WorldWideScience

Sample records for projectile fragment beams

  1. Radioactive nuclear beam facilities based on projectile fragmentation

    International Nuclear Information System (INIS)

    Sherrill, B.M.

    1992-01-01

    The production of radioactive beams using direct separation techniques is discussed. The reaction mechanisms which can be used to produce radioactive beams with these techniques can be broadly divided into three groups, projectile fragmentation, nucleon transfer, and Coulomb disassociation. Radioactive nuclei produced in these ways have large forward momenta with relatively sharp angular distributions peaked near zero degrees which are suitable for collection with magnetic devices. Secondary beam intensities of up to a few percent of the primary beam intensity are possible, although depending on the production mechanism the beam emittance may be poor. Further beam purification can be achieved using atomic processes with profiled energy degraders. The features of the production reaction mechanism, separation techniques, and a review of world wide efforts are presented. The advantages and disadvantages of the method are presented, with discussion of techniques to overcome some of the disadvantages. (Author)

  2. Universality of projectile fragmentation model

    International Nuclear Information System (INIS)

    Chaudhuri, G.; Mallik, S.; Das Gupta, S.

    2012-01-01

    Presently projectile fragmentation reaction is an important area of research as it is used for the production of radioactive ion beams. In this work, the recently developed projectile fragmentation model with an universal temperature profile is used for studying the charge distributions of different projectile fragmentation reactions with different projectile target combinations at different incident energies. The model for projectile fragmentation consists of three stages: (i) abrasion, (ii) multifragmentation and (iii) evaporation

  3. Fragmentation of a 500 MeV/nucleon 86Kr beam, investigated at the GSI projectile fragment separator

    International Nuclear Information System (INIS)

    Weber, M.; Donzaud, C.; Geissel, H.; Grewe, A.; Lewitowicz, M.; Magel, A.; Mueller, A.C.; Nickel, F.; Pfuetzner, M.; Piechaczek, A.; Pravikoff, M.; Roeckl, E.; Rykaczewski, K.; Saint-Laurent, M.G.; Schall, I.; Stephan, C.; Tassan-Got, L.; Voss, B.

    1993-10-01

    Production cross-sections and longitudinal momentum distributions have been investigated for reactions between a 500 MeV/nucleon 86 Kr beam and beryllium, copper and tantalum targets. Fragments in a wide A/Z range were studied at the projectile-fragment separator FRS at GSI. The experimental production cross-sections have been used for testing the predictions obtained from a semi-empirical parameterization, a statistical abrasion model and an intranuclear-cascade model. The present study allows to extrapolate the production cross-sections towards very neutron-rich isotopes such as the doubly magic nucleus 78 Ni. For fragments close to the projectile the measured longitudinal momentum distributions agrees qualitatively with a semi-empirical parameterization, which is based on the two-step picture of the fragmentation process. The momentum widths of lighter fragments, however, show deviations from this simple picture. (orig.)

  4. Novel method for the production of spin-aligned RI beams in projectile fragmentation reaction with the dispersion matching technique

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Y., E-mail: yuichikawa@phys.titech.ac.jp [Tokyo Institute of Technology, Department of Physics (Japan); Ueno, H. [RIKEN Nishina Center (Japan); Ishii, Y. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Yoshimi, A. [Okayama University, Research Core for Extreme Quantum World (Japan); Kameda, D.; Watanabe, H.; Aoi, N. [RIKEN Nishina Center (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Balabanski, D. L. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria); Chevrier, R.; Daugas, J. M. [CEA, DAM, DIF (France); Fukuda, N. [RIKEN Nishina Center (Japan); Georgiev, G. [CSNSM, IN2P3-CNRS, Universite Paris-sud (France); Hayashi, H.; Iijima, H. [Tokyo Institute of Technology, Department of Physics (Japan); Inabe, N. [RIKEN Nishina Center (Japan); Inoue, T. [Tokyo Institute of Technology, Department of Physics (Japan); Ishihara, M.; Kubo, T. [RIKEN Nishina Center (Japan); and others

    2013-05-15

    A novel method to produce spin-aligned rare-isotope (RI) beam has been developed, that is the two-step projectile fragmentation method with a technique of dispersion matching. The present method was verified in an experiment at the RIKEN RIBF, where an RI beam of {sup 32}Al with spin alignment of 8(1) % was successfully produced from a primary beam of {sup 48}Ca, with {sup 33}Al as an intermediate nucleus. Figure of merit of the present method was found to be improved by a factor larger than 50 compared with a conventional method employing single-step projectile fragmentation.

  5. Physics of projectile fragments

    International Nuclear Information System (INIS)

    Minamisono, Tadanori

    1982-01-01

    This is a study report on the polarization phenomena of the projectile fragments produced by heavy ion reactions, and the beta decay of fragments. The experimental project by using heavy ions with the energy from 50 MeV/amu to 250 MeV/amu was designed. Construction of an angle-dispersion spectrograph for projectile fragments was proposed. This is a two-stage spectrograph. The first stage is a QQDQQ type separator, and the second stage is QDQD type. Estimation shows that Co-66 may be separated from the nuclei with mass of 65 and 67. The orientation of fragments can be measured by detecting beta-ray. The apparatus consists of a uniform field magnet, an energy absorber, a stopper, a RF coil and a beta-ray hodoscope. This system can be used for not only this purpose but also for the measurement of hyperfine structure. (Kato, T.)

  6. New approach to the nuclear in beam γ spectroscopy of neutron rich nuclei at N=20 using projectile fragmentation

    International Nuclear Information System (INIS)

    Lopez-Jimenez, M.J.; Saint-Laurent, M.G.; Achouri, L.; Daugas, J.M.; Belleguic, M.; Azaiez, F.; Bourgeois, C.; Angelique, J.C.

    1999-01-01

    The structure of nuclei far from stability around 32 Mg have been recently investigated by means of a novel method. In-beam γ-decay spectroscopy of a large number of exotic neutron-rich nuclei produced by projectile fragmentation of a 36 S projectile has been performed, using coincidences between the recoil fragments collected at the focal plane of SPEG spectrometer and γ-rays emitted at the target location. Preliminary results on both the population mechanism and the decay of excited states in nuclei around 32 Mg are presented. (author)

  7. Energy distribution of projectile fragment particles in heavy ion therapeutic beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsufuji, Naruhiro; Tomura, Hiromi; Futami, Yasuyuki [National Inst. of Radiological Sciences, Chiba (Japan)] [and others

    1998-03-01

    Production of fragment particles in a patient`s body is one of important problems for heavy charged particle therapy. It is required to know the yield and the energy spectrum for each fragment element - so called `beam quality` to understand the effect of therapeutic beam precisely. In this study, fragment particles produced by practical therapeutic beam of HIMAC were investigated with using tissue-equivalent material and a detector complex. From the results, fragment particles were well identified by difference of their atomic numbers and the beam quality was derived. Responses of the detectors in this energy region were also researched. (author)

  8. Production cross sections and momentum distributions of the projectile fragments of a 500 MeV/u 86Kr beam

    International Nuclear Information System (INIS)

    Weber, M.

    1993-07-01

    The projectile fragmentation of a 500 MeV/u 86 Kr beam in a beryllium, copper, respectively tantalum target was studied at the projectile-fragment separator of the GSI. The new neutron-rich isotopes 58 Ti, 61 V, 63 Cr, 66 Mn, 69 Fe, and 71 Co could be uniquely identified, furthermore a hint on the existence of 64 Cr, 72 Co, and 75 Ni resulted. The experimental production cross sections, which were determined for a large A and Z range, were compared with the predictions of three different models. The studies presented in the present thesis allow an extrapolation of the production cross section for the double-magic nucleus 78 Ni of only 0.6 pb. With increasing nuclear-charge number of the target material a larger production cross section for light fragments was observed. From these data it can be concluded that projectile-like fragments arise in peripheral and light fragments in central reactions. Furthermore production cross sections and parallel momentum distributions of the rubidium isotopes and the 86 Br were measured. To the experimentally observed charge-exchange products two possible processes can be assigned, namely the quasi-free nucleon-nucleon collision respectively the excitation of a Δresonance. (HSI)

  9. A model for projectile fragmentation

    International Nuclear Information System (INIS)

    Chaudhuri, G; Mallik, S; Gupta, S Das

    2013-01-01

    A model for projectile fragmentation is developed whose origin can be traced back to the Bevalac era. The model positions itself between the phenomenological EPAX parametrization and transport models like 'Heavy Ion Phase Space Exploration' (HIPSE) model and antisymmetrised molecular dynamics (AMD) model. A very simple impact parameter dependence of input temperature is incorporated in the model which helps to analyze the more peripheral collisions. The model is applied to calculate the charge, isotopic distributions, average number of intermediate mass fragments and the average size of largest cluster at different Z bound of different projectile fragmentation reactions at different energies.

  10. Commissioning the A1900 projectile fragment separator

    CERN Document Server

    Morrissey, D J; Steiner, M; Stolz, A; Wiedenhöver, I

    2003-01-01

    An important part of the recent upgrade of the NSCL facility is the replacement of the A1200 fragment separator with a new high acceptance device called the A1900. The design of the A1900 device represents a third generation projectile fragment separator (relative to the early work at LBL) as it is situated immediately after the primary accelerator, has a very large acceptance, a bending power significantly larger than that of the cyclotron and is constructed from large superconducting magnets (quadrupoles with 20 and 40 cm diameter warm bores). The A1900 can accept over 90% of a large range of projectile fragmentation products produced at the NSCL, leading to large gains in the intensity of the secondary beams. The results of initial tests of the system with a restricted momentum acceptance (+-0.5%) indicate that the A1900 is performing up to specifications. Further large gains in the intensities of primary beams, typically two or three orders of magnitude, will be possible as the many facets of high current...

  11. Inclusive projectile fragmentation in the spectator model

    International Nuclear Information System (INIS)

    Hussein, M.S.; McVoy, K.W.

    1985-01-01

    Crazing-angle single spectra for projectile fragments from nuclear collisions exhibit a broad peak centered near the beam velocity, suggesting that these observed fragments play only a 'spectator' role in the reaction. Using only this spectator assumption (but not DWBA), it is found that a 'prior form' formulation of the reaction leads, via closure, to a -type estimate of the inclusive spectator spectrum, thus relating it to the reaction cross section for the 'participant' with the target. It is shown explicitly that this expression includes an improved multi-channel version of the Udagawa-Tamura formula for the 'breakup-fusion' or incomplete fusion cross section, and identifies it as the fluctuation part of the participant-target reaction cross section. A Glauber-type estimate of the distorted wave functions which enter clearly shows how the width of the peak in the spectator spectrum arises from the 'Fermi motion' within the projectile, as in the simple Serber model, but is modified by the 'overlap geometry' of the collision. (Author) [pt

  12. Projectile rapidity dependence in target fragmentation

    International Nuclear Information System (INIS)

    Haustein, P.E.; Cumming, J.B.; Hseuh, H.C.

    1979-01-01

    The thick-target, thick-catcher technique was used to determine mean kinetic properties of selected products of the fragmentation of Cu by 1 H, 4 He, and 12 C ions (180 to 28,000 MeV/amu). Momentum transfer, as inferred from F/B ratios, is ovserved to occur most efficiently for the lower velocity projectiles. Recoil properties of target fragments vary strongly with product mass, but show only a weak dependence on projectile type. The projectile's rapidity is shown to be a useful variable for quantitative intercomparison of different reactions. These results indicate that E/sub proj//A/sub proj/ is the dominant parameter which governs the mean recoil behavior of target fragments. 20 references

  13. Fragmentation of Pb-Projectiles at SPS Energies

    CERN Multimedia

    2002-01-01

    % EMU17 \\\\ \\\\ We have exposed stacks consisting of solid state nuclear track detectors (CR-39 plastic and BP-1 glass) and different target materials at the SPS to beams of Pb projectiles. Our detectors record tracks of relativistic nuclei with charge numbers of Z~$\\geq$~6 for CR-39 and Z~$\\geq$75 for BP-1. After development of the tracks by etching they are detected and measured using completely automated microscope systems. Thus experiments with high statistics are possible. \\\\ \\\\BP-1 detectors were exposed to measure total charge changing cross sections and elemental production cross sections for heavy projectile fragments. These experiments were performed for different targets CH$ _{2} $, C, Al, Cu, Ag and Pb. Comparison of the results for different targets allows to investigate contributions to charge changing reactions by electromagnetic dissociation. Multifragmentation events in which several intermediate mass fragments are emitted from the heavy Pb projectile are studied using stacks containing CR-39 d...

  14. First spatial isotopic separation of relativistic uranium projectile fragments

    International Nuclear Information System (INIS)

    Magel, A.; Voss, B.; Armbruster, P.; Aumann, T.; Clerc, H.G.; Czajkowski, S.; Folger, H.; Grewe, A.; Hanelt, E.; Heinz, A.; Irnich, H.; Jong, M. de; Junghans, A.; Nickel, F.; Pfuetzner, M.; Roehl, C.; Scheidenberger, C.; Schmidt, K.H.; Schwab, W.; Steinhaeuser, S.; Suemmerer, K.; Trinder, W.; Wollnik, H.

    1994-07-01

    Spatial isotopic separation of relativistic uranium projectile fragments has been achieved for the first time. The fragments were produced in peripheral nuclear collisions and spatially separated in-flight with the fragment separator FRS at GSI. A two-fold magnetic-rigidity analysis was applied exploiting the atomic energy loss in specially shaped matter placed in the dispersive central focal plane. Systematic investigations with relativistic projectiles ranging from oxygen up to uranium demonstrate that the FRS is a universal and powerful facility for the production and in-flight separation of monoisotopic, exotic secondary beams of all elements up to Z=92. This achievement has opened a new area in heavy-ion research and applications. (orig.)

  15. Improvements to a model of projectile fragmentation

    International Nuclear Information System (INIS)

    Mallik, S.; Chaudhuri, G.; Das Gupta, S.

    2011-01-01

    In a recent paper [Phys. Rev. C 83, 044612 (2011)] we proposed a model for calculating cross sections of various reaction products which arise from disintegration of projectile-like fragments resulting from heavy-ion collisions at intermediate or higher energy. The model has three parts: (1) abrasion, (2) disintegration of the hot abraded projectile-like fragment (PLF) into nucleons and primary composites using a model of equilibrium statistical mechanics, and (3) possible evaporation of hot primary composites. It was assumed that the PLF resulting from abrasion has one temperature T. Data suggested that, while just one value of T seemed adequate for most cross-section calculations, a single value failed when dealing with very peripheral collisions. We have now introduced a variable T=T(b) where b is the impact parameter of the collision. We argue that there are data which not only show that T must be a function of b but, in addition, also point to an approximate value of T for a given b. We propose a very simple formula: T(b)=D 0 +D 1 [A s (b)/A 0 ] where A s (b) is the mass of the abraded PLF and A 0 is the mass of the projectile; D 0 and D 1 are constants. Using this model we compute cross sections for several collisions and compare with data.

  16. The role of the spectator assumption in models for projectile fragmentation

    International Nuclear Information System (INIS)

    Mc Voy, K.W.

    1984-01-01

    This review is restricted to direct-reaction models for the production of projectile fragments in nuclear collisions, at beam energies of 10 or more MeV/nucleon. Projectile fragments are normally identified as those which have near-beam velocities, and there seem to be two principal mechanisms for the production of these fast particles: 1. Direct breakup, 2. Sequential breakup. Of the two, the authors exclude from their discussion the ''sequential breakup'' process, in which the projectile is excited by the initial collision (either via inelastic scattering or transfer to unbound states) and then subsequently decays, outside the range of interaction

  17. Isotope separation of relativistic projectile fragments as well as cross section measurements on 8,9,11Li secondary beams

    International Nuclear Information System (INIS)

    Blank, B.

    1991-06-01

    In the framework of this thesis the method of the 'momentum-loss achromate' was for the first time tested at relativistic energies. This experiment is presented in chapter 2 of the thesis. In a second experiment the method was then used, in order to make secondary beams of 8,9,11 Li available. With these secondary beams cross section measurements were performed, from which beside information on the nuclear radii of these nuclei also further information on the internal structure of the lithium isotopes can be derived. This experiment is described in chapter 3 of the thesis. In the framework of these two experiments for the applied heavy ions energy-loss measurements were performed. The results of these measurements are presented in chapter 4. (orig.) [de

  18. chi2 analyses of data on relativistic anomalous projectile fragments

    International Nuclear Information System (INIS)

    MacGregor, M.H.

    1983-01-01

    Nuclear emulsion data from four experimental groups are now available on the interactions of p relativistic anomalous projectile fragments. In the present paper we systematically combine these data together to form several different data sets, which are used to carry out a series of chi 2 parameter studies. The anomalous particle fragment component in the relativistic nuclear beam has been characterized previously in terms of the parameters f and lambda, where f is the anomalous particle fragment fraction in the secondary beam and lambda is the average anomalous particle fragment mean free path in the emulsion. We extend this result here by setting lambda = lambda 0 (2Z)/sup -beta/, where Z is the nuclear charge of the anomalous particle fragment, so that we can investigate the Z dependence of lambda. We also investigate isotopic effects in the equations used to describe ''normal'' secondary beam nuclei, and we examine the problem of optimizing the bin sizes used to represent the data. A series of (f,lambda 0 ,#betta#) parameter studies leads to the conclusion that the ''anomalous particle fragment effect'' exists for all Z values in the range Z = 3--26 included in the chi 2 analyses. These chi 2 analyses also indicate that #betta#>0, so that the anomalous particle fragment lambda's are Z dependent, but the data are not sufficient to pin down a definite value of #betta#. In order to assess the physical content of these results, we define a domain within which nuclear mean free paths can be accounted for by conventional nuclear forces (but not necessarily by conventional nuclear structure). The Z-dependent anomalous particle fragment mean free paths lie approximately on the boundary of this domain

  19. Evidence for anomalous nuclei among relativistic projectile fragments at Bevalac energies

    International Nuclear Information System (INIS)

    Heckman, H.H.

    1981-01-01

    Two independent emulsion experiments using beams of 16 O and 56 Fe at approximately 2 GeV/nucleon find that the reaction mean free paths of projectile fragments (PF) with Z between 3 and 26 are shorter for a few centimeters after their emission than at larger distances, or than predicted from experiments on beam nuclei. Under the assumption that there are two populations of PF, a best fit to the data is obtained when approximately 6% of the PF have an anomalously short mean free path. The anomalous property of PF persists in subsequent fragmentation reactions. 6 figures

  20. Fragmentation cross section measurements of iron projectiles using CR-39 plastic nuclear track detectors

    CERN Document Server

    Flesch, F; Huentrup, G; Roecher, H; Streibel, T; Winkel, E; Heinrich, W

    1999-01-01

    For long term space missions in which larger radiation doses are accumulated it is necessary to improve the precision of models predicting the space radiation environment. Different models are available to determine the flux of cosmic ray heavy ions behind shielding material. The accuracy of these predictions depends on the knowledge of the fragmentation cross sections, especially at energies of several hundred MeV/nucleon, where the particle flux is at a maximum and especially for those particles with high LET, i.e. iron nuclei. We have measured fragmentation cross sections of sup 5 sup 6 Fe projectiles at beam energies of 700 and 1700 A MeV using experimental set-ups with plastic nuclear track detectors. In this paper we describe the experimental technique to study the fragmentation reactions of sup 5 sup 6 Fe projectiles using CR-39 plastic nuclear track detectors. Results for different targets are presented.

  1. Fragmentation of the projectile near the Fermi energy

    International Nuclear Information System (INIS)

    Dayras, R.

    1986-05-01

    The experimental data about projectile fragmentation around the Fermi energy are reviewed. Comparisons with low and high energy data suggest that this energy domain is indeed a transition region. Reaction mechanisms dominated by the mean field at low energy progressively give way to individual n-n collisions. In the present case, this transition manifests itself by a rapid decrease of transfer reactions for the benefit of fragmentation processes. A coherent description of the observed results requires to take into account mean field effects as well as individual n-n collisions

  2. Binary projectile fragmentation of 12C at an incident energy of 33.3 MeV/nucleon

    CERN Document Server

    Förtsch, S V; Gadioli, E; Bassini, R; Buthelezi, E Z; Cerutti, F; Connell, S H; Cowley, A A; Fujita, H; Mabiala, J; Mairani, A; Mira, J; Papka, P; Neveling, R; Smit, F D

    2010-01-01

    Direct binary projectile fragmentation is being investigated for the case where a 400 MeV 12C projectile breaks up into an particle and a 8Be fragment in the interaction with a thin 93Nb and 197Au target. While the 8Be fragments were measured at 9 , the correlated particles were detected in an angular range between 16 and 30 on the opposite side of the beam. From the preliminary results presented here one may obtain information on the amount of quasi-elastic fragmentation (both fragments do not suffer any further interactions after they are produced). These experimental results indicate that the quasi-elastic break-up process is the dominant contribution to the measured correlation spectra. As was also observed in earlier work, the most forward quasi-elastically emitted particles have energies exceeding the beam velocity.

  3. The collision of a hypervelocity massive projectile with free-standing graphene: Investigation of secondary ion emission and projectile fragmentation

    Science.gov (United States)

    Geng, Sheng; Verkhoturov, Stanislav V.; Eller, Michael J.; Della-Negra, Serge; Schweikert, Emile A.

    2017-02-01

    We present here the study of the individual hypervelocity massive projectiles (440-540 keV, 33-36 km/s Au4004+ cluster) impact on 1-layer free-standing graphene. The secondary ions were detected and recorded separately from each individual impact in the transmission direction using a time-of-flight mass spectrometer. We observed C1-10± ions emitted from graphene, the projectiles which penetrated the graphene, and the Au1-3± fragment ions in mass spectra. During the projectile-graphene interaction, the projectile loses ˜15% of its initial kinetic energy (˜0.18 keV/atom, 72 keV/projectile). The Au projectiles are neutralized when approaching the graphene and then partially ionized again via electron tunneling from the hot rims of the holes on graphene, obtaining positive and negative charges. The projectile reaches an internal energy of ˜450-500 eV (˜4400-4900 K) after the impact and then undergoes a ˜90-100 step fragmentation with the ejection of Au1 atoms in the experimental time range of ˜0.1 μs.

  4. Total fragmentation cross section of 158A GeV lead projectiles in Cu target

    International Nuclear Information System (INIS)

    Mukhtar Ahmed Rana; Shahid Manzoor

    2008-01-01

    Total fragmentation cross section for the reaction 158A Pb ions + Cu target is measured using the most sensitive track detector CR-39. Measured values are compared with calculations. Exposures of target-detector stack with 158A Pb projectiles are made at CERN-SPS beam facility. Results of calibration of CR-39 detector in a charge region (63≤Z≤83) are also reported, which can be used for high energy particle identification using CR-39 and in determination of partial charge changing cross sections. The charge resolution σ Z achieved by this technique is about 0.2e. A systematic dependence of total fragmentation cross section on target properties is revealed and the corresponding results are presented. (authors)

  5. Total Fragmentation Cross Section of 158A GeV Lead Projectiles in Cu Target

    International Nuclear Information System (INIS)

    Rana, Mukhtar Ahmed

    2008-01-01

    Total fragmentation cross section for the reaction 158 A Pb ions + Cu target is measured using the most sensitive track detector CR-39. Measured values are compared with calculations. Exposures of target-detector stack with 158A Pb projectiles are made at CERN-SPS beam facility. Results of calibration of CR-39 detector in a charge region (63 ≤ Z ≤ 83) are also reported, which can be used for high energy particle identification using CR-39 and in determination of partial charge changing cross sections. The charge resolution σ z achieved by this technique is about 0.2e. A systematic dependence of total fragmentation cross section on target properties is revealed and the corresponding results are presented. (nuclear physics)

  6. Coincidence measurement between α-particles and projectile-like fragments in the reaction of 82.7 MeV 16O on 27Al

    International Nuclear Information System (INIS)

    Shen Wenqing; Zhan Wenlong; Zhu Yongtai

    1988-01-01

    In a coincidence measurement between α-particles and projectile-like fragments in the reaction of 82.7 MeV 16 O on 27 Al, the contour plot of Galilean-invariant cross section of the coincidence between C-fragments and α-particles in the velocity plane, and the coincident angular correlation have been obtained. The correlated α-particles measured at positive angles (on the same side of the beam as the projectile-like fragments) were emitted mainly from the projectile-like fragments;the α-particles at large negative angles were emitted from the target-like fragments;the α-particles at small negative angles came from the fragmentation of the 16 O projectile. A possible reaction mechanism in which the residue produced in the fragmentation of the projectile continues the dissipation process during the interaction with the target has been discussed. It is also pointed out that in the large yield of C-fragments observed in the inclusive experiment, the contribution of C-fragments produced by the excited 16 O of DIC product via α-emission is quite small

  7. Production of pions and anomalous projectile fragments in heavy ion collisions

    International Nuclear Information System (INIS)

    Noren, B.

    1988-05-01

    Results are presented from investigations of the mean free path (mfp) of multiply charged fragments, produced by 1.8 A GeV argon nuclei. The mfp's have been studied experimentally, and no dependence of the mfp on the distance from the preceeding collision is observed. In a Monte Carlo simulation, the mfp estimators are investigated for different statistics, with or without an enhanced reaction probability. Intermediate energy heavy ion collisions have been studied using the carbon beam produced at the CERN SC-accelerator. Cross-sections for pion + and pion - have been measured over a wide range of angles and targets. Also, coincidence measurements with projectile-like fragments have been performed. The pion - /pion + ratio has been studied for C+Li, C+C, C+Pb, C+ 116 Sn and C+ 124 Sn. Inconsistencies in the target mass dependence of the pion yield disappear if a correction for reabsorption in the target nucleus is included. The projectile breakup is significantly stronger for pion producing collisions than for the average collision, thus indicating a much stronger abundance of central collisions. (With 32 refs.) (author)

  8. Unusual behavior of projectile fragments formed in the bombardment of copper with relativistic Ar ions

    International Nuclear Information System (INIS)

    Dersch, G.; Beckmann, R.; Feige, G.

    1985-01-01

    The interaction properties of projectile fragments from the fragmentation of 0.9 GeV/nucleon and 1.8 GeV/nucleon 40 Ar with Cu have been studied using radioactivation techniques. In this experiment, two identical copper blocks, 1 cm thick and 8 cm in diameter, are irradiated by relativistic projectiles in different configurations. In configuration 0, the blocks are touching while in configuration 10 or 20, the blocks are separated by 10 or 20 cm of air, respectively. It is assumed that when the relativistic projectiles interact with the first block of each pair, projectile fragments are created which interact with other nuclei in the first and second blocks. What is measured is the ratio of some target fragment activity, such as 24 Na or 28 Mg, produced in the second block relative to the first block, R

  9. Light particles emitted with very forward quasi-projectiles and the mechanism in the fragmentation of 44 MeV/a.m.u. 40Ar

    International Nuclear Information System (INIS)

    Roussel, P.; Bacri, Ch.O.; Borrel, V.; Stephan, C.; Tassan-Got, L.; Beaumel, D.; Bernas, M.; Clapier, F.; Mirea, M.

    1998-01-01

    The mechanism of projectile fragmentation in the Fermi-energy region has been investigated for fragments emitted in the incident beam direction by detecting fast protons and neutrons evaporated by the projectile-like fragments. The proton coincidence rate is shown to increase with fragment velocity loss. This increase is also correlated to the decrease of the fragment yield, with the coincident rate doubling when the yield decreases by a factor of 10. The coincidence rate is found to be also proportional to the fragment mass loss for fragments with the beam velocity. A two-step mechanism is sketched out to interpret these results. For fragments with the beam velocity, the projectile nucleon removal is equally shared between a first fast step and the second evaporative step, while for fragments at the tenth of the maximum yield, the nucleons are removed by evaporation. Finally, the experimental observation that the most probable velocity for forward fragments is very close to that of the beam may be the result of a strong forward/backward momentum asymmetry in a Goldhaber-type analysis. (author)

  10. Projectile fragmentation processes in 35-MeV/amu (α,xy) reactions

    International Nuclear Information System (INIS)

    Koontz, R.W.; Chang, C.C.; Holmgren, H.D.; Wu, J.R.

    1979-01-01

    Coincidence measurements with 35-MeV/amu α particles show that at least three projectile-fragmentation processes occur. The dominant process is ''absorptive'' breakup, where one component of the projectile interacts strongly with the target resulting in the emission of evaporation or nonstatistical particles while the other component behaves as a spectator. The other fragmentation processes which are observed account for only a few percent of the breakup cross section

  11. Projectile like fragment production in Ar induced reactions around the Fermi energy

    International Nuclear Information System (INIS)

    Borrel, V.; Gatty, B.; Jacquet, D.; Galin, J.

    1986-01-01

    The production of projectile like fragments (PLF) has been studied in Ar induced reactions on various targets. It shows very clearly, that besides the predominance of fragmentation for most of the products, the transfer process is still a very strong component for products nearby the projectile. The influence of the target neutron excess on the PLF production is investigated as well as the evolution with incident energy of the characteristics of the different competing processes

  12. Energy distributions of H+ fragments ejected by fast proton and electron projectiles in collision with H2O molecules

    International Nuclear Information System (INIS)

    Barros, A. L. F. de; Lecointre, J.; Luna, H.; Montenegro, E. C.; Shah, M. B.

    2009-01-01

    Experimental measurements of the kinetic energy distribution spectra of H + fragment ions released during radiolysis of water molecules in collision with 20, 50, and 100 keV proton projectiles and 35, 200, 400, and 1000 eV electron projectiles are reported using a pulsed beam and drift tube time-of-flight based velocity measuring technique. The spectra show that H + fragments carrying a substantial amount of energy are released, some having energies well in excess of 20 eV. The majority of the ions lie within the 0-5 eV energy range with the proton spectra showing an almost constant profile between 1.5 and 5 eV and, below this, increasing gradually with decreasing ejection energy up to the near zero energy value while the electron spectra, in contrast, show a broad maximum between 1 and 3 eV and a pronounced dip around 0.25 eV. Beyond 5 eV, both projectile spectra show a decreasing profile with the electron spectra decreasing far more rapidly than the proton spectra. Our measured spectra thus indicate that major differences are present in the collision dynamics between the proton and the electron projectiles interacting with gas phase water molecules.

  13. Studies of projectile-like fragments in the 16O + 238U reaction at 20 MeV/u

    International Nuclear Information System (INIS)

    Dyer, P.; Awes, T.C.; Gelbke, C.K.; Back, B.B.; Mignerey, A.C.; Wolf, K.L.; Breuer, H.; Viola, V.E.; Meyer, W.G.

    1979-01-01

    Projectile residues were studied in coincidence with angle-correlated fission fragments resulting from reactions of 20-MeV/u 16 O ions on 238 U. Distributions of the missing parallel momentum are shown for different projectile residues, and the dependence of the average parallel recoil momentum on the average parallel momentum of the projectile residue is plotted. 2 figures

  14. Fragmentation of small molecules induced by 46 keV/amu N+ and N2+ projectiles

    International Nuclear Information System (INIS)

    Kovacs, S.T.S.; Juhasz, Z.; Herczku, P.; Sulik, B.

    2012-01-01

    Complete text of publication follows. Collisional molecule fragmentation experiments has gain increasing attention in several research and applied fields. In order to understand the fundamental processes of molecule fragmentation one has to start with collisions of small few-atomic molecules. Moreover, fragments of small molecules such as water can cause damages of large molecules (DNA) very effectively in living tissues. In the last few years a new experimental setup was developed at Atomki. It was designed especially for molecule fragmentation experiments. Now the measurements using this system are running routinely. In 2012 the studied targets were water vapor, methane and nitrogen gases, injected into the collision area by an effusive molecular gas jet system. 650 keV N + and 1,3 MeV N 2 + ions were used as projectiles produced by the VdG-5 electrostatic accelerator. The velocity of the two types of projectiles was the same. Energy and angular distribution of the produced fragments was measured by an energy dispersive electrostatic spectrometer. For atomic ionization a symmetric, diatomic molecular projectile (e.g. N 2 + ) yields about twice more electrons compared to those of singly charged ion projectiles of the same atom (N + ) at the same velocity. In such cases the two atomic centers in the molecular ion can be considered as two individual atomic centers. For the fragmentation of molecular targets the picture is not so simple because in this case close collision of two extended systems is investigated. As figure 1 and 2 show, the measured yields for molecular projectile is not simply twice of the ones for atomic projectile. The shape of the energy spectra are different. The measured data are under evaluation. Acknowledgements. This work was supported by the Hungarian National Science Foundation OTKA (Grant: K73703) and by the TAMOP-4.2.2/B-10/1-2010-0024 project. The project is cofinanced by the European Union and the European Social Fund.

  15. Scaling invariance of spherical projectile fragmentation upon high-velocity impact on a thin continuous shield

    Energy Technology Data Exchange (ETDEWEB)

    Myagkov, N. N., E-mail: nn-myagkov@mail.ru [Russian Academy of Sciences, Institute of Applied Mechanics (Russian Federation)

    2017-01-15

    The problem of aluminum projectile fragmentation upon high-velocity impact on a thin aluminum shield is considered. A distinctive feature of this description is that the fragmentation has been numerically simulated using the complete system of equations of deformed solid mechanics by a method of smoothed particle hydrodynamics in three-dimensional setting. The transition from damage to fragmentation is analyzed and scaling relations are derived in terms of the impact velocity (V), ratio of shield thickness to projectile diameter (h/D), and ultimate strength (σ{sub p}) in the criterion of projectile and shield fracture. Analysis shows that the critical impact velocity V{sub c} (separating the damage and fragmentation regions) is a power function of σ{sub p} and h/D. In the supercritical region (V > V{sub c}), the weight-average fragment mass asymptotically tends to a power function of the impact velocity with exponent independent of h/D and σ{sub p}. Mean cumulative fragment mass distributions at the critical point are scale-invariant with respect to parameters h/D and σ{sub p}. Average masses of the largest fragments are also scale-invariant at V > V{sub c}, but only with respect to variable parameter σ{sub p}.

  16. Projectile-like fragments from 129Xe+natCu reactions at E/A = 40 MeV

    International Nuclear Information System (INIS)

    Russ, D.E.; Mignerey, A.C.; Garcia-Solis, E.J.

    1996-01-01

    The bombarding of heavy nuclei with energetic heavy projectiles has been one of the most important experimental tools for nuclear science. At low beam energies, (E/A) beam 100 MeV, these mean field effects are less important and nucleon-nucleon interactions dominate. Within the intermediate energy region, the situation is less clear because of both the mean field and nucleon-nucleon effects contribute. There is no consensus on the theoretical treatment of nuclear reaction in the intermediate energy regime and statistical, dynamical, and hybrid models have been used with limited success. Previous studies of 136 Xe + 209 Bi at E/A = 28 MeV carried out at Michigan State University (MSU) have been well described by a damped reaction mechanism. On the other hand, 129 Xe + nat Cu at E/A = 50 MeV also at MSU has been compared with a hybrid model with reasonable success. In order to see a transition from a damped reaction mechanism to more fragmentation-like processes, an experiment was carried out at MSU using 129 Xe beams at E/A = 30, 40, 50, and 60 MeV. The targets were Cu, Sc, and Au. The current study only looks at the projectile-like fragments (PLF) detected in the Maryland Forward Array (MFA)

  17. A heavy ion spectrometer system for the measurement of projectile fragmentation of relativistic heavy ions

    International Nuclear Information System (INIS)

    Engelage, J.; Crawford, H.J.; Greiner, L.; Kuo, C.

    1996-06-01

    The Heavy Ion Spectrometer System (HISS) at the LBL Bevalac provided a unique facility for measuring projectile fragmentation cross sections important in deconvolving the Galactic Cosmic Ray (GCR) source composition. The general characteristics of the apparatus specific to this application are described and the main features of the event reconstruction and analysis used in the TRANSPORT experiment are discussed

  18. Modeling Fragment Simulating Projectile Penetration into Steel Plates Using Finite Elements and Meshfree Particles

    Directory of Open Access Journals (Sweden)

    James O’Daniel

    2011-01-01

    Full Text Available Simulating fragment penetration into steel involves complicated modeling of severe behavior of the materials through multiple phases of response. Penetration of a fragment-like projectile was simulated using finite element (FE and meshfree particle formulations. Extreme deformation and failure of the material during the penetration event were modeled with several approaches to evaluate each as to how well it represents the actual physics of the material and structural response. A steel Fragment Simulating Projectile (FSP – designed to simulate a fragment of metal from a weapon casing – was simulated for normal impact into a flat square plate. A range of impact velocities was used to examine levels of exit velocity ranging from relatively small to one on the same level as the impact velocity. The numerical code EPIC, used for all the simulations presented herein, contains the element and particle formulations, as well as the explicit methodology and constitutive models needed to perform these simulations. These simulations were compared against experimental data, evaluating the damage caused to the projectile and the target plates, as well as comparing the residual velocity when the projectile perforated the target.

  19. High energy nuclear collisions in the few GeV/nucleon region: projectile and target fragmentation

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1980-06-01

    A general review of nucleon-nucleus and nucleus-nucleus collisions for incident energies <10 GeV/nucleon is presented. The division of these interactions into peripheral and central collisions is briefly discussed. Subjects treated include the following: target and projectile fragmentation systematics, production of exotic nuclear fragments, studies of multiparticle final states, total cross section measurements, results from an experiment that indicate the production of projectile fragments with an anomalously short reaction mean free path, high-energy particle production at backward angles beyond simple N-N kinematic limits, and recent results on backward particle emission in studies with the Berkeley streamer chamber. Both the particle and nuclear physics aspects that are present are considered. A brief discussion of future trends in this energy range ends the presentation. 65 references, 37 figures

  20. Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates

    Directory of Open Access Journals (Sweden)

    Aizik F.

    2012-08-01

    Full Text Available In this study, a constitutive strength and failure model for a steel core of a14.5 mm API projectile was developed. Dynamic response of a projectile steel core was described by the Johnson-Cook constitutive model combined with principal tensile stress spall model. In order to obtain the parameters required for numerical description of projectile core material behavior, a series of planar impact experiments was done. The parameters of the Johnson-Cook constitutive model were extracted by matching simulated and experimental velocity profiles of planar impact. A series of oblique ballistic experiments with x-ray monitoring was carried out to study the effect of obliquity angle and armor steel plate thickness on shattering behavior of the 14.5 mm API projectile. According to analysis of x-ray images the fragmentation level increases with both steel plate thickness and angle of inclination. The numerical modeling of the ballistic experiments was done using commercial finite element code, LS-DYNA. Dynamic response of high hardness (HH armor steel was described using a modified Johnson-Cook strength and failure model. A series of simulations with various values of maximal principal tensile stress was run in order to capture the overall fracture behavior of the projectile’s core. Reasonable agreement between simulated and x-ray failure pattern of projectile core has been observed.

  1. First Isochronous Time-of-Flight Mass Measurements of Short-Lived Projectile Fragments in the ESR

    International Nuclear Information System (INIS)

    Stadlmann, J.; Geissel, H.; Hausmann, M.; Nolden, F.; Radon, T.; Schatz, H.; Scheidenberger, C.; Attallah, F.; Beckert, K.; Bosch, F.; Falch, M.; Franczak, B.; Franzke, B.; Kerscher, Th.; Klepper, O.; Kluge, H.J.; Kozhuharov, C.; Loebner, K.E.G.; Muenzenberg, G.; Novikov, Yu.N.; Steck, M.; Sun, Z.; Suemmerer, K.; Weick, H.; Wollnik, H.

    2000-01-01

    A new method for precise mass measurements of short-lived hot nuclei is presented. These nuclei were produced via projectile fragmentation, separated with the FRS and injected into the storage ring ESR being operated in the isochronous mode. The revolution time of the ions is measured with a time-of-flight detector sensitive to single particles. This new method allows access to exotic nuclei with half-lives in the microsecond region. First results from this novel method obtained with measurements on neutron-deficient fragments of a chromium primary beam with half-lives down to 50 ms are reported. A precision of deltam/m ≤ 5 · 10 -6 has been achieved

  2. Transfer of 6Li break-up fragments at 6Li projectile energies far above the coulomb barrier

    International Nuclear Information System (INIS)

    Neumann, B.; Buschmann, J.; Rebel, H.; Gils, H.J.; Klewe-Nebenius, H.

    1979-05-01

    Transfer of beam-velocity fragments has been experimentally investigated in 6 Li induced reactions on 208 Pb and 209 Bi in the energy range Esub(Li) = 60-156 MeV. The experimental techniques involve the observation of the target residues and measurements of the recoil ranges of heavy residual nuclei produced by charged particle bombardment. The determination of the recoil energy enables the discrimination of different reaction paths leading to the same residual nuclei. ( 6 Li, xn+p) excitation functions prove to be very similar to (α,(x-1)n) reactions at Esub(α) approximately 2/3 x Esub(Li). The results present experimental evidence for a particular reaction type indicated in previous experiments: Dissociation of the 6 Li projectile with capture of the beam-velocity alpha particle indicating an (α,xn) reaction ('internal break-up'). (orig.) [de

  3. Charged-particle spectroscopy in the microsecond range following projectile fragmentation

    CERN Document Server

    Pfützner, M; Grzywacz, R; Janas, Z; Momayezi, M; Bingham, C; Blank, B; Chartier, M; Geissel, H; Giovinazzo, J; Hellström, M; Kurcewicz, J; Lalleman, A S; Mazzocchi, C; Mukha, I; Plettner, C; Roeckl, E; Rykaczewski, K; Schmidt, K; Simon, R S; Stanoiu, M; Thomas, J C

    2002-01-01

    We present a new approach to charged-particle spectroscopy of short-lived nuclei produced by relativistic projectile fragmentation. The system based on digital DGF-4C CAMAC modules and newly developed fast-reset preamplifiers was tested at the Fragment Separator of GSI. We were able to detect low-energy (approx 1 MeV) decay signals occurring a few microseconds after a heavy-ion implantation accompanied by a release of approx 1 GeV energy. Applications for the study of one- and two-proton radioactivity are discussed.

  4. Projectile and target fragmentation at intermediate energies (20 MeV <= E/A <= 100 MeV)

    International Nuclear Information System (INIS)

    Dayras, R.A.

    1985-04-01

    In order to follow the evolution of the reaction mechanisms in the transition region of the intermediate energy range, detailed studies of projectile-like fragments from a 44 MeV/u 40 Ar projectile bombarding 27 Al and sup(NAT)T: targets have been made. Experimental results are given. Discussion of the data is presented: transfer reactions, isotopic distributions, the fragmentation model, and abrasion model are used in the discussion

  5. Relativistic exotic nuclei as projectile beams. New perspectives of studies on the properties of nuclei

    International Nuclear Information System (INIS)

    Geissel, H.

    1997-03-01

    Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB) [de

  6. Emission of projectile helium fragments in 14N interactions at 2.1 GeV/nucleon

    International Nuclear Information System (INIS)

    Bhanja, R.; Devi, N.A.L.; Joseph, R.R.; Ojha, I.D.; Shyam, M.; Tuli, S.K.

    1983-01-01

    An analysis of projectile helium fragments has been performed from the point of view of testing the factorization and limiting fragmentation hypothesis. An event-by-event examination of 923 interactions of 14 N in emulsion at 2.1 GeV per nucleon has been made for target identification. Events with projectile fragments have been divided into various reaction channels according to the multiplicity of He nuclei. The multiplicity distribution, angular structure and other properties of the projectile He fragments have been investigated to see the dependence on different targets and target excitation. The properties of He fragments emitted from the projectile have been found to remain independent of target in peripheral collision processes. The target and projectile breakup properties have been analysed in terms of the collision geometry. Gaussian distributions have been fitted to the projected angular distribution data for He fragments at various intervals of impact parameter and in different reaction channels. The properties of emitted He nuclei exhibit characteristic features of factorization and limiting fragmentation. (orig.)

  7. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers

    Directory of Open Access Journals (Sweden)

    Aleksandr Cherniaev

    2017-01-01

    Full Text Available This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and aluminum plate provides better fragmentation of small hypervelocity projectiles. At the same time, none of the combined mesh/plate bumpers provide a significant increase of ballistic properties as compared to an aluminum plate bumper. This indicates that the positive results reported in the literature for bumpers with metallic meshes and large projectiles are not scalable down to millimeter-sized particles. Based on this investigation’s results, a possible modification of the combined mesh/plate bumper is proposed for the future study.

  8. Projectile fragmentation of neutron-rich nuclei on light target (momentum distribution and nucleon-removal cross section)

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tanihata, I.; Suzuki, T.

    1992-01-01

    Transverse momentum distributions of the projectile fragments from β-unstable nuclei have been measured with various projectile and target combinations. The momentum correlation of two neutrons in the neutron halo is extracted from the P c t distribution of 9 Li and hat of the neutrons. It is found that the two neutrons are moving in the same direction on average and thus strongly suggests the formation of a di-neutron in 11 Li. (Author)

  9. Study of momentum distributions for projectile fragments of 22Ne and 28Si nuclei in collisions with emulsion

    International Nuclear Information System (INIS)

    Abou-Steit, S.A.H.

    2000-01-01

    The charge and mass yield curves and the momentum distributions of the projectile fragments produced in the interactions of 4.1 A GeV/c 22 Ne and 4.5 A GeV/c 28 Si with emulsion have been studied. The overall charge distributions of the projectile fragments resulting from these interactions are presented. The dependence of the mass yield distributions of the projectile fragments on the impact parameter has been tested. The momentum distributions for the considered reactions have been investigated by two methods. First, the projected momentum distributions in the plane of the microscope have been achieved by fitting the projected angular distributions to gaussian ones. It has been found that the width of the distribution changes with the charge of the projectile fragment and it decreases with the increase of the projectile fragment charge. Secondly, the transverse momentum distributions have been compared with previous studies. The momentum distribution, in the forward cone, is a typically narrow gaussian one

  10. Nuclear Fragmentation Induced by Relativistic Projectiles Studied in the 4$\\pi$ Configuration of Plastic Track Detectors

    CERN Multimedia

    2002-01-01

    % EMU19 \\\\ \\\\ The collisions of heavy ions at relativistic energies have been studied to explore a number of questions related with hot and dense nuclear matter in order to extend our knowledge of nuclear equation-of-state. There are other aspects of these interactions which are studied to expound the process of projectile and/or target disintegrations. The disintegrations in question could be simply binary fissions or more complex processes leading to spallation or complete fragmentation. These important aspects of nuclear reactions are prone to investigations with nuclear track detectors. \\\\ \\\\One of the comparatively new track detector materials, CR-39, is sensitive enough to record particles of Z~$\\geq$~6 with almost 100\\% efficiency up to highly relativistic energies. The wide angle acceptance and exclusive measurements possible with plastic track detectors offer an opportunity to use them in a variety of situations in which high energy charged fragments are produced. The off-line nature of measuring tra...

  11. Ionization, evaporation and fragmentation of C{sub 60} in collisions with highly charged C, O and F ions-effect of projectile charge state

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A H; Misra, D; Tribedi, L C [Tata Institute of Fundamental Research, Colaba, Mumbai -5 (India)

    2007-09-15

    We study the various inelastic processes such ionization, fragmentation and evaporation of C{sub 60} molecule in collisions with fast heavy ions. We have used 2.33 MeV/u C, O and F projectile ion beams. Various ionization and fragmentation products were detected using time-of-flight mass spectrometer. The multiply charged C{sub 60}{sup r+} ions were detected for maximum r = 4. The projectile charge state (q{sub p}) dependence of the single and double ionization cross sections is well reproduced by a model based on the giant dipole plasmon resonance (GDPR). The q{sub p}-dependence of the fragmentation yields, was found to be linear. Variation of relative yields of the evaporation products of C{sub 60}{sup 2+} (i.e. C{sub 58}{sup 2+}, C{sub 56}{sup 2+} etc) and C{sub 60}{sup 3+} (i.e. C{sub 58}{sup 3+}, C{sub 56}{sup 3+} etc) with q{sub p} has also been investigated for various projectiles.

  12. Pilot experiments with relativistic uranium projectile and fission fragments thermalized in a cryogenic gas-filled stopping cell

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Moritz Pascal

    2015-07-01

    High precision experiments and decay spectroscopy of exotic nuclei are of great interest for nuclear structure and nuclear astro-physics. They allow for studies of the nuclear structure far from stability, test of fundamental interactions and symmetries and give important input for the understanding of the nuclear synthesis in the universe. In the context of this work a second generation stopping cell for the low energy branch of the Super-FRS was commissioned at the FRS at GSI and significant improvements were made to the device. The prototype stopping cell is designed as a cryogenic stopping cell (CSC), featuring enhanced cleanliness and high area density. The CSC was brought into full operation and its performance characteristics were investigated including the maximal area density, extraction times, cleanliness and extraction efficiencies. In three commissioning experiments at the current GSI FRS facility in 2011, 2012 and 2014 up to 22 isotopes from 14 elements produced by in-flight projectile fragmentation and fission of {sup 238}U could be thermalized and extracted with high efficiency. For the first time projectile and fission fragmentation produced at 1000 MeV/u could be thermalized in a stopping cell and provided as a low-energy beam of high brilliance for high precision experiments. The technical improvements of the CSC, such as an improved RF carpet, new cryocooler-based cooling system, a monitoring system of the cleanliness and the high density operation, made it possible to thermalize heavy {sup 238}U projectile fragments with total efficiencies of about 20% in the 2014 experiment. In addition the improvements lead to an increase in the stability and reliability of the CSC and the performance of the CSC during online experiments at the FRS Ion Catcher showed that the utilized techniques are ready for the final CSC for the low-energy branch of the Super-FRS at FAIR. The CSC was operated with an area density of up to 6.3 mg/cm{sup 2} helium during

  13. Pilot experiments with relativistic uranium projectile and fission fragments thermalized in a cryogenic gas-filled stopping cell

    International Nuclear Information System (INIS)

    Reiter, Moritz Pascal

    2015-01-01

    High precision experiments and decay spectroscopy of exotic nuclei are of great interest for nuclear structure and nuclear astro-physics. They allow for studies of the nuclear structure far from stability, test of fundamental interactions and symmetries and give important input for the understanding of the nuclear synthesis in the universe. In the context of this work a second generation stopping cell for the low energy branch of the Super-FRS was commissioned at the FRS at GSI and significant improvements were made to the device. The prototype stopping cell is designed as a cryogenic stopping cell (CSC), featuring enhanced cleanliness and high area density. The CSC was brought into full operation and its performance characteristics were investigated including the maximal area density, extraction times, cleanliness and extraction efficiencies. In three commissioning experiments at the current GSI FRS facility in 2011, 2012 and 2014 up to 22 isotopes from 14 elements produced by in-flight projectile fragmentation and fission of "2"3"8U could be thermalized and extracted with high efficiency. For the first time projectile and fission fragmentation produced at 1000 MeV/u could be thermalized in a stopping cell and provided as a low-energy beam of high brilliance for high precision experiments. The technical improvements of the CSC, such as an improved RF carpet, new cryocooler-based cooling system, a monitoring system of the cleanliness and the high density operation, made it possible to thermalize heavy "2"3"8U projectile fragments with total efficiencies of about 20% in the 2014 experiment. In addition the improvements lead to an increase in the stability and reliability of the CSC and the performance of the CSC during online experiments at the FRS Ion Catcher showed that the utilized techniques are ready for the final CSC for the low-energy branch of the Super-FRS at FAIR. The CSC was operated with an area density of up to 6.3 mg/cm"2 helium during online

  14. Systematic experimental survey on projectile fragmentation and fission induced in collisions of {sup 238}U at 1 A GeV with lead

    Energy Technology Data Exchange (ETDEWEB)

    Enquist, T.; Benlliure, J.; Farget, F.; Schmidt, K.H.; Armbruster, P. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Bernas, M.; Tassan-Got, L. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Boudard, A.; Legrain, R.; Volant, C. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de Physique des Particules, de Physique Nucleaire et de l`Instrumentation Associee (DAPNIA); Boeckstiegel, C.; Jong, M. de [Technische Univ. Darmstadt (Germany); Dufour, J.P. [CEA Centre d`Etudes Nucleaires de Bordeaux-Gradignan, 33 - Gradignan (France)

    1999-03-01

    Projectile fragmentation and fission, induced in collisions of {sup 238}U at 1 A GeV with lead, have systematically been studied. A complete survey on the isotopic production cross sections of all elements between vanadium (Z = 23) and rhenium (Z = 75) down to a cross section of 0.1 mb is given. About 600 isotopes produced in fragmentation and about 600 isotopes produced in fission were identified in the GSI fragment separator FRS from magnetic rigidities, time-of-flight values, and the energy loss in an ionisation chamber. In addition, the velocity distributions of all these reaction products have been mapped, and the products are unambiguously attributed to the different reaction mechanisms due to their kinematical properties. The results are compared with empirical systematics and previous data. The velocity of the fragments obtained in the fission process by the Coulomb repulsion allows to reconstruct the TKE-value of the break-up and to identify the atomic number of the fissioning nucleus in hot fission. The mean velocities of light projectile fragments were found to be higher than the beam velocity. (orig.) 41 refs.

  15. Systematic experimental survey on projectile fragmentation and fission induced in collisions of 238U at 1 A GeV with lead

    International Nuclear Information System (INIS)

    Enqvist, T.; Benlliure, J.; Farget, F.; Schmidt, K.H.; Armbruster, P.; Bernas, M.; Tassan-Got, L.; Boeckstiegel, C.; Jong, M. de; Dufour, J.P.

    1999-03-01

    Projectile fragmentation and fission, induced in collisions of 238 U at 1 A GeV with lead, have systematically been studied. A complete survey on the isotopic production cross sections of all elements between vanadium (Z = 23) and rhenium (Z = 75) down to a cross section of 0.1 mb is given. About 600 isotopes produced in fragmentation and about 600 isotopes produced in fission were identified in the GSI fragment separator FRS from magnetic rigidities, time-of-flight values, and the energy loss in an ionisation chamber. In addition, the velocity distributions of all these reaction products have been mapped, and the products are unambiguously attributed to the different reaction mechanisms due to their kinematical properties. The results are compared with empirical systematics and previous data. The velocity of the fragments obtained in the fission process by the Coulomb repulsion allows to reconstruct the TKE-value of the break-up and to identify the atomic number of the fissioning nucleus in hot fission. The mean velocities of light projectile fragments were found to be higher than the beam velocity. (orig.)

  16. Projectile fragmentation of a weakly-bound 11Be nucleus at 0.8 GeV/nucleon

    International Nuclear Information System (INIS)

    Kobayashi, T.

    1990-01-01

    The projectile fragmentation of a weakly-bound 11 Be projectile has been measured on a carbon target at 0.8 GeV/nucleon. The transverse momentum distribution of 10 Be fragments showed a two-Gaussian structure: a narrow component with σ ∼ 25 MeV/c on top of a wide component with σ ∼ 110 MeV/c. As in the case of 11 Li fragmentation, the narrow momentum distribution indicates a long tail in the neutron density distribution which is consistent with the large nuclear matter radius of the 11 Be nucleus. Neutrons were also measured in coincidence with 10 Be fragments. In contrast to 10 Be fragments, no narrow momentum distribution was observed for coincident neutrons

  17. Singly and Doubly Charged Projectile Fragments in Nucleus-Emulsion Collisions at Dubna Energy in the Framework of the Multi-Source Model

    International Nuclear Information System (INIS)

    Er-Qin, Wang; Fu-Hu, Liu; Jian-Xin, Sun; Rahim, Magda A.; Fakhraddin, S.

    2011-01-01

    The multiplicity distributions of projectile fragments emitted in interactions of different nuclei with emulsion are studied by using a multi-source model. Our calculated results show that the projectile fragments can be described by the model and each source contributes an exponential distribution. As the weighted sum of the folding result of many exponential distributions, a multi-component Erlang distribution is used to describe the experimental data. The relationship between the height (or width) of the distribution and the mass of the incident projectile, as well as the dependence of projectile fragments on target groups, are investigated too. (nuclear physics)

  18. Charge-exchange products of BEVALAC projectiles

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1982-11-01

    There is a substantial production of fragments of all masses lighter than the projectile, such fragments being centered in a narrow region of velocity space around the beam velocity. The exciting studies about anomalons deal with the curious enhanced reactivity of some of these secondary fragments. I direct attention here to the rather rare fragments of the same mass number as the projectile but differing in charge by one unit. We also keep track, as a frame of reference, of the products that have lost one neutron from the projectile

  19. Nuclear Alignment in Projectile Fragmentation as a Tool for Moment Measurements

    International Nuclear Information System (INIS)

    Georgiev, G.; Matea, I.; Oliveira Santos, F. de; Lewitowicz, M.; Daugas, J.M.; Belier, G.; Goutte, H.; Meot, V.; Roig, O.; Hass, M.; Baby, L.T.; Goldring, G.; Astabatyan, R.; Lukyanov, S.; Penionzhkevich, Yu.E.; Balabanski, D.L.; Borremans, D.; Himpe, P.; Neyens, G.; Sawicka, M.

    2004-01-01

    The application of the Time Dependent Perturbed Angular Distribution (TDPAD) method to study isomeric states produced and oriented in projectile-fragmentation reactions provides the opportunity to perform nuclear-moment measurements in a wide range of neutron-rich nuclei, unaccessible by other means. An absolute necessity for the application of the TDPAD technique is a spin-aligned ensemble of nuclei. The preliminary results from a recent application of this method on 61mFe and 54mFe at GANIL, Caen, France showed that a significant increase of the amount of the observed alignment, compared to our previous measurement on 67mNi and 69mCu, can be obtained. Some experimental details, concerning the conservation of the reaction obtained alignment, are discussed

  20. Velocity determination of neutron-rich projectile fragments with a ring-imaging Cherenkov detector

    International Nuclear Information System (INIS)

    Zeitelhack, K.

    1992-11-01

    For the velocity determination of relativistic heavy ions (A>100) in the energy range 300A.MeV ≤ E kin ≤ 2A.GeV a highly resolving, compact ring-imaging Cherenkov counter with large dynamical measurement range was developed. The Cherenkov light cone emitted in the flight of a relativistic heavy ion by a liquid layer (C 6 F 14 ) is focused on the entrance window of a one-dimensional position-resolving VUV-sensitive photon detector. This gas detector is operated at atmospheric pressure with a mixture of 90% methane and 10% isobutane with 0.04% TMAE as photosensitive admixture. For 725A.MeV 129 Xe ions a velocity resolution Δβ/β=1.8.10 -3 and a nuclear charge-number resolution ΔZ/Z=5.1.10 -2 was reached. The over the photon energy range 5.4 eV ≤ E γ ≤ 7.2 eV averaged detection efficiency of the detector system was determined to ε tot =2.8%>. At the 0deg magnet spectrometer Fragmentseparator of the GSI Darmstadt the RICH detector was for the first time applied for the identification of nuclear charge number and mass of heavy relativistic projectile fragments. In the experiment the production cross sections of very neutron-rich nuclei by fragmentation of 136 Xe projectiles in the reaction 76A.MeV 136 Xe on 27 Al were determined. From the measured production erates for the production of the double-magic nucleus 132 Zn in this reaction a cross section of σ=(0.4± 0.3 0.6 ) μbarn can be extrapolated. (orig./HSI) [de

  1. The FRS Ion Catcher : A facility for high-precision experiments with stopped projectile and fission fragments

    NARCIS (Netherlands)

    Plass, W. R.; Dickel, T.; Purushothaman, S.; Dendooven, P.; Geissel, H.; Ebert, J.; Haettner, E.; Jesch, C.; Ranjan, M.; Reiter, M. P.; Weick, H.; Amjad, F.; Ayet, S.; Diwisch, M.; Estrade, A.; Farinon, F.; Greiner, F.; Kalantar-Nayestanaki, N.; Knoebel, R.; Kurcewicz, J.; Lang, J.; Moore, I.; Mukha, I.; Nociforo, C.; Petrick, M.; Pfuetzner, M.; Pietri, S.; Prochazka, A.; Rink, A. -K.; Rinta-Antila, S.; Schaefer, D.; Scheidenberger, C.; Takechi, M.; Tanaka, Y. K.; Winfield, J. S.; Yavor, M. I.

    2013-01-01

    At the FRS Ion Catcher at GSI, projectile and fission fragments are produced at relativistic energies, separated in-flight, range-focused, slowed down and thermalized in a cryogenic stopping cell. A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) is used to perform direct mass

  2. High precision mass measurements of thermalized relativistic uranium projectile and fission fragments with a multiple-reflection time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ayet San Andres, Samuel [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Justus Liebig Universitaet, Giessen (Germany); Collaboration: FRS Ion Catcher-Collaboration

    2016-07-01

    At the FRS Ion Catcher at GSI, a relativistic beam of {sup 238}U at 1GeV/u was used to produce fission and projectile fragments on a beryllium target. The ions were separated in-flight at the FRS, thermalized in a cryogenic stopping cell and transferred to a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) where high precision mass measurements were performed. The masses of several fission and projectile fragments were measured (including short-lived nuclei with half-lives down to 18 ms) and the possibility of tailoring an isomerically clean beam for other experiments was demonstrated. With the demonstrated performance of the MR-TOF-MS and the expected production rates of exotic nuclei far from stability at the next-generation facilities such as FAIR, novel mass measurements of nuclei close to the neutron drip line will be possible and key information for understanding the r-process will be available. The results from the last experiment and an outlook of possible future mass measurements close to the neutron drip line at FAIR with the MR-TOF-MS are presented.

  3. Neutron emission from projectile-like and target-like fragments in the 18O+48Ti reaction at E(18O)=116 MeV

    International Nuclear Information System (INIS)

    Chambon, B.; Drain, D.; Pastor, C.; Dauchy, A.; Giorni, A.; Morand, C.

    1982-07-01

    Angular correlations between neutrons and projectile-like fragments detected near the grazing angle were analysed by assuming two incoherent neutrons sources. One source describes slower neutrons evaporated by target-like fragments in equilibrium. The faster, forward-peaked neutrons originate from a second source strongly correlated with the projectile-like fragments with regards to velocity and direction. In some cases neutron emission may even be attributed to known neutron emitter levels in excited ejectiles

  4. Strange baryon production and projectile fragmentation in p-A collisions at the AGS

    CERN Document Server

    Cole, B A

    2003-01-01

    Experiment 910 (E910) has studied proton-nucleus collisions at 12.3 and 17.5 GeV incident energies using a variety of targets. Centrality selection is provided via 'grey' track multiplicity which can be statistically related to nu, the number of scatterings of the proton in the target nucleus. Previously published semi-inclusive measurements of LAMBDA production are discussed and preliminary measurements of 'leading' LAMBDA production in 17.5 GeV p-Au collisions are presented as a function of nu. The data indicate that the probability for the projectile to fragment into a strange baryon increases significantly with increasing nu for nu <= 3; an extrapolation of the E910 data to nucleus-nucleus collisions can reproduce most of the enhancement in LAMBDA production observed in Pb-Pb collisions at 40, 80 and 160 A x GeV. Preliminary measurements of XI sup - production in 17.5 GeV p-Au collisions show a rapid increase in yield with increasing nu. The data are discussed in the context of the Van Hove fragmentati...

  5. Peripheral collisions of 2 GeV/nucleon Fe nuclei in nuclear emulsion. I. Light projectile fragments

    International Nuclear Information System (INIS)

    Friedlander, E.M.; Crawford, H.J.; Gimpel, R.W.; Greiner, D.E.; Heckman, H.H.; Lindstrom, P.J.

    1978-01-01

    Observations on 374 collisions of 1.88-GeV/nucleon Fe nuclei in Ilford G-5 nuclear track emulsion, in which at least one projectle fragment of Z > = 3 was emitted within a 6 0 cone, revealed several features of projectile breakup. The onset of copious multiple fragmentation was observed. The relatively high α-particle multiplicities allowed for the first time a study of the α multiplicity distribution; a Poisson distribution gave an excellent fit. The data showed a significant enhancement of α-particle pairs with very small relative momenta. The transverse momentum distributions, which should reflect best the thermal motion in the projectile system, are in flagrant discrepancy with theoretical predictions; the distributions show a marked target dependence. The charges of all projectile fragments up to B were determined by measurement of gap-length distributions. Events with N/sub h/ = 0 are a class apart from the rest of the events; between N/sub h/ = 1 and N/sub h/ = 9 there is surprisingly little change in most parameters. 4 figures

  6. Very forward studies of projectile-like fragments by using a telescopic mode of a double spectrometer

    International Nuclear Information System (INIS)

    Bacri, C.O.

    1989-01-01

    On the tenth anniversary of projectile fragmentation, the question of the real occurrence of this process at the GANIL energies seems to be still open. At first, we will see the importance of doing complete angular distribution including very forward measurements in the study of the fragmentation process. Then, a new type of use of a double spectrometer will be presented and the possibility to get precise angular measurements at and around O 0 , even at very small excitation energies, will be demonstrated. At last, some results obtained at O 0 will be compared to grazing angle measurements

  7. Development of a fragment detector system for the study of peripheral collisions at high beam energies

    International Nuclear Information System (INIS)

    Spies, H.

    1992-06-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR of the Society for Heavy-Ion research in Darmstadt one of the essential research aims of the LAND collaboration is the study of high-lying collective states after electromagnetic excitation in heavy-ion collisions at nearly relativistic beam energies. By the exchange of virtual photons with high energy giant resonances are excited with high probabilities. The main decay channel of giant resonances in heavy nuclei is the emission of neutrons as well as below the particle threshold the emission of γ radiation. For the study of these states a detector system was developed, which makes the kinematically complete measurement of all reaction partners possible. For the determination of the neutron energy serves the Large Area Neutron Detector LAND, a time-of-flight spectrometer for high-energetic neutrons. For the measurement of the γ radiation emitted by the excited projectile the target is surrounded by an array of 48 BaF 2 crystals. A radiation detector system consisting of 6 single detectors and further 5 help detectors allows together with the magnetic spectrometer ALADIN the identification of the heavy projectile fragments by charge, momentum, and mass. Four position-sensitive plastic scintillators serve for the measurement of the trajectory of the projectile respectively the projectile fragments in front and behind the deviating magnet. Additionally with these detectors the velocity is measured. For the determination of the nuclear charge of the projectile fragments serve a multiple-ionization chamber and a Cherenkov detector. In this thesis the development and taking into operation of the LAND radiation detector system is described. (orig./HSI) [de

  8. Angular distributions of light projectile fragments in deep inelastic Pb+Em interactions at 160 A GeV

    CERN Document Server

    Adamovich, M I; Alexandrov, Yu A; Andreeva, N P; Badyal, S K; Basova, E E; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Yu; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; El-Chenawi, K F; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S I A; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Sen-Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Lepekhin, F G; Levitskaya, O V; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Röper, M D; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Seliverstov, D M; Simonov, B B; Sethi, R; Singh, B; Skelding, D; Söderström, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, V; Vokal, S; Vrláková, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-01-01

    The nuclear emulsion was exposed at CERN by the lead projectile at 160 A GeV. The angles between any pair of fragments with Z=2-4 have been measured in the emulsion plane for the events which did not contain heavy fragments. The constant characterizing the normal angle ( phi ) distribution of the fragment momentum projection onto the emulsion plane with respect to initial projectile momentum p/sub 0/ is found to be sigma /sub phi /=(0.37+or-0.02) mrad. Corresponding value sigma /sub 0/=(121+or-6) MeV/c of nucleon momentum distribution in the lead nucleus coincides with that expected from Fermi momentum distribution for this nucleus. The peak in the pair-angle distribution of double-charged fragments, /sup 8/Be to 2 alpha , is presented for the region of small angles (<0.1 mrad). The fraction of alpha -particles coming from the decay of the ground state /sup 8/Be is found to be (13+or-2)601130f their whole number. (14 refs).

  9. The mean free path of alpha projectile fragments from 16O-Em at 60 A GeV

    International Nuclear Information System (INIS)

    Zhang Donghai

    1993-01-01

    In EMU 01 emulsion stack exposed to beam of 16 O nuclei with momentum of 60 A GeV/c, 1068 helium fragments from 1460 16 O-Em collisions have been recorded. These fragments were followed until they interacted or left the stack. Among these fragments there are 236 helium fragments interacted with emulsion. Statistical analysis of the mean free path of these fragments were performed. The evidence was found for the anomalously short mean free path in first few centimeters of the point of alpha fragments. (Author)

  10. Interactions of $^{16}$O Projectile and its Fragments in Nuclear Emulsion at about 60 and 200 GeV/nucleon

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure the multiplicity ``$ n _{s} $'' and pseudo-rapidity ``$\\eta$'' of the shower particles ($\\beta$~$\\geq$~0.7) produced in different types of collisions (peripheral, semi-central and central), of $^{16}$O and $^{32}$S in nuclear emulsions. The multiplicities and angular distributions of both the grey ``$ n _{g} $'' (mainly due to knock- on and recoil protons), and black ``$ n _{b} $'' (slow evaporated target fragments) particles, and the inter-correlation between them are studied. \\\\ \\\\ The yield, charge and angular distributions of produced relativistic projectile fragments P.F.S., for $ Z _{P} . _{F} . $ $\\geq$~2 are measured and their interactions in emulsions are investigated. \\\\ \\\\ The study of the mean free paths for the projectile fragments with Z $\\geq$ 3 produced from 200~A~GeV $^{16}$ 0 interactions were performed, which show the absence of the anomalous phenomena. \\\\ \\\\ The possible production of zero-spin light neutral scaler bosons and pseudoscaler bosons from...

  11. Measurement of projectile-like fragments produced by 80. 6 MeV /sup 16/O on /sup 27/Al

    Energy Technology Data Exchange (ETDEWEB)

    Wen-Qing, SHEN; Shu-Zhi, YIN; Zhong-Yan, GUO; Wen-Long, ZHAN; Yong-Tai, ZHU; Gen-Ming, JIN; Wei-Min, QIAO; En-Chiu, WU; Cheng-Lie, JIANG

    1985-05-01

    The projectile-like fragments produced by 80.6 MeV /sup 16/O on /sup 27/Al were measured using the large area position sensitive ionization chamber. The energy spectra, angular distributions, contour plots of d/sup 2/sigma/d..cap omega..dE in the E-theta plane of the reaction products from Li to Na and the Z-distribution were obtained. The cross sections of the quasi and deep inelastic scattering were introduced. A brief discussion of the experimental results is also given.

  12. Fluctuations in the size of the largest projectile fragment produced in 1 GeV/nucleon Au + C collisions

    International Nuclear Information System (INIS)

    Warren, P.; Elliott, J.B.; Gilkes, M.L.; Hauger, A.; Hirsch, A.S.

    1993-01-01

    Large fluctuations in quantities such as density are characteristic of critical phenomena in the neighborhood of the critical point. Using the EOS apparatus at the Bevalac, we have performed an exclusive experiment in which the size of the largest projectile fragment produced in 1 GeV/nucleon Au+C collisions is studied as a function of the charged multiplicity of the event. A peak in the fluctuations is expected at the critical multiplicity. The data are compared to a percolation model and a statistical multifragmentation model

  13. Kriterijum efikasnosti i optimizacija mase fragmenta projektila parčadnog dejstva / Efficiency criterion and optimization of fragment mass in fragmentation projectiles

    Directory of Open Access Journals (Sweden)

    Predrag Elek

    2003-07-01

    Full Text Available U radu se razmatra problem optimizacije mase parčadi koja nastaju fragmentacijom projektila parčadnog dejstva. Pokazano je da optimalna masa parčeta prvenstveno zavisi od njegovih kinetičkih karakteristika na cilju kao i od usvojenog kriterijuma efikasnosti. Proračuni pokazuju da su postojeći kriterijumi, minimalna zahtevana kinetička energija fragmenta odnosno minimalna kinetička energija po jedinici napadne površine, nesaglasni - odnosno da daju bitno različite vrednosti optimalne mase. Zaključeno je da kriterijum specifične energije parčeta podrazumeva manju masu optimalnog parčeta i ukazuje na značaj parčadi veoma male mase sa stanovišta efikasnosti. Jasno je da ovako određena optimalna masa efikasnog parčeta predstavlja veoma važan parametar projektila parčadnog dejstva, pa je neophodna eksperimentalna verifikacija dobijenih teorijskih rezultata. / This paper considers the problem of optimizing the mass of HE projectile fragments. It is shown that the optimum fragment mass is a function of its kinetic characteristics at the target and an adopted efficiency criterion. Computations show that the most prominent criteria, minimum required kinetic energy and minimum kinetic energy per unit of cross--sectional area, are incompatible - i. e. they provide significantly different values of the optimum mass. It is concluded that the criterion of specific kinetic energy corresponds to a lower optimum fragment mass, which indicates the importance of fragments of low masses from the aspect of efficiency. The theoretically determined optimum fragment mass represents a very significant parameter for design optimization of fragmentation projectiles, but experimental verification of obtained results is essentially important as well.

  14. Projectile fission of 238U relativistic ions in a Pb target and discovery of new fission fragments

    International Nuclear Information System (INIS)

    Bernas, M.; Donzaud, C.; Dessagne, Ph.; Miehe, Ch.; Hanelt, E.; Heinz, A.

    1994-01-01

    With the 238 U beam accelerated at relativistic energies by the heavy ion synchrotron (SIS) at GSI, fission was investigated using inverse kinematics. This geometry is well suited for analyzing fragments with the fragment separator. The fragments are identified by in flight measurements of their energy loss and time of flight signals. More than forty new isotopes have been discovered focusing on the light branch of fission products. (K.A.) 12 refs., 5 figs., 1 tab

  15. Research on critical behaviour during fragmentation of the projectile in the Xe+Sn (at 50 MeV/A) reaction; Recherche d`un comportement critique dans la fragmentation du projectile dans la reaction Xe+Sn a 50 MeV/A

    Energy Technology Data Exchange (ETDEWEB)

    Benlliure, J

    1995-03-01

    The study of moments of fragments charge distributions produced in heavy ions collisions can give us evidence of a critical behavior of nuclear matter which could explain the multifragmentation pattern. From an experimental point of view, in order to perform this capabilities of the INDRA detector has made it possible to identify all these particles and to reconstruct the initial projectile-like fragment coming from binary collisions in the reaction Xe+Sn at 50 MeV/A. We have selected events where the initial projectile-like fragments keep their entire charge in a large range of excitation energy. The study of these fragment`s characteristics show clearly a change in the deexcitation pattern. The evolution of moments of the fragment charge distributions has been reproduced within a percolation model, in this sense we can interpreter this change in the deexcitation pattern as a function of the initial projectile-like fragment`s size shows the existence of finite-size effects. However, the signature of a phase transition remains independent on the projectile-like fragment`s size. (author). 74 refs., 58 figs., 9 tabs.

  16. Use of fragmentation beams at LNS with CHIMERA detector

    Directory of Open Access Journals (Sweden)

    Gianí R.

    2012-07-01

    Full Text Available The recent intensity upgrade of the LNS fragmentation beam is discussed. The available beams, the tagging procedures and details on the beam quality are reported. The experimental program started with the CHIMERA detector using such beams is also discussed with preliminary results and future perspectives.

  17. Projectile fragmentation in reactions induced by 19F at low energy

    International Nuclear Information System (INIS)

    Pop, A.; Cenja, M.; Duma, M.; Dumitrescu, R.; Isbasescu, A.; Magda, M.T.

    1984-09-01

    Light-particle emission was studied in 19 F + 12 C and 19 F + 27 Al reactions at 72 MeV. The spectral shape shows an important breakup component in the case of 2 H, 3 H and 3 He while in the case of 1 H and 4 He the statistical contribution is predominant. The emission of 6 He, 6 Li, 7 Li and 9 Be was also observed and explained by the projectile breakup mechanism within the Serber model. The experimental isotope yields are in good agreement with the theoretical predictions of the Friedman model. (authors)

  18. Breakup of the projectile at 35 MeV/nucleon

    International Nuclear Information System (INIS)

    Gonthier, P.L.; Harper, P.; Bouma, B.; Ramaker, R.; Cebra, D.A.; Koenig, Z.M.; Fox, D.; Westfall, G.D.

    1990-01-01

    Projectile breakup processes are probed by studying the emission of α particles in coincidence with projectile-like fragments as a function of the dissipated energy in the collisions of 35 MeV/nucleon 16 O with 58 Ni. Energy correlations between α particles and projectile-like fragments at small-angle geometries allow the separation of the sources of α emission from projectile-like and target-like fragments. We find that the slope parameters of the decay energy distributions, the average excitation energies, and the α particle multiplicities of the projectile-like fragments increase with increasing dissipation of energy. If the linear dependence, exhibited by the data, of the slope parameter with the dissipated energy is included in model calculations, the majority of the coincidence yield in the forward hemisphere can be explained. However, an excess yield of the data on the opposite side of the beam from the observed projectile-like fragment still remains. Such analysis of the data suggests that the breakup of the projectile is the dominant source of light particles at forward angles. Processes resulting in the breakup of the projectile must be better understood in order to study other processes leading to similar phenomena

  19. Experiments on the nuclear fragmentation and on the production of radioactive beams for direct reactions

    International Nuclear Information System (INIS)

    Weiss, A.

    1993-06-01

    In April 1992 at the GSI a prototype experiment on the production and study of the double-magic radioactive nucleus 56 Ni was successfully performed with proton scattering in inverse kinematics. A 350 MeV/u 56 Ni primary beam from the heavy ion synchrotron SIS was fragmented in a 4/g/cm 2 thick beryllium target. The separation of the formed isotopes ensued in the fragment separator FRS, which was operated in the achromatic mode with a degrader. Production cross sections for a whole series of fragments in the range 29≥Z≥19 and 57≥A≥41 were obtained. It succeeded to detect proton-rich isotopes at the boundary of the stability as for instance 52 Co, 51 Co, 50 Co, or 52 Ni and to determine for the first time their production cross sections. A further part of this thesis with regard to experiments with radioactive beams were first test experiments at the experimental storage ring ESR. The spotlight held luminosity measurements at the internal gas target with cooled, stable proton beam. For this the elastic scattering was stuided in inverse kinematics in the Rutherford range. Studied were different projectile beams (Ne, Xe) at energies of 150 MeV/u respectively 250 MeV/u and gas jets of nitrogen, argon, and hydrogen. The measured energy spectra of the recoils are in agreement with simulation calculations

  20. Elaboration of a model of the nuclear fragmentation and application to the method of isotopic separation of projectile fragments

    International Nuclear Information System (INIS)

    Gaimard, J.J.

    1990-10-01

    In this thesis the experimental results on the cross sections for the production of 36 P in the fragmentation of 403 MeV/u 40 Ar on a carbon target are presented. Furthermore some models of the nuclear fragmentation are elaborated and compared by means of experimental data for the production of gold and cerium isotopes in the reaction 12 C+ 209 Bi at 400 MeV/u, of chlorine, sulfur, aluminium, magnesium, and oxygen isotopes in the reactions 40 Ar+ 12 C at 600 MeV/u and 48 Ca+ 9 Be at 212 MeV/u, and of cobalt, manganese, vanadium, and scandium isotopes together with the charge distributions for A=43 and A=44 in the reactions 40 Ar+ 64 Cu at 2 GeV/u and 56 Fe+ 12 C at 600 MeV/u. (HSI)

  1. Peripheral collisions of heavy ions induced by 40Ar at intermediate energies: giant resonance high energy structures and projectile fragmentation

    International Nuclear Information System (INIS)

    Blumenfeld, Y.

    1987-09-01

    The results obtained in similar studies at low incident energies are first of all reviewed. The time of flight spectrometer built for the experiments is then described. A study of the properties of the projectile-like fragments shows numerous deviations from the relativistic energy fragmentation model. Evidence for a strong surface transfer reaction component is given and the persistence of mean field effects at intermediate energies is stressed. A calculation of the contribution of the transfer evaporation mechanism to the inelastic spectra shows that this mechanism is responible for the major part of the background measured at high excitation energy and can in some cases induce narrow structures in the spectra. The inelastic spectra shows a strong excitation of the giant quadrupole resonance. In the region between 20 and 80 MeV excitation energy narrow structures are present for all the studied systems. Statistical and Fourier analysises allow to quantify the probabilities of existence, the widths and the excitation energies of these structures. A transfer evaporation hypothesis cannot consistently reproduce all the observed structures. The excitation energies of the structures can be well described by phenomenological laws where the energies are proportional to the -1/3 power of the target mass. Complete calculations of the excitation probabilities of giant resonances and multiphonon states are performed within a model where the nuclear excitation are calculated microscopically in the Random Phase Approximation. It is shown that a possible interpretation of the structures is the excitation of multiphonon states built with 2 + giant resonances [fr

  2. Multiplicity distributions of projectile fragments in interactions of nuclei with emulsion at 4.1-4.5 A GeV/c

    International Nuclear Information System (INIS)

    Fakhraddin, S; Rahim, Magda A

    2008-01-01

    The results of our systematic studies of projectile fragments (PFs) multiplicity distributions in interactions of 4 He, 12 C, 16 O, 22 Ne and 28 Si with emulsion at 4.1-4.5 A GeV/c are presented in this paper. The mean values for the three different multiplicities of PFs at nearly the same energy are given. The dependence of these mean values on the projectile mass number A p , as well as the dependence of the PFs on target groups (H, CNO and AgBr), has been investigated

  3. Multiplicity distributions of projectile fragments in interactions of nuclei with emulsion at 4.1-4.5 A GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Fakhraddin, S; Rahim, Magda A [Physics Department, Faculty of Science, Sana' a University, Republic of Yemen (Yemen)], E-mail: sakinafa1@hotmail.com, E-mail: dr.magda2006@hotmail.com

    2008-07-15

    The results of our systematic studies of projectile fragments (PFs) multiplicity distributions in interactions of {sup 4}He, {sup 12}C, {sup 16}O, {sup 22}Ne and {sup 28}Si with emulsion at 4.1-4.5 A GeV/c are presented in this paper. The mean values for the three different multiplicities of PFs at nearly the same energy are given. The dependence of these mean values on the projectile mass number A{sub p}, as well as the dependence of the PFs on target groups (H, CNO and AgBr), has been investigated.

  4. Fragmentation of 22Ne in emulsion at 4.1 A GeV/c

    International Nuclear Information System (INIS)

    El-Naghy, A.; Krasnov, S.A.; Tolstov, K.D.

    1987-01-01

    Charge distributions of projectile fragments produced in the interactions of 22 Ne beams with emulsion at 4.1 A GeV/c have been studied. Correlations between projectile and target fragments and among projectile fragments are presented. The change of charge yield distribution with the violence of the collision has been shown. The present analysis contradicts theoretical calculations describing the inclusive charge yield distribution of fragments by a single process

  5. Search for relativistic projectile fragments with charges 4/3, 5/3, 7/3, and 8/3

    International Nuclear Information System (INIS)

    Bloomer, M.A.; Friedlander, E.M.; Heckman, H.H.; Karant, Y.J.

    1984-01-01

    Recent speculation on the cause of the anomalously short reaction mean free paths of projectile fragmentation products (PF's) produced from relativistic heavy-ion (RHI) collisions with emulsion nuclei has led to the suggestion that nuclei with bound third-integral charges might be present among the PF's. The authors were thus motivated to search for such fractional charges among the 1 less than or equal to Z less than or equal to 3 PF's produced by the interactions of 1.88 GeV/nucleon 56 Fe nuclei in G-5 nuclear emulsion. Results show that all charge measurements for each PF are narrowly distributed around their integer means, and, with the possible exception of the set of measurements scattered around Z = 2.33, there is no indication that PF's of third-integral charge are produced with the same relative abundance as reported for anomalons to date, i.e., 2-6% for 3 less than or equal to Z less than or equal to 26

  6. Fragmentation and direct transfer reactions for 40Ar incident beam on 27Al target at 1760 MeV

    International Nuclear Information System (INIS)

    Cisse, Ousmane

    1985-01-01

    Peripheral collision studies performed with 40 Ar projectiles at 44 MeV/A and 27 Al target show that both fragmentation and transfer reactions can be discerned in this type of interaction. The experimental observation of fragments with masses charges and velocities close to those of the incident beam are the signature of transfer reactions and a detailed analysis of the energy spectra of such fragments has been carried out and interpreted in terms of a direct diffraction transfer model. On the other hand, for large mass transfer reactions, abrasion is the suitable mechanism. Inclusive fragment measurement together with the appropriate residual nuclei-fragment coincidence results then provides experimental data in good agreement with the theoretical predictions obtained from a participant spectator model. These investigations also indicate that the separation energies of the participant from the spectator nucleus, at least within the framework of the above model, can be interpreted in terms of a friction force which becomes more efficient as the projectile energy decreases. (author) [fr

  7. Coincidence measurement between. cap alpha. -particles and projectile-like fragments in reaction of 82. 7 MeV /sup 16/O on /sup 27/Al

    Energy Technology Data Exchange (ETDEWEB)

    Wen-Qing, Shen; Wen-long, Zhan; Yong-tai, Zhu; Shu-zhi, Yin; Zhong-yan, Guo; Wei-min, Qiao; Guo-ying, Fan; Gen-ming, Jin; Song-ling, Li; Zhen, Zhang; others, and

    1987-01-01

    In the coincidence measurement between ..cap alpha..-particles and projectile-like fragments in the reaction of 82.7 MeV /sup 16/O on /sup 27/Al, the contour plot of the C-..cap alpha.. coincidence in the velocity plane and the coincident angular correlation are obtained. Different mechanisms of ..cap alpha..-particle emission are analysed. A possible reaction mechanism of incomplete DIC is discussed.

  8. Heavy neutron-deficient radioactive beams: fission studies and fragment distributions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K.H.; Benlliure, J.; Heinz, A.; Voss, B. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Boeckstiegel, C.; Grewe, A.; Steinhaeuser, S.; Clerc, H.G.; Jong, M. de; Junghans, A.R.; Mueller, J. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Pfuetzner, M. [Warsaw Univ. (Poland). Inst. of Experimental Physics

    1998-02-01

    The secondary-beam facility of GSI Darmstadt was used to study the fission process of short-lived radioactive nuclei. Relativistic secondary projectiles were produced by fragmentation of a 1 A GeV {sup 238}U primary beam and identified in nuclear charge and mass number. Their production cross sections were determined, and the fission competition in the statistical deexcitation was deduced for long isotopical chains. New results on the enhancement of the nuclear level density in spherical and deformed nuclei due to collective rotational and vibrational excitations were obtained. Using these reaction products as secondary beams, the dipole giant resonance was excited by electromagnetic interactions in a secondary lead target, and fission from excitation energies around 11 MeV was induced. The fission fragments were identified in nuclear charge, and their velocity vectors were determined. Elemental yields and total kinetic energies have been determined for a number of neutron-deficient actinides and preactinides which were not accessible with conventional techniques. The characteristics of multimodal fission of nuclei around {sup 226}Th were systematically investigated and related to the influence of shell effects on the potential energy and on the level density between fission barrier and scission. A systematic view on the large number of elemental yields measured gave rise to a new interpretation of the enhanced production of even elements in nuclear fission and allowed for a new understanding of pair breaking in large-scale collective motion. (orig.)

  9. Depth profiling of residual activity of ^{237}U fragments as a range verification technique for ^{238}U primary ion beam

    Directory of Open Access Journals (Sweden)

    I. Strašík

    2012-07-01

    Full Text Available Experimental and simulation data concerning fragmentation of ^{238}U ion beam in aluminum, copper, and stainless-steel targets with the initial energy 500 and 950  MeV/u are collected in the paper. A range-verification technique based on depth profiling of residual activity is presented. The irradiated targets were constructed in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. One of the purposes of these experiments was depth profiling of residual activity of induced nuclides and projectile fragments. Among the projectile fragments, special attention is paid to the ^{237}U isotope that has a range very close to the range of the primary ^{238}U ions. Therefore, the depth profiling of the ^{237}U isotope can be utilized for experimental verification of the ^{238}U primary-beam range, which is demonstrated and discussed in the paper. The experimental data are compared with computer simulations by FLUKA, SRIM, and ATIMA, as well as with complementary experiments.

  10. Effective source size, radial, angular and energy spread of therapeutic 11C positron emitter beams produced by 12C fragmentation

    Science.gov (United States)

    Lazzeroni, Marta; Brahme, Anders

    2014-02-01

    The use of positron emitter light ion beams in combination with PET (Positron Emission Tomography) and PET-CT (Computed Tomography) imaging could significantly improve treatment verification and dose delivery imaging during radiation therapy. The present study is dedicated to the analysis of the beam quality in terms of the effective source size, as well as radial, angular and energy spread of the 11C ion beam produced by projectile fragmentation of a primary point monodirectional and monoenergetic 12C ion beam in a dedicated range shifter of different materials. This study was performed combining analytical methods describing the transport of particles in matter and the Monte Carlo code SHIELD-HIT+. A high brilliance and production yield of 11C fragments with a small effective source size and emittance is best achieved with a decelerator made of two media: a first liquid hydrogen section of about 20 cm followed by a hydrogen rich section of variable length. The calculated intensity of the produced 11C ion beam ranges from about 5% to 8% of the primary 12C beam intensity depending on the exit energy and the acceptance of the beam transport system. The angular spread is lower than 1 degree for all the materials studied, but the brilliance of the beam is the highest with the proposed mixed decelerator.

  11. Study of projectile fragmentation in the reaction (158 A GeV) Pb + Pb using CR-39

    CERN Document Server

    Qureshi, I E; Javed, M T; Manzoor, S; Sher, G; Aleem, F; Khan, H A

    2005-01-01

    The fragmentation of Pb ions at 158 A GeV energy produced in the interaction with Pb target has been studied using a CR-39 track detector. A stack comprising of 64 detectors was prepared such that a target of 1 cm thickness was sandwiched between the sheets of CR-39. The purpose of this exposure geometry was to calibrate CR-39 with respect to relativistic heavy ions as well as to study the fragmentation of Pb ions at 158 A GeV energy. The exposure was carried out at the SPS beam facility of CERN at normal incidence with a fluence of . Two detectors from the exposed stack have been selected for this study: one before and the other after the target material. After etching, the detectors were scanned using an optical microscope and the etched track lengths and the diameters of the track openings were measured manually. Considering that the lengths of tracks provide the best charge resolution for Z>65, we have measured track lengths for a sufficiently large number of fragments to identify individual charge states...

  12. Measurements of the Coulomb dissociation cross section of 156 MeV 6Li projectiles at extremely low relative fragment energies of astrophysical interest

    International Nuclear Information System (INIS)

    Kiener, J.; Gils, H.J.; Rebel, H.; Zagromski, S.; Gsottschneider, G.; Heide, N.; Jelitto, H.; Wentz, J.; Baur, G.

    1991-04-01

    Coulomb dissociation of light nuclear projectiles in the electric field of heavy target nuclei has been experimentally investigated as an alternative access to radiative capture cross sections at low relative energies of the fragments, which are of astrophysical interest. As a pilot experiment the breakup of 156 MeV 6 Li-projectiles at 208 Pb with small emission angles of the a particle and deuteron fragments has been studied. Both fragments were coincidentally detected in the focal plane of a magnetic spectrograph at several reaction angles well below the grazing angle and with relative angles between the fragments of 0deg-2deg. The experimental cross sections have been analyzed on the basis of the Coulomb breakup theory. The results for the resonant breakup give evidence for the strong dominance of the Coulomb dissociation mechanism and the absence of nuclear distortions, while the cross section for the nonresonant breakup follow theoretical predictions of the astrophysical S-factor and extrapolations of corresponding radiative capture reaction cross section to very low c. m. energies of the a particle and deuterons. Various implications of the approach are discussed. (orig.) [de

  13. Neutron-rich rare isotope production from projectile fission of heavy beams in the energy range of 20 MeV/nucleon

    OpenAIRE

    Vonta, N.; Souliotis, G. A.; Loveland, W. D.; Kwon, Y. K.; Tshoo, K.; Jeong, S. C.; Veselsky, M.; Bonasera, A.; Botvina, A.

    2016-01-01

    We investigate the possibilities of producing neutron-rich nuclides in projectile fission of heavy beams in the energy range of 20 MeV/nucleon expected from low-energy facilities. We report our efforts to theoretically describe the reaction mechanism of projectile fission following a multinucleon transfer collision at this energy range. Our calculations are mainly based on a two-step approach: the dynamical stage of the collision is described with either the phenomenological Deep-Inelastic Tr...

  14. Beam Dump Design for the Rare Isotope Accelerator Fragmentation Line

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W; Ahle, L E; Reyes, S

    2006-05-02

    Beam dumps for the heavy ion beams of the fragmentation line of the Rare Isotope Accelerator have been designed. The most severe operational case involves a continuous U beam impacting the beam dump with a power of 295 kW and a nominal spot diameter size of 5 cm. The dump mechanically consists of two rotating barrels with a water cooled outer wall of 2 mm thick aluminum. The barrels are 70 cm in diameter and axially long enough to intercept a variety of other beams. The aluminum wall absorbs approximately 15% of the U beam power with the rest absorbed in the water downstream of the wall. The water acts as an absorber of the beam and as a coolant for the 2 mm aluminum wall. The barrel rotates at less than 400 RPM, maximum aluminum temperatures are less than 100 C and maximum thermal fatigue stresses are low at 3.5 x 10{sup 7} Pa (5 ksi). Rotation of the dump results in relatively low radiation damage levels with an operating lifetime of years for most beams.

  15. Neutronics Assessments for a RIA Fragmentation Line Beam Dump Concept

    CERN Document Server

    Boles, Jason; Reyes, Susana; Stein, Werner

    2005-01-01

    Heavy ion and radiation transport calculations are in progress for conceptual beam dump designs for the fragmentation line of the proposed Rare Isotope Accelerator (RIA). Using the computer code PHITS, a preliminary design of a motor-driven rotating wheel beam dump and adjacent downstream multipole has been modeled. Selected results of these calculations are given, including neutron and proton flux in the wheel, absorbed dose and displacements per atom in the hub materials, and heating from prompt radiation and from decay heat in the multipole.

  16. Irradiation Effects on RIA Fragmentation Cu Beam Dump

    CERN Document Server

    Reyes, Susana; Boles, Jason; Stein, Werner; Wirth, Brian

    2005-01-01

    Within the scope of conceptual R&D activities in support of the Rare-Isotope Accelerator (RIA) facility, high priority is given to the development of high-power fragmentation beam dumps. A pre-study was made of a static water-cooled Cu beam dump that can meet requirements for a 400 MeV/u uranium beam. The issue of beam sputtering was addressed and found to be not a significant issue. Preliminary radiation transport simulations show significant damage (dpa) in the vicinity of the Bragg peak of uranium ions. Experimental data show that defects in Cu following neutron or high-energy particle irradiation tend to saturate at doses between 1 and 5 dpa, and this saturation in defect density also results in saturation of mechanical property degradation. However, effects of swift heavy ion irradiation and the production of gaseous and solid transmutant elements still need to be addressed. Initial calculations indicate that He concentrations on the order of 100 appm are produced in the beam dump after several weeks...

  17. Determination of diffuseness parameter to estimate the survival probability of projectile using Woods-Saxon formula at intermediate beam energies

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Goyal, Monika; Roshni; Singh, Pradeep; Kharab, Rajesh

    2017-01-01

    In present work, the S-matrix has been evaluated by using simple Woods-Saxon formula as well as the realistic expression for a number of projectiles varying from 26N e to 76 Ge at intermediate incident beam energies ranging from 30 MeV/A to 300 MeV/A. The target is 197 Au in each and every case. The realistic S-matrix is compared with that of obtained by using the simple Woods-Saxon formula. The motive of this comparison is to fix the value of otherwise free Δ so that the much involved evaluation of realistic S-matrix can be replaced by the simple Woods-Saxon formula

  18. High purity radioactive beams at the bevalac

    International Nuclear Information System (INIS)

    Alonso, J.R.; Chatterjee, A.; Tobias, C.A.

    1979-03-01

    Peripheral nuclear fragmentation reactions of primary Bevalac heavy ion beams are used to produce secondary beams of radioactive nuclei. The large cross section and small deflection of the projectile fragments lead to high production and delivery efficiency for these beams. Dispersive beam transport allows good separation and purification of the desired secondary beams. 11 C and 19 Ne beams of high purity and good intensity (almost 0.2% of the primary beam current) are presently being used for biomedical experiments

  19. Production of secondary radioactive beams from 44 MeV/u Ar projectiles

    International Nuclear Information System (INIS)

    Bimbot, R.; Della Negra, S.; Aguer, P.; Bastin, G.; Anne, R.; Delagrange, H.; Hubert, F.

    1985-01-01

    Secondary beams have been produced through interaction of a 1760 MeV Ar beam with a 99 mg/cm 2 Be target. An achromatic spectrometer is used to select the magnetic rigidity corresponding to a given beam, and to transport this beam over a distance of about 18 m. The beam purity is studied using a solid state ΔE-E telescope. Beams of 38 S and 39 Cl are produced with a purity of about 80% and production rates of 1.5 10 -6 Isub(o) and 5.10 -5 Isub(o) respectively. Here Isub(o) denotes the primary beam intensity. Beams of 38 Ar, 39 Ar and 41 Kr are produced with about the same abundances as 39 Cl but with lower purities. It is shown that, by setting properly the experimental parameters, the beam production can be improved by a factor 2 to 5. This could lead to intensities of about 2.10 6 pps for 38 S and of 10 7 to 10 8 pps for the four other beams. The possibility of purifying these beams by placing a degrader between the two dipoles of the spectrometer is shown experimentally

  20. Energy loss, range and fluence distributions, total reaction and projectile fragment production cross sections for proton-nucleus and nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Sihver, L.; Kanai, T.

    1992-07-01

    We have developed a computer code for calculations of energy loss (dE/dx) and range distributions for heavy ions in any media. The results from our calculations are in very good agreement with previous calculations. We have developed semiempirical total reaction cross section formulae for proton-nucleus (with Z p ≤26) and nucleus-nucleus (with Z p and Z t ≤26) reactions. These formulae apply for incident energies above 15 MeV and 100 MeV/nucleon respectively. From the total reaction cross sections, we can calculate the mean free paths and the fluence distributions of protons and heavy ions in any media. We have compared all the calculated reaction cross sections and the mean free paths with experimental data, and the agreement is good. We have also constructed a procedure for calculating projectile fragment production cross sections, by scaling semiempirical proton-nucleus partial cross section systematics. The scaling is performed using a scaling parameter deduced from our reaction cross sections formulae, and additional enhancements factors. All products with atomic number ranging from that of the projectile (Z p ) down to Z=2 can be calculated. The agreement between the calculated cross sections and the experimental data is better than earlier published results. (author)

  1. Study of the peripheral projectile-like fragments from the reaction 129Xe on 27Al, natCu, 139La and 165Ho, at E/A = 50 MeV

    International Nuclear Information System (INIS)

    Garcia-Solis, E.J.; Russ, D.E.; Madani, H.

    1996-01-01

    There are several reaction mechanisms identified for peripheral heavy-ion collisions. For low bombarding energies (E/A ∼ 10 MeV) the predominant reaction channel is the deep-inelastic reaction mechanism. In this process, the projectile and target form a rotating binary system, interchanging nucleons and angular momentum until they separate. At higher bombarding energies (E/A ∼ 50 to 100 MeV) incomplete fusion is thought to be the prevailing reaction channel. In this type of interaction part of the projectile merges with the target during the collision. Finally, for energies greater than 100 MeV/A, the main reaction channel is characterized by the formation of a highly-excited separate fragment (fireball) produced during the overlap between the projectile and the target. The data set studied was from an experiment designed to characterize the projectile-like products of the 27 Al, nat Cu, 139 La, and 165 Ho reactions at E/A = 50 MeV, which was performed at the Michigan State University Super Cyclotron Laboratory (MSU-NSCL). The Maryland Forward Array (MFA), was used to measure projectile-like fragments in coincidence with target-like fragments and light-charge particles in the MSU 4π detector

  2. Study of Particle Production and Nuclear Fragmentation in Collisions of $^{16}$O Beams with Emulsion Nuclei at 13-200 A GeV

    CERN Multimedia

    2002-01-01

    .SK 2\\\\ \\\\ The aim of the experiment is to study, on an event by event basis, multiplicities of produced charged particles, pseudo-rapidity density distributions globally and in selected regions of pseudo-rapidity, density fluctuations, multiplicity and angular distributions of nuclear fragments and recoiling protons (30-400~A~MeV) and cross sections for production and interation of light and medium (Z=2-8) projectile fragments. \\\\ \\\\ The detectors are emulsion chambers as well as conventional emulsion stacks. The emulsion chambers consist of several layers of a plastic substrate, each coated with nuclear emulsion on both sides. Since the best measurement accuracy is obtained for the particles with the smallest emission angles, this design is especially suited for the pseudo-rapidity determination. The emulsion stacks, of both high and low sensitivity, have been exposed in the conventional way, with the beam parallel to the emulsion sheets. These stacks are used to study the fragmentation of the interaction n...

  3. Identification of more than a 100 new isotopes from 238U projectile fission and beams of neutron-rich nuclei at BRENDA

    International Nuclear Information System (INIS)

    Bernas, M.; Donzaud, C.; Dessagne, Ph.

    1996-01-01

    Projectile fission of 238 U was investigated at a bombarding energy of 750 A MeV using Pb and Be targets. The fully stripped forward emitted fragments from Ti to Cs were analyzed with the Fragment Separator (FRS) and unambiguously identified by their energy-loss and time-of-flight. The magnetic selection of the largest momenta acted as a trigger of the low-energy fission component. More than a hundred new nuclear species were identified including the 78 Ni, for which a cross-section of 300 pb was measured. (author)

  4. Relativistic exotic nuclei as projectile beams. New perspectives of studies on the properties of nuclei; Relativistische exotische Kerne als Projektilstrahlen. Neue Perspektiven zum Studium der Kerneigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Geissel, H

    1997-03-01

    Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB) [Deutsch] Die Untersuchungen der Produktionsquerschnitte und der Kinematik fuehr ten zu einer Verfeinerung der Modellvorstellungen der peripheren Kernr eaktionen an exotischen Kernen bei Energien im Bereich von 100- 1000 A MeV. Die hohe Selektivitaet und Aufloesung waren die Voraussetzung, da ss schon bei den vergleichsweise niedrigen Projektilstrahlintensitaete n des SIS eine grosse Anzahl von neuen Isotopen am Fragmentseparator F RS entdeckt werden konnten. Besonders erwaehnenswert sind die beiden d oppelt magischen Kerne Ni 78 und Sn 100, die mit anderen experimentel len Anlagen vorher nicht zugaenglich waren.Die Spaltung relativistisch er Uranionen hat sich als eine besonders ergiebige Quelle fuer mittels chwere neutronenreiche Kerne erwiesen. Die Kenntnisse der Struktur lei chter Neutronen- Halokerne konnten erweitert werden. Die uebergrosse r aeumliche Ausdehnung der Halokerne wurde aufgezeigt.

  5. Mass measurements of {sup 238}U-projectile fragments for the first time with a multiple-reflection time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Jens

    2016-07-01

    Mass measurements of short-lived uranium projectile fragments were performed for the first time with a Multiple-Reflexion-Time-of-Flight Mass Spectrometer (MR-TOF-MS). A major part of this doctoral work was a novel development of a data analysis method for the MR-TOF-MS mass measurements of exotic nuclei at the fragment separator FRS at GSI. The developed method was successfully applied to the data obtained from two pilot experiments with the MR-TOF-MS at the FRS in 2012 and 2014. A substantial upgrade of the experimental setup of the MR-TOF-MS was also performed in the frame work of this doctoral thesis after the first run. In the experiments projectile fragments were created with 1000 MeV/u {sup 238}U ions in a Be/Nb target at the entrance of the in-flight separator FRS. The exotic nuclei were spatially separated, energy bunched and slowed down with the ion-optical system of the FRS combined with monoenergetic and homogeneous degraders. At the final focal plane of the FRS the fragments were completely slowed down and thermalized in a cryogenic stopping cell (CSC) filled with 3-5 mg/cm{sup 2} pure helium gas. The exotic nuclei were fast extracted from the CSC to enable mass measurements of very short-lived fragments with the MR-TOF-MS. The achievement of this goal was successfully demonstrated with the mass measurement of {sup 220}Ra ions with a half-life of 17.9 ms and 11 detected events. The mass measurements of the isobars {sup 211}Fr, {sup 211}Po and {sup 211}Rn have clearly demonstrated the scientific potential of the MR-TOF-MS for the investigation of exotic nuclei and the power of the data analysis system. Difficult measurements with overlapping mass distributions with only a few counts in the measured spectra were the challenge for the new data analysis method based on the maximum likelihood method. The drifts during the measurements were corrected with the developed time-resolved calibration method. After the improvements of the setup as a consequence of

  6. Reaction 40Ca+natCu at 35 MeV/nucleon measured with the AMPHORA multidetector. Study of the excitation energy and angular momentum of the reconstructed projectile-like fragment

    International Nuclear Information System (INIS)

    Elhage, H.

    1992-10-01

    We have studied the reaction of 40 Ca with nat Cu at 35 MeV/nucleon with the AMPHORA multidetector. Three different reaction models were developed and we have shown that a simulation of the AMPHORA response is necessary to interpret the experimental results. Only two-body events were analyzed. Kinematic selection criterions, based on relative velocity, were used in order to isolate particles and residues coming from the de-excitation of the projectile-like fragment. The reconstitution of such a nucleus allowed to define the reaction plane and to calculate the energy balance event-by-event. We have proposed a method to determine the angular momentum based on the emission asymmetry of the light particles with respect to the normal to the reaction plane. The estimated angular momenta are in good agreement with the theoretical predictions. The projectile-like fragment temperature was estimated from the energy spectra of the light particles. The independent determination of the excitation energy, temperature and angular momentum allowed to calculate the level density parameter. This quantity does not evolve with the excitation energy and is equal to A/8. The projectile-like fragment de-excitation mode is mainly evaporation

  7. Embolism of high energy firearm projectile

    Directory of Open Access Journals (Sweden)

    Jaime Álvarez Soler

    2016-12-01

    Full Text Available The embolism of a projectile is very rare and out of the normal context, so the cor-oner in front of a wound projectile firearm must make a very judicious and careful analysis to recover the projectile and/or its fragments. This case presents evidence how modern military high-velocity weapons have a high kinetic energy which is transferred to body tissues, so including their fragments and parts of the projectile can cause serious injury and embolism, requiring a great effort scientific and in-terdisciplinary to give technical support to justice.

  8. Analyzing Internal Fragmentation of Electrosprayed Ubiquitin Ions During Beam-Type Collisional Dissociation

    Science.gov (United States)

    Durbin, Kenneth R.; Skinner, Owen S.; Fellers, Ryan T.; Kelleher, Neil L.

    2015-05-01

    Gaseous fragmentation of intact proteins is multifaceted and can be unpredictable by current theories in the field. Contributing to the complexity is the multitude of precursor ion states and fragmentation channels. Terminal fragment ions can be re-fragmented, yielding product ions containing neither terminus, termed internal fragment ions. In an effort to better understand and capitalize upon this fragmentation process, we collisionally dissociated the high (13+), middle (10+), and low (7+) charge states of electrosprayed ubiquitin ions. Both terminal and internal fragmentation processes were quantified through step-wise increases of voltage potential in the collision cell. An isotope fitting algorithm matched observed product ions to theoretical terminal and internal fragment ions. At optimal energies for internal fragmentation of the 10+, nearly 200 internal fragments were observed; on average each of the 76 residues in ubiquitin was covered by 24.1 internal fragments. A pertinent finding was that formation of internal ions occurs at similar energy thresholds as terminal b- and y-ion types in beam-type activation. This large amount of internal fragmentation is frequently overlooked during top-down mass spectrometry. As such, we present several new approaches to visualize internal fragments through modified graphical fragment maps. With the presented advances of internal fragment ion accounting and visualization, the total percentage of matched fragment ions increased from approximately 40% to over 75% in a typical beam-type MS/MS spectrum. These sequence coverage improvements offer greater characterization potential for whole proteins with no needed experimental changes and could be of large benefit for future high-throughput intact protein analysis.

  9. The Zero-Degree Detector system for fragmentation studies

    International Nuclear Information System (INIS)

    Adams, J.H.; Christl, M.J.; Howell, L.W.; Kuznetsov, E.

    2007-01-01

    The measurement of nuclear fragmentation cross-sections requires the detection and identification of individual projectile fragments. If light and heavy fragments are recorded in the same detector, it may be impossible to distinguish the signal from the light fragment. To overcome this problem, we have developed the Zero-degree Detector System (ZDDS). The ZDDS enables the measurement of cross-sections for light fragment production by using pixelated detectors to separately measure the signals of each fragment. The system has been used to measure the fragmentation of beams as heavy as Fe at the NASA Space Radiation Laboratory at Brookhaven National Laboratory and the Heavy Ion Medical Accelerator in Chiba, Japan

  10. New neutron-rich isotopes in the scandium-to-nickel region, produced by fragmentation of a 500 MeV/u 86Kr beam

    International Nuclear Information System (INIS)

    Weber, M.; Geissel, H.; Keller, H.; Magel, A.; Muenzenberg, G.; Nickel, F.; Pfuetzner, M.; Piechaczek, A.; Roeckl, E.; Rykaczewski, K.; Schall, I.; Suemmerer, K.; Donzaud, C.; Guillemaud-Mueller, D.; Mueller, A.C.; Stephan, C.; Tassan-Got, L.; Dufour, J.P.; Pravikoff, M.; Grewe, A.; Voss, B.; Vieira, D.J.

    1991-10-01

    We have measured production cross-sections of the new neutron-rich isotopes 58 Ti, 61 V, 63 Cr, 66 Mn, 69 Fe, 71 Co and neighbouring isotopes that have been identified as projectile fragments from reactions between a 500 MeV/u 86 Kr beam and a beryllium target. The isotope identification was performed with the zero-degree magnetic spectrometer FRS at GSI, using in addition time-of-flight and energy-loss mesurements. The experimental production cross-sections for the new nuclides and neighbouring isotopes are compared with an empirical parameterization. The resulting prospects for reaching even more neutron-rich isotopes, such as the doubly-magic nuclide 78 Ni, are discussed. (orig.)

  11. Design of the radioactive ion beam facility at the LNS

    International Nuclear Information System (INIS)

    Migneco, E.; Alba, R.; Calabretta, L.; Ciavola, G.; Cuttone, G.; Di Giacomo, M.; Gammino, S.; Gmaj, P.; Moscatello, M.H.; Raia, G.

    1992-01-01

    At the Laboratorio Nazionale del Sud the existing 15 MV Tandem will be coupled to the Superconducting Cyclotron booster, which will provide light and heavy ion beams in the energy range 100-20 MeV/n. Using these beams, secondary radioactive beams can be produced by projectile fragmentation. A fragment separator will collect the secondary beam produced at energies near that of the projectile and deliver it into the experimental areas. The possibility of using an ECRIS source for the axial injection into the Cyclotron and producing radioactive ions on a thick source placed inside the Tandem preinjector is also discussed. (author) 7 refs.; 2 figs.; 1 tab

  12. Radio Frequency Fragment Separator at NSCL

    International Nuclear Information System (INIS)

    Bazin, D.; Andreev, V.; Becerril, A.; Doleans, M.; Mantica, P.F.; Ottarson, J.; Schatz, H.; Stoker, J.B.; Vincent, J.

    2009-01-01

    A new device has been designed and built at NSCL which provides additional filtering of radioactive beams produced via projectile fragmentation. The Radio Frequency Fragment Separator (RFFS) uses the time micro structure of the beams accelerated by the cyclotrons to deflect particles according to their time-of-flight, in effect producing a phase filtering. The transverse RF (Radio Frequency) electric field of the RFFS has superior filtering performance compared to other electrostatic devices, such as Wien filters. Such filtering is critical for radioactive beams produced on the neutron-deficient side of the valley of stability, where strong contamination occurs at intermediate energies from 50 to 200 MeV/u.

  13. Nuclear Fragmentation in Clinical Heavy Ion Beams, Should We Worry?

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Toftegaard, Jakob

    2012-01-01

    Particle therapy with fast ions is increasingly applied as a treatment option for localized inoperable tumour sites. One of the reasons for the increased complications of understanding heavy ion dosimetry and radiobiology stems from the mixed particle spectrum which occurs due to nuclear fragment......Particle therapy with fast ions is increasingly applied as a treatment option for localized inoperable tumour sites. One of the reasons for the increased complications of understanding heavy ion dosimetry and radiobiology stems from the mixed particle spectrum which occurs due to nuclear....... The concept of relative biological effectiveness (RBE) translates the physical dose to a biological effective dose which is iso-effective to photon radiation. Radiobiological models based on amorphous track structure such as the Local Effect Model, but also microdosimetry based models both rely on a full...... the sensitivity on the three fields mentioned above, including: turning off nuclear fragmentation entirely, changing all ineleastic cross sections +/- 20%, changing key parameters in the Fermi-Breakup (FB) model. Results show nuclear effects have their largest impact on the dose distribution. Stopping power...

  14. Nonlinear transient responses of beams and rings to impulse loading or fragment impact

    International Nuclear Information System (INIS)

    Witmer, E.A.; Stagliano, T.R.; Rodal, J.J.A.

    1977-01-01

    Nuclear power plant protective structures may be subjected to various external missiles such as aircraft and tornado-generated missiles: telephone poles, planks, pipes, rods, automobiles, and other blown vehicles. Also, 'internally-generated missiles' such as fragments from powerplant rotors and aircraft engine rotors may impact protective structures. The present paper is concerned with a very limited part of the cited fragment threat; namely, fragments from high speed rotating machinery such as (1) aircraft engine rotors and (2) stationary power plant turbine rotors. Further, it is assumed that the structures intended to contain or control these fragments consist of initially-isotopic elastic-plastic metals. Certain potential containment/control (C/C) structures behave in a planar (or two-dimensional) fashion while other fragment-attacked C/C structures will undergo general three-dimensional deformations. Predictions for only the former category of fragment-attacked structures are discussed in the present paper. Pertinent experimental data discussed on fragment-attacked structures include (a) steel-sphere impact data involving beam targets and (b) engine rotor fragment impact against a steel containment ring. In all of these cases large-deflection, elastic-plastic transient structural responses occur. (Auth.)

  15. Contributions of secondary fragmentation by carbon ion beams in water phantom: Monte Carlo simulation

    International Nuclear Information System (INIS)

    Ying, C K; Bolst, David; Tran, Linh T.; Guatelli, Susanna; Rosenfeld, A. B.; Kamil, W A

    2017-01-01

    Heavy-particle therapy such as carbon ion therapy is currently very popular because of its superior conformality in terms of dose distribution and higher Relative Biological Effectiveness (RBE). However, carbon ion beams produce a complex mixed radiation field, which needs to be fully characterised. In this study, the fragmentation of a 290 MeV/u primary carbon ion beam was studied using the Geant4 Monte Carlo Toolkit. When the primary carbon ion beam interacts with water, secondary light charged particles (H, He, Li, Be, B) and fast neutrons are produced, contributing to the dose, especially after the distal edge of the Bragg peak. (paper)

  16. Yields of nuclear fragments in the interactions of carbon nuclei with a beryllium target at a projectile energy of 0.6 GeV per nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, B. M.; Alexeev, P. N.; Borodin, Yu. A.; Bulychjov, S. A. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics (Russian Federation); Gudima, K. K. [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Dukhovskoy, I. A.; Krutenkova, A. P., E-mail: anna.krutenkova@itep.ru; Kulikov, V. V.; Martemianov, M. A.; Matsyuk, M. A. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics (Russian Federation); Mashnik, S. G. [Los Alamos National Laboratory (United States); Turdakina, E. N.; Khanov, A. I. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics (Russian Federation)

    2016-09-15

    The yields of long-lived nuclear fragments at an angle of 3.5° that originate fromthe fragmentation of carbon ions with an energy of T{sub 0} = 0.6 GeV per nucleon on a berylliumtarget were measured in the FRAGMexperiment at the ITEP TWA heavy-ion accelerator. The momentum spectra of these fragments cover both the fragmentation-maximum region and the cumulative region. The respective differential cross sections change by about five orders of magnitude. The momentum distributions of fragments in the laboratory frame and their kinetic-energy distributions in the rest frame of the fragmenting nucleus are used to test the predictions of four models of ion–ion interactions: BC, INCL++, LAQGSM03.03, and QMD.

  17. Dynamic effects of interaction of composite projectiles with targets

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, V. M. [Scientific Research Institute of Applied Mathematics and Mechanics of Tomsk State University, 36, Lenin Avenue, Tomsk, 634050 (Russian Federation)

    2016-01-15

    The process of high-speed impact of projectiles against targets of finite thickness is experimentally investigated. Medium-hard steel plates are used as targets. The objective of this research is to carry out a comparative analysis of dynamic effects of interaction of various types of projectiles with targets, such as characteristics of destruction of the target, the state of the projectile behind the target, and particularities of the after-penetration stream of fragments after the target has been pierced. The projectiles are made of composites on the basis of tungsten carbide obtained by caking and the SHS-technology. To compare effectiveness of composite projectiles steel projectiles are used. Their effectiveness was estimated in terms of the ballistic limit. High density projectiles obtained by means of the SHS-technology are shown to produce results comparable in terms of the ballistic limit with high-strength projectiles that contain tungsten received by caking.

  18. Nonlinear transient responses of beams and rings to impulse loading or fragment impact

    International Nuclear Information System (INIS)

    Witmer, E.A.; Stagliano, T.R.; Rodal, J.J.A.

    1977-01-01

    The present paper is concerned with a very limited part of the cited fragment threat; namely, fragments from high speed rotating machinery such as (1) aircraft engine rotors and (2) stationary power plant turbine rotors. Further, it is assumed that the structures intended to contain or control these fragments consist of initially-isotropic elastic-plastic metals. Certain potential containment/control (C/C) structures behave in a planar (or two-dimensional) fashion while other fragment-attacked C/C structures will undergo general three-dimensional deformations. Predictions for only the former category of fragment-attacked structures are discussed in the present paper. Pertinent experimental data discussed here on fragment-attacked structures include (a) steel-sphere impact data involving beam targets and (b) engine rotor fragment impact against a steel containment ring. In all of these cases large-deflection, elastic-plastic transient structural response occur. The governing equations employed are presented in the present analysis to predict the responses of protective (metal) structures to engine-rotor-fragment impact. The protective structure is intended either to contain or to deflect the attacking fragments away from important regions; large-deflection, elasic-plastic structural response is expected because these protective structures must have the least feasible weight. Concise geometric and assumed-displacement-field descriptions of the several types of finite elements to be utilized in subsequent examples are given, together with several categories of strain displacement relations. Both low- and higher-order elements are discussed

  19. Site-specific fragmentation of polystyrene molecule using size-selected Ar gas cluster ion beam

    International Nuclear Information System (INIS)

    Moritani, Kousuke; Mukai, Gen; Hashinokuchi, Michihiro; Mochiji, Kozo

    2009-01-01

    The secondary ion mass spectrum (SIMS) of a polystyrene thin film was investigated using a size-selected Ar gas cluster ion beam (GCIB). The fragmentation in the SIM spectrum varied by kinetic energy per atom (E atom ); the E atom dependence of the secondary ion intensity of the fragment species of polystyrene can be essentially classified into three types based on the relationship between E atom and the dissociation energy of a specific bonding site in the molecule. These results indicate that adjusting E atom of size-selected GCIB may realize site-specific bond breaking within a molecule. (author)

  20. Use of beam probes for rigidity calibration of the A1900 fragment separator

    Energy Technology Data Exchange (ETDEWEB)

    Ginter, T.N. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Farinon, F. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Baumann, T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Hausmann, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Kwan, E.; Naviliat Cuncic, O. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Portillo, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Rogers, A.M.; Stetson, J.; Sumithrarachchi, C. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Villari, A.C.C. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Williams, S.J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)

    2016-06-01

    Use of a beam-based approach is presented for establishing a rigidity calibration for the A1900 fragment separator located at the National Superconducting Cyclotron Laboratory. Also presented is why an alternative approach to the rigidity calibration – using detailed field maps of individual magnetic components – is not a feasible basis for deriving an accurate calibration. The level of accuracy achieved for the rigidity calibration is ±0.1%.

  1. Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W; Ahle, L E; Conner, D L

    2005-04-28

    The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 70 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an adjacent air space. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 15% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 3 ksi. Rotating the wheel also results in low radiation damage levels by spreading the damage out over the whole perimeter of the wheel. For some of the other beams, a stationary dump consisting of a thin aluminum window with water acting as a coolant and absorber appears to be feasible.

  2. Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line

    CERN Document Server

    Stein, Werner; Conner, David L

    2005-01-01

    The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 50 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an air space in the floor above the dump. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 10% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 5 ksi. Rotating the wheel also results in low radiation damage levels by spreading t...

  3. Differential cross section study of fragment production, at small angle, in relativistic heavy ion collisions. Application at a calculation of heavy ion beam transport in the matter

    International Nuclear Information System (INIS)

    Morel, P.

    1992-02-01

    Relativistic heavy ion collisions present the opportunity of creating in laboratory small volumes of hot, dense nuclear matter. On the experimental point of view, the collision events are characterized by a great number of fragments, especially in the direction of the projectile. The first part is devoted to a survey of relativistic heavy ion physics. Then, we present two experimental set-ups which permit, in particular, the analyse of light fragment production at small angles. We present experimental results concerning light projectiles on Ca, Nb, Pb targets, with energies from 200 A.MeV up to 600 A.MeV. Different aspects of the collision are put in evidence. Momentum and charge differential cross section are extrapolated to other projectile/target systems; that is used in a transport calculation of Ne ions in a target of biological interest (water), with a collimator. We show that nuclear fragmentation produces a dispersion in the spatial and energy distributions, and that one light fragments have a range greater than the projectile range. That last point causes a distortion of the Bragg curve, and that distortion must be taken into account for the application of heavy ions to radiotherapy problems. 95 figs., 8 tabs

  4. Spectroscopic Evidence for Exceptional Thermal Contribution to Electron-Beam Induced Fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Marissa A.; Haynor, Ben; Aloni, Shaul; Ogletree, D. Frank; Wong, H.-S. Philip; Urban, Jeffrey J.; Milliron, Delia J.

    2010-11-16

    While electron beam induced fragmentation (EBIF) has been reported to result in the formation of nanocrystals of various compositions, the physical forces driving this phenomenon are still poorly understood. We report EBIF to be a much more general phenomenon than previously appreciated, operative across a wide variety of metals, semiconductors and insulators. In addition, we leverage the temperature dependent bandgap of several semiconductors to quantify -- using in situ cathodoluminescence spectroscopy -- the thermal contribution to EBIF, and find extreme temperature rises upwards of 1000K.

  5. Production of high intensity radioactive beams

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of ∼10 39 cm -2 s -1 , which would yield radioactive beams in excess of 10 11 s -1 . 9 refs., 3 figs., 7 tabs

  6. In-flight dynamics of volcanic ballistic projectiles

    Science.gov (United States)

    Taddeucci, J.; Alatorre-Ibargüengoitia, M. A.; Cruz-Vázquez, O.; Del Bello, E.; Scarlato, P.; Ricci, T.

    2017-09-01

    Centimeter to meter-sized volcanic ballistic projectiles from explosive eruptions jeopardize people and properties kilometers from the volcano, but they also provide information about the past eruptions. Traditionally, projectile trajectory is modeled using simplified ballistic theory, accounting for gravity and drag forces only and assuming simply shaped projectiles free moving through air. Recently, collisions between projectiles and interactions with plumes are starting to be considered. Besides theory, experimental studies and field mapping have so far dominated volcanic projectile research, with only limited observations. High-speed, high-definition imaging now offers a new spatial and temporal scale of observation that we use to illuminate projectile dynamics. In-flight collisions commonly affect the size, shape, trajectory, and rotation of projectiles according to both projectile nature (ductile bomb versus brittle block) and the location and timing of collisions. These, in turn, are controlled by ejection pulses occurring at the vent. In-flight tearing and fragmentation characterize large bombs, which often break on landing, both factors concurring to decrease the average grain size of the resulting deposits. Complex rotation and spinning are ubiquitous features of projectiles, and the related Magnus effect may deviate projectile trajectory by tens of degrees. A new relationship is derived, linking projectile velocity and size with the size of the resulting impact crater. Finally, apparent drag coefficient values, obtained for selected projectiles, mostly range from 1 to 7, higher than expected, reflecting complex projectile dynamics. These new perspectives will impact projectile hazard mitigation and the interpretation of projectile deposits from past eruptions, both on Earth and on other planets.

  7. Finite element investigation of explosively formed projectiles (EFP)

    International Nuclear Information System (INIS)

    Ahmad, I.

    1999-01-01

    This thesis report represents the numerical simulation of explosively formed projectiles (EFP), a type of linear self-forging fragment device. The simulation is performed using a finite element code DYNA2D. It also explicates that how the shape, velocity and kinetic energy of an explosively formed projectile is effected by various parameters. Different parameters investigated are mesh density, material, thickness, contour and types of liner. Effect of shape of casing and material model is also analyzed. The shapes of projectiles at different times after detonation are shown. The maximum velocity and kinetic energy of the projectile have been used to ascertain the effect of above mentioned parameters. (author)

  8. Development of Fragmented Low-Z Ion Beams for the NA61 Experiment at the CERN SPS

    CERN Document Server

    Efthymiopoulos, I; Bohl, T; Breuker, H; Calviani, M; Manglunki, D; Mataguez, S; Maury, S; Valderanis, C; Cornelis, K; Spanggaard, J; Cettour-Cave, S; Gazdzicki, M; Seyboth, P; Guber, F; Ivashkin, A

    2011-01-01

    The NA61 experiment, aims to study the properties of the onset of deconfinement at low SPS energies and to find signatures of the critical point of strongly interacting matter. A broad range in T-μB phase diagram will be covered by performing an energy (13A-158AGeV/c) and system size (p+p, Be+Be, Ar+Ca, Xe+La) scan. In a first phase, fragmented ion beams of 7Be or 11C produced as secondaries with the same momentum per nucleon when the incident primary Pb-ion beam hits a thin Be target will be used. The H2 beam line that transports the beam to the experiment acts as a double spectrometer which combined with a new thin target (degrader) where fragments loose energy proportional to the square of their charge allows the separation of the wanted A/Z fragments. Thin scintillators and TOF measurement for the low energy points are used as particle identification devices. In this paper results from the first test of the fragmented ion beam done in 2010 will be presented showing that a pure Be beam can be obtained sa...

  9. Fragmentation of neck-like structures

    International Nuclear Information System (INIS)

    Montoya, C.; Bowman, D.R.; Peaslee, G.F.; Michigan State Univ., East Lansing, MI

    1994-01-01

    Evidence for intermediate mass fragment emission from neck-like structures joining projectile- and target-like residues has been observed for peripheral 129 Xe+ nat Cu collisions at E/A=50 MeV. These framents are emitted primarily at velocities intermediate between those of the projectile and the target. Relative to the charge distribution for fragments evaporated from the projectile-like residue, the distribution for ''neck'' emission shows an enhanced emission for fragments with 4 f < 8. (orig.)

  10. RI beam factory project at RIKEN

    CERN Document Server

    Motobayashi, T

    2003-01-01

    Construction of the RI beam factory project in the first phase has started. The aim of the project is to provide intense radio-isotopes (RI) beams at energies of several hundred MeV/nucleon in a wide range of atomic masses. These beams will be produced by the projectile fragmentation of primary beams accelerated by a cascade of the existing ring cyclotron and a series of new ring cyclotrons. Improvements of the existing facility made for the new cyclotron complex have extended the energy range of available beams, which already opened new domains of study.

  11. Design Optimisation of a High Intensity Beam Facility and Feasibility Experiment of a Solid Fragmented Target

    CERN Document Server

    Charitonidis, Nikolaos; Rivkin, Leonid

    2014-06-13

    The present PhD thesis describes the design, execution and results of the HRMT-10 experiment performed at the HiRadMat facility of the CERN/SPS complex. The first part of the thesis covers the design optimization studies of the HiRadMat facility, focusing in particular on the radiation protection issues. A detailed Monte-Carlo model of the facility has been developed and validated through comparison with measurements. A very satisfactory agreement between the simulation and the experimental data is observed. In the second part of this thesis, a novel feasibility experiment of a fragmented solid target for a future Neutrino Factory or a Super Beam facility, able to support high beam powers ( 1 MW) is presented in detail. A solid granular target has been proposed as an interesting alternative to an open Hg jet target, presently considered as the baseline for such facilities, but posing considerable technical challenges. The HRMT-10 experiment seeks to address the lack of experimental data of the feasibility of...

  12. Fired missile projectiles

    International Nuclear Information System (INIS)

    Williams, K.D.; Gieszl, R.; Keller, P.J.; Drayer, B.P.

    1989-01-01

    This paper reports ferromagnetic properties of fired missile projectiles (bullets, BBs, etc) investigated. Projectile samples were obtained from manufactures, police, and commercial sources. Deflection measurements at the portal of a 1.5-T magnetic field were performed for 47 projectiles. Sixteen bullets were examined in gelatin phantoms for rotation-translation movements as well. Ferromagnetic bullets displayed considerable deflection forces in the presence of the magnetic field and could be rotated to 80 degrees from their previous alignments when introduced perpendicular to the magnetic field in our gelatin phantom experiments. Military bullet calibers appear to pose the greatest ferromagnetic risk. Commercial sporting ammunition is generally nonferromagnetic

  13. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-04-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in The Physics Teacher; however, the "Hoop Challenge" is a new setup not before described in TPT. In this article an experiment is illustrated to explore projectile motion in a fun and challenging manner that has been used with both high school and university students. With a few simple materials, students have a vested interest in being able to calculate the height of the projectile at a given distance from its launch site. They also have an exciting visual demonstration of projectile motion when the lab is over.

  14. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  15. Small caliber guided projectile

    Science.gov (United States)

    Jones, James F [Albuquerque, NM; Kast, Brian A [Albuquerque, NM; Kniskern, Marc W [Albuquerque, NM; Rose, Scott E [Albuquerque, NM; Rohrer, Brandon R [Albuquerque, NM; Woods, James W [Albuquerque, NM; Greene, Ronald W [Albuquerque, NM

    2010-08-24

    A non-spinning projectile that is self-guided to a laser designated target and is configured to be fired from a small caliber smooth bore gun barrel has an optical sensor mounted in the nose of the projectile, a counterbalancing mass portion near the fore end of the projectile and a hollow tapered body mounted aft of the counterbalancing mass. Stabilizing strakes are mounted to and extend outward from the tapered body with control fins located at the aft end of the strakes. Guidance and control electronics and electromagnetic actuators for operating the control fins are located within the tapered body section. Output from the optical sensor is processed by the guidance and control electronics to produce command signals for the electromagnetic actuators. A guidance control algorithm incorporating non-proportional, "bang-bang" control is used to steer the projectile to the target.

  16. Investigation of Nuclear Fragmentation in Relativistic Heavy Ion Collisions Using Plastic - Nuclear - Track Detectors

    CERN Multimedia

    2002-01-01

    In this experiment CR39 plastic nuclear track detectors will be used which are sensitive to detect relativistic nuclear fragments with charges Z@$>$5. They will be analyzed using an automatic track measuring system which was developed at the University of Siegen.\\\\ \\\\ This allows to measure large quantities of tracks in these passive detectors and to perform high statistics experiments. We intend to measure cross sections for the production of nuclear fragments from heavy ion beams at the SPS. \\\\ \\\\ The energy independence of the cross sections predicted by the idea of limiting fragmentation will be tested at high energies. In exposures with different targets we plan to analyze the factorization of the fragmentation cross sections into a target depending factor and a factor depending on the beam particle and the fragment. The cross sections for one proton remov Coulomb dissociation. \\\\ \\\\ We plan to investigate Coulomb dissociation for different targets and different energies. Fragment and projectile charges ...

  17. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Legrain, R.

    1984-08-01

    Projectile and nuclear fragmentation are defined and processes referred to are recalled. The two different aspects of fragmentation are considered but the emphasis is also put on heavy ion induced reactions. The preliminary results of an experiment performed at GANIL to study peripheral heavy ions induced reactions at intermediate energy are presented. The results of this experiment will illustrate the characteristics of projectile fragmentation and this will also give the opportunity to study projectile fragmentation in the transition region. Then nuclear fragmentation is considered which is associated with more central collisions in the case of heavy ion induced reactions. This aspect of fragmentation is also ilustrated with two heavy ion experiments in which fragments emitted at large angle have been observed

  18. Production of and studies with secondary radioactive ion beams at Lise

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1990-01-01

    The doubly achromatic spectrometer LISE, installed at GANIL has delivered secondary radioactive beams for the past 6 years. Essentially, it consists of by two dipole magnets selecting (in A/Z) and refocusing (achromatically) the projectile-like fragment-beams emitted at 0 0 . Important features of LISE and selected experimental results will be discussed. LISE was substantially upgraded, recently, by adding a Wien-filter, providing secondary radioactive beams of still increased intensity and isotopic purity. (6 figs)

  19. Fragmentation of Relativistic 56Fe Nuclei in Emulsion

    International Nuclear Information System (INIS)

    Chernov, G.M.; Gulamov, K.G.; Gulyamov, U.G.; Navotny, V.Sh.; Petrov, N.V.; Svechnikova, L.N.; Jakobsson, B.; Oskarsson, A.; Otterlund, I.

    1983-03-01

    Experimental data on general characteristics of projectile fragments in inelastic interactions of relativistic 56 Fe nuclei in emulsion (multiplicities, transverse momentum distributions, azimuthal correlations) are presented and discussed. A strong dependence on the mass number of the projectile nucleus is observed for the transverse momenta of the emitted projectile fragments. These fragments exhibit an azimuthal asymmetry caused by the transverse motion of the fragmenting residue, but it is shown that this motion can be responsible only for a part of the increase in the average transverse momentum of the fragments with increasing mass of the projectile. (author)

  20. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-01-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in "The Physics Teacher" ("TPT"); however, the "Hoop Challenge" is a new setup not…

  1. Subcaliber discarding sabot airgun projectiles.

    Science.gov (United States)

    Frank, Matthias; Schönekeß, Holger; Herbst, Jörg; Staats, Hans-Georg; Ekkernkamp, Axel; Nguyen, Thanh Tien; Bockholdt, Britta

    2014-03-01

    Medical literature abounds with reports on injuries and fatalities caused by airgun projectiles. While round balls or diabolo pellets have been the standard projectiles for airguns for decades, today, there are a large number of different airgun projectiles available. A very uncommon--and until now unique--discarding sabot airgun projectile (Sussex Sabo Bullet) was introduced into the market in the 1980s. The projectile, available in 0.177 (4.5 mm) and 0.22 (5.5 mm) caliber, consists of a plastic sabot cup surrounding a subcaliber copper-coated lead projectile in typical bullet shape. Following the typical principle of a discarding sabot projectile, the lightweight sabot is supposed to quickly loose velocity and to fall to the ground downrange while the bullet continues on target. These sabot-loaded projectiles are of special forensic interest due to their non-traceability and ballistic parameters. Therefore, it is the aim of this work to investigate the ballistic performance of these sabot airgun projectiles by high-speed video analyses and by measurement of the kinetic parameters of the projectile parts by a transient recording system as well as observing their physical features after being fired. While the sabot principle worked properly in high-energy airguns (E > 17 J), separation of the core projectile from the sabot cup was also observed when discharged in low-energy airguns (E work is the first study to demonstrate the regular function of this uncommon type of airgun projectile.

  2. Multiple electromagnetic excitations of relativistic projectiles

    International Nuclear Information System (INIS)

    Llope, W.J.; Braun-Munzinger, P.

    1992-01-01

    Conditions optimum for the first experimental verification of the multiplication electromagnetic excitations of nuclei in relativistic nucleus-nucleus collisions are described. The relative magnitudes of three important physical processes that might interfere with such a measurement are compared to the predicted strengths for the single and multiple electromagnetic excitations for various choices of the projectile mass and beam energy. Strategies are presented for making inferences concerning the presence of multiple excitation strength in experimental data

  3. An experimental study on the deformation and fracture modes of steel projectiles during impact

    International Nuclear Information System (INIS)

    Rakvåg, K.G.; Børvik, T.; Westermann, I.; Hopperstad, O.S.

    2013-01-01

    Highlights: • The fracture process is ductile for the unhardened projectiles. • A combined ductile–brittle fracture process is obtained for the HRC 40 projectiles. • The fragmentation of HRC 52 projectiles has cleavage as the main mechanism. • The fracture modes were confirmed in a metallurgical study. • The hardened materials have a stochastic variation of the mechanical properties. - Abstract: Previous investigations of the penetration and perforation of high-strength steel plates struck by hardened steel projectiles have shown that under certain test conditions the projectile may fracture or even fragment upon impact. Simulations without an accurate failure description for the projectile material will then predict perforation of the target instead of fragmentation of the projectile, and thus underestimate the ballistic limit velocity of the target plate. This paper presents an experimental investigation of the various deformation and fracture modes that may occur in steel projectiles during impact. This is studied by conducting Taylor bar impact tests using 20 mm diameter, 80 mm long, tool steel projectiles with three different hardness values (HRC 19, 40 and 52). A gas gun was used to fire the projectiles into a rigid wall at impact velocities ranging from 100 to 350 m/s, and the deformation and fracture processes were captured by a high-speed video camera. From the tests, several different deformation and fracture modes were registered for each hardness value. To investigate the influence of material on the deformation and fracture modes, several series of tensile tests on smooth axisymmetric specimens were carried out to characterise the mechanical properties of the three materials. To gain a deeper understanding of the various processes causing fracture and fragmentation during impact, a metallurgical investigation was conducted. The fracture surfaces of the failed projectiles of different hardness were investigated, and the microstructure was

  4. Azimuthal Anisotropies in Nuclear Fragmentation

    International Nuclear Information System (INIS)

    Dabrowska, A.; Szarska, M.; Trzupek, A.; Wolter, W.; Wosiek, B.

    2002-01-01

    The directed and elliptic flow of fragments emitted from the excited projectile nuclei has been observed for 158 AGeV Pb collisions with the lead and plastic targets. For comparison the flow analysis has been performed for 10.6 AGeV Au collisions with the emulsion target. The strong directed flow of heaviest fragments is found. Light fragments exhibit directed flow opposite to that of heavy fragments. The elliptic flow for all multiply charged fragments is positive and increases with the charge of the fragment. The observed flow patterns in the fragmentation of the projectile nucleus are practically independent of the mass of the target nucleus and the collision energy. Emission of fragments in nuclear multifragmentation shows similar, although weaker, flow effects. (author)

  5. Radiation Simulations and Development of Concepts for High Power Beam Dumps, Catchers and Pre-separator Area Layouts for the Fragment Separators for RIA

    CERN Document Server

    Ronningen, Reginald; Beene, James R; Blideanu, Valetin; Boles, Jason; Bollen, Georg; Burgess, Thomas; Carter, Ken; Conner, David L; Gabriel, Tony A; Geissel, Hans; Gomes, Itacil C; Heilbronn, Lawrence; Iwase, Hiroshi; Lawton, Don; Levand, Anthony; Mansur, Louis; Momozaki, Yoichi; Morrissey, David; Nolen, Jerry; Reed, Claude; Remec, Igor; Rennich, Mark; Reyes, Susana; Sherrill, Bradley; Stein, Werner; Stoyer, Mark; Stracener, Dan; Wendel, Mark; Zeller, Al

    2005-01-01

    The development of high-power beam dumps and catchers, and pre-separator layouts for proposed fragment separators of the Rare-Isotope Accelerator (RIA) facility are important in realizing how to handle the 400 kW in the primary beam. We will present examples of pre-conceptual designs of beam dumps, fragment catchers, and the pre-separator layout. We will also present examples of ongoing work on radiation simulations using the heavy-ion-transport code PHITS, characterizing the secondary radiation produced by the high-power ion beams interacting with these devices. Results on radiation heating of targets, magnet coils, associated hardware and shielding, component activation, and levels of radiation dose will be presented. These initial studies will yield insight into the impact of the high-power dissipation on fragment separator design, remote handling concepts, nuclear safety and potential facility hazard classification, shielding design, civil construction design, component design, and material choices. Furth...

  6. Development of windowless liquid lithium targets for fragmentation and fission of 400-kW uranium beams

    CERN Document Server

    Nolen, J A; Hassanein, A; Novick, V J; Plotkin, P; Specht, J R

    2003-01-01

    The driver linac of the proposed rare isotope accelerator facility is designed to deliver 2x10 sup 1 sup 3 uranium ions per second at 400 MeV/u on target for radionuclide production via the fission and fragmentation mechanisms. The ion optics of the large acceptance, high-resolution fragment separators that follow the production target require primary beam spot widths of 1 mm. To cope with the resulting high power densities, windowless liquid lithium targets are being developed. The present designs build on existing experience with liquid lithium and liquid sodium systems that have been used for fusion and fission applications. However, no completely windowless systems have been developed or tested to date. For the beam power indicated above (400 kW), the flow requirements are up to about 20 m/s and 10 l/s linear and volume flow rates, respectively. The required target thickness is 1-1.5 g/cm sup 2 (2-3 cm lithium thickness). At this time a prototype windowless system with a lithium thickness of 1-2 cm is und...

  7. Energetics of fragmentation of CH5, H3O, and NH4 from neutralized ion-beam experiments

    International Nuclear Information System (INIS)

    Williams, B.W.; Porter, R.F.

    1980-01-01

    Fragmentation energies for radicals of the type RH 2 (RH=CH 4 , NH 3 , and H 2 O) produced by electron capture interactions of 5 keV RH 2 + ion with Na or K atoms are reported. The experimental technique involves measurement of spatial beam profiles resulting from dissociation of neutral radicals following their formation in a near resonant electron transfer process. Cross sections for RH 2 + --Na capture reactions are typically 1x10 -14 cm 2 . Fragmentation energies from measurements with Na target atoms are -2.65 +- 0.14, -0.22 +- 0.03, and -1.12 +- 0.07 eV for CH 5 , NH 4 , and H 3 O, respectively. From our results with Na and K targets and published values for proton affinities, the vertical electron affinities of CH 5 + and H 3 O + are calculated to be 5.3 +- 0.2 eV and 5.1 +- 0.3 eV, respectively. Beam profiles for ND 4 show this species to be metastable with a lifetime of about 1 μs. From this we estimate a potential barrier to dissociation in NH 4 (ND 4 ) between 0.36 and 0.48 eV, indicating this species should be stable at low temperatures. Comparison of these experimental results with theoretical calculations indicates areas of disagreement

  8. Concrete structures under projectile impact

    CERN Document Server

    Fang, Qin

    2017-01-01

    In this book, the authors present their theoretical, experimental and numerical investigations into concrete structures subjected to projectile and aircraft impacts in recent years. Innovative approaches to analyze the rigid, mass abrasive and eroding projectile penetration and perforation are proposed. Damage and failure analyses of nuclear power plant containments impacted by large commercial aircrafts are numerically and experimentally analyzed. Ultra-high performance concrete materials and structures against the projectile impact are developed and their capacities of resisting projectile impact are evaluated. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.

  9. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosev, Krasimir Milchev

    2007-07-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ({sup 226}Ra,{sup 222}Rn,{sup 210}Po,{sup 218}Po,{sup 214}Po) {alpha}-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a {sup 238}U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  10. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    International Nuclear Information System (INIS)

    Kosev, Krasimir Milchev

    2007-01-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ( 226 Ra, 222 Rn, 210 Po, 218 Po, 214 Po) α-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a 238 U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  11. Modelling of the PELE fragmentation dynamics

    NARCIS (Netherlands)

    Verreault, J.

    2014-01-01

    The Penetrator with Enhanced Lateral Effect (PELE) is a type of explosive-free projectile that undergoes radial fragmentation upon an impact with a target plate. This type of projectile is composed of a brittle cylindrical shell (the jacket) filled in its core with a material characterized with a

  12. Preliminary studies on fragmentation in tissue-equivalent material produced by 55 MeV/u 40Ar17+ ion beam

    International Nuclear Information System (INIS)

    Dang Bingrong; Wei Zengquan; Duan Limin; Zhang Baoguo; Li Songlin; Yin Xu; Zhu Yongtai; Li Wenjian; Li Qiang; Yuan Shibin

    2002-01-01

    By using a 55 MeV/u 40 Ar 17+ beam produced by HIRFL, the distribution of fragments in 1.5 mm lucite on three different directions were measured at the radiobiology terminal. Feasibilities of the phoswich detector composed of fast plastic scintillator and CsI(Tl) detectors for determination of angular distribution of fragments in tissue-equivalent materials were investigated. The results obtained were satisfactory

  13. Spin polarization of 34Al fragments produced by nucleon pickup at intermediate energies

    International Nuclear Information System (INIS)

    Turzo, K.; Himpe, P.; Borremans, D.; Mallion, S.; Neyens, G.; Vermeulen, N.; Yordanov, D.; Balabanski, D.L.; Belier, G.; Daugas, J.M.; Georgiev, G.; Oliveira de Santos, F.; Matea, I.; Stodel, Ch.; Penionzhkevich, Yu. E.

    2006-01-01

    The polarization of 34 Al fragments, produced by single neutron pickup from a 9 Be target by a 36 S projectile at 77.5 MeV/nucleon, have been observed at GANIL via the detection of resonantly destroyed β-asymmetry. The reaction-induced polarization is deduced using a tentative spin/parity assignment for the 34 Al ground state. A positive polarization was measured near the peak of the 34 Al yield curve. A kinematical model based on the spectator-participant model for projectile fragmentation reactions has been extended in order to take into account the features of pickup reactions, i.e., the picked-up nucleon having an average momentum equal to the Fermi momentum and aligned along the incident beam direction. The trend-line in the observed spin-orientation is very well reproduced by this model

  14. Study of Relativistic Nucleus-nucleus Coll.Induced by 16O Projectiles

    CERN Multimedia

    2002-01-01

    A double experiment in which two detector systems (Streamer Chamber, Plastic Ball Calorimeter), running concurrently via a beam split (West Area H3, X5), search for quark matter formation in violent collisions of |1|6O or |2|0Ne with target nuclei between |4|0Ca and |2|0|6Pb. The acceleration of |1|6O will be facilitated by a high charge state injector, consisting of an ECR source and an RFQ pre-accelerator, installed by GSI and LBL at the PS Linac 1. Experimental equipment will be a streamer chamber installed in the Vertex Magnet of experiment WA75 together with beam hodoscopes and a downstream trigger calorimeter selecting violent events by the absence of energy flow to the projectile fragmentation region. Observed particles will be p, @p, K|0, @L and @L. In addition there will be the Plastic Ball, 800-fold @DE-E particle identifier system, covering the target fragmentation and backward fireball regions. Together with a multisegmented large solid angle (@+~9|0 of beam) energy calorimeter and a trigger calor...

  15. Simulation of a relativistic heavy ions beam transport in the matter: contribution of the fragmentation process and biological implications

    International Nuclear Information System (INIS)

    Ibnouzahir, M.

    1995-03-01

    The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E≥ 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author)

  16. Fragments and debris generation using a high power pulsed electron beam

    International Nuclear Information System (INIS)

    Cassany, Bruno; Courchinoux, Roger; Bertron, Isabelle; Malaise, Frederic; Hebert, David

    2002-01-01

    The high power Laser Megajoule (LMJ) will be constructed at CEA/DAM/CESTA near Bordeaux, in the south west part of France. Among the problems encountered in the LMJ experimental chamber, there is the impact of the debris produced after a laser shot on the silica optical windows. The production of debris as well as the behavior of optical materials under their influence can be simulated and studied with a pulsed electron beam. We present in this paper the first experimental results obtained by this original technique

  17. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation

    DEFF Research Database (Denmark)

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte...... Carlo simulations with SHIELD-HIT10A reasonably matched the most abundant PET isotopes 11C and 15O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10A and measurement. Improved modeling requires more accurate measurements of cross-section values....

  18. EMGWS, D1 projectile tests

    International Nuclear Information System (INIS)

    Creighton, W.J.

    1991-01-01

    This paper reports on the 90 mm EMGWS D1 Projectile which is an unguided projectile that is designed for launch from an Electromagnetic gun to achieve significant armor penetration. It is being developed under the broader program called Electromagnetic Gun Weapon System (EMGWS) which is sponsored by DARPA, DNA, and the U.S. Army. The 90 mm D1 Type II 'workhorse' Projectile is used to prove out material strength, fabrication techniques, and projectile structural integrity. The type II flight projectile is designed to allow maximum stress levels of 100-ksi when launched at 100-kilogees peak acceleration. The total weight of the projectile is 2.0 kg to attain a muzzle velocity of 3.0 km/s from a 9-Megajoule EM Gun. The Type II projectile configuration employs a tungsten nosetip plus 12 segmented tungsten penetrators, a two-piece aluminum discarding sabot, an aluminum pusher plate, and a nylon obturator. The pusher plate can incorporate either a solid or plasma armature

  19. Fusion of a polarized projectile with a polarized target

    International Nuclear Information System (INIS)

    Christley, J.A.; Johnson, R.C.; Thompson, I.J.

    1995-01-01

    The fusion cross sections for a polarized target with both unpolarized and polarized projectiles are studied. Expressions for the observables are given for the case when both nuclei are polarized. Calculations for fusion of an aligned 165 Ho target with 16 O and polarized 7 Li beams are presented

  20. Charged particle transport and extraction studies in the NSCL gas cell for stopping radioactive fragments

    International Nuclear Information System (INIS)

    Facina, M.; Bachelet, C.; Block, M.; Bollen, G.; Davies, D.; Folden, C.M.; Guenaut, C.; Huikari, J.; Kwan, E.; Morrissey, D.J.; Pang, G.K.; Prinke, A.; Ringle, R.; Savory, J.; Schury, P.; Schwarz, S.; Sumithrarachchi, C.; Sun, T.

    2008-01-01

    The NSCL gas-stopping station thermalizes high-energy projectile fragments for study in the low energy beam and ion trap (LEBIT) facility. The stopping and extraction of fast beams has been studied extensively and the extracted short-lived ions have been used in a series of mass measurements of exotic nuclei. Particle-in-cell simulations of ion drift in the gas cell have been performed. In the present paper calculation results are presented and compared to experimental data obtained with neutron-deficient and neutron-rich As and Se isotopes recently measured at LEBIT. Good agreement between the theoretical and experimental extraction efficiency was found.

  1. The dynamics of target ionization by fast higly charged projectiles

    International Nuclear Information System (INIS)

    Moshammer, R.; Ullrich, J.; Unverzagt, M.; Olsen, R.E.; Doerner, R.; Mergel, V.; Schmidt-Boecking, H.

    1995-12-01

    We report on the first kinematically complete investigation of single target ionization by fast heavy ions, on the measurement of all low energy electrons down to zero emission velocities and on the determination of the projectile energy loss on the level of ΔE p /E p ∼10 -7 . This has been achieved by combining a high-resolution recoil-ion momentum spectrometer with a novel 4π electron analyzer. The complete momentum balance between electron, recoil-ion and projectile for single ionization of helium by 3.6 MeV/u Ni 24+ was explored. Low energy electrons are found to be ejected mainly into the forward direction with a most likely longitudinal energy of only 2 eV. The electron momentum is not balanced, as might be expected, by the projectile momentum but is nearly completely compensated by the recoil ion. Surprisingly, the momenta of the helium-atom ''fragments'', the electron and the He 1+ recoil ion, are considerably larger than the total momentum loss of the projectile: the target atom seems to dissociate in the strong, longranging projectile potential. The collision has to be considered as a real three body interaction. (orig.)

  2. Fission fragment yields from heavy-ion-induced reactions measured with a fragment separator

    Science.gov (United States)

    Tarasov, O. B.; Delaune, O.; Farget, F.; Morrissey, D. J.; Amthor, A. M.; Bastin, B.; Bazin, D.; Blank, B.; Cacéres, L.; Chbihi, A.; Fernández-Dominguez, B.; Grévy, S.; Kamalou, O.; Lukyanov, S. M.; Mittig, W.; Pereira, J.; Perrot, L.; Saint-Laurent, M.-G.; Savajols, H.; Sherrill, B. M.; Stodel, C.; Thomas, J. C.; Villari, A. C.

    2018-04-01

    The systematic study of fission fragment yields under different initial conditions has provided valuable experimental data for benchmarking models of fission product yields. Nuclear reactions using inverse kinematics coupled to the use of a high-resolution spectrometer with good fragment identification are shown here to be a powerful tool to measure the inclusive isotopic yields of fission fragments. In-flight fusion-fission was used in this work to produce secondary beams of neutron-rich isotopes in the collisions of a 238U beam at 24 MeV/u with 9Be and 12C targets at GANIL using the LISE3 fragment separator. Unique identification of the A, Z, and atomic charge state, q, of fission products was attained with the Δ E- TKE-B ρ- ToF measurement technique. Mass, and atomic number distributions are reported for the two reactions. The results show the importance of different reaction mechanisms in the two cases. The optimal target material for higher yields of neutron-rich high- Z isotopes produced in fusion-fission reactions as a function of projectile energy is discussed.

  3. Computed tomography of projectile injuries

    International Nuclear Information System (INIS)

    Jeffery, A.J.; Rutty, G.N.; Robinson, C.; Morgan, B.

    2008-01-01

    Computed tomography (CT) is a gold standard in clinical imaging but forensic professions have been slow to embrace radiological advances. Forensic applications of CT are now exponentially expanding, replacing other imaging methods. As post-mortem cross-sectional imaging increases, radiologists will fall under increasing pressure to interpret complex forensic cases involving both living and deceased patients. This review presents a wide variety of weapon and projectile types aiding interpretation of projectile injuries both in forensic and clinical practice

  4. Projectile penetration into ballistic gelatin.

    Science.gov (United States)

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. © 2013 Published by Elsevier Ltd.

  5. Target fragmentation in 1 A GeV Au + Pb reaction

    CERN Document Server

    Grabez, B

    1999-01-01

    We investigated the production of target fragments in interaction of 1 A GeV Au projectile with Pb. The behaviour of the atomic numbers of fragments and of the relative velocities has been examined in dependence of the centrality of collision. The results have been compared with the data of other authors obtained for projectile fragmentation.

  6. Yield calculations for a facility for short-lived nuclear beams

    CERN Document Server

    Jiang, C L; Gomes, I; Heinz, A M; Nolen, Jerry A; Rehm, K E; Savard, G; Schiffer, J P

    2002-01-01

    Yields for a broad range of radioactive nuclei produced by spallation reactions, neutron-induced fission, in-flight projectile fragmentation and in-flight fission have been calculated for beams of stable nuclei at energies of 100-1000 MeV/u. Calculations of cross-sections and yields, attenuation effects due to absorption, production from secondary reactions, and transport efficiencies for mass selection are discussed. Rare isotope yields as functions of bombarding energies for both reaccelerated and directly produced fast-fragmentation beams are presented. This information provides a foundation for a cost-effective design of a next generation rare isotope accelerator.

  7. Electronic emission produced by light projectiles at intermediate energies

    International Nuclear Information System (INIS)

    Bernardi, G.C.

    1989-01-01

    Two aspects of the electronic emission produced by light projectiles of intermediate energies have been studied experimentally. In the first place, measurements of angular distributions in the range from θ = 0 deg -50 deg induced by collisions of 50-200 keV H + incident on He have been realized. It was found that the double differential cross section of electron emission presents a structure focussed in the forward direction and which extends up to relatively large angles. Secondly, the dependence of the double differential cross section on the projectile charge was studied using H + and He 3 2+ projectiles of 50 and 100 keV/amu incident on He. Strong deviations from a constant scaling factor were found for increasing projectile charge. The double differential cross sections and the single differential cross sections as a function of the emission angle, and the ratios of the emissions induced by He 3 2+ and H + at equal incident projectile velocities are compared with the 'Continuum Distorted Wave-Eikonal Initial State' (CDW-EIS) approximation and the 'Classical Trajectory Monte Carlo' (CTMC) method. Both approximations, in which the potential of the projectile exercises a relevant role, reproduce the general aspects of the experimental results. An electron analyzer and the corresponding projectile beam line has been designed and installed; it is characterized by a series of properties which are particularly appropriate for the study of double differential electronic emission in gaseous as well as solid targets. The design permits to assure the conditions to obtain a well localized gaseous target and avoid instrumental distortions of the measured distributions. (Author) [es

  8. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  9. Prevention of breakdown behind railgun projectiles

    International Nuclear Information System (INIS)

    Hawke, R.S.

    1992-01-01

    An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF 6 . The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has travelled. The projectile may have a cavity at its rear to control the release of ablation products. 12 figs

  10. SSNTD studies of lead nuclei fission induced by relativistic p, d, He and sup 1 sup 2 C projectiles inside massive Pb and U targets

    CERN Document Server

    Perelygin, V P; Krivopustov, M I; Petrova, R I; Abdullaev, I G; Bradnova, V; Knjazeva, G P; Brandt, R; Ochs, M; Wan, J S; Vater, P

    1999-01-01

    A series of experiments was carried out with relativistic protons, deuterons, helium and carbon-12 projectiles accelerated at SYNCHOPHASOTRON LHE, Dubna which hit massive Pb and U targets. The beam profiles and intensities of both primary particles and secondary fast neutrons were measured using plastic SSNTD inside the massive cylinder blocks of Cu, Pb and U by counting of fission fragment tracks due to the induced fission of Pb nuclei. The beam diameter increases typically by 20-30% at the depth 10 and 20 cm. With increasing the energy of projectiles the number of secondary neutrons rises with the depth for protons, deuterons and helium ions. Nevertheless, for sup 1 sup 2 C ions beams with changing the energy from 18 GeV to 44 GeV we first observe the effect of significant increase both the yield of secondary fast neutrons and the half-width of the beam. The observed enhanced yield of secondary fast neutrons confirms unusual behavior of nuclear interaction cross section of 44 GeV sup 1 sup 2 C ions observed...

  11. Electromagnetic launcher for heavy projectiles

    Science.gov (United States)

    Kozlov, A. V.; Kotov, A. V.; Polistchook, V. P.; Shurupov, A. V.; Shurupov, M. A.

    2017-11-01

    In this paper, we present the electromagnetic launcher with capacitive power source of 4.8 MJ. Our installation allows studying of the projectile acceleration in railgun in two regimes: with a solid armature and with a plasma piston. The experiments with plasma piston were performed in the railgun with the length of barrel of 0.7-1.0 m and its inner diameter of 17-24 mm. The velocities of lexan projectiles with weight of 5-15 g were in a range of 2.5-3.5 km/s. The physical mechanisms that limit speed of throwing in railgun are discussed.

  12. Heavy-residue isoscaling as a probe of the symmetry energy of hot fragments

    International Nuclear Information System (INIS)

    Souliotis, G.A.; Shetty, D.V.; Keksis, A.; Bell, E.; Jandel, M.; Veselsky, M.; Yennello, S.J.

    2006-01-01

    The isoscaling properties of isotopically resolved projectile residues from peripheral collisions of 86 Kr (25 MeV/nucleon) 64 Ni (25 MeV/nucleon), and 136 Xe (20 MeV/nucleon) beams on various target pairs are employed to probe the symmetry energy coefficient of the nuclear binding energy. The present study focuses on heavy projectile fragments produced in peripheral and semiperipheral collisions near the onset of multifragment emission (E * /A=2-3 MeV). For these fragments, the measured average velocities are used to extract excitation energies. The excitation energies, in turn, are used to estimate the temperatures of the fragmenting quasiprojectiles in the framework the Fermi gas model. The isoscaling analysis of the fragment yields provided the isoscaling parameters α that, in combination with temperatures and isospin asymmetries provided the symmetry energy coefficient of the nuclear binding energy of the hot fragmenting quasiprojectiles. The extracted values of the symmetry energy coefficient at this excitation energy range (2-3 MeV/nucleon) are lower than the typical liquid-drop model value ∼25 MeV corresponding to ground-state nuclei and show a monotonic decrease with increasing excitation energy. This result is of importance in the formation of hot nuclei in heavy-ion reactions and in hot stellar environments such as supernova

  13. Variation of the binary encounter peak energy as a function of projectile atomic number

    International Nuclear Information System (INIS)

    Sanders, J.M.

    1994-01-01

    The energy of the binary encounter peak, in spectra of electrons emitted at 0 degrees with respect to the projectile beam direction, has been studied to investigate its dependence on the atomic number of the projectile ion. The projectiles all had the same squared velocity of 0.6 MeV/u, and all had the same charge q=7. The Z of the projectiles ranged from 8 to 35, and the target was H 2 . The Energy E BEP of the binary encounter peak and also the energy t of the cusp formed by electron loss or electron capture to the projectile continuum (ELC or ECC) were obtained from fits to the spectra. Considerable care was required in fitting the cusp in order to properly ascertain the cusp energy. The energy shift ΔE, defined as the difference between 4t and E BEP , was obtained for each projectile. It is found that the energy shift decreases as the projectile Z increases. This trend is the opposite of that seen for projectile charge where the shift increases as q increases. Such a trend is not well described by the simple elastic scattering model of binary encounter electron production

  14. Proceedings of the workshop on prospects for research with radioactive beams from heavy ion accelerators

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1984-04-01

    The SuperHILAC Users Executive Committee organized a workshop on Prospects for Research with Radioactive Beams from Heavy Ion Accelerators. The main purpose of the workshop was to bring together a diverse group of scientists who had already done experients with radioactive beams or were interested in their use in the future. The topics of the talks ranged from general nuclear physics, astrophysics, production of radioactive beams and high energy projectile fragmentation to biomedical applications. This publication contains the abstracts of the talks given at the workshop and copies of the viewgraphs as they were supplied to the editor

  15. Batch Computed Tomography Analysis of Projectiles

    Science.gov (United States)

    2016-05-01

    ARL-TR-7681 ● MAY 2016 US Army Research Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt, Chris M...Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt and Matthew S Bratcher Weapons and Materials Research...values to account for projectile variability in the ballistic evaluation of armor. 15. SUBJECT TERMS computed tomography , CT, BS41, projectiles

  16. Physics with fast molecular-ion beams

    International Nuclear Information System (INIS)

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented

  17. Excitation and multiple dissociation of 12C, 14N, and 16O projectiles in peripheral collisions at 32.5 MeV/nucleon

    International Nuclear Information System (INIS)

    Pouliot, J.; Chan, Y.; DiGregorio, D.E.; Harmon, B.A.; Knop, R.; Moisan, C.; Roy, R.; Stokstad, R.G.; Laboratoire de physique nucleaire, Universite Laval, Quebec, P.Q., Canada G1K7P4)

    1991-01-01

    Cross sections for the multiple breakup of 16 O, 14 N, and 12 C projectiles scattered by an Au target were measured with an array of 34 phoswich detectors. The dissociation of the projectiles into as many as five charged particles has been observed. The yields of different exit channels correlate approximately with the threshold energy for separation of the projectile into the observed fragments. The excitation spectrum of the primary projectile-like nucleus was reconstructed from the measured positions and kinetic energies of the individual fragments. The energy sharing between projectile and target is consistent with a fast excitation mechanism in which differential increases in projectile excitation energy appear to be accompanied by comparable increases in target excitation. Calculations of the yields based on a sequence of binary decays are presented

  18. Temperatures of fragment kinetic energy spectra

    International Nuclear Information System (INIS)

    Bauer, W.

    1995-01-01

    Multifragmentation reactions without large compression in the initial state (proton-induced reactions, reverse kinematics, projectile fragmentation) are examined, and it is verified quantitatively that the high temperatures obtained from fragment kinetic energy spectra and lower temperatures obtained from observables such as level population or isotope ratios can be understood in a common framework

  19. On the nuclear fragmentation mechanisms in nuclear collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Jipa, Al; Besliu, C.; Felea, D.

    2004-01-01

    The nuclear fragmentation mechanisms can be discussed by taking into account different scales related to the fragment sizes. Considering two fragmentation mechanisms of the nuclei at the same incident energy an analysis of the experimental results obtained was done. Goldhaber formula was improved by analyzing the discrepancies between data and theories concerning the projectile fragmentation. We implied that the projectile fragmentation process would be governed by the distribution of nucleon momenta in the projectile after the collision occurred. We used in our analysis protons from the 4 He + 7 Li at 4.5 GeV/c per nucleon incident momentum, as well as from 40 Ar + 12 C at 213 AMeV bombarding energy. We proved that in order to proceed in analyzing the projectile fragmentation process at intermediate and high energies one has to consider the dependence σ 0 on the apparent temperature of projectile nucleus after the collision took place. The generalized Bertsch correction for light projectile nuclei and fragments was used and the number of spatial correlations between identical nucleons having anticorrelated momenta was found. Thus we found apparent temperature values close to the separation energies of the considered fragments per number of fragments. The temperatures associated to kinetic energy spectra of the projectile fragments were calculated following two methods. The results from Bauer's method were compared with those obtained by fitting the kinetic energy distributions of the projectile fragments in the rest frame of the projectile with a Maxwellian curve. We also accomplished the comparison of the experimental results with similar events simulated with RQMD 2.4. All the results obtained suggested two nuclear fragmentation mechanisms: a sudden fragmentation by explosive mechanisms, like shock waves and a slow fragmentation by the 'fission' of the spectator regions, mainly because of the interactions with the particles or fragments emitted from the

  20. Chameleon fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Upadhye, Amol, E-mail: philippe.brax@cea.fr, E-mail: aupadhye@anl.gov [Institute for the Early Universe, Ewha University, International Education, Building #601, 11-1, Daehyun-Dong Seodaemun-Gu, Seoul 120-750 (Korea, Republic of)

    2014-02-01

    A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ{sup 4} and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments.

  1. Chameleon fragmentation

    International Nuclear Information System (INIS)

    Brax, Philippe; Upadhye, Amol

    2014-01-01

    A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ 4 and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments

  2. Decay patterns of target-like and projectile-like nuclei in 84Kr+197Au, natU reactions at E/A=150 MeV

    International Nuclear Information System (INIS)

    Quednau, B.M.; Galin, J.; Ledoux, X.; Crema, E.; Gebauer, B.; Hilscher, D.; Jahnke, U.; Jacquet, D.; Leray, S.; and others.

    1996-01-01

    The reactions 84 Kr+ 197 Au and 84 Kr+ nat U were studied at E/A=150 MeV employing the large-volume neutron multiplicity filter ORION at SATURNE. The observed correlations between the atomic number of projectile-like nuclei and neutron multiplicity indicate large excitation energies in the primary projectile- and target-like fragments. Angular correlations between the fission fragments of the U-like nucleus and the projectile-like fragments show a memory of the reaction plane, however no indications of spin effects are found. (author)

  3. Systematics of the breakup probability function for {sup 6}Li and {sup 7}Li projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Capurro, O.A., E-mail: capurro@tandar.cnea.gov.ar [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Pacheco, A.J.; Arazi, A. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Carnelli, P.F.F. [CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); Fernández Niello, J.O. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); and others

    2016-01-15

    Experimental non-capture breakup cross sections can be used to determine the probability of projectile and ejectile fragmentation in nuclear reactions involving weakly bound nuclei. Recently, the probability of both type of dissociations has been analyzed in nuclear reactions involving {sup 9}Be projectiles onto various heavy targets at sub-barrier energies. In the present work we extend this kind of systematic analysis to the case of {sup 6}Li and {sup 7}Li projectiles with the purpose of investigating general features of projectile-like breakup probabilities for reactions induced by stable weakly bound nuclei. For that purpose we have obtained the probabilities of projectile and ejectile breakup for a large number of systems, starting from a compilation of the corresponding reported non-capture breakup cross sections. We parametrize the results in accordance with the previous studies for the case of beryllium projectiles, and we discuss their systematic behavior as a function of the projectile, the target mass and the reaction Q-value.

  4. Influence of spin on fission fragments anisotropy

    Directory of Open Access Journals (Sweden)

    Ghodsi Omid N.

    2005-01-01

    Full Text Available An analysis of selected fission fragment angular distribution when at least one of the spins of the projectile or target is appreciable in induced fission was made by using the statistical scission model. The results of this model predicate that the spins of the projectile or target are affected on the nuclear level density of the compound nucleus. The experimental data was analyzed by means of the couple channel spin effect formalism. This formalism suggests that the projectile spin is more effective on angular anisotropies within the limits of energy near the fusion barrier.

  5. Production study of light fragments emitted at low angle in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bastid, N.

    1987-03-01

    The Diogene plastic wall was built in order to study fragment production in a 0 O -6 O angular range. After generalities on heavy ion collisions and a description of the Diogene detector, methods used for data analysis allowing identification of charged particles and measurement of their energy and emission angle are presented. From correlation studies between the Diogene events and the plastic wall events, we can have an information on the centrality of collisions. On the other hand, the study of differential cross sections shows two existing sources: one formed by the projectile remnant, at a velocity close to beam velocity and a source of intermediary rapidity formed by the participants. We have shown that even for very central collisions and heavy targets, the target nucleus remains partially transparent. In order to explain projectile fragmentation mechanism, we have used two models: a coalescence model and a thermal model. The first model gives the value of the coalescence radius. It seems that this model does not apply to angles nearing 0 O . With the thermal model, we have been able to sort out apparent temperature values which confirm the weak excitation energy of the projectile remnant [fr

  6. SU-F-J-202: Secondary Radiation Measurements for Charged Particle Therapy Monitoring: Fragmentation of Therapeutic He, C and O Ion Beams Impinging On a PMMA Target

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, A; Mancini-Terracciano, C; Paramatti, R; Pinci, D; Russomando, A; Voena, C [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Rome, Rome (Italy); Battistoni, G; Muraro, S [Istituto Nazionale di Fisica Nucleare - Sezione di Milano, Milano, Milano (Italy); Collamati, F; Faccini, R; Camillocci, E Solfaroli [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Italy, Dipartiment, Rome, Rome (Italy); Collini, F [Istituto Nazionale di Fisica Nucleare - Sezione di Pisa, Pisa, Pisa (Italy); De Lucia, E; Piersanti, L; Toppi, M [Laboratori Nazionali di Frascati, Frascati (rome), Rome (Italy); Frallicciardi, P [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Rome, Rome (Italy); Marafini, M [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Museo Storico dell, Rome, Rome (Italy); Patera, V; Sciubba, A; Traini, G [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Dipartimento di Sc, Rome, Rome (Italy); and others

    2016-06-15

    Purpose: In Charged Particle Therapy (CPT), besides protons, there has been recently a growing interest in 4He, 12C and 16O beams. The secondary radiation produced in the interaction of those beams with a patient could be potentially used for on-line monitoring of range uncertainties in order to fully exploit the advantages of those light ions resulting from increased Radio Biological Effectiveness, reduced multiple scattering and Oxygen Enhancement Ratio. The study and precise characterization of secondary radiation (beta+, prompt gamma, charged fragments) is the cornerstone of any R&D activity aiming for online monitoring development and purpose of the analysis presented here. Methods: We present the measurements of the secondary radiation generated by He, C and O beams impinging on a beam stopping PMMA target. The data has been collected at the Heidelberg Ionbeam Therapy center (HIT), where several millions of collisions were recorded at different energies, relevant for therapeutical applications. Results: The experimental setup, as well as the analysis strategies will be reviewed. The detected particle fluxes as a function of the primary beam energy and the emission angle with respect to the beam direction will be presented and compared to the results of other available measurements. In addition, the energy spectra and emission shapes of charged secondary particles will be shown and discussed in the context of the primary beam range monitoring technique that is being developed by the ARPG collaboration, within the INSIDE project funded by the Italian research ministry. The implications for dose monitoring applications will be discussed, in the context of the current (or planned) state-of- the-art detector solutions. Conclusion: The characterization of the radiation produced by 12C, 4He and 16O beams fully supports the feasibility of on-line range monitoring in the clinical practice of CPT by means of secondary particles detection.

  7. SU-F-J-202: Secondary Radiation Measurements for Charged Particle Therapy Monitoring: Fragmentation of Therapeutic He, C and O Ion Beams Impinging On a PMMA Target

    International Nuclear Information System (INIS)

    Rucinski, A; Mancini-Terracciano, C; Paramatti, R; Pinci, D; Russomando, A; Voena, C; Battistoni, G; Muraro, S; Collamati, F; Faccini, R; Camillocci, E Solfaroli; Collini, F; De Lucia, E; Piersanti, L; Toppi, M; Frallicciardi, P; Marafini, M; Patera, V; Sciubba, A; Traini, G

    2016-01-01

    Purpose: In Charged Particle Therapy (CPT), besides protons, there has been recently a growing interest in 4He, 12C and 16O beams. The secondary radiation produced in the interaction of those beams with a patient could be potentially used for on-line monitoring of range uncertainties in order to fully exploit the advantages of those light ions resulting from increased Radio Biological Effectiveness, reduced multiple scattering and Oxygen Enhancement Ratio. The study and precise characterization of secondary radiation (beta+, prompt gamma, charged fragments) is the cornerstone of any R&D activity aiming for online monitoring development and purpose of the analysis presented here. Methods: We present the measurements of the secondary radiation generated by He, C and O beams impinging on a beam stopping PMMA target. The data has been collected at the Heidelberg Ionbeam Therapy center (HIT), where several millions of collisions were recorded at different energies, relevant for therapeutical applications. Results: The experimental setup, as well as the analysis strategies will be reviewed. The detected particle fluxes as a function of the primary beam energy and the emission angle with respect to the beam direction will be presented and compared to the results of other available measurements. In addition, the energy spectra and emission shapes of charged secondary particles will be shown and discussed in the context of the primary beam range monitoring technique that is being developed by the ARPG collaboration, within the INSIDE project funded by the Italian research ministry. The implications for dose monitoring applications will be discussed, in the context of the current (or planned) state-of- the-art detector solutions. Conclusion: The characterization of the radiation produced by 12C, 4He and 16O beams fully supports the feasibility of on-line range monitoring in the clinical practice of CPT by means of secondary particles detection.

  8. Anomalous nuclear fragments

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1983-01-01

    Experimental data are given, the status of anomalon problem is discussed, theoretical approaches to this problem are outlined. Anomalons are exotic objects formed following fragmentation of nuclei-targets under the effect of nuclei - a beam at the energy of several GeV/nucleon. These nuclear fragments have an anomalously large cross section of interaction and respectively, small free path, considerably shorter than primary nuclei have. The experimental daa are obtained in accelerators following irradiation of nuclear emulsions by 16 O, 56 Fe, 40 Ar beams, as well as propane by 12 C beams. The experimental data testify to dependence of fragment free path on the distance L from the point of the fragment formation. A decrease in the fragment free path is established more reliably than its dependence on L. The problem of the anomalon existence cannot be yet considered resolved. Theoretical models suggested for explanation of anomalously large cross sections of nuclear fragment interaction are variable and rather speculative

  9. Fragmentation cross sections outside the limiting-fragmentation regime

    CERN Document Server

    Sümmerer, K

    2003-01-01

    The empirical parametrization of fragmentation cross sections, EPAX, has been successfully applied to estimate fragment production cross sections in reactions of heavy ions at high incident energies. It is checked whether a similar parametrization can be found for proton-induced spallation around 1 GeV, the range of interest for ISOL-type RIB facilities. The validity of EPAX for medium-energy heavy-ion induced reactions is also checked. Only a few datasets are available, but in general EPAX predicts the cross sections rather well, except for fragments close to the projectile, where the experimental cross sections are found to be larger.

  10. Radioactive ion beam facilities in Europe

    International Nuclear Information System (INIS)

    Blumenfeld, Y.

    2008-01-01

    The past two decades have seen extraordinarily rapid development of radioactive beam physics throughout the world and in particular in Europe. The important scientific advances have stemmed from a large number of facilities. Previously existing stable beam machines have been adapted to produce rare isotope beams and dedicated facilities have come on-line. This talk gives an overview of the present European installations highlighting their complementary nature. The European roadmap calls for the construction of two next generation facilities: FAIR making use of projectile fragmentation and EURISOL based on the ISOL technique. The future FAIR facility will be described and the path towards EURISOL presented in the light of the construction of 'intermediate' generation facilities SPIRAL2, HIE ISOLDE and SPES and results from the ongoing EURISOL Design Study.

  11. Fragmentation and mean kinetic energy release of the nitrogen molecule

    International Nuclear Information System (INIS)

    Santos, A.C.F.; Melo, W.S.; Sant'Anna, M.M.; Sigaud, G.M.; Montenegro, E.C.

    2007-01-01

    Ionization and fragmentation of the N 2 molecule in coincidence with the final projectile charge state have been measured for the impact of 0.188-0.875 MeV/amu He + projectiles. The average kinetic energy release (KER) of the target ionic fragments is derived from the peak widths of their time-of-flight distributions. It is shown that the KER's for singly-charged products follow scaling laws irrespectively to the collision channel

  12. Photoproduction of multiparticle states in the beam fragmentation region for photon energies in the range 50-70 GeV

    International Nuclear Information System (INIS)

    Atkinson, M.; Davenport, M.; Flower, P.; Hutton, J.S.; Kemp, M.A.R.; Kumar, B.R.; Morris, J.A.G.; Sharp, P.H.; Brodbeck, T.J.; Clegg, A.B.; Flynn, P.J.; Henderson, R.C.W.; Newton, D.; Bussey, P.J.; Dainton, B.; Paterson, C.; Raine, C.; Skillicorn, I.O.; Smith, K.M.; Diekmann, B.; Heinloth, K.; Jakob, H.P.; Jung, M.; Liebenau, V.; Paul, E.; Reidenbach, M.; Rotscheidt, H.; Schlosser, A.; Brookes, G.R.; Bunn, J.J.; Galbraith, W.; McClatchey, R.H.; Laberrigue, J.; Levy, J.M.; Vaissiere, C. de la; Yiou, T.P.

    1984-01-01

    Forward production of hadrons in γp interactions at about 11 GeV. Centre of mass energy has been analysed in terms of single particle spectra. Comparisons with K + p and K - p data and with deep inelastic scattering data at similar energies confirms the universality of global properties. As the minimum psub(T) 2 is increased the data show features which are consistent with a 2-jet structure in the beam fragmentation region. A small subsample of these events is consistent with a special topology in which a jet is replaced by a single high-psub(T) pion. (orig.)

  13. Study of projectile fragments charge distribution at relativistic energy

    International Nuclear Information System (INIS)

    Pathak, Ramji; Singh, M.K.; Singh, V.

    2012-01-01

    Nuclear emulsion detector (NED) is one of the oldest detector technologies and has been in use from the birth of the experimental nuclear and astroparticle physics. Fortunately, it is a unique and simple detector till today, due to very high position resolution of the order of < 1μm along with several unique features. Nuclear emulsion detector has 4π detection capability with grain density of 300 to 500 grains per mm, compactness of the size and large range of ionization sensitivity depends upon the nature and need of the experiment. The high resolution allows easy detection of short-lived particles like the lepton or charmed mesons

  14. Projectile Balloting Attributable to Gun Tube Curvature

    Directory of Open Access Journals (Sweden)

    Michael M. Chen

    2010-01-01

    Full Text Available Transverse motion of a projectile during launch is detrimental to firing accuracy, structural integrity, and/or on-board electronics performance of the projectile. One manifest contributing factor to the undesired motion is imperfect bore centerline straightness. This paper starts with the presentation of a deterministic barrel model that possesses both vertical and lateral deviations from centerline in accordance with measurement data, followed by a novel approach to simulating comprehensive barrel centerline variations for the investigation of projectile balloting^1 motions. A modern projectile was adopted for this study. In-bore projectile responses at various locations of the projectile while traveling through the simulated gun tubes were obtained. The balloting was evaluated in both time and frequency domains. Some statistical quantities and the significance were outlined.

  15. Projectile excitation energy evolution in peripheral collisions for 16O + 197Au at 32.5, 50 and 70 MeV/N

    International Nuclear Information System (INIS)

    Pouliot, J.; Dore, D.; Houde, S.; Laforest, R.; Roy, R.; St-Pierre, C.; Chan, Y.; Horn, D.; Horn, D.

    1991-01-01

    A comparison of the multiple breakup of 16 O projectiles scattered by a Au target at three different energies (32.5, 50 and 70 MeV/N) is presented. The excitation energy spectra of the primary projectile-like nuclei decaying into specific output channels were reconstructed. The excitation energy of the target is found to increase faster with beam energy than the one for the quasi-projectile

  16. Stability Criterion for a Finned Spinning Projectile

    OpenAIRE

    S. D. Naik

    2000-01-01

    The state-of-the-art in gun projectile technology has been used for the aerodynamic stabilisation.This approach is acceptable for guided and controlled rockets but the free-flight rockets suffer fromunacceptable dispersion. Sabot projectiles with both spin and fms developed during the last decadeneed careful analysis. In this study, the second method of Liapunov has been used to develop stability criterion for a projectile to be designed with small fins and is made to spin in the flight. This...

  17. Predicting the Accuracy of Unguided Artillery Projectiles

    Science.gov (United States)

    2016-09-01

    ability to penetrate a target. If the impact angle is small, the projectile may more likely ricochet, and any penetration will not be as deep as a...projectile experiences less drag and thus increased impact velocity and penetration . However, a blunt nose projectile has more strength at the tip and...fire 15. NUMBER OF PAGES 139 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE

  18. RI beam factory and its expected pioneering work

    International Nuclear Information System (INIS)

    Yano, Yasushige

    1996-01-01

    The RARF (RIKEN Accelerator Research Facility) houses an intermediate-energy heavy-ion accelerator complex consisting of a K540-MeV ring cyclotron (RRC) and a couple of different types of the injectors: a variable-frequency heavy-ion linac and a K70-MeV AVF cyclotron. One of remarkable features of this facility is capability of supplying light-atomic-mass RI (radioactive isotope) beams with the world-highest level of intensities by the projectile-fragment separator, RIPS. In these several years nuclear physicists have opened up a quite new and fascinating heavy-ion science exploiting such RI beams. In order to further promote this new science, the RARF proposes 'RIKEN RI Beam Factory' as a next facility-expanding project. The factory takes the aim at providing RI beams covering over the whole atomic-mass range with the world-highest intensities in a wide energy range up to several hundreds MeV/nucleon. To realize the 'Factory' a K2500-MeV superconducting ring cyclotron will be built which boosts output energies of the RRC beams up to 400 MeV/nucleon for light ions and up to 100 MeV/nucleon for very heavy ions, preserving their beam intensities (typically 1 pμA). RI beams will be generated by the projectile fragmentation. A new type of experimental installation called 'MUSES' (Multi-USe Experimental Storage rings) will also be constructed. It consists of an accumulator-cooler ring, booster synchrotron ring and double storage rings. With MUSES, various types of unique colliding experiments will become possible: ion-ion merging or head-on collisions; collisions of either electrons or X-rays with ion (stable isotope or RI) beams; internal target experiments; and atomic and molecular physics with cooler electron beams. (author)

  19. Fragmentation in 28Si-emulsion interactions at 3.7A GeV

    International Nuclear Information System (INIS)

    Singh, B.K.; Tuli, S.K.

    1999-01-01

    The results on fragmentation of a 3.7A GeV 28 Si projectile in interactions with different target nuclei in nuclear emulsion are presented. Limiting fragmentation behaviour of the projectile fragments is achieved at this energy. It is shown that the factorization principle for fragmentation cross-sections holds for light fragments only. A bond percolation prescription is able to reproduce the experimental observations for fragments with charge 4≤Z≤10. A rise in the production of helium fragments is also predicted by bond percolation

  20. Production of an {sup 15}O beam using a stable oxygen ion beam for in-beam PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Akram, E-mail: mohammadi.akram@qst.go.jp; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-21

    In advanced ion therapy, the {sup 15}O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an {sup 15}O beam by projectile fragmentation of a stable {sup 16}O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors’ group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of {sup 15}O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of {sup 15}O fragments. The highest production rate of {sup 15}O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the {sup 16}O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the {sup 15}O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the {sup 16}O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is

  1. Production of an 15O beam using a stable oxygen ion beam for in-beam PET imaging

    Science.gov (United States)

    Mohammadi, Akram; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-01

    In advanced ion therapy, the 15O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an 15O beam by projectile fragmentation of a stable 16O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors' group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of 15O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of 15O fragments. The highest production rate of 15O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the 16O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the 15O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the 16O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is sufficiently high. In-beam PET imaging was also

  2. Breakup conditions of projectile spectators from dynamical observables

    Energy Technology Data Exchange (ETDEWEB)

    Begemann-Blaich, M.; Lindenstruth, V.; Pochodzalla, J. [and others

    1998-03-01

    Momenta and masses of heavy projectile fragments (Z {>=} 8), produced in collisions of {sup 197}Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 {Dirac_h}/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)

  3. Breakup conditions of projectile spectators from dynamical observables

    International Nuclear Information System (INIS)

    Begemann-Blaich, M.; Lindenstruth, V.; Pochodzalla, J.

    1998-03-01

    Momenta and masses of heavy projectile fragments (Z ≥ 8), produced in collisions of 197 Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 ℎ/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)

  4. Development of odd-Z-projectile reactions for transactinide element synthesis

    International Nuclear Information System (INIS)

    Folden III, Charles Marvin

    2004-01-01

    The development of new odd-Z-projectile reactions leading to the production of transactinide elements is described. The cross section of the even-Z-projectile 208Pb(64Ni, n)271Ds reaction was measured at two new energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, seven decay chains attributable to 271Ds were observed. These data, combined with previous results, establish an excitation function for the production of 271Ds. The maximum cross section was 20 +15 -11 pb at a center-of-target energy of 311.5 MeV in the laboratory frame.The data from the 271Ds experiments were used to estimate the optimum beam energy for the new odd-Z-projectile 208Pb(65Cu, n)272-111 reaction using the Fusion by Diffusion theory proposed by Swiatecki, Siwek-Wilczynska, and Wilczynski. A cross section for this reaction was measured for the first time, at a center-of-target energy of 321.1 MeV in the laboratory frame. The excitation energy f or compound nuclei formed at the target center was 13.2 MeV. One decay chain was observed, resulting in a measured cross section of 1.7 +3.9 -1.4 pb. This decay chain is in good agreement with previously published data on the decay of 272-111.The new odd-Z-projectile 208Pb(55Mn, n)262Bh reaction was studied at three different projectile energies, and 33 decay chains of 262Bh were observed. The existence of a previously reported alpha-decaying isomeric state in this nuclide was confirmed. Production of the ground state was preferred at all three beam energies. The maximum cross section was 540 +180 -150 pb at a projectile center-of-target energy of 264.0 MeV. This cross section is much larger than that previously reported for the even-Z-projectile 209Bi(54Cr, n)262Bh reaction, which may be because the 54Cr projectile energies in the latter reaction were too high for optimum production of the 1n product. At the highest projectile energy of 268.0 MeV in the target center, two decay

  5. Coincident measurement between neutron and fragment in reaction sup 1 sup 7 N + sup 1 sup 9 sup 7 Au

    CERN Document Server

    Li Xiang Qing; Jiang Dong Xing; Ye Yan Lin; Chen Tao; Li Zhi Huan; Ge Yuch Eng; Wang Quan Jin; Wu He Yu; Jin Ge; Duan Li Min; Xiao Zhi Gang; Wang Hong Wei; Li Zu Yu; Wang Su Fang

    2002-01-01

    In the reaction induced by 33.4 MeV/u sup 1 sup 7 N beam on sup 1 sup 9 sup 7 Au, the coincident measurement between neutron and fragment was performed with the different combinations of 16 neutron detectors at 4 degree-83 degree and 14 telescopes at 2.3 degree - 9.0 degree. Integrating the measured angular distributions of the different isotopes, the isotopic yield distributions of Z = 3-6 elements are obtained. Based on the Abrasion-ablation model, isotopic yield distributions are calculated using different density distributions for the projectile sup 1 sup 7 N and compared with the experiment data

  6. Asymmetry effects in fragment production

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet [Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab (India); Kaur, Varinderjit, E-mail: drvarinderjit@gmail.com [Mata Gujri College, Fatehgarh Sahib-140406, Punjab (India)

    2016-05-06

    The production of different fragments has been studied by taking into account the mass asymmetry of the reaction and employing the momentum dependent interactions. Two different set of asymmetric reactions have been analyzed while keeping At{sub otal} fixed using soft momentum dependent equation of state. Our results indicate that the impact of momentum dependent interactions is different in lighter projectile systems as compared to heavier ones. The comparative analysis of IQMD simulations with the experimental data in case of heavier projectile and lighter target system for the reaction of {sup 197}Au+{sup 27}Al (η = 0.7) at E = 600 MeV/nucleon shows that with the inclusion of MDI we are able, upto some extent, to reproduce the experimental universality of rise and fall of intermediate mass fragments (IMFs).

  7. Fragmentation and Multifragmentation of 10.6 A GeV Gold Nuclei

    CERN Document Server

    Adamovich, M I

    1999-01-01

    We present the results of a study performed on the interactions of 10.6A GeV gold nuclei in nuclear emulsions. In a minimum bias sample of 1311 interac- tions, 5260 helium nuclei and 2622 heavy fragments were observed as Au projec- tile fragments. The experimental data are analyzed with particular emphasis of target separation interactions in emulsions and study of criticalexponents. Multiplicity distributions of the fast-moving projectile fragments are inves- tigated. Charged fragment moments, conditional moments as well as two and three -body asymmetries of the fast moving projectile particles are determined in terms of the total charge remaining bound in the multiply charged projectile fragments. Some differences in the average yields of helium nuclei and heavier fragments are observed, which may be attributed to a target effect. However, two and three-body asymmetries and conditional moments indicate that the breakup mechanism of the projectile seems to be independent of target mass. We looked for evidenc...

  8. Graphical Method for Determining Projectile Trajectory

    Science.gov (United States)

    Moore, J. C.; Baker, J. C.; Franzel, L.; McMahon, D.; Songer, D.

    2010-01-01

    We present a nontrigonometric graphical method for predicting the trajectory of a projectile when the angle and initial velocity are known. Students enrolled in a general education conceptual physics course typically have weak backgrounds in trigonometry, making inaccessible the standard analytical calculation of projectile range. Furthermore,…

  9. Induced radioactivity of a GSO scintillator by secondary fragments in carbon ion therapy and its effects on in-beam OpenPET imaging.

    Science.gov (United States)

    Hirano, Yoshiyuki; Nitta, Munetaka; Nishikido, Fumihiko; Yoshida, Eiji; Inadama, Naoko; Yamaya, Taiga

    2016-07-07

    The accumulation of induced radioactivity within in-beam PET scanner scintillators is of concern for its long-term clinical usage in particle therapy. To estimate the effects on OpenPET which we are developing for in-beam PET based on GSOZ (Zi doped Gd2SiO5), we measured the induced radioactivity of GSO activated by secondary fragments in a water phantom irradiation by a (12)C beam with an energy of 290 MeV u(-1). Radioisotopes of Na, Ce, Eu, Gd, Nd, Pm and Tb including positron emitters were observed in the gamma ray spectra of the activated GSO with a high purity Ge detector and their absolute radioactivities were calculated. We used the Monte Carlo simulation platform, Geant4 in which the observed radioactivity was assigned to the scintillators of a precisely reproduced OpenPET and the single and coincidence rates immediately after one treatment and after one-year usage were estimated for the most severe conditions. Comparing the highest coincidence rate originating from the activated scintillators (background) and the expected coincidence rate from an imaging object (signal), we determined the expected signal-to-noise ratio to be more than 7 within 3 min and more than 10 within 1 min from the scan start time. We concluded the effects of scintillator activation and their accumulation on the OpenPET imaging were small and clinical long-term usage of the OpenPET was feasible.

  10. Recent work with fast molecular-ion beams at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Cooney, P.J.; Gemmell, D.S.; Groeneveld, K.O.; Kanter, E.P.; Pietsch, W.J.; Vager, Z.; Zabransky, B.J.

    1979-01-01

    Research in these areas during 1979 is summarized: (a) studies of molecular-ion dissociation in gaseous targets, (b) developing an understanding of the origins of central peaks and of the two phenomena of the transmission of fast molecular ions through thin foil targets and of the production of neutral fragments from collision-induced dissociation of fast molecular projectiles, (c) studies exploring the extent to which high-resolution measurements on dissociation fragments can be used to determine the stereochemical structures of the molecular ions in the incident beam, (d) extensive modifications to the beam-line and apparatus at the 4-MV Dynamitron so as to permit a wide variety of coincidence measurements on fragments from collision-induced molecular-ion dissociation

  11. In-beam γ-ray spectroscopy of two-step fragmentation reactions at relativistic energies. The case of 36Ca

    International Nuclear Information System (INIS)

    Doornenbal, P.

    2007-01-01

    A two-step fragmentation experiment has been performed at GSI with the RISING setup. It combines the fragment separator FRS, which allows for the production of radioactive heavy ions at relativistic energies, with a high resolution γ-spectrometer. This combination offers unique possibilities for nuclear structure investigations like the test of shell model predictions far from stability. Within the present work the question if the N=14(16) shell stabilisation in Z=8 oxygen isotopes and the N=20 shell quenching in 32 Mg are symmetric with respect to the isospin projection quantum number Tz has been addressed. New γ-ray decays were found in the neutron deficient 36 Ca and 36 K by impinging a radioactive ion beam of 37 Ca on a secondary 9 Be target. The fragmentation products were selected with the calorimeter telescope CATE and the emitted γ-rays were measured with Ge Cluster, MINIBALL, and BaF 2 HECTOR detectors. For 36 Ca the 2 1 + →0 g.s. + transition energy was determined to be 3015(16) keV, which is the heaviest T=2 nucleus from which γ-spectroscopic information has been obtained so far. A comparison between the experimental 2 1 + energies of 36 Ca and its mirror nucleus 36 S yielded a mirror energy difference of ΔE M =-276(16) keV. In order to understand the large ΔE M value, the experimental single-particle energies from the A=17, T=1/2 mirror nuclei were taken and applied onto modified isospin symmetric USD interactions in shell model calculations. These calculations were in agreement with the experimental result and showed that the experimental single-particle energies may account empirically for the one body part of Thomas-Ehrman and/or Coulomb effects. A method to extract the lifetime of excited states in fragmentation reactions was investigated. Therefore, the dependence between the lifetime of an excited state and the average de-excitation velocity and trajectory of the nuclei in relativistic fragmentation experiments has been studied. Known

  12. In-beam {gamma}-ray spectroscopy of two-step fragmentation reactions at relativistic energies. The case of {sup 36}Ca

    Energy Technology Data Exchange (ETDEWEB)

    Doornenbal, P.

    2007-10-23

    A two-step fragmentation experiment has been performed at GSI with the RISING setup. It combines the fragment separator FRS, which allows for the production of radioactive heavy ions at relativistic energies, with a high resolution {gamma}-spectrometer. This combination offers unique possibilities for nuclear structure investigations like the test of shell model predictions far from stability. Within the present work the question if the N=14(16) shell stabilisation in Z=8 oxygen isotopes and the N=20 shell quenching in {sup 32}Mg are symmetric with respect to the isospin projection quantum number Tz has been addressed. New {gamma}-ray decays were found in the neutron deficient {sup 36}Ca and {sup 36}K by impinging a radioactive ion beam of {sup 37}Ca on a secondary {sup 9}Be target. The fragmentation products were selected with the calorimeter telescope CATE and the emitted {gamma}-rays were measured with Ge Cluster, MINIBALL, and BaF{sub 2} HECTOR detectors. For {sup 36}Ca the 2{sub 1}{sup +}{yields}0{sub g.s.}{sup +} transition energy was determined to be 3015(16) keV, which is the heaviest T=2 nucleus from which {gamma}-spectroscopic information has been obtained so far. A comparison between the experimental 2{sub 1}{sup +} energies of {sup 36}Ca and its mirror nucleus {sup 36}S yielded a mirror energy difference of {delta}E{sub M}=-276(16) keV. In order to understand the large {delta}E{sub M} value, the experimental single-particle energies from the A=17, T=1/2 mirror nuclei were taken and applied onto modified isospin symmetric USD interactions in shell model calculations. These calculations were in agreement with the experimental result and showed that the experimental single-particle energies may account empirically for the one body part of Thomas-Ehrman and/or Coulomb effects. A method to extract the lifetime of excited states in fragmentation reactions was investigated. Therefore, the dependence between the lifetime of an excited state and the average de

  13. Inclusive breakup of three-fragment weakly bound nuclei

    International Nuclear Information System (INIS)

    Carlson, B.V.; Frederico, T.; Hussein, M.S.

    2017-01-01

    The inclusive breakup of three-fragment projectiles is discussed within a four-body spectator model. Both the elastic breakup and the non-elastic breakup are obtained in a unified framework. Originally developed in the 80's for two-fragment projectiles such as the deuteron, in this paper the theory is successfully generalized to three-fragment projectiles. The expression obtained for the inclusive cross section allows the extraction of the incomplete fusion cross section, and accordingly generalizes the surrogate method to cases such as (t, p) and (t, n) reactions. It is found that two-fragment correlations inside the projectile affect in a conspicuous way the elastic breakup cross section. The inclusive non-elastic breakup cross section is calculated and is found to contain the contribution of a three-body absorption term that is also strongly influenced by the two-fragment correlations. This latter cross section contains the so-called incomplete fusion where more than one compound nuclei are formed. Our theory describes both stable weakly bound three-fragment projectiles and unstable ones such as the Borromean nuclei.

  14. Inclusive breakup of three-fragment weakly bound nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, B.V.; Frederico, T. [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil); Hussein, M.S., E-mail: hussein@if.usp.br [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil); Instituto de Estudos Avançados, Universidade de São Paulo, C.P. 72012, 05508-970 São Paulo, SP (Brazil); Instituto de Física, Universidade de São Paulo, C.P. 66318, 05314-970 São Paulo, SP (Brazil)

    2017-04-10

    The inclusive breakup of three-fragment projectiles is discussed within a four-body spectator model. Both the elastic breakup and the non-elastic breakup are obtained in a unified framework. Originally developed in the 80's for two-fragment projectiles such as the deuteron, in this paper the theory is successfully generalized to three-fragment projectiles. The expression obtained for the inclusive cross section allows the extraction of the incomplete fusion cross section, and accordingly generalizes the surrogate method to cases such as (t, p) and (t, n) reactions. It is found that two-fragment correlations inside the projectile affect in a conspicuous way the elastic breakup cross section. The inclusive non-elastic breakup cross section is calculated and is found to contain the contribution of a three-body absorption term that is also strongly influenced by the two-fragment correlations. This latter cross section contains the so-called incomplete fusion where more than one compound nuclei are formed. Our theory describes both stable weakly bound three-fragment projectiles and unstable ones such as the Borromean nuclei.

  15. Penetration of fast projectiles into resistant media: From macroscopic to subatomic projectiles

    Science.gov (United States)

    Gaite, José

    2017-09-01

    The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton's inertial quadratic force, namely, F ∼v 2 - β, where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape.

  16. Status of beam line detectors for the BigRIPS fragment separator at RIKEN RI Beam Factory. Issues on high rates and resolution

    International Nuclear Information System (INIS)

    Sato, Yuki; Fukuda, Naoki; Takeda, Hiroyuki

    2015-01-01

    A multiple sampling ionization chamber (MUSIC) and parallel-plate avalanche counters (PPACs) were installed within the superconducting in-flight separator, named BigRIPS, at the RIKEN Nishina Center for particle identification of RI beams. The MUSIC detector showed negligible charge collection inefficiency from recombination of electrons and ions, up to a 99-kcps incidence rate for high-energy heavy ions. For the PPAC detectors, the electrical discharge durability for incident heavy ions was improved by changing the electrode material. Finally, we designed a single crystal diamond detector, which is under development for TOF measurements of high-energy heavy ions, that has a very fast response time (pulse width <1 ns). (author)

  17. Status of Beam Line Detectors for the BigRIPS Fragment Separator at RIKEN RI Beam Factory: Issues on High Rates and Resolution

    Science.gov (United States)

    Sato, Yuki; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Ahn, DeukSoon; Murai, Daichi; Inabe, Naohito; Shimaoka, Takehiro; Tsubota, Masakatsu; Kaneko, Junichi H.; Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi; Kumagai, Hidekazu; Murakami, Hiroyuki; Sato, Hiromi; Yoshida, Koichi; Kubo, Toshiyuki

    A multiple sampling ionization chamber (MUSIC) and parallel-plate avalanche counters (PPACs) were installed within the superconducting in-flight separator, named BigRIPS, at the RIKEN Nishina Center for particle identification of RI beams. The MUSIC detector showed negligible charge collection inefficiency from recombination of electrons and ions, up to a 99-kcps incidence rate for high-energy heavy ions. For the PPAC detectors, the electrical discharge durability for incident heavy ions was improved by changing the electrode material. Finally, we designed a single crystal diamond detector, which is under development for TOF measurements of high-energy heavy ions, that has a very fast response time (pulse width <1 ns).

  18. Manipulation of rare isotope beams - from high to low energies

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, G. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI (United States)], E-mail: bollen@nscl.msu.edu; Campbell, C.; Chouhan, S.; Guenaut, C.; Lawton, D.; Marti, F. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States); Morrissey, D.J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States); Department of Chemistry, Michigan State University, East Lansing, MI (United States); Ottarson, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States); Pang, G. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States); Department of Chemistry, Michigan State University, East Lansing, MI (United States); Schwarz, S.; Zeller, A.F.; Zavodszky, P. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States)

    2008-10-15

    Projectile fragmentation above 50 MeV/u and in-flight separation is a powerful technique for the production and delivery of rare isotopes. The production is fast and chemistry independent, providing nuclides far away from the valley of beta stability and for a very large range of elements. These benefits can be maximized if the produced rare isotopes are made available also as low-energy beams (<15 MeV/u) and at rest. For this purpose the fast beams need to be slowed down and thermalized before being re-accelerated to the desired energy. This can be achieved with gas stopping techniques. This paper discusses various aspects of stopping fast rare isotope beams, including the development of a 'cyclotron gas stopper' that promises to overcome the limitations of present linear gas stopping schemes.

  19. Projectile Aerodynamic Jump Due to Lateral Impulsives

    National Research Council Canada - National Science Library

    Cooper, Gene

    2003-01-01

    .... The formulation shows for sufficiently long-range target interception; lateral impulse trajectory response for a guided projectile is independent of when the impulse is activated during the yaw cycle...

  20. Collisions of Oq+ with neutral C-60 : Charge transfer and fragmentation

    NARCIS (Netherlands)

    Schlatholter, T; Hoekstra, R; Morgenstern, R

    1998-01-01

    Fragmentation of C-60 fullerenes by collisions with multiply charged Oq+ ions (1 less than or equal to q less than or equal to 7) has been studied experimentally for Oq+ collision energies of 1.16 keV amu(-1) For high projectile charges the potential energy of the projectiles is mainly responsible

  1. Study of Particle Production and Nuclear Fragmentation in Relativistic Heavy-Ion Collisions in Nuclear Emulsions

    CERN Multimedia

    2002-01-01

    % EMU11 \\\\ \\\\ We propose to use nuclear emulsions for the study of nuclear collisions of $^{207}$Pb, $^{197}$Au, and any other heavy-ion beams when they are available. We have, in the past, used $^{32}$S at 200A~GeV and $^{16}$O at 200A and 60A~GeV from CERN (Experiment EMU08) and at present the analysis is going on with $^{28}$Si beam from BNL at 14.5A~GeV. It will be important to compare the previous and the present investigations with the new $^{207}$Pb beam at 60-160A~GeV. We want to measure in nuclear emulsion, on an event by event basis, shower particle multiplicity, pseudorapidity density and density fluctuations of charged particles, charge multiplicity and angular distributions of projectile fragments, production and interaction cross-sections of heavily ionizing particles emitted from the target fragmentation. Special emphasis will be placed on the analysis of events produced in the central collisions which are selected on the basis of low energy fragments emitted from the target excitation. It woul...

  2. A Meteorite Fragment Trapped Between Positive and Negative Shatter Cones in a Limestone Block Stored at the Meteorkrater-Museum Steinheim, Germany

    Science.gov (United States)

    Buchner, E.; Hoelzel, M.; Schmieder, M.; Rasser, M.; Fietzke, J.; Frische, M.; Kutterolf, S.

    2017-07-01

    A metallic fragment on a shatter cone surface of a shattered limestone block is composed of Fe, Ni, and Co. Kamacite, taenite, troilite, and schreibersite were identified. These findings suggest this fragment is a piece of the Steinheim projectile.

  3. Accelerator test of an improved Angle Detecting Inclined Sensor (ADIS) prototype with beams of {sup 78}Kr and fragments

    Energy Technology Data Exchange (ETDEWEB)

    Connell, J.J., E-mail: james.connell@unh.edu [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Lopate, C. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); McLaughlin, K.R. [Space Science Center and Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 (United States)

    2016-11-21

    The measurement of cosmic rays and Solar energetic particles in space is basic to our understanding of the Galaxy, the Sun, phenomena in the heliosphere and the emerging field of space weather. For these reasons, cosmic ray instruments are common on both scientific spacecraft and operational spacecraft such as weather satellites. Cosmic rays and Solar energetic particles include ions over the full range of elements found in the Solar System. High-resolution measurements of the elemental and isotopic composition require the angle of incidence of these energetic ions be determined to correct for pathlength variation in detectors within an instrument. The Angle Detecting Inclined Sensor (ADIS) system is a simple detector configuration used to determine the angle of incidence of heavy ions in space instruments. ADIS replaces complex position sensing detectors (PSDs) with a system of simple, reliable and robust detectors inclined at an angle to the instrument axis. An ADIS instrument thus offers significant advantages in mass, power, telemetry and cost. In February 2008 an improved ADIS prototype was tested with a 150 MeV/u {sup 78}Kr beam at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). This demonstrated a charge resolution of σ~0.3 e at Kr (Z=36), an exceptional charge resolution for such a simple instrument system.

  4. Backward ejected electrons from collisions of 1 MeV/u Oq+ projectiles with argon gas

    International Nuclear Information System (INIS)

    Berryman, J.W.; Breinig, M.; Segner, F.; Desai, D.

    1993-01-01

    We will be presenting results from a series of experiments measuring the yields and energy distributions of electrons emitted at 1800 with respect to the 1 MeV/u O q+ [q=3-8] ion beam. We have systematically studied the yield per incident ion and the energy distribution of electrons as a function of the incident projectile charge state. The energy distributions show two prominent structures: a narrow peak due to target LMM Auger electrons and a broad hump due to projectile binary-encounter electrons. The shapes and yields of the Auger electron peaks are nearly independent of the incident charge state. The shapes and yields of the binary-encounter electron peaks are sensitive functions of the number of projectile electrons carried into the collision. A well defined binary-encounter electron peak appears only for charge states q=3, 4, and 5

  5. Experimental impact-parameter--dependent probabilities for K-shell vacancy production by fast heavy-ion projectiles

    International Nuclear Information System (INIS)

    Randall, R.R.; Bednar, J.A.; Curnutte, B.; Cocke, C.L.

    1976-01-01

    The impact-parameter dependence of the probability for production of target K x rays has been measured for oxygen projectiles on copper and for carbon and fluorine projectiles on argon at scaled velocities near 0.5. The O-on-Cu data were taken for 1.56-, 1.88-, and 2.69-MeV/amu O beams incident upon thin Cu foils. A thin Ar-gas target was used for 1.56-MeV/amu C and F beams, permitting measurements to be made for charge-pure C +4 , C +6 , F +9 and F +5 projectiles. Ar and Cu K x rays were observed with a Si(Li) detector and scattered projectiles with a collimated surface-barrier detector. Comparison of the shapes of the measured K-vacancy--production probability curves with predictions of the semiclassical Coulomb approximation (SCA) shows adequate agreement for the O-on-Cu system. For the higher ratio of projectile-to-target nuclear charge (Z 1 /Z 2 ) characterizing the C-on-Ar and F-on-Ar systems, the SCA predictions are entirely inadequate in describing the observed impact-parameter dependence. In particular, they cannot account for large probabilities found at large impact parameters. Furthermore, the dependence of the shapes on the projectile charge state is found to become pronounced at larger Z 1 /Z 2 . Attempts to account for this behavior in terms of alternative vacancy-production processes are discussed

  6. Heavy fragment production cross sections from 1.05 GeV/nucleon 56Fe in C, Al, Cu, Pb, and CH2 targets

    Science.gov (United States)

    Zeitlin, C.; Heilbronn, L.; Miller, J.; Rademacher, S. E.; Borak, T.; Carter, T. R.; Frankel, K. A.; Schimmerling, W.; Stronach, C. E.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    We have obtained charge-changing cross sections and partial cross sections for fragmentation of 1.05 GeV/nucleon Fe projectiles incident on H, C, Al, Cu, and Pb nuclei. The energy region covered by this experiment is critical for an understanding of galactic cosmic ray propagation and space radiation biophysics. Surviving primary beam particles and fragments with charges from 12 to 25 produced within a forward cone of half-angle 61 mrad were detected using a silicon detector telescope to identify their charge and the cross sections were calculated after correction of the measured yields for finite target thickness effects. The cross sections are compared to model calculations and to previous measurements. Cross sections for the production of fragments with even-numbered nuclear charges are seen to be enhanced in almost all cases.

  7. Correlations between isospin dynamics and Intermediate Mass Fragments emission time scales: a probe for the symmetry energy in asymmetric nuclear matter

    International Nuclear Information System (INIS)

    De Filippo, E; Cardella, G; Guidara, E La; Pagano, A; Papa, M; Amorini, F; Colonna, M; Gianì, S; Grassi, L; Han, J; Maiolino, C; Auditore, L; Minniti, T; Baran, V; Berceanu, I; Geraci, E; Grzeszczuk, A; Guazzoni, P; Lanzalone, G; Lombardo, I

    2013-01-01

    We show new data from the 64 Ni+ 124 Sn and 58 Ni+ 112 Sn reactions studied in direct kinematics with the CHIMERA detector at INFN-LNS and compared with the reverse kinematics reactions at the same incident beam energy (35 A MeV). Analyzing the data with the method of relative velocity correlations, fragments coming from statistical decay of an excited projectile-like (PLF) or target-like (TLF) fragments are discriminated from the ones coming from dynamical emission in the early stages of the reaction. By comparing data of the reverse kinematics experiment with a stochastic mean field (SMF) + GEMINI calculations our results show that observables from neck fragmentation mechanism add valuable constraints on the density dependence of symmetry energy. An indication is found for a moderately stiff symmetry energy potential term of EOS.

  8. Light fragment formation at intermediate energies

    International Nuclear Information System (INIS)

    Boal, D.H.

    1982-03-01

    This paper concerns itself mainly with the production of energetic protons and light fragments at wide angles. The experiments point to nucleon emission in proton-induced reactions as involving a mechanism in which the observed nucleon is directly knocked out of the nucleus. A similar feature seems to be required to explain (p,F) and (e,F) reactions: an energetic nucleon is produced in one scattering of the projectile, and the struck nucleon subsequently loses some of its energy as it traverses the remaining part of the nucleus, gathering up other nucleons as it goes, to become a fragment. This is what one might call the extreme snowball model, and a more accurate description probably involves multiple scattering of the projectile in addition to the extreme snowball contribution. This will be particularly true for fragments in the mass 6 to 9 region. This scenario also appears to apply to deuteron-induced fragment production. However, for alpha-induced reactions it would appear that the nucleons forming a fragment can originate from collisions involving different incident nucleons in the projectile. For heavy ions, this effect is even stronger, and the snowball contribution is greatly reduced compared to that of the traditional coalescence model

  9. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  10. Title: Accelerator Test of an Angle Detecting Inclined Sensor (ADIS) Prototype with Beams of 48Ca and Fragments

    Science.gov (United States)

    Connell, J. J.; Lopate, C.; McKibben, R. B.; Enman, A.

    2006-12-01

    The measurement and identification of high energy ions (> few MeV/n) from events originating on the Sun is of direct interest to the Living With a Star Program. These ions are a major source of Single Event Effects (SEE) in space-based electronics. Measurements of these ions also help in understanding phenomena such as Solar particle events and coronal mass ejections. These disturbances can directly affect the Earth and the near-Earth space environment, and thus human technology. The resource constraints on spacecraft generally mean that instruments that measure cosmic rays and Solar energetic particles must have low mass (a few kg) and power (a few W), be robust and reliable yet highly capable. Such instruments should identify ionic species (at least by element, preferably by isotope) from protons through the iron group. The charge and mass resolution of heavy ion instrument in space depends upon determining ions' angles of incidence. The Angle Detecting Inclined Sensor (ADIS) system is a highly innovative and uniquely simple detector configuration used to determine the angle of incidence of heavy ions in space instruments. ADIS replaces complex position sensing detectors (PSDs) with a system of simple, reliable and robust Si detectors inclined at an angle to the instrument axis. In August 2004 we tested ADIS prototypes with a 48Ca beam at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). We demonstrate that our prototype charged particle instrument design with an ADIS system has a charge resolution of better than 0.25 e. An ADIS based system is being incorporated into the Energetic Heavy Ion Sensor (EHIS), one of the instruments in the Space Environment In-Situ Suite (SEISS) on the next generation of Geostationary Operational Environmental Satellite (GOES-R) System. An ADIS based system was also selected for the High Energy Particle Sensor (HEPS), one of the instruments in the Space Environment Sensor Suite (SESS) on the

  11. Modeling and Experiments on Ballistic Impact into UHMWPE Yarns Using Flat and Saddle-Nosed Projectiles

    Directory of Open Access Journals (Sweden)

    Stuart Leigh Phoenix

    2017-03-01

    Full Text Available Yarn shooting experiments were conducted to determine the ballistically-relevant, Young’s modulus and tensile strength of ultra-high molecular weight polyethylene (UHMWPE fiber. Target specimens were Dyneema® SK76 yarns (1760 dtex, twisted to 40 turns/m, and initially tensioned to stresses ranging from 29 to 2200 MPa. Yarns were impacted, transversely, by two types of cylindrical steel projectiles at velocities ranging from 150 to 555 m/s: (i a reverse-fired, fragment simulating projectile (FSP where the flat rear face impacted the yarn rather than the beveled nose; and (ii a ‘saddle-nosed projectile’ having a specially contoured nose imparting circular curvature in the region of impact, but opposite curvature transversely to prevent yarn slippage off the nose. Experimental data consisted of sequential photographic images of the progress of the triangular transverse wave, as well as tensile wave speed measured using spaced, piezo-electric sensors. Yarn Young’s modulus, calculated from the tensile wave-speed, varied from 133 GPa at minimal initial tension to 208 GPa at the highest initial tensions. However, varying projectile impact velocity, and thus, the strain jump on impact, had negligible effect on the modulus. Contrary to predictions from the classical Cole-Smith model for 1D yarn impact, the critical velocity for yarn failure differed significantly for the two projectile types, being 18% lower for the flat-faced, reversed FSP projectile compared to the saddle-nosed projectile, which converts to an apparent 25% difference in yarn strength. To explain this difference, a wave-propagation model was developed that incorporates tension wave collision under blunt impact by a flat-faced projectile, in contrast to outward wave propagation in the classical model. Agreement between experiment and model predictions was outstanding across a wide range of initial yarn tensions. However, plots of calculated failure stress versus yarn pre

  12. Behind-armour Debris Modelling for High- velocity Fragment Impact (Part 2)

    National Research Council Canada - National Science Library

    Verolme, J

    1997-01-01

    This report presents the results of impact experiments and a parallel simulation modelling thereof, with the main objective to study the fragmentation properties of tungsten and steel projectiles at impact...

  13. Fragment ion and electron emission from C sub 6 sub 0 by fast heavy ion impact

    CERN Document Server

    Mizuno, T; Itoh, A; Tsuchida, H; Nakai, Y

    2003-01-01

    Correlation between electron emission and fragmentation of C sub 6 sub 0 was studied using 847keV Si sup + ions. Mass distribution of fragment ions, number distribution of secondary electrons, and final charge distribution of outgoing projectiles were successfully measured by means of a triple coincidence time-of-flight method. Strong correlation was observed for electron emission and fragmentation.

  14. Evaluating simulant materials for understanding cranial backspatter from a ballistic projectile.

    Science.gov (United States)

    Das, Raj; Collins, Alistair; Verma, Anurag; Fernandez, Justin; Taylor, Michael

    2015-05-01

    In cranial wounds resulting from a gunshot, the study of backspatter patterns can provide information about the actual incidents by linking material to surrounding objects. This study investigates the physics of backspatter from a high-speed projectile impact and evaluates a range of simulant materials using impact tests. Next, we evaluate a mesh-free method called smoothed particle hydrodynamics (SPH) to model the splashing mechanism during backspatter. The study has shown that a projectile impact causes fragmentation at the impact site, while transferring momentum to fragmented particles. The particles travel along the path of least resistance, leading to partial material movement in the reverse direction of the projectile motion causing backspatter. Medium-density fiberboard is a better simulant for a human skull than polycarbonate, and lorica leather is a better simulant for a human skin than natural rubber. SPH is an effective numerical method for modeling the high-speed impact fracture and fragmentations. © 2015 American Academy of Forensic Sciences.

  15. Origin of fragments in multifragmentation reactions

    International Nuclear Information System (INIS)

    Zbiri, K.; Aichelin, J.

    2003-01-01

    Using the quantum molecular dynamics approach we have started analyzing the results of the recent INDRA experiments at GSI facilities. For the first time we could identify a midrapidity source in which fragments are formed from an almost identical fraction of projectile and target nucleons. In smaller systems we have found this source. Nevertheless the fragment spectra at small and large angles is completely determined by the dynamics. We discuss how fragments are formed in the different regions of phase space and what they tell us about the reaction mechanism. (authors)

  16. Origin of fragments in multifragmentation reactions

    International Nuclear Information System (INIS)

    Zbiri, K.; Aichelin, J.

    2005-01-01

    Using the quantum molecular dynamics approach we have started to analyze the results of the recent INDRA experiments at GSI experiments. For the first time we could identify a midrapidity source in which fragments are formed from a almost identical fraction of projectile and target nucleons. In smaller systems we have not found this source. Nevertheless the fragment spectra at small and large angles are completely determined by the dynamics. We discuss how fragments are formed in the different regions of phase space and what they tell us about the reaction mechanism. (author)

  17. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin

    International Nuclear Information System (INIS)

    Buta, A.

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  18. Interfaces of nuclear structure studies-decay vs. in-beam experiments

    International Nuclear Information System (INIS)

    Grawe, H.; Gorska, M.; Hu, Z.; Roeckl, E.; Lipoglavsek, M.; Fahlander, C.; Rykaczewski, K.

    1999-05-01

    The common interface of β-decay and particle-decay experiments and in-beam studies following fusion, relativistic fission and projectile fragmentation is defined by the search for the best way to extract nuclear structure information. For a few examples selected from the exotic regions of nuclei around 100 Sn and between 68 Ni and 78 Ni it is demonstrated, that complementary spectroscopic data extracted by various methods lead to an understanding of the shell structure at these keypoints of the nuclidic chart. (orig.)

  19. Universality of spectator fragmentation at relativistic bombarding energies

    International Nuclear Information System (INIS)

    Schuettauf, A.; Woerner, A.

    1996-06-01

    Multi-fragment decays of 129 Xe, 197 Au, and 238 U projectiles in collisions with Be, C, Al, Cu, In, Au, and U targets at energies between E/A=400 MeV and 1000 MeV have been studied with the ALADIN forward-spectrometer at SIS. By adding an array of 84 Si-CsI(Tl) telescopes the solid-angle coverage of the setup was extended to θ lab =16 . This permitted the complete detection of fragments from the projectile-spectator source. The dominant feature of the systematic set of data is the Z bound universality that is obeyed by the fragment multiplicities and correlations. These observables are invariant with respect to the entrance channel if plotted as a function of Z bound , where Z bound is the sum of the atomic numbers Z i of all projectile fragments with Z i ≥2. No significant dependence on the bombarding energy nor on the target mass is observed. The dependence of the fragment multiplicity on the projectile mass follows a linear scaling law. The reasons for and the limits of the observed universality of spectator fragmentation are explored within the realm of the available data and with model studies. It is found that the universal properties should persist up to much higher bombarding energies than explored in this work and that they are consistent with universal features exhibited by the intranuclear cascade and statistical multifragmentation models. (orig.)

  20. Fragmentation of 12C nuclei in emulsion at 50 GeV/c

    International Nuclear Information System (INIS)

    El-Naghy, A.

    1981-01-01

    A total of 852 12 C-emulsion interactions at 4.2 GeV/nucleon was investigated. In 86% of these events, at least one projectile fragment was oberserved in each. The angular distributions of Z = 1,2, and >= 3 projectile fragments are narrow, and the dispersion of the distribution decreases with the increasing of Z. The production cross section of the reaction 12 C + Em → Li (from the projectile) + anything is about 6 x 10 -3 sigmasub(in). Only the projectile-fragmentation events, nsub(h) = O, were studied in detail; the percentage of these events is 10% of the total inelastic events. The events with the maximum probability are those in which α-fragment is the maximum-charged projectile fragment emitted. This indicates that the projectile nuclear structure plays an important role in the fragmentation process. In 1.2% of the total events, 12 C has been dissociated into 3 α-particles. (orig.)

  1. The multiplicity of nucleus-projectile fragments in collisions of {sup 132}Xe nucleus in photoemulsion at {approx} 1 A GeV; Mnozhestvennost` fragmentov yadra-snaryada v soudareniyakh yadra {sup 132}Xe v fotoehmulsii pri {approx} 1 A GehV

    Energy Technology Data Exchange (ETDEWEB)

    Basova, E S; Lunkina, E E; Nasyrov, Sh Z; Petrov, N V; Sadykov, N S; Trofimova, T P; Tursunov, B P

    1992-12-01

    The experimental data for multiplicity and fragmentation cross sections for the {sup 132}Xe nucleus in photoemulsion are presented. The results are considered in the framework of various models, namely, the cascade-evaporation and cold-breakdown models taking into account a factorization principle for the fragmentation cross section. (author). 19 refs., 5 figs., 5 tabs.

  2. Studies of complex fragment emission in heavy ion reactions

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    1991-01-01

    This report discusses the following topics: High energy photon production in a HI collision; the mechanism for the disassembly of excited 16 O projectiles into four alpha particles; the disassembly of excited 28 Si projectiles; large pre-fission multiplicities from temperature; dependent friction and fission barriers; multiplicity correlations; molecular beam induced fusion; dwarf ball and wall; mini wall; and computer and local data acquisition systems

  3. Investigations of the neutron halo by radioactive beam experiments

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1993-01-01

    Recently, a new tool has become available to study the behaviour of nuclei at the limits of particle stability. Heavy-ion projectile fragmentation, in combination with efficient recoil spectrometers, allows to prepare 'exotic' beams which can be used to induce secondary nuclear reactions. First experiments have revealed surprising features in the reactions of the most neutron-rich light nuclei. There is now conclusive evidence that the observed effects are due to long-tail matter distributions ('neutron halo') which occur for the last, very weakly bound neutrons. The results of some recent radioactive beam experiments, made by means of the spectrometer LISE3 at GANIL, are presented. (author) 24 refs.; 7 figs

  4. Observation of different isoscaling behavior between emitted fragments and residues

    Energy Technology Data Exchange (ETDEWEB)

    Youngs, M., E-mail: mdyoungs@comp.tamu.edu [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); McIntosh, A.B.; Hagel, K. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Heilborn, L. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Chemistry Department, Texas A& M University, College Station, TX 77843 (United States); Huang, M. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Jedele, A.; Kohley, Z.; May, L.W. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Chemistry Department, Texas A& M University, College Station, TX 77843 (United States); McCleskey, E. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Zarrella, A.; Yennello, S.J. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Chemistry Department, Texas A& M University, College Station, TX 77843 (United States)

    2017-06-15

    The traditional isoscaling technique has been used to analyze all isotopically identified particles from {sup 70}Zn+{sup 70}Zn and {sup 64}Zn+{sup 64}Zn collisions at 35 MeV/u. Two additional techniques, using an energy-averaged ratio and using the data present in the tail of energy spectra, are compared to the traditional method and show similar results. Isoscaling fit parameters α and β are found both globally and for each individual series of constant Z and N. The data are then split up between emitted fragments and projectile-like fragments. Isoscaling values for the two different types of fragments are shown to be different, emphasizing the importance of experimentally distinguishing between projectile-like fragments and emitted fragments in order to achieve accurate isoscaling parameters.

  5. Isotopic distributions of the sup 1 sup 8 N fragmentation products in coincidence with neutrons on targets sup 1 sup 9 sup 7 Au and sup 9 Be

    CERN Document Server

    Li Xiang Qing; Ye Yan Lin; Hua Hui; Chen Tao; Li Zhi Huan; Ge Yuch Eng; Wang Quan Jin; Wu He Yu; Jin Ge; Duan Li Min; Xiao Zhi Gang; Wang Hong Wei; Li Zhu Yu; Wang Su Fang

    2002-01-01

    The authors present the experimental isotopic distributions of the sup 1 sup 8 N projectile fragmentation products Li, Be, B and C in coincidence with neutrons, as well as the inclusive ones on sup 1 sup 9 sup 7 Au and sup 9 Be targets. In the framework of the abrasion-ablation model, these distributions are calculated for various nucleon density distributions of the projectile. The comparison with experimental isotopic distributions of the projectile-like fragments in coincidence with neutrons shows that the information on the nucleon density distribution of the sup 1 sup 8 N projectile can be extracted

  6. Jet fragmentation

    International Nuclear Information System (INIS)

    Saxon, D.H.

    1985-10-01

    The paper reviews studies on jet fragmentation. The subject is discussed under the topic headings: fragmentation models, charged particle multiplicity, bose-einstein correlations, identified hadrons in jets, heavy quark fragmentation, baryon production, gluon and quark jets compared, the string effect, and two successful models. (U.K.)

  7. Maximizing the Range of a Projectile.

    Science.gov (United States)

    Brown, Ronald A.

    1992-01-01

    Discusses solutions to the problem of maximizing the range of a projectile. Presents three references that solve the problem with and without the use of calculus. Offers a fourth solution suitable for introductory physics courses that relies more on trigonometry and the geometry of the problem. (MDH)

  8. Cambodian students’ prior knowledge of projectile motion

    Science.gov (United States)

    Piten, S.; Rakkapao, S.; Prasitpong, S.

    2017-09-01

    Students always bring intuitive ideas about physics into classes, which can impact what they learn and how successful they are. To examine what Cambodian students think about projectile motion, we have developed seven open-ended questions and applied into grade 11 students before (N=124) and after (N=131) conventional classes. Results revealed several consistent misconceptions, for instance, many students believed that the direction of a velocity vector of a projectile follows the curved path at every position. They also thought the direction of an acceleration (or a force) follows the direction of motion. Observed by a pilot sitting on the plane, the falling object, dropped from a plane moving at a constant initial horizontal speed, would travel backward and land after the point of its release. The greater angle of the launched projectile creates the greater horizontal range. The hand force imparted with the ball leads the ball goes straight to hit the target. The acceleration direction points from the higher position to lower position. The misconceptions will be used as primary resources to develop instructional instruments to promote Cambodian students’ understanding of projectile motion in the following work.

  9. Speed, Acceleration, Chameleons and Cherry Pit Projectiles

    Science.gov (United States)

    Planinsic, Gorazd; Likar, Andrej

    2012-01-01

    The paper describes the mechanics of cherry pit projectiles and ends with showing the similarity between cherry pit launching and chameleon tongue projecting mechanisms. The whole story is written as an investigation, following steps that resemble those typically taken by scientists and can therefore serve as an illustration of scientific…

  10. Fatal lawn mower related projectile injury

    DEFF Research Database (Denmark)

    Colville-Ebeling, Bonnie; Lynnerup, Niels; Banner, Jytte

    2014-01-01

    was initially overlooked, later interpreted as a possible gunshot homicide, and finally identified as a lawn mower related projectile injury when autopsy revealed a piece of metal thread in the main bronchus to the right middle lobe, hemopericardium, and right-sided hemothorax. To our knowledge, this injury...

  11. Charge correlations in the breakup of gold projectiles in reactions at E/A=600 MeV

    International Nuclear Information System (INIS)

    Kreutz, P.

    1992-09-01

    In the present thesis the charge correlations in the breakup of gold projectiles in heavy ion collisions at an incident energy of E/A=600 MeV were studied. Thereby it has been proved that the sum of the charges from the projectile source under exclusion of the protons (Z bound ) is saliently suited for the classification of the nuclear reactions. At large values of Z bound we fins fission and spallation reactions. For smaller values of Z bound we observe events with an increasing number of medium-heavy fragments. Thereby the multifragment events appear in the Dalitz diagrams as a continuation of more symmetric becoming spallation events. In reactions with Z bound ≅ 35 the conditions for the formation of medium-heavy fragments are optimal and the multifragment events represent the dominating exit channel. A mean multiplicity of the medium-heavy fragments of ≅ 4 is reached. (orig./HSI) [de

  12. A database of fragmentation cross section measurements applicable to cosmic ray propagation calculations

    International Nuclear Information System (INIS)

    Crawford, H.J.; Engelage, J.; Jones, F.C.

    1989-08-01

    A database of single particle inclusive fragment production cross section measurements has been established and is accessible over common computer networks. These measurements have been obtained from both published literature and direct communication with experimenters and include cross sections for nuclear beams on H, He, and heavier targets, and for H and He beams on nuclear targets, for energies >30 MeV/nucleon. These cross sections are directly applicable to calculations involving cosmic ray nuclear interactions with matter. The data base includes projectile, target, and fragment specifications, beam energy, cross section with uncertainty, literature reference, and comment code. It is continuously updated to assure accuracy and completeness. Also available are widely used semi-empirical formulations for calculating production cross sections and excitation functions. In this paper we discuss the database in detail and describe how it can be accessed. We compare the measurements with semi-empirical calculations and point out areas where improved calculations and further cross section measurements are required. 5 refs., 2 figs

  13. Secondary electron emission with molecular projectiles

    International Nuclear Information System (INIS)

    Kroneberger, K.; Rothard, H.; Koschar, P.; Lorenzen, P.; Kemmler, J.; Keller, N.; Maier, R.; Groeneveld, K.O.; Clouvas, A.; Veje, E.

    1990-01-01

    The authors present results for the secondary electron emission (SEE) from thin foil targets, induced by both molecular ions and their atomic constituents as projectiles. The Sternglass theory for kinetic SEE states a proportionality between γ and the electronic stopping power, S e , which has been verified in various experiments. With comparing secondary electron (SE) yields induced by molecular projectiles to those induced by monoatomic projectiles, it is therefore possible to test models for the energy loss of molecular or cluster projectiles. Since the atomic constituents of the molecule are repelled from each other due to Coulomb explosion (superimposed by multiple scattering) while traversing the solid, it is interesting to measure the residual mutual influence on SEE and S e with increasing internuclear separation. This can only be achieved with thin foils, where (as in the present case) the SE-yields from the exit surface can be measured separately. The authors measured the SE-yields from the entrance (γ B ) and exit (γ F ) surfaces of thin C- and Al-foils (150 to 1,000 angstrom) with CO + , C + and O + (15 to 85 keV/u) and H 2 + and H + (0.3 to 1.2 MeV/u). The molecular effect defined as the ratio R(γ) between the yields induced by molecular projectiles and the sum of those induced by their atomic constituents was calculated. The energy dependence of R(γ) can be well represented by the calculated energy loss ratio of di-proton-clusters by Brandt. This supports Brandt's model for the energy loss of clusters

  14. Fragmentation of polarized 23Na on 208Pb and the random-walk model

    International Nuclear Information System (INIS)

    Clarke, N.M.; Karban, O.; Blyth, C.O.; Choi, H.D.; Hall, S.J.; Roman, S.; Tungate, G.; Cole, A.J.; Davis, N.J.; Shotter, A.C.; Connell, K.A.

    1993-01-01

    Inclusive measurements are presented for the differential cross sections and tensor analyzing powers ( TT 20 and T 20 ) of ions produced by the fragmentation of a beam of polarized 23 Na incident on a 208 Pb target at an energy of 195.5 MeV (8.5 MeV/nucleon). The data are discussed in terms of a simple ''shape-effect'' model, and compared to the predictions of the nuclear random-walk model which has been extended to the calculation of aligned, deformed projectiles. This model reproduces the principal features of the differential cross sections and the trends as a function of mass loss, but gives poorer agreement for the analyzing powers

  15. New results from isochronous mass measurements of neutron-rich uranium fission fragments with the FRS-ESR-facility at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Knoebel, R.; Litvinov, Yu.A.; Weick, H.; Bosch, F.; Boutin, D.; Dimopoulou, C.; Dolinskii, A.; Franczak, B.; Franzke, B.; Kozhuharov, C.; Kurcewicz, J.; Litvinov, S.A.; Matos, M.; Mazzocco, M.; Muenzenberg, G.; Nociforo, C.; Nolden, F.; Stadlmann, J.; Steck, M.; Winkler, M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Diwisch, M. [Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Geissel, H.; Plass, W.R.; Scheidenberger, C.; Chen, L. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Patyk, Z. [National Centre for Nuclear Research - NCBJ Swierk, Warszawa (Poland); Sun, B. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Hausmann, M. [Michigan State University, East Lansing, MI (United States); Nakajima, S.; Suzuki, T.; Yamaguchi, T. [Saitama University, Department of Physics, Saitama (Japan); Ohtsubo, T. [Niigata University, Department of Physics, Niigata (Japan); Ozawa, A. [University of Tsukuba, Institute of Physics, Ibaraki (Japan); Walker, P.M. [University of Surrey, Department of Physics, Guildford (United Kingdom)

    2016-05-15

    Masses of uranium fission fragments have been measured with the FRagment Separator (FRS) combined with the Experimental Storage Ring (ESR) at GSI. A 410-415 MeV/u {sup 238}U projectile beam was fast extracted from the synchrotron SIS-18 with an average intensity of 10{sup 9}/spill. The projectiles were focused on a 1g/cm{sup 2} beryllium target at the entrance of the FRS to create neutron-rich isotopes via abrasion-fission. The fission fragments were spatially separated with the FRS and injected into the isochronous storage ring ESR for fast mass measurements without applying cooling. The Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without B ρ-tagging at the high-resolution dispersive central focal plane of the FRS. The evaluation has been done for the combined data sets from both experiments with a new method of data analysis. The use of a correlation matrix has provided experimental mass values for 23 different neutron-rich isotopes for the first time and 6 masses with improved values. The new masses were obtained for nuclides in the element range from Se to Ce. The applied analysis has given access even to rare isotopes detected with an intensity of a few atoms per week. The novel data analysis and systematic error determination are described and the results are compared with extrapolations of experimental values and theoretical models. (orig.)

  16. Inclusive production of charged pions in p+C collisions at 158 GeV/c beam momentum

    CERN Document Server

    Alt, C; Barna, D; Barr, G; Bartke, Jerzy; Betev, L; Biakowska, H; Blume, C; Boimska, B; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chvala, O; Dinkelaker, P; Dolejsi, J; Eckardt, V; Fischer, H G; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gazdzicki, M; Georgopoulos, G; Höhne, C; Karev, A; Kniege, S; Kollegger, T; Kolesnikov, V I; Kornas, E; Kowalski, M; Kraus, I; Kreps, M; Litov, L; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Mitrovski, M; Pálla, G; Panagiotou, A D; Panayotov, D; Pattison, C; Petridis, A; Renfordt, R; Rybicki, A; Sandoval, A; Schmitz, N; Seyboth, P; Siklér, F; Stock, R; Ströbele, H; Sziklai, J; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Vranic, D; Wenig, S; Wetzler, A; Zaranek, J

    2007-01-01

    The production of charged pions in minimum bias p+C interactions is studied using a sample of 377000 inelastic events obtained with the NA49 detector at the CERN SPS at 158 GeV/c beam momentum. The data cover a phase space area ranging from 0 to 1.8 GeV/c in transverse momentum and from -0.1 to 0.5 in Feynman x. Inclusive invariant cross sections are given on a grid of 270 bins per charge thus offering for the first time a dense coverage of the projectile hemisphere and of the cross-over region into the target fragmentation zone.

  17. Initiation of Gaseous Detonation by Conical Projectiles

    Science.gov (United States)

    Verreault, Jimmy

    Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed

  18. Investigations of nuclear projectile break-up reactions

    International Nuclear Information System (INIS)

    Rebel, H.

    1986-10-01

    The cross sections for radiative capture of α-particles, deuterons and protons by light nuclei at very low relative energies are of particular importance for the understanding of the nucleosynthesis of chemical elements and for determining the relative elemental abundances in stellar burning processes at various astrophysical sites. As example we quote the reactions α+d → 6 Li+γ, α+ 3 He → 7 Be+γ, or α+ 12 C → 16 O+γ. As an alternative to the direct experimental study of these processes we consider the inverse process, the photodisintegration, by means of the virtual photons provided by a nuclear Coulomb field: Z+a → Z+b+c. The radiative capture process b+c → a+γ is related to the inverse process, the photodisintegration γ+a → b+c by the detailed balance theorem. Except for the extreme case very close to the threshold the phase space favours the photodisintegration cross section as compared to the radiative capture. The Coulomb dissociation cross section proves to be enhanced due to the large virtual photon number, seen by the passing projectile, and the kinematics of the process leads to particular advantages for studies of the interaction of the two break-up fragments at small relative energies E bc . The conditions of dedicated experimental investigations are discussed and demonstrated by recent experimental and theoretical studies of the break-up of 156 MeV 6 Li projectiles. In addition, a brief review about general features of break-up processes of light ions in the field of atomic nuclei is given. (orig.) [de

  19. Multifragmentation induced by light relativistic projectiles and heavy ions: similarities and differences

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Kuznetsov, V.D.

    1998-01-01

    The experimental data on fragment multiplicities, their energy and charge distributions, the emission times are considered for the nuclear multifragmentation process induced by relativistic light projectiles (protons, helium) and heavy ions. With light projectiles, the multifragmentation is a pure 'thermal' process, well described by the statistical models. Heavy-ion-induced multifragmentation is influenced by dynamic effects related first of all to the compression of the system in the collision. But statistical models can also be applied to rendering the partition of the system if the excitation energy is less than 10 MeV/nucleon and compression is modest. For the central collision of heavy ions the statistical approach fails to describe the data

  20. Nuclear fragmentation and the number of particle tracks in tissue

    International Nuclear Information System (INIS)

    Ponomarev, A. L.; Cucinotta, F. A.

    2006-01-01

    For high energy nuclei, the number of particle tracks per cell is modified by local nuclear reactions that occur, with large fluctuations expected for heavy ion tracks. Cells near the interaction site of a reaction will experience a much higher number of tracks than estimated by the average fluence. Two types of reaction products are possible and occur in coincidence; projectile fragments, which generally have smaller charge and similar velocity to that of the projectile, and target fragments, which are produced from the fragmentation of the nuclei of water atoms or other cellular constituents with low velocity. In order to understand the role of fragmentation in biological damage a new model of human tissue irradiated by heavy ions was developed. A box of the tissue is modelled with periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. The cross sections for projectile and target fragmentation products are taken from the quantum multiple scattering fragmentation code previously developed at NASA Johnson Space Center. Statistics of fragmentation pathways occurring in a cell monolayer, as well as in a small volume of 10 x 10 x 10 cells are given. A discussion on approaches to extend the model to describe spatial distributions of inactivated or other cell damage types, as well as highly organised tissues of multiple cell types, is presented. (authors)

  1. Fusion with projectiles form carbon to argon at energies between 20A and 60A MeV

    International Nuclear Information System (INIS)

    Galin, J.

    1986-03-01

    A review of the linear momentum transfer is made, considering essentially heavy targets and two important parameters in the entrance channel: the projectile energy and its mass. Over a broad mass range, and for energies up to 30A MeV, the momentum transfer scales with the mass of the projectile. At 30A MeV, the most probable value of projectile momentum transferred to the fused system is 80%, and this represents roughly 180 MEV/c per projectile nucleon. At higher bombarding energies, the momentum distribution in the fused systems, as observed from binary fission events, seems to depend on the mass of the projectile. Further studies are still needed to understand this behaviour. Finally, the decay of highly excited (E* approximately 500-800 MeV) fused systems, with masses close to 270 amu, is studied from the characteristics of both fusion fragments and light charged particles. It is shown that thermal equilibrium is reached before fission, even for such high energy deposition. However, the decay sequence is sensitive to dynamical effects and does not depend only on available phase space

  2. The structure of neutron-rich nuclei explored via in-beam gamma-ray spectroscopy of fast beams

    International Nuclear Information System (INIS)

    Glasmacher, T.; Campbell, C.M.; Church, J.A.; Dinca, D.C.; Hansen, P.G.; Olliver, H.; Perry, B.C.; Sherrill, B.M.; Terry, J.R.; Bazin, D.; Enders, J.; Gade, A.; Hu, Z.; Mueller, W.F.

    2003-01-01

    In-beam gamma-ray spectroscopy with fast exotic beams provides an efficient tool to study bound states in exotic neutron-rich nuclei. Specialized experimental techniques have been developed and explore different aspects of nuclear structure. Inelastic scattering experiments with γ-ray detection can measure the response of exotic nuclei to electromagnetic (Coulomb excitation with a heavy target) or hadronic probes (proton scattering with hydrogen target). In-beam fragmentation populates higher-lying bound states to establish levels. Single- and two-nucleon knockout reactions allow for detailed wavefunction spectroscopy of individual levels and for the measurement of spectroscopic factors. Experimental programs employing these techniques are now underway at all projectile-fragmentation facilities around the world. Here we report on several successful in-beam gamma-ray spectroscopy experiments that have been performed at the Coupled Cyclotron Facility at Michigan State University with an emphasis on elucidating the evolution of nuclear structure around neutron numbers N=16, N=20, and N=28 in the π(sd) shell. (orig.)

  3. Antiscreening mode of projectile-electron loss

    International Nuclear Information System (INIS)

    Montanari, C.C.; Miraglia, J.E.; Arista, N.R.

    2003-01-01

    The inelastic contribution of target electrons to different electronic processes in the projectile is obtained by employing the local-density approximation as usually applied in the dielectric formalism. Projectile-electron-loss cross sections due to the electron-electron interaction are calculated and compared with those obtained by using atomic antiscreening theories. We also calculate ionization cross sections and stopping power for bare ions impinging on different gases. The good agreement with the experimental data and the simplicity of the local-density approximation make it an efficient method for describing inelastic processes of gaseous target electrons. It is expected to be useful for targets with large atomic number. In this case, the number of possible final states to be considered by the traditional atomic methods makes it a tough task to be tackled. On the contrary, the more electrons the target has, the better the local plasma approximation is expected to be

  4. Migration spontanee de projectile intracranien: presentation clinique ...

    African Journals Online (AJOL)

    Les traumatismes crâniens par arme à feu sont graves. Les manifestations cliniques sont variables et peuvent présenter quelques particularités. Les auteurs rapportent un cas de migration spontané de projectile intracérébral survenue après un traumatisme crânien par arme à feu au cours d'une partie de chasse. Elle a été ...

  5. Supercavitating Projectile Tracking System and Method

    Science.gov (United States)

    2009-12-30

    Distribution is unlimited 20100104106 Attorney Docket No. 96681 SUPERCAVITATING PROJECTILE TRACKING SYSTEM AND METHOD STATEMENT OF GOVERNMENT...underwater track or path 14 of a supercavitating vehicle under surface 16 of a body of water. In this embodiment, passive acoustic or pressure...transducers 12 are utilized to measure a pressure field produced by a moving supercavitating vehicle. The present invention provides a low-cost, reusable

  6. EBIS/T charge breeding for intense rare isotope beams at MSU

    CERN Document Server

    Schwarz, S; Marrs, R E; Kittimanapun, K; Lapierre, A; Mendez, A J; Ames, F; Beene, J R; Lindroos, M; Ahle, L E; Stracener, D W; Kester, O; Wenander, F; Lopez-Urrutia, J R Crespo; Dilling, J; Bollen, G

    2010-01-01

    Experiments with reaccelerated beams are an essential component of the science program of existing and future rare isotope beam facilities. NSCL is currently constructing ReA3, a reaccelerator for rare isotopes that have been produced by projectile fragmentation and in-flight fission and that have been thermalized in a gas stopper. The resulting low-energy beam will be brought to an Electron Beam Ion Source/Trap (EBIS/T) in order to obtain highly charged ions at an energy of 12 keV/u. This charge breeder is followed by a compact linear accelerator with a maximum beam energy of 3MeV/u for U-238 and higher energies for lighter isotopes. Next-generation rare isotope beam facilities like the Facility for Rare Isotope Beams FRIB, but also existing Isotope Separator On-line (ISOL) facilities are expected to provide rare-isotope beam rates in the order of 10(11) particles per second for reacceleration. At present the most promising scheme to efficiently start the reacceleration of these intense beams is the use of a...

  7. Fatal lawn mower related projectile injury.

    Science.gov (United States)

    Colville-Ebeling, Bonnie; Lynnerup, Niels; Banner, Jytte

    2014-06-01

    Fatal lawn mower related injuries are a relatively rare occurrence. In a forensic setting, the primary aim is to reconstruct the injury mechanism and establish the cause of death. A relatively rare, but characteristic type of injury is a so-called projectile or missile injury. This occurs when the operator or a bystander is impacted by an object mobilized from the grass by the rotating mower blades. This type of injury often leaves only modest external trauma, which increases the risk of overlooking an entry wound. In this paper we present a case of a fatal lawn mower related projectile injury which was initially overlooked, later interpreted as a possible gunshot homicide, and finally identified as a lawn mower related projectile injury when autopsy revealed a piece of metal thread in the main bronchus to the right middle lobe, hemopericardium, and right-sided hemothorax. To our knowledge, this injury mechanism has not previously been reported as a cause of death. This case illustrates the importance of postmortem radiological imaging and interdisciplinary cooperation when establishing manner and cause of death in unusual cases.

  8. Nuclear fragmentation

    International Nuclear Information System (INIS)

    Chung, K.C.

    1989-01-01

    An introduction to nuclear fragmentation, with emphasis in percolation ideas, is presented. The main theoretical models are discussed and as an application, the uniform expansion approximation is presented and the statistical multifragmentation model is used to calculate the fragment energy spectra. (L.C.)

  9. Electron-detachment cross sections of halogen negative-ion projectiles for inertial confinement fusion

    Science.gov (United States)

    Sant'Anna, M. M.; Zappa, F.; Santos, A. C. F.; de Barros, A. L. F.; Wolff, W.; Coelho, L. F. S.; de Castro Faria, N. V.

    2004-07-01

    Negative-ion beams have recently been suggested as sources of high-energy heavy atoms to be used as drivers for inertial confinement fusion (ICF). Owing to their electron affinities limited to a few eV, anions can be efficiently photo-detached in the vicinity of the fusion chamber, with the resulting high-velocity neutral projectiles following ballistic trajectories towards the hydrogen pellet target. Electron-detachment cross sections are needed as parameters to estimate the beam attenuation in the path from the ion source to the hydrogen pellet. Halogen anions are possible projectile choices. In this paper we present experimental data for total electron-detachment cross sections for F-, Cl-, Br- and I- ions incident on N2, in the 0.94-74 keV u-1 energy range. Our measurements can benchmark theory on anion electron detachment at intermediate to high velocities. Comparison between different projectiles shows very similar collision velocity dependencies. A simple geometrical scaling is presented, providing an estimate for electron-detachment cross sections at the MeV u-1 energy range. The presented scaling indicates that the vacuum requirements due to the use of halogen anions for ICF are less critical than previously suggested.

  10. Electron-detachment cross sections of halogen negative-ion projectiles for inertial confinement fusion

    International Nuclear Information System (INIS)

    Sant'Anna, M M; Zappa, F; Santos, A C F; Barros, A L F de; Wolff, W; Coelho, L F S; Faria, N V de Castro

    2004-01-01

    Negative-ion beams have recently been suggested as sources of high-energy heavy atoms to be used as drivers for inertial confinement fusion (ICF). Owing to their electron affinities limited to a few eV, anions can be efficiently photo-detached in the vicinity of the fusion chamber, with the resulting high-velocity neutral projectiles following ballistic trajectories towards the hydrogen pellet target. Electron-detachment cross sections are needed as parameters to estimate the beam attenuation in the path from the ion source to the hydrogen pellet. Halogen anions are possible projectile choices. In this paper we present experimental data for total electron-detachment cross sections for F - , Cl - , Br - and I - ions incident on N 2 , in the 0.94-74 keV u -1 energy range. Our measurements can benchmark theory on anion electron detachment at intermediate to high velocities. Comparison between different projectiles shows very similar collision velocity dependencies. A simple geometrical scaling is presented, providing an estimate for electron-detachment cross sections at the MeV u -1 energy range. The presented scaling indicates that the vacuum requirements due to the use of halogen anions for ICF are less critical than previously suggested

  11. Commissioning results of the ReA EBIT charge breeder at the NSCL: First reacceleration of stable-isotope beams

    Energy Technology Data Exchange (ETDEWEB)

    Lapierre, A., E-mail: lapierre@nscl.msu.edu; Schwarz, S.; Kittimanapun, K.; Rodriguez, J.A.; Sumithrarachchi, C.; Barquest, B.; Berryman, E.; Cooper, K.; Fogleman, J.; Krause, S.; Kwarsick, J.; Nash, S.; Perdikakis, G.; Portillo, M.; Rencsok, R.; Skutt, D.; Steiner, M.; Tobos, L.; Wittmer, W.; Bollen, G.; and others

    2013-12-15

    Highlights: • Latest results with the electron-beam ion trap of the ReA post-accelerator at the NSCL. • First reacceleration of stable-isotope beams. • First injection of stable-isotope beams from the NSCL’s beam stopping vault. -- Abstract: ReA is a reaccelerator of rare-isotope beams at the National Superconducting Cyclotron Laboratory (NSCL). The rare isotopes are produced by fast projectile fragmentation. After production, they are separated in-flight and thermalized in a He gas “catcher” cell before being sent to ReA for reacceleration to a few MeV/u. One of its main components is an electron-beam ion trap (EBIT) employed to convert injected singly charged ions to highly charged ions prior to injection into linear-accelerator structures. The ReA EBIT features a high-current electron gun, a long trap structure, and a two-field superconducting magnet to provide both the high electron-beam current density needed for fast charge breeding and high capture probability of injected beams. This paper presents recent commissioning results. In particular, {sup 39}K{sup +} ions have been injected, charge bred to {sup 39}K{sup 16+} and extracted for reacceleration up to 60 MeV. First charge-breeding results of beams injected from a commissioning Rb ion source in the NSCL’s beam “stopping” vault are also presented.

  12. Photon emission from massive projectile impacts on solids.

    Science.gov (United States)

    Fernandez-Lima, F A; Pinnick, V T; Della-Negra, S; Schweikert, E A

    2011-01-01

    First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Au(n) (+q) (1 ≤ n ≤ 400; q = 1-4) projectiles with impact energies in the range of 28-136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact.

  13. A design of inverse Taylor projectiles using material simulation

    International Nuclear Information System (INIS)

    Tonks, Michael; Harstad, Eric; Maudlin, Paul; Trujillo, Carl

    2008-01-01

    The classic Taylor cylinder test, in which a right circular cylinder is projected at a rigid anvil, exploits the inertia of the projectile to access strain rates that are difficult to achieve with more traditional uniaxial testing methods. In this work we present our efforts to design inverse Taylor projectiles, in which a tapered projectile becomes a right circular cylinder after impact, from annealed copper and show that the self-correcting geometry leads to a uniform compressive strain in the radial direction. We design projectiles using finite element simulation and optimization that deform as desired in tests with minor deviations in the deformed geometry due to manufacturing error and uncertainty in the initial velocity. The inverse Taylor projectiles designed in this manner provide a simple means of validating constitutive models. This work is a step towards developing a general method of designing Taylor projectiles that provide stress–strain behavior relevant to particular engineering problems

  14. Universal odd-even staggering in isotopic fragmentation and spallation cross sections of neutron-rich fragments

    Science.gov (United States)

    Mei, B.; Tu, X. L.; Wang, M.

    2018-04-01

    An evident odd-even staggering (OES) in fragment cross sections has been experimentally observed in many fragmentation and spallation reactions. However, quantitative comparisons of this OES effect in different reaction systems are still scarce for neutron-rich nuclei near the neutron drip line. By employing a third-order difference formula, the magnitudes of this OES in extensive experimental cross sections are systematically investigated for many neutron-rich nuclei with (N -Z ) from 1 to 23 over a broad range of atomic numbers (Z ≈3 -50 ). A comparison of these magnitude values extracted from fragment cross sections measured in different fragmentation and spallation reactions with a large variety of projectile-target combinations over a wide energy range reveals that the OES magnitude is almost independent of the projectile-target combinations and the projectile energy. The weighted average of these OES magnitudes derived from cross sections accurately measured in different reaction systems is adopted as the evaluation value of the OES magnitude. These evaluated OES magnitudes are recommended to be used in fragmentation and spallation models to improve their predictions for fragment cross sections.

  15. Form coexistence in light krypton nuclei. Isomeric spectroscopy of 72,74Kr nuclei and Coulomb excitation of the 76Kr radioactive beam

    International Nuclear Information System (INIS)

    Bouchez, Emmanuelle

    2003-01-01

    The first part of this research thesis proposes an overview of the different theoretical calculations elaborated in the region of light krypton nuclei, and of published experimental results. The second part reports the electron and gamma isomeric spectroscopy of 72,74 Kr nuclei after fragmentation of the projectile by a magnetic separator (experimental installation, experimental results, discussion). The third part reports the study of the Coulomb excitation of the 76 Kr radioactive beam (method and experimental installation, data analysis and results in terms of germanium and silicon spectra, and form of the 76 Kr)

  16. Design and testing of high-pressure railguns and projectiles

    International Nuclear Information System (INIS)

    Peterson, D.R.; Fowler, C.M.

    1984-01-01

    The results of high-pressure tests of four railgun designs and four projectile types are presented. All tests were conducted at the Los Alamos explosive magnetic-flux compression facility in Ancho Canyon. The data suggest that the high-strength projectiles have lower resistance to acceleration than the low strength projectiles, which expand against the bore during acceleration. The railguns were powered by explosive magneticflux compression generators. Calculations to predict railgun and power supply performance were performed by Kerrisk

  17. Lise: a recoil spectrometer at GANIL for the production and study of secondary radioactive beams. Present status and future

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1989-01-01

    The doubly achromatic spectrometer LISE, installed at the intermediate-energy heavy-ion facility GANIL is now operating since five years. Essentially, it is composed by two dipole-magnets selecting (in A/Z) and refocusing (achromatically) the projectile-like radioactive fragment-beams emitted at 0 0 . We shall review some of the essential properties of LISE. Some selected examples will be used to demonstrate experimental results which have been obtained so far (discovery of numerous new nuclei up to the drip-lines, half-life measurements, β-γ and delayed-particle spectroscopy, spin-aligned beams, total reaction cross-sections). We shall also discuss several improvements, in particular a cross-field electrostatic/electromagnetic post separator, which are expected to provide in the near future secondary beams of still increased intensity and isotopic purity

  18. Femoral vessel injury by a nonlethal weapon projectile

    Directory of Open Access Journals (Sweden)

    Rodrigo Bruno Biagioni, MD

    2018-06-01

    Full Text Available Rubber projectiles are used as an alternative to metal bullets owing to their lower morbidity and mortality rate. There are few reports of vascular lesions of extremities caused by rubber projectiles in the literature. The authors report the case of a 37-year-old man who was the victim of a penetrating injury to the left thigh with a rubber projectile. He reported only pain at the site of the injury; pulses were decreased in the affected limb. After arteriography confirmed an injury to the superficial femoral artery, he underwent an arterial and venous femorofemoral bypass using a reversed contralateral saphenous vein. Keywords: Vascular trauma, Nonlethal projectile, Penetrating trauma

  19. Visualization of Projectile Flying at High Speed in Dusty Atmosphere

    Science.gov (United States)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro

    2017-10-01

    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  20. Prediction of projectile ricochet behavior after water impact.

    Science.gov (United States)

    Baillargeon, Yves; Bergeron, Guy

    2012-11-01

    Although not very common, forensic investigation related to projectile ricochet on water can be required when undesirable collateral damage occurs. Predicting the ricochet behavior of a projectile is challenging owing to numerous parameters involved: impact velocity, incident angle, projectile stability, angular velocity, etc. Ricochet characteristics of different projectiles (K50 BMG, 0.5-cal Ball M2, 0.5-cal AP-T C44, 7.62-mm Ball C21, and 5.56-mm Ball C77) were studied in a pool. The results are presented to assess projectile velocity after ricochet, ricochet angle, and projectile azimuth angle based on impact velocity or incident angle for each projectile type. The azimuth ranges show the highest variability at low postricochet velocity. The critical ricochet angles were ranging from 15 to 30°. The average ricochet angles for all projectiles were pretty close for all projectiles at 2.5 and 10° incident angles for the range of velocities studied. © 2012 Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of the Department of National Defence.

  1. Dynamic analysis of a guided projectile during engraving process

    Directory of Open Access Journals (Sweden)

    Tao Xue

    2014-06-01

    Full Text Available The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile. The engraving process plays a crucial role on determining the ballistic performance and projectile stability. This paper analyzes the dynamic response of a guided projectile during the engraving process. By considering the projectile center of gravity moving during the engraving process, a dynamics model is established with the coupling of interior ballistic equations. The results detail the stress situation of a guided projectile band during its engraving process. Meanwhile, the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched. To further explore how the different performance of the engraving band can affect the dynamics of guided projectile, this paper focuses on these two aspects: (a the effects caused by the different band geometry; and (b the effects caused by different band materials. The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width. A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.

  2. Continuous measurements of in-bore projectile velocity

    International Nuclear Information System (INIS)

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Shahinpoor, M.

    1989-01-01

    The application of velocity interferometry to the continuous measurement of in-bore projectile velocity in a small-bore three-stage railgun is described. These measurements are useful for determining projectile acceleration and for evaluating gun performance. The launcher employed in these studies consists of a two-stage light gas gun used to inject projectiles into a railgun for additional acceleration. Results obtained for projectile velocities to 7.4 km/s with the two-stage injector are reported and potential improvements for railgun applications are discussed

  3. Stopping power. Projectile and target modeled as oscillators

    International Nuclear Information System (INIS)

    Stevanovic, N.; Nikezic, D.

    2005-01-01

    In this Letter the collision of two quantum harmonic oscillators was considered. The oscillators interact through the Coulomb interaction. Stopping power of projectile was calculated assuming that both, target and projectile may be excited. It has been shown that the frequency of the projectile oscillation, ω p influences on stopping power, particularly in the region of Bragg peak. If, ω p ->0 is substitute in the expression for stopping power derived in this Letter, then it comes to the form when the projectile has been treated as point like charged particle

  4. Electromagnetic projectile acceleration utilizing distributed energy sources

    International Nuclear Information System (INIS)

    Parker, J.V.

    1982-01-01

    Circuit equations are derived for an electromagnetic projectile accelerator (railgun) powered by a large number of capacitive discharge circuits distributed along its length. The circuit equations are put into dimensionless form and the parameters governing the solutions derived. After specializing the equations to constant spacing between circuits, the case of lossless rails and negligible drag is analyzed to show that the electrical to kinetic energy transfer efficiency is equal to sigma/2, where sigma = 2mS/Lq 2 0 and m is the projectile mass, S the distance between discharge circuit, Lthe rail inductance per unit length, and q 0 the charge on the first stage capacitor. For sigma = 2 complete transfer of electrical to kinetic energy is predicted while for sigma>2 the projective-discharge circuit system is unstable. Numerical solutions are presented for both lossless rails and for finite rail resistance. When rail resistance is included, >70% transfer is calculated for accelerators of arbitrary length. The problem of projectile startup is considered and a simple modification of the first two stages is described which provides proper startup. Finally, the results of the numerical solutions are applied to a practical railgun design. A research railgun designed for repeated operation at 50 km/sec is described. It would have an overall length of 77 m, an electrical efficiency of 81%, a stored energy per stage of 105 kJ, and a charge transfer of <50 C per stage. A railgun of this design appears to be practicable with current pulsed power technology

  5. Electromagnetic dissociation of target nuclei by $^{16}$O and $^{32}$S projectiles

    CERN Multimedia

    2002-01-01

    We have measured the inclusive cross sections for electromagnetic dissociation (ED) of $^{197}$Au targets by 60 and 200 GeV/nucleon $^{16}$O and $^{32}$S projectiles. This is an extension of similar measurements carried out earlier at 2 GeV/nucleon. ED is a purely electromagnetic process occuring when a virtual photon is exchanged between projectile and target. The experiment emphasized precise measurement of total one-neutron-out cross sections. A secondary goal was to test the applicability of the concepts of factorization and limiting fragmentation at ultrarelativistic energies.\\\\ \\\\ Each individual target will be irradiated upstream and parasitic to experiment NA38 on the dimuon spectrometer. Cross sections for reactions of interest will be determined by off-line counting of the appropriate residual $\\gamma$ ray activities in Ames, Iowa, USA. Preliminary results indicate an ED one-neutron removal cross section for 200 GeV/nucleon $^{16}$O projectiles on $^{197}$Au of approximately 0.45~barns. The result i...

  6. New projectiles: multicharged metal clusters and biopolymers

    International Nuclear Information System (INIS)

    Della-Negra, S.; Gardes, D.; Le Beyec, Y.; Waast, B.

    1991-01-01

    Metal clusters and molecules are the one mean to realize simultaneous impacts of several atoms on a reduced surface(∼100A). The interaction characteristics is the non-linearity of energy deposition; the perturbation that the cluster produces, is above than the sum of the perturbation induced by its components, taken separately. The purpose of ORION project is to accelerate these new projectiles at ORSAY Tandem. The considered mass range is from 100 Daltons to 100 000 Daltons and energy range from MeV to GeV

  7. Ionization of atoms by bare ion projectiles

    International Nuclear Information System (INIS)

    Tribedi, L.C.

    1997-01-01

    The double differential cross sections (DDCS) for low energy electron emission can provide stringent tests to the theoretical models for ionization in ion-atom collision. The two-center effects and the post collision interactions play a major role in ionization by highly charged, high Z projectiles. We close-quote ll review the recent developments in this field and describe our efforts to study the energy and angular distributions of the low energy electrons emitted in ion-atom ionization. copyright 1997 American Institute of Physics

  8. Biomaterial imaging with MeV-energy heavy ion beams

    International Nuclear Information System (INIS)

    Seki, Toshio; Wakamatsu, Yoshinobu; Nakagawa, Shunichiro; Aoki, Takaaki; Ishihara, Akihiko; Matsuo, Jiro

    2014-01-01

    The spatial distribution of several chemical compounds in biological tissues and cells can be obtained with mass spectrometry imaging (MSI). In conventional secondary ion mass spectrometry (SIMS) with keV-energy ion beams, elastic collisions occur between projectiles and atoms of constituent molecules. The collisions produce fragments, making the acquisition of molecular information difficult. In contrast, ion beams with MeV-energy excite near-surface electrons and enhance the ionization of high-mass molecules; hence, SIMS spectra of fragment-suppressed ionized molecules can be obtained with MeV-SIMS. To compare between MeV and conventional SIMS, we used the two methods based on MeV and Bi 3 -keV ions, respectively, to obtain molecular images of rat cerebellum. Conventional SIMS images of m/z 184 were clearly observed, but with the Bi 3 ion, the distribution of the molecule with m/z 772.5 could be observed with much difficulty. This effect was attributed to the low secondary ion yields and we could not get many signal counts with keV-energy beam. On the other hand, intact molecular ion distributions of lipids were clearly observed with MeV-SIMS, although the mass of all lipid molecules was higher than 500 Da. The peaks of intact molecular ions in MeV-SIMS spectra allowed us to assign the mass. The high secondary ion sensitivity with MeV-energy heavy ions is very useful in biomaterial analysis

  9. On the fragmentation of asteroids and planetary satellites

    International Nuclear Information System (INIS)

    Housen, K.R.; Holsapple, K.A.

    1990-01-01

    A general scaling model is defined which allows the extrapolation of small-scale collisional fragmentation experiment results, and existing collisional theories are considered within its framework. Scaling based exclusively upon the specific energy, Q, of the event (the ratio of projectile kinetic energy to the mass of the target body) is shown to hold when (1) the projectile and target material properties do not depend on size or time scales, and (2) the collision is governed by kinetic energy independently of impact velocity. Because neither of these conditions should hold, serious doubt is cast on the validity of Q's use as the sole scaling parameter. 43 refs

  10. Dynamical aspects of fragment productions in the reactions {sup 124}Sn + {sup 64}Ni and {sup 112}Sn + {sup 58}Ni at 35 A.MeV

    Energy Technology Data Exchange (ETDEWEB)

    Filippo, E. de; Arena, N.; Cardella, G.; Lanzano, G.; Lanzalone, G.; Lo Nigro, S.; Pagano, A.; Papa, M.; Pirrone, S.; Politi, G. [Catania Univ., INFN Catania and Dipt. di Fisica e Astronomia (Italy); Alderighi, M.; Sechi, G. [INFN Milano and Ist. di Fisica Cosmica, CNR, Milano (Italy); Amorini, F.; Anzalone, A.; Baran, V.; Bonasera, A.; Cavallaro, S.; Colonna, M.; Di Toro, M.; Giustolisi, F.; Iacono Manno, M.; La Guidara, E.; Maiolino, C.; Porto, F.; Rizzo, F.; Russotto, P.; Sperduto, M.L. [Catania, Univ., INFN-LNS and Dipt. di Fisica e Astronomia (Italy); Auditore, L.; Trifiro, A.; Trimarchi, M. [Messina Univ., INFN and Dipt. di Fisica (Italy); Bartolucci, M.; Guazzoni, P.; Manfredi, G.; Petrovici, M.; Russo, S.; Zetta, L. [Milano Univ., INFN Milano and Dipt. di Fisica (Italy); Berceanu, I.; Paduszynski, T.; Pop, A.; Simion, V. [Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Blicharska, J.; Grzeszczuk, A.; Kowalski, S.; Schmidt, K.; Zipper, W. [Univ. of Silesia, Inst. of Physics, Katowice (Poland); Brzychczyk, J.; Gawlikowicz, W.; Planeta, R. [Jagellonian Univ., M. Smoluchowski Inst. of Physics, Cracow (Poland); Borderie, B.; Le Neindre, N.; Rivet, M.F. [Paris-11 Univ., IPN, IN2P3-CNRS, 91 - Orsay (France); Bougault, R.; Steckmeyer, J.C. [Caen Univ., LPC, Ensi, 14 (France); Bruno, M.; D' Agostino, M.; Geraci, E.; Vannini, G. [Bologna Univ., INFN Bologna and Dipt. di Fisica (Italy); Chatterjee, M.B. [Saha Inst. Of Nuclear Physics, Kolkata (India); Chbihi, A.; Wieleczko, J.P. [GANIL, CEA, IN2P3-CNRS, 14 - Caen (France); Cibor, J. [H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland); Dayras, R.; Majka, Z. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, SPhN, 91- Gif sur Yvette (France); Piasecki, E.; Guinet, D.; Li, S.; Wu, H.; Xiao, Z.; Rosato, E.; Vigilante, M.; Siwek-Wilczynska, K.; Skwira, I.; Swiderski, L.; Wilczynski, J.

    2003-07-01

    The forward part of the 4{pi} CHIMERA detector is used to study the intermediate mass fragments (IMF) production in semi-peripheral collisions. A method is presented to disentangle intermediate mass fragments produced in the initial dynamical stage of the collision from the ones coming from sequential decay of a projectile-like or target-like sources. For these dynamical produced fragments also an iso-scaling analysis is presented. Comparison between theoretical Boltzmann Nordheim Vlasov simulations and experimental data suggests that a neck fragmentation mechanism in the overlapping zone between interacting projectile and target is at the origin of the fragments production. (authors)

  11. Modelling of the PELE fragmentation dynamics

    Science.gov (United States)

    Verreault, J.

    2014-05-01

    The Penetrator with Enhanced Lateral Effect (PELE) is a type of explosive-free projectile that undergoes radial fragmentation upon an impact with a target plate. This type of projectile is composed of a brittle cylindrical shell (the jacket) filled in its core with a material characterized with a large Poisson's ratio. Upon an impact with a target, the axial compression causes the filling to expand in the radial direction. However, due to the brittleness of the jacket material, very little radial deformation can occur which creates a radial stress between the two materials and a hoop stress in the jacket. Fragmentation of the jacket occurs if the hoop stress exceeds the material's ultimate stress. The PELE fragmentation dynamics is explored via Finite-Element Method (FEM) simulations using the Autodyn explicit dynamics hydrocode. The numerical results are compared with an analytical model based on wave interactions, as well as with the experimental investigation of Paulus and Schirm (1996). The comparison is based on the mechanical stress in the filling and the qualitative fragmentation of the jacket.

  12. Modelling of the PELE fragmentation dynamics

    International Nuclear Information System (INIS)

    Verreault, J

    2014-01-01

    The Penetrator with Enhanced Lateral Effect (PELE) is a type of explosive-free projectile that undergoes radial fragmentation upon an impact with a target plate. This type of projectile is composed of a brittle cylindrical shell (the jacket) filled in its core with a material characterized with a large Poisson's ratio. Upon an impact with a target, the axial compression causes the filling to expand in the radial direction. However, due to the brittleness of the jacket material, very little radial deformation can occur which creates a radial stress between the two materials and a hoop stress in the jacket. Fragmentation of the jacket occurs if the hoop stress exceeds the material's ultimate stress. The PELE fragmentation dynamics is explored via Finite-Element Method (FEM) simulations using the Autodyn explicit dynamics hydrocode. The numerical results are compared with an analytical model based on wave interactions, as well as with the experimental investigation of Paulus and Schirm (1996). The comparison is based on the mechanical stress in the filling and the qualitative fragmentation of the jacket.

  13. Uranium target fragmentation by intermediate and high energy 12C and 20Ne ions

    International Nuclear Information System (INIS)

    McGaughey, P.L.; Loveland, W.; Morrissey, D.J.; Aleklett, K.; Seaborg, G.T.

    1985-01-01

    Target fragment formation cross sections for nuclides with 24 12 C and 8.0 and 20.0 GeV 20 Ne with 238 U. Fragment isobaric yields were deduced from these data. The light fragment (A 12 C projectile energy of 1.0 GeV, the n-deficient fragments appear to originate primarily from a fission rather than a spallation process.) The excitation functions of the heavy fragments with 60 60, indicating that the general pattern of yields of these fragments is governed by the excitation energy deposited in the nucleus during the first step of the reaction and the geometry of the collision

  14. Correlated electron capture in the impact parameter and final projectile charge-state dependence of ECC cusp production in 0.53 MeV u-1 F8+ + Ne

    International Nuclear Information System (INIS)

    Skutlartz, A.; Hagmann, S.; Schmidt-Boecking, H.

    1988-01-01

    The impact parameter dependence of ECC cusp electron production in collisions of fast, highly charged ions with atoms is investigated by measuring the scattered projectiles in coincidence with cusp electrons emitted at 0 0 with respect to the beam axis. The absolute probabilities for ECC cusp production show a maximum at b ≅ 0.10 au, decrease strongly for smaller impact parameters and more gently toward larger impact parameters. In addition the final charge state of the scattered projectile is also determined simultaneously for each collision event. The probabilities, as a function of the projectile final charge state, are large for the case where at least one or more electrons are simultaneously captured into bound states of the projectile, but are surprisingly small for collisions in which a projectile did not capture an electron into a bound state. (author)

  15. The dynamics of fragment formation

    International Nuclear Information System (INIS)

    Keane, D.

    1994-09-01

    We demonstrate that in the Quantum Molecular Dynamics model, dynamical correlations can result in the production rate for final state nucleon clusters (and hence composite fragments) being higher than would be expected if statistics and the available phase space were dominant in determining composite formation. An intranuclear cascade or a Boltzmann-Uehling-Uhlenbeck model, combined with a statistical approach in the late stage of the collision to determine composites, provides an equivalent description only under limited conditions of centrality and beam energy. We use data on participant fragment production in Au + Au collisions in the Bevalac's BOS time projection chamber to map out the parameter space where statistical clustering provides a good description. In particular, we investigate momentum-space densities of fragments up to 4 He as a function of fragment transverse momentum, azimuth relative to the reaction plane, rapidity, multiplicity and beam energy

  16. Electromagnetic compression gun for hypervelocity projectile acceleration

    International Nuclear Information System (INIS)

    Woo, J.T.

    1987-01-01

    The rapid acceleration of projectiles to very high velocities has applications in many areas. The general requirements for an effective system is simplicity, reliability, compactness and good efficiency. The authors developed a concept by using electromagnetic forces to compressionally heat a plasma to high temperature and pressure to serve as the propellant for the acceleration of projectiles. The concept shares the simplicity of the light gas gun, but because of the high temperature of the propellant, is capable of significantly higher performance. Unlike the electrothermal gun approach to raise the propellant temperature by resistive heating, the electromagnetic concept is more efficient at higher temperatures. Operationally, the concept resembles a railgun in requiring a large pulsed current to drive the system. However, the current flow in this case is entirely external to the gun barrel and is axisymmetric. Therefore, many of the problems associated with railgun operations are avoided. Furthermore, because the current channel is external, there is also greater flexibility in the choice of load impedance to match to the power supply. The concept can also be generalized to a multi-stage regenerative system driven by a pulse forming network to resemble a coaxial accelerator

  17. Controlled fragmentation

    International Nuclear Information System (INIS)

    Arnold, Werner

    2002-01-01

    Contrary to natural fragmentation, controlled fragmentation offers the possibility to adapt fragment parameters like size and mass to the performance requirements in a very flexible way. Known mechanisms like grooves inside the casing, weaken the structure. This is, however, excluded for applications with high accelerations during launch or piercing requirements for example on a semi armor piercing penetrator. Another method to achieve controlled fragmentation with an additional grid layer is presented with which the required grooves are produced 'just in time' inside the casing during detonation of the high explosive. The process of generating the grooves aided by the grid layer was studied using the hydrocode HULL with respect to varying grid designs and material combinations. Subsequent to this, a large range of these theoretically investigated combinations was contemplated in substantial experimental tests. With an optimised grid design and a suitable material selection, the controlled fragment admits a very flexible adaptation to the set requirements. Additional advantages like the increase of perforation performance or incendiary amplification can be realized with the grid layer

  18. Fusion with projectiles from carbon to argon at energies between 20A MeV and 60A MeV

    International Nuclear Information System (INIS)

    Galin, J.

    1986-01-01

    Fusion reactions are known to be the dominant reaction channel at low bombarding energies and can now be investigated with a large variety of projectiles at several tens of MeV per nucleon. The gross characteristics of the fusion process can be studied by measuring global quantities, such as the linear momentum transferred from projectile to target and the dissipated energy of the reaction. The strong correlation between these two quantities is demonstrated at moderate bombarding energies, with a Ne projectile on a U target. It is expected that light particle (charged or neutron) multiplicity measurements can be extended to this higher energy domain and be used to selectively filter these collisions, according to their degree of violence. A review of the linear momentum transfer is made, considering essentially heavy targets and two important parameters in the entrance channel: the projectile energy and its mass. Over a broad mass range, and for energies up to 30A MeV, the momentum transfer scales with the mass of the projectile. At 30A MeV, the most probable value of projectile momentum transferred to the fused system is 80%, and this represents roughly 180 MeV/c per projectile nucleon. At higher bombarding energies, the momentum distribution in the fused systems, as observed from binary fission events, seems to depend on the mass of the projectile. Further studies are still needed to understand this behavior. Finally, the decay of highly excited (E* similarly ordered 500-800 MeV) fused systems, with masses close to 270 amu, is studied from the characteristics of both fusion fragments and light charged particles. It is shown that thermal equilibrium is reached before fission, even for such high energy deposition. However, the decay sequence is sensitive to dynamical effects and does not depend only on available phase space

  19. Use of reverse kinematics in the identification of large fragments evaporated by compound nuclei

    International Nuclear Information System (INIS)

    Sobotka, L.G.; McMahan, M.A.; McDonald, R.J.

    1985-01-01

    Fragments ranging in charge from Z = 2 to Z = Z/sub symmetry/ have been identified from the compound nucleus decay associated with a variety of heavy ion reactions. The use of reverse kinematics (projectile heavier than the target) was crucial in performing these measurements. The experiments were carried out at the SuperHILAC utilizing beams of 550 MeV 74 Ge, 782 MeV 93 Nb and 1157 MeV 139 La, to bombard targets of 0.54 mg/cm 2 12 C and 1.0 mg/cm 2 9 Be. The detection system consisted of four solid state ΔE-E silicon telescopes (40-70 μm, 3-5 mm) situated at 7.5 0 , 15 0 , 25 0 , and 35 0 from the beam with solid angles of approximately 1.0 msr. For the heavier 139 La beam these detectors were supplemented by two gas ΔE - solid state E telescopes at -7.5 0 and -22.5 0

  20. Corrected Launch Speed for a Projectile Motion Laboratory

    Science.gov (United States)

    Sanders, Justin M.; Boleman, Michael W.

    2013-01-01

    At our university, students in introductory physics classes perform a laboratory exercise to measure the range of a projectile fired at an assigned angle. A set of photogates is used to determine the initial velocity of the projectile (the launch velocity). We noticed a systematic deviation between the experimentally measured range and the range…

  1. Systematics of new isotopic production cross sections from neon projectiles

    International Nuclear Information System (INIS)

    Chen, C.X.; Guzik, T.G.; McMahon, M.; Wefel, J.P.; Flores, I.; Lindstrom, P.J.; Tull, C.E.; Mitchell, J.W.; Cronqvist, M.; Crawford, H.J.

    1996-02-01

    New isotopic production cross sections from 22 Ne projectiles at 377,581 and 891 MeV/nucleon in a liquid hydrogen target have been measured. These data allow to investigate the projectile energy and nuclear composition dependence of the cross sections. The comparisons between data and predictions can have important consequences in source abundance investigations. (K.A.)

  2. Systematics of new isotopic production cross sections from neon projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C X; Guzik, T G; McMahon, M; Wefel, J P [Louisiana State Univ., Baton Rouge, LA (United States); Flores, I; Lindstrom, P J; Tull, C E [Lawrence Berkeley Lab., CA (United States); Mitchell, J W [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center; Cronqvist, M; Crawford, H J [California Univ., Berkeley, CA (United States). Space Sciences Lab.; and others

    1996-02-01

    New isotopic production cross sections from {sup 22}Ne projectiles at 377,581 and 891 MeV/nucleon in a liquid hydrogen target have been measured. These data allow to investigate the projectile energy and nuclear composition dependence of the cross sections. The comparisons between data and predictions can have important consequences in source abundance investigations. (K.A.). 9 refs.

  3. Consistency checks in beam emission modeling for neutral beam injectors

    International Nuclear Information System (INIS)

    Punyapu, Bharathi; Vattipalle, Prahlad; Sharma, Sanjeev Kumar; Baruah, Ujjwal Kumar; Crowley, Brendan

    2015-01-01

    In positive neutral beam systems, the beam parameters such as ion species fractions, power fractions and beam divergence are routinely measured using Doppler shifted beam emission spectrum. The accuracy with which these parameters are estimated depend on the accuracy of the atomic modeling involved in these estimations. In this work, an effective procedure to check the consistency of the beam emission modeling in neutral beam injectors is proposed. As a first consistency check, at a constant beam voltage and current, the intensity of the beam emission spectrum is measured by varying the pressure in the neutralizer. Then, the scaling of measured intensity of un-shifted (target) and Doppler shifted intensities (projectile) of the beam emission spectrum at these pressure values are studied. If the un-shifted component scales with pressure, then the intensity of this component will be used as a second consistency check on the beam emission modeling. As a further check, the modeled beam fractions and emission cross sections of projectile and target are used to predict the intensity of the un-shifted component and then compared with the value of measured target intensity. An agreement between the predicted and measured target intensities provide the degree of discrepancy in the beam emission modeling. In order to test this methodology, a systematic analysis of Doppler shift spectroscopy data obtained on the JET neutral beam test stand data was carried out

  4. Measurement of target fragments produced by 160 MeV proton beam in aluminum and polyethylene with CR-39 plastic nuclear track detectors

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Iva; Yasuda, N.; Kodaira, S.; Sihver, L.

    2014-01-01

    Roč. 64, MAY (2014), s. 29-34 ISSN 1350-4487 R&D Projects: GA AV ČR KJB100480901; GA AV ČR IAA100480902; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : target fragments * high-energy protons * Aluminium * Polyethylene * plastic nuclear track detectors * CR-39 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.213, year: 2014

  5. Direct detection of projectile relics from the end of the lunar basin-forming epoch.

    Science.gov (United States)

    Joy, Katherine H; Zolensky, Michael E; Nagashima, Kazuhide; Huss, Gary R; Ross, D Kent; McKay, David S; Kring, David A

    2012-06-15

    The lunar surface, a key proxy for the early Earth, contains relics of asteroids and comets that have pummeled terrestrial planetary surfaces. Surviving fragments of projectiles in the lunar regolith provide a direct measure of the types and thus the sources of exogenous material delivered to the Earth-Moon system. In ancient [>3.4 billion years ago (Ga)] regolith breccias from the Apollo 16 landing site, we located mineral and lithologic relics of magnesian chondrules from chondritic impactors. These ancient impactor fragments are not nearly as diverse as those found in younger (3.4 Ga to today) regolith breccias and soils from the Moon or that presently fall as meteorites to Earth. This suggests that primitive chondritic asteroids, originating from a similar source region, were common Earth-Moon-crossing impactors during the latter stages of the basin-forming epoch.

  6. Bespoke Fragments

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2017-01-01

    The PhD project Bespoke Fragments is investigating the space emerging in the exploration of the relationship between digital drawing and fabrication, and the field of materials and their properties and capacities. Through a series of different experiments, the project situates itself in a shuttli...

  7. Intermittency in 197Au fragmentation

    International Nuclear Information System (INIS)

    Dabrowska, A.; Holynski, R.; Olszewski, A.; Szarska, M.; Wilczynska, B.; Wolter, W.; Wosiek, B.; Cherry, M.L.; Deines-Jones, P.; Jones, W.V.; Sengupta, K.; Wefel, B.

    1995-07-01

    The concept of factorial moments was applied to an analysis of the dynamical fluctuations in the charge distributions of the fragments emitted from gold nuclei with energies 10.6 and < 1.0 GeV/n interacting with emulsion nuclei. Clear evidence for intermittent fluctuations has been found in an analysis using all the particles released from the gold projectile, with a stronger effect observed below 1 GeV/n than at 10.6 GeV/n. For the full data sets, however, the intermittency effect was found to be very sensitive to the singly charged particles, and neglecting these particles strongly reduces the intermittency signal. When the analysis is restricted to the multiply charged fragments, an intermittency effect is revealed only for multifragmentation events, although one that is enhanced as compared to the analysis of all, singly and multiply charged, particles. The properties of the anomalous fractal dimensions suggest a sequential decay mechanism, rather than the existence of possible critical behaviour in the process of nuclear fragmentation. The likely influence of the charge conservation effects and the finite size of decaying systems on the observed intermittency signals was pointed out. (author). 37 refs, 9 figs, 5 tabs

  8. Single electron capture by state-prepared Ar2+ projectiles in Ar

    International Nuclear Information System (INIS)

    Puerta, J.; Huber, B.A.

    1985-03-01

    Electron capture by state-selected Ar 2+ projectiles in Ar has been studied at low collision energies ( 2+ ions are measured explaining existing discrepancies of partial and total cross sections in the Ar 2+ /Ar collision system. Although highly excited metastable ions ( 5 D 4 0 , 3 F 4 0 ) represent a minor contamination of a non-prepared Ar 2+ beam (proportional1%), their contributions are found to dominate the capture process due to cross section values larger than 10 -15 cm 2 . (orig.)

  9. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin; Etude des quasi-projectiles produits dans les collisions Ni+Ni et Ni+Au: energie d'excitation et spin

    Energy Technology Data Exchange (ETDEWEB)

    Buta, A

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  10. Architectural fragments

    DEFF Research Database (Denmark)

    Bang, Jacob Sebastian

    2018-01-01

    I have created a large collection of plaster models: a collection of Obstructions, errors and opportunities that may develop into architecture. The models are fragments of different complex shapes as well as more simple circular models with different profiling and diameters. In this contect I have....... I try to invent the ways of drawing the models - that decode and unfold them into architectural fragments- into future buildings or constructions in the landscape. [1] Luigi Moretti: Italian architect, 1907 - 1973 [2] Man Ray: American artist, 1890 - 1976. in 2015, I saw the wonderful exhibition...... "Man Ray - Human Equations" at the Glyptotek in Copenhagen, organized by the Philips Collection in Washington D.C. and the Israel Museum in Jerusalem (in 2013). See also: "Man Ray - Human Equations" catalogue published by Hatje Cantz Verlag, Germany, 2014....

  11. Study of projectile break-up process at intermediate energies

    International Nuclear Information System (INIS)

    Kumar, Harish; Parashari, Siddharth; Tali, Suhail A.

    2016-01-01

    The projectile break-up reactions are explained in terms of incomplete fusion or massive transfer reactions leading to the formation of composite system with less mass, charge and excitation energy, as compared to the complete fusion (CF) process. Since, the existing theoretical models are not applicable to reproduce the experimentally measured ICF, data satisfactory below 10 MeV/nucleon energies; thereby the study of the role of the entrance channel parameters in the fusion reactions is still a relevant problem in establishing the explicit inference regarding the influence of ICF on CF at 4-7 MeV/nucleon energies. Recently reported some studies have also shown that alpha Q-value is also an important parameter which affects the onset of ICF and conflict with the suggestion of Morgenstern et al. Keeping in view the recent aspects, to provide more strength to the aspect of projectile-target mass-asymmetry effect, role of non α-cluster projectile over α-cluster projectile, the present work has been carried out which will be useful to understand a clearer picture about the conflict between mass-asymmetry and projectile structure effect on break-up fusion process. As such, excitation function measurement of residues produced in 13 C + 175 Lu system has been carried out in a series of experiments of comparative study using α-cluster as well as non α-cluster projectiles with deformed heavier target nuclei at lower projectile energies ≈ 4-7 MeV/nucleon

  12. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  13. Femoral vessel injury by a nonlethal weapon projectile.

    Science.gov (United States)

    Biagioni, Rodrigo Bruno; Miranda, Gustavo Cunha; Mota de Moraes, Leonardo; Nasser, Felipe; Burihan, Marcelo Calil; Ingrund, José Carlos

    2018-06-01

    Rubber projectiles are used as an alternative to metal bullets owing to their lower morbidity and mortality rate. There are few reports of vascular lesions of extremities caused by rubber projectiles in the literature. The authors report the case of a 37-year-old man who was the victim of a penetrating injury to the left thigh with a rubber projectile. He reported only pain at the site of the injury; pulses were decreased in the affected limb. After arteriography confirmed an injury to the superficial femoral artery, he underwent an arterial and venous femorofemoral bypass using a reversed contralateral saphenous vein.

  14. Features of projectile motion in the special theory of relativity

    International Nuclear Information System (INIS)

    Shahin, Ghassan Y

    2006-01-01

    A relativistic projectile motion in a vacuum is examined by means of elementary consequences of special relativity. Exact analytical expressions were found for the kinematics variables using basic mathematical tools. The trajectory equation was established and the area under the trajectory traversed by the relativistic projectile was determined. It was found that, unlike non-relativistic projectile motion, the launching angles that maximize both the horizontal range as well as the area under the trajectory are functions of the initial speed. It is anticipated that this paper will be consistent with the intuition of students and serve as a resource for further problems usually encountered in the special theory of relativity

  15. Transient processes induced by heavy projectiles in silicon

    International Nuclear Information System (INIS)

    Lazanu, Ionel; Lazanu, Sorina

    2010-01-01

    The thermal spike model developed for the electronic stopping power regime is extended to consider both ionization and nuclear energy loss processes of the projectile as electronic and atomic heat distinct sources. The time and space dependencies of the lattice and electron temperatures near the projectile trajectory are calculated and discussed for different ions in silicon, at room and cryogenic temperatures, taking into account the peculiarities of electron-phonon interaction in both domains. The model developed contributes to the understanding of transient microscopic processes immediately after the projectile interaction in the target.

  16. Fragmentation in peripheral heavy-ion collisions: from neck emission to spectator decays

    Energy Technology Data Exchange (ETDEWEB)

    Lukasik, J.; Auger, G.; Begemann-Blaich, M.L.; Bellaize, N.; Bittiger, R.; Bocage, F.; Borderie, B.; Bougault, R.; Bouriquet, B.; Charvet, J.L.; Chbihi, A.; Dayras, R.; Durand, D.; Frankland, J.D.; Galichet, E.; Gourio, D.; Guinet, D.; Hudan, S.; Hurst, B.; Lautesse, P.; Lavaud, F.; Le Fevre, A.; Legrain, R.; Lopez, O.; Lynen, U.; Mueller, W.F.J.; Nalpas, L.; Orth, H.; Plagnol, E.; Rosato, E.; Saija, A.; Schwarz, C.; Sfienti, C.; Steckmeyer, J.C.; Tamain, B.; Trautmann, W.; Trzcinski, A.; Turzo, K.; Vient, E.; Vigilante, M.; Volant, C.; Zwieglinski, B.; Botvina, A.S

    2003-07-24

    Invariant cross sections of intermediate mass fragments in peripheral collisions of {sup 197}Au on {sup 197}Au at incident energies between 40 and 150 MeV per nucleon have been measured with the 4{pi} multi-detector INDRA. The maximum of the fragment production is located near mid-rapidity at the lower energies and moves gradually towards the projectile and target rapidities as the energy is increased. Schematic calculations within an extended Goldhaber model suggest that the observed cross section distributions and their evolution with energy are predominantly the result of the clustering requirement for the emerging fragments and of their Coulomb repulsion from the projectile and target residues. The quantitative comparison with transverse energy spectra and fragment charge distributions emphasizes the role of hard scattered nucleons in the fragmentation process.

  17. Fragmentation studies with the CHIMERA detector at LNS in Catania: recent progress

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, A.; Alderighi, M.; Amorini, F.; Anzalone, A.; Arena, L.; Auditore, L.; Baran, V.; Bartolucci, M.; Berceanu, I.; Blicharska, J.; Brzychczyk, J.; Bonasera, A.; Borderie, B.; Bougault, R.; Bruno, M.; Cardella, G.; Cavallaro, S.; Chatterjee, M.B.; Chbihi, A.; Cibor, J.; Colonna, M.; D' Agostino, M.; Dayras, R.; De Filippo, E.; Di Toro, M.; Gawlikowicz, W.; Geraci, E.; Giustolisi, F.; Grzeszczuk, A.; Guazzoni, P.; Guinet, D.; Iacono-Manno, M.; Kowalski, S.; La Guidara, E.; Lanzano, G.; Lanzalone, G.; Le Neindre, N.; Li, S.; Lo Nigro, S.; Maiolino, C.; Majka, Z.; Manfredi, G.; Paduszynski, T.; Papa, M.; Petrovici, M.; Piasecki, E.; Pirrone, S.; Planeta, R.; Politi, G.; Pop, A.; Porto, F.; Rivet, M.F.; Rosato, E.; Rizzo, F.; Russo, S.; Russotto, P.; Sassi, M.; Sechi, G.; Simion, V.; Siwek-Wilczynska, K.; Skwira, I.; Sperduto, M.L.; Steckmeyer, J.C.; Swiderski, L.; Trifiro, A.; Trimarchi, M.; Vannini, G.; Vigilante, M.; Wieleczko, J.P.; Wilczynski, J.; Wu, H.; Xiao, Z.; Zetta, L.; Zipper, W

    2004-04-05

    The new detector CHIMERA, in its final 4{pi} configuration, has been installed at Laboratori Nazionali del Sud (LNS) in Catania in January 2003. Beams of different energies ranging from protons to Au ions were delivered by the Tandem and the Super Conducting Cyclotron for nuclear reaction studies, in agreement with the approval of the Scientific Advisory Committee of LNS. Recent experimental results confirm very low energy thresholds of the trigger (below 0.5 MeV/nucleon), ensured within a wide dynamical range. Good characteristics of identification of light charged particles and heavy fragments have been obtained by using three detection techniques: {delta}E-E, {delta}E-time of flight, and the Pulse-Shape discrimination method. We present results of recent analysis concerning the production of intermediate mass fragments (IMF) in semi-peripheral collisions. Our results combined with theoretical Boltzmann-Nordheim-Vlasov simulations clearly demonstrate the presence of very fast processes of IMF production in the overlapping region of the target and projectile nuclei during re-separation, i.e. in the time scale comparable with the collision time. Evidence for slower, sequential-like production of IMF's is also shown.

  18. Fragmentation studies with the CHIMERA detector at LNS in Catania: recent progress

    International Nuclear Information System (INIS)

    Pagano, A.; Alderighi, M.; Amorini, F.; Anzalone, A.; Arena, L.; Auditore, L.; Baran, V.; Bartolucci, M.; Berceanu, I.; Blicharska, J.; Brzychczyk, J.; Bonasera, A.; Borderie, B.; Bougault, R.; Bruno, M.; Cardella, G.; Cavallaro, S.; Chatterjee, M.B.; Chbihi, A.; Cibor, J.; Colonna, M.; D'Agostino, M.; Dayras, R.; De Filippo, E.; Di Toro, M.; Gawlikowicz, W.; Geraci, E.; Giustolisi, F.; Grzeszczuk, A.; Guazzoni, P.; Guinet, D.; Iacono-Manno, M.; Kowalski, S.; La Guidara, E.; Lanzano, G.; Lanzalone, G.; Le Neindre, N.; Li, S.; Lo Nigro, S.; Maiolino, C.; Majka, Z.; Manfredi, G.; Paduszynski, T.; Papa, M.; Petrovici, M.; Piasecki, E.; Pirrone, S.; Planeta, R.; Politi, G.; Pop, A.; Porto, F.; Rivet, M.F.; Rosato, E.; Rizzo, F.; Russo, S.; Russotto, P.; Sassi, M.; Sechi, G.; Simion, V.; Siwek-Wilczynska, K.; Skwira, I.; Sperduto, M.L.; Steckmeyer, J.C.; Swiderski, L.; Trifiro, A.; Trimarchi, M.; Vannini, G.; Vigilante, M.; Wieleczko, J.P.; Wilczynski, J.; Wu, H.; Xiao, Z.; Zetta, L.; Zipper, W.

    2004-01-01

    The new detector CHIMERA, in its final 4π configuration, has been installed at Laboratori Nazionali del Sud (LNS) in Catania in January 2003. Beams of different energies ranging from protons to Au ions were delivered by the Tandem and the Super Conducting Cyclotron for nuclear reaction studies, in agreement with the approval of the Scientific Advisory Committee of LNS. Recent experimental results confirm very low energy thresholds of the trigger (below 0.5 MeV/nucleon), ensured within a wide dynamical range. Good characteristics of identification of light charged particles and heavy fragments have been obtained by using three detection techniques: ΔE-E, ΔE-time of flight, and the Pulse-Shape discrimination method. We present results of recent analysis concerning the production of intermediate mass fragments (IMF) in semi-peripheral collisions. Our results combined with theoretical Boltzmann-Nordheim-Vlasov simulations clearly demonstrate the presence of very fast processes of IMF production in the overlapping region of the target and projectile nuclei during re-separation, i.e. in the time scale comparable with the collision time. Evidence for slower, sequential-like production of IMF's is also shown

  19. Pion production and fragmentation of nuclei in high energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Oskarsson, A.

    1983-01-01

    In collisions between nuclei at high energies one can study the behaviour of nuclear matter under extreme conditions, regarding nuclear density and temperature. The Bevalac and the CERN SC beams have been used and nuclear emulsion and scintillation telescopes have measured the reaction products. Collisions at 50A-200A MeV and at 2A GeV have been investigated. Proton spectra from 12 C induced reactions at 85A MeV have been recorded for different targets. Energetic protons at large angles can be assumed to be emitted from a source moving with half the beam velocity and a temperature between 13 and 17 MeV, depending on the target. In collisions between nuclei, pions can be produced below 290A MeV due to the internal Fermi motion of the nucleons. Subthreshold pion production has been studied for 12 C induced reactions at 85A and 75A Mev. The cross-sections are consistent with a quasi-free nucleon-nucleon scattering picture, involving Fermi motion, Pauli blocking and pion reabsorption. 16 C induced reactions in emulsion have been studied at 75A, 175A and 2000A MeV. It is shown that the excitation of the parts of the nuclei which are not overlapping (the spectators) increases with the beam energy. The 16 O projectile frequently breaks up into multiple He fragments. These events are associated with large impact parameters. Central collisions with Ag, Br target at 50A-110A MeV have been analysed separately. It is shown that the momentum transfer to the target nucleus is limited to a value considerably lower than the full momentum transfer in a fusion reactions. Events are observed where there are numerous fragments with 3< Z<8. These multifragmentation events cannot be understood in a thermal approach. (author)

  20. Simulation of a relativistic heavy ions beam transport in the matter: contribution of the fragmentation process and biological implications; Simulation du transport d`un faisceau d`ions lourds relativistes dans la matiere: contribution du processus de fragmentation et implication sur le plan biologique

    Energy Technology Data Exchange (ETDEWEB)

    Ibnouzahir, M

    1995-03-01

    The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E{>=} 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author).

  1. Scattering-angle dependence of doubly differential cross sections for fragmentation of H2 by proton impact

    International Nuclear Information System (INIS)

    Egodapitiya, K. N.; Sharma, S.; Laforge, A. C.; Schulz, M.

    2011-01-01

    We have measured double differential cross sections (DDCS) for proton fragment formation for fixed projectile energy losses as a function of projectile scattering angle in 75 keV p + H 2 collisions. An oscillating pattern was observed in the angular dependence of the DDCS with a frequency about twice as large as what we found earlier for nondissociative ionization. Possible origins for this frequency doubling are discussed.

  2. Mercury as the Unaccreted Projectile: Thermal Consequences

    Science.gov (United States)

    Asphaug, Erik; Gabriel, Travis; Jackson, Alan; Perera, Viranga

    2017-10-01

    Mercury retained substantial volatiles during its formation, in far greater proportion than the Moon, despite losing ~2/3 of its rocky mantle. Its volatile-rich geochemistry would contraindicate a giant impact because it would drive away the volatiles, as in the hypothesis for the Moon. However, the thermal consequences of Mercury formation vary considerably between the two giant impact scenarios, ‘direct hit’ (DH; Benz et al. 1989) and ‘hit and run’ (HR; Asphaug and Reufer 2014). Each begins with a differentiated chondritic proto-Mercury (PM) a bit larger than Mars. In DH, PM gets eroded by a very energetic impactor half its mass, at ~6-7 times the escape velocity. To remove half of PM’s mantle, the post-impact target gets completely shock-vaporized and is sheared apart into space. The bound remnant in DH would experience a comparable deposition of shock enthalpy, as in Moon formation, and would expand into a much larger volume of heliocentric space, leading to a dry planet. The bound remnant will go on to re-accrete much of the silicate mantle that it just lost, another challenge for DH. In HR, PM is the projectile that slams into a terrestrial planet twice its size (proto-Venus or proto-Earth). For typical impact angle and speed, a typical outcome is to ‘bounce”. But for HR to explain Mercury, PM must avoid accretion every time it encounters the target, until it is scattered or migrates away (or is accreted, in which case there is no Mercury), leading to multi-HR scenarios. Tides are intense in HR because the projectile grazes the target core; gravity does most of the work of mantle stripping. Shocks play a secondary role. Whereas in DH the impactor blasts the target inside-out, in HR the runner emerges relatively unshocked, and undispersed except for losing the gravitationally-unbound material. HR is a mechanism for collecting low-shocked remnants, because the intensely shocked material ends up bound to the target or escaping to heliocentric space

  3. Intermediate Fragment

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    This text and its connected exhibition are aiming to reflect both on the thoughts, the processes and the outcome of the design and production of the artefact ‘Intermediate Fragment’ and making as a contemporary architectural tool in general. Intermediate Fragment was made for the exhibition ‘Enga...... of realising an exhibition object was conceived, but expanded, refined and concretised through this process. The context of the work shown here is an interest in a tighter, deeper connection between experimentally obtained material knowledge and architectural design....

  4. Fragmentation based

    Directory of Open Access Journals (Sweden)

    Shashank Srivastava

    2014-01-01

    Gaining the understanding of mobile agent architecture and the security concerns, in this paper, we proposed a security protocol which addresses security with mitigated computational cost. The protocol is a combination of self decryption, co-operation and obfuscation technique. To circumvent the risk of malicious code execution in attacking environment, we have proposed fragmentation based encryption technique. Our encryption technique suits the general mobile agent size and provides hard and thorny obfuscation increasing attacker’s challenge on the same plane providing better performance with respect to computational cost as compared to existing AES encryption.

  5. Bespoke Fragments

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2016-01-01

    , investigating levels of control and uncertainty encountering with these. Through tangible experiments, the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect's digital drawing and workflow. The project sees this expansion as an opportunity to connect...... architectural designs, tectonics and aesthetics. In this Ph.D.-project a series a physical, but conceptual, experiment plays the central role in the knowledge production. The experiments result in materialised architectural fragments and tangible experiences. However, these creations also become the driving...

  6. Projectile ionization in fast heavy-ion--atom collisions

    International Nuclear Information System (INIS)

    Schneider, D.; Prost, M.; Stolterfoht, N.; Nolte, G.; Du Bois, R.

    1983-01-01

    Electron emission following the ionization of projectile ions has been investigated systematically in collisions with Ne/sup q/+ and Ar/sup q/+ ions at several hundred MeV incident on different target gases. The projectile electrons are concentrated within one maximum, the electron-loss peak (ELP). The variation of the shape and intensity of the ELP with the projectile energy, its charge state, the observation angle, and the target gas has been measured. Theoretical predictions which are based on the binary-encounter approximation show, in general, good agreement with the experimental data. The contributions of the different subshells to the ELP are deduced. It is shown that electronic screening of the target nucleus plays an important role in the ionization process of the projectile ions

  7. Fusion and direct reactions for strongly and weakly bound projectiles

    International Nuclear Information System (INIS)

    Hugi, M.; Lang, J.; Mueller, R.; Ungricht, E.; Bodek, K.; Jarczyk, L.; Kamys, B.; Magiera, A.; Strzalkowski, A.; Willim, G.

    1981-01-01

    The interaction of 6 Li, 9 Be and 12 C projectiles with a 28 Si target was investigated by measuring the angular distributions of the elasitcally scattered projectiles and of the emitted protons, deuterons and α-particles. The experiment was perfomred in order to deduce direct and compound nucleus process contributions to the total reaction cross section and to study the influence of the projectile structure on the relative importance of these two mechanisms. Optical model parameters and therefore the total reaction cross section are strongly influenced by the binding energy of the projectile. The parameters of the Glas-Mosel describing the fusion reaction vary smoothly with the atomic number. In the system 9 B + 28 Si around 50% of all reactions are direct processes even at energies near the Coulomb barrier, whereas in the other systeme the direct part amounts to 15% ( 12 C) and 30% ( 6 Li) only. (orig.)

  8. Impact of Thin-Walled Projectiles with Concrete Targets

    Directory of Open Access Journals (Sweden)

    Rayment E. Moxley

    1995-01-01

    Full Text Available An experimental program to determine the response of thin-walled steel projectiles to the impact with concrete targets was recently conducted. The projectiles were fired against 41-MPa concrete targets at an impact velocity of 290 m/s. This article contains an outline of the experimental program, an examination of the results of a typical test, and predictions of projectile deformation by classical shell theory and computational simulation. Classical shell analysis of the projectile indicated that the predicted impact loads would result in circumferential buckling. A computational simulation of a test was conducted with an impact/penetration model created by linking a rigid-body penetration trajectory code with a general-purpose finite element code. Scientific visualization of the resulting data revealed that circumferential buckling was induced by the impact conditions considered.

  9. Penetration analysis of projectile with inclined concrete target

    Directory of Open Access Journals (Sweden)

    Kim S.B.

    2015-01-01

    Full Text Available This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction and CONCRETE_DAMAGE (K&C concrete models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  10. Penetration analysis of projectile with inclined concrete target

    Science.gov (United States)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  11. Microadaptive Flow Control Applied to a Spinning Projectile

    National Research Council Canada - National Science Library

    McMichael, J; Lovas, A; Plostins, P; Sahu, J; Brown, G; Glezer, A

    2005-01-01

    ... technology developed, the flight control technology required to enable the MAFC on spinning projectiles, the design of the flight test and validation hardware, and the results of the open-loop flight test...

  12. Atom and molecule projectile and fast aggregate excitation, ionization and dissociation in thin targets in the out-of-charge equilibrium field

    International Nuclear Information System (INIS)

    Clouvas, A.

    1985-12-01

    The aim of this experimental study is to confirm the possible existence of bound states for light atomic and molecular projectiles inside solid targets, in the MeV energy range. For this purpose we have used, various experimental methods such as charge state distribution measurements, energy loss measurements, beam foil spectroscopy and electron spectroscopy. It was confirmed that bound states of light atomic and molecular projectiles can exist in a solid medium. The various cross sections (charge exchange, excitation, ionisation, dissociation) relative to these bound states have been measured [fr

  13. Fragment separator momentum compression schemes

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, Laura, E-mail: bandura@anl.gov [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Erdelyi, Bela [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Hausmann, Marc [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Kubo, Toshiyuki [RIKEN Nishina Center, RIKEN, Wako (Japan); Nolen, Jerry [Argonne National Laboratory, Argonne, IL 60439 (United States); Portillo, Mauricio [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Sherrill, Bradley M. [National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States)

    2011-07-21

    We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.

  14. Fragment separator momentum compression schemes

    International Nuclear Information System (INIS)

    Bandura, Laura; Erdelyi, Bela; Hausmann, Marc; Kubo, Toshiyuki; Nolen, Jerry; Portillo, Mauricio; Sherrill, Bradley M.

    2011-01-01

    We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.

  15. Optimisation of design parameters for modular range enhanced projectile

    OpenAIRE

    Jelic, Z

    2016-01-01

    There is an underpinning requirement for artillery systems to achieve longer range, better precision, and an adequate lethal effect. The main objective of this research is to investigate various methods of range increase and propose optimal solution for range extension of existing artillery systems. The proposed solution is novel, modular projectile design. Several methodologies for projectile range increment (such as improved aerodynamics and ballistic profile) were combined to achieve the "...

  16. Determination of extra trajectory parameters of projectile layout motion

    Science.gov (United States)

    Ishchenko, A.; Burkin, V.; Faraponov, V.; Korolkov, L.; Maslov, E.; Diachkovskiy, A.; Chupashev, A.; Zykova, A.

    2017-11-01

    The paper presents a brief description of the experimental track developed and implemented on the base of the RIAMM TSU for external trajectory investigations on determining the main aeroballistic parameters of various shapes projectiles, in the wide velocity range. There is comparison between the experimentally obtained dependence of the fin-stabilized projectile mock-up aerodynamic drag coefficient on the Mach number with the 1958 aerodynamic drag law and aerodynamic tests of the same mock-up

  17. A Flexible Online Apparatus for Projectile Launch Experiments

    Directory of Open Access Journals (Sweden)

    Carlos Manuel Paiva

    2013-01-01

    Full Text Available In order to provide a more flexible learning environment in physics, the developed projectile launch apparatus enables students to determine the acceleration of gravity and the dependence of a set of parameters in the projectile movement. This apparatus is remotely operated and accessed via web, by first scheduling an access time slot. This machine has a number of configuration parameters that support different learning scenarios with different complexities.

  18. Projectile-power-compressed magnetic-field pulse generator

    International Nuclear Information System (INIS)

    Barlett, R.H.; Takemori, H.T.; Chase, J.B.

    1983-01-01

    Design considerations and experimental results are presented of a compressed magnetic field pulsed energy source. A 100-mm-diameter, gun-fired projectile of approx. 2MJ kinetic energy was the input energy source. An initial magnetic field was trapped and compressed by the projectile. With a shorted load, a magajoule in a nanohenry was the design goal, i.e., 50 percent energy transformation from kinetic to magnetic. Five percent conversion was the highest recorded before gauge failure

  19. The influence of projectile ion induced chemistry on surface pattern formation

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Prasanta, E-mail: prasantak@vecc.gov.in [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India); Satpati, Biswarup [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2016-07-14

    We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurements that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.

  20. Total projectile electron loss cross sections of U^{28+} ions in collisions with gaseous targets ranging from hydrogen to krypton

    Directory of Open Access Journals (Sweden)

    G. Weber

    2015-03-01

    Full Text Available Beam lifetimes of stored U^{28+} ions with kinetic energies of 30 and 50  MeV/u, respectively, were measured in the experimental storage ring of the GSI accelerator facility. By using the internal gas target station of the experimental storage ring, it was possible to obtain total projectile electron loss cross sections for collisions with several gaseous targets ranging from hydrogen to krypton from the beam lifetime data. The resulting experimental cross sections are compared to predictions by two theoretical approaches, namely the CTMC method and a combination of the DEPOSIT code and the RICODE program.

  1. Impact Behaviour of Soft Body Projectiles

    Science.gov (United States)

    Kalam, Sayyad Abdul; Rayavarapu, Vijaya Kumar; Ginka, Ranga Janardhana

    2018-02-01

    Bird strike analysis is a common type of analysis done during the design and analysis of primary structures such as engine cowlings or fuselage panels. These simulations are done in order to predict whether various designs will pass the necessary certification tests. Composite materials are increasingly being used in aerospace industry and bird strike is a major threat which may lead to serious structural damage of those materials. Such phenomenon may arise from numerous impact scenarios. The focus of current study is on the finite element modeling for composite structures and simulation of high velocity impact loads from soft body projectiles with an explicit dynamics code AUTODYN. This paper investigates the methodology which can be utilized to certify an aircraft for bird strike resistance using computational technique by first demonstrating the accuracy of the method for bird impact on rigid target modeling and then applies the developed model to a more complex problem. The model developed for bird strike threat assessment incorporates parameters of bird number (bird density), bird body mass, equation of state (EOS) and bird path during impact.

  2. Orientation estimation algorithm applied to high-spin projectiles

    International Nuclear Information System (INIS)

    Long, D F; Lin, J; Zhang, X M; Li, J

    2014-01-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm. (paper)

  3. Orientation estimation algorithm applied to high-spin projectiles

    Science.gov (United States)

    Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.

    2014-06-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.

  4. Study of uranium dioxyde sputtering induced by multicharged heavy ions at low and very low kinetic energy: projectile charge effect

    International Nuclear Information System (INIS)

    Haranger, F.

    2003-12-01

    Ion beam irradiation of a solid can lead to the emission of neutral or ionized atoms, molecules or clusters from the surface. This comes as a result of the atomic motion in the vicinity of the surface, induced by the transfer of the projectile energy. Then, the study of the sputtering process appears as a means to get a better understanding of the excited matter state around the projectile trajectory. In the case of slow multicharged ions, a strong electronic excitation can be achieved by the projectile neutralization above the solid surface and / or its deexcitation below the surface. Parallel to this, the slowing down of such ions is essentially related to elastic collision with the target atoms. The study of the effect of the initial charge state of slow multicharged ions, in the sputtering process, has been carried out by measuring the absolute angular distributions of emission of uranium atoms from a uranium dioxide surface. The experiments have been performed in two steps. First, the emitted particles are collected onto a substrate during irradiation. Secondly, the surface of the collectors is analyzed by Rutherford Backscattering Spectrometry (RBS). This method allows the characterization of the emission of neutrals, which are the vast majority of the sputtered particles. The results obtained provide an access to the evolution of the sputtering process as a function of xenon projectile ions charge state. The measurements have been performed over a wide kinetic energy range, from 81 down to 1.5 keV. This allowed a clear separation of the contribution of the kinetic energy and initial projectile charge state to the sputtering phenomenon. (author)

  5. Framing Fragmentation

    DEFF Research Database (Denmark)

    Bundgaard, Charlotte

    2009-01-01

    Contemporary industrialized architecture based on advanced information technology and highly technological production processes, implies a radically different approach to architecture than what we have experienced in the past. Works of architecture composed of prefabricated building components......, contain distinctive architectural traits, not only based on rational repetition, but also supporting composition and montage as dynamic concepts. Prefab architecture is an architecture of fragmentation, individualization and changeability, and this sets up new challenges for the architect. This paper...... tries to develop a strategy for the architect dealing with industrially based architecture; a strategy which exploits architectural potentials in industrial building, which recognizes the rules of mass production and which redefines the architect’s position among the agents of building. If recent...

  6. Study of the reactions resulting in heavy fragment formation in the collisions 40Ar + Cu, Ag and Au at 8 to 115 MeV/u

    International Nuclear Information System (INIS)

    Colin, Eric Yves

    1998-01-01

    This work concerns the study of nuclear collisions showing a heavy fragment in 40 Ar + Cu, Ag and Au from 8 A MeV to 115 A MeV. The reactions are classified by centrality or collision violence via the multiplicity of charged particles detected in a 4π array. For the most peripheral reactions (low multiplicities) we always find a projectile-like fragment with velocity near to that of the beam and a heavy target-like fragment with very small velocity. For the more central collisions we find the well-known incomplete fusion reactions at 17 and 27 A MeV. Above 27 A MeV two groups of very dissipative reactions are observed, both with high charged particle multiplicities. The first reaction group forms several fragments with Z ≤ 10 and average longitudinal velocity near to that of c.m. These are very rare, and are found only for the highest 1% of multiplicities. They produce a heavy fragment and a forward spray (θ≤60 angle) of particles with charge going from 1 to ≅13. The momentum carried out by the spray is randomly spread over all the particles. In spite of the increase of momentum carried by this spray with increasing beam energy, a heavy emission source is formed with 1 - 2 GeV of excitation energy. After a phase of expansion, especially signaled by Z = 1 particles, this source then evaporates many particles. Finally we observed the remaining heavy residual nucleus. (author)

  7. Impact fragmentation of a brittle metal compact

    Science.gov (United States)

    Tang, Megan; Hooper, Joseph P.

    2018-05-01

    The fragmentation behavior of a metal powder compact which is ductile in compression but brittle in tension is studied via impact experiments and analytical models. Consolidated metal compacts were prepared via cold-isostatic pressing of powder at 380 MPa followed by moderate annealing at 365 °C. The resulting zinc material is ductile and strain-hardening in high-rate uniaxial compression like a traditional metal, but is elastic-brittle in tension with a fracture toughness comparable to a ceramic. Cylindrical samples were launched up to 800 m/s in a gas gun into thin aluminum perforation targets, subjecting the projectile to a complex multiaxial and time-dependent stress state that leads to catastrophic fracture. A soft-catch mechanism using low-density artificial snow was developed to recover the impact debris, and collected fragments were analyzed to determine their size distribution down to 30 μm. Though brittle fracture occurs along original particle boundaries, no power-law fragmentation behavior was observed as is seen in other low-toughness materials. An analytical theory is developed to predict the characteristic fragment size accounting for both the sharp onset of fragmentation and the effect of increasing impact velocity.

  8. Measurement of charged particle yields from therapeutic beams in view of the design of an innovative hadrontherapy dose monitor

    CERN Document Server

    Battistoni, G; Bini, F; Collamati, F; Collini, F; De Lucia, E; Durante, M; Faccini, R; Ferroni, F; Frallicciardi, P M; La Tessa, C; Marafini, M; Mattei, I; Miraglia, F; Morganti, S; Ortega, P G; Patera, V; Piersanti, L; Pinci, D; Russomando, A; Sarti, A; Schuy, C; Sciubba, A; Senzacqua, M; Solfaroli Camillocci, E; Vanstalle, M; Voena, C

    2015-01-01

    Particle Therapy (PT) is an emerging technique, which makes use of charged particles to efficiently cure different kinds of solid tumors. The high precision in the hadrons dose deposition requires an accurate monitoring to prevent the risk of under-dosage of the cancer region or of over-dosage of healthy tissues. Monitoring techniques are currently being developed and are based on the detection of particles produced by the beam interaction into the target, in particular: charged particles, result of target and/or projectile fragmentation, prompt photons coming from nucleus de-excitation and back-to-back γ s, produced in the positron annihilation from β + emitters created in the beam interaction with the target. It has been showed that the hadron beam dose release peak can be spatially correlated with the emission pattern of these secondary particles. Here we report about secondary particles production (charged fragments and prompt γ s) performed at different beam and energies that have a particular relevan...

  9. New results on the beam-loss criteria for heavy-ion accelerators

    International Nuclear Information System (INIS)

    Katrik, Peter; Hoffmann, Dieter H.H.; Mustafin, Edil; Strasik, Ivan; Pavlovic, Marius

    2015-01-01

    Activation of high-energy heavy-ion accelerators due to beam losses is a serious issue for accelerator parts like collimators, magnets, beam-lines, fragment separator targets, etc. The beam losses below 1 W/m are considered as tolerable for 'hands-on' maintenance in proton machines. In our previous studies, the FLUKA2008 code has been used for establishing a scaling law expanding the existing beam-loss tolerance for 1 GeV protons to heavy ions. This scaling law enabled specifying beam-loss criteria for projectile species from proton up to uranium at energies from 200 MeV/u up to 1 GeV/u. FLUKA2008 allowed nucleus-nucleus interactions down to 100 MeV/u only. In this work, we review our previous results and extend activation simulations to lower energies with the help of the new FLUKA version, namely FLUKA2011. It includes models for nucleus-nucleus interactions below 100 MeV/u. We also tried to expand the scaling law to lower energies. This, however, needs further studies, because the heavy-ion-induced nuclide composition starts deviating from the proton-induced nuclide composition at energies below 150 MeV/u. (authors)

  10. Angular correlations and fragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Kristiansson, Anders.

    1990-05-01

    Intermediate energy heavy-ion collisions have been studied from 35 A MeV up to 94 A MeV at various accelerators. Angular correlations between light particles and detection of projectile- and target-fragments have been used to investigate the reaction mechanisms in this transition region between low- and high energy. An excess of correlations is observed in the particle-particle elastic scattering plane. This excess increases with particle mass and can be understood in terms of momentum conservation. The fragmentation measurements gives an indication that both energy and momentum transfer to the spectator volumes does occur. (author)

  11. The rise and fall of multi-fragment emission

    International Nuclear Information System (INIS)

    Ogilvie, C.A.; Begemann-Blaich, M.; Hubele, J.; Kunde, G.J.; Lindenstruth, V.; Liu, Z.; Lynen, U.; Meijer, R.J.; Milkau, U.; Mueller, W.F.J.; Sann, H.; Trautmann, W.; Adloff, J.C.; Rudolf, G.; Stuttge, L.

    1991-03-01

    We have studied multifragment decays of Au projectiles after collissions with C, Al, and Cu targets at a bombarding energy of 600 MeV/nucleon. We find that with increasing violence of the collision, measured via the associated multiplicity of light particles, the mean multiplicity of intermediate mass fragments first increases to a maximum IMF >≅3 and then decreases again. Calculations using the BUU model suggest that the fragmentation is governed by the energy E dep deposited into the Au nucleus and that IMF > reaches its maximum around E dep ≅8 MeV/nucleon. PACS 25.70 Np. (orig.)

  12. Light fragment production at forward angles in Ne and Ar induced reactions

    International Nuclear Information System (INIS)

    Alard, J.P.; Biagi, F.; Morel, P.; Bastid, N.; Augerat, J.; Charmensat, P.; Crouau, M.; Dupieux, P.; Fraysse, L.; Marroncle, J.; Brochard, F.; Gorodetzky, P.; Racca, C.

    1990-01-01

    The results of the experiments performed at Saturne, in order to investigate light fragment emission at small angles, are reported. The measurements were performed using a plastic wall associated with the Diogene pictorial drift chamber. Different selected multiplicities in the central chamber are applied. The exclusive measurements are reported both for Ne and Ar projectiles on several targets

  13. A Mass Loss Penetration Model to Investigate the Dynamic Response of a Projectile Penetrating Concrete considering Mass Abrasion

    Directory of Open Access Journals (Sweden)

    NianSong Zhang

    2015-01-01

    Full Text Available A study on the dynamic response of a projectile penetrating concrete is conducted. The evolutional process of projectile mass loss and the effect of mass loss on penetration resistance are investigated using theoretical methods. A projectile penetration model considering projectile mass loss is established in three stages, namely, cratering phase, mass loss penetration phase, and remainder rigid projectile penetration phase.

  14. Measuring the temperature of hot nuclear fragments

    International Nuclear Information System (INIS)

    Wuenschel, S.; Bonasera, A.; May, L.W.; Souliotis, G.A.; Tripathi, R.; Galanopoulos, S.; Kohley, Z.; Hagel, K.; Shetty, D.V.; Huseman, K.; Soisson, S.N.; Stein, B.C.; Yennello, S.J.

    2010-01-01

    A new thermometer based on fragment momentum fluctuations is presented. This thermometer exhibited residual contamination from the collective motion of the fragments along the beam axis. For this reason, the transverse direction has been explored. Additionally, a mass dependence was observed for this thermometer. This mass dependence may be the result of the Fermi momentum of nucleons or the different properties of the fragments (binding energy, spin, etc.) which might be more sensitive to different densities and temperatures of the exploding fragments. We expect some of these aspects to be smaller for protons (and/or neutrons); consequently, the proton transverse momentum fluctuations were used to investigate the temperature dependence of the source.

  15. Study of the multi-fragment production in asymmetric heavy ion reactions at E/A = 600 MeV

    International Nuclear Information System (INIS)

    Hubele, J.C.

    1992-03-01

    In this thesis the fragmentation of Au projectiles in collisions with light target nuclei ( 12 C, 27 Al, 64 Cu) is studied at a projectile energy of 600 MeV per nucleon. For the description of an event three observables are used: the multiplicity M lp of the light particles, the largest observed charge Z max of the projectile fragments, as well as a newly introduced obsevable Z bound , which is defined as the sum of all charge contained in complex projectile fragments (Z ≥ 2). By means of this observable different exit channels can be identified: the formation of a heavy residual nucleus by evaporation of light particles, the binary fission, the decay into IMF's (3 ≤ Z ≤ 30) and the complete decay into light particles. At the applied incident energy in the case of Au+Cu reactions each of these decay channels can be realized. The observables Z bound and M lpp are proved as suited quantities for the reconstruction of the impact parameter. Furthermore independently on the target a universal relation between Z bound and the multiplicity distribution of medium-heavy fragments is found. By simple model assumptions it is made plausible that Z bound is correlated both with the size of the projectile residue and in the mean with its excitation energy. For the characterization of the decay into IMF's the multiplicity M imf of these fragments is applied. For all three targets with increasing centrality first an increasing of the mean fragment multiplicities to maximal values of 3-4 is observed. In the case of the Cu target and suggestively also at the Al target in the most central collisions again a decreasing of the multiplicity is found. The universal Z bound behaviour is a hint to a - at least partial - equilibration of the primary projectile residue before the decay. (HSI) [de

  16. Tests of models for inclusive production of energetic light fragments at intermediate energies

    International Nuclear Information System (INIS)

    Boal, D.H.; Green, R.E.L.; Korteling, R.G.; Soroushian, M.

    1980-09-01

    Several models of light fragment emission are confronted with data from electron and proton induced reactions. The data appear to favor a mechanism, called the snowball model here, in which there is a single collison of the projectile and a few collisions of the secondary nucleons which then form the observed fragment. The parameter of the model is determined by fitting new isotopically separated inclusive differential cross section data taken at TRIUMF. (auth)

  17. Dynamic effects in fragmentation reactions

    International Nuclear Information System (INIS)

    Bertsch, G. F.; Esbensen, H.

    2002-01-01

    Fragmentation reactions offer a useful tool to study the spectroscopy of halo nuclei, but the large extent of the halo wave function makes the reaction theory more difficult. The simple reaction models based on the eikonal approximation for the nuclear interaction or first-order perturbation theory for the Coulomb interaction have systematic errors that they investigate here, comparing to the predictions of complete dynamical calculations. They find that stripping probabilities are underpredicted by the eikonal model, leading to extracted spectroscopy strengths that are two large. In contrast, the Coulomb excitation is overpredicted by the simple theory. They attribute this to a screening effect, as is well known in the Barkas effect on stopping powers. The errors decrease with beam energy as E(sub beam)(sup -1), and are not significant at beam energies above 50 MeV/u. At lower beam energies, the effects should be taken into account when extracting quantitative spectroscopic strengths

  18. Study of the reactions resulting in heavy fragment formation in the collisions {sup 40}Ar + Cu, Ag and Au at 8 to 115 MeV/u; Etude des reactions avec formation d`un fragment lourd dans les collisions {sup 40}Ar + Cu, Ag et Au de 8 a 115 MeV/u

    Energy Technology Data Exchange (ETDEWEB)

    Colin, Eric Yves [Universite Claude Bernard Lyon-1, 69 - Lyon (France)

    1998-11-06

    This work concerns the study of nuclear collisions showing a heavy fragment in {sup 40}Ar + Cu, Ag and Au from 8 A MeV to 115 A MeV. The reactions are classified by centrality or collision violence via the multiplicity of charged particles detected in a 4{pi} array. For the most peripheral reactions (low multiplicities) we always find a projectile-like fragment with velocity near to that of the beam and a heavy target-like fragment with very small velocity. For the more central collisions we find the well-known incomplete fusion reactions at 17 and 27 A MeV. Above 27 A MeV two groups of very dissipative reactions are observed, both with high charged particle multiplicities. The first reaction group forms several fragments with Z {<=} 10 and average longitudinal velocity near to that of c.m. These are very rare, and are found only for the highest 1% of multiplicities. They produce a heavy fragment and a forward spray ({theta}{<=}60 angle) of particles with charge going from 1 to {approx_equal}13. The momentum carried out by the spray is randomly spread over all the particles. In spite of the increase of momentum carried by this spray with increasing beam energy, a heavy emission source is formed with 1 - 2 GeV of excitation energy. After a phase of expansion, especially signaled by Z = 1 particles, this source then evaporates many particles. Finally we observed the remaining heavy residual nucleus. (author) 117 refs., 85 figs., 12 tabs.

  19. I. The properties of hot Ca-like fragments from the 40Ca+40Ca reaction at 35 AMeV

    International Nuclear Information System (INIS)

    Planeta, R.; Gawlikowicz, W.; Wieloch, A.

    2001-01-01

    The creation of hot Ca-like fragments was investigated in the 40 Ca + 40 Ca reaction at 35 AMeV. Using the AMPHORA 4π detector system, the primary projectile-like fragment was reconstructed and its properties were determined. Both primary and secondary distributions are compared with the predictions of a Monte Carlo code describing a heavy-ion collision as a two-step process. Some of the nucleons which are identified as participants in the first step are transferred in the second step to these final states, which correspond on the average to the maximum value of entropy (thermodynamic probability). The model allows for competition between mean-field effects and nucleon-nucleon interactions in the overlap zone of the interacting nuclei. The analysis presented here suggests a thermalized source picture of the decay of the projectile-like fragment. The validity of the reconstruction procedure for projectile-like fragments is discussed. (orig.)

  20. Fluctuations in projectile fragment distributions from 1 GeV/nucleon Au + C multifragmentation

    International Nuclear Information System (INIS)

    Elliott, J.B.; Gilkes, M.L.; Hauger, A.; Hirsch, A.S.

    1993-01-01

    Fluctuations in cluster distributions play an important role in distinguishing critical and non-critical cluster forming phenomena. The magnitude of the reduced variance (γ 2 ) of a cluster distribution is a direct measure of the size of its fluctuations. Preliminary examinations of γ 2 are made for cluster distributions from 1 GeV/nucleon Au+C data obtained in the EOS experiment at the Bevalac. Values of γ 2 are compared to those from percolation and statistical multifragmentation models

  1. Memory effects in nuclear fragmentation?

    International Nuclear Information System (INIS)

    Colonna, M.; Di Toro, M.; Guarnera, A.

    1994-01-01

    A general procedure to identify instability regions which lead to multifragmentation events is presented. The dominant mode at the instability point is determined from the knowledge of the mean properties (density and temperature) of the system at that point. For spinodal instabilities the dependence of fragment structures on the dynamical conditions is studied changing the beam energy and the considered equation of state. An important competition between two dynamical effects, expansion of the system and growth of fluctuations, is revealed. It is shown that in heavy-ion central collisions at medium energies memory effects of the configuration formed at the instability time could be observed in the final fragmentation pattern. Some hints towards a fully dynamical picture of fragmentation processes are finally suggested. ((orig.))

  2. Function behavior of a gas-operated accelerator for kinetic energy projectiles

    International Nuclear Information System (INIS)

    Heine, H.

    1979-01-01

    The test facility - presented here - was designed and constructed in order to make investigations on the load case 'airplane crash'. The facility consists mainly of the accelerator on a rail track, an abutment, a control centre, and a measuring-bunker.To perform a test the two parts of the accelerator - a compression chamber and an expansion tube (diameter 613 mm) - are strongly connected after the projectile has been inserted into the tube. The chamber - closed by a steel membrane - is filled with a mixture of methane and compressed air. The mixture is ignited and expands. The membrane opens and the projectile is accelerated. The velocity range can be varied between 80 and 300 m/s.The reinforced concrete slabs that are impacted during the main test series have the dimensions of 6.00 m by 6.50 m and a maximum thickness of 90 cm. During the test the slab hangs at a cross beam so that there is no friction between the specimen and the abutment. (orig.)

  3. Correlations between projectile and target breakup: a comparative study of nucleus-nucleus collisions at 75, 175 and 2000A MeV

    International Nuclear Information System (INIS)

    Bjarle, C.; Herrstroem, N.Y.; Kullberg, R.; Oskarsson, A.; Otterlund, I.

    1982-01-01

    Nucleus-nucleus collision in three different energy intervals: 50-100, 150-200 and 1900-2100A MeV have been studied in nuclear emulsion. The reactions were 16 O + average emulsion target (H, C, N, O, Ag, Br). In each event, all emitted charged particles were recorded, projectile fragments with Z>=2 identifed and the number of charged particles from the target nucleus was determined. The results are discussed in terms of the geometrical aspects of Heavy Ion collisions and direct comparisons are made with the Coldhaber fragmentation model

  4. Methods of quasi-projectile and quasi-target reconstruction in binary collisions

    International Nuclear Information System (INIS)

    Genouin-Duhamel, E.; Steckmeyer, J.C.; Vient, E.; Bocage, F.; Bougault, R.; Brou, R.; Colin, J; Cussol, D.; Durand, D.; Gulminelli, F.; Lecolley, J.F.; Lefort, T.; Le Neindre, N.; Lopez, O.; Louvel, M.; Nguyen, A.D.; Peter, J.; Tamain, B.

    1997-01-01

    In very dissipative collisions one or more nuclei of hot nuclear matter are formed. According to the stored energy these decay in times varying from several tens of fm/c to several tens of thousands of fm/c. Thus, we have to trace down in time and reconstruct the original nuclei starting from a mixture of decay products of these nuclei and all the particles dynamically emitted in the very first moments of the collision. In this paper different methods of reconstruction of hot nuclei formed after collision at Fermi energies are presented and compared. All the methods have in commune the same theoretical hypotheses and experimental limitations. The first method uses the largest detected fragment which is supposed to preserve the memory of the initial velocity of the quasi-projectile (QP). All the intermediate mass fragments (IMF) situated in the forward hemisphere are considered as statistically emitted by the QP. The initial velocity of the source is determined by summation of the fragment momenta, event by event. Once the decay products assigned to the QP its total charge can be calculated and its mass is obtained from the projectile A/Z ratio. Finally, the QP excitation energy is calculated from calorimetric data. In the second method ('Nautilus') the velocity space is separated by cutting the center-of-mass velocity perpendicular to the main axis of the momentum ellipsoid. We take into consideration all the IMFs situated in the forward part of the ellipsoid to determine the velocity of the rapid source. The charge is constructed by summing the largest detected fragment and doubling the charge of the particles emitted in the forward hemisphere of the rapid source. The mass and excitation energy of QP per nucleon are determined as above. The third method called of 'estoc' is a purely computational one. It is based on the hypothesis that the IMFs coming from a given source are all in the same region of the momentum space. A comparison of the three methods is

  5. Optimization of Construction of the rocket-assisted projectile

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2017-01-01

    Full Text Available New scheme of the rocket motor of rocket-assisted projectile providing the increase in distance of flight due to controlled and optimal delay time of ignition of the solid-propellant charge of the SRM and increase in reliability of initiation of the SRM by means of the autonomous system of ignition excluding the influence of high pressure gases of the propellant charge in the gun barrel has been considered. Results of the analysis of effectiveness of using of the ignition delay device on motion characteristics of the rocket-assisted projectile has been presented.

  6. Locus of the apices of projectile trajectories under constant drag

    Science.gov (United States)

    Hernández-Saldaña, H.

    2017-11-01

    Using the hodograph method, we present an analytical solution for projectile coplanar motion under constant drag, parametrised by the velocity angle. We find the locus formed by the apices of the projectile trajectories, and discuss its implementation for the motion of a particle on an inclined plane in presence of Coulomb friction. The range and time of flight are obtained numerically, and we find that the optimal launching angle is smaller than in the drag-free case. This is a good example of a problem with constant dissipation of energy that includes curvature; it is appropriate for intermediate courses of mechanics.

  7. Dispersion Analysis of the XM881APFSDS Projectile

    Directory of Open Access Journals (Sweden)

    Thomas F. Erline

    2001-01-01

    Full Text Available This study compares the results of a dispersion test with mathematical modeling. A 10-round group of modified 25-mm XM881 Armor Piercing Fin Stabilized Discarding Sabot projectiles was fired from the M242 chain gun into a designated target. The mathematical modeling results come from BALANS, a product of Arrow Tech Associates. BALANS is a finite-element lumped parameter code that has the capability to model a flexible projectile being fired from a flexible gun. It also has the unique feature of an automated statistical evaluation of dispersion. This study represents an effort to evaluate a simulation approach with experiment.

  8. The production of accelerated radioactive ion beams

    International Nuclear Information System (INIS)

    Olsen, D.K.

    1993-01-01

    During the last few years, substantial work has been done and interest developed in the scientific opportunities available with accelerated radioactive ion beams (RIBs) for nuclear physics, astrophysics, and applied research. This interest has led to the construction, development, and proposed development of both first- and second-generation RIB facilities in Asia, North America, and Europe; international conferences on RIBs at Berkeley and Louvain-la-Neuve; and many workshops on specific aspects of RIB production and science. This paper provides a discussion of both the projectile fragmentation, PF, and isotope separator on-line, ISOL, approach to RIB production with particular emphasis on the latter approach, which employs a postaccelerator and is most suitable for nuclear structure physics. The existing, under construction, and proposed facilities worldwide are discussed. The paper draws heavily from the CERN ISOLDE work, the North American IsoSpin Laboratory (ISL) study, and the operating first-generation RIB facility at Louvain-la-Neuve, and the first-generation RIB project currently being constructed at ORNL

  9. Element Distribution and Multiplicity of Heavy Fragments

    CERN Multimedia

    2002-01-01

    This experiment will measure the energy and angular distribution of heavy fragments produced in the reactions of |1|2C on several targets between |2|7Al and |2|3|8U at 86~MeV/u. The systematic investigation of a highly excited interaction region (fireball) by means of a clean N and Z identification of heavy tar fragments, may result in a better understanding of temperature concept and of the degree of equilibration of the local interaction region with respect to the total system. For this investigation a large-area position sensitive ionization chamber of 50~msr solid angle in conjunction with a time-of-flight telescope consisting of parallel-plate detectors will be used. \\\\ \\\\ In order to get information on the transverse momentum transfer and the inelasticity of the collision, the energy of the PROJECTILE-FRAGMENTS will be measured at forward angles with a plastic scintillator hodoscope. In addition to this inclusive measurement correlations between heavy fragments will be investigated by means of three pos...

  10. Analytical and experimental evaluation of a proposed self-forging fragment munition

    International Nuclear Information System (INIS)

    Tuft, D.B.; Folsom, E.N.

    1982-01-01

    Analytical and experimental tools have been used to study the formation of a proposed self-forging fragment projectile. The primary objective of this study is the determination of the interior and exterior shape of the fully formed fragment, and to determine if the fragment tumbles in flight. In addition, it is of interest to compare computer predictions to experimental results. An experiment was performed using high speed photography and high-energy flash x-ray radiography to study liner and case motion and projectile formation. Fabrication and assembly tolerances were closely controlled in an effort to eliminate tolerances as a possible source of fragment instability. X-ray film-density contours were analyzed to determine the fully formed fragment interior and exterior shape. Down-range yaw screens showed fragment tumbling in flight. The computed fragment shape was compared to experimental results and it was found that a retaining ring in the computational model near the liner periphery had a significant effect on the final computed fragment shape. With the retaining ring in the computational model and full two-way sliding between all material interfaces, the final computed fragment showed very good agreement with the experiment on both exterior and interior shapes

  11. A Simple General Solution for Maximal Horizontal Range of Projectile Motion

    OpenAIRE

    Busic, Boris

    2005-01-01

    A convenient change of variables in the problem of maximizing the horizontal range of the projectile motion, with an arbitrary initial vertical position of the projectile, provides a simple, straightforward solution.

  12. Biomaterial imaging with MeV-energy heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Toshio, E-mail: seki@sakura.nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan); Wakamatsu, Yoshinobu; Nakagawa, Shunichiro [Department of Nuclear Engineering, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); Aoki, Takaaki [Department of Electronic Science and Engineering, Kyoto Univ., Nishikyo, Kyoto 615-8510 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan); Ishihara, Akihiko [Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto Univ., Sakyo, Kyoto 606-8501 (Japan); Matsuo, Jiro [Quantum Science and Engineering Center, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan)

    2014-08-01

    The spatial distribution of several chemical compounds in biological tissues and cells can be obtained with mass spectrometry imaging (MSI). In conventional secondary ion mass spectrometry (SIMS) with keV-energy ion beams, elastic collisions occur between projectiles and atoms of constituent molecules. The collisions produce fragments, making the acquisition of molecular information difficult. In contrast, ion beams with MeV-energy excite near-surface electrons and enhance the ionization of high-mass molecules; hence, SIMS spectra of fragment-suppressed ionized molecules can be obtained with MeV-SIMS. To compare between MeV and conventional SIMS, we used the two methods based on MeV and Bi{sub 3}-keV ions, respectively, to obtain molecular images of rat cerebellum. Conventional SIMS images of m/z 184 were clearly observed, but with the Bi{sub 3} ion, the distribution of the molecule with m/z 772.5 could be observed with much difficulty. This effect was attributed to the low secondary ion yields and we could not get many signal counts with keV-energy beam. On the other hand, intact molecular ion distributions of lipids were clearly observed with MeV-SIMS, although the mass of all lipid molecules was higher than 500 Da. The peaks of intact molecular ions in MeV-SIMS spectra allowed us to assign the mass. The high secondary ion sensitivity with MeV-energy heavy ions is very useful in biomaterial analysis.

  13. Structuring of silicon with low energy focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    The defect production in silicon induced by focused ion beam irradiation as a function of energy and projectile mass has been investigated and compared to the measured sputter yield. The aim was to find optimal beam parameters for the structuring of semiconductors with a minimum amount of defects produced per removed atom. (author) 2 figs., 2 refs.

  14. Angular distributions of target fragments from the reactions of 292 MeV - 25.2 GeV 12C with 197Au and 238U

    International Nuclear Information System (INIS)

    Morita, Y.

    1983-01-01

    The angular distributions of the 197 Au target fragments were all forwardly peaked. Extensively forward peaked angular distributions were observed at the non-relativistic projectile energies (292 MeV, 1.0 GeV). No obvious differences were observed in the angular distributions at the different relativistic projectile energies of 3.0 GeV, 12.0 GeV and 25.2 GeV. The characteristic angular distribution pattern from the relativistic projectile energy experiments was also observed in the non-relativistic energy experiments. Maximum degree of forward-peaking in the angular distributions at each projectile energy was observed at the product mass number (A) around 190 from the 292 MeV projectile energy, at A = 180 from 1.0 GeV and at A =175 from 3.0 GeV and 12.0 GeV. In general, two different types of angular distributions were observed in the relativistic projectile energy experiments with the 238 U target. Isotropic angular distributions were observed for the fission product nuclides. The angular distributions of the fission products at the intermediate (292 MeV) energy showed slightly forward peaked angular distributions. Because of the long projectile-target interaction time in the primary nuclear reaction, larger momentum was transferred from the projectile to the target nucleus. Steep forward-peaked angular distributions were also observed with the 238 U target

  15. Collision induced fragmentation of fast molecular ions in solids and gases

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1979-01-01

    A brief review is given of recent high resolution measurements on fragments arising from the collision-induced dissociation of fast (MeV) molecular ions. For solid targets, strong wake effects are observed. For gaseous targets, excited electronic states of the projectile ions play an important role. Measurements of this type provide useful information on the charge states of fast ions traversing matter. The experimental techniques show promise as a unique method for determining the geometrical structures of the molecular-ion projectiles. 41 references

  16. Charm production yield from target nuclei filtering intrinsic projectile charm

    International Nuclear Information System (INIS)

    Quack, E.; Nemes, M.C.

    1990-01-01

    Estimating the process of filtering an intrinsic projectile charm component by a target nucleus as proposed earlier, we obtain upper limits for the cross sections of open charm and J/Ψ. Comparing with experiment, we conclude that this filtering mechanism is not sufficient to explain the observed A α-dependence at large final state momenta. (author)

  17. Ionization of hydrogen by a relativistic heavy projectile

    International Nuclear Information System (INIS)

    Hofstetter, S.; Hofmann, C.; Soff, G.

    1991-10-01

    Using a relativistic analogue of the classical trajectory Monte-Carlo method we investigate the influence of the magnetic field of a relativistic heavy projectile on the ionization cross section of hydrogen. In particular we focus our attention on the angular and energy distribution of the emitted delta electrons. (orig.)

  18. Projectile Motion in the "Language" of Orbital Motion

    Science.gov (United States)

    Zurcher, Ulrich

    2011-01-01

    We consider the orbit of projectiles launched with arbitrary speeds from the Earth's surface. This is a generalization of Newton's discussion about the transition from parabolic to circular orbits, when the launch speed approaches the value [image omitted]. We find the range for arbitrary launch speeds and angles, and calculate the eccentricity of…

  19. Projectile General Motion in a Vacuum and a Spreadsheet Simulation

    Science.gov (United States)

    Benacka, Jan

    2015-01-01

    This paper gives the solution and analysis of projectile motion in a vacuum if the launch and impact heights are not equal. Formulas for the maximum horizontal range and the corresponding angle are derived. An Excel application that simulates the motion is also presented, and the result of an experiment in which 38 secondary school students…

  20. Projectile deformation effects in the breakup of 37Mg

    Directory of Open Access Journals (Sweden)

    Shubhchintak

    2016-01-01

    Full Text Available We study the breakup of 37Mg on Pb at 244MeV/u with the recently developed extended theory of Coulomb breakup within the postform finite range distorted wave Born approximation that includes deformation of the projectile. Comparing our calculated cross section with the available Coulomb breakup data we determine the possible ground state configuration of 37Mg.

  1. On the Inertia Term of Projectile's Penetration Resistance

    Directory of Open Access Journals (Sweden)

    Yu Shan

    2013-01-01

    Full Text Available The effect of the target inertia term of rigid kinetic energy projectiles (KEP’s penetration resistance is investigated using nonlinear dynamic code LS-DYNA and four constitutive models. It is found that the damage number of target can be used to measure the influence of the inertia term. The smaller the damage number is, the less influence the inertia term has. The less dependent the resistance has on projectile velocity, the more accurate it is to treat the resistance as a constant. For the ogive-nose projectile with CRH of 3, when the target is aluminum, steel, or other metals, the threshold velocity for the constant resistance is at least 1258 m/s; when the target is concrete, rock, or other brittle materials, if the velocity of the projectile is greater than 400 m/s or so, the damage number would be very large, and the penetration resistance would clearly depend on the projectile’s velocity. The higher the elastic wave velocity is, the more penetration process is affected by the impact face.

  2. On the Trajectories of Projectiles Depicted in Early Ballistic Woodcuts

    Science.gov (United States)

    Stewart, Sean M.

    2012-01-01

    Motivated by quaint woodcut depictions often found in many late 16th and 17th century ballistic manuals of cannonballs fired in air, a comparison of their shapes with those calculated for the classic case of a projectile moving in a linear resisting medium is made. In considering the asymmetrical nature of such trajectories, the initial launch…

  3. When Does Air Resistance Become Significant in Projectile Motion?

    Science.gov (United States)

    Mohazzabi, Pirooz

    2018-01-01

    In an article in this journal, it was shown that air resistance could never be a significant source of error in typical free-fall experiments in introductory physics laboratories. Since projectile motion is the two-dimensional version of the free-fall experiment and usually follows the former experiment in such laboratories, it seemed natural to…

  4. Ionization of heavy targets by impact of relativistic projectiles

    International Nuclear Information System (INIS)

    Deco, G.R.; Fainstein, P.D.; Comision Nacional de Energia Atomica, San Carlos de Bariloche; Rivarola, R.D.

    1988-01-01

    Electron ejection from atomic targets by impact of bare heavy projectiles at relativistic collision energies is studied theoretically. First-order Born calculations are presented by using initial Darwin and final Sommerfeld-Maue wavefunctions. Comparisons with other calculations and experimental data are given. (orig.)

  5. Calculation of forces arising from impacting projectiles upon yielding structures

    International Nuclear Information System (INIS)

    Drittler, K.; Gruner, P.; Krivy, J.

    1977-01-01

    Calculations concerning the impact of airplanes upon nuclear power plant buildings usually imply that the building [QUOTE]acts' as a rigid target. This assumption is justified for considerations concerning the structural integrity of the building being hit. However, for investigating induced vibrations of components within the structure, this approach might-in general-be too conservative. It is expected, that yielding of the structure during impact reduces the peak values of the loads and changes the temporal behaviour of the load function which is obtained for a rigid target. To calculate the changes of the load function which are due to deformations of the structure, Riera's method is extended for the case of a yielding target. The calculations are performed with a one-dimensional model for the projectile. The presented model calculations seem to verify that the motion of the target does not have much influence on the impact force for projectiles similar to the model projectile, provided the displacement of the yielding target is small in comparison with the path covered by the free-flying projectile during a time which is equivalent to the total time of impact. (Auth.)

  6. Calculation of projectile velocity in an electromagnetic mass driver

    International Nuclear Information System (INIS)

    Ikuta, K.

    1986-08-01

    The formula for the velocity increase of a projectile accelerated by the single z-pinch between the cylindrical electrodes is established. This formula enables one to consider the necessary stages in the cylindrical electrode array of the accelerator for a required velocity. (author)

  7. Tandem-method for measurement of destruction cross-sections of neutral projectiles at intermediate and high velocities

    International Nuclear Information System (INIS)

    Sant'Anna, M.M.; Magnani, B.F.; Correa, R.S.; Coelho, L.F.S.

    2007-01-01

    We have recently presented destruction cross-section data for negative ions obtained with a technique that uses the gas stripper of a tandem accelerator as the collision target. In this work, we develop an extension of that technique to measure destruction cross-sections for neutral projectiles, important parameters to estimate neutral beam attenuation in Heavy Ion Fusion applications. Measurements for the H+N 2 collision system are used to exemplify and discuss the capabilities and limitations of the proposed experimental method

  8. Cross sections for the production of 11C in C targets by 3.65 AGeV projectiles

    International Nuclear Information System (INIS)

    Kozma, P.; Tolstov, K.D.; Yanovskij, V.V.

    1989-01-01

    The absolute cross sections for the production of 11 C in C targets by 3.65 AGeV protons, deuterons, 4 He- and 12 C-ions were measured. Annihialtion radiation from 11 C was counted using a large volume NaI(Tl) and BaF 2 detectors. The flux measurement technique based on registration of charged particles by means of a thin nuclear emulsion layer rotating in a beam as well as fission chamber was used. The results are compared with earlier measurements of the cross sections in carbon targets using high-energy projectiles and Glauber theoretical prediction, as well. 10 refs.; 3 figs.; 1 tab

  9. Beam-Beam Effects

    International Nuclear Information System (INIS)

    Herr, W; Pieloni, T

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities

  10. Mass distribution of fission-like fragments formed in 20Ne + 165Ho system at Elab≈ 8.2 MeV/A

    International Nuclear Information System (INIS)

    Singh, D.; Linda, Sneha Bharti; Giri, Pankaj K.

    2017-01-01

    In the present work, an attempt has been made to study CFF and IFF in 20 Ne + 165 Ho system at projectile energy ≈ 8.2 MeV/A. Twelve fission like fragments (FLF) produced through complete fusion-fission (CFF) and/or incomplete fusion-fission (IFF) in the present system have been identified. The production cross-sections of identified fission like fragments have been measured and the mass distribution of fission like fragments studied

  11. Fragmentation of water on swift {sup 3}He{sup 2+} ion impact

    Energy Technology Data Exchange (ETDEWEB)

    Sabin, John R. [Quantum Theory Project, Departments of Chemistry and Physics, P.O. Box 118435, University of Florida, Gainesville, FL 32611-8435 (United States); Institut for Fysik og Kemi, Suddansk Universitet, 5230 Odense M (Denmark)], E-mail: sabin@qtp.ufl.edu; Cabrerra-Trujillo, Remigio [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, Cuernavaca, Morelos 62251 (Mexico); Stolterfoht, Nikolaus [Hahn-Meitner Institut, Glienickerstrasse 100, D-14109 Berlin (Germany); Deumens, Erik; Ohrn, Yngve [Quantum Theory Project, Departments of Chemistry and Physics, P.O. Box 118435, University of Florida, Gainesville, FL 32611-8435 (United States)

    2009-01-15

    Charge exchange and fragmentation are the usual results in ion-molecule collision systems, and the specifics of the fragmentation process determine the chemical destiny of the target system. In this paper, we report recent progress on calculations of the fragmentation patterns for the model system He{sup 2+} + H{sub 2}O for projectile energies of a few keV. The calculations are obtained using the electron-nuclear dynamics (END) method for solution of the time-dependent Schroedinger equation.

  12. Intermittency in {sup 197}Au fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowska, A; Holynski, R; Olszewski, A; Szarska, M; Wilczynska, B; Wolter, W; Wosiek, B [Institute of Nuclear Physics, Cracow (Poland); Cherry, M L; Deines-Jones, P; Jones, W V; Sengupta, K; Wefel, B [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics and Astronomy; Waddington, C J [Minnesota Univ., Minneapolis, MN (United States). School of Physics and Astronomy; Pozharova, E A; Skorodko, T Yu [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); KLMM Collaboration

    1995-07-01

    The concept of factorial moments was applied to an analysis of the dynamical fluctuations in the charge distributions of the fragments emitted from gold nuclei with energies 10.6 and < 1.0 GeV/n interacting with emulsion nuclei. Clear evidence for intermittent fluctuations has been found in an analysis using all the particles released from the gold projectile, with a stronger effect observed below 1 GeV/n than at 10.6 GeV/n. For the full data sets, however, the intermittency effect was found to be very sensitive to the singly charged particles, and neglecting these particles strongly reduces the intermittency signal. When the analysis is restricted to the multiply charged fragments, an intermittency effect is revealed only for multifragmentation events, although one that is enhanced as compared to the analysis of all, singly and multiply charged, particles. The properties of the anomalous fractal dimensions suggest a sequential decay mechanism, rather than the existence of possible critical behaviour in the process of nuclear fragmentation. The likely influence of the charge conservation effects and the finite size of decaying systems on the observed intermittency signals was pointed out. (author). 37 refs, 9 figs, 5 tabs.

  13. Energy damping and intermediate velocity fragment emission in peripheral Kr+Au collisions at 43 MeV/u

    International Nuclear Information System (INIS)

    Stuttge, L.; Adloff, J.C.; Bilwes, B.; Bilwes, R.; Cosmo, F.; Glaser, M.; Rudolf, G.; Scheibling, F.

    1991-01-01

    Triple and four-fold coincidences among fragments have been measured in the reaction 197 Au( 84 Kr,X) at 43 MeV/u. All events showing the projectile-like nucleus and fission fragments of the target-like nucleus, and all events with one additional intermediate velocity fragment, were analysed in the frame of a dissipative collision and a participant-spectator model. The mechanism is basically that of a dissipative collision but the emission of the intermediate velocity fragment by the target differs from an equilibrated evaporation. (author) 16 refs., 10 figs

  14. Upgrading DRACULA setup to be used for light products - fission fragments coincidence measurements

    International Nuclear Information System (INIS)

    Simion, V.; Petrovici, M.; Pop, A.; Berceanu, I.; Duma, M.; Moisa, D.; Pagano, A.; Geraci, E.

    1999-01-01

    At low bombarding energy (E/A 238 U give rise to a number of fission processes, all leading to very similar fission products. Therefore, in order to understand the fission processes in this energy domain it is of interest to determine the amount of fission occurring after a peripheral interaction relative to that originating from compound nucleus formation. Although the detection of a projectile residue (PLF) in coincidence with the fission fragments is a very promising probe for the macroscopic features of the mechanism of induced fission, at incident energies in the vicinity of the Coulomb barrier (E/A 2 cross section area uses the phoswich technique by coupling a thin fast NE102A plastic scintillator to a 10 cm long BaF 2 crystal of hexagonal section. The BaF 2 crystal detectors have been successfully used in modular multielement detector ARGOS in the context of GANCT and HOTCT researches at LNS. The light response of the phoswich configuration as a function of the plastic thickness and of the energy and charge of the incident ion has been studied at Tandem energies. Both arrays will be placed in separate vacuum chambers attached to the remaining large angular opening windows of the reaction chamber. By rotating the whole device the fission fragment detection arrays will cover a range of 96 angle in the horizontal plane. The main advantage of this setup is that it allows to perform continuous measurements in energy and angle of the reaction products. The geometry of the whole device has been tested by Monte Carlo calculations using the code ELPHIC. The coincidence condition is completely fulfilled for the first two positions of the setup and partially for the third one. Measurements are intended to be performed at the SMP Tandem from LNS-Catania using light beams ( 16 O, 19 F, 20 Ne, 32 S) at ∼ 6 MeV/A on high fissility parameter targets. (authors)

  15. L and M shell coulomb ionization by heavy charged projectiles

    International Nuclear Information System (INIS)

    Karmaker, R.

    1980-01-01

    Universal cross sections for L and M shell ionization have been extracted from the semiclassical approximation (SCA) model in the straight line path approximation of the projectile. It has been shown that it is possible to organise the calculation of the SCA in a suitable way so that it is not necessary to calculate the cross section for different targets. The agreement between the theoretical curve in the SCA model and the available experimental data for different target elements, is reasonably good. Cross sections for L and M shell ionization in the straight line path of the projectile in the SCA model for Pb, Au and U targets by the impact of protons have been calculated. The results have been compared with those calculated in the Binary Encounter Approximation (BEA) and the Plane Wave Born Approximation (PWBA) as well as with the available experimental results. The present calculations are in good agreement with the existing theoretical and the experimental results. (author)

  16. Mechanisms of Li-projectile breakup-up

    International Nuclear Information System (INIS)

    Rebel, H.; Srivastava, D.K.

    1990-08-01

    Various experimental and theoretical features observed in recent studies of break-up of 6 Li and 7 Li projectiles in the field of atomic nuclei are discussed, in particular for the transitional energy regime of 10-30 MeV/amu. The discussion is organized as three independent lectures presented at the International School on Nuclear Physics, Kiev (UkSSR), 28 May - 8 June, 1990. After a survey on the main experimental facts and on the basic reaction mechanisms, current theoretical approaches are illustrated by an application to the analysis of elastic break-up of 156 MeV 6 Li projectiles. Finally Coulomb break-up is discussed as a novel tool of laboratory nuclear astrophysics. (orig.) [de

  17. Ballistics considerations for small-caliber, low-density projectiles

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Milora, S.L.; Qualls, A.L.

    1993-01-01

    One major application for single- and two-stage light gas guns is for fueling magnetic fusion confinement devices. Powder guns are not a feasible alternative due to possible plasma contamination by residual powder gases and the eventual requirement of steady-state operation at ∼ 1 Hz, which will dictate a closed gas handling system where propellant gases are recovered, processed and recompressed. Interior ballistic calculations for single-stage light gas guns, both analytical and numerical, are compared to an extensive data base for low density hydrogenic projectiles (pellets). Some innovative range diagnostics are described for determining the size and velocity of these small (several mm) size projectiles. A conceptual design of a closed cycle propellant gas system is presented including tradeoffs between different light propellant gases

  18. Backscattering of projectile-bound electrons from solid surfaces

    International Nuclear Information System (INIS)

    Tobisch, M.; Schosnig, M.; Kroneberger, K.; Kuzel, M.; Maier, R.; Jung, M.; Fiedler, C.; Rothard, H.; Clouvas, A.; Suarez, S.; Groeneveld, K.O.

    1994-01-01

    The contribution of projectile ionization (PI) to secondary electron emission is studied by collision of H 2 + and H 3 + ions (400 keV/u and 700 keV/u) with carbon, copper and gold targets (600 A). The measured doubly differential intensity distribution shows a peak of lost projectile electrons near - v p . We describe the subtraction of the contribution of target ionization (TI), and compare the remaining electron intensities with a BEA calculation. For solids we observe a strong energy shift of the electron loss peak, which is compared with the influence of electron transport and binding energy. Furthermore, the low energy tail of the electron loss peak indicates the simultaneous occurrence of PI and TI. Finally we discuss the influence of surface conditions and the dependence of the observation angles on the measured electron intensities. (orig.)

  19. Fragmentation of suddenly heated liquids

    International Nuclear Information System (INIS)

    Blink, J.A.

    1985-03-01

    Fragmentation of free liquids in Inertial Confinement Fusion reactors could determine the upper bound on reactor pulse rate. The x-ray ablated materials must cool and recondense to allow driver beam propagation. The increased surface area caused by fragmentation will enhance the cooling and condensation rates. Relaxation from the suddenly heated state will move a liquid into the negative pressure region under the liquid-vapor P-V dome. The lithium equation of state was used to demonstrate that neutron-induced vaporization uses only a minor fraction of the added heat, much less than would be required to drive the expansion. A 77% expansion of the lithium is required before the rapid vaporization process of spinodal decomposition could begin, and nucleation and growth are too slow to contribute to the expansion

  20. The Physics of Protoplanetesimal Dust Agglomerates. IX. Mechanical Properties of Dust Aggregates Probed by a Solid-projectile Impact

    Science.gov (United States)

    Katsuragi, Hiroaki; Blum, Jürgen

    2017-12-01

    Dynamic characterization of mechanical properties of dust aggregates has been one of the most important problems to quantitatively discuss the dust growth in protoplanetary disks. We experimentally investigate the dynamic properties of dust aggregates by low-speed (≤slant 3.2 m s-1) impacts of solid projectiles. Spherical impactors made of glass, steel, or lead are dropped onto a dust aggregate with a packing fraction of ϕ = 0.35 under vacuum conditions. The impact results in cratering or fragmentation of the dust aggregate, depending on the impact energy. The crater shape can be approximated by a spherical segment and no ejecta are observed. To understand the underlying physics of impacts into dust aggregates, the motion of the solid projectile is acquired by a high-speed camera. Using the obtained position data of the impactor, we analyze the drag-force law and dynamic pressure induced by the impact. We find that there are two characteristic strengths. One is defined by the ratio between impact energy and crater volume and is ≃120 kPa. The other strength indicates the fragmentation threshold of dynamic pressure and is ≃10 kPa. The former characterizes the apparent plastic deformation and is consistent with the drag force responsible for impactor deceleration. The latter corresponds to the dynamic tensile strength to create cracks. Using these results, a simple model for the compaction and fragmentation threshold of dust aggregates is proposed. In addition, the comparison of drag-force laws for dust aggregates and loose granular matter reveals the similarities and differences between the two materials.

  1. Occult lawn mower projectile injury presenting with hemoptysis

    Directory of Open Access Journals (Sweden)

    Patric J. Darvie, BS

    2017-12-01

    Full Text Available We present the case of a 72-year-old man with hemoptysis after a thoracic projectile injury, which occurred while mowing the lawn. Chest radiograph followed by a computed tomography angiogram revealed a metallic foreign body in the right middle lobe of the lung. The patient underwent a right anterolateral thoracotomy where the object was successfully retrieved. The patient had an uneventful postoperative recovery.

  2. Occult lawn mower projectile injury presenting with hemoptysis.

    Science.gov (United States)

    Darvie, Patric J; Ballard, David H; Harris, Nicholas; Bhargava, Peeyush; Rao, Vyas R; Samra, Navdeep S

    2017-12-01

    We present the case of a 72-year-old man with hemoptysis after a thoracic projectile injury, which occurred while mowing the lawn. Chest radiograph followed by a computed tomography angiogram revealed a metallic foreign body in the right middle lobe of the lung. The patient underwent a right anterolateral thoracotomy where the object was successfully retrieved. The patient had an uneventful postoperative recovery.

  3. Occult lawn mower projectile injury presenting with hemoptysis

    OpenAIRE

    Patric J. Darvie, BS; David H. Ballard, MD; Nicholas Harris, MD; Peeyush Bhargava, MD, MBA; Vyas R. Rao, MD; Navdeep S. Samra, MD

    2017-01-01

    We present the case of a 72-year-old man with hemoptysis after a thoracic projectile injury, which occurred while mowing the lawn. Chest radiograph followed by a computed tomography angiogram revealed a metallic foreign body in the right middle lobe of the lung. The patient underwent a right anterolateral thoracotomy where the object was successfully retrieved. The patient had an uneventful postoperative recovery.

  4. Investigations in atomic physics by heavy ion projectiles

    International Nuclear Information System (INIS)

    Berenyi, D.

    1983-01-01

    The utilization of heavy ion reactions in atomic physics is surveyed. The basic collision mechanisms and their consequences in atomic physics are summarized. The atomic and electronic processes during and after heavy ion collisions are reviewed as functions of the projectile energy. The main detection and measuring methods are described. Reviews of new information about the structure of electronic cloud and about fundamental processes based on the analysis of heavy ion reaction data are given. (D.Gy.)

  5. ["Bolt projectiles" discharged from modified humane killers (author's transl)].

    Science.gov (United States)

    Pollak, S; Reiter, C

    1981-01-01

    Some common types of "humane killers" are supplied with rubber bushings and recoil springs holding back the bolt, which afterwards is rebound into the barrel. Removal of the rubber bush and withdrawal spring before firing can cause the bolt to break and become a free projectile. A suicide case is reported, in which a livestock stunner discharged a steel bolt penetrating the forehead and getting stuck in the skull.

  6. Excitation and ionization of ethylene by charged projectiles

    International Nuclear Information System (INIS)

    Wang Zhiping; Wang Jing; Zhang Fengshou

    2010-01-01

    Using the time dependent local density approximation, applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions, the collision process between ethylene and fast charged projectiles is studied in the microscopic way. The impact of ionic motion on the ionization is explored to show the importance of treating electronic and ionic degrees of freedom simultaneously. The number of escaped electrons, ionization probabilities are obtained. Furthermore, it is found that the ionic extensions in different directions show the different patterns. (authors)

  7. Smart Projectiles: Design Guidelines and Development Process Keys to Success

    Science.gov (United States)

    2010-10-01

    about its principal axis. Set forward is the unspringing of the projectile as it leaves the muzzle of the weapon as described in reference 1. In...material properties at even room temperature are unknown or depend upon the mixing of two or more ingredients. The only solution is to create dog ...to setback or are required to hold in tension during set- forward ( muzzle exit), cracks or voids in the explosive that may be compressed and

  8. Scattering of mass-3 projectiles from heavy nuclei

    International Nuclear Information System (INIS)

    Mukhopadyay, S.; Srivastava, D.K.; Ganguly, N.K.

    1976-01-01

    The interaction between heavy ions is a subject of great interest. It is well known that α-particle scattering shows most of the features which are observed in heavy ion scattering. In as much as mass-3 system is intermediate between heavy and light particles it will be interesting to investigate the scattering of mass-3 projectiles to see if it is possible to extend it to study the heavy ion scattering. Indeed; it has been seen that the 'molecular type' potentials, with a soft repulsive core and a shallow attractive well used for heavy ion collisions can be used to fit the elastic scattering data of mass-3 projectiles also. In the first part of this paper, a description is given of how this potential is generated with a special emphasis on saturation and second order effect through a density dependent interaction between nucleon and mass-3 projectiles. In the second part it is shown that the asymmetry dependence observed in the potential describing the scattering of mass-3 particles from heavier nuclei actually originates from the isospin interaction, when triton and helion are treated as two members of an isospin doublet. (Auth.)

  9. Inelastic scattering of quasifree electrons on O7+ projectiles

    International Nuclear Information System (INIS)

    Toth, G.; Grabbe, S.; Richard, P.; Bhalla, C.P.

    1996-01-01

    Absolute doubly differential cross sections (DDCS close-quote s) for the resonant inelastic scattering of quasifree target electrons on H-like projectiles have been measured. Electron spectra for 20.25-MeV O 7+ projectiles on an H 2 target were measured. The spectra contain a resonant contribution from the 3l3l ' doubly excited states of O 6+ , which decay predominantly to the 2l states of the O 7+ via autoionization, and a nonresonant contribution from the direct excitation of the projectiles to the O 7+ (2l) state by the quasifree target electrons. Close-coupling R-matrix calculations for the inelastic scattering of free electrons on O 7+ ions were performed. The relation between the electron-ion inelastic scattering calculation and the electron DDCS close-quote s for the ion-atom collision was established by using the inelastic scattering model (ISM). We found excellent agreement between the theoretical and measured resonant peak positions and relative peak heights. The calculated absolute double differential cross sections for the resonance processes are also in good agreement with the measured data. The implication is that collisions of highly charged ions on hydrogen can be used to obtain high-resolution, angle- resolved differential inelastic electron-scattering cross section. copyright 1996 The American Physical Society

  10. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    Science.gov (United States)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  11. Fragmentation cross sections of relativistic 8436Kr and 10947Ag nuclei in targets from hydrogen to lead

    International Nuclear Information System (INIS)

    Nilsen, B.S.; Waddington, C.J.; Cummings, J.R.; Garrard, T.L.; Klarmann, J.

    1995-01-01

    With the addition of krypton and silver projectiles we have extended our previous studies of the fragmentation of heavy relativistic nuclei in targets ranging in mass from hydrogen to lead. These projectiles were studied at a number of discrete energies between 450 and 1500A MeV. The total and partial charge-changing cross sections were determined for each energy, target, and projectile, and the values compared with previous predictions. A new parametrization of the dependence of the total charge-changing cross sections on the target and projectile is introduced, based on nuclear charge radii derived from electron scattering. We have also parametrized the energy dependence of the total cross sections over the range of energies studied. New parameters were found for a previous representation of the partial charge-changing cross sections in hydrogen and a new parametrization has been introduced for the nonhydrogen targets. The evidence that limiting fragmentation has been attained for these relatively light projectile nuclei at Bevalac energies is shown to be inconclusive, and further measurements at higher energies will be needed to address this question

  12. Transverse velocity scaling in 197Au+197Au fragmentation

    International Nuclear Information System (INIS)

    Lukasik, J.; Hudan, S.; Lavaud, F.

    2002-07-01

    Invariant transverse-velocity spectra of intermediate-mass fragments were measured with the 4π multi-detector system INDRA for collisions of 197 Au on 197 Au at incident energies between 40 and 150 MeV per nucleon. Their scaling properties as a function of incident energy and atomic number Z are used to distinguish and characterize the emissions in (i) peripheral collisions at the projectile and target rapidities, and in (ii) central and (iii) peripheral collisions near mid-rapidity. The importance of dynamical effects is evident in all three cases and their origin is discussed. (orig.)

  13. Damage visualization and deformation measurement in glass laminates during projectile penetration

    Directory of Open Access Journals (Sweden)

    Elmar Strassburger

    2014-06-01

    Full Text Available Transparent armor consists of glass-polymer laminates in most cases. The formation and propagation of damage in the different glass layers has a strong influence on the ballistic resistance of such laminates. In order to clarify the course of events during projectile penetration, an experimental technique was developed, which allows visualizing the onset and propagation of damage in each single layer of the laminate. A telecentric objective lens was used together with a microsecond video camera that allows recording 100 frames at a maximum rate of 1 MHz in a backlit photography set-up. With this technique, the damage evolution could be visualized in glass laminates consisting of four glass layers with lateral dimensions 500 mm × 500 mm. Damage evolution was recorded during penetration of 7.62 mm AP projectiles with tungsten carbide core and a total mass of 11.1 g in the impact velocity range from 800 to 880 m/s. In order to measure the deformation of single glass plates within the laminates, a piece of reflecting tape was attached to the corresponding glass plate, and photonic Doppler velocimetry (PDV was applied. With the photonic Doppler velocimeter, an infrared laser is used to illuminate an object to be measured and the Doppler-shifted light is superimposed to a reference light beam at the detector. The simultaneous visualization and PDV measurement of the glass deformation allow determining the deformation at the time of the onset of fracture. The analysis of the experimental data was supported by numerical simulations, using the AUTODYN commercial hydro-code.

  14. High-velocity Penetration of Concrete Targets with Three Types of Projectiles: Experiments and Analysis

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    Full Text Available Abstract This study conducted high-velocity penetration experiments using conventional ogive-nose, double-ogive-nose, and grooved-tapered projectiles of approximately 2.5 kg and initial velocities between 1000 and 1360 m/s to penetrate or perforate concrete targets with unconfined compressive strengths of nominally 40MPa. The penetration performance data of these three types of projectiles with two different types of materials (i.e., AerMet100 and DT300 were obtained. The crater depth model considering both the projectile mass and the initial velocity was proposed based on the test results and a theoretical analysis. The penetration ability and the trajectory stability of these three projectile types were compared and analyzed accordingly. The results showed that, under these experimental conditions, the effects of these two different kinds of projectile materials on the penetration depth and mass erosion rate of projectile were not obvious. The existing models could not reflect the crater depths for projectiles of greater weights or higher velocities, whereas the new model established in this study was reliable. The double-ogive-nose has a certain effect of drag reduction. Thus, the double-ogive-nose projectile has a higher penetration ability than the conventional ogive-nose projectile. Meanwhile, the grooved-tapered projectile has a better trajectory stability, because the convex parts of tapered shank generated the restoring moment to stabilize the trajectory.

  15. A fragment separator at LBL for beta-NMR experiment

    International Nuclear Information System (INIS)

    Matsuta, K.; Ozawa, A.; Nojiri, Y.; Minamisono, T.; Fukuda, M.; Kitagawa, A.; Ohtsubo, T.; Momota, S.; Fukuda, S.; Matsuo, Y.; Takechi, H.; Minami, I.; Sugimoto, K.; Tanihata, I.; Omata, K.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.

    1992-03-01

    The Beam 44 fragment separator was built at the Bevalac of LBL for NMR studies of beta emitting nuclei. 37 K, 39 Ca, and 43 Ti fragments originating from 40 Ca and 46 Ti primary beams were separated by the separator for NMR studies on these nuclei. Nuclear spin polarization was created in 39 Ca and 43 Ti using the tilted foil technique (TFT), and the magnetic moment of 43 Ti was deduced. Fragment polarization was measured for 37 K and 39 Ca emitted to finite deflection angles. The Beam 44 fragment separator in combination with a proper polarization technique, such as TFT or fragment polarization, has been very effective for such NMR studies

  16. Universal elements of fragmentation

    International Nuclear Information System (INIS)

    Yanovsky, V. V.; Tur, A. V.; Kuklina, O. V.

    2010-01-01

    A fragmentation theory is proposed that explains the universal asymptotic behavior of the fragment-size distribution in the large-size range, based on simple physical principles. The basic principles of the theory are the total mass conservation in a fragmentation process and a balance condition for the energy expended in increasing the surface of fragments during their breakup. A flux-based approach is used that makes it possible to supplement the basic principles and develop a minimal theory of fragmentation. Such a supplementary principle is that of decreasing fragment-volume flux with increasing energy expended in fragmentation. It is shown that the behavior of the decreasing flux is directly related to the form of a power-law fragment-size distribution. The minimal theory is used to find universal asymptotic fragment-size distributions and to develop a natural physical classification of fragmentation models. A more general, nonlinear theory of strong fragmentation is also developed. It is demonstrated that solutions to a nonlinear kinetic equation consistent with both basic principles approach a universal asymptotic size distribution. Agreement between the predicted asymptotic fragment-size distributions and experimental observations is discussed.

  17. First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

    Science.gov (United States)

    Dickel, T.; Plaß, W. R.; Ayet San Andres, S.; Ebert, J.; Geissel, H.; Haettner, E.; Hornung, C.; Miskun, I.; Pietri, S.; Purushothaman, S.; Reiter, M. P.; Rink, A.-K.; Scheidenberger, C.; Weick, H.; Dendooven, P.; Diwisch, M.; Greiner, F.; Heiße, F.; Knöbel, R.; Lippert, W.; Moore, I. D.; Pohjalainen, I.; Prochazka, A.; Ranjan, M.; Takechi, M.; Winfield, J. S.; Xu, X.

    2015-05-01

    211Po ions in the ground and isomeric states were produced via 238U projectile fragmentation at 1000 MeV/u. The 211Po ions were spatially separated in flight from the primary beam and other reaction products by the fragment separator FRS. The ions were energy-bunched, slowed-down and thermalized in a gas-filled cryogenic stopping cell (CSC). They were then extracted from the CSC and injected into a high-resolution multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). The excitation energy of the isomer and, for the first time, the isomeric-to-ground state ratio were determined from the measured mass spectrum. In the subsequent experimental step, the isomers were spatially separated from the ions in the ground state by an ion deflector and finally collected with a silicon detector for decay spectroscopy. This pioneering experimental result opens up unique perspectives for isomer-resolved studies. With this versatile experimental method new isomers with half-lives longer than a few milliseconds can be discovered and their decay properties can be measured with highest sensitivity and selectivity. These experiments can be extended to studies with isomeric beams in nuclear reactions.

  18. Theoretical study on production of heavy neutron-rich isotopes around the N=126 shell closure in radioactive beam induced transfer reactions

    Directory of Open Access Journals (Sweden)

    Long Zhu

    2017-04-01

    Full Text Available In order to produce more unknown neutron-rich nuclei around N=126, the transfer reactions 136Xe + 198Pt, 136–144Xe + 208Pb, and 132Sn + 208Pb are investigated within the framework of the dinuclear system (DNS model. The influence of neutron excess of projectile on production cross sections of target-like products is studied through the reactions 136,144Xe + 208Pb. We find that the radioactive projectile 144Xe with much larger neutron excess is favorable to produce neutron-rich nuclei with charge number less than the target rather than produce transtarget nuclei. The incident energy dependence of yield distributions of fragments in the reaction 132Sn + 208Pb are also studied. The production cross sections of neutron-rich nuclei with Z=72–77 are predicted in the reactions 136–144Xe + 208Pb and 132Sn + 208Pb. It is noticed that the production cross sections of unknown neutron-rich nuclei in the reaction 144Xe + 208Pb are at least two orders of magnitude larger than those in the reaction 136Xe + 208Pb. The radioactive beam induced transfer reactions 139,144Xe + 208Pb, considering beam intensities proposed in SPIRAL2 (Production System of Radioactive Ion and Acceleration On-Line project as well, for production of neutron-rich nuclei around the N=126 shell closure are investigated for the first time. It is found that, in comparison to the stable beam 136Xe, the radioactive beam 144Xe shows great advantages for producing neutron-rich nuclei with N=126 and the advantages get more obvious for producing nuclei with less charge number.

  19. Large fragment production calculations in relativistic heavy-ion reactions

    International Nuclear Information System (INIS)

    Seixas de Oliveira, L.F.

    1978-12-01

    The abrasion-ablation model is briefly described and then used to calculate cross sections for production of large fragments resulting from target or projectile fragmentation in high-energy heavy-ion collisions. The number of nucleons removed from the colliding nuclei in the abrasion stage and the excitation energy of the remaining fragments (primary products) are calculated with the geometrical picture of two different models: the fireball and the firestreak models. The charge-to-mass dispersion of the primary products is calculated using either a model which assumes no correlations between proton and neutron positions inside the nucleus (hypergeometric distribution) or a model based upon the zero-point oscillations of the giant dipole resonance (NUC-GDR). Standard Weisskopf--Ewing statistical evaporation calculations are used to calculate final product distributions. Results of the pure abrasion-ablation model are compared with a variety of experimental data. The comparisons show the insufficiency of the extra-surface energy term used in the abrasion calculations. A frictional spectator interaction (FSI) is introduced which increases the average excitation energy of the primary products, and improves the results considerably in most cases. Agreements and discrepancies of the results calculated with the different theoretical assumptions and the experimental data are studied. Of particular relevance is the possibility of observing nuclear ground-state correlations.Results of the recently completed experiment of fragmentation of 213 Mev/A 40 Ar projectiles are studied and shown not to be capable of answering that question unambiguously. But predictions for the upcoming 48 Ca fragmentation experiment clearly show the possibility of observing correlation effects. 78 references

  20. Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact.

    Science.gov (United States)

    Lee, Sangkyu; Kim, Gyuyong; Kim, Hongseop; Son, Minjae; Choe, Gyeongcheol; Nam, Jeongsoo

    2018-03-09

    This study evaluates the fracture properties and rear-face strain distribution of nonreinforced and hooked steel fiber-reinforced concrete panels penetrated by projectiles of three different nose shapes: sharp, hemispherical, and flat. The sharp projectile nose resulted in a deeper penetration because of the concentration of the impact force. Conversely, the flat projectile nose resulted in shallower penetrations. The penetration based on different projectile nose shapes is directly related to the impact force transmitted to the rear face. Scabbing can be more accurately predicted by the tensile strain on the rear face of concrete due to the projectile nose shape. The tensile strain on the rear face of the concrete was reduced by the hooked steel fiber reinforcement because the hooked steel fiber absorbed some of the impact stress transmitted to the rear face of the concrete. Consequently, the strain behavior on the rear face of concrete according to the projectile nose shape was confirmed.

  1. Study of incomplete fusion sensitivity to projectile structure from forward recoil range distribution measurement

    International Nuclear Information System (INIS)

    Kumar, Harish; Tali, Suhail A.; Afzal Ansari, M.

    2017-01-01

    Recently, the projectile structure is found to affect the incomplete fusion (ICF) process by using α- and non-α-cluster structured projectiles which is explored in terms of projectile α-Q-value and is still limited only for a very few systems. Keeping in view the recent aspects especially the projectile structure effect on ICF, the present work is carried out in the series of experiment by using α- and non-α-cluster structured projectiles. Presently, the FRRDs of evaporation residues (ERs) produced in 13 C + 175 Lu system have been measured at ≈ 88 MeV energy. In this work, an attempt has been made to have a better knowledge of projectile α-Q-value effect on ICF

  2. Electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with many-electron atomic targets

    International Nuclear Information System (INIS)

    Mueller, C.; Gruen, N.; Voitkiv, A.B.

    2002-01-01

    We study single- and double-electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with neutral many-electron target atoms. The simultaneous interaction of the target with two projectile electrons is found to be the dominant process in the double-electron loss provided the atomic number of the projectile, Z p , that of the target, Z t , and the collision velocity, v, satisfy the condition Z p Z t /v>0.4. It is shown that for a wide range of projectile and target atomic numbers the asymptotic double-to-single loss ratio strongly depends on the target atomic number but is nearly independent of the nuclear charge of the projectile. It is also demonstrated that many-photon exchange between the target and each of the projectile electrons considerably influences the double loss in collisions with very heavy targets

  3. Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact

    Directory of Open Access Journals (Sweden)

    Sangkyu Lee

    2018-03-01

    Full Text Available This study evaluates the fracture properties and rear-face strain distribution of nonreinforced and hooked steel fiber-reinforced concrete panels penetrated by projectiles of three different nose shapes: sharp, hemispherical, and flat. The sharp projectile nose resulted in a deeper penetration because of the concentration of the impact force. Conversely, the flat projectile nose resulted in shallower penetrations. The penetration based on different projectile nose shapes is directly related to the impact force transmitted to the rear face. Scabbing can be more accurately predicted by the tensile strain on the rear face of concrete due to the projectile nose shape. The tensile strain on the rear face of the concrete was reduced by the hooked steel fiber reinforcement because the hooked steel fiber absorbed some of the impact stress transmitted to the rear face of the concrete. Consequently, the strain behavior on the rear face of concrete according to the projectile nose shape was confirmed.

  4. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array

    Science.gov (United States)

    Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih

    2011-08-01

    This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.

  5. Experimental study on the secondary emission (atomic and molecular ions, aggregates, electrons) induced by the bombardment of surfaces by means of energetic heavy ions (∼ MeV/u). Effects of the charge state of the projectiles

    International Nuclear Information System (INIS)

    Monart, B.

    1988-05-01

    The ionic and electronic emissions, induced by the sputtering of solid targets (organic and inorganic) with 1 MeV/u projectiles. The time-of-flight spectrometry is applied to the secondary emission analysis. The projectile velocity, the angle of attack (between the beam and the target), and the projectile's incident charge state, are taken into account. It is shown that the secondary emission depends on the charge of the incident ion and on the charge state changement in the material's bulk. A model, applying the theoretical calculations concerning the charge in the material's bulk, is proposed. The existence of an interaction depth, for the incident ion and the material, which depends on the secondary ions type and on the incident ion charge, is suggested. The calculated depth is about 200 angstroms for the aggregates ejected from a CsI target, sputtered with 14 Kr 18+ . The H + yield (coming from ∼ 10 angstroms) is used as a projectile charge probe, at the material surface. The experimental method allows, for the first time, the obtention of the equilibrium charge state in the condensed matter. The same method is applied to determine the non-equilibrium charges in the bulk of thin materials. The results show that, after leaving the material, the projectile presents a post-ionization state [fr

  6. Projectile-charge-state dependence of 0 degree binary-encounter electron production in 30-MeV Oq++O2 collisions

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Richard, P.; Wong, K.L.; Hidmi, H.I.; Sanders, J.M.; Liao, C.; Grabbe, S.; Bhalla, C.P.

    1994-01-01

    Double-differential cross sections (DDCS's) for the production of binary-encounter electrons (BEE's) are reported for 30-MeV O q+ +O 2 collisions. The BEE DDCS's were measured at θ=0 degree with respect to the beam direction for projectile charge states q=4--8. The measured BEE DDCS's were found to increase with decreasing charge state in agreement with other recent BEE results employing simpler H 2 and He targets. Impulse-approximation calculations of BEE production for θ=0 degree--45 degree are also presented, in which it is assumed that target electrons undergo elastic scattering in the screened Coulomb field of the projectile ion. These calculations are shown to be in agreement with our data at θ=0 degree where only 2s and 2p target electrons are considered

  7. Influence of mass-asymmetry and ground state spin on fission fragment angular distributions

    International Nuclear Information System (INIS)

    Thomas, R.G.; Biswas, D.C.; Saxena, A.; Pant, L.M.; Nayak, B.K.; Vind, R.P.; Sahu, P.K.; Sinha, Shrabani; Choudhury, R.K.

    2001-01-01

    The strong influence of the target or/and projectile ground state spin on the anomalously large anisotropies of fission fragments produced in the heavy-ion induced fission of actinide targets were reported earlier. Interestingly, all those systems studied were having a mass asymmetry greater than the Businaro-Gallone critical asymmetry and hence the presence of pre-equilibrium fission was unambiguously ruled out. The observed anisotropies were successfully explained using the ECD-K-States model. It is of interest to know the influence of the target/projectile ground state spin on systems having an entrance channel mass asymmetry less than the critical value where pre-equilibrium fission cannot be ignored. With this motivation we performed measurements of fission fragment angular distributions of the 16 O+ 235 U (spin=7/2) system

  8. Ion beam analysis

    International Nuclear Information System (INIS)

    Bethge, K.

    1995-01-01

    Full text: Ion beam analysis is an accelerator application area for the study of materials and the structure of matter; electrostatic accelerators of the Van de Graaff or Dynamitron type are often used for energies up to a few MeV. Two types of machines are available - the single-ended accelerator type with higher beam currents and greater flexibility of beam management, or the tandem accelerator, limited to atomic species with negative ions. The accelerators are not generally installed at specialist accelerator laboratories and have to be easy to maintain and simple to operate. The most common technique for industrial research is Rutherford Back Scattering Spectrometry (RBS). Helium ions are the preferred projectiles, since at elevated energies (above 3 MeV) nuclear resonance scattering can be used to detect photons associated with target molecules containing elements such as carbon, nitrogen or oxygen. Due to the large amount of available data on nuclear reactions in this energy range, activation analysis (detecting trace elements by irradiating the sample) can be performed with charged particles from accelerators over a wider range of atoms than with the conventional use of neutrons, which is more suited to light elements. Resonance reactions have been used to detect trace metals such as aluminium, titanium and vanadium. Hydrogen atoms are vital to the material performance of several classes of materials, such as semiconductors, insulators and ceramics. Prudent selection of the projectile ion aids the analysis of hydrogen composition; the technique is then a simple measurement of the emitted gamma radiation. Solar cell material and glass can be analysed in this way. On a world-wide basis, numerous laboratories perform ion beam analysis for research purposes; considerable work is carried out in cooperation between scientific laboratories and industry, but only a few laboratories provide a completely commercial service

  9. Non-equilibrium versus equilibrium emission of complex fragments from hot nuclei

    International Nuclear Information System (INIS)

    Viola, V.E.; Kwiatkowski, K.; Yennello, S.; Fields, D.E.

    1989-01-01

    The relative contributions of equilibrium and non-equilibrium mechanisms for intermediate-mass fragment emission have been deduced for Z=3-14 fragments formed in 3 He- and 14 N-induced reactions on Ag and Au targets. Complete inclusive excitation function measurements have been performed for 3 He projectiles from E/A=67 to 1,200 MeV and for 14 N from E/A=20 to 50 MeV. The data are consistent with a picture in which equilibrated emission is important at the lowest energies, but with increasing bombarding energy the cross sections are increasingly dominated by non-equilibrium processes. Non-equilibrium emission is also shown to be favored for light fragments relative to heavy fragments. These results are supported by coincidence studies of intermediate-mass fragments tagged by linear momentum transfer measurements

  10. Fission of spin-aligned projectile-like nuclei in the interactions of 29 MeV/nucleon 208Pb with 197Au

    International Nuclear Information System (INIS)

    Bresson, S.; Morjean, M.; Jastrzebski, J.; Skulski, W.; Kordyasz, A.; Lott, B.

    1992-01-01

    Binary fission of projectile-like nuclei was investigated in the interaction of 29 MeV/nucleon Pb on Au, together with the associated neutron multiplicity. Fission is only observed in rather peripheral collisions and represents approximately 20% of the total reaction cross-section. The fission process occurs after collisions in which up to 550 MeV have been dissipated. The angular and energy distribution of the fragments can be accounted for by assuming a noticeable spin alignment of the fissioning nuclei. (author) 18 refs.; 3 figs

  11. On ballistic parameters of less lethal projectiles influencing the severity of thoracic blunt impacts.

    Science.gov (United States)

    Pavier, Julien; Langlet, André; Eches, Nicolas; Jacquet, Jean-François

    2015-01-01

    The development and safety certification of less lethal projectiles require an understanding of the influence of projectile parameters on projectile-chest interaction and on the resulting terminal effect. Several energy-based criteria have been developed for chest injury assessment. Many studies consider kinetic energy (KE) or energy density as the only projectile parameter influencing terminal effect. In a common KE range (100-160 J), analysis of the firing tests of two 40 mm projectiles of different masses on animal surrogates has been made in order to investigate the severity of the injuries in the thoracic region. Experimental results have shown that KE and calibre are not sufficient to discriminate between the two projectiles as regards their injury potential. Parameters, such as momentum, shape and impedance, influence the projectile-chest interaction and terminal effect. A simplified finite element model of projectile-structure interaction confirms the experimental tendencies. Within the range of ballistic parameters used, it has been demonstrated that maximum thoracic deflection is a useful parameter to predict the skeletal level of injury, and it largely depends on the projectile pre-impact momentum. However, numerical simulations show that these results are merely valid for the experimental conditions used and cannot be generalised. Nevertheless, the transmitted impulse seems to be a more general factor governing the thorax deflection.

  12. Local behavior of reinforced concrete slabs to aircraft engine projectile impact

    International Nuclear Information System (INIS)

    Yoo, Hyeon Kyeong; Choi, Hyun; Chung, Chul Hun; Lee, Jung Whee; Kim, Sang Yun

    2011-01-01

    Structural safety evaluation of nuclear power plant considers two distinct types of structural failure, local failure and global failure. In the local failure evaluation, considered projectiles can be divided as internal and external projectile according to the impact location, and they also can be divided as rigid and soft projectile according to the deformation level after impact. Frequently considered projectiles are aircraft engine, tornado, and turbine projectile. When the speed and weight of the projectiles are considered, the most influential projectile is aircraft engine, which is one of the soft projectiles. Sugano et al. performed impact test using an engine model projectile, which is derived from GE-J79 engine and concentrated mass-spring model idealization. Kojima and Sugano et al. demonstrated from their experiments that steel liner on the rear side of the concrete wall reduces impact induced damage and suppresses debris scattering. Chung et al. performed comparison study of various formulae suggested for local damage evaluation using previously performed numerous local impact test results. Also, they validated a methodology of numerical analysis for impact simulation using LS-DYNA. Previously suggested formulae and research results do not consider the effect of liner plate or curved shape of the containment building walls on the local damage. In this research, flat wall and curved wall are individually modeled using the same curvature of nuclear power plants, and the effects of curvature and liner plates on the local damage are analytically investigated

  13. Analysis on the resistive force in penetration of a rigid projectile

    Directory of Open Access Journals (Sweden)

    Xiao-wei Chen

    2014-09-01

    Full Text Available According to the dimensionless formulae of DOP (depth of penetration of a rigid projectile into different targets, the resistive force which a target exerts on the projectile during the penetration of rigid projectile is theoretically analyzed. In particular, the threshold Vc of impact velocity applicable for the assumption of constant resistive force is formulated through impulse analysis. The various values of Vc corresponding to different pairs of projectile-target are calculated, and the consistency of the relative test data and numerical results is observed.

  14. Hidrodinamički model podvodnog projektila / Hidrodinamical model of an underwater projectile

    Directory of Open Access Journals (Sweden)

    Miroslav Radosavljević

    2008-07-01

    Full Text Available Radi dobijanja kvalitetnog matematičkog modela podvodnog projektila u radu su definisane ulazne i izlazne veličine, brzine i ubrzanje projektila. Uz zadate uslove mogućeg kretanja projektila definisan je model podvodnog projektila sa šest jednačina. / The paper analyzes an underwater projectile. The input and output values, the projectile speed and acceleration are defined for a quality definition of the projectile mathematical model. With the conditions of the projectile potential movement previously set out, the torpedo model is defined by six equations.

  15. Statistical and off-equilibrium production of fragments in heavy ion collisions at intermediate energies; Production statistique et hors-equilibre de fragments dans les collisions d`ions lourdes aux energies intermediaires

    Energy Technology Data Exchange (ETDEWEB)

    Bocage, Frederic [Lab. de Physique Corpusculaire, Caen Univ., 14 - Caen (France)

    1998-12-15

    The study of reaction products, fragments and light charged particles, emitted during heavy-ion collisions at intermediate energies has shown the dominant binary dissipative character of the reaction, which is persisting for almost all impact parameters. However, in comparison with this purely binary process, an excess of nuclear matter is observed in-between the quasi-projectile and the quasi-target. To understand the mechanisms producing such an excess, this work studies more precisely the breakup in two fragments of the quasi-projectile formed in Xe+Sn, from 25 to 50 MeV/u, and Gd+C and Gd+U at 36 MeV/u. The data were obtained during the first INDRA experiment at GANIL. The angular distributions of the two fragments show the competition between statistical fission and non-equilibrated breakup of the quasi-projectile. In the second case, the two fragments are aligned along the separation axis of the two primary partners. The comparison of the fission directions and probabilities with statistical models allows us to measure the fission time, as well as the angular momentum, temperature and size of the fissioning residue. The relative velocities are compatible with Coulomb and thermal effects in the case of statistical fission and are found much higher for the breakup of a non-equilibrated quasi-projectile, which indicates that the projectile was deformed during interaction with the target. Such deformations should be compared with dynamical calculations in order to constrain the viscosity of nuclear matter and the parameters of the nucleon-nucleon interaction, (author) 148 refs., 77 figs., 11 tabs.

  16. Effect of projectile on incomplete fusion reactions at low energies

    Directory of Open Access Journals (Sweden)

    Sharma Vijay R.

    2017-01-01

    Full Text Available Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n excess projectile 13C (as compared to 12C results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B and forward (F α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  17. Effect of projectile on incomplete fusion reactions at low energies

    Science.gov (United States)

    Sharma, Vijay R.; Shuaib, Mohd.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj K.; Kumar, R.; Singh, Devendra P.; Singh, B. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.; Prasad, R.

    2017-11-01

    Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF) is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n) excess projectile 13C (as compared to 12C) results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B) and forward (F) α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  18. Calculation of forces arising from impacting projectiles upon yielding structures

    International Nuclear Information System (INIS)

    Drittler, K.; Gruner, P.; Krivy, J.

    1977-01-01

    Calculations concerning the impact of airplanes upon nuclear power plant buildings usually imply that the building 'acts' as a rigid target. This assumption is justified for considerations concerning the structural integrity of the building being hit. However, for investigating induced vibrations of components within the structure, this approach might -in general- be too conservative. It is expected, that yielding of the structure during impact reduces the peak values of the loads and changes the temporal behavior of the load function which is obtained for a rigid target. To calculate the changes of the load function which are due to deformations of the structure, Riera's method is extended for the case of a yielding target. In view of the applications of the calculations to the impact of airplanes upon buildings which are constructed to withstand loads of this kind without serious damage and without large deformations, it is possible to simplify the calculations to some extent. That is, the investigations need not take into account in detail the behavior of the target during impact. The calculations are performed with a one-dimensional model for the projectile. The direction of impact is perpendicular to the target surface; direction of impact and projectile axis coincide. The calculations were performed for several initial velocities of the projectiles simulating a fast flying military airplane. Variations of the peak values of the load functions as compared to corresponding values for a rigid target do not exceed about 10%. The overall temporal behavior of the load curves turns out to be not very sensitive to the yielding of the target, though, in some cases displacements in time of the peak positions within a single load curve do arise

  19. Universality of fragment shapes.

    Science.gov (United States)

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-03-16

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.

  20. Management of in-tube projectiles using acoustic channel

    Science.gov (United States)

    Kostina, M. A.; Bortalevich, S. I.; Loginov, E. L.; Shinyakov, Y. A.; Sukhorukov, M. P.

    2018-03-01

    The article describes the method of measuring the distance from the operator's console installed outside the pipe to the in-tube projectile. A method for measuring distance in the absence of an echo signal is proposed. To do this, two identical ultrasonic locators operating at different frequencies were installed inside and outside the pipeline. The change in the duration of an acoustic pulse propagating in a circular waveguide with rigid walls is shown, which leads to a decrease in the data transfer rate.

  1. Excitation and Ionization of Ethylene by Charged Projectiles

    International Nuclear Information System (INIS)

    Zhi-Ping, Wang; Jing, Wang; Feng-Shou, Zhang

    2010-01-01

    Using the time dependent local density approximation, applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions, the collision process between ethylene and fast charged projectiles is studied in the microscopic way. The impact of ionic motion on the ionization is explored to show the importance of treating electronic and ionic degrees of freedom simultaneously. The number of escaped electrons, ionization probabilities are obtained. Furthermore, it is found that the ionic extensions in different directions show the different patterns. (atomic and molecular physics)

  2. Destructive behavior of iron oxide in projectile impact

    Science.gov (United States)

    Shang, Wang; Xiaochen, Wang; Quan, Yang; Zhongde, Shan

    2017-12-01

    The damage strain values of Q235-A surface oxide scale were obtained by scanning electron microscopy (SEM/EDS) and universal tensile testing machine. The finite element simulation was carried out to study the destruction effects of oxidation at different impact rates. The results show that the damage value of the oxide strain is 0.08%. With the increase of the projectile velocity, the damage area of the oxide scale is increased, and the damage area is composed of the direct destruction area and the indirect failure area. The indirect damage area is caused by the stress/strain to the surrounding expansion after the impact of the steel body.

  3. Radioactive ion beam production by the ISOL method for SPIRAL

    International Nuclear Information System (INIS)

    Landre-Pellemoine, Frederique

    2001-01-01

    This work is directly related to the SPIRAL project (Systeme de Production d'Ions Radioactifs Acceleres en Lignes) of which the start up will begin in September 2001 at GANIL (Grand Accelerateur National d'Ions Lourds) in Caen. This thesis primarily concerns the development of radioactive ion production systems (target/ion source) by the thorough study of each production stage of the ISOL (Isotopic Separation On Line) method: target and/or projectile fragmentation production, diffusion out of target material, effusion into the ion source and finally the ionization of the radioactive atoms. A bibliographical research and thermal simulations allowed us to optimize materials and the shape of the production and diffusion targets. A first target was optimized and made reliable for the radioactive noble gases production (argon, neon...). A second target dedicated to the radioactive helium production was entirely designed and realised (from the specifications to the 'off line' and 'on line' tests). Finally, a third target source system was defined for singly-charged radioactive alkaline production. The intensities of secondary beams planned for SPIRAL are presented here. A detailed study of the diffusion effusion efficiency for these various targets showed that the use of a fine microstructure carbon (grain size of 1 μm) improved the diffusion and showed the importance of thickness of the lamella for the short lived isotope effusion. (author) [fr

  4. Multifragmentation of gold nuclei interacting with photoemulsion nuclei at an energy of 10.7 GeV per projectile nucleon

    International Nuclear Information System (INIS)

    Gulamov, K.G.; Navotny, V.Sh.; Uzhinskii, V.V.

    1999-01-01

    Experimental data on the distributions of fragments with respect to the bound charge (Z bound , Z b3 ) and with respect to the multiplicities and on their correlations are presented. These data are compared with analogous data at 600 MeV per projectile nucleon that were obtained at the ALADIN facility. It has been shown that the processes of gold-nucleus multifragmentation at intermediate and high energies have some common features. At the same time, the multiplicity of medium-mass fragments becomes somewhat less at high energies. Data presented in this study are analyzed within the framework combining the statistical model of nuclear multifragmentation with the Regge model of the breakup of nuclei. This combined model has been shown to reproduce qualitatively the experimental results under discussion. The most pronounced discrepancies have been observed for the yields of doubly charged fragments. The transverse momenta of fragments have been analyzed as functions of the bound charge Z bound . It has been demonstrated that the model underestimates considerably the transverse momenta of fragments. This is interpreted as evidence for a strong radial flow of spectator fragments

  5. Allotropic effects on the energy loss of swift H+ and He+ ion beams through thin foils

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago

    2006-01-01

    We have developed a theoretical treatment and a simulation code to study the energy loss of swift H + and He + ion beams interacting with thin foils of different carbon allotropes. The former is based on the dielectric formalism, and the latter combines Monte Carlo with the numerical solution of the motion equation for each projectile to describe its trajectory and interactions through the target. The capabilities of both methods are assessed by the reasonably good agreement between their predictions and the experimental results, for a wide range of projectile energies and target characteristics. Firstly, we apply the theoretical procedure to calculate the stopping cross sections for H + and He + beams in foils of different allotropic forms of carbon (such as diamond, graphite, amorphous carbon, glassy carbon and C 60 -fullerite), as a function of the projectile energy. We take into account the electronic structure of the projectile, as well as the different charge states it can acquire, the energy loss associated to the electronic capture and loss processes, the polarization of the projectile, and a realistic description of the target. On the other hand, the simulation code is used to evaluate the energy distributions of swift H + and He + ion beams when traversing several foils of the above mentioned allotropic forms of carbon, in order to analyze the influence of the chemical and physical state of the target in the projectile energy loss. These allotropic effects are found to become more important around the maximum of the stopping cross-section

  6. Fragment emission in reactions of 18.5-GeV 12C ions with complex nuclei

    International Nuclear Information System (INIS)

    Porile, N.T.; Cole, G.D.

    1982-01-01

    The emission of fragments ranging from 24 Na to 52 Mn in reactions of 18.5 GeV 12 C ions with Cu, Ag, Gd, Ta, Au, and U targets has been studied by means of activation techniques. The experiments involved determination of the fragment production cross sections and thick-target recoil properties. The latter were used to obtain mean fragment kinetic energies and values of β/sub parallel to/, the forward velocity component of the struck nucleus (in units of c). The results are compared with similar data for incident protons of the same total kinetic energy. The data may be used to assess the importance of central collisions in fragment production. Such collisions lead to the near total destruction of both interacting nuclei and the resulting fragments are emitted by a system of intermediate rapidity. In such a process, the factorization hypothesis, which has been shown to be valid for target and projectile fragmentation reactions, should not be obeyed. A test for factorization is performed by means of a relation which states that the ratio of the cross sections for producing fragment /sup A/Z in 12 C reactions to that for producing the same fragment in proton reactions with the same target is unity, provided both cross sections are reduced by the values of the corresponding total reaction cross sections sigma/sub R/, and evaluated for the same total kinetic energy of the projectile. The results of this comparison for the targets studied are presented and discussed

  7. Coulomb effects in low-energy nuclear fragmentation

    Science.gov (United States)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  8. Plasma wake and nuclear forces on fragmented H+ transport

    International Nuclear Information System (INIS)

    Barriga-Carrasco, Manuel D; Deutsch, Claude

    2006-01-01

    The objective of the present work is to study the target electronic and nuclear interactions produced when a H + ion traverses classical plasma matter. Electronic interactions are treated by means of the dielectric formalism while nuclear interactions are dealt within the classical dispersion theory through a Monte Carlo computer code. The interactions through plasma electronic medium among close ions are called wake forces. We checked that these forces screen the Coulomb explosions of the two fragmented protons from the same H + ion decreasing their relative distance in the analysed cases. These forces align the interproton vector along the motion direction. They also tend the two-proton energy loss to the value of two isolated protons when at early times it is rather larger. Nevertheless most parts of these wake effects cannot be corroborated experimentally as they are masked by the projectile collisions with target nuclei in our numerical experiment. These collisions cancel the screening produced by the wake forces, increasing the interproton distance even faster than for bare Coulomb explosion. Also they misalign the interproton vector along the motion direction and contribute moderately to increase the energy loss of the fragmented H + ion. These nuclear collisions effects are more significant in reducing projectile velocity

  9. Multiplicity of secondary electrons emitted by carbon thin targets by impact of H0, H2+ and H3+ projectiles at MeV energies

    International Nuclear Information System (INIS)

    Vidovic, Zvonimir

    1997-01-01

    This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H 0 , H 2 + and H 3 + projectiles in the 0.25 - 2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. Phenomenological and theoretical descriptions as well as a summary of the main theoretical models are the subjects of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of the thin carbon foils crossed by an energetic projectile is described in the chapter two. In this chapter there are also presented the method and the algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H 0 atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H 2 + and H 3 + polyatomic ions. The results are interpreted in terms of collective effects in the interactions of the ions with solids. The role of the proximity of the protons, molecular ions fragments, upon the amplitude of these collected effects is evidenced from the study of the statistics of forward emission. The experiments allowed us to shed light on various aspects of atom and polyatomic ion interactions with solid surfaces. (author)

  10. Study of uranium dioxyde sputtering induced by multicharged heavy ions at low and very low kinetic energy: projectile charge effect; Etude de la pulverisation du dioxyde d'uranium induite par des ions lourds multicharges de basse et tres basse energie cinetique; effet de la charge du projectile

    Energy Technology Data Exchange (ETDEWEB)

    Haranger, F

    2003-12-01

    Ion beam irradiation of a solid can lead to the emission of neutral or ionized atoms, molecules or clusters from the surface. This comes as a result of the atomic motion in the vicinity of the surface, induced by the transfer of the projectile energy. Then, the study of the sputtering process appears as a means to get a better understanding of the excited matter state around the projectile trajectory. In the case of slow multicharged ions, a strong electronic excitation can be achieved by the projectile neutralization above the solid surface and / or its deexcitation below the surface. Parallel to this, the slowing down of such ions is essentially related to elastic collision with the target atoms. The study of the effect of the initial charge state of slow multicharged ions, in the sputtering process, has been carried out by measuring the absolute angular distributions of emission of uranium atoms from a uranium dioxide surface. The experiments have been performed in two steps. First, the emitted particles are collected onto a substrate during irradiation. Secondly, the surface of the collectors is analyzed by Rutherford Backscattering Spectrometry (RBS). This method allows the characterization of the emission of neutrals, which are the vast majority of the sputtered particles. The results obtained provide an access to the evolution of the sputtering process as a function of xenon projectile ions charge state. The measurements have been performed over a wide kinetic energy range, from 81 down to 1.5 keV. This allowed a clear separation of the contribution of the kinetic energy and initial projectile charge state to the sputtering phenomenon. (author)

  11. ''Theta gun,'' a multistage, coaxial, magnetic induction projectile accelerator

    International Nuclear Information System (INIS)

    Burgess, T.J.; Duggin, B.W.; Cowan, M. Jr.

    1985-11-01

    We experimentally and theoretically studied a multistage coaxial magnetic induction projectile accelerator. We call this system a ''theta gun'' to differentiate it from other coaxial accelerator concepts such as the mass driver. We conclude that this system can theoretically attain railgun performance only for large caliber or very high injection velocity and, even then, only for long coil geometry. Our experiments with a three-stage, capactor bank-driven accelerator are described. The experiments are modeled with a 1-1/2 dimensional equivalent circuit-hydrodynamics code which is also described. We derive an expression for the conditions of coaxial accelerator-railgun ''velocity breakeven'' in the absence of ohmic and hydrodynamic effects. This, in conjunction with an expression for the magnetic coupling coefficient, defines a set of geometric relations which the coaxial system must simultaneously satisfy. Conclusions concerning both the existence and configuration of a breakeven coaxial system follow from this requirement. The relative advantages and disadvantages of the coaxial induction projectile accelerator, previously cited in the literature, are critiqued from the viewpoint of our analysis and experimental results. We find that the advantages vis-a-vis the railgun have been overstated. 13 refs., 17 figs

  12. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  13. Reaction dynamics of {sup 34-38}Mg projectile with carbon target using Glauber model

    Energy Technology Data Exchange (ETDEWEB)

    Shama, Mahesh K., E-mail: maheshphy82@gmail.com [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Department of Applied Sciences, Chandigarh Engineering College, Landran Mohali-140307 (India); Panda, R. N. [Department of Physics, ITER, Shiksha O Anusandhan University, Bhubaneswar-751030 (India); Sharma, Manoj K. [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Patra, S. K. [Institute of Physics, Sachivalaya marg Bhubneswar-751005 (India)

    2015-08-28

    We have studied nuclear reaction cross-sections for {sup 34-38}Mg isotopes as projectile with {sup 12}C target at projectile energy 240AMeV using Glauber model with the conjunction of densities from relativistic mean filed formalism. We found good agreement with the available experimental data. The halo status of {sup 37}Mg is also investigated.

  14. Projectile Nose Mass Abrasion of High-Speed Penetration into Concrete

    Directory of Open Access Journals (Sweden)

    Haijun Wu

    2012-01-01

    Full Text Available Based on the dynamic spherical cavity expansion theory of concrete and the analysis of experimental data, a mass abrasion model of projectile considering the hardness of aggregates, the relative strength of target and projectile, and the initial impact velocity is constructed in this paper. Furthermore, the effect of mass abrasion on the penetration depth of projectile and the influence of hardness of aggregates and strength of projectile on penetration depth and mass loss are also analyzed. The results show that, for the ogive-nose projectile with the CRH of 3 and aspect ratio of 7 penetrating the concrete of 35 MPa, the “rigid-body penetration” model is available when the initial impact velocity is lower than 800 m/s. However, when the initial impact velocity is higher than 800 m/s, the “deforming/eroding body penetration” model should be adopted. Through theoretical analysis and numerical calculation, the results indicate that the initial impact velocity is the most important factor of mass abrasion. The hardness of aggregates and the strength of projectile are also significant factors. But relatively speaking, the sensitivity of strength of projectile to mass abrasion is higher, which indicates that the effect of projectile material on mass abrasion is more dramatic than the hardness of aggregates.

  15. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    Science.gov (United States)

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  16. Earliest stone-tipped projectiles from the Ethiopian rift date to >279,000 years ago.

    Science.gov (United States)

    Sahle, Yonatan; Hutchings, W Karl; Braun, David R; Sealy, Judith C; Morgan, Leah E; Negash, Agazi; Atnafu, Balemwal

    2013-01-01

    Projectile weapons (i.e. those delivered from a distance) enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips) as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology.

  17. Measurements of recoil and projectile momentum distributions for 19-MeV F9+ + Ne collisions

    International Nuclear Information System (INIS)

    Frohne, V.; Cheng, S.; Ali, R.M.; Raphaelian, M.L.; Cocke, C.L.; Olson, R.

    1996-01-01

    The collision system of 19-MeV F 9+ on Ne has been studied using recoil and projectile momentum spectroscopy. For each event, identified by final recoil and projectile charge state, the three-dimensional momentum vector of the recoil ion and the transverse momentum vector of the projectile ion were measured. The transverse momenta of the recoil and projectile ions were found to be equal in magnitude and opposite in direction, indicating that the transverse momentum exchange is dominated by interactions between the two ion cores. The transverse momentum distributions are well described by nCTMC calculations. The longitudinal momentum distributions of the recoil ions show that a large fraction of the momentum transferred to the projectile is carried off by continuum electrons. The recoil ions are scattered slightly backward, in partial agreement with predictions of nCTMC calculations. copyright 1996 The American Physical Society

  18. Double ionization of H2 caused by two sequential projectile-electron collisions

    International Nuclear Information System (INIS)

    Edwards, A.K.; Wood, R.M.; Ezell, R.L.

    1985-01-01

    The impact-parameter calculations of Hansteen et al. [J. Phys. B 17, 3545 (1984)] for K-shell ionization are used to predict the cross sections for the double ionization of H 2 and He by H + and D + projectiles as a function of projectile velocity. The calculated values in the case of the H 2 target are typically a factor of 12 lower than the measured values, but the calculations and measurements show similar velocity dependencies. The results indicate that for projectile energies less than 1 MeV/amu, the double-ionization process of H 2 occurs mainly by two independent interactions between the electrons and projectile. For the He target, the calculated and measured values for the double-ionization cross section are much closer in magnitude, but the calculations predict a more rapid falloff with projectile velocity than is observed

  19. Earliest stone-tipped projectiles from the Ethiopian rift date to >279,000 years ago.

    Directory of Open Access Journals (Sweden)

    Yonatan Sahle

    Full Text Available Projectile weapons (i.e. those delivered from a distance enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology.

  20. Electron loss and capture from low-charge-state oxygen projectiles in methane

    International Nuclear Information System (INIS)

    Santos, A C F; Wolff, W; Sant’Anna, M M; Sigaud, G M; DuBois, R D

    2013-01-01

    Absolute cross sections for single- and double-electron loss and single- and multiple-electron capture of 15–1000 keV oxygen projectiles (q = −1, 0, 1, 2) colliding with the methane molecule are presented. The experimental data are used to examine cross-section scaling characteristics for the electron loss of various projectiles. In addition, a modified version of the free-collision model was employed for the calculation of the single- and total-electron-loss cross sections of oxygen projectiles presented in this work. The comparison of the calculated cross sections with the present experimental data shows very good agreement for projectile velocities above 1.0 au. The comparison of the present single-electron-capture cross sections with other projectiles having the same charge shows good agreement, and a common curve can be drawn through the different data sets. (paper)

  1. Non-contact and contact measurement system for detecting projectile position in electromagnetic launch bore

    Science.gov (United States)

    Xu, Weidong; Yuan, Weiqun; Xu, Rong; Zhao, Hui; Cheng, Wenping; Zhang, Dongdong; Zhao, Ying; Yan, Ping

    2017-12-01

    This paper introduces a new measurement system for measuring the position of a projectile within a rapid fire electromagnetic launching system. The measurement system contains both non-contact laser shading and metal fiber contact measurement devices. Two projectiles are placed in the rapid fire electromagnetic launch bore, one in the main accelerating segment and the other in the pre-loading segment. The projectile placed in the main accelerating segment should be shot first, and then the other is loaded into the main segment from the pre-loading segment. The main driving current (I-main) can only be discharged again when the second projectile has arrived at the key position (the projectile position corresponds to the discharging time) in the main accelerating segment. So, it is important to be able to detect when the second projectile arrives at the key position in the main accelerating segment. The B-dot probe is the most widely used system for detecting the position of the projectile in the electromagnetic launch bore. However, the B-dot signal is affected by the driving current amplitude and the projectile velocity. There is no current in the main accelerating segment when the second projectile moves into this segment in rapid fire mode, so the B-dot signal for detecting the key position is invalid. Due to the presence of a high-intensity magnetic field, a high current, a high-temperature aluminum attachment, smoke and strong vibrations, it is very difficult to detect the projectile position in the bore accurately. So, other measurements need to be researched and developed in order to achieve high reliability. A measurement system based on a laser (non-contact) and metal fibers (contact) has been designed, and the integrated output signal based on this detector is described in the following paper.

  2. Inclusive production of protons, anti-protons, neutrons, deuterons and tritons in p+C collisions at 158 GeV/c beam momentum

    CERN Document Server

    Baatar, B.; Bartke, J.; Betev, L.; Chvala, O.; Dolejsi, J.; Eckardt, V.; Fischer, H.G.; Fodor, Z.; Karev, A.; Kolesnikov, V.; Kowalski, M.; Makariev, M.; Malakhov, A.; Mateev, M.; Melkumov, G.; Rybicki, A.; Schmitz, N.; Seyboth, P.; Stock, R.; Tinti, G.; Varga, D.; Vesztergombi, G.; Wenig, S.

    2013-04-09

    The production of protons, anti-protons, neutrons, deuterons and tritons in minimum bias p+C interactions is studied using a sample of 385 734 inelastic events obtained with the NA49 detector at the CERN SPS at 158 GeV/c beam momentum. The data cover a phase space area ranging from 0 to 1.9 GeV/c in transverse momentum and in Feynman x from -0.80 to 0.95 for protons, from -0.2 to 0.4 for anti-protons and from 0.2 to 0.95 for neutrons. Existing data in the far backward hemisphere are used to extend the coverage for protons and light nuclear fragments into the region of intranuclear cascading. The use of corresponding data sets obtained in hadron-proton collisions with the same detector allows for the detailed analysis and model-independent separation of the three principle components of hadronization in p+C interactions, namely projectile fragmentation, target fragmentation of participant nucleons and intranuclear cascading.

  3. Fragmentation of nitrogen-14 nuclei at 2.1 Gev per nucleon.

    Science.gov (United States)

    Heckman, H. H.; Greiner, D. E.; Lindstrom, P. J.; Bieser, F. S.

    1971-01-01

    An experiment has been carried out at the bevatron on the nuclear fragmentation of nitrogen-14 ions at an energy of 2.1 billion electron volts (Gev) per nucleon. Because of the near equality of the velocities of the nitrogen-14 beam and the fragmentation products at an angle of 0 deg, we find it possible to identify the nuclear fragments isotopically.

  4. Revised data taking schedule with ion beams

    CERN Document Server

    Gazdzicki, Marek; Aduszkiewicz, A; Andrieu, B; Anticic, T; Antoniou, N; Argyriades, J; Asryan, A G; Baatar, B; Blondel, A; Blumer, J; Boldizsar, L; Bravar, A; Brzychczyk, J; Bubak, A; Bunyatov, S A; Choi, K U; Christakoglou, P; Chung, P; Cleymans, J; Derkach, D A; Diakonos, F; Dominik, W; Dumarchez, J; Engel, R; Ereditato, A; Feofilov, G A; Fodor, Z; Ferrero, A; Gazdzicki, M; Golubeva, M; Grebieszkow, K; Grzeszczuk, A; Guber, F; Hasegawa, T; Haungs, A; Igolkin, S; Ivanov, A S; Ivashkin, A; Kadija, K; Katrynska, N; Kielczewska, D; Kikola, D; Kisiel, J; Kobayashi, T; Kolesnikov, V I; Kolev, D; Kolevatov, R S; Kondratiev, V P; Kowalski, S; Kurepin, A; Lacey, R; Laszlo, A; Lyubushkin, V V; Majka, Z; I Malakhov, A; Marchionni, A; Marcinek, A; Maris, I; Matveev, V; Melkumov, G L; Meregaglia, A; Messina, M; Mijakowski, P; Mitrovski, M; Montaruli, T; Mrówczynski, St; Murphy, S; Nakadaira, T; Naumenko, P A; Nikolic, V; Nishikawa, K; Palczewski, T; Pálla, G; Panagiotou, A D; Peryt, W; Planeta, R; Pluta, J; Popov, B A; Posiadala, M; Przewlocki, P; Rauch, W; Ravonel, M; Renfordt, R; Röhrich, D; Rondio, E; Rossi, B; Roth, M; Rubbia, A; Rybczynski, M; Sadovskii, A; Sakashita, K; Schuster, T; Sekiguchi, T; Seyboth, P; Shibata, M; Sissakian, A N; Skrzypczak, E; Slodkowski, M; Sorin, A S; Staszel, P; Stefanek, G; Stepaniak, J; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Szuba, M; Tada, M; Taranenko, A; Tsenov, R; Ulrich, R; Unger, M; Vassiliou, M; Vechernin, V V; Vesztergombi, G; Wlodarczyk, Z; Wojtaszek, A; Zipper, W; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2009-01-01

    This document presents the revised data taking schedule of NA61 with ion beams. The revision takes into account limitations due to the new LHC schedule as well as final results concerning the physics performance with secondary ion beams. It is proposed to take data with primary Ar and Xe beams in 2012 and 2014, respectively, and to test and use for physics a secondary B beam from primary Pb beam fragmentation in 2010, 2011 and 2013.

  5. String fragmentation; La fragmentation des cordes

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, H.J.; Werner, K. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France)

    1997-10-01

    The classical string model is used in VENUS as a fragmentation model. For the soft domain simple 2-parton strings were sufficient, whereas for higher energies up to LHC, the perturbative regime of the QCD gives additional soft gluons, which are mapped on the string as so called kinks, energy singularities between the leading partons. The kinky string model is chosen to handle fragmentation of these strings by application of the Lorentz invariant area law. The `kinky strings` model, corresponding to the perturbative gluons coming from pQCD, takes into consideration this effect by treating the partons and gluons on the same footing. The decay law is always the Artru-Menessier area law which is the most realistic since it is invariant to the Lorentz and gauge transformations. For low mass strings a manipulation of the rupture point is necessary if the string corresponds already to an elementary particle determined by the mass and the flavor content. By means of the fragmentation model it will be possible to simulate the data from future experiments at LHC and RHIC 3 refs.

  6. Aerodynamic Jump: A Short Range View for Long Rod Projectiles

    Directory of Open Access Journals (Sweden)

    Mark Bundy

    2001-01-01

    Full Text Available It is shown that aerodynamic jump for a nonspinning kinetic energy penetrator is not – as conventional definitions may infer – a discontinuous change in the direction of motion at the origin of free flight, nor is it the converse, a cumulative redirection over a domain of infinite extent. Rather, with the aid of an alternative kinematical definition, it is shown that aerodynamic jump for such a projectile is a localized redirection of the center-of-gravity motion, caused by the force of lift due to yaw over the relatively short region from entry into free flight until the yaw reaches its first maximum. A rigorous proof of this statement is provided, but the primary objective of this paper is to provide answers to the questions: what is aerodynamic jump, what does it mean, and what aspects of the flight trajectory does it refer to, or account for.

  7. Influence of projectile α-breakup threshold on complete fusion

    International Nuclear Information System (INIS)

    Mukherjee, A.; Subinit Roy; Pradhan, M.K.; Saha Sarkar, M.; Basu, P.; Dasmahapatra, B.; Bhattacharya, T.; Bhattacharya, S.; Basu, S.K.; Chatterjee, A.; Tripathi, V.; Kailas, S.

    2006-01-01

    Complete fusion excitation functions for B11,10+Tb159 have been measured at energies around the respective Coulomb barriers, and the existing complete fusion measurements for Li7+Tb159 have been extended to higher energies. The measurements show significant reduction of complete fusion cross sections at above-barrier energies for both the reactions, B10+Tb159 and Li7+Tb159, when compared to those for B11+Tb159. The comparison shows that the extent of suppression of complete fusion cross sections is correlated with the α-separation energies of the projectiles. Also, the two reactions, B10+Tb159 and Li7+Tb159 were found to produce incomplete fusion products at energies near the respective Coulomb barriers, with the α-particle emitting channel being the favoured incomplete fusion process in both the cases

  8. Selected Screen for Engaging Students in Projectile Motion

    Science.gov (United States)

    Dramae, A.; Toedtanya, K.; Wuttiprom, S.

    2017-09-01

    Connecting physics concepts to activities that are interesting to students or what they encounter in everyday life will help students build a strong foundation. When there is an interesting activity for the student, it will result in the student responding, engaging, and enthusiasm in learning. Learning activities that are based on what students are interested in and regularly experience will enable students to understand the long and memorable experience. Both of these will enhance the student’s learning experience. One of the activities that can be described in this research used the learning activity through movies, which is the application of the basic motion projectile for students to understand the characteristics of such movement. It also aims to further develop critical thinking skills of learners.

  9. Experimental and numerical studies of high-velocity impact fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kipp, M.E.; Grady, D.E.; Swegle, J.W.

    1993-08-01

    Developments are reported in both experimental and numerical capabilities for characterizing the debris spray produced in penetration events. We have performed a series of high-velocity experiments specifically designed to examine the fragmentation of the projectile during impact. High-strength, well-characterized steel spheres (6.35 mm diameter) were launched with a two-stage light-gas gun to velocities in the range of 3 to 5 km/s. Normal impact with PMMA plates, thicknesses of 0.6 to 11 mm, applied impulsive loads of various amplitudes and durations to the steel sphere. Multiple flash radiography diagnostics and recovery techniques were used to assess size, velocity, trajectory and statistics of the impact-induced fragment debris. Damage modes to the primary target plate (plastic) and to a secondary target plate (aluminum) were also evaluated. Dynamic fragmentation theories, based on energy-balance principles, were used to evaluate local material deformation and fracture state information from CTH, a three-dimensional Eulerian solid dynamics shock wave propagation code. The local fragment characterization of the material defines a weighted fragment size distribution, and the sum of these distributions provides a composite particle size distribution for the steel sphere. The calculated axial and radial velocity changes agree well with experimental data, and the calculated fragment sizes are in qualitative agreement with the radiographic data. A secondary effort involved the experimental and computational analyses of normal and oblique copper ball impacts on steel target plates. High-resolution radiography and witness plate diagnostics provided impact motion and statistical fragment size data. CTH simulations were performed to test computational models and numerical methods.

  10. Secondary beams at GANIL

    International Nuclear Information System (INIS)

    Doubre, H.

    1992-01-01

    GANIL, a user's facility since 1983, can deliver a broad spectrum of heavy-ion beams, from He to U, to well-equipped experimental areas. Their very large intensities are to be exploited to produce secondary beams, either using the fragmentation method (beams at energy per nucleon larger than 30 MeV/u), or the ISOL method. With the latter one, these ions have to be re-accelerated. The project of a cyclotron as a post-accelerator is described. (author) 11 refs.; 7 figs.; 3 tabs

  11. Threshold stoichiometry for beam induced nitrogen depletion of SiN

    International Nuclear Information System (INIS)

    Timmers, H.; Weijers, T.D.M.; Elliman, R.G.; Uribasterra, J.; Whitlow, H.J.; Sarwe, E.-L.

    2002-01-01

    Measurements of the stoichiometry of silicon nitride films as a function of the number of incident ions using heavy ion elastic recoil detection (ERD) show that beam-induced nitrogen depletion depends on the projectile species, the beam energy, and the initial stoichiometry. A threshold stoichiometry exists in the range 1.3>N/Si≥1, below which the films are stable against nitrogen depletion. Above this threshold, depletion is essentially linear with incident fluence. The depletion rate correlates non-linearly with the electronic energy loss of the projectile ion in the film. Sufficiently long exposure of nitrogen-rich films renders the mechanism, which prevents depletion of nitrogen-poor films, ineffective. Compromising depth-resolution, nitrogen depletion from SiN films during ERD analysis can be reduced significantly by using projectile beams with low atomic numbers

  12. Dimensional crossover in fragmentation

    Science.gov (United States)

    Sotolongo-Costa, Oscar; Rodriguez, Arezky H.; Rodgers, G. J.

    2000-11-01

    Experiments in which thick clay plates and glass rods are fractured have revealed different behavior of fragment mass distribution function in the small and large fragment regions. In this paper we explain this behavior using non-extensive Tsallis statistics and show how the crossover between the two regions is caused by the change in the fragments’ dimensionality during the fracture process. We obtain a physical criterion for the position of this crossover and an expression for the change in the power-law exponent between the small and large fragment regions. These predictions are in good agreement with the experiments on thick clay plates.

  13. Validating PHITS for heavy ion fragmentation reactions

    International Nuclear Information System (INIS)

    Ronningen, Reginald M.

    2015-01-01

    The performance of the Monte Carlo code system PHITS is validated for heavy-ion transport capabilities by performing simulations and comparing results against experimental data from heavy-ion reactions of benchmark quality. These data are from measurements of isotope yields produced in the fragmentation of a 140 MeV/u "4"8Ca beam on a beryllium target and on a tantalum target. The results of this study show that PHITS performs reliably. (authors)

  14. Scaling of C{sub 60} ionization and fragmentation with the energy deposited in collisions with H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +} and He{sup +} ions (2-130 keV)

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, D. [LCAR, IRSAMC, UMR 5589 CNRS, Universite Paul Sabatier, Toulouse (France)]. E-mail: dbm@yosemite.ups-tlse.fr; Moretto-Capelle, P.; Bordenave-Montesquieu, A.; Rentenier, A. [LCAR, IRSAMC, UMR 5589 CNRS, Universite Paul Sabatier, Toulouse (France)

    2001-03-14

    Fragmentation, ionization and C{sub 2} fragment evaporation of the C{sub 60} molecule induced by collisions with H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +} and He{sup +} monocharged ions have been measured in coincidence with the electron emission in the 2-130 keV projectile energy range. The time-of-flight mass spectra were found to vary strongly with the collision energy or velocity and the projectile. On the other hand, they scale rather nicely with the energy deposited in the molecule. Relative weights of the total multi-fragmentation into small C{sub n}{sup +} fragments (n=1-14), individual multi-fragmentation (n=1,7 and 11), double ionization of the intact molecule and evaporation of C{sub 2} molecules associated with the doubly charged fullerene ion, are used to illustrate our finding quantitatively. (author). Letter-to-the-editor.

  15. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  16. Reactions with fast radioactive beams of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Aumann, T.

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like 11 Li and 12 Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  17. Native Frames: Disentangling Sequential from Concerted Three-Body Fragmentation

    Science.gov (United States)

    Rajput, Jyoti; Severt, T.; Berry, Ben; Jochim, Bethany; Feizollah, Peyman; Kaderiya, Balram; Zohrabi, M.; Ablikim, U.; Ziaee, Farzaneh; Raju P., Kanaka; Rolles, D.; Rudenko, A.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2018-03-01

    A key question concerning the three-body fragmentation of polyatomic molecules is the distinction of sequential and concerted mechanisms, i.e., the stepwise or simultaneous cleavage of bonds. Using laser-driven fragmentation of OCS into O++C++S+ and employing coincidence momentum imaging, we demonstrate a novel method that enables the clear separation of sequential and concerted breakup. The separation is accomplished by analyzing the three-body fragmentation in the native frame associated with each step and taking advantage of the rotation of the intermediate molecular fragment, CO2 + or CS2 + , before its unimolecular dissociation. This native-frame method works for any projectile (electrons, ions, or photons), provides details on each step of the sequential breakup, and enables the retrieval of the relevant spectra for sequential and concerted breakup separately. Specifically, this allows the determination of the branching ratio of all these processes in OCS3 + breakup. Moreover, we find that the first step of sequential breakup is tightly aligned along the laser polarization and identify the likely electronic states of the intermediate dication that undergo unimolecular dissociation in the second step. Finally, the separated concerted breakup spectra show clearly that the central carbon atom is preferentially ejected perpendicular to the laser field.

  18. Embedded Fragments Registry (EFR)

    Data.gov (United States)

    Department of Veterans Affairs — In 2009, the Department of Defense estimated that approximately 40,000 service members who served in OEF/OIF may have embedded fragment wounds as the result of small...

  19. Fragmentation Main Model

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The fragmentation model combines patch size and patch continuity with diversity of vegetation types per patch and rarity of vegetation types per patch. A patch was...

  20. Stone fragmentation by ultrasound

    Indian Academy of Sciences (India)

    Unknown

    In the present work, enhancement of the kidney stone fragmentation by using ultrasound is studied. The cavi- ... ment system like radiation pressure balance, the power is given by ... Thus the bubble size has direct relationship with its life and.

  1. Fragment capture device

    Science.gov (United States)

    Payne, Lloyd R.; Cole, David L.

    2010-03-30

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.

  2. DNA fragmentation in spermatozoa

    DEFF Research Database (Denmark)

    Rex, A S; Aagaard, J.; Fedder, J

    2017-01-01

    Sperm DNA Fragmentation has been extensively studied for more than a decade. In the 1940s the uniqueness of the spermatozoa protein complex which stabilizes the DNA was discovered. In the fifties and sixties, the association between unstable chromatin structure and subfertility was investigated....... In the seventies, the impact of induced DNA damage was investigated. In the 1980s the concept of sperm DNA fragmentation as related to infertility was introduced as well as the first DNA fragmentation test: the Sperm Chromatin Structure Assay (SCSA). The terminal deoxynucleotidyl transferase nick end labelling...... (TUNEL) test followed by others was introduced in the nineties. The association between DNA fragmentation in spermatozoa and pregnancy loss has been extensively investigated spurring the need for a therapeutic tool for these patients. This gave rise to an increased interest in the aetiology of DNA damage...

  3. Fragment Impact Toolkit (FIT)

    Energy Technology Data Exchange (ETDEWEB)

    Shevitz, Daniel Wolf [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Key, Brian P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garcia, Daniel B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-05

    The Fragment Impact Toolkit (FIT) is a software package used for probabilistic consequence evaluation of fragmenting sources. The typical use case for FIT is to simulate an exploding shell and evaluate the consequence on nearby objects. FIT is written in the programming language Python and is designed as a collection of interacting software modules. Each module has a function that interacts with the other modules to produce desired results.

  4. Steady-state and transient hydrocarbon production in graphite by low energy impact of atomic and molecular deuterium projectiles

    International Nuclear Information System (INIS)

    Zhang, H.; Meyer, F.W.

    2009-01-01

    We report measurements of steady-state yields of methyl, methane and heavier hydrocarbons for deuterium atomic and molecular ions incident on ATJ graphite, HOPG, and a-C:D thin films in the energy range 10-200 eV/D. The yields were determined using a QMS technique in conjunction with calibrated hydrocarbon leaks. We have also studied transient hydrocarbon production and hydrogen (deuterium) re-emission for 80 and 150 eV/D D + , D 2 + , and D 3 + projectiles incident on ATJ graphite surfaces pre-loaded to steady state by 20 eV/D beams of the corresponding species. Immediately after starting the higher-energy beams, transient hydrocarbon and D 2 re-emission yields significantly larger than steady-state values were observed, which exponentially decayed as a function of beam fluence. The initial yield values were related to the starting hydrocarbon and deuterium densities in the prepared sample, while the exponential decay constants provided information on the hydrocarbon kinetic release and hydrogen (deuterium) detrapping cross-sections.

  5. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    Science.gov (United States)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  6. Crossed molecular beams

    International Nuclear Information System (INIS)

    Lee, Y.T.

    1976-01-01

    Research activities with crossed molecular beams at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: scattering of Ar*, Kr*, with Xe; metastable rare gas interactions, He* + H 2 ; an atomic and molecular halogen beam source; a crossed molecular beam study of the Cl + Br 2 → BrCl + Br reaction; O( 3 P) reaction dynamics, development of the high pressure plasma beam source; energy randomization in the Cl + C 2 H 3 Br → Br + C 2 H 3 Cl reaction; high resolution photoionization studies of NO and ICl; photoionization of (H 2 O)/sub n/ and (NH 3 ) 2 ; photoionization mass spectroscopy of NH 3 + and O 3 + ; photo fragmentation of bromine; and construction of chemiluminescence-laser fluorescence crossed molecular beam machine

  7. Cyclotrons for the production of radioactive beams

    International Nuclear Information System (INIS)

    Clark, D.J.

    1990-01-01

    This paper describes the characteristics and design choices for modern cyclotrons. Cyclotrons can be used in 3 areas in the radioactive beam field: the production of high energy heavy ion beams for use in fragmentation, the spallation of targets with high energy protons, and the acceleration of radioactive beams from low energy to the MeV/u range. 16 refs., 6 figs

  8. Experimental study of the penetrating of plates by projectile at low initial speeds

    Science.gov (United States)

    Orlov, M. Yu; Orlova, Yu N.; Smakotin, Ig L.; Glazyrin, V. P.; Orlov, Yu N.

    2017-11-01

    The research of the penetration process of lightweight plates by a projectile in the range of initial velocities up to 325 m/s was attempted. The projectile was a shell bullet and the barriers were of ice, MDF-panels and plexiglas barriers. The response of barriers to impact loading is studied. High-speed shooting of each experiment is obtained, including photos of the front and rear sides of the barriers. An attempt was made to reproduce the scenario of the destruction of barriers. The results of experiments can be interpreted only as qualitative tests. Projectile was not destroyed.

  9. Coincidence measurements of slow recoil ions with projectile ions in 42-MeV Arq+-Ar collisions

    International Nuclear Information System (INIS)

    Tonuma, T.; Kumagai, H.; Matsuo, T.; Tawara, H.

    1989-01-01

    Slow Ar recoil-ion production cross sections by projectiles of 1.05-MeV/amu Ar q+ (q=4,6,8,10,12,14) were measured using a projectile-ion--recoil-ion coincidence technique. The present results indicate that the average recoil ion charges left-angle i right-angle increase with increasing the incident projectile charge q and the number of the lost and captured electrons from and/or into projectiles, whereas the projectile charge-changing cross sections for loss ionization decrease steeply with increasing q for low-charge-state projectiles, and those for transfer ionization increase rapidly with increasing q for high-charge-state projectiles. For Ar projectiles with q=10, which corresponds to the equilibrium charge state of Ar projectiles at the present collision energy, the average recoil-ion charges are nearly the same in both loss and transfer ionization, and a pure ionization process plays a much more important role in producing highly charged recoil ions, in contrast to projectile electron loss or transfer processes, which play a role in other projectile charge states

  10. The Munich accelerator for fission fragments MAFF

    International Nuclear Information System (INIS)

    Habs, D.; Gross, M.; Assmann, W.; Ames, F.; Bongers, H.; Emhofer, S.; Heinz, S.; Henry, S.; Kester, O.; Neumayr, J.; Ospald, F.; Reiter, P.; Sieber, T.; Szerypo, J.; Thirolf, P.G.; Varentsov, V.; Wilfart, T.; Faestermann, T.; Kruecken, R.; Maier-Komor, P.

    2003-01-01

    The Munich Accelerator for Fission Fragments MAFF has been designed for the new Munich research reactor FRM-II. It will deliver several intense beams (∼3x10 11 s -1 ) of very neutron-rich fission fragments with a final energy of 30 keV (low-energy beam) or energies between 3.7 and 5.9 MeV·A (high-energy beam). Such beams are of interest for the creation of super-heavy elements by fusion reactions, nuclear spectroscopy of exotic nuclei, but they also have a potential for applications, e.g. in medicine. Presently the Munich research reactor FRM-II is ready for operation, but authorities delay the final permission to turn the reactor critical probably till the end of 2002. Only after this final permission the financing of the major parts of MAFF can start. On the other hand all major components have been designed and special components have been tested in separate setups

  11. PELE弹丸靶后破片尺寸分布研究%A study on fragmentation distribution of PELE

    Institute of Scientific and Technical Information of China (English)

    樊自建; 冉宪文; 汤文辉; 黄秋生

    2017-01-01

    Target plate rear damage effect is closely related to the fragment's size and quantity which are produced by penetrator with enhanced lateral effect (PELE).In order to study the factors influencing the scale of projectile shell fragments and determine the fragment distribution scale,the expansion process of PELE projectile shell was analyzed,according to the Mott-Grady fragmentation theory.The theoretical analysis method of the distribution range of the fragment scale was given.The correctness of the theoretical analysis was tested by experiments.By theoretical analysis and experimental study,the results show that projectile shell fragment size distribution is mainly affected by material density,crushing energy consumption,critical fracture strain and strain rate.The fragments width and number are greatly influenced by inner core material.With the increasing of density and elastic modulus of the inner core material,the width of front-end fragment decreases the number,the radial velocity becomes large.The shell fragment length is determined by projectile impacting target speed and less affected by the inner core material.%横向效应增强型弹丸(PELE)靶后毁伤效果与穿靶后形成的破片数量及大小密切相关.依据Mott-Grady破碎理论和PELE弹丸壳体膨胀过程假设,提出了弹丸壳体破片尺寸分布范围的理论分析方法,并通过实验回收弹体破片尺寸的统计分析,验证了理论分析方法的合理性.理论与实验研究表明,PELE弹丸壳体破片尺寸分布与壳体材料密度、破碎耗能、临界破碎应变、应变率等因素相关;破片的环向宽度和数量受内芯材料的影响较大,存在随着内芯材料的密度和弹性模量的增加前端破片环向宽度减小,数量增多,径向飞散速度变大的规律;但从实验结果看,外壳破片轴向长度则受内芯材料的影响较小,主要与弹靶碰撞速度相关.

  12. THE ROLE OF PEBBLE FRAGMENTATION IN PLANETESIMAL FORMATION. I. EXPERIMENTAL STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Syed, M. Bukhari; Blum, J. [Institut für Geophysik und extraterrestrische Physik, Technische Universität zu Braunschweig, Mendelssohnstr. 3, D-38106 Braunschweig (Germany); Jansson, K. Wahlberg; Johansen, A. [Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund (Sweden)

    2017-01-10

    Previous work on protoplanetary dust growth shows a halt at centimeter sizes owing to the occurrence of bouncing at velocities of ≳0.1 m s{sup −1} and fragmentation at velocities ≳1 m s{sup −1}. To overcome these barriers, spatial concentration of centimeter-sized dust pebbles and subsequent gravitational collapse have been proposed. However, numerical investigations have shown that dust aggregates may undergo fragmentation during the gravitational collapse phase. This fragmentation in turn changes the size distribution of the solids and thus must be taken into account in order to understand the properties of the planetesimals that form. To explore the fate of dust pebbles undergoing fragmenting collisions, we conducted laboratory experiments on dust-aggregate collisions with a focus on establishing a collision model for this stage of planetesimal formation. In our experiments, we analyzed collisions of dust aggregates with masses between 0.7 and 91 g mass ratios between target and projectile from 1 to 126 at a fixed porosity of 65%, within the velocity range of 1.5–8.7 m s{sup −1}, at low atmospheric pressure of ∼10{sup −3} mbar, and in free-fall conditions. We derived the mass of the largest fragment, the fragment size/mass distribution, and the efficiency of mass transfer as a function of collision velocity and projectile/target aggregate size. Moreover, we give recipes for an easy-to-use fragmentation and mass-transfer model for further use in modeling work. In a companion paper, we use the experimental findings and the derived dust-aggregate collision model to investigate the fate of dust pebbles during gravitational collapse.

  13. Fragmentation of relativistic nuclei

    International Nuclear Information System (INIS)

    Cork, B.

    1975-06-01

    Nuclei with energies of several GeV/n interact with hadrons and produce fragments that encompass the fields of nuclear physics, meson physics, and particle physics. Experimental results are now available to explore problems in nuclear physics such as the validity of the shell model to explain the momentum distribution of fragments, the contribution of giant dipole resonances to fragment production cross sections, the effective Coulomb barrier, and nuclear temperatures. A new approach to meson physics is possible by exploring the nucleon charge-exchange process. Particle physics problems are explored by measuring the energy and target dependence of isotope production cross sections, thus determining if limiting fragmentation and target factorization are valid, and measuring total cross sections to determine if the factorization relation, sigma/sub AB/ 2 = sigma/sub AA/ . sigma/sub BB/, is violated. Also, new experiments have been done to measure the angular distribution of fragments that could be explained as nuclear shock waves, and to explore for ultradense matter produced by very heavy ions incident on heavy atoms. (12 figures, 2 tables)

  14. The challenges in developing a finite element injury model of the neck to predict the penetration of explosively propelled projectiles.

    Science.gov (United States)

    Breeze, Johno; Newbery, T; Pope, D; Midwinter, M J

    2014-09-01

    Neck injuries sustained by UK service personnel serving on current operations from explosively propelled fragments result in significant mortality and long-term morbidity. Many of these injuries could potentially have been prevented had the soldiers been wearing their issued neck collars at the time of injury. The aim of this research is to develop an accurate method of predicting the resultant damage to cervical neurovascular structures from explosively propelled fragments. A finite element numerical model has been developed based on an anatomically accurate, anthropometrically representative 3D mathematical mesh of cervical neurovascular structures. Currently, the model simulates the passage of a fragment simulating projectile through all anatomical components of the neck using material models based upon 20% ballistic gelatin on the simplification that all tissue types act like homogenous muscle. The material models used to define the properties of each element within the model will be sequentially replaced by ones specific to each individual tissue within an anatomical structure. However, the cumulative effect of so many additional variables will necessitate experimental validation against both animal models and post-mortem human subjects to improve the credibility of any predictions made by the model. We believe this approach will in the future have the potential to enable objective comparisons between the mitigative effects of different body armour systems to be made with resultant time and financial savings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Effect of a Bore Evacuator on Projectile In-Bore Dynamics

    National Research Council Canada - National Science Library

    Carlucci, Donald

    2004-01-01

    Projectile base pressure measurements were taken in a 155-mm M284 gun tube using an Armament Research, Development and Engineering Center-designed instrumentation package incorporated into a modified...

  16. Time of flight and range of the motion of a projectile in a constant gravitational field

    Directory of Open Access Journals (Sweden)

    P. A. Karkantzakos

    2009-01-01

    Full Text Available In this paper we study the classical problem of the motion of a projectile in a constant gravitational field under the influenceof a retarding force proportional to the velocity. Specifically, we express the time of flight, the time of fall and the range ofthe motion as a function of the constant of resistance per unit mass of the projectile. We also prove that the time of fall isgreater than the time of rise with the exception of the case of zero constant of resistance where we have equality. Finally weprove a formula from which we can compute the constant of resistance per unit mass of the projectile from time of flight andrange of the motion when the acceleration due to gravity and the initial velocity of the projectile are known.

  17. Rapid Assessment of Small Changes to Major Gun and Projectile Dynamic Parameters

    National Research Council Canada - National Science Library

    Erline, Thomas

    1997-01-01

    The U.S. Navy's 5-in 54-cal. (5"/54) gun system Mark (Mk) 45 was subjected to first-order dynamic analysis tools that allowed rapid assessment of ballistic dispersion of a typical naval high explosive projectile...

  18. Classical gluon production amplitude for nucleus-nucleus collisions:First saturation correction in the projectile

    International Nuclear Information System (INIS)

    Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.

    2015-01-01

    We calculate the classical single-gluon production amplitude in nucleus-nucleus collisions including the first saturation correction in one of the nuclei (the projectile) while keeping multiple-rescattering (saturation) corrections to all orders in the other nucleus (the target). In our approximation only two nucleons interact in the projectile nucleus: the single-gluon production amplitude we calculate is order-g"3 and is leading-order in the atomic number of the projectile, while resumming all order-one saturation corrections in the target nucleus. Our result is the first step towards obtaining an analytic expression for the first projectile saturation correction to the gluon production cross section in nucleus-nucleus collisions.

  19. Electromagnetic interference analysis of magnetic resistance sensors inside a projectile under complex electromagnetic environments

    International Nuclear Information System (INIS)

    Guo, Qingwei; Gao, Min; Lu, Zhicai; Yang, Peijie

    2013-01-01

    Accurate measurement of angular motion has long been recognized as a daunting task. In recent years the measurement of projectiles utilizing magnetic resistance sensors has become a hot research field. Electromagnetic interference on attitude measurement cannot be ignored in complex electromagnetic environments such as battlefield conditions. In this paper, the influence and function pattern of electromagnetic interference on the measuring performance are theoretically analyzed, and the shielding effectiveness (SE) simulation of projectile is conducted via software Computer Simulation Technology (CST). Considering the specific tests, the intensity of the influence is judged. The simulation indicates that the battlefield's complex electromagnetic environment influences the environment inside the projectile, especially its electronic components and capability. The research results can provide important theoretical support on the errors compensation and precision improvement of the projectile attitude measurement with Magnetic Resistance sensor.

  20. Study of the light particles emitted in coincidence with quasi-projectiles in the Ar+Au reaction at 35 MeV per nucleon

    International Nuclear Information System (INIS)

    Oubahadou, Ahmed

    1986-01-01

    The detection of numerous light particles forwardly emitted in nuclear reactions with heavy ions intermediate energies has originated the building of a scintillator multidetector (96 detectors) called the 'hodoscope' in G.A.N.I.L. (the largest national accelerator of heavy ions). The main problem of these multidetectors is the extraction of data. We have therefore established a simple technique to extract the charge and speed values from the amount of detected light and from the times of flight. The multidetector combined with a telescope has allowed us to carry out semi-exclusive measurements of the reaction products in Ar+Au system at 35 MeV per nucleon. This work is limited to detection through a telescope of the light fragments (quasi-projectiles); the analysis of energy spectra at different angles shows that the fragments seem to be emitted from two sources: one with a speed close to that of the projectile, the other with a half of that speed. For the study of coincidences we have grouped together the light particles of hodoscope into 4 classes according to their charge numbers and we have considered two special domains (the central part and the outer part). For the telescope we group too the incidents according to their charge (4 classes) and their speed ('rapid' or 'relaxed'). The multiplicity in each case is calculated and eventually allocated according to the speed measured in the telescope. The spectra are analysed in the framework of evaporation by moved Boltzmann hot sources. The origin of 'relaxed' fragments is studied in the context of different theoretical models. (author) [fr