... parents , Jean and Tom Kurien. xvi Introduction The use of optical interferometry as a multi-aperture imaging approach is attracting in- creasing...on the scene’s compactness, sparsity, or smoothness). In particular, a myriad of so-called self -calibration algorithms have been developed (see, e.g

  5. Ers and Envisat Differential Sar Interferometry for subsidence monitoring


    This paper reports on the potential of differential SAR interferometry to map land subsidence. After a presentation of the methodology, the focus will be on feasibility demonstration and accuracy assessment. The theoretical considerations are verified with the selected cases Ruhrgebiet, Mexico City, Bologna, and Euganean Geothermal Basin, representing fast (m/year) to slow (mm/year) deformation velocities. The accuracy of the generated deformation maps and the maturity of the required process...

  6. Terahertz reflection interferometry for automobile paint layer thickness measurement

    Rahman, Aunik; Tator, Kenneth; Rahman, Anis


    Non-destructive terahertz reflection interferometry offers many advantages for sub-surface inspection such as interrogation of hidden defects and measurement of layers' thicknesses. Here, we describe a terahertz reflection interferometry (TRI) technique for non-contact measurement of paint panels where the paint is comprised of different layers of primer, basecoat, topcoat and clearcoat. Terahertz interferograms were generated by reflection from different layers of paints on a metallic substrate. These interferograms' peak spacing arising from the delay-time response of respective layers, allow one to model the thicknesses of the constituent layers. Interferograms generated at different incident angles show that the interferograms are more pronounced at certain angles than others. This "optimum" angle is also a function of different paint and substrate combinations. An automated angular scanning algorithm helps visualizing the evolution of the interferograms as a function of incident angle and also enables the identification of optimum reflection angle for a given paint-substrate combination. Additionally, scanning at different points on a substrate reveals that there are observable variations from one point to another of the same sample over its entire surface area. This ability may be used as a quality control tool for in-situ inspection in a production line. Keywords: Terahertz reflective interferometry, Paint and coating layers, Non-destructive

  7. Neutron Interferometry at the National Institute of Standards and Technology

    D. A. Pushin


    Full Text Available Neutron interferometry has proved to be a very precise technique for measuring the quantum mechanical phase of a neutron caused by a potential energy difference between two spatially separated neutron paths inside interferometer. The path length inside the interferometer can be many centimeters (and many centimeters apart making it very practical to study a variety of samples, fields, potentials, and other macroscopic medium and quantum effects. The precision of neutron interferometry comes at a cost; neutron interferometers are very susceptible to environmental noise that is typically mitigated with large, active isolated enclosures. With recent advances in quantum information processing especially quantum error correction (QEC codes we were able to demonstrate a neutron interferometer that is insensitive to vibrational noise. A facility at NIST’s Center for Neutron Research (NCNR has just been commissioned with higher neutron flux than the NCNR’s older interferometer setup. This new facility is based on QEC neutron interferometer, thus improving the accessibility of neutron interferometry to the greater scientific community and expanding its applications to quantum computing, gravity, and material research.

  8. Denoising in electronic speckle pattern interferometry fringes by the filtering method based on partial differential equations

    Tang, Chen; Zhang, Fang; Yan, Haiqing; Chen, Zhanqing


    Denoising in electronic speckle pattern interferometry fringes is the key problem in electronic speckle pattern interferometry. We present the new filtering method based on partial differential equations (called PDE filtering method) to electronic speckle pattern interferometry fringes. The PDE filtering method transforms the image processing to solving the partial differential equations. We test the proposed method on experimentally obtained electronic speckle pattern interferometry fringes, and compare with traditional mean filtering and low-pass Fourier filtering methods. The experimental results show that the technique is capable of effectively removing noise. The PDE filtering method is flexible and has fast computational speed and stable results.

  9. Comparison of digital holographic interferometry and constant temperature anemometry for measurement of temperature field in fluid

    Doleček, Roman; Psota, Pavel; Lédl, Vít.; Vít, Tomáś; Dančová, Petra; Kopecký, Václav


    The presented paper shows possibility of using digital holographic interferometry (DHI) for temperature field measurement in moving fluids. This method uses a modified Twymann-Green setup having double sensitivity instead of commonly used Mach-Zehnder type of interferometer in order to obtain sufficient phases change of the field. On the other hand this setup is not light efficient as Mach-Zehnder interferometer. For measurement of the fast periodical phenomenon is not necessary to use always the high speed camera. One can consider this field to coherent phenomenon. With employing one digital camera synchronized to periodic field and external triggered one can capture whole period of the phenomenon. However the projections form one viewing direction of asymmetrical temperature field maybe misguided. Hence for sufficient examination of the asymmetrical field one should capture a large number of the phenomenon's projections from different viewing directions. This projections are later used for 3D tomographic reconstruction of the whole temperature field and its time evolution. One of the commonly used method for temperature field measurement in moving fluids is hot wire method - constant temperature anemometry (CTA). In contrast to whole field measurement of DHI it is an invasive point temperature measurement method. One of the limiting factor of using CTA in moving fluids is frequency of temperature changes. This changes should not exceed 1 kHz. This limitation could be overcome by using of optical methods such as DHI. The results of temperature field measurement achieved by both method are compared in the paper.

  10. 云纹干涉与钻孔法测量搅动摩擦焊接头的残余应力%Measuring Residual Stress of Friction Stir Welding by Moiré Interferometry and Hole-Drilling Method

    亚敏; 戴福隆; 吕坚



  11. L’effet du style d’apprentissage sur la mémoire transactive d’équipes collaboratives en formation à distance

    Sandrine Decamps


    Full Text Available L’objectif de cette contribution est d’étudier l’effet du style d’apprentissage sur le système de mémoire transactive d’équipes collaboratives. Pour ce faire, trois modalités de constitution d’équipes ont été expérimentées auprès de 126 apprenants impliqués dans deux activités collectives. L’analyse du système de mémoire transactive révèle une influence positive de la modalité de constitution d’équipes. Le fait de constituer des équipes équilibrées en tenant compte du style d’apprentissage participatif favorise chez l’apprenant une meilleure perception de la spécialisation et de la crédibilité de ses coéquipiers.

  12. 三维打印莫尔条纹的研究%Research on Moire Pattern of Three Dimensional Printing

    赵淑霞; 杨伟民


    As the continuous reduction of cost and rapid development of technology, three dimensional printing technologies have been used in a wide array of applications, and its products has gradually stepped into public life. Currently, one of the biggest barriers in the development of the 3D printing technology is the simple and monotonous exterior appearance of the products, which rarely have complex and rich pattern or colors. Based on the Moire phenomenon in the 3D printing process, this paper analyzes the formation of this phenomenon, which is subsequently applied in the construction of dynamic pattern in the appearance of fabricated parts. Then, the dynamic pattern is extended to the dynamic geometry for the appearance of parts by integrating the expected geometry into the tool-path for each layer in the filling process. The dynamic geometry can be relatively complex depending on the tool path design. The results of this research provide an effective method for improving the exterior appearance of fabricated parts, and also increase the potential application of 3D printing technologies.%随着成本的不断降低与技术的快速发展,三维打印技术(three dimensional printing,3DP)在越来越多的领域得到应用,制造的产品也逐渐步入大众的生活。目前阻碍3DP产品进一步推广的一个很大瓶颈在于单调呆板的产品外观,很难制造出具有复杂丰富表面的制件。本文对三维打印中莫尔现象的形成机理进行研究并将该现象用于构建动态条纹来使3DP的制件拥有复杂变化的表面外观。基于动态条纹的形成原理,将期望的几何图案信息整合到层片的填充路径中最后可得到复杂的动态图案。该研究成果为提高制件的外观质量提供了有效的解决方法,可进一步扩展三维打印技术的应用领域。

  13. MIS: A MIRIAD Interferometry Singledish Toolkit

    Pound, M. W.; Teuben, P.


    Building on the “drPACS” contribution at ADASS XX of a simple Unix pipeline infrastructure, we implemented a pipeline toolkit using the package MIRIAD to combine Interferometric and Single Dish data (MIS). This was prompted by our observations made with the Combined Array For Research in Millimeter-wave Astronomy (CARMA) interferometer of the star-forming region NGC 1333, a large survey highlighting the new 23-element and singledish observing modes. The project consists of 20 CARMA datasets each containing interferometric as well as simultaneously obtained single dish data, for 3 molecular spectral lines and continuum, in 527 different pointings, covering an area of about 8 by 11 arcminutes. A small group of collaborators then shared this toolkit and their parameters via CVS, and scripts were developed to ensure uniform data reduction across the group. The pipeline was run end-to-end each night as new observations were obtained, producing maps that contained all the data to date. We will show examples of the scripts and data products. This approach could serve as a model for repeated calibration and mapping of large mixed-mode correlation datasets from ALMA.

  14. Speckle Interferometry at SOAR in 2014

    Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.; Mendez, Rene A.; Horch, Elliott P.


    The results of speckle interferometric observations at the Southern Astrophysical Research Telescope (SOAR) telescope in 2014 are given. A total of 1641 observations were taken, yielding 1636 measurements of 1218 resolved binary and multiple stars and 577 non-resolutions of 441 targets. We resolved for the first time 56 pairs, including some nearby astrometric or spectroscopic binaries and ten new subsystems in previously known visual binaries. The calibration of the data is checked by linear fits to the positions of 41 wide binaries observed at SOAR over several seasons. The typical calibration accuracy is 0.°1 in angle and 0.3% in pixel scale, while the measurement errors are on the order of 3 mas. The new data are used here to compute 194 binary star orbits, 148 of which are improvements on previous orbital solutions and 46 are first-time orbits. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  15. Magnetostriction Measured by Holographic Interferometry with the Simple and Inexpensive "Arrowhead" Setup

    Ladera, Celso L.; Donoso, Guillermo; Contreras, Johnny H.


    Double-exposure holographic interferometry is applied to measure the "linear" or "longitudinal" magnetostriction constant of a soft-ferrite rod. This high-accuracy measurement is done indirectly, by measuring the small rotations of a lever in contact with the rod using double-exposure holographic interferometry implemented with a robust…

  16. Measurement of Microscopic Deformations Using Double-Exposure Holographic Interferometry and the Fourier Transform Method

    Percival Almoro


    Full Text Available Microscopic deformations on the surface of a circular diaphragm were measured using double exposure holographic interferometry and Fourier transform method (FTM. The three-dimensional surface deformations were successfully visualized by applying FTM to holographic interferogram analysis. The minimum surface displacement measured was 0.317 µm. This was calibrated via the Michelson interferometry technique.

  17. Two-Pion Interferometry for the Granular Source in Heavy Ion Collisions at LHC Energies

    尹洪杰; 安飞; 张卫宁


    The space-time characters of the pion-emitting sources produced in the heavy ion collisions at the Large Hadron Collider (LHC) energies are investigated in a granular source model of quark-gluon plasma droplets. The results of two-pion interferometry indicate that the longi- tudinal interferometry radius is sensitive to the initial breakup time of the system. For a larger breakup time the values of the longitudinal interferometry radius for the LHC source are larger than that of the source produced in the collisions at the Relativistic Heavy Ion Collider's (RHIC) top energy. However, the values of the longitudinal radius are smaller if the source fragments at a smaller breakup time with a higher initial temperature of the droplets. The values of the transverse interferometry radius in the "side" direction for the LHC sources are larger than those for the RHIC source. The imaging analyses for the characteristic quantities of the granular sources are consistent with the interferometry radii.

  18. Hypocentric Relocations Aided by Virtual Receivers Constructed via Seismic Interferometry?

    Horowitz, F. G.


    The 3D elastic wave propagation program (WPP; Petersson & Sjogreen, B 2011) has been used to investigate whether the technique of Curtis et al. (2009) can be used to improve hypocentric relocations by employing virtual receivers near a cloud of microearthquakes. The virtual receiver technique can be loosely described as the "dual" of the ambient noise technique from seismic interferometry -- replacing noise sources on the boundary of a region of interest with physical receivers. Seismograms from events in the interior of the region of interest can be cross-correlated and integrated over all boundary receivers to estimate a seismogram from one of the interior events as if it were recorded at the location of another interior event. Unlike ambient noise interferometry, where raypaths from all directions impinge on the region of interest, Virtual Receivers raypath directions are constrained by the location of the physical receiver array. Hence, approximating the surface integral plays a large role in the practical success of the technique. Fortunately, stationary-phase arguments suggest that only a few physical receivers nearby the interior-source to virtual-receiver ray direction suffice to reconstruct the seismogram (as described in Curtis et al., 2009). Arrival time error statistics supporting this conclusion from WPP simulations will be shown at the meeting. Additionally, relocations of perturbed synthetic hypocenters using virtual receiver arrivals are anticipated by the time of the meeting. References: Curtis, A., Nicolson, H., Halliday, D., Trampert, J., & Baptie, B. (2009). Virtual seismometers in the subsurface of the earth from seismic interferometry. Nature Geoscience, 2 (10), 700-704. Petersson, N. A., & Sjogreen, B. (2011). User's guide to WPP version 2.1.5. Lawrence Livermore National Laboratory.

  19. Final state interactions in two-particle interferometry

    Anchishkin, D V; Renk, P


    We reconsider the influence of two-particle final state interactions (FSI) on two-particle Bose-Einstein interferometry. We concentrate in particular on the problem of particle emission at different times. Assuming chaoticity of the source, we derive a new general expression for the symmetrized two-particle cross section. We discuss the approximations needed to derive from the general result the Koonin-Pratt formula. Introducing a less stringent version of the so-called smoothness approximation we also derive a more accurate formula. It can be implemented into classical event generators and allows to calculate FSI corrected two-particle correlation functions via modified Bose-Einstein "weights".

  20. Thermomechanical Behaviour of a PWB by Speckle Interferometry Technique

    Bartolomeo Trentadue


    Full Text Available The speckle interferometry technique has been used in this work in order to determine the thermomechanical behaviour of Printed Wiring Board (PWB (circuits of a radio integrated with tape player and speakers. A preliminary experiment of such technique has been carried out on a single electronic component (silicon transistor, during the thermal transient and at the steady state. The thermal deformation and stresses on PWB have been obtained through related experimental analyses on both cases. The results showed a very good applicability of speckle technique on the irregular object surface as PWB.

  1. Interferometry to Determine Stellar Shapes: Application to Achernar

    Kervella, Pierre


    The shape of stellar photospheres can depart significantly from the spherical geometry, due e.g. to fast rotation. In this chapter, I focus on the application of long-baseline interferometry to the determination of the photospheric shape of fast rotating stars. I present the example of the VLT Interferometer observations of the nearby Be star Achernar (α Eri), using the VINCI (two telescopes) and PIONIER (four telescopes) beam combiners. I present the adjustment of a simplified model of the light distribution of Achernar to the measured interferometric visibilities and closure phases . This example application is based on the LITpro software from the JMMC.

  2. Variational denoising method for electronic speckle pattern interferometry

    Fang Zhang; Wenyao Liu; Chen Tang; Jinjiang Wang; Li Ren


    Traditional speckle fringe patterns by electronic speckle pattern interferometry (ESPI) are inherently noisy and of limited visibility, so denoising is the key problem in ESPI. We present the variational denoising method for ESPI. This method transforms the image denosing to minimizing an appropriate penalized energy function and solving a partial differential equation. We test the proposed method on computer-simulated and experimental speckle correlation fringes, respectively. The results show that this technique is capable of significantly improving the quality of fringe patterns. It works well as a pre-processing for the fringe patterns by ESPI.

  3. Thermal characterization of optical fibers using wavelength-sweeping interferometry

    Perret, Luc; Pfeiffer, Pierre; Serio, Bruno; Twardowski, Patrice


    In this paper, we report a new method of thermal characterization of optical fibers using wavelength-sweeping interferometry and discuss its advantages compared to other techniques. The setup consists of two temperature-stabilized interferometers, a reference Michelson and a Mach-Zehnder, containing the fiber under test. The wavelength sweep is produced by an infrared tunable laser diode. We obtained the global phase shift coefficients of a large effective area fiber and gold-coated fiber optics with a 10{sup -7} accuracy.

  4. Coherent Anti-Stokes Raman Scattering Heterodyne Interferometry

    Bredfeldt, J S; Vinegoni, C; Hambir, S; Boppart, S A


    A new interferometric technique is demonstrated for measuring Coherent Anti-Stokes Raman Scattering (CARS) signals. Two forward-directed CARS signals are generated, one in each arm of an interferometer. The deterministic nature of the CARS process allows for these two signals, when spatially and temporally overlapped, to interfere with one another. Heterodyne detection can therefore be employed to increase the sensitivity in CARS signal detection. In addition, nonlinear CARS interferometry will facilitate the use of this spectroscopic technique for molecular contrast in Optical Coherence Tomography (OCT).

  5. Interferometry using binary holograms without high order diffraction effects.

    Boruah, Bosanta R; Love, Gordon D; Neil, Mark A A


    We describe a technique for a phase-stepping interferometer based on programmable binary phase holograms, particularly useful for optical testing of aspheric or free-form surfaces. It is well-known that binary holograms can be used to generate reference surfaces for interferometry, but a major problem is that cross talk from higher diffraction orders and aliasing can reduce the fidelity of the system. Here, we propose a new encoding technique which improves the accuracy of the technique and demonstrate its implementation using a binary liquid crystal spatial light modulator.

  6. Application Of Holographic Interferometry To Practical Vibration Study

    Murata, M.; Kuroda, M.


    This paper describes a brief summary of applications of holographic interferometry to practical vibration study in Nagasaki Technical Institute of MHI. The applications of vibration mode measurement are concerned with steam turbine blades, compressor impeller, internal combustion engine, car body and car brake disk. The techniques of holography contained herein are (1) the time average method giving contour fringes of vibration amplitude,(2)the phase modulation method providing information on the relative phases of vibration, and(3)the double pulse method that offers the possibility of visualizing the vibration pattern of internal combustion engine in operating condition,and the transient vibration pattern of an object excited by impact force.

  7. High-precision Absolute Coordinate Measurement using Frequency Scanned Interferometry

    Chen, Tianxiang; Riles, Keith; Li, Cheng


    In this paper, we report high-precision absolute position measurement performed with frequency scanned interferometry (FSI). We reported previously on measurement of absolute distance with FSI [1]. Absolute position is determined by several related absolute distances measured simultaneously. The achieved precision of 2-dimensional measurements is better than 1 micron, and in 3-dimensional measurements, the precision on X and Y is confirmed to be below 1 micron, while the confirmed precision on Z is about 2 microns, where the confirmation is limited by the lower precision of the moving stage in Z direction.

  8. Background-Free Nonlinear Microspectroscopy with Vibrational Molecular Interferometry

    Garbacik, Erik T.; Korterik, Jeroen P.; Otto, Cees; Mukamel, Shaul; Herek, Jennifer L.; Offerhaus, Herman L.


    We demonstrate a method for performing nonlinear microspectroscopy that provides an intuitive and unified description of the various signal contributions, and allows the direct extraction of the vibrational response. Three optical fields create a pair of Stokes Raman pathways that interfere in the same vibrational state. Frequency modulating one of the fields leads to amplitude modulations on all of the fields. This vibrational molecular interferometry technique allows imaging at high speed free of nonresonant background, and is able to distinguish between electronic and vibrational contributions to the total signal. PMID:22243075

  9. An in situ method for diagnosing phase shifting interferometry

    Shao, J.; Ma, D.; Zhang, H.; Xie, Y.


    Current diagnosing phase shifting interferometry is a time and funds consuming process. Hence a brief and effective method is necessary to satisfy the real-time testing. In this paper, mathematical solutions for errors were deduced from the difference of intensity patterns. Based on the diversity of error distributions, an effective method for distinguishing and diagnosing the error sources is proposed and verified by an elaborative designed simulation. In the actual comparison experiment, vibration, phase-shift error and intensity fluctuation were imposed to demonstrate this method. The results showed that this method can be applied into the real-time measurement and provide an in situ diagnosing technique.

  10. Linear approximation for measurement errors in phase shifting interferometry

    van Wingerden, Johannes; Frankena, Hans J.; Smorenburg, Cornelis


    This paper shows how measurement errors in phase shifting interferometry (PSI) can be described to a high degree of accuracy in a linear approximation. System error sources considered here are light source instability, imperfect reference phase shifting, mechanical vibrations, nonlinearity of the detector, and quantization of the detector signal. The measurement inaccuracies resulting from these errors are calculated in linear approximation for several formulas commonly used for PSI. The results are presented in tables for easy calculation of the measurement error magnitudes for known system errors. In addition, this paper discusses the measurement error reduction which can be achieved by choosing an appropriate phase calculation formula.

  11. Two-wavelength phase shift interferometry to characterize ballistic features

    Pagano, Glenn W.; Mann, Christopher J.


    We apply two-wavelength phase shifting interferometry to generate 3D surface profile maps of spent bullet cartridge cases. From the captured interferograms, an optimized algorithm was used to calculate a phase profile from which a precise digital surface map of the cartridge casing may be produced. This 3D surface profile is used to enhance a firearms examiner's ability to uniquely identify distinct features or toolmarks imprinted on the casing when the weapon is fired. These features play a key role in the matching process of ballistic forensic examination.

  12. Fast and accurate line scanner based on white light interferometry

    Lambelet, Patrick; Moosburger, Rudolf


    White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is

  13. Application of linear systems theory to characterize coherence scanning interferometry

    Mandal, Rahul; Palodhi, Kanik; Coupland, Jeremy; Leach, Richard; Mansfield, Daniel


    This paper considers coherence scanning interferometry as a linear filtering operation that is characterised by a point spread function in the space domain or equivalently a transfer function in the frequency domain. The applicability of the theory is discussed and the effects of these functions on the measured interferograms, and their influence on the resulting surface measurements, are described. The practical characterisation of coherence scanning interferometers using a spherical reference artefact is then considered and a new method to compensate measurement errors, based on a modified inverse filter, is demonstrated.

  14. New orbits based on speckle interferometry at SOAR

    Tokovinin, Andrei


    Orbits of 55 visual binary stars are computed using recent speckle interferometry data from the SOAR telescope: 33 first-time orbits and 22 revisions of previous orbit calculations. The orbital periods range from 1.4 to 370 years, the quality of orbits ranges from definitive to preliminary and tentative. Most binaries consist of low-mass dwarfs and have short periods (median period 31 years). The dynamical parallaxes and masses are evaluated and compared to the Hipparcos parallaxes. Using differential speckle photometry, binary components are placed on the color-magnitude diagram.

  15. The relevance of internal states in molecular de Broglie interferometry

    Gring, Michael; Gerlich, Stefan; Hackermueller, Lucia; Ulbricht, Hendrik; Arndt, Markus [Faculty of Physics, University of Vienna (Austria); Hornberger, Klaus [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universitaet Muenchen (Germany); Mueri, Marcel; Tuexen, Jens; Mayor, Marcel [University of Basel (Switzerland). Department of Chemistry


    We present recent matter wave interferometry results with perfluoroalkyl-functionalized azobenzene molecules. These long molecular chains are interesting for future decoherence and metrology experiments since they can be optically switched between two different conformers. We discuss the question under which conditions one can identify different molecular conformations using the Kapitza-Dirac-Talbot-Laue interference scheme that was recently developed in our group. We further examine the influence of state-dependent molecular properties such as the polarizability or dipole moment on the interference pattern and the experimental modifications required to reveal these properties also in various other molecular systems.

  16. Spherical grating based x-ray Talbot interferometry

    Cong, Wenxiang, E-mail:, E-mail:, E-mail:; Xi, Yan, E-mail:, E-mail:, E-mail:; Wang, Ge, E-mail:, E-mail:, E-mail: [Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)


    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  17. Monitoring Crustal Deformations with Radar Interferometry:A Review

    刘国祥; 丁晓利; 黄丁发


    The crustal movements, probably motivating earthquakes, are considered as one of the main geodynamic sources. The quantitative measurements of ground surface deformations are vital for studying mechanisms of the buried faults or even estimating earthquake potential. A new space-geodetic technology, synthetic aperture radar interferometry (InSAR), can be applied to detect such large-area deformations, and has demonstrated some prominent advantages. This paper reviews the capacity and limitations of InSAR, and summarises the existing applications including some of our results in studying the earthquake-related crustal motions.Finally it gives the outlook for the future development of InSAR.

  18. Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry

    Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.; Mendoza, Albert


    We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.

  19. Reducing phase singularities in speckle interferometry by coherence tailoring

    Mantel, Klaus


    Speckle interferometry is an established optical metrology tool for the characterization of rough objects. The raw phase, however, is impaired by the presence of phase singularities, making the unwrapping procedure ambiguous. In a Michelson setup, we tailor the spatial coherence of the light source, achieving a physical averaging of independent, mutually incoherent speckle fields. In the resulting raw phase, the systematic phase is preserved while the number of phase singularities is greatly reduced. Both interferometer arms are affected by the averaging. The reduction is sufficient to even allow the use of a standard unwrapping algorithm originally developed for smooth surfaces only.

  20. Optical Frequency-Modulated Continuous-Wave (FMCW) Interferometry

    Zheng, Jesse


    This book introduces the optical frequency-modulated continuous-wave (FMCW) interferometry - a new field of optics that is derived from radar. The study of optical FMCW interference not only updates our knowledge about the nature of light, but also creates an advanced technology for precision measurements. The principles, applications and signal processing of optical FMCW interference are systematically discussed. This book is intended for scientists and engineers in both academia and industry. It is especially suited to professionals who are working in the field of measurement instruments.

  1. Two-pion interferometry for a partially coherent evolution source

    LI Jian-Wei; YU Li-Li; ZHANG Wei-Ning


    We give the formulas of two-pion Hanbury-Brown-Twiss (HBT) correlation function for a partially coherent evolution pion-emitting source,using quantum probability amplitudes in a path-integral formalism.The multiple scattering of the particles in the source is taken into consideration based on Glauber scattering theory.Two-pion interferometry with effects of the multiple scattering and source collective expansion is examined for a partially coherent source of hadronic gas with a finite baryon density and evolving hydrodynamically.We do not find observable effect of either the multiple scattering or the source collective expansion on HBT chaotic parameter.

  2. Spectral-domain interferometry for quantitative DIC microscopy

    Li, Chengshuai; Zhu, Yizheng


    A spectral-domain differential interference contrast (SD-DIC) microscopy system is presented for quantitative imaging of both reflective and transparent samples. The spectral-domain interferometry, combined with the common-path DIC geometry, provides a shot noise-limited sensitivity of 14.3pm in optical pathlength gradient measurement. The optical resolution of the system was characterized using images of a USAF resolution target. Fused silica microspheres were imaged to demonstrate the reconstruction of two-dimensional optical pathlength topography from measured gradient fields. The exquisite sensitivity of the system showed potential in quantitative imaging of sub-diffraction limit objects such as gold nanoparticles.

  3. Spherical interferometry for the characterization of precision spheres

    Nicolaus, R. A.; Bartl, G.


    Interferometry with spherical wavefronts is usually used for characterizing precise optics. A special spherical interferometer was set up to measure the volume of high precision spheres used for the new definition of the SI unit kilogram, for which a fundamental constant, such as Planck’s constant h or Avogadro’s constant N A, was to be determined. Furthermore with this type of interferometer and with a special evaluating algorithm, absolute form deviations of spheres can be determined. With this knowledge, a sphere can be processed further to reach unrivaled small sphericity deviations.

  4. Recent advances in phase shifted time averaging and stroboscopic interferometry

    Styk, Adam; Józwik, Michał


    Classical Time Averaging and Stroboscopic Interferometry are widely used for MEMS/MOEMS dynamic behavior investigations. Unfortunately both methods require an extensive measurement and data processing strategies in order to evaluate the information on maximum amplitude at a given load of vibrating object. In this paper the modified strategies of data processing in both techniques are introduced. These modifications allow for fast and reliable calculation of searched value, without additional complication of measurement systems. Through the paper the both approaches are discussed and experimentally verified.

  5. Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry.

    Winkler, Amy M; Bonnema, Garret T; Barton, Jennifer K


    Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.

  6. Sandwich Hologram Interferometry For Determination Of Sacroiliac Joint Movements

    Vukicevic, S.; Vinter, I.; Vukicevic, D.


    Investigations were carried out on embalmed and fresh specimens of human pelvisis with preserved lumbar spines, hip joints and all the ligaments. Specimens were tested under static vertical loading by pulsed laser interferometry. The deformations and behaviour of particular pelvic parts were interpreted by providing computer interferogram models. Results indicate rotation and tilting of the sacrum in the dorso-ventral direction and small but significant movements in the cranio-caudal direction. Sandwich holography proved to be the only applicable method when there is a combination of translation and tilt in the range of 200 μm to 1.5 mm.

  7. Application of interferometry to studies of glacier dynamics

    Mohr, Johan Jacob; Madsen, Søren Nørvang


    Multi baseline repeat track interferometry (RTI) can potentially be used to measure both velocities and the micro topography of glaciers. The Danish Center for Remote Sensing (DCRS) in corporation with the Danish Polar Center (DPC) has established a test cite for studies of glacier dynamics...... on the Storstrommen glacier in North East Greenland. DCRS has acquired RTI data over the glacier in 1994 and 1995 and ERS-1/2 tandem mode data are also available. This paper presents recent results from this study. The advantages of satellite and airborne RTI respectively is described. The paper concludes...

  8. Two configurations of miniature Mirau interferometry for swept-source OCT imaging: applications in dermatology and gastroendoscopy

    Gorecki, Christophe


    The early diagnosis of cancer is essential since it can be treated more effectively when detected earlier. Visual inspection followed by histological examination is, still today, the gold standard for clinicians. However, a large number of unnecessary surgical procedures are still performed. New diagnostics aids are emerging including the recent techniques of optical coherence tomography (OCT) which permits non-invasive 3D optical biopsies of biological tissues, improving patient's quality of life. Nevertheless, the existing bulk or fiber optics systems are expensive, only affordable at the hospital and thus, not sufficiently used by physicians or cancer's specialists as an early diagnosis tool. We developed two different microsystems based on Mirau interferometry and applied for swept source OCT imaging: one for dermatology and second for gastroenterology. In both cases the architecture is based tem based on spectrally tuned Mirau interferometry. The first configuration, developed in the frame of the European project VIAMOS, includes an active array of 4x4 Mirau interferometers. The matrix of Mirau reference mirrors is integrated on top of an electrostatic vertical comb-drive actuator. In second configuration, developed in the frame of Labex ACTION, we adapted VIAMOS technology to develop an OCT endomicroscope with a single-channel passive Mirau interferometer.

  9. Créativité, au(ctorisation et dialogisme : le mémoire de master MEEF, miroir de l’expérience psychique ?

    Delarue-Breton Catherine


    Full Text Available L’écriture d’un mémoire de master signe simultanément, pour la plupart des étudiants qui s’engagent dans ce parcours, l’entrée dans la recherche et l’entrée dans l’écriture longue. Notre projet est de chercher à comprendre, à partir de l’analyse d’écrits successifs des étudiants, dans quelle mesure l’écrit mémoire – en tant que produit – est susceptible de révéler la nature d’un processus, au cours duquel des étudiants de master s’autorisent ou non l’émergence d’une voix propre à partir des voix d’autrui. Autrement dit, il s’agit pour nous de chercher à identifier quelques unes des marques linguistiques d’une auctorialité en devenir, que nous appelons, donc, au(ctorisation. Certaines formes linguistiques notables, comme les hésitations pronominales entre je et nous ou entre nous et on, attestent des tensions supportées par le sujet écrivant apprenti chercheur, notamment entre intégration dans une communauté discursive et émergence du sujet auteur, entre retrait objectif et implication personnelle, mais ne suffisent pas à garantir l’aboutissement du processus de négociation dialogique visant à élaborer sa propre voix à partir de celles d’autrui. D’autres en revanche, relatives à l’intégration des sources ou au statut épistémique des assertions par exemple, sont susceptibles de traduire des différences dans l’attitude – plus ou moins créative – du scripteur. Le mémoire de master pourrait ainsi porter les traces d’une forme d’au(ctorisation et révéler quelque chose de la manière dont on devient – ou non – auteur.

  10. Radio and IR interferometry of SiO maser stars

    Wittkowski, M; Gray, M D; Humphreys, E M L; Karovicova, I; Scholz, M


    Radio and infrared interferometry of SiO maser stars provide complementary information on the atmosphere and circumstellar environment at comparable spatial resolution. Here, we present the latest results on the atmospheric structure and the dust condensation region of AGB stars based on our recent infrared spectro-interferometric observations, which represent the environment of SiO masers. We discuss, as an example, new results from simultaneous VLTI and VLBA observations of the Mira variable AGB star R Cnc, including VLTI near- and mid-infrared interferometry, as well as VLBA observations of the SiO maser emission toward this source. We present preliminary results from a monitoring campaign of high-frequency SiO maser emission toward evolved stars obtained with the APEX telescope, which also serves as a precursor of ALMA images of the SiO emitting region. We speculate that large-scale long-period chaotic motion in the extended molecular atmosphere may be the physical reason for observed deviations from poin...

  11. HBT Pion Interferometry with Phenomenological Mean Field Interaction

    Hattori, K.


    To extract information on hadron production dynamics in the ultrarelativistic heavy ion collision, the space-time structure of the hadron source has been measured using Hanbury Brown and Twiss interferometry. We study the distortion of the source images due to the effect of a final state interaction. We describe the interaction, taking place during penetrating through a cloud formed by evaporating particles, in terms of a one-body mean field potential localized in the vicinity of the source region. By adopting the semiclassical method, the modification of the propagation of an emitted particle is examined. In analogy to the optical model applied to nuclear reactions, our phenomenological model has an imaginary part of the potential, which describes the absorption in the cloud. In this work, we focus on the pion interferometry and mean field interaction obtained using a phenomenological pipi forward scattering amplitude in the elastic channels. The p-wave scattering wit h rho meson resonance leads to an attractive mean field interaction, and the presence of the absorptive part is mainly attributed to the formation of this resonance. We also incorporate a simple time dependence of the potential reflecting the dynamics of the evaporating source. Using the obtained potential, we examine how and to what extent the so-called HBT Gaussian radius is varied by the modification of the propagation.

  12. Multi-link laser interferometry architecture for interspacecraft displacement metrology

    Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.


    Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80nm/√{Hz} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.

  13. High speed digital holographic interferometry for hypersonic flow visualization

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.


    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  14. Testing non-linear vacuum electrodynamics with Michelson interferometry

    Schellstede, Gerold O; Lämmerzahl, Claus


    We discuss the theoretical foundations for testing non-linear vacuum electrodynamics with Michelson interferometry. Apart from some non-degeneracy conditions to be imposed, our discussion applies to all non-linear electrodynamical theories of the Pleba\\'nski class, i.e., to all Lagrangians that depend only on the two Lorentz-invariant scalars quadratic in the field strength. The main idea of the experiment proposed here is to use the fact that, according to non-linear electrodynamics, the phase velocity of light should depend on the strength and on the direction of an electromagnetic background field. There are two possible experimental set-ups for testing this prediction with Michelson interferometry. The first possibility is to apply a strong electromagnetic field to the beam in one arm of the interferometer and to compare the situation where the field is switched on with the situation where it is switched off. The second possibility is to place the whole interferometer in a strong electromagnetic field and...

  15. Three-dimensional imaging using differential synthetic aperture interferometry

    Zhang, Ning; Zhou, Yu; Sun, Jianfeng; Zhi, Ya'nan; Lu, Zhiyong; Xu, Qian; Sun, Zhiwei; Liu, Liren


    Synthetic aperture radar interferometry (InSAR) can gain three-dimensional topography with high spatial resolution and height accuracy using across track interferometry[1]. Conventional InSAR produce three-dimensional images from SAR data. But when the working wavelength transit from microwave to optical wave, the transmission antenna and receive antenna become very sensitive to platform vibration and beam quality[2]. Through differential receive antenna formation, we can relax the requirement of platform and laser using synthetic aperture imaging ladar (SAIL) concept[3]. Line-of-sight motion constraints are reduced by several orders of magnitude. We introduce two distinctive forms of antenna formation according to the position of interferogram. The first architecture can simplify the interferogram processing and phase extraction algorithm under time-division multiplex operation. The second architecture can process the 2D coordinate and height coordinate at the same time. Using optical diffraction theory, a systematic theory of side-looking SAIL is mathematically formulated and the necessary conditions for assuring a correct phase history are established[4]. Based on optical transformation and regulation of wavefront, a side-looking SAIL of two distinctive architectures is invented and the basic principle, systematic theory, design equations and necessary conditions are presented. It is shown that high height accuracy can be reached and the influences from atmospheric turbulence and unmodeled line-of-sight motion can be automatically compensated.

  16. Non-null annular subaperture stitching interferometry for aspheric test

    Zhang, Lei; Liu, Dong; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian


    A non-null annular subaperture stitching interferometry (NASSI), combining the subaperture stitching idea and non-null test method, is proposed for steep aspheric testing. Compared with standard annular subaperture stitching interferometry (ASSI), a partial null lens (PNL) is employed as an alternative to the transmission sphere, to generate different aspherical wavefronts as the references. The coverage subaperture number would thus be reduced greatly for the better performance of aspherical wavefronts in matching the local slope of aspheric surfaces. Instead of various mathematical stitching algorithms, a simultaneous reverse optimizing reconstruction (SROR) method based on system modeling and ray tracing is proposed for full aperture figure error reconstruction. All the subaperture measurements are simulated simultaneously with a multi-configuration model in a ray-tracing program, including the interferometric system modeling and subaperture misalignments modeling. With the multi-configuration model, full aperture figure error would be extracted in form of Zernike polynomials from subapertures wavefront data by the SROR method. This method concurrently accomplishes subaperture retrace error and misalignment correction, requiring neither complex mathematical algorithms nor subaperture overlaps. A numerical simulation exhibits the comparison of the performance of the NASSI and standard ASSI, which demonstrates the high accuracy of the NASSI in testing steep aspheric. Experimental results of NASSI are shown to be in good agreement with that of Zygo® VerifireTM Asphere interferometer.

  17. Peptides and proteins in matter wave interferometry: Challenges and prospects

    Sezer, Ugur; Geyer, Philipp; Mairhofer, Lukas; Brand, Christian; Doerre, Nadine; Rodewald, Jonas; Schaetti, Jonas; Koehler, Valentin; Mayor, Marcel; Arndt, Markus


    Recent developments in matter wave physics suggest that quantum interferometry with biologically relevant nanomaterials is becoming feasible for amino acids, peptides, proteins and RNA/DNA strands. Quantum interference of biomolecules is interesting as it can mimic Schrödinger's cat states with molecules of high mass, elevated temperature and biological functionality. Additionally, the high internal complexity can give rise to a rich variety of couplings to the environment and new handles for quantitative tests of quantum decoherence. Finally, matter wave interferometers are highly sensitive force sensors and pave the way for quantum-assisted measurements of biomolecular properties in interaction with tailored or biomimetic environments. Recent interferometer concepts such as the Kapitza-Dirac-Talbot-Lau interferometer (KDTLI) or the Optical Time-domain Matter Wave interferometer (OTIMA) have already proven their potential for quantum optics in the mass range beyond 10000 amu and for metrology. Here we show our advances in quantum interferometry with vitamins and peptides and discuss methods of realizing cold, intense and sufficiently slow beams of synthetically tailored or hydrated polypeptides with promising properties for a new generation of quantum optics.

  18. Interferometry meets the third and fourth dimensions in galaxies

    Trimble, Virginia


    Radio astronomy began with one array (Jansky's) and one paraboloid of revolution (Reber's) as collecting areas and has now reached the point where a large number of facilities are arrays of paraboloids, each of which would have looked enormous to Reber in 1932. In the process, interferometry has contributed to the counting of radio sources, establishing superluminal velocities in AGN jets, mapping of sources from the bipolar cow shape on up to full grey-scale and colored images, determining spectral energy distributions requiring non-thermal emission processes, and much else. The process has not been free of competition and controversy, at least partly because it is just a little difficult to understand how earth-rotation, aperture-synthesis interferometry works. Some very important results, for instance the mapping of HI in the Milky Way to reveal spiral arms, warping, and flaring, actually came from single moderate-sized paraboloids. The entry of China into the radio astronomy community has given large (40-...

  19. Interferometry of binary stars using polymer optical fibres

    Arregui, L.; Illarramendi, M. A.; Zubia, J.; Hueso, R.; Sánchez-Lavega, A.


    We show a laboratory experiment in which students can learn the use of interferometry as a valuable tool in astronomy. We detail experiments based on the use of the classic Michelson stellar interferometer able to reproduce the size of single stars and to characterize double star systems. Stellar sources, single and double, are reproduced by a laser light emerging from the circular end faces of one or two step-index polymer optical fibres. Light coming from the fibre end faces passes through two identical pinholes located on a lid covering the objective of a small telescope, thus producing interference fringes. The measurement of the fringe visibilities allows us to estimate both the diameters of the simulated stars and the separation between them, with errors lower than 18% for a range of light sources that can recreate the apparent size of the outer Solar System planets Uranus and Neptune and the binary properties of the Alpha Centauri system. The exercises here described illustrate the optical principles of spatial interferometry and can be integrated into courses on astronomy, optics or space science, with close interaction between theory and experiment.

  20. Generative Moire Structures

    Adrian – Mihail Marian


    Full Text Available “GRAPHIC ON COMPUTER” – the work of the Czech Petar Milojevic, published in Titus Mocanu’s book “THE MODERN ART’S MORPHOLOGY”, in 1973, had great influence on me. I tried to discover the algorithm that generated this work. It was not so difficult to do and in a short time I was able to draw 12 such structures. In time, with interruptions, I have returned to this kind of works. In my personal exhibition “CYBERNETIC DESIGN” that took place at “M4-1-13-etopa” gallery of Pitesti, in March 1981, I have presented 8 such structures. To my joy, they had an impact on art lovers.

  1. moire vive

    Sophie Gosselin


    Full Text Available  « Les philosophes n'ont jamais eu de destinataires institués, ce n'est pas nouveau. La destination de la réflexion est aussi un objet de réflexion. La fin de série dure depuis longtemps, et la solitude. Il y a pourtant du nouveau. C'est le rapport au temps, on est tenté d'écrire : l'« usage du temps », qui règne dans l'« espace public » aujourd'hui. On ne repousse pas la réflexion parce qu'elle est dangereuse ou dérangeante, mais simplement parce qu'elle fait perdre du temps, et ne « sert à ...

  2. V. Ortiz, V. Jorge, & A. Lopez. Viva la Républica. Mémoires d’un couple de républicains espagnols

    Veith, Blandine


    Ce récit autobiographique, à deux voix, celle de Vicente Ortiz, né en 1908, et celle d’Angeles Jorge Lopez, son épouse née en 1916, relate la tranche de leur vie se situant pendant la seconde République espagnole (1931-1936), puis pendant la guerre civile (1936-1939) et enfin sous le régime de Franco jusqu’à l’exil en France en 1947. L’ouvrage est publié dans une édition bilingue. Vicente s’adresse à ses petits-enfants et à ses arrière-petits-enfants pour leur transmettre la mémoire de cette ...

  3. No limiar da História e da Memória: um estudo de \\'Mes Mémoires\\', de Alexandre Dumas

    Maria Lúcia Dias Mendes


    A tese faz uma leitura da obra Mes mémoires de Alexandre Dumas a partir da visão de Georges Gusdorf sobre as escrituras do eu. A pesquisa parte da hipótese de que mesmo sendo uma obra memorialística mescla interesses e técnicas utilizadas por Dumas em outras obras. No início, as idéias de Philippe Lejeune e de Georges Gusdorf são apresentadas, e o conceito de memória esboçado. Devido à profunda ligação entre memória e História, analisou-se as mudanças ocorridas no início do século XIX na hist...

  4. Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry

    Boerner, Wolfgang-Martin


    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly, and these novel radar technologies are revamping Synthetic Aperture Radar Imaging decisively. In this exposition the successive advancements are sketched; beginning with the fundamental formulations and high-lighting the salient points of these diverse remote sensing techniques. Whereas with radar polarimetry the textural fine-structure, target-orientation and shape, symmetries and material constituents can be recovered with considerable improvements above that of standard amplitude-only Polarization Radar ; with radar interferometry the spatial (in depth) structure can be explored. In Polarimetric-Interferometric Synthetic Aperture Radar (POL-IN-SAR) Imaging it is possible to recover such co-registered textural plus spatial properties simultaneously. This includes the extraction of Digital Elevation Maps (DEM) from either fully Polarimetric (scattering matrix) or Interferometric (dual antenna) SAR image data takes with the additional benefit of obtaining co-registered three-dimensional POL-IN-DEM information. Extra-Wide-Band POL-IN-SAR Imaging - when applied to Repeat-Pass Image Overlay Interferometry - provides differential background validation and measurement, stress assessment, and environmental stress-change monitoring capabilities with hitherto unattained accuracy, which are essential tools for improved global biomass estimation. More recently, by applying multiple parallel repeat-pass EWB-POL-D(RP)-IN-SAR imaging along stacked (altitudinal) or displaced (horizontal) flight-lines will result in Tomographic (Multi- Interferometric) Polarimetric SAR Stereo-Imaging , including foliage and ground penetrating capabilities. It is shown that the accelerated advancement of these modern EWB-POL-D(RP)-IN-SAR imaging techniques is of direct relevance and of paramount priority to wide-area dynamic homeland security surveillance and local-to-global environmental ground-truth measurement

  5. OIFITS 2: the 2nd version of the Data Exchange Standard for Optical (Visible/IR) Interferometry

    Duvert, Gilles; Hummel, Christian


    This paper describes version 2 of the OI Exchange Format (OIFITS), the standard for exchanging calibrated data from optical (visible/infrared) interferometers. This IAU-endorsed standard has been in use for 10 years at most of the past and current optical interferometer projects, including COAST, NPOI, IOTA, CHARA, VLTI, PTI and the Keck interferometer. Software is available for reading, writing and merging OI Exchange Format files. This version 2 provides definitions of additional data tables (e.g. for polarisation measurements), addressing the needs of future interferometric instruments. Also included are data columns for a more rigorous description of measurement errors and their correlations. In that, this document is a step towards the design of a common data model for optical interferometry. Finally, the main OIFITS header is expanded with several new keywords summarising the content to allow data base searches.

  6. Status of a UAVSAR designed for repeat pass interferometry for deformation measurements

    Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren; Paul, Rose


    NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also known as differential interferometric measurements. Differential interferometry can provide key deformation measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar wilI be designed to operate on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus buitt by Scaled Composites or on a NASA Gulfstream III. The radar design is a fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered along track to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. Other features supported by the antenna include an elevation monopulse option and a pulse-to-pulse resteering capability that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began out as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  7. Digital algorithms for parallel pipelined single-detector homodyne fringe counting in laser interferometry

    Rerucha, Simon; Sarbort, Martin; Hola, Miroslava; Cizek, Martin; Hucl, Vaclav; Cip, Ondrej; Lazar, Josef


    The homodyne detection with only a single detector represents a promising approach in the interferometric application which enables a significant reduction of the optical system complexity while preserving the fundamental resolution and dynamic range of the single frequency laser interferometers. We present the design, implementation and analysis of algorithmic methods for computational processing of the single-detector interference signal based on parallel pipelined processing suitable for real time implementation on a programmable hardware platform (e.g. the FPGA - Field Programmable Gate Arrays or the SoC - System on Chip). The algorithmic methods incorporate (a) the single detector signal (sine) scaling, filtering, demodulations and mixing necessary for the second (cosine) quadrature signal reconstruction followed by a conic section projection in Cartesian plane as well as (a) the phase unwrapping together with the goniometric and linear transformations needed for the scale linearization and periodic error correction. The digital computing scheme was designed for bandwidths up to tens of megahertz which would allow to measure the displacements at the velocities around half metre per second. The algorithmic methods were tested in real-time operation with a PC-based reference implementation that employed the advantage pipelined processing by balancing the computational load among multiple processor cores. The results indicate that the algorithmic methods are suitable for a wide range of applications [3] and that they are bringing the fringe counting interferometry closer to the industrial applications due to their optical setup simplicity and robustness, computational stability, scalability and also a cost-effectiveness.

  8. Z-pinch equilibrium and instability analysis with digital holographic interferometry

    Ross, M. P.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Hughes, M. C.; Claveau, E. L.; Weed, J. R.; Forbes, E. G.; Doty, S. A.; Kim, B.


    The ZaP-HD Flow Z-Pinch project generates flow shear stabilized Z-pinches, providing a platform to explore how such plasmas could scale to HEDP and fusion reactor conditions. To scale up the plasma's density and temperature, it must be compressed to a smaller size making measurements more difficult. Digital holographic interferometry (DHI) employing a pulsed Nd:YAG laser and consumer DSLR camera can spatially resolve the plasma's electron density. The Fresnel reconstruction method allows expedient numerical data reconstruction. Obtaining electron density radial profiles relies on applying an Abel inversion to convert measured line-integrated density, and the inversion process provides an independent measure of plasma symmetry. Entire Z-pinch equilibria (n, P, T, and B profiles) can be computed by applying physical models to the density data. Tracking the time evolution of pressure and density can reveal the presence of non-adiabatic heating mechanisms. Imaging the size scales of instabilities enables relative measures of viscosity at different positions and times. Error estimation of measured density profiles is presented along with observed asymmetric instabilities. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  9. A Terrestrial Search for Dark Contents of the Vacuum, Such as Dark Energy, Using Atom Interferometry

    Adler, Ronald J.; /Stanford U., HEPL /San Francisco State U.; Muller, Holger; /UC, Berkeley; Perl, Martin L.; /KIPAC, Menlo Park /SLAC


    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark contents of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but which might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong nongravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO. The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The laboratory apparatus is now being constructed.

  10. Relativistic stellar aberration for the Space Interferometry Mission

    Turyshev, S G


    This paper analyses the relativistic stellar aberration requirements for the Space Interferometry Mission (SIM). We address the issue of general relativistic deflection of light by the massive self-gravitating bodies. Specifically, we present estimates for corresponding deflection angles due to the monopole components of the gravitational fields of a large number of celestial bodies in the solar system. We study the possibility of deriving an additional navigational constraints from the need to correct for the gravitational bending of light that is traversing the solar system. It turns out that positions of the outer planets presently may not have a sufficient accuracy for the precision astrometry. However, SIM may significantly improve those simply as a by-product of its astrometric program. We also consider influence of the higher gravitational multipoles, notably the quadrupole and the octupole ones, on the gravitational bending of light. Thus, one will have to model and account for their influence while o...

  11. Sensitivity of atom interferometry to ultralight scalar field dark matter

    Geraci, Andrew A


    We discuss the use of atom interferometry as a tool to search for Dark Matter (DM) composed of ultra-light scalar fields. Previous work on ultra-light DM detection using accelerometers has considered the possibility of equivalence principle violating effects whereby gradients in the dark matter field can directly produce relative accelerations between media of differing composition. In atom interferometers, we find that time-varying phase signals from oscillatory, or dilaton-like, DM can also arise due to changes in the atom rest mass that can occur between light-pulses throughout the interferometer sequence as well as changes in the earth's gravitational field. We estimate that several orders of magnitude of unexplored phase space for light DM fields can be probed with our proposed method.

  12. Antenna array characterization via radio interferometry observation of astronomical sources

    Colegate, T M; Hall, P J; Padhi, S K; Wayth, R B; de Vaate, J G Bij; Crosse, B; Emrich, D; Faulkner, A J; Hurley-Walker, N; Acedo, E de Lera; Juswardy, B; Razavi-Ghods, N; Tingay, S J; Williams, A


    We present an in-situ antenna characterization method and results for a "low-frequency" radio astronomy engineering prototype array, characterized over the 75-300 MHz frequency range. The presence of multiple cosmic radio sources, particularly the dominant Galactic noise, makes in-situ characterization at these frequencies challenging; however, it will be shown that high quality measurement is possible via radio interferometry techniques. This method is well-known in the radio astronomy community but seems less so in antenna measurement and wireless communications communities, although the measurement challenges involving multiple undesired sources in the antenna field-of-view bear some similarities. We discuss this approach and our results with the expectation that this principle may find greater application in related fields.

  13. Absolute distance sensing by two laser optical interferometry.

    Thurner, Klaus; Braun, Pierre-François; Karrai, Khaled


    We have developed a method for absolute distance sensing by two laser optical interferometry. A particularity of this technique is that a target distance is determined in absolute and is no longer limited to within an ambiguity range affecting usually multiple wavelength interferometers. We implemented the technique in a low-finesse Fabry-Pérot miniature fiber based interferometer. We used two diode lasers, both operating in the 1550 nm wavelength range. The wavelength difference is chosen to create a 25 μm long periodic beating interferometric pattern allowing a nanometer precise position measurement but limited to within an ambiguity range of 25 μm. The ambiguity is then eliminated by scanning one of the wavelengths over a small range (3.4 nm). We measured absolute distances in the sub-meter range and this with just few nanometer repeatability.

  14. Surface topology investigation for ancient coinage assessment using optical interferometry

    Grynszpan, R. I.; Pastol, J. L.; Lesko, S.; Paris, E.; Raepsaet, C.

    In order to demonstrate the capabilities of white-light interferometry depth profiling (WLI-DP) for ancient coinage assessment, we investigated a series of notorious 1786 gold coins, bearing Louis XVI's `horned' effigy, and allegedly minted in Strasbourg. Scanning electron microscopy as well as WLI-DP observations unambiguously indicate that both previously differentiated `single'- and `double'-horned varieties originated from a unique minting tool. Moreover, from topological measurements, we infer that `single-horned' coins, rather than wearing out into `double-horned' coins, proceeded from the latter variety during minting by progressive failure of an already altered die. Whereas present observations do not exclude initial forgery, they suggest that protrusions resulted from progressive incidental in-service die deterioration.

  15. Method for improving measurement efficiency of lateral shearing interferometry

    Li, Jie; Tang, Feng; Wang, Xiangzhao; Dai, Fengzhao; Ding, Lei; Chen, Bo; Yang, Xiaoyu; Chai, Liqun


    The computation time of wavefront reconstruction is decreased by sampling the difference fronts in the present study. The wavefront can be reconstructed with high accuracy up to 64 Zernike terms with only 32×32 sampled pixels. Furthermore, the computational efficiency can be improved by a factor of more than 1000, and the measurement efficiency of lateral shearing interferometry is improved. The influence of the terms used to reconstruct the wavefront, the grid size of the test wavefront, the shear ratio, and the random noise on the reconstruction accuracy is analyzed and compared, when the difference fronts are sampled with different grid sizes. Numerical simulations and experiments show that the relative reconstruction error is <5% if the grid size of the sampled difference fronts is more than four times the radial order of difference Zernike polynomials with a reasonable noise level and shear ratio.

  16. Quantum nonlocality in weak-thermal-light interferometry

    Tsang, Mankei


    In astronomy, interferometry of light collected by separate telescopes is often performed by physically interfering the optical paths in the form of the classic Young's double-slit experiment. Optical loss along the paths severely hampers the efficiency of this so-called direct detection method, limiting the maximum baseline between the telescopes and thus the achievable resolution. This problem motivates the fundamental question of whether one can achieve a comparable signal-to-noise performance by separate optical measurements at the two telescopes before combining the measurement results. Using quantum mechanics and estimation theory, here I show that any such spatially local measurement scheme, such as heterodyne or homodyne detection, is fundamentally inferior to coherently nonlocal measurements, such as direct detection, for estimating the mutual coherence of bipartite thermal light when the average photon flux is low. This surprising result can be regarded as a dual of Einstein-Podolsky-Rosen entanglem...

  17. Non-Classicality Criteria in Multi-port Interferometry

    Rigovacca, Luca; Metcalf, Benjamin J; Walmsley, Ian A; Kim, M S


    Quantum interference lies at the basis of fundamental differences between quantum and classical behaviors. It is thus crucial to understand the boundaries between what interference patterns can be described by classical wave mechanics and what, on the other hand, can only be understood with a proper quantum mechanical description. While a lot of work has already been done for the simple case of two-mode interference, the multi-mode case has not been fully explored yet. Here we derive bounds for classical models of light fields in a general scenario of intensity interferometry, and we show how they can be violated in a quantum framework. As a consequence, this violation acts as a non-classicality witness, able to detect the presence of sources with sub-Poissonian photon-number statistics. We also derive a criterion for certifying the indivisibility of a quantum interferometer and obtain a method to simultaneously measure the average pairwise distinguishability of the input sources.

  18. Flexible interferometry for optical aspheric and free form surfaces

    Zhang, Lei; Li, Dong; Liu, Yu; Bai, Yusi; Li, Jingsong; Yu, Benli


    A flexible interferometry is proposed to test concave optical aspheric and free-form surfaces. It employs a flexible aberration generator (FAG) consisting of a movable reflective sphere (MRS) and two counter-rotating optical wedges (CROW). The FAG is able to generate low-order Zernike aberrations to compensate the inherent aberrations of the test surface by the rotation of wedges in CROW and translation (or tilt) of the MRS. For some surfaces with mild departure, the FAG would result in a resolvable interferogram by the different aberrations compensation and the flexible test is thus achieved. The practical calibration for FAG is also reported. After calibration, experiment results showing the validity of the flexible test are presented by testing an ellipsoidal mirror and an off-axis paraboloidal mirror.

  19. Temporal intensity interferometry for characterization of very narrow spectral lines

    Tan, P. K.; Kurtsiefer, C.


    Some stellar objects exhibit very narrow spectral lines in the visible range additional to their blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow lines in Wolf-Rayet stars. However, the spectral resolution of conventional astronomical spectrographs is still about two orders of magnitude too low to test this hypothesis. We want to resolve the linewidth of narrow spectral emissions in starlight. A combination of spectral filtering with single-photon-level temporal correlation measurements breaks the resolution limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the time domain. We demonstrate in a laboratory experiment that temporal intensity interferometry can determine a 20-MHz-wide linewidth of Doppler-broadened laser light and identify a coherent laser light contribution in a blackbody radiation background.

  20. A self-tuning phase-shifting algorithm for interferometry.

    Estrada, Julio C; Servin, Manuel; Quiroga, Juan A


    In Phase Stepping Interferometry (PSI) an interferogram sequence having a known, and constant phase shift between the interferograms is required. Here we take the case where this constant phase shift is unknown and the only assumption is that the interferograms do have a temporal carrier. To recover the modulating phase from the interferograms, we propose a self-tuning phase-shifting algorithm. Our algorithm estimates the temporal frequency first, and then this knowledge is used to estimate the interesting modulating phase. There are several well known iterative schemes published before, but our approach has the unique advantage of being very fast. Our new temporal carrier, and phase estimator is capable of obtaining a very good approximation of their temporal carrier in a single iteration. Numerical experiments are given to show the performance of this simple yet powerful self-tuning phase shifting algorithm.