WorldWideScience

Sample records for projectile aerodynamic heating

  1. The influence of aerodynamic coefficients on the elements of classic projectile paths

    Directory of Open Access Journals (Sweden)

    Damir D. Jerković

    2011-04-01

    Full Text Available The article deals with the results of the research on the influence of aerodynamic coefficient values on the trajectory elements and the stability parameters of classic axisymmetric projectiles. It presents the characteristic functions of aerodynamic coefficients with regard to aerodynamic parameters and the projectile body shape. The trajectory elements of the model of classic axisymmetric projectiles and the analyses of their changes were presented with respect to the aerodynamic coefficient values. Introduction Classic axisymmetric projectiles fly through atmosphere using muzzle velocity as initial energy resource, so the aerodynamic force and moment have the most significant influence on the motion of projectiles. The aerodynamic force and moment components represented as aerodynamic coefficients depend on motion velocity i. e. flow velocity, the flow features produced by projectile shape and position in the flow, and angular velocity (rate of the body. The functional dependence of aerodynamic coefficients on certain influential parameters, such as angle of attack and angular velocity components is expressed by the derivative of aerodynamic coefficients. The determination of aerodynamic coefficients and derivatives enables complete definition of the aerodynamic force and moment acting on the classic projectile. The projectile motion problem is considered in relation to defining the projectile stability parameters and the conditions under which the stability occurs. The comparative analyses of aerodynamic coefficient values obtained by numerical methods, semi empirical calculations and experimental research give preliminary evaluation of the quality of the determined values. The flight simulation of the motion of a classic axisymetric projectile, which has the shape defined by the aerodynamic coefficient values, enables the comparative analyses of the trajectory elements and stability characteristics. The model of the classic projectile

  2. Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm

    Science.gov (United States)

    2016-12-01

    of offspring populations, the Student’s t-distribution is used as the convergence method. Equations 10–12 are the mean , variance , and standard...ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector...not return it to the originator. ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a

  3. Aerodynamic Jump: A Short Range View for Long Rod Projectiles

    Directory of Open Access Journals (Sweden)

    Mark Bundy

    2001-01-01

    Full Text Available It is shown that aerodynamic jump for a nonspinning kinetic energy penetrator is not – as conventional definitions may infer – a discontinuous change in the direction of motion at the origin of free flight, nor is it the converse, a cumulative redirection over a domain of infinite extent. Rather, with the aid of an alternative kinematical definition, it is shown that aerodynamic jump for such a projectile is a localized redirection of the center-of-gravity motion, caused by the force of lift due to yaw over the relatively short region from entry into free flight until the yaw reaches its first maximum. A rigorous proof of this statement is provided, but the primary objective of this paper is to provide answers to the questions: what is aerodynamic jump, what does it mean, and what aspects of the flight trajectory does it refer to, or account for.

  4. EFFECT OF BODY SHAPE ON THE AERODYNAMICS OF PROJECTILES AT SUPERSONIC SPEEDS

    Directory of Open Access Journals (Sweden)

    ABDULKAREEM SH. MAHDI

    2008-12-01

    Full Text Available An investigation has been made to predict the effects of forebody and afterbody shapes on the aerodynamic characteristics of several projectile bodies at supersonic speeds using analytical methods combined with semi-empirical design curves. The considered projectile bodies had a length-to-diameter ratio of 6.67 and included three variations of forebody shape and three variations of afterbody shape. The results, which are verified by comparison with available experimental data, indicated that the lowest drag was achieved with a cone-cylinder at the considered Mach number range. It is also shown that the drag can be reduced by boattailing the afterbody. The centre-of-pressure assumed a slightly rearward location for the ogive-cylinder configuration when compared to the configuration with boattailed afterbody where it was the most forward. With the exception of the boattailed afterbody, all the bodies indicated inherent static stability above Mach number 2 for a centre-of-gravity location at about 40% from the body nose.

  5. Optimization of aerodynamic form of projectile for solving the problem of shooting range increasing

    Science.gov (United States)

    Lipanov, Alexey M.; Korolev, Stanislav A.; Rusyak, Ivan G.

    2017-10-01

    The article is devoted to the development of methods for solving the problem of external ballistics using a more complete system of motion equation taken into account the rotation and oscillation about the mass center and using aerodynamic coefficients of forces and moments which are calculated on the basis of modeling the hydrodynamics of flow around the projectile. Developed methods allows to study the basic ways of increasing the shooting range or artillery.

  6. Determination of extra trajectory parameters of projectile layout motion

    Science.gov (United States)

    Ishchenko, A.; Burkin, V.; Faraponov, V.; Korolkov, L.; Maslov, E.; Diachkovskiy, A.; Chupashev, A.; Zykova, A.

    2017-11-01

    The paper presents a brief description of the experimental track developed and implemented on the base of the RIAMM TSU for external trajectory investigations on determining the main aeroballistic parameters of various shapes projectiles, in the wide velocity range. There is comparison between the experimentally obtained dependence of the fin-stabilized projectile mock-up aerodynamic drag coefficient on the Mach number with the 1958 aerodynamic drag law and aerodynamic tests of the same mock-up

  7. aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    J. N. Rajadas

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  8. Stability Criterion for a Finned Spinning Projectile

    OpenAIRE

    S. D. Naik

    2000-01-01

    The state-of-the-art in gun projectile technology has been used for the aerodynamic stabilisation.This approach is acceptable for guided and controlled rockets but the free-flight rockets suffer fromunacceptable dispersion. Sabot projectiles with both spin and fms developed during the last decadeneed careful analysis. In this study, the second method of Liapunov has been used to develop stability criterion for a projectile to be designed with small fins and is made to spin in the flight. This...

  9. Extended Range of a Gun Launched Smart Projectile Using Controllable Canards

    Directory of Open Access Journals (Sweden)

    Mark Costello

    2001-01-01

    Full Text Available This effort investigates the extent to which moveable canards can extend the range of indirect fire munitions using both projectile body and canard lift. Implications on terminal velocity and time of flight using this mechanism to extend range are examined for various canard configurations. Performance predictions are conducted using a six-degree-of-freedom simulation model that has previously been validated against range data. The projectile dynamic equations are formed in the body frame and aerodynamic loads from the body and canards are Mach number and angle of attack dependent. The projectile body aerodynamic moments include unsteady aerodynamic damping. The focus of the study is directed toward low cost competent munitions that extend range and as such a simple flight control system is considered which utilizes only timer, roll rate, and roll attitude inputs.

  10. Projectile Aerodynamic Jump Due to Lateral Impulsives

    National Research Council Canada - National Science Library

    Cooper, Gene

    2003-01-01

    .... The formulation shows for sufficiently long-range target interception; lateral impulse trajectory response for a guided projectile is independent of when the impulse is activated during the yaw cycle...

  11. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements

    Directory of Open Access Journals (Sweden)

    Shaomin Liu

    2007-01-01

    Full Text Available Parameterizations of aerodynamic resistance to heat and water transfer have a significant impact on the accuracy of models of land – atmosphere interactions and of estimated surface fluxes using spectro-radiometric data collected from aircrafts and satellites. We have used measurements from an eddy correlation system to derive the aerodynamic resistance to heat transfer over a bare soil surface as well as over a maize canopy. Diurnal variations of aerodynamic resistance have been analyzed. The results showed that the diurnal variation of aerodynamic resistance during daytime (07:00 h–18:00 h was significant for both the bare soil surface and the maize canopy although the range of variation was limited. Based on the measurements made by the eddy correlation system, a comprehensive evaluation of eight popularly used parameterization schemes of aerodynamic resistance was carried out. The roughness length for heat transfer is a crucial parameter in the estimation of aerodynamic resistance to heat transfer and can neither be taken as a constant nor be neglected. Comparing with the measurements, the parameterizations by Choudhury et al. (1986, Viney (1991, Yang et al. (2001 and the modified forms of Verma et al. (1976 and Mahrt and Ek (1984 by inclusion of roughness length for heat transfer gave good agreements with the measurements, while the parameterizations by Hatfield et al. (1983 and Xie (1988 showed larger errors even though the roughness length for heat transfer has been taken into account.

  12. Optimisation of design parameters for modular range enhanced projectile

    OpenAIRE

    Jelic, Z

    2016-01-01

    There is an underpinning requirement for artillery systems to achieve longer range, better precision, and an adequate lethal effect. The main objective of this research is to investigate various methods of range increase and propose optimal solution for range extension of existing artillery systems. The proposed solution is novel, modular projectile design. Several methodologies for projectile range increment (such as improved aerodynamics and ballistic profile) were combined to achieve the "...

  13. Aerodynamic heating in transitional hypersonic boundary layers: Role of second-mode instability

    Science.gov (United States)

    Zhu, Yiding; Chen, Xi; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2018-01-01

    The evolution of second-mode instabilities in hypersonic boundary layers and its effects on aerodynamic heating are investigated. Experiments are conducted in a Mach 6 wind tunnel using fast-response pressure sensors, fluorescent temperature-sensitive paint, and particle image velocimetry. Calculations based on parabolic stability equations and direct numerical simulations are also performed. It is found that second-mode waves, accompanied by high-frequency alternating fluid compression and expansion, produce intense aerodynamic heating in a small region that rapidly heats the fluid passing through it. As the second-mode waves decay downstream, the dilatation-induced aerodynamic heating decreases while its shear-induced counterpart keeps growing. The latter brings about a second growth of the surface temperature when transition is completed.

  14. CFD Simulations of a Finned Projectile with Microflaps for Flow Control

    Directory of Open Access Journals (Sweden)

    Jubaraj Sahu

    2017-01-01

    Full Text Available This research describes a computational study undertaken to determine the effect of a flow control mechanism and its associated aerodynamics for a finned projectile. The flow control system consists of small microflaps located between the rear fins of the projectile. These small microflaps alter the flow field in the aft finned region of the projectile, create asymmetric pressure distributions, and thus produce aerodynamic control forces and moments. A number of different geometric parameters, microflap locations, and the number of microflaps were varied in an attempt to maximize the control authority generated by the flaps. Steady-state Navier-Stokes computations were performed to obtain the control aerodynamic forces and moments associated with the microflaps. These results were used to optimize the control authority at a supersonic speed, M=2.5. Computed results showed not only the microflaps to be effective at this speed, but also configurations with 6 and 8 microflaps were found to generate 25%–50% more control force than a baseline 4-flap configuration. These results led to a new optimized 8-flap configuration that was further investigated for a range of Mach numbers from M=0.8 to 5.0 and was found to be a viable configuration effective in providing control at all of these speeds.

  15. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating ratesto the ...

  16. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    Abstract. The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating rates ...

  17. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    Directory of Open Access Journals (Sweden)

    Ahmed Elsaadany

    2014-01-01

    Full Text Available Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake and the second is devoted to drift correction (canard based-correction fuze. The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  18. Accuracy improvement capability of advanced projectile based on course correction fuze concept.

    Science.gov (United States)

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  19. Effects of Re-heating Tissue Samples to Core Body Temperature on High-Velocity Ballistic Projectile-tissue Interactions.

    Science.gov (United States)

    Humphrey, Caitlin; Henneberg, Maciej; Wachsberger, Christian; Maiden, Nicholas; Kumaratilake, Jaliya

    2017-11-01

    Damage produced by high-speed projectiles on organic tissue will depend on the physical properties of the tissues. Conditioning organic tissue samples to human core body temperature (37°C) prior to conducting ballistic experiments enables their behavior to closely mimic that of living tissues. To minimize autolytic changes after death, the tissues are refrigerated soon after their removal from the body and re-heated to 37°C prior to testing. This research investigates whether heating 50-mm-cube samples of porcine liver, kidney, and heart to 37°C for varying durations (maximum 7 h) can affect the penetration response of a high-speed, steel sphere projectile. Longer conditioning times for heart and liver resulted in a slight loss of velocity/energy of the projectile, but the reverse effect occurred for the kidney. Possible reasons for these trends include autolytic changes causing softening (heart and liver) and dehydration causing an increase in density (kidney). © 2017 American Academy of Forensic Sciences.

  20. Thermo-aerodynamic efficiency of non-circular ducts with vortex enhancement of heat exchange in different types of compact heat exchangers

    Science.gov (United States)

    Vasilev, V. Ya; Nikiforova, S. A.

    2018-03-01

    Experimental studies of thermo-aerodynamic characteristics of non-circular ducts with discrete turbulators on walls and interrupted channels have confirmed the rational enhancement of convective heat transfer, in which the growth of heat transfer outstrips or equals the growth of aerodynamic losses. Determining the regularities of rational (energy-saving) enhancement of heat transfer and the proposed method for comparing the characteristics of smooth-channel (without enhancement) heat exchangers with effective analogs provide new results, confirming the high efficiency of vortex enhancement of convective heat transfer in non-circular ducts of plate-finned heat exchange surfaces. This allows creating heat exchangers with much smaller mass and volume for operation in energy-saving modes.

  1. Design and Analysis of A Spin-Stabilized Projectile Experimental Apparatus

    Science.gov (United States)

    Siegel, Noah; Rodebaugh, Gregory; Elkins, Christopher; van Poppel, Bret; Benson, Michael; Cremins, Michael; Lachance, Austin; Ortega, Raymond; Vanderyacht, Douglas

    2017-11-01

    Spinning objects experience an effect termed `The Magnus Moment' due to an uneven pressure distribution based on rotation within a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on aerodynamic flight stability. Simulations often fail to accurately predict the Magnus moment in the subsonic flight regime. In an effort to characterize the conditions that cause the Magnus moment, researchers in this work employed Magnetic Resonance Velocimetry (MRV) techniques to measure three dimensional, three component, sub-millimeter resolution fluid velocity fields around a scaled model of a spinning projectile in flight. The team designed, built, and tested using a novel water channel apparatus that was fully MRI-compliant - water-tight and non-ferrous - and capable of spinning a projectile at a constant rotational speed. A supporting numerical simulation effort informed the design process of the scaled projectile to thicken the hydrodynamic boundary layer near the outer surface of the projectile. Preliminary testing produced two-dimensional and three-dimensional velocity data and revealed an asymmetric boundary layer around the projectile, which is indicative of the Magnus effect.

  2. Aerodynamic levitation and laser heating: Applications at synchrotron and neutron sources

    International Nuclear Information System (INIS)

    Hennet, L.; Pozdnyakova, I.; Drewitt, J.W.E.; Leydier, M.; Brassamin, S.; Zanghi, D.; Magazu, S.; Price, D.L.; Cristiglio, V.; Kozaily, J.; Fischer, H.E.; Cuello, G.J.; Koza, M.; Bytchkov, A.; Thiaudiere, D.; Gruner, S.; Greaves, G.N.

    2011-01-01

    Aerodynamic levitation is an effective way to suspend samples which can be heated with CO 2 lasers. The advantages of this container-less technique are the simplicity and compactness of the device, making it possible to integrate it easily in different kinds of experiments. In addition, all types of materials can be used, including metals and oxides. The integration of aerodynamic levitation at synchrotron and neutron sources provides powerful tools to study the structure and dynamics of molten materials. We present here an overview of the existing techniques (electromagnetic levitation, electrostatic levitation, single-axis acoustic levitation, and aerodynamic levitation) and of the developments made at the CEMHTI in Orleans, as well as a few examples of experimental results already obtained. (authors)

  3. Aerodynamic levitation and laser heating: Applications at synchrotron and neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Hennet, L.; Pozdnyakova, I.; Drewitt, J.W.E.; Leydier, M.; Brassamin, S.; Zanghi, D.; Magazu, S.; Price, D.L. [CEMHTI and University of Orleans, 45071 Orleans Cedex 02 (France); Cristiglio, V.; Kozaily, J.; Fischer, H.E.; Cuello, G.J.; Koza, M. [ILL, BP. 156, 38042 Grenoble Cedex 09 (France); Bytchkov, A. [ESRF, BP. 220, 38043 Grenoble Cedex 09 (France); Thiaudiere, D. [Synchrotron SOLEIL, BP. 48, 91192 Gif-sur-Yvette Cedex (France); Gruner, S. [Institute of Physics, Chemnitz UT, 09107 Chemnitz (Germany); Greaves, G.N. [IMAPS, University of Wales, Aberystwyth, SY23 3BZ (United Kingdom)

    2011-05-15

    Aerodynamic levitation is an effective way to suspend samples which can be heated with CO{sub 2} lasers. The advantages of this container-less technique are the simplicity and compactness of the device, making it possible to integrate it easily in different kinds of experiments. In addition, all types of materials can be used, including metals and oxides. The integration of aerodynamic levitation at synchrotron and neutron sources provides powerful tools to study the structure and dynamics of molten materials. We present here an overview of the existing techniques (electromagnetic levitation, electrostatic levitation, single-axis acoustic levitation, and aerodynamic levitation) and of the developments made at the CEMHTI in Orleans, as well as a few examples of experimental results already obtained. (authors)

  4. In-pipe aerodynamic characteristics of a projectile in comparison with free flight for transonic Mach numbers

    Science.gov (United States)

    Hruschka, R.; Klatt, D.

    2018-03-01

    The transient shock dynamics and drag characteristics of a projectile flying through a pipe 3.55 times larger than its diameter at transonic speed are analyzed by means of time-of-flight and pipe wall pressure measurements as well as computational fluid dynamics (CFD). In addition, free-flight drag of the 4.5-mm-pellet-type projectile was also measured in a Mach number range between 0.5 and 1.5, providing a means for comparison against in-pipe data and CFD. The flow is categorized into five typical regimes the in-pipe projectile experiences. When projectile speed and hence compressibility effects are low, the presence of the pipe has little influence on the drag. Between Mach 0.5 and 0.8, there is a strong drag increase due to the presence of the pipe, however, up to a value of about two times the free-flight drag. This is exactly where the nose-to-base pressure ratio of the projectile becomes critical for locally sonic speed, allowing the drag to be estimated by equations describing choked flow through a converging-diverging nozzle. For even higher projectile Mach numbers, the drag coefficient decreases again, to a value slightly below the free-flight drag at Mach 1.5. This behavior is explained by a velocity-independent base pressure coefficient in the pipe, as opposed to base pressure decreasing with velocity in free flight. The drag calculated by CFD simulations agreed largely with the measurements within their experimental uncertainty, with some discrepancies remaining for free-flying projectiles at supersonic speed. Wall pressure measurements as well as measured speeds of both leading and trailing shocks caused by the projectile in the pipe also agreed well with CFD.

  5. Calibration of aerodynamic roughness over the Tibetan Plateau with Ensemble Kalman Filter analysed heat flux

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2012-11-01

    Full Text Available Aerodynamic roughness height (Zom is a key parameter required in several land surface hydrological models, since errors in heat flux estimation are largely dependent on optimization of this input. Despite its significance, it remains an uncertain parameter which is not readily determined. This is mostly because of non-linear relationship in Monin-Obukhov similarity (MOS equations and uncertainty of vertical characteristic of vegetation in a large scale. Previous studies often determined aerodynamic roughness using a minimization of cost function over MOS relationship or linear regression over it, traditional wind profile method, or remotely sensed vegetation index. However, these are complicated procedures that require a high accuracy for several other related parameters embedded in serveral equations including MOS. In order to simplify this procedure and reduce the number of parameters in need, this study suggests a new approach to extract aerodynamic roughness parameter from single or two heat flux measurements analyzed via Ensemble Kalman Filter (EnKF that affords non-linearity. So far, to our knowledge, no previous study has applied EnKF to aerodynamic roughness estimation, while the majority of data assimilation study have paid attention to updates of other land surface state variables such as soil moisture or land surface temperature. The approach of this study was applied to grassland in semi-arid Tibetan Plateau and maize on moderately wet condition in Italy. It was demonstrated that aerodynamic roughness parameter can be inversely tracked from heat flux EnKF final analysis. The aerodynamic roughness height estimated in this approach was consistent with eddy covariance method and literature value. Through a calibration of this parameter, this adjusted the sensible heat previously overestimated and latent heat flux previously underestimated by the original Surface Energy Balance System (SEBS model. It was considered that

  6. Experimental investigation of airfoil trailing edge heat transfer and aerodynamic losses

    Energy Technology Data Exchange (ETDEWEB)

    Brundage, A.L. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Plesniak, M.W.; Lawless, P.B. [School of Mechanical Engineering, Maurice J. Zucrow Laboratories, Purdue University, West Lafayette, IN 47907 (United States); Ramadhyani, S. [132 Cecil Street SE, Minneapolis, MN 55414 (United States)

    2007-01-15

    Modern gas turbine development is being driven by the often-incompatible goals of increased efficiency, better durability, and reduced emissions. High turbine inlet temperatures and ineffective cooling at the trailing edge of a first-stage stator vane lead to corrosion, oxidation, and thermal fatigue. Observations of this region in engines frequently reveal burn marks, cracks, and buckling. Fundamental studies of the importance of trailing edge heat transfer to the design of an optimal cooling scheme are scarce. An experimental study of an actively cooled trailing edge configuration, in which coolant is injected through a slot, is performed. Trailing edge heat transfer and aerodynamic measurements are reported. An optimum balance between maximizing blade row aerodynamic efficiency and improving thermal protection at the trailing edge is estimated to be achieved when blowing ratios are in the range between 2.1% and 2.8%. The thermal phenomena at the trailing edge are dominated by injection slot heat transfer and flow physics. These measured trends are generally applicable over a wide range of gas turbine applications. (author)

  7. Numerical study on aerodynamic heat of hypersonic flight

    Directory of Open Access Journals (Sweden)

    Huang Haiming

    2016-01-01

    Full Text Available Accurate prediction of the shock wave has a significant effect on the development of space transportation vehicle or exploration missions. Taking Lobb sphere as the example, the aerodynamic heat of hypersonic flight in different Mach numbers is simulated by the finite volume method. Chemical reactions and non-equilibrium heat are taken into account in this paper, where convective flux of the space term adopts the Roe format, and discretization of the time term is achieved by backward Euler algorithm. The numerical results reveal that thick mesh can lead to accurate prediction, and the thickness of the shock wave decreases as grid number increases. Furthermore, most of kinetic energy converts into internal energy crossing the shock wave.

  8. Physics of badminton shuttlecocks. Part 1 : aerodynamics

    Science.gov (United States)

    Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe

    2011-11-01

    We study experimentally shuttlecocks dynamics. In this part we show that shuttlecock trajectory is highly different from classical parabola. When one takes into account the aerodynamic drag, the flight of the shuttlecock quickly curves downwards and almost reaches a vertical asymptote. We solve the equation of motion with gravity and drag at high Reynolds number and find an analytical expression of the reach. At high velocity, this reach does not depend on velocity anymore. Even if you develop your muscles you will not manage to launch the shuttlecock very far because of the ``aerodynamic wall.'' As a consequence you can predict the length of the field. We then discuss the extend of the aerodynamic wall to other projectiles like sports balls and its importance.

  9. Predictions of Aerodynamic Heating on Tactical Missile Domes

    Science.gov (United States)

    1979-04-25

    A . Martellucci W. Daskin J. D. Cresswell J. B. Arnaiz L. A . Marshall J. Cassanto R. Hobbs C. Harris F. George P.O. Box 8555 Philadelphia, PA J9101... A LEVELs NSWC TR 79-21 i PREDICTIONS OF AERODYNAMIC HEATING ON TACTICAL MISSILE DOMES A wo BY T. F. ZIEN W. C. RAGSDALE RESEARCH TECHNOLOGY...DOMES SAUTHOR( a ) 8. CONTRACT OR GRANT NUMBER() T. F. ZiendW.C jRagsale 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

  10. Time-Accurate Calculations of Free-Flight Aerodynamics of Maneuvering Projectiles

    National Research Council Canada - National Science Library

    Sahu, Jubaraj

    2007-01-01

    ...) have been successfully fully coupled on high performance computing (HPC) platforms for "Virtual Fly-Outs" of munitions similar to actual free flight tests in the aerodynamic experimental facilities...

  11. Transient processes induced by heavy projectiles in silicon

    International Nuclear Information System (INIS)

    Lazanu, Ionel; Lazanu, Sorina

    2010-01-01

    The thermal spike model developed for the electronic stopping power regime is extended to consider both ionization and nuclear energy loss processes of the projectile as electronic and atomic heat distinct sources. The time and space dependencies of the lattice and electron temperatures near the projectile trajectory are calculated and discussed for different ions in silicon, at room and cryogenic temperatures, taking into account the peculiarities of electron-phonon interaction in both domains. The model developed contributes to the understanding of transient microscopic processes immediately after the projectile interaction in the target.

  12. Shape optimization of turbine blades with the integration of aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    Rajadas J. N.

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  13. Flow and Convective Heat Transfer of Cylinder Misaligned from Aerodynamic Axis of Cyclone Flow

    Directory of Open Access Journals (Sweden)

    I. L. Leukhin

    2008-01-01

    Full Text Available The paper provides and analyzes results of experimental investigations on physical specific features of hydrodynamics and convective heat transfer of a cyclone flow with a group of round cylinders located symmetrically relative to its aerodynamic axis, calculative equations for average and local heat transfer factors at characteristic sections of cylinder surface.

  14. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array

    Science.gov (United States)

    Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih

    2011-08-01

    This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.

  15. Experimental investigation of turbine disk cavity aerodynamics and heat transfer

    Science.gov (United States)

    Daniels, W. A.; Johnson, B. V.

    1993-01-01

    An experimental investigation of turbine disk cavity aerodynamics and heat transfer was conducted to provide an experimental data base that can guide the aerodynamic and thermal design of turbine disks and blade attachments for flow conditions and geometries simulating those of the space shuttle main engine (SSME) turbopump drive turbines. Experiments were conducted to define the nature of the aerodynamics and heat transfer of the flow within the disk cavities and blade attachments of a large scale model simulating the SSME turbopump drive turbines. These experiments include flow between the main gas path and the disk cavities, flow within the disk cavities, and leakage flows through the blade attachments and labyrinth seals. Air was used to simulate the combustion products in the gas path. Air and carbon dioxide were used to simulate the coolants injected at three locations in the disk cavities. Trace amounts of carbon dioxide were used to determine the source of the gas at selected locations on the rotors, the cavity walls, and the interstage seal. The measurements on the rotor and stationary walls in the forward and aft cavities showed that the coolant effectiveness was 90 percent or greater when the coolant flow rate was greater than the local free disk entrainment flow rate and when room temperature air was used as both coolant and gas path fluid. When a coolant-to-gas-path density ratio of 1.51 was used in the aft cavity, the coolant effectiveness on the rotor was also 90 percent or greater at the aforementioned condition. However, the coolant concentration on the stationary wall was 60 to 80 percent at the aforementioned condition indicating a more rapid mixing of the coolant and flow through the rotor shank passages. This increased mixing rate was attributed to the destabilizing effects of the adverse density gradients.

  16. Aerodynamics, heat and mass transfer in steam-aerosol turbulent flows in containment

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, B.I.; Pershukov, V.A.; Ris, V.V. [Research & Engineering Centre of Nuclear Plants Safety, Moscow (Russian Federation)] [and others

    1995-09-01

    In this report an analysis of aerodynamic and heat transfer processes at the blowdown of gas-dispersed mixture into the containment volume is presented. A few models for description of the volume averaged and local characteristics are analyzed. The mathematical model for description of the local characteristics of the turbulent gas-dispersed flows was developed. The calculation of aerodynamic, heat and mass transfer characteristics was based on the Navier-Stokes, energy and gas mass fractions conservation equations. For calculation of dynamics and deposition of the aerosols the original diffusion-inertia model is developed. The pulsating characteristics of the gaseous phase were calculated on the base (k-{xi}) model of turbulence with modification to account thermogravitational force action and influence of particle mass loading. The appropriate boundary conditions using the {open_quotes}near-wall function{close_quotes} approach was obtained. Testing of the mathematical models and boundary conditions has shown a good agreement between computation and data of comparison. The described mathematical models were applied to two- and three dimensional calculations of the turbulent flow in containment at the various stages of the accident.

  17. Transonic and supersonic ground effect aerodynamics

    Science.gov (United States)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  18. Extension and application of a scaling technique for duplication of in-flight aerodynamic heat flux in ground test facilities

    NARCIS (Netherlands)

    Veraar, R.G.

    2009-01-01

    To enable direct experimental duplication of the inflight heat flux distribution on supersonic and hypersonic vehicles, an aerodynamic heating scaling technique has been developed. The scaling technique is based on the analytical equations for convective heat transfer for laminar and turbulent

  19. Adaptive Missile Flight Control for Complex Aerodynamic Phenomena

    Science.gov (United States)

    2017-08-09

    roll damping and magnus stability coefficients for finned projectiles. J Spacecraft Rockets. 2016, accepted. 20. Burt JR. The effectiveness of canards...Performance degradation usually propagates into the pitch and yaw directions when these adverse roll control effects are encountered due to the coupling of... effect of control action (e.g., canard deflections) in the pitch and yaw planes is combined in an overall aerodynamic scaling and control amplitude

  20. Effect of static shape deformation on aerodynamics and aerothermodynamics of hypersonic inflatable aerodynamic decelerator

    Science.gov (United States)

    Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng

    2017-07-01

    The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight

  1. Tactical missile aerodynamics

    Science.gov (United States)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  2. Penetration of fast projectiles into resistant media: From macroscopic to subatomic projectiles

    Science.gov (United States)

    Gaite, José

    2017-09-01

    The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton's inertial quadratic force, namely, F ∼v 2 - β, where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape.

  3. Subcaliber discarding sabot airgun projectiles.

    Science.gov (United States)

    Frank, Matthias; Schönekeß, Holger; Herbst, Jörg; Staats, Hans-Georg; Ekkernkamp, Axel; Nguyen, Thanh Tien; Bockholdt, Britta

    2014-03-01

    Medical literature abounds with reports on injuries and fatalities caused by airgun projectiles. While round balls or diabolo pellets have been the standard projectiles for airguns for decades, today, there are a large number of different airgun projectiles available. A very uncommon--and until now unique--discarding sabot airgun projectile (Sussex Sabo Bullet) was introduced into the market in the 1980s. The projectile, available in 0.177 (4.5 mm) and 0.22 (5.5 mm) caliber, consists of a plastic sabot cup surrounding a subcaliber copper-coated lead projectile in typical bullet shape. Following the typical principle of a discarding sabot projectile, the lightweight sabot is supposed to quickly loose velocity and to fall to the ground downrange while the bullet continues on target. These sabot-loaded projectiles are of special forensic interest due to their non-traceability and ballistic parameters. Therefore, it is the aim of this work to investigate the ballistic performance of these sabot airgun projectiles by high-speed video analyses and by measurement of the kinetic parameters of the projectile parts by a transient recording system as well as observing their physical features after being fired. While the sabot principle worked properly in high-energy airguns (E > 17 J), separation of the core projectile from the sabot cup was also observed when discharged in low-energy airguns (E work is the first study to demonstrate the regular function of this uncommon type of airgun projectile.

  4. Universality of projectile fragmentation model

    International Nuclear Information System (INIS)

    Chaudhuri, G.; Mallik, S.; Das Gupta, S.

    2012-01-01

    Presently projectile fragmentation reaction is an important area of research as it is used for the production of radioactive ion beams. In this work, the recently developed projectile fragmentation model with an universal temperature profile is used for studying the charge distributions of different projectile fragmentation reactions with different projectile target combinations at different incident energies. The model for projectile fragmentation consists of three stages: (i) abrasion, (ii) multifragmentation and (iii) evaporation

  5. Electromagnetic compression gun for hypervelocity projectile acceleration

    International Nuclear Information System (INIS)

    Woo, J.T.

    1987-01-01

    The rapid acceleration of projectiles to very high velocities has applications in many areas. The general requirements for an effective system is simplicity, reliability, compactness and good efficiency. The authors developed a concept by using electromagnetic forces to compressionally heat a plasma to high temperature and pressure to serve as the propellant for the acceleration of projectiles. The concept shares the simplicity of the light gas gun, but because of the high temperature of the propellant, is capable of significantly higher performance. Unlike the electrothermal gun approach to raise the propellant temperature by resistive heating, the electromagnetic concept is more efficient at higher temperatures. Operationally, the concept resembles a railgun in requiring a large pulsed current to drive the system. However, the current flow in this case is entirely external to the gun barrel and is axisymmetric. Therefore, many of the problems associated with railgun operations are avoided. Furthermore, because the current channel is external, there is also greater flexibility in the choice of load impedance to match to the power supply. The concept can also be generalized to a multi-stage regenerative system driven by a pulse forming network to resemble a coaxial accelerator

  6. Prevention of breakdown behind railgun projectiles

    International Nuclear Information System (INIS)

    Hawke, R.S.

    1992-01-01

    An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF 6 . The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has travelled. The projectile may have a cavity at its rear to control the release of ablation products. 12 figs

  7. EMGWS, D1 projectile tests

    International Nuclear Information System (INIS)

    Creighton, W.J.

    1991-01-01

    This paper reports on the 90 mm EMGWS D1 Projectile which is an unguided projectile that is designed for launch from an Electromagnetic gun to achieve significant armor penetration. It is being developed under the broader program called Electromagnetic Gun Weapon System (EMGWS) which is sponsored by DARPA, DNA, and the U.S. Army. The 90 mm D1 Type II 'workhorse' Projectile is used to prove out material strength, fabrication techniques, and projectile structural integrity. The type II flight projectile is designed to allow maximum stress levels of 100-ksi when launched at 100-kilogees peak acceleration. The total weight of the projectile is 2.0 kg to attain a muzzle velocity of 3.0 km/s from a 9-Megajoule EM Gun. The Type II projectile configuration employs a tungsten nosetip plus 12 segmented tungsten penetrators, a two-piece aluminum discarding sabot, an aluminum pusher plate, and a nylon obturator. The pusher plate can incorporate either a solid or plasma armature

  8. In-flight dynamics of volcanic ballistic projectiles

    Science.gov (United States)

    Taddeucci, J.; Alatorre-Ibargüengoitia, M. A.; Cruz-Vázquez, O.; Del Bello, E.; Scarlato, P.; Ricci, T.

    2017-09-01

    Centimeter to meter-sized volcanic ballistic projectiles from explosive eruptions jeopardize people and properties kilometers from the volcano, but they also provide information about the past eruptions. Traditionally, projectile trajectory is modeled using simplified ballistic theory, accounting for gravity and drag forces only and assuming simply shaped projectiles free moving through air. Recently, collisions between projectiles and interactions with plumes are starting to be considered. Besides theory, experimental studies and field mapping have so far dominated volcanic projectile research, with only limited observations. High-speed, high-definition imaging now offers a new spatial and temporal scale of observation that we use to illuminate projectile dynamics. In-flight collisions commonly affect the size, shape, trajectory, and rotation of projectiles according to both projectile nature (ductile bomb versus brittle block) and the location and timing of collisions. These, in turn, are controlled by ejection pulses occurring at the vent. In-flight tearing and fragmentation characterize large bombs, which often break on landing, both factors concurring to decrease the average grain size of the resulting deposits. Complex rotation and spinning are ubiquitous features of projectiles, and the related Magnus effect may deviate projectile trajectory by tens of degrees. A new relationship is derived, linking projectile velocity and size with the size of the resulting impact crater. Finally, apparent drag coefficient values, obtained for selected projectiles, mostly range from 1 to 7, higher than expected, reflecting complex projectile dynamics. These new perspectives will impact projectile hazard mitigation and the interpretation of projectile deposits from past eruptions, both on Earth and on other planets.

  9. Fired missile projectiles

    International Nuclear Information System (INIS)

    Williams, K.D.; Gieszl, R.; Keller, P.J.; Drayer, B.P.

    1989-01-01

    This paper reports ferromagnetic properties of fired missile projectiles (bullets, BBs, etc) investigated. Projectile samples were obtained from manufactures, police, and commercial sources. Deflection measurements at the portal of a 1.5-T magnetic field were performed for 47 projectiles. Sixteen bullets were examined in gelatin phantoms for rotation-translation movements as well. Ferromagnetic bullets displayed considerable deflection forces in the presence of the magnetic field and could be rotated to 80 degrees from their previous alignments when introduced perpendicular to the magnetic field in our gelatin phantom experiments. Military bullet calibers appear to pose the greatest ferromagnetic risk. Commercial sporting ammunition is generally nonferromagnetic

  10. Fluid-thermal analysis of aerodynamic heating over spiked blunt body configurations

    Science.gov (United States)

    Qin, Qihao; Xu, Jinglei; Guo, Shuai

    2017-03-01

    When flying at hypersonic speeds, the spiked blunt body is constantly subjected to severe aerodynamic heating. To illustrate the thermal response of different configurations and the relevant flow field variation, a loosely-coupled fluid-thermal analysis is performed in this paper. The Mesh-based parallel Code Coupling Interface (MpCCI) is adopted to implement the data exchange between the fluid solver and the thermal solver. The results indicate that increases in spike diameter and length will result in a sharp decline of the wall temperature along the spike, and the overall heat flux is remarkably reduced to less than 300 W/cm2 with the aerodome mounted at the spike tip. Moreover, the presence and evolution of small vortices within the recirculation zone are observed and proved to be induced by the stagnation effect of reattachment points on the spike. In addition, the drag coefficient of the configuration with a doubled spike length presents a maximum drop of 4.59% due to the elevated wall temperature. And the growing difference of the drag coefficient is further increased during the accelerating process.

  11. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-04-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in The Physics Teacher; however, the "Hoop Challenge" is a new setup not before described in TPT. In this article an experiment is illustrated to explore projectile motion in a fun and challenging manner that has been used with both high school and university students. With a few simple materials, students have a vested interest in being able to calculate the height of the projectile at a given distance from its launch site. They also have an exciting visual demonstration of projectile motion when the lab is over.

  12. Batch Computed Tomography Analysis of Projectiles

    Science.gov (United States)

    2016-05-01

    ARL-TR-7681 ● MAY 2016 US Army Research Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt, Chris M...Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt and Matthew S Bratcher Weapons and Materials Research...values to account for projectile variability in the ballistic evaluation of armor. 15. SUBJECT TERMS computed tomography , CT, BS41, projectiles

  13. Concrete structures under projectile impact

    CERN Document Server

    Fang, Qin

    2017-01-01

    In this book, the authors present their theoretical, experimental and numerical investigations into concrete structures subjected to projectile and aircraft impacts in recent years. Innovative approaches to analyze the rigid, mass abrasive and eroding projectile penetration and perforation are proposed. Damage and failure analyses of nuclear power plant containments impacted by large commercial aircrafts are numerically and experimentally analyzed. Ultra-high performance concrete materials and structures against the projectile impact are developed and their capacities of resisting projectile impact are evaluated. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.

  14. Small caliber guided projectile

    Science.gov (United States)

    Jones, James F [Albuquerque, NM; Kast, Brian A [Albuquerque, NM; Kniskern, Marc W [Albuquerque, NM; Rose, Scott E [Albuquerque, NM; Rohrer, Brandon R [Albuquerque, NM; Woods, James W [Albuquerque, NM; Greene, Ronald W [Albuquerque, NM

    2010-08-24

    A non-spinning projectile that is self-guided to a laser designated target and is configured to be fired from a small caliber smooth bore gun barrel has an optical sensor mounted in the nose of the projectile, a counterbalancing mass portion near the fore end of the projectile and a hollow tapered body mounted aft of the counterbalancing mass. Stabilizing strakes are mounted to and extend outward from the tapered body with control fins located at the aft end of the strakes. Guidance and control electronics and electromagnetic actuators for operating the control fins are located within the tapered body section. Output from the optical sensor is processed by the guidance and control electronics to produce command signals for the electromagnetic actuators. A guidance control algorithm incorporating non-proportional, "bang-bang" control is used to steer the projectile to the target.

  15. Embolism of high energy firearm projectile

    Directory of Open Access Journals (Sweden)

    Jaime Álvarez Soler

    2016-12-01

    Full Text Available The embolism of a projectile is very rare and out of the normal context, so the cor-oner in front of a wound projectile firearm must make a very judicious and careful analysis to recover the projectile and/or its fragments. This case presents evidence how modern military high-velocity weapons have a high kinetic energy which is transferred to body tissues, so including their fragments and parts of the projectile can cause serious injury and embolism, requiring a great effort scientific and in-terdisciplinary to give technical support to justice.

  16. Projectile penetration into ballistic gelatin.

    Science.gov (United States)

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. © 2013 Published by Elsevier Ltd.

  17. Projectile Balloting Attributable to Gun Tube Curvature

    Directory of Open Access Journals (Sweden)

    Michael M. Chen

    2010-01-01

    Full Text Available Transverse motion of a projectile during launch is detrimental to firing accuracy, structural integrity, and/or on-board electronics performance of the projectile. One manifest contributing factor to the undesired motion is imperfect bore centerline straightness. This paper starts with the presentation of a deterministic barrel model that possesses both vertical and lateral deviations from centerline in accordance with measurement data, followed by a novel approach to simulating comprehensive barrel centerline variations for the investigation of projectile balloting^1 motions. A modern projectile was adopted for this study. In-bore projectile responses at various locations of the projectile while traveling through the simulated gun tubes were obtained. The balloting was evaluated in both time and frequency domains. Some statistical quantities and the significance were outlined.

  18. Prediction of projectile ricochet behavior after water impact.

    Science.gov (United States)

    Baillargeon, Yves; Bergeron, Guy

    2012-11-01

    Although not very common, forensic investigation related to projectile ricochet on water can be required when undesirable collateral damage occurs. Predicting the ricochet behavior of a projectile is challenging owing to numerous parameters involved: impact velocity, incident angle, projectile stability, angular velocity, etc. Ricochet characteristics of different projectiles (K50 BMG, 0.5-cal Ball M2, 0.5-cal AP-T C44, 7.62-mm Ball C21, and 5.56-mm Ball C77) were studied in a pool. The results are presented to assess projectile velocity after ricochet, ricochet angle, and projectile azimuth angle based on impact velocity or incident angle for each projectile type. The azimuth ranges show the highest variability at low postricochet velocity. The critical ricochet angles were ranging from 15 to 30°. The average ricochet angles for all projectiles were pretty close for all projectiles at 2.5 and 10° incident angles for the range of velocities studied. © 2012 Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of the Department of National Defence.

  19. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  20. The collision of a hypervelocity massive projectile with free-standing graphene: Investigation of secondary ion emission and projectile fragmentation

    Science.gov (United States)

    Geng, Sheng; Verkhoturov, Stanislav V.; Eller, Michael J.; Della-Negra, Serge; Schweikert, Emile A.

    2017-02-01

    We present here the study of the individual hypervelocity massive projectiles (440-540 keV, 33-36 km/s Au4004+ cluster) impact on 1-layer free-standing graphene. The secondary ions were detected and recorded separately from each individual impact in the transmission direction using a time-of-flight mass spectrometer. We observed C1-10± ions emitted from graphene, the projectiles which penetrated the graphene, and the Au1-3± fragment ions in mass spectra. During the projectile-graphene interaction, the projectile loses ˜15% of its initial kinetic energy (˜0.18 keV/atom, 72 keV/projectile). The Au projectiles are neutralized when approaching the graphene and then partially ionized again via electron tunneling from the hot rims of the holes on graphene, obtaining positive and negative charges. The projectile reaches an internal energy of ˜450-500 eV (˜4400-4900 K) after the impact and then undergoes a ˜90-100 step fragmentation with the ejection of Au1 atoms in the experimental time range of ˜0.1 μs.

  1. Continuous measurements of in-bore projectile velocity

    International Nuclear Information System (INIS)

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Shahinpoor, M.

    1989-01-01

    The application of velocity interferometry to the continuous measurement of in-bore projectile velocity in a small-bore three-stage railgun is described. These measurements are useful for determining projectile acceleration and for evaluating gun performance. The launcher employed in these studies consists of a two-stage light gas gun used to inject projectiles into a railgun for additional acceleration. Results obtained for projectile velocities to 7.4 km/s with the two-stage injector are reported and potential improvements for railgun applications are discussed

  2. Enhanced RAMAC performance in subdetonative propulsion mode with semi-combustible projectile

    Energy Technology Data Exchange (ETDEWEB)

    Legendre, J.F.; Giraud, M. [French-German Res. Inst., Saint-Louis (France)

    2000-11-01

    Investigations are carried out at ISL to determine the experimental conditions required to accelerate a projectile in the mass range from 1.5 to 2 kg up to a muzzle velocity of 3 km/s while keeping the maximum acceleration below 40,000 g. Therefore, two smooth-bore ram-accelerators denoted RAMAC 30-II and RAMAC 90, in caliber 30 and 90 mm respectively, are being operated in the thermally choked propulsion mode. Different material configurations for the projectile afterbody have been investigated, while keeping an aluminum nose cone. Besides afterbodies made of aluminum or magnesium alloy only, a third configuration is presented relying on a short magnesium part fitted to the base of an aluminum afterbody. This configuration denoted as ''semi-combustible'' is designed so that magnesium particles are steadily injected and burnt-out within the combustion zone at the base, therefore providing an additional heat release and consequently a significantly greater forward thrust. Experimental results achieved in both 30 and 90 mm along a 300-caliber-long ram-section and using up to three different gaseous mixtures are presented. To date, for a given semi-combustible projectile and an injection velocity into the ram-section of 1380 m/s, a maximum muzzle velocity of 2380 m/s has been achieved in RAMAC 30-II and 2180 m/s in RAMAC 90, the initial projectile mass being 69 g and 1608 g respectively. (orig.)

  3. Aerodynamic Characterizations of Asymmetric and Maneuvering 105-, 120-, and 155-mm Fin-Stabilized Projectiles Derived from Telemetry Experiments

    Science.gov (United States)

    2011-04-01

    roll rates are estimates of projectile roll rates with respect to the sun and the local geomagnetic field respectively. The solar aspect angle is the...vector and a vector originating at the CG and parallel to the local geomagnetic field. Methodologies employed to obtain these and other airframe states...and an independent approach (POINTER) and relative magnitude information about the side moments was obtained. VAPP-24 underwent a reversal in coning

  4. Dynamic effects of interaction of composite projectiles with targets

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, V. M. [Scientific Research Institute of Applied Mathematics and Mechanics of Tomsk State University, 36, Lenin Avenue, Tomsk, 634050 (Russian Federation)

    2016-01-15

    The process of high-speed impact of projectiles against targets of finite thickness is experimentally investigated. Medium-hard steel plates are used as targets. The objective of this research is to carry out a comparative analysis of dynamic effects of interaction of various types of projectiles with targets, such as characteristics of destruction of the target, the state of the projectile behind the target, and particularities of the after-penetration stream of fragments after the target has been pierced. The projectiles are made of composites on the basis of tungsten carbide obtained by caking and the SHS-technology. To compare effectiveness of composite projectiles steel projectiles are used. Their effectiveness was estimated in terms of the ballistic limit. High density projectiles obtained by means of the SHS-technology are shown to produce results comparable in terms of the ballistic limit with high-strength projectiles that contain tungsten received by caking.

  5. Photon emission from massive projectile impacts on solids.

    Science.gov (United States)

    Fernandez-Lima, F A; Pinnick, V T; Della-Negra, S; Schweikert, E A

    2011-01-01

    First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Au(n) (+q) (1 ≤ n ≤ 400; q = 1-4) projectiles with impact energies in the range of 28-136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact.

  6. Dynamic analysis of a guided projectile during engraving process

    Directory of Open Access Journals (Sweden)

    Tao Xue

    2014-06-01

    Full Text Available The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile. The engraving process plays a crucial role on determining the ballistic performance and projectile stability. This paper analyzes the dynamic response of a guided projectile during the engraving process. By considering the projectile center of gravity moving during the engraving process, a dynamics model is established with the coupling of interior ballistic equations. The results detail the stress situation of a guided projectile band during its engraving process. Meanwhile, the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched. To further explore how the different performance of the engraving band can affect the dynamics of guided projectile, this paper focuses on these two aspects: (a the effects caused by the different band geometry; and (b the effects caused by different band materials. The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width. A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.

  7. Charge-exchange products of BEVALAC projectiles

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1982-11-01

    There is a substantial production of fragments of all masses lighter than the projectile, such fragments being centered in a narrow region of velocity space around the beam velocity. The exciting studies about anomalons deal with the curious enhanced reactivity of some of these secondary fragments. I direct attention here to the rather rare fragments of the same mass number as the projectile but differing in charge by one unit. We also keep track, as a frame of reference, of the products that have lost one neutron from the projectile

  8. Predicting the Accuracy of Unguided Artillery Projectiles

    Science.gov (United States)

    2016-09-01

    ability to penetrate a target. If the impact angle is small, the projectile may more likely ricochet, and any penetration will not be as deep as a...projectile experiences less drag and thus increased impact velocity and penetration . However, a blunt nose projectile has more strength at the tip and...fire 15. NUMBER OF PAGES 139 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE

  9. Aerodynamics and thermal physics of helicopter ice accretion

    Science.gov (United States)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was

  10. Breakup of the projectile at 35 MeV/nucleon

    International Nuclear Information System (INIS)

    Gonthier, P.L.; Harper, P.; Bouma, B.; Ramaker, R.; Cebra, D.A.; Koenig, Z.M.; Fox, D.; Westfall, G.D.

    1990-01-01

    Projectile breakup processes are probed by studying the emission of α particles in coincidence with projectile-like fragments as a function of the dissipated energy in the collisions of 35 MeV/nucleon 16 O with 58 Ni. Energy correlations between α particles and projectile-like fragments at small-angle geometries allow the separation of the sources of α emission from projectile-like and target-like fragments. We find that the slope parameters of the decay energy distributions, the average excitation energies, and the α particle multiplicities of the projectile-like fragments increase with increasing dissipation of energy. If the linear dependence, exhibited by the data, of the slope parameter with the dissipated energy is included in model calculations, the majority of the coincidence yield in the forward hemisphere can be explained. However, an excess yield of the data on the opposite side of the beam from the observed projectile-like fragment still remains. Such analysis of the data suggests that the breakup of the projectile is the dominant source of light particles at forward angles. Processes resulting in the breakup of the projectile must be better understood in order to study other processes leading to similar phenomena

  11. Stopping power. Projectile and target modeled as oscillators

    International Nuclear Information System (INIS)

    Stevanovic, N.; Nikezic, D.

    2005-01-01

    In this Letter the collision of two quantum harmonic oscillators was considered. The oscillators interact through the Coulomb interaction. Stopping power of projectile was calculated assuming that both, target and projectile may be excited. It has been shown that the frequency of the projectile oscillation, ω p influences on stopping power, particularly in the region of Bragg peak. If, ω p ->0 is substitute in the expression for stopping power derived in this Letter, then it comes to the form when the projectile has been treated as point like charged particle

  12. Graphical Method for Determining Projectile Trajectory

    Science.gov (United States)

    Moore, J. C.; Baker, J. C.; Franzel, L.; McMahon, D.; Songer, D.

    2010-01-01

    We present a nontrigonometric graphical method for predicting the trajectory of a projectile when the angle and initial velocity are known. Students enrolled in a general education conceptual physics course typically have weak backgrounds in trigonometry, making inaccessible the standard analytical calculation of projectile range. Furthermore,…

  13. Orientation estimation algorithm applied to high-spin projectiles

    International Nuclear Information System (INIS)

    Long, D F; Lin, J; Zhang, X M; Li, J

    2014-01-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm. (paper)

  14. Orientation estimation algorithm applied to high-spin projectiles

    Science.gov (United States)

    Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.

    2014-06-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.

  15. Strain measurement of objects subjected to aerodynamic heating using digital image correlation: experimental design and preliminary results.

    Science.gov (United States)

    Pan, Bing; Jiang, Tianyun; Wu, Dafang

    2014-11-01

    In thermomechanical testing of hypersonic materials and structures, direct observation and quantitative strain measurement of the front surface of a test specimen directly exposed to severe aerodynamic heating has been considered as a very challenging task. In this work, a novel quartz infrared heating device with an observation window is designed to reproduce the transient thermal environment experienced by hypersonic vehicles. The specially designed experimental system allows the capture of test article's surface images at various temperatures using an optical system outfitted with a bandpass filter. The captured images are post-processed by digital image correlation to extract full-field thermal deformation. To verify the viability and accuracy of the established system, thermal strains of a chromiumnickel austenite stainless steel sample heated from room temperature up to 600 °C were determined. The preliminary results indicate that the air disturbance between the camera and the specimen due to heat haze induces apparent distortions in the recorded images and large errors in the measured strains, but the average values of the measured strains are accurate enough. Limitations and further improvements of the proposed technique are discussed.

  16. Aerodynamic performance investigation on waverider with variable blunt radius in hypersonic flows

    Science.gov (United States)

    Li, Shibin; Wang, Zhenguo; Huang, Wei; Xu, Shenren; Yan, Li

    2017-08-01

    Waverider is an important candidate for the design of hypersonic vehicles. However, the ideal waverider cannot be manufactured because of its sharp leading edge, so the leading edge should be blunted. In the paper, the HMB solver and laminar flow model have been utilized to obtain the flow field properties around the blunt waverider with the freestream Mach number being 8.0, and several novel strategies have been suggested to improve the aerodynamic performance of blunt waverider. The numerical method has been validated against experimental data, and the Stanton number(St) of the predicted result has been analyzed. The obtained results show good agreement with the experimental data. Stmax decreases by 58% and L/D decreases by 8.2% when the blunt radius increases from 0.0002 m to 0.001 m. ;Variable blunt waverider; is a good compromise for aerodynamic performance and thermal insulation. The aero-heating characteristics are very sensitive to Rmax. The position of the smallest blunt radius has a great effect on the aerodynamic performance. In addition, the type of blunt leading edge has a great effect on the aero-heating characteristics when Rmax is fixed. Therefore, out of several designs, Type 4is the best way to achieve the good overall performance. The ;Variable blunt waverider; not only improves the aerodynamic performance, but also makes the aero-heating become evenly-distributed, leading to better aero-heating characteristics.

  17. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  18. Finite element investigation of explosively formed projectiles (EFP)

    International Nuclear Information System (INIS)

    Ahmad, I.

    1999-01-01

    This thesis report represents the numerical simulation of explosively formed projectiles (EFP), a type of linear self-forging fragment device. The simulation is performed using a finite element code DYNA2D. It also explicates that how the shape, velocity and kinetic energy of an explosively formed projectile is effected by various parameters. Different parameters investigated are mesh density, material, thickness, contour and types of liner. Effect of shape of casing and material model is also analyzed. The shapes of projectiles at different times after detonation are shown. The maximum velocity and kinetic energy of the projectile have been used to ascertain the effect of above mentioned parameters. (author)

  19. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  20. Visualization of Projectile Flying at High Speed in Dusty Atmosphere

    Science.gov (United States)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro

    2017-10-01

    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  1. Projectile rapidity dependence in target fragmentation

    International Nuclear Information System (INIS)

    Haustein, P.E.; Cumming, J.B.; Hseuh, H.C.

    1979-01-01

    The thick-target, thick-catcher technique was used to determine mean kinetic properties of selected products of the fragmentation of Cu by 1 H, 4 He, and 12 C ions (180 to 28,000 MeV/amu). Momentum transfer, as inferred from F/B ratios, is ovserved to occur most efficiently for the lower velocity projectiles. Recoil properties of target fragments vary strongly with product mass, but show only a weak dependence on projectile type. The projectile's rapidity is shown to be a useful variable for quantitative intercomparison of different reactions. These results indicate that E/sub proj//A/sub proj/ is the dominant parameter which governs the mean recoil behavior of target fragments. 20 references

  2. Computed tomography of projectile injuries

    International Nuclear Information System (INIS)

    Jeffery, A.J.; Rutty, G.N.; Robinson, C.; Morgan, B.

    2008-01-01

    Computed tomography (CT) is a gold standard in clinical imaging but forensic professions have been slow to embrace radiological advances. Forensic applications of CT are now exponentially expanding, replacing other imaging methods. As post-mortem cross-sectional imaging increases, radiologists will fall under increasing pressure to interpret complex forensic cases involving both living and deceased patients. This review presents a wide variety of weapon and projectile types aiding interpretation of projectile injuries both in forensic and clinical practice

  3. A design of inverse Taylor projectiles using material simulation

    International Nuclear Information System (INIS)

    Tonks, Michael; Harstad, Eric; Maudlin, Paul; Trujillo, Carl

    2008-01-01

    The classic Taylor cylinder test, in which a right circular cylinder is projected at a rigid anvil, exploits the inertia of the projectile to access strain rates that are difficult to achieve with more traditional uniaxial testing methods. In this work we present our efforts to design inverse Taylor projectiles, in which a tapered projectile becomes a right circular cylinder after impact, from annealed copper and show that the self-correcting geometry leads to a uniform compressive strain in the radial direction. We design projectiles using finite element simulation and optimization that deform as desired in tests with minor deviations in the deformed geometry due to manufacturing error and uncertainty in the initial velocity. The inverse Taylor projectiles designed in this manner provide a simple means of validating constitutive models. This work is a step towards developing a general method of designing Taylor projectiles that provide stress–strain behavior relevant to particular engineering problems

  4. Femoral vessel injury by a nonlethal weapon projectile

    Directory of Open Access Journals (Sweden)

    Rodrigo Bruno Biagioni, MD

    2018-06-01

    Full Text Available Rubber projectiles are used as an alternative to metal bullets owing to their lower morbidity and mortality rate. There are few reports of vascular lesions of extremities caused by rubber projectiles in the literature. The authors report the case of a 37-year-old man who was the victim of a penetrating injury to the left thigh with a rubber projectile. He reported only pain at the site of the injury; pulses were decreased in the affected limb. After arteriography confirmed an injury to the superficial femoral artery, he underwent an arterial and venous femorofemoral bypass using a reversed contralateral saphenous vein. Keywords: Vascular trauma, Nonlethal projectile, Penetrating trauma

  5. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  6. Projectile ionization in fast heavy-ion--atom collisions

    International Nuclear Information System (INIS)

    Schneider, D.; Prost, M.; Stolterfoht, N.; Nolte, G.; Du Bois, R.

    1983-01-01

    Electron emission following the ionization of projectile ions has been investigated systematically in collisions with Ne/sup q/+ and Ar/sup q/+ ions at several hundred MeV incident on different target gases. The projectile electrons are concentrated within one maximum, the electron-loss peak (ELP). The variation of the shape and intensity of the ELP with the projectile energy, its charge state, the observation angle, and the target gas has been measured. Theoretical predictions which are based on the binary-encounter approximation show, in general, good agreement with the experimental data. The contributions of the different subshells to the ELP are deduced. It is shown that electronic screening of the target nucleus plays an important role in the ionization process of the projectile ions

  7. Secondary electron emission with molecular projectiles

    International Nuclear Information System (INIS)

    Kroneberger, K.; Rothard, H.; Koschar, P.; Lorenzen, P.; Kemmler, J.; Keller, N.; Maier, R.; Groeneveld, K.O.; Clouvas, A.; Veje, E.

    1990-01-01

    The authors present results for the secondary electron emission (SEE) from thin foil targets, induced by both molecular ions and their atomic constituents as projectiles. The Sternglass theory for kinetic SEE states a proportionality between γ and the electronic stopping power, S e , which has been verified in various experiments. With comparing secondary electron (SE) yields induced by molecular projectiles to those induced by monoatomic projectiles, it is therefore possible to test models for the energy loss of molecular or cluster projectiles. Since the atomic constituents of the molecule are repelled from each other due to Coulomb explosion (superimposed by multiple scattering) while traversing the solid, it is interesting to measure the residual mutual influence on SEE and S e with increasing internuclear separation. This can only be achieved with thin foils, where (as in the present case) the SE-yields from the exit surface can be measured separately. The authors measured the SE-yields from the entrance (γ B ) and exit (γ F ) surfaces of thin C- and Al-foils (150 to 1,000 angstrom) with CO + , C + and O + (15 to 85 keV/u) and H 2 + and H + (0.3 to 1.2 MeV/u). The molecular effect defined as the ratio R(γ) between the yields induced by molecular projectiles and the sum of those induced by their atomic constituents was calculated. The energy dependence of R(γ) can be well represented by the calculated energy loss ratio of di-proton-clusters by Brandt. This supports Brandt's model for the energy loss of clusters

  8. Projectile Nose Mass Abrasion of High-Speed Penetration into Concrete

    Directory of Open Access Journals (Sweden)

    Haijun Wu

    2012-01-01

    Full Text Available Based on the dynamic spherical cavity expansion theory of concrete and the analysis of experimental data, a mass abrasion model of projectile considering the hardness of aggregates, the relative strength of target and projectile, and the initial impact velocity is constructed in this paper. Furthermore, the effect of mass abrasion on the penetration depth of projectile and the influence of hardness of aggregates and strength of projectile on penetration depth and mass loss are also analyzed. The results show that, for the ogive-nose projectile with the CRH of 3 and aspect ratio of 7 penetrating the concrete of 35 MPa, the “rigid-body penetration” model is available when the initial impact velocity is lower than 800 m/s. However, when the initial impact velocity is higher than 800 m/s, the “deforming/eroding body penetration” model should be adopted. Through theoretical analysis and numerical calculation, the results indicate that the initial impact velocity is the most important factor of mass abrasion. The hardness of aggregates and the strength of projectile are also significant factors. But relatively speaking, the sensitivity of strength of projectile to mass abrasion is higher, which indicates that the effect of projectile material on mass abrasion is more dramatic than the hardness of aggregates.

  9. Impact of Thin-Walled Projectiles with Concrete Targets

    Directory of Open Access Journals (Sweden)

    Rayment E. Moxley

    1995-01-01

    Full Text Available An experimental program to determine the response of thin-walled steel projectiles to the impact with concrete targets was recently conducted. The projectiles were fired against 41-MPa concrete targets at an impact velocity of 290 m/s. This article contains an outline of the experimental program, an examination of the results of a typical test, and predictions of projectile deformation by classical shell theory and computational simulation. Classical shell analysis of the projectile indicated that the predicted impact loads would result in circumferential buckling. A computational simulation of a test was conducted with an impact/penetration model created by linking a rigid-body penetration trajectory code with a general-purpose finite element code. Scientific visualization of the resulting data revealed that circumferential buckling was induced by the impact conditions considered.

  10. Penetration analysis of projectile with inclined concrete target

    Directory of Open Access Journals (Sweden)

    Kim S.B.

    2015-01-01

    Full Text Available This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction and CONCRETE_DAMAGE (K&C concrete models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  11. Penetration analysis of projectile with inclined concrete target

    Science.gov (United States)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  12. Study of projectile break-up process at intermediate energies

    International Nuclear Information System (INIS)

    Kumar, Harish; Parashari, Siddharth; Tali, Suhail A.

    2016-01-01

    The projectile break-up reactions are explained in terms of incomplete fusion or massive transfer reactions leading to the formation of composite system with less mass, charge and excitation energy, as compared to the complete fusion (CF) process. Since, the existing theoretical models are not applicable to reproduce the experimentally measured ICF, data satisfactory below 10 MeV/nucleon energies; thereby the study of the role of the entrance channel parameters in the fusion reactions is still a relevant problem in establishing the explicit inference regarding the influence of ICF on CF at 4-7 MeV/nucleon energies. Recently reported some studies have also shown that alpha Q-value is also an important parameter which affects the onset of ICF and conflict with the suggestion of Morgenstern et al. Keeping in view the recent aspects, to provide more strength to the aspect of projectile-target mass-asymmetry effect, role of non α-cluster projectile over α-cluster projectile, the present work has been carried out which will be useful to understand a clearer picture about the conflict between mass-asymmetry and projectile structure effect on break-up fusion process. As such, excitation function measurement of residues produced in 13 C + 175 Lu system has been carried out in a series of experiments of comparative study using α-cluster as well as non α-cluster projectiles with deformed heavier target nuclei at lower projectile energies ≈ 4-7 MeV/nucleon

  13. Preliminary Studies on Aerodynamic Control with Direct Current Discharge at Hypersonic Speed

    Science.gov (United States)

    Watanabe, Yasumasa; Takama, Yoshiki; Imamura, Osamu; Watanuki, Tadaharu; Suzuki, Kojiro

    A new idea of an aerodynamic control device for hypersonic vehicles using plasma discharges is presented. The effect of DC plasma discharge on a hypersonic flow is examined with both experiments and CFD analyses. It is revealed that the surface pressure upstream of plasma area significantly increases, which would be preferable in realizing a new aerodynamic control devices. Such pressure rise is also observed in the result of analyses of the Navier-Stokes equations with energy addition that simulates the Joule heating of a plasma discharge. It is revealed that the pressure rise due to the existence of the plasma discharge can be qualitatively explained as an effect of Joule heating.

  14. A model for projectile fragmentation

    International Nuclear Information System (INIS)

    Chaudhuri, G; Mallik, S; Gupta, S Das

    2013-01-01

    A model for projectile fragmentation is developed whose origin can be traced back to the Bevalac era. The model positions itself between the phenomenological EPAX parametrization and transport models like 'Heavy Ion Phase Space Exploration' (HIPSE) model and antisymmetrised molecular dynamics (AMD) model. A very simple impact parameter dependence of input temperature is incorporated in the model which helps to analyze the more peripheral collisions. The model is applied to calculate the charge, isotopic distributions, average number of intermediate mass fragments and the average size of largest cluster at different Z bound of different projectile fragmentation reactions at different energies.

  15. Electromagnetic launcher for heavy projectiles

    Science.gov (United States)

    Kozlov, A. V.; Kotov, A. V.; Polistchook, V. P.; Shurupov, A. V.; Shurupov, M. A.

    2017-11-01

    In this paper, we present the electromagnetic launcher with capacitive power source of 4.8 MJ. Our installation allows studying of the projectile acceleration in railgun in two regimes: with a solid armature and with a plasma piston. The experiments with plasma piston were performed in the railgun with the length of barrel of 0.7-1.0 m and its inner diameter of 17-24 mm. The velocities of lexan projectiles with weight of 5-15 g were in a range of 2.5-3.5 km/s. The physical mechanisms that limit speed of throwing in railgun are discussed.

  16. Aerodynamic Optimization Design of a Multistage Centrifugal Steam Turbine and Its Off-Design Performance Analysis

    OpenAIRE

    Hui Li; Dian-Gui Huang

    2017-01-01

    Centrifugal turbine which has less land occupation, simple structure, and high aerodynamic efficiency is suitable to be used as small to medium size steam turbines or waste heat recovery plant. In this paper, one-dimensional design of a multistage centrifugal steam turbine was performed by using in-house one-dimensional aerodynamic design program. In addition, three-dimensional numerical simulation was also performed in order to analyze design and off-design aerodynamic performance of the pro...

  17. Local behavior of reinforced concrete slabs to aircraft engine projectile impact

    International Nuclear Information System (INIS)

    Yoo, Hyeon Kyeong; Choi, Hyun; Chung, Chul Hun; Lee, Jung Whee; Kim, Sang Yun

    2011-01-01

    Structural safety evaluation of nuclear power plant considers two distinct types of structural failure, local failure and global failure. In the local failure evaluation, considered projectiles can be divided as internal and external projectile according to the impact location, and they also can be divided as rigid and soft projectile according to the deformation level after impact. Frequently considered projectiles are aircraft engine, tornado, and turbine projectile. When the speed and weight of the projectiles are considered, the most influential projectile is aircraft engine, which is one of the soft projectiles. Sugano et al. performed impact test using an engine model projectile, which is derived from GE-J79 engine and concentrated mass-spring model idealization. Kojima and Sugano et al. demonstrated from their experiments that steel liner on the rear side of the concrete wall reduces impact induced damage and suppresses debris scattering. Chung et al. performed comparison study of various formulae suggested for local damage evaluation using previously performed numerous local impact test results. Also, they validated a methodology of numerical analysis for impact simulation using LS-DYNA. Previously suggested formulae and research results do not consider the effect of liner plate or curved shape of the containment building walls on the local damage. In this research, flat wall and curved wall are individually modeled using the same curvature of nuclear power plants, and the effects of curvature and liner plates on the local damage are analytically investigated

  18. Femoral vessel injury by a nonlethal weapon projectile.

    Science.gov (United States)

    Biagioni, Rodrigo Bruno; Miranda, Gustavo Cunha; Mota de Moraes, Leonardo; Nasser, Felipe; Burihan, Marcelo Calil; Ingrund, José Carlos

    2018-06-01

    Rubber projectiles are used as an alternative to metal bullets owing to their lower morbidity and mortality rate. There are few reports of vascular lesions of extremities caused by rubber projectiles in the literature. The authors report the case of a 37-year-old man who was the victim of a penetrating injury to the left thigh with a rubber projectile. He reported only pain at the site of the injury; pulses were decreased in the affected limb. After arteriography confirmed an injury to the superficial femoral artery, he underwent an arterial and venous femorofemoral bypass using a reversed contralateral saphenous vein.

  19. Design and testing of high-pressure railguns and projectiles

    International Nuclear Information System (INIS)

    Peterson, D.R.; Fowler, C.M.

    1984-01-01

    The results of high-pressure tests of four railgun designs and four projectile types are presented. All tests were conducted at the Los Alamos explosive magnetic-flux compression facility in Ancho Canyon. The data suggest that the high-strength projectiles have lower resistance to acceleration than the low strength projectiles, which expand against the bore during acceleration. The railguns were powered by explosive magneticflux compression generators. Calculations to predict railgun and power supply performance were performed by Kerrisk

  20. Cambodian students’ prior knowledge of projectile motion

    Science.gov (United States)

    Piten, S.; Rakkapao, S.; Prasitpong, S.

    2017-09-01

    Students always bring intuitive ideas about physics into classes, which can impact what they learn and how successful they are. To examine what Cambodian students think about projectile motion, we have developed seven open-ended questions and applied into grade 11 students before (N=124) and after (N=131) conventional classes. Results revealed several consistent misconceptions, for instance, many students believed that the direction of a velocity vector of a projectile follows the curved path at every position. They also thought the direction of an acceleration (or a force) follows the direction of motion. Observed by a pilot sitting on the plane, the falling object, dropped from a plane moving at a constant initial horizontal speed, would travel backward and land after the point of its release. The greater angle of the launched projectile creates the greater horizontal range. The hand force imparted with the ball leads the ball goes straight to hit the target. The acceleration direction points from the higher position to lower position. The misconceptions will be used as primary resources to develop instructional instruments to promote Cambodian students’ understanding of projectile motion in the following work.

  1. Electronic emission produced by light projectiles at intermediate energies

    International Nuclear Information System (INIS)

    Bernardi, G.C.

    1989-01-01

    Two aspects of the electronic emission produced by light projectiles of intermediate energies have been studied experimentally. In the first place, measurements of angular distributions in the range from θ = 0 deg -50 deg induced by collisions of 50-200 keV H + incident on He have been realized. It was found that the double differential cross section of electron emission presents a structure focussed in the forward direction and which extends up to relatively large angles. Secondly, the dependence of the double differential cross section on the projectile charge was studied using H + and He 3 2+ projectiles of 50 and 100 keV/amu incident on He. Strong deviations from a constant scaling factor were found for increasing projectile charge. The double differential cross sections and the single differential cross sections as a function of the emission angle, and the ratios of the emissions induced by He 3 2+ and H + at equal incident projectile velocities are compared with the 'Continuum Distorted Wave-Eikonal Initial State' (CDW-EIS) approximation and the 'Classical Trajectory Monte Carlo' (CTMC) method. Both approximations, in which the potential of the projectile exercises a relevant role, reproduce the general aspects of the experimental results. An electron analyzer and the corresponding projectile beam line has been designed and installed; it is characterized by a series of properties which are particularly appropriate for the study of double differential electronic emission in gaseous as well as solid targets. The design permits to assure the conditions to obtain a well localized gaseous target and avoid instrumental distortions of the measured distributions. (Author) [es

  2. Aerodynamic potpourri

    Science.gov (United States)

    Wilson, R. E.

    1981-01-01

    Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

  3. Ionization of one-electron oxygen and fluorine projectiles by molecular hydrogen

    International Nuclear Information System (INIS)

    Tipping, T.N.; Sanders, J.M.; Hall, J.; Shinpaugh, J.L.; Lee, D.H.; McGuire, J.H.; Richard, P.

    1988-01-01

    Cross sections for projectile ionization have been measured for hydrogenlike oxygen and fluorine ions incident on a molecular-hydrogen target over a projectile energy range of 0.5--2.5 MeV/amu. The experimental cross sections are compared to the plane-wave Born approximation (PWBA) and to the Glauber-approximation cross sections all of which were calculated for atomic hydrogen and multiplied by 2. The PWBA calculations have a projectile energy dependence similar to the measured cross sections but slightly underestimate them. The Glauber approximation also underestimates the measured projectile-ionization cross sections when the hydrogen target electrons are neglected, while it overestimates the measured cross sections when the effects of the hydrogen target electrons are included. The measured projectile-ionization cross sections for hydrogenlike ions incident on molecular hydrogen are approximately a factor of 2 smaller than previously reported projectile-ionization cross sections for hydrogenlike ions incident on helium. No cross sections are available for atomic hydrogen in this velocity and ion-charge regime

  4. Analysis on the resistive force in penetration of a rigid projectile

    Directory of Open Access Journals (Sweden)

    Xiao-wei Chen

    2014-09-01

    Full Text Available According to the dimensionless formulae of DOP (depth of penetration of a rigid projectile into different targets, the resistive force which a target exerts on the projectile during the penetration of rigid projectile is theoretically analyzed. In particular, the threshold Vc of impact velocity applicable for the assumption of constant resistive force is formulated through impulse analysis. The various values of Vc corresponding to different pairs of projectile-target are calculated, and the consistency of the relative test data and numerical results is observed.

  5. Development of odd-Z-projectile reactions for transactinide element synthesis

    International Nuclear Information System (INIS)

    Folden III, Charles Marvin

    2004-01-01

    The development of new odd-Z-projectile reactions leading to the production of transactinide elements is described. The cross section of the even-Z-projectile 208Pb(64Ni, n)271Ds reaction was measured at two new energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, seven decay chains attributable to 271Ds were observed. These data, combined with previous results, establish an excitation function for the production of 271Ds. The maximum cross section was 20 +15 -11 pb at a center-of-target energy of 311.5 MeV in the laboratory frame.The data from the 271Ds experiments were used to estimate the optimum beam energy for the new odd-Z-projectile 208Pb(65Cu, n)272-111 reaction using the Fusion by Diffusion theory proposed by Swiatecki, Siwek-Wilczynska, and Wilczynski. A cross section for this reaction was measured for the first time, at a center-of-target energy of 321.1 MeV in the laboratory frame. The excitation energy f or compound nuclei formed at the target center was 13.2 MeV. One decay chain was observed, resulting in a measured cross section of 1.7 +3.9 -1.4 pb. This decay chain is in good agreement with previously published data on the decay of 272-111.The new odd-Z-projectile 208Pb(55Mn, n)262Bh reaction was studied at three different projectile energies, and 33 decay chains of 262Bh were observed. The existence of a previously reported alpha-decaying isomeric state in this nuclide was confirmed. Production of the ground state was preferred at all three beam energies. The maximum cross section was 540 +180 -150 pb at a projectile center-of-target energy of 264.0 MeV. This cross section is much larger than that previously reported for the even-Z-projectile 209Bi(54Cr, n)262Bh reaction, which may be because the 54Cr projectile energies in the latter reaction were too high for optimum production of the 1n product. At the highest projectile energy of 268.0 MeV in the target center, two decay

  6. Corrected Launch Speed for a Projectile Motion Laboratory

    Science.gov (United States)

    Sanders, Justin M.; Boleman, Michael W.

    2013-01-01

    At our university, students in introductory physics classes perform a laboratory exercise to measure the range of a projectile fired at an assigned angle. A set of photogates is used to determine the initial velocity of the projectile (the launch velocity). We noticed a systematic deviation between the experimentally measured range and the range…

  7. On the Inertia Term of Projectile's Penetration Resistance

    Directory of Open Access Journals (Sweden)

    Yu Shan

    2013-01-01

    Full Text Available The effect of the target inertia term of rigid kinetic energy projectiles (KEP’s penetration resistance is investigated using nonlinear dynamic code LS-DYNA and four constitutive models. It is found that the damage number of target can be used to measure the influence of the inertia term. The smaller the damage number is, the less influence the inertia term has. The less dependent the resistance has on projectile velocity, the more accurate it is to treat the resistance as a constant. For the ogive-nose projectile with CRH of 3, when the target is aluminum, steel, or other metals, the threshold velocity for the constant resistance is at least 1258 m/s; when the target is concrete, rock, or other brittle materials, if the velocity of the projectile is greater than 400 m/s or so, the damage number would be very large, and the penetration resistance would clearly depend on the projectile’s velocity. The higher the elastic wave velocity is, the more penetration process is affected by the impact face.

  8. Fatal lawn mower related projectile injury.

    Science.gov (United States)

    Colville-Ebeling, Bonnie; Lynnerup, Niels; Banner, Jytte

    2014-06-01

    Fatal lawn mower related injuries are a relatively rare occurrence. In a forensic setting, the primary aim is to reconstruct the injury mechanism and establish the cause of death. A relatively rare, but characteristic type of injury is a so-called projectile or missile injury. This occurs when the operator or a bystander is impacted by an object mobilized from the grass by the rotating mower blades. This type of injury often leaves only modest external trauma, which increases the risk of overlooking an entry wound. In this paper we present a case of a fatal lawn mower related projectile injury which was initially overlooked, later interpreted as a possible gunshot homicide, and finally identified as a lawn mower related projectile injury when autopsy revealed a piece of metal thread in the main bronchus to the right middle lobe, hemopericardium, and right-sided hemothorax. To our knowledge, this injury mechanism has not previously been reported as a cause of death. This case illustrates the importance of postmortem radiological imaging and interdisciplinary cooperation when establishing manner and cause of death in unusual cases.

  9. Physics of projectile fragments

    International Nuclear Information System (INIS)

    Minamisono, Tadanori

    1982-01-01

    This is a study report on the polarization phenomena of the projectile fragments produced by heavy ion reactions, and the beta decay of fragments. The experimental project by using heavy ions with the energy from 50 MeV/amu to 250 MeV/amu was designed. Construction of an angle-dispersion spectrograph for projectile fragments was proposed. This is a two-stage spectrograph. The first stage is a QQDQQ type separator, and the second stage is QDQD type. Estimation shows that Co-66 may be separated from the nuclei with mass of 65 and 67. The orientation of fragments can be measured by detecting beta-ray. The apparatus consists of a uniform field magnet, an energy absorber, a stopper, a RF coil and a beta-ray hodoscope. This system can be used for not only this purpose but also for the measurement of hyperfine structure. (Kato, T.)

  10. Projectile-power-compressed magnetic-field pulse generator

    International Nuclear Information System (INIS)

    Barlett, R.H.; Takemori, H.T.; Chase, J.B.

    1983-01-01

    Design considerations and experimental results are presented of a compressed magnetic field pulsed energy source. A 100-mm-diameter, gun-fired projectile of approx. 2MJ kinetic energy was the input energy source. An initial magnetic field was trapped and compressed by the projectile. With a shorted load, a magajoule in a nanohenry was the design goal, i.e., 50 percent energy transformation from kinetic to magnetic. Five percent conversion was the highest recorded before gauge failure

  11. An engineering inviscid-boundary layer method for calculation of aerodynamic heating in the leeward region

    International Nuclear Information System (INIS)

    Dirin, M.M.; Karimian, S.M.H.; Maerefat, M.

    2003-01-01

    An engineering method has been modified for the prediction of aerodynamic heating of the hypersonic bodies in the leeward region. This is achieved using our proposed new method for determining streamlines in the leeward region. The modified form of Maslen's second order relation, which calculates pressure in the shock layer explicitly, is employed. The inviscid outer flow within the shock layer is first solved. The calculated solution, then, is used to determine the flow properties at the boundary layer edge and the orientation of the surface streamlines. Boundary layer equations, written in the streamline coordinates, are integrated along the surface to obtain the rate of heat transferred to the body surface. The present method is an inverse method in which the body shape is obtained according to the shape of the shock. In general, inviscid-boundary layer engineering methods calculate accurately the orientation of streamlines in the windward side only, and therefore they are not usually applicable in the leeward region. In the present study, a new method is proposed to determine the orientation of the surface streamlines in the leeward region. Using the present method, three-dimensional hypersonic flow is solved fast and easy all around a cone. The obtained results show that the corrections presented in this study extend excellently the application of the method to the leeward region. (author)

  12. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    Science.gov (United States)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  13. Fragmentation of Pb-Projectiles at SPS Energies

    CERN Multimedia

    2002-01-01

    % EMU17 \\\\ \\\\ We have exposed stacks consisting of solid state nuclear track detectors (CR-39 plastic and BP-1 glass) and different target materials at the SPS to beams of Pb projectiles. Our detectors record tracks of relativistic nuclei with charge numbers of Z~$\\geq$~6 for CR-39 and Z~$\\geq$75 for BP-1. After development of the tracks by etching they are detected and measured using completely automated microscope systems. Thus experiments with high statistics are possible. \\\\ \\\\BP-1 detectors were exposed to measure total charge changing cross sections and elemental production cross sections for heavy projectile fragments. These experiments were performed for different targets CH$ _{2} $, C, Al, Cu, Ag and Pb. Comparison of the results for different targets allows to investigate contributions to charge changing reactions by electromagnetic dissociation. Multifragmentation events in which several intermediate mass fragments are emitted from the heavy Pb projectile are studied using stacks containing CR-39 d...

  14. Hidrodinamički model podvodnog projektila / Hidrodinamical model of an underwater projectile

    Directory of Open Access Journals (Sweden)

    Miroslav Radosavljević

    2008-07-01

    Full Text Available Radi dobijanja kvalitetnog matematičkog modela podvodnog projektila u radu su definisane ulazne i izlazne veličine, brzine i ubrzanje projektila. Uz zadate uslove mogućeg kretanja projektila definisan je model podvodnog projektila sa šest jednačina. / The paper analyzes an underwater projectile. The input and output values, the projectile speed and acceleration are defined for a quality definition of the projectile mathematical model. With the conditions of the projectile potential movement previously set out, the torpedo model is defined by six equations.

  15. High-velocity Penetration of Concrete Targets with Three Types of Projectiles: Experiments and Analysis

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    Full Text Available Abstract This study conducted high-velocity penetration experiments using conventional ogive-nose, double-ogive-nose, and grooved-tapered projectiles of approximately 2.5 kg and initial velocities between 1000 and 1360 m/s to penetrate or perforate concrete targets with unconfined compressive strengths of nominally 40MPa. The penetration performance data of these three types of projectiles with two different types of materials (i.e., AerMet100 and DT300 were obtained. The crater depth model considering both the projectile mass and the initial velocity was proposed based on the test results and a theoretical analysis. The penetration ability and the trajectory stability of these three projectile types were compared and analyzed accordingly. The results showed that, under these experimental conditions, the effects of these two different kinds of projectile materials on the penetration depth and mass erosion rate of projectile were not obvious. The existing models could not reflect the crater depths for projectiles of greater weights or higher velocities, whereas the new model established in this study was reliable. The double-ogive-nose has a certain effect of drag reduction. Thus, the double-ogive-nose projectile has a higher penetration ability than the conventional ogive-nose projectile. Meanwhile, the grooved-tapered projectile has a better trajectory stability, because the convex parts of tapered shank generated the restoring moment to stabilize the trajectory.

  16. The dynamics of target ionization by fast higly charged projectiles

    International Nuclear Information System (INIS)

    Moshammer, R.; Ullrich, J.; Unverzagt, M.; Olsen, R.E.; Doerner, R.; Mergel, V.; Schmidt-Boecking, H.

    1995-12-01

    We report on the first kinematically complete investigation of single target ionization by fast heavy ions, on the measurement of all low energy electrons down to zero emission velocities and on the determination of the projectile energy loss on the level of ΔE p /E p ∼10 -7 . This has been achieved by combining a high-resolution recoil-ion momentum spectrometer with a novel 4π electron analyzer. The complete momentum balance between electron, recoil-ion and projectile for single ionization of helium by 3.6 MeV/u Ni 24+ was explored. Low energy electrons are found to be ejected mainly into the forward direction with a most likely longitudinal energy of only 2 eV. The electron momentum is not balanced, as might be expected, by the projectile momentum but is nearly completely compensated by the recoil ion. Surprisingly, the momenta of the helium-atom ''fragments'', the electron and the He 1+ recoil ion, are considerably larger than the total momentum loss of the projectile: the target atom seems to dissociate in the strong, longranging projectile potential. The collision has to be considered as a real three body interaction. (orig.)

  17. A Flexible Online Apparatus for Projectile Launch Experiments

    Directory of Open Access Journals (Sweden)

    Carlos Manuel Paiva

    2013-01-01

    Full Text Available In order to provide a more flexible learning environment in physics, the developed projectile launch apparatus enables students to determine the acceleration of gravity and the dependence of a set of parameters in the projectile movement. This apparatus is remotely operated and accessed via web, by first scheduling an access time slot. This machine has a number of configuration parameters that support different learning scenarios with different complexities.

  18. Racemization of Valine by Impact-Induced Heating

    Science.gov (United States)

    Furukawa, Yoshihiro; Takase, Atsushi; Sekine, Toshimori; Kakegawa, Takeshi; Kobayashi, Takamichi

    2018-03-01

    Homochirality plays an important role in all living organisms but its origin remains unclear. It also remains unclear whether such chiral molecules survived terrestrial heavy impact events. Impacts of extraterrestrial objects on early oceans were frequent and could have affected the chirality of oceanic amino acids when such amino acids accumulated during impacts. This study investigated the effects of shock-induced heating on enantiomeric change of valine with minerals such as olivine ([Mg0.9, Fe0.1]2SiO4), hematite (Fe2O3), and calcite (CaCO3). With a shock wave generated by an impact at 0.8 km/s, both d- and l-enriched valine were significantly decomposed and partially racemized under all experimental conditions. Different minerals had different shock impedances; therefore, they provided different P-T conditions for identical impacts. Furthermore, the high pH of calcite promoted the racemization of valine. The results indicate that in natural hypervelocity impacts, amino acids in shocked oceanic water would have decomposed completely, since impact velocity and the duration of shock compression and heating are typically greater in hypervelocity impact events than those in experiments. Even with the shock wave by the impact of small and decelerated projectiles in which amino acids survive, the shock heating may generate sufficient heat for significant racemization in shocked oceanic water. However, the duration of shock induced heating by small projectiles is limited and the population of such decelerated projectiles would be limited. Therefore, even though impacts of asteroids and meteorites were frequent on the prebiotic Earth, impact events would not have significantly changed the ee of proteinogenic amino acids accumulated in the entire ocean.

  19. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-01-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in "The Physics Teacher" ("TPT"); however, the "Hoop Challenge" is a new setup not…

  20. Coincidence measurements of slow recoil ions with projectile ions in 42-MeV Arq+-Ar collisions

    International Nuclear Information System (INIS)

    Tonuma, T.; Kumagai, H.; Matsuo, T.; Tawara, H.

    1989-01-01

    Slow Ar recoil-ion production cross sections by projectiles of 1.05-MeV/amu Ar q+ (q=4,6,8,10,12,14) were measured using a projectile-ion--recoil-ion coincidence technique. The present results indicate that the average recoil ion charges left-angle i right-angle increase with increasing the incident projectile charge q and the number of the lost and captured electrons from and/or into projectiles, whereas the projectile charge-changing cross sections for loss ionization decrease steeply with increasing q for low-charge-state projectiles, and those for transfer ionization increase rapidly with increasing q for high-charge-state projectiles. For Ar projectiles with q=10, which corresponds to the equilibrium charge state of Ar projectiles at the present collision energy, the average recoil-ion charges are nearly the same in both loss and transfer ionization, and a pure ionization process plays a much more important role in producing highly charged recoil ions, in contrast to projectile electron loss or transfer processes, which play a role in other projectile charge states

  1. Spinning projectile's attitude measurement with LW infrared radiation under sea-sky background

    Science.gov (United States)

    Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu

    2018-05-01

    With the further development of infrared radiation research in sea-sky background and the requirement of spinning projectile's attitude measurement, the sea-sky infrared radiation field is used to carry out spinning projectile's attitude angle instead of inertial sensors. Firstly, the generation mechanism of sea-sky infrared radiation is analysed. The mathematical model of sea-sky infrared radiation is deduced in LW (long wave) infrared 8 ∼ 14 μm band by calculating the sea surface and sky infrared radiation. Secondly, according to the movement characteristics of spinning projectile, the attitude measurement model of infrared sensors on projectile's three axis is established. And the feasibility of the model is analysed by simulation. Finally, the projectile's attitude calculation algorithm is designed to improve the attitude angle estimation accuracy. The results of semi-physical experiments show that the segmented interactive algorithm estimation error of pitch and roll angle is within ±1.5°. The attitude measurement method is effective and feasible, and provides accurate measurement basis for the guidance of spinning projectile.

  2. Study of incomplete fusion sensitivity to projectile structure from forward recoil range distribution measurement

    International Nuclear Information System (INIS)

    Kumar, Harish; Tali, Suhail A.; Afzal Ansari, M.

    2017-01-01

    Recently, the projectile structure is found to affect the incomplete fusion (ICF) process by using α- and non-α-cluster structured projectiles which is explored in terms of projectile α-Q-value and is still limited only for a very few systems. Keeping in view the recent aspects especially the projectile structure effect on ICF, the present work is carried out in the series of experiment by using α- and non-α-cluster structured projectiles. Presently, the FRRDs of evaporation residues (ERs) produced in 13 C + 175 Lu system have been measured at ≈ 88 MeV energy. In this work, an attempt has been made to have a better knowledge of projectile α-Q-value effect on ICF

  3. Initiation of Gaseous Detonation by Conical Projectiles

    Science.gov (United States)

    Verreault, Jimmy

    Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed

  4. Double ionization of H2 caused by two sequential projectile-electron collisions

    International Nuclear Information System (INIS)

    Edwards, A.K.; Wood, R.M.; Ezell, R.L.

    1985-01-01

    The impact-parameter calculations of Hansteen et al. [J. Phys. B 17, 3545 (1984)] for K-shell ionization are used to predict the cross sections for the double ionization of H 2 and He by H + and D + projectiles as a function of projectile velocity. The calculated values in the case of the H 2 target are typically a factor of 12 lower than the measured values, but the calculations and measurements show similar velocity dependencies. The results indicate that for projectile energies less than 1 MeV/amu, the double-ionization process of H 2 occurs mainly by two independent interactions between the electrons and projectile. For the He target, the calculated and measured values for the double-ionization cross section are much closer in magnitude, but the calculations predict a more rapid falloff with projectile velocity than is observed

  5. Electron loss and capture from low-charge-state oxygen projectiles in methane

    International Nuclear Information System (INIS)

    Santos, A C F; Wolff, W; Sant’Anna, M M; Sigaud, G M; DuBois, R D

    2013-01-01

    Absolute cross sections for single- and double-electron loss and single- and multiple-electron capture of 15–1000 keV oxygen projectiles (q = −1, 0, 1, 2) colliding with the methane molecule are presented. The experimental data are used to examine cross-section scaling characteristics for the electron loss of various projectiles. In addition, a modified version of the free-collision model was employed for the calculation of the single- and total-electron-loss cross sections of oxygen projectiles presented in this work. The comparison of the calculated cross sections with the present experimental data shows very good agreement for projectile velocities above 1.0 au. The comparison of the present single-electron-capture cross sections with other projectiles having the same charge shows good agreement, and a common curve can be drawn through the different data sets. (paper)

  6. Fusion and direct reactions for strongly and weakly bound projectiles

    International Nuclear Information System (INIS)

    Hugi, M.; Lang, J.; Mueller, R.; Ungricht, E.; Bodek, K.; Jarczyk, L.; Kamys, B.; Magiera, A.; Strzalkowski, A.; Willim, G.

    1981-01-01

    The interaction of 6 Li, 9 Be and 12 C projectiles with a 28 Si target was investigated by measuring the angular distributions of the elasitcally scattered projectiles and of the emitted protons, deuterons and α-particles. The experiment was perfomred in order to deduce direct and compound nucleus process contributions to the total reaction cross section and to study the influence of the projectile structure on the relative importance of these two mechanisms. Optical model parameters and therefore the total reaction cross section are strongly influenced by the binding energy of the projectile. The parameters of the Glas-Mosel describing the fusion reaction vary smoothly with the atomic number. In the system 9 B + 28 Si around 50% of all reactions are direct processes even at energies near the Coulomb barrier, whereas in the other systeme the direct part amounts to 15% ( 12 C) and 30% ( 6 Li) only. (orig.)

  7. Mechanisms of Li-projectile breakup-up

    International Nuclear Information System (INIS)

    Rebel, H.; Srivastava, D.K.

    1990-08-01

    Various experimental and theoretical features observed in recent studies of break-up of 6 Li and 7 Li projectiles in the field of atomic nuclei are discussed, in particular for the transitional energy regime of 10-30 MeV/amu. The discussion is organized as three independent lectures presented at the International School on Nuclear Physics, Kiev (UkSSR), 28 May - 8 June, 1990. After a survey on the main experimental facts and on the basic reaction mechanisms, current theoretical approaches are illustrated by an application to the analysis of elastic break-up of 156 MeV 6 Li projectiles. Finally Coulomb break-up is discussed as a novel tool of laboratory nuclear astrophysics. (orig.) [de

  8. A Simple General Solution for Maximal Horizontal Range of Projectile Motion

    OpenAIRE

    Busic, Boris

    2005-01-01

    A convenient change of variables in the problem of maximizing the horizontal range of the projectile motion, with an arbitrary initial vertical position of the projectile, provides a simple, straightforward solution.

  9. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  10. Variation of the binary encounter peak energy as a function of projectile atomic number

    International Nuclear Information System (INIS)

    Sanders, J.M.

    1994-01-01

    The energy of the binary encounter peak, in spectra of electrons emitted at 0 degrees with respect to the projectile beam direction, has been studied to investigate its dependence on the atomic number of the projectile ion. The projectiles all had the same squared velocity of 0.6 MeV/u, and all had the same charge q=7. The Z of the projectiles ranged from 8 to 35, and the target was H 2 . The Energy E BEP of the binary encounter peak and also the energy t of the cusp formed by electron loss or electron capture to the projectile continuum (ELC or ECC) were obtained from fits to the spectra. Considerable care was required in fitting the cusp in order to properly ascertain the cusp energy. The energy shift ΔE, defined as the difference between 4t and E BEP , was obtained for each projectile. It is found that the energy shift decreases as the projectile Z increases. This trend is the opposite of that seen for projectile charge where the shift increases as q increases. Such a trend is not well described by the simple elastic scattering model of binary encounter electron production

  11. On ballistic parameters of less lethal projectiles influencing the severity of thoracic blunt impacts.

    Science.gov (United States)

    Pavier, Julien; Langlet, André; Eches, Nicolas; Jacquet, Jean-François

    2015-01-01

    The development and safety certification of less lethal projectiles require an understanding of the influence of projectile parameters on projectile-chest interaction and on the resulting terminal effect. Several energy-based criteria have been developed for chest injury assessment. Many studies consider kinetic energy (KE) or energy density as the only projectile parameter influencing terminal effect. In a common KE range (100-160 J), analysis of the firing tests of two 40 mm projectiles of different masses on animal surrogates has been made in order to investigate the severity of the injuries in the thoracic region. Experimental results have shown that KE and calibre are not sufficient to discriminate between the two projectiles as regards their injury potential. Parameters, such as momentum, shape and impedance, influence the projectile-chest interaction and terminal effect. A simplified finite element model of projectile-structure interaction confirms the experimental tendencies. Within the range of ballistic parameters used, it has been demonstrated that maximum thoracic deflection is a useful parameter to predict the skeletal level of injury, and it largely depends on the projectile pre-impact momentum. However, numerical simulations show that these results are merely valid for the experimental conditions used and cannot be generalised. Nevertheless, the transmitted impulse seems to be a more general factor governing the thorax deflection.

  12. Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact.

    Science.gov (United States)

    Lee, Sangkyu; Kim, Gyuyong; Kim, Hongseop; Son, Minjae; Choe, Gyeongcheol; Nam, Jeongsoo

    2018-03-09

    This study evaluates the fracture properties and rear-face strain distribution of nonreinforced and hooked steel fiber-reinforced concrete panels penetrated by projectiles of three different nose shapes: sharp, hemispherical, and flat. The sharp projectile nose resulted in a deeper penetration because of the concentration of the impact force. Conversely, the flat projectile nose resulted in shallower penetrations. The penetration based on different projectile nose shapes is directly related to the impact force transmitted to the rear face. Scabbing can be more accurately predicted by the tensile strain on the rear face of concrete due to the projectile nose shape. The tensile strain on the rear face of the concrete was reduced by the hooked steel fiber reinforcement because the hooked steel fiber absorbed some of the impact stress transmitted to the rear face of the concrete. Consequently, the strain behavior on the rear face of concrete according to the projectile nose shape was confirmed.

  13. Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact

    Directory of Open Access Journals (Sweden)

    Sangkyu Lee

    2018-03-01

    Full Text Available This study evaluates the fracture properties and rear-face strain distribution of nonreinforced and hooked steel fiber-reinforced concrete panels penetrated by projectiles of three different nose shapes: sharp, hemispherical, and flat. The sharp projectile nose resulted in a deeper penetration because of the concentration of the impact force. Conversely, the flat projectile nose resulted in shallower penetrations. The penetration based on different projectile nose shapes is directly related to the impact force transmitted to the rear face. Scabbing can be more accurately predicted by the tensile strain on the rear face of concrete due to the projectile nose shape. The tensile strain on the rear face of the concrete was reduced by the hooked steel fiber reinforcement because the hooked steel fiber absorbed some of the impact stress transmitted to the rear face of the concrete. Consequently, the strain behavior on the rear face of concrete according to the projectile nose shape was confirmed.

  14. Fairly direct hit. Advances in imaging of shotgun projectiles in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, Sebastian [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Kubik-Huch, Rahel A.; Peters, Alexander [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); Klarhoefer, Markus [Siemens Healthcare, Zurich (Switzerland); Bolliger, Stephan A.; Thali, Michael J. [University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Anderson, Suzanne [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Notre Dame Australia, Radiology, Sydney School of Medicine, Sydney, NSW (Australia); Froehlich, Johannes M. [Federal Institute of Technology, Pharmaceutical Sciences, Zurich (Switzerland)

    2015-09-15

    To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)

  15. Fairly direct hit. Advances in imaging of shotgun projectiles in MRI

    International Nuclear Information System (INIS)

    Eggert, Sebastian; Kubik-Huch, Rahel A.; Peters, Alexander; Klarhoefer, Markus; Bolliger, Stephan A.; Thali, Michael J.; Anderson, Suzanne; Froehlich, Johannes M.

    2015-01-01

    To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)

  16. Large carbon cluster thin film gauges for measuring aerodynamic heat transfer rates in hypersonic shock tunnels

    International Nuclear Information System (INIS)

    Srinath, S; Reddy, K P J

    2015-01-01

    Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability. (paper)

  17. An experimental study on the deformation and fracture modes of steel projectiles during impact

    International Nuclear Information System (INIS)

    Rakvåg, K.G.; Børvik, T.; Westermann, I.; Hopperstad, O.S.

    2013-01-01

    Highlights: • The fracture process is ductile for the unhardened projectiles. • A combined ductile–brittle fracture process is obtained for the HRC 40 projectiles. • The fragmentation of HRC 52 projectiles has cleavage as the main mechanism. • The fracture modes were confirmed in a metallurgical study. • The hardened materials have a stochastic variation of the mechanical properties. - Abstract: Previous investigations of the penetration and perforation of high-strength steel plates struck by hardened steel projectiles have shown that under certain test conditions the projectile may fracture or even fragment upon impact. Simulations without an accurate failure description for the projectile material will then predict perforation of the target instead of fragmentation of the projectile, and thus underestimate the ballistic limit velocity of the target plate. This paper presents an experimental investigation of the various deformation and fracture modes that may occur in steel projectiles during impact. This is studied by conducting Taylor bar impact tests using 20 mm diameter, 80 mm long, tool steel projectiles with three different hardness values (HRC 19, 40 and 52). A gas gun was used to fire the projectiles into a rigid wall at impact velocities ranging from 100 to 350 m/s, and the deformation and fracture processes were captured by a high-speed video camera. From the tests, several different deformation and fracture modes were registered for each hardness value. To investigate the influence of material on the deformation and fracture modes, several series of tensile tests on smooth axisymmetric specimens were carried out to characterise the mechanical properties of the three materials. To gain a deeper understanding of the various processes causing fracture and fragmentation during impact, a metallurgical investigation was conducted. The fracture surfaces of the failed projectiles of different hardness were investigated, and the microstructure was

  18. Enveloping Aerodynamic Decelerator

    Science.gov (United States)

    Nock, Kerry T. (Inventor); Aaron, Kim M. (Inventor); McRonald, Angus D. (Inventor); Gates, Kristin L. (Inventor)

    2018-01-01

    An inflatable aerodynamic deceleration method and system is provided for use with an atmospheric entry payload. The inflatable aerodynamic decelerator includes an inflatable envelope and an inflatant, wherein the inflatant is configured to fill the inflatable envelope to an inflated state such that the inflatable envelope surrounds the atmospheric entry payload, causing aerodynamic forces to decelerate the atmospheric entry payload.

  19. SIMULATION OF COOLING TOWER AND INFLUENCE OF AERODYNAMIC ELEMENTS ON ITS WORK UNDER CONDITIONS OF WIND

    Directory of Open Access Journals (Sweden)

    K. V. Dobrego

    2014-01-01

    Full Text Available Modern Cooling Towers (CT may utilize different aerodynamic elements (deflectors, windbreak walls etc. aimed to improvement of its heat performance especially at the windy conditions. In this paper the effect of flow rotation in overshower zone of CT and windbreak walls on a capacity of tower evaporating unit in the windy condition is studied numerically. Geometry of the model corresponds to real Woo-Jin Power station, China. Analogy of heat and mass transfer was used that allowed to consider aerodynamic of one-dimension flow and carried out detailed 3D calculations applying modern PC. Heat transfer coefficient of irrigator and its hydrodynamic resistance were established according to experimental data on total air rate in cooling tower. Numerical model is tested and verified with experimental data.Nonlinear dependence of CT thermal performance on wind velocity is demonstrated with the minimum (critical wind velocity at ucr ~ 8 m/s for simulated system. Application of windbreak walls does not change the value of the critical wind velocity, but may improves performance of cooling unit at moderate and strong wind conditions. Simultaneous usage of windbreak walls and overshower deflectors may increase efficiency up to 20–30 % for the deflectors angle a = 60o. Simulation let one analyze aerodynamic patterns, induced inside cooling tower and homogeneity of velocities’ field in irrigator’s area.Presented results may be helpful for the CT aerodynamic design optimization, particularly, for perspective hybrid type CTs.

  20. Experimental Validation of Elliptical Fin-Opening Behavior

    Directory of Open Access Journals (Sweden)

    James M. Garner

    2003-01-01

    Full Text Available An effort to improve the performance of ordnance has led to the consideration of the use of folding elliptical fins for projectile stabilization. A second order differential equation was used to model elliptical fin deployment history and accounts for: deployment with respect to the geometric properties of the fin, the variation in fin aerodynamics during deployment, the initial yaw effect on fin opening, and the variation in deployment speed based on changes in projectile spin. This model supports tests conducted at the Transonic Experimental Facility, Aberdeen Proving Ground examining the opening behavior of these uniquely shaped fins. The fins use the centrifugal force from the projectile spin to deploy. During the deployment, the fin aerodynamic forces vary with angle-of-attack changes to the free stream. Model results indicate that projectile spin dominates the initial opening rates and aerodynamics dominate near the fully open state. The model results are examined to explain the observed behaviors, and suggest improvements for later designs.

  1. Engineering models in wind energy aerodynamics : Development, implementation and analysis using dedicated aerodynamic measurements

    NARCIS (Netherlands)

    Schepers, J.G.

    2012-01-01

    The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second

  2. Electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with many-electron atomic targets

    International Nuclear Information System (INIS)

    Mueller, C.; Gruen, N.; Voitkiv, A.B.

    2002-01-01

    We study single- and double-electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with neutral many-electron target atoms. The simultaneous interaction of the target with two projectile electrons is found to be the dominant process in the double-electron loss provided the atomic number of the projectile, Z p , that of the target, Z t , and the collision velocity, v, satisfy the condition Z p Z t /v>0.4. It is shown that for a wide range of projectile and target atomic numbers the asymptotic double-to-single loss ratio strongly depends on the target atomic number but is nearly independent of the nuclear charge of the projectile. It is also demonstrated that many-photon exchange between the target and each of the projectile electrons considerably influences the double loss in collisions with very heavy targets

  3. Features of projectile motion in the special theory of relativity

    International Nuclear Information System (INIS)

    Shahin, Ghassan Y

    2006-01-01

    A relativistic projectile motion in a vacuum is examined by means of elementary consequences of special relativity. Exact analytical expressions were found for the kinematics variables using basic mathematical tools. The trajectory equation was established and the area under the trajectory traversed by the relativistic projectile was determined. It was found that, unlike non-relativistic projectile motion, the launching angles that maximize both the horizontal range as well as the area under the trajectory are functions of the initial speed. It is anticipated that this paper will be consistent with the intuition of students and serve as a resource for further problems usually encountered in the special theory of relativity

  4. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    Science.gov (United States)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  5. Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels

    Science.gov (United States)

    Groen, Joseph M.; Johnson, Aldie E., Jr.

    1959-01-01

    Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.

  6. Non-contact and contact measurement system for detecting projectile position in electromagnetic launch bore

    Science.gov (United States)

    Xu, Weidong; Yuan, Weiqun; Xu, Rong; Zhao, Hui; Cheng, Wenping; Zhang, Dongdong; Zhao, Ying; Yan, Ping

    2017-12-01

    This paper introduces a new measurement system for measuring the position of a projectile within a rapid fire electromagnetic launching system. The measurement system contains both non-contact laser shading and metal fiber contact measurement devices. Two projectiles are placed in the rapid fire electromagnetic launch bore, one in the main accelerating segment and the other in the pre-loading segment. The projectile placed in the main accelerating segment should be shot first, and then the other is loaded into the main segment from the pre-loading segment. The main driving current (I-main) can only be discharged again when the second projectile has arrived at the key position (the projectile position corresponds to the discharging time) in the main accelerating segment. So, it is important to be able to detect when the second projectile arrives at the key position in the main accelerating segment. The B-dot probe is the most widely used system for detecting the position of the projectile in the electromagnetic launch bore. However, the B-dot signal is affected by the driving current amplitude and the projectile velocity. There is no current in the main accelerating segment when the second projectile moves into this segment in rapid fire mode, so the B-dot signal for detecting the key position is invalid. Due to the presence of a high-intensity magnetic field, a high current, a high-temperature aluminum attachment, smoke and strong vibrations, it is very difficult to detect the projectile position in the bore accurately. So, other measurements need to be researched and developed in order to achieve high reliability. A measurement system based on a laser (non-contact) and metal fibers (contact) has been designed, and the integrated output signal based on this detector is described in the following paper.

  7. Aerodynamic Optimization Design of a Multistage Centrifugal Steam Turbine and Its Off-Design Performance Analysis

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-01-01

    Full Text Available Centrifugal turbine which has less land occupation, simple structure, and high aerodynamic efficiency is suitable to be used as small to medium size steam turbines or waste heat recovery plant. In this paper, one-dimensional design of a multistage centrifugal steam turbine was performed by using in-house one-dimensional aerodynamic design program. In addition, three-dimensional numerical simulation was also performed in order to analyze design and off-design aerodynamic performance of the proposed centrifugal steam turbine. The results exhibit reasonable flow field and smooth streamline; the aerodynamic performance of the designed turbine meets our initial expectations. These results indicate that the one-dimensional aerodynamic design program is reliable and effective. The off-design aerodynamic performance of centrifugal steam turbine was analyzed, and the results show that the mass flow increases with the decrease of the pressure ratio at a constant speed, until the critical mass flow is reached. The efficiency curve with the pressure ratio has an optimum efficiency point. And the pressure ratio of the optimum efficiency agrees well with that of the one-dimensional design. The shaft power decreases as the pressure ratio increases at a constant speed. Overall, the centrifugal turbine has a wide range and good off-design aerodynamic performance.

  8. Systematics of the breakup probability function for {sup 6}Li and {sup 7}Li projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Capurro, O.A., E-mail: capurro@tandar.cnea.gov.ar [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Pacheco, A.J.; Arazi, A. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Carnelli, P.F.F. [CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); Fernández Niello, J.O. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); and others

    2016-01-15

    Experimental non-capture breakup cross sections can be used to determine the probability of projectile and ejectile fragmentation in nuclear reactions involving weakly bound nuclei. Recently, the probability of both type of dissociations has been analyzed in nuclear reactions involving {sup 9}Be projectiles onto various heavy targets at sub-barrier energies. In the present work we extend this kind of systematic analysis to the case of {sup 6}Li and {sup 7}Li projectiles with the purpose of investigating general features of projectile-like breakup probabilities for reactions induced by stable weakly bound nuclei. For that purpose we have obtained the probabilities of projectile and ejectile breakup for a large number of systems, starting from a compilation of the corresponding reported non-capture breakup cross sections. We parametrize the results in accordance with the previous studies for the case of beryllium projectiles, and we discuss their systematic behavior as a function of the projectile, the target mass and the reaction Q-value.

  9. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Sun Quan; Cheng Bangqin; Li Yinghong; Cui Wei; Jin Di; Li Jun

    2013-01-01

    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation

  10. Thermoelectrical Generator for a MEMS-Fuze

    Directory of Open Access Journals (Sweden)

    A. K. Efremov

    2015-01-01

    Full Text Available The structure of modern fuzes includes micro-electromechanical systems (MEMS, which have such advanced devices as micro-accelerometers and micro-switches, being triggered at a specified level of setback. Independent power source (PS, as an inherent part of the MEMSfuze, charges an energy storage unit during the shot and triggers the fuze firing circuit when the shell encounters the target. Operating level of the control signal should be achieved within the time of remote arming, determined by the type of ammunition. The paper considers a possibility to develop PS as a thermoelectric generator (TEG with aerodynamic heating of hot junctions due to friction of the projectile body on the incoming airflow. The initial temperature is determined by the driving band cutting into the rifling and friction during the movement of projectile through the tube bore. The paper presents a technique for calculating the temperature field along the body of the projectile from the critical point, located at the top of the shell head. The solution of the equation of heat balance reveals the temporal development of the projectile body temperature. The proposed mathematical model of the TEG describes the process of converting heat into electrical output signal (thermo-EMF. An example of calculation for a specific artillery system – 57-mm anti-aircraft gun S-60 is given. Calculation of the TEG output signal was limited by the time, which is necessary to reach the top of the projectile trajectory. It is shown that at high altitude the temperature difference may drop to zero, thus cutting off the TEG output signal. Selection of capacitive storage parameters can be based on the reliability test conditions of the fuze firing circuit actuators, taking into account the partial storage discharge on the trajectory before the projectile encounters the target.

  11. Systematics of new isotopic production cross sections from neon projectiles

    International Nuclear Information System (INIS)

    Chen, C.X.; Guzik, T.G.; McMahon, M.; Wefel, J.P.; Flores, I.; Lindstrom, P.J.; Tull, C.E.; Mitchell, J.W.; Cronqvist, M.; Crawford, H.J.

    1996-02-01

    New isotopic production cross sections from 22 Ne projectiles at 377,581 and 891 MeV/nucleon in a liquid hydrogen target have been measured. These data allow to investigate the projectile energy and nuclear composition dependence of the cross sections. The comparisons between data and predictions can have important consequences in source abundance investigations. (K.A.)

  12. Roll Attitude Determination of Spin Projectile Based on GPS and Magnetoresistive Sensor

    Directory of Open Access Journals (Sweden)

    Dandan Yuan

    2017-01-01

    Full Text Available Improvement in attack accuracy of the spin projectiles is a very significant objective, which increases the overall combat efficiency of projectiles. The accurate determination of the projectile roll attitude is the recent objective of the efficient guidance and control. The roll measurement system for the spin projectile is commonly based on the magnetoresistive sensor. It is well known that the magnetoresistive sensor produces a sinusoidally oscillating signal whose frequency slowly decays with time, besides the possibility of blind spot. On the other hand, absolute sensors such as GPS have fixed errors even though the update rates are generally low. To earn the benefit while eliminating weaknesses from both types of sensors, a mathematical model using filtering technique can be designed to integrate the magnetoresistive sensor and GPS measurements. In this paper, a mathematical model is developed to integrate the magnetoresistive sensor and GPS measurements in order to get an accurate prediction of projectile roll attitude in a real flight time. The proposed model is verified using numerical simulations, which illustrated that the accuracy of the roll attitude measurement is improved.

  13. The role of the spectator assumption in models for projectile fragmentation

    International Nuclear Information System (INIS)

    Mc Voy, K.W.

    1984-01-01

    This review is restricted to direct-reaction models for the production of projectile fragments in nuclear collisions, at beam energies of 10 or more MeV/nucleon. Projectile fragments are normally identified as those which have near-beam velocities, and there seem to be two principal mechanisms for the production of these fast particles: 1. Direct breakup, 2. Sequential breakup. Of the two, the authors exclude from their discussion the ''sequential breakup'' process, in which the projectile is excited by the initial collision (either via inelastic scattering or transfer to unbound states) and then subsequently decays, outside the range of interaction

  14. Systematics of new isotopic production cross sections from neon projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C X; Guzik, T G; McMahon, M; Wefel, J P [Louisiana State Univ., Baton Rouge, LA (United States); Flores, I; Lindstrom, P J; Tull, C E [Lawrence Berkeley Lab., CA (United States); Mitchell, J W [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center; Cronqvist, M; Crawford, H J [California Univ., Berkeley, CA (United States). Space Sciences Lab.; and others

    1996-02-01

    New isotopic production cross sections from {sup 22}Ne projectiles at 377,581 and 891 MeV/nucleon in a liquid hydrogen target have been measured. These data allow to investigate the projectile energy and nuclear composition dependence of the cross sections. The comparisons between data and predictions can have important consequences in source abundance investigations. (K.A.). 9 refs.

  15. Calculation of forces arising from impacting projectiles upon yielding structures

    International Nuclear Information System (INIS)

    Drittler, K.; Gruner, P.; Krivy, J.

    1977-01-01

    Calculations concerning the impact of airplanes upon nuclear power plant buildings usually imply that the building [QUOTE]acts' as a rigid target. This assumption is justified for considerations concerning the structural integrity of the building being hit. However, for investigating induced vibrations of components within the structure, this approach might-in general-be too conservative. It is expected, that yielding of the structure during impact reduces the peak values of the loads and changes the temporal behaviour of the load function which is obtained for a rigid target. To calculate the changes of the load function which are due to deformations of the structure, Riera's method is extended for the case of a yielding target. The calculations are performed with a one-dimensional model for the projectile. The presented model calculations seem to verify that the motion of the target does not have much influence on the impact force for projectiles similar to the model projectile, provided the displacement of the yielding target is small in comparison with the path covered by the free-flying projectile during a time which is equivalent to the total time of impact. (Auth.)

  16. Long-duration heat load measurement approach by novel apparatus design and highly efficient algorithm

    Science.gov (United States)

    Zhu, Yanwei; Yi, Fajun; Meng, Songhe; Zhuo, Lijun; Pan, Weizhen

    2017-11-01

    Improving the surface heat load measurement technique for vehicles in aerodynamic heating environments is imperative, regarding aspects of both the apparatus design and identification efficiency. A simple novel apparatus is designed for heat load identification, taking into account the lessons learned from several aerodynamic heating measurement devices. An inverse finite difference scheme (invFDM) for the apparatus is studied to identify its surface heat flux from the interior temperature measurements with high efficiency. A weighted piecewise regression filter is also proposed for temperature measurement prefiltering. Preliminary verification of the invFDM scheme and the filter is accomplished via numerical simulation experiments. Three specific pieces of apparatus have been concretely designed and fabricated using different sensing materials. The aerodynamic heating process is simulated by an inductively coupled plasma wind tunnel facility. The identification of surface temperature and heat flux from the temperature measurements is performed by invFDM. The results validate the high efficiency, reliability and feasibility of heat load measurements with different heat flux levels utilizing the designed apparatus and proposed method.

  17. Long-duration heat load measurement approach by novel apparatus design and highly efficient algorithm

    International Nuclear Information System (INIS)

    Zhu, Yanwei; Yi, Fajun; Meng, Songhe; Zhuo, Lijun; Pan, Weizhen

    2017-01-01

    Improving the surface heat load measurement technique for vehicles in aerodynamic heating environments is imperative, regarding aspects of both the apparatus design and identification efficiency. A simple novel apparatus is designed for heat load identification, taking into account the lessons learned from several aerodynamic heating measurement devices. An inverse finite difference scheme (invFDM) for the apparatus is studied to identify its surface heat flux from the interior temperature measurements with high efficiency. A weighted piecewise regression filter is also proposed for temperature measurement prefiltering. Preliminary verification of the invFDM scheme and the filter is accomplished via numerical simulation experiments. Three specific pieces of apparatus have been concretely designed and fabricated using different sensing materials. The aerodynamic heating process is simulated by an inductively coupled plasma wind tunnel facility. The identification of surface temperature and heat flux from the temperature measurements is performed by invFDM. The results validate the high efficiency, reliability and feasibility of heat load measurements with different heat flux levels utilizing the designed apparatus and proposed method. (paper)

  18. Optimization of Construction of the rocket-assisted projectile

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2017-01-01

    Full Text Available New scheme of the rocket motor of rocket-assisted projectile providing the increase in distance of flight due to controlled and optimal delay time of ignition of the solid-propellant charge of the SRM and increase in reliability of initiation of the SRM by means of the autonomous system of ignition excluding the influence of high pressure gases of the propellant charge in the gun barrel has been considered. Results of the analysis of effectiveness of using of the ignition delay device on motion characteristics of the rocket-assisted projectile has been presented.

  19. Comparison of Theodorsen's Unsteady Aerodynamic Forces with Doublet Lattice Generalized Aerodynamic Forces

    Science.gov (United States)

    Perry, Boyd, III

    2017-01-01

    This paper identifies the unsteady aerodynamic forces and moments for a typical section contained in the NACA Report No. 496, "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen. These quantities are named Theodorsen's aerodynamic forces (TAFs). The TAFs are compared to the generalized aerodynamic forces (GAFs) for a very high aspect ratio wing (AR = 20) at zero Mach number computed by the doublet lattice method. Agreement between TAFs and GAFs is very-good-to-excellent. The paper also reveals that simple proportionality relationships that are known to exist between the real parts of some GAFs and the imaginary parts of others also hold for the real and imaginary parts of the corresponding TAFs.

  20. Influence of the embedded structure on the EFP formation of compact terminal sensitive projectile

    Directory of Open Access Journals (Sweden)

    Bo-yang Xing

    2017-08-01

    Full Text Available To improve the damage efficiency of compact terminal sensitive projectile with EFP warhead, it is vital to understand how the embedded structure (ES affects the EFP forming performance. In this paper, the corresponding numerical investigation is focused on, in which the fluid-structure interaction (FSI method and the experimental verification are used. Based on the obtained quantitative relations between the forming performance and α (the ratio of height to maximum radius of ES, an optimal design is further provided. The results indicate that: when the embedded structural length and width range 0.1–0.3D and 0.1–0.2D (D: diameter of EFP warhead at a fixed volume, respectively, EFP forming velocity nearly keeps as a constant, 1760 m/s; the height of ES has a dramatical effect on the propagating range of detonation wave, resulting in significant influence on the aerodynamic shape and length-to-diameter ratio of EFP; under the given constraints, the EFP length-diameter ratio can reach the optimal value 2.76, when the height of ES is 0.22D.

  1. Earliest stone-tipped projectiles from the Ethiopian rift date to >279,000 years ago.

    Science.gov (United States)

    Sahle, Yonatan; Hutchings, W Karl; Braun, David R; Sealy, Judith C; Morgan, Leah E; Negash, Agazi; Atnafu, Balemwal

    2013-01-01

    Projectile weapons (i.e. those delivered from a distance) enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips) as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology.

  2. Earliest stone-tipped projectiles from the Ethiopian rift date to >279,000 years ago.

    Directory of Open Access Journals (Sweden)

    Yonatan Sahle

    Full Text Available Projectile weapons (i.e. those delivered from a distance enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology.

  3. A Mass Loss Penetration Model to Investigate the Dynamic Response of a Projectile Penetrating Concrete considering Mass Abrasion

    Directory of Open Access Journals (Sweden)

    NianSong Zhang

    2015-01-01

    Full Text Available A study on the dynamic response of a projectile penetrating concrete is conducted. The evolutional process of projectile mass loss and the effect of mass loss on penetration resistance are investigated using theoretical methods. A projectile penetration model considering projectile mass loss is established in three stages, namely, cratering phase, mass loss penetration phase, and remainder rigid projectile penetration phase.

  4. High Temperature, Controlled-Atmosphere Aerodynamic Levitation Experiments with Applications in Planetary Science

    Science.gov (United States)

    Macris, C. A.; Badro, J.; Eiler, J. M.; Stolper, E. M.

    2016-12-01

    The aerodynamic levitation laser apparatus is an instrument in which spherical samples are freely floated on top of a stream of gas while being heated with a CO2laser to temperatures up to about 3500 °C. Laser heated samples, ranging in size from 0.5 to 3.5 mm diameter, can be levitated in a variety of chemically active or inert atmospheres in a gas-mixing chamber (e.g., Hennet et al. 2006; Pack et al. 2010). This allows for containerless, controlled-atmosphere, high temperature experiments with potential for applications in earth and planetary science. A relatively new technique, aerodynamic levitation has been used mostly for studies of the physical properties of liquids at high temperatures (Kohara et al. 2011), crystallization behavior of silicates and oxides (Arai et al. 2004), and to prepare glasses from compositions known to crystallize upon quenching (Tangeman et al. 2001). More recently, however, aerodynamic levitation with laser heating has been used as an experimental technique to simulate planetary processes. Pack et al. (2010) used levitation and melting experiments to simulate chondrule formation by using Ar-H2 as the flow gas, thus imposing a reducing atmosphere, resulting in reduction of FeO, Fe2O3, and NiO to metal alloys. Macris et al. (2015) used laser heating with aerodynamic levitation to reproduce the textures and diffusion profiles of major and minor elements observed in impact ejecta from the Australasian strewn field, by melting a powdered natural tektite mixed with 60-100 μm quartz grains on a flow of pure Ar gas. These experiments resulted in quantitative modeling of Si and Al diffusion, which allowed for interpretations regarding the thermal histories of natural tektites and their interactions with the surrounding impact vapor plume. Future experiments will employ gas mixing (CO, CO2, H2, O, Ar) in a controlled atmosphere levitation chamber to explore the range of fO2applicable to melt-forming impacts on other rocky planetary bodies

  5. Antiscreening mode of projectile-electron loss

    International Nuclear Information System (INIS)

    Montanari, C.C.; Miraglia, J.E.; Arista, N.R.

    2003-01-01

    The inelastic contribution of target electrons to different electronic processes in the projectile is obtained by employing the local-density approximation as usually applied in the dielectric formalism. Projectile-electron-loss cross sections due to the electron-electron interaction are calculated and compared with those obtained by using atomic antiscreening theories. We also calculate ionization cross sections and stopping power for bare ions impinging on different gases. The good agreement with the experimental data and the simplicity of the local-density approximation make it an efficient method for describing inelastic processes of gaseous target electrons. It is expected to be useful for targets with large atomic number. In this case, the number of possible final states to be considered by the traditional atomic methods makes it a tough task to be tackled. On the contrary, the more electrons the target has, the better the local plasma approximation is expected to be

  6. Evaluating the risk of eye injuries: intraocular pressure during high speed projectile impacts.

    Science.gov (United States)

    Duma, Stefan M; Bisplinghoff, Jill A; Senge, Danielle M; McNally, Craig; Alphonse, Vanessa D

    2012-01-01

    To evaluate the risk of eye injuries by determining intraocular pressure during high speed projectile impacts. A pneumatic cannon was used to impact eyes with a variety of projectiles at multiple velocities. Intraocular pressure was measured with a small pressure sensor inserted through the optic nerve. A total of 36 tests were performed on 12 porcine eyes with a range of velocities between 6.2 m/s and 66.5 m/s. Projectiles selected for the test series included a 6.35  mm diameter metal ball, a 9.25  mm diameter aluminum rod, and an 11.16  mm diameter aluminum rod. Experiments were designed with velocities in the range of projectile consumer products such as toy guns. A range of intraocular pressures ranged between 2017 mmHg to 26,426 mmHg (39 psi-511 psi). Four of the 36 impacts resulted in globe rupture. Intraocular pressures dramatically above normal physiological pressure were observed for high speed projectile impacts. These pressure data provide critical insight to chronic ocular injuries and long-term complications such as glaucoma and cataracts.

  7. In-flight evaluation of aerodynamic predictions of an air-launched space booster

    Science.gov (United States)

    Curry, Robert E.; Mendenhall, Michael R.; Moulton, Bryan

    1993-01-01

    Several analytical aerodynamic design tools that were applied to the Pegasus air-launched space booster were evaluated using flight measurements. The study was limited to existing codes and was conducted with limited computational resources. The flight instrumentation was constrained to have minimal impact on the primary Pegasus missions. Where appropriate, the flight measurements were compared with computational data. Aerodynamic performance and trim data from the first two flights were correlated with predictions. Local measurements in the wing and wing-body interference region were correlated with analytical data. This complex flow region includes the effect of aerothermal heating magnification caused by the presence of a corner vortex and interaction of the wing leading edge shock and fuselage boundary layer. The operation of the first two missions indicates that the aerodynamic design approach for Pegasus was adequate, and data show that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent.

  8. Ablation and deceleration of mass-driver launched projectiles for space disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Park, C.; Bowen, S.W.

    1981-01-01

    The energy cost of launching a projectile containing nuclear waste is two orders of magnitude lower with a mass driver than with a typical rocket system. A mass driver scheme will be feasible, however, only if ablation and deceleration are within certain tolerable limits. It is shown that if a hemisphere-cylinder-shaped projectile protected thermally with a graphite nose is launched vertically to attain a velocity of 17 km/sec at an altitude of 40 km, the mass loss from ablation during atmospheric flight will be less than 0.1 ton, provided the radius of the projectile is under 20 cm and the projectile's mass is of the order of 1 ton. The velocity loss from drag will vary from 0.4 to 30 km/sec, depending on the mass and radius of the projectile, the smaller velocity loss corresponding to large mass and small radius. Ablation is always within a tolerable range for schemes using a mass driver launcher to dispose of nuclear wastes outside the solar system. Deceleration can also be held in the tolerable range if the mass and diameter of the projectile are properly chosen

  9. Classical gluon production amplitude for nucleus-nucleus collisions:First saturation correction in the projectile

    International Nuclear Information System (INIS)

    Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.

    2015-01-01

    We calculate the classical single-gluon production amplitude in nucleus-nucleus collisions including the first saturation correction in one of the nuclei (the projectile) while keeping multiple-rescattering (saturation) corrections to all orders in the other nucleus (the target). In our approximation only two nucleons interact in the projectile nucleus: the single-gluon production amplitude we calculate is order-g"3 and is leading-order in the atomic number of the projectile, while resumming all order-one saturation corrections in the target nucleus. Our result is the first step towards obtaining an analytic expression for the first projectile saturation correction to the gluon production cross section in nucleus-nucleus collisions.

  10. Scattering of mass-3 projectiles from heavy nuclei

    International Nuclear Information System (INIS)

    Mukhopadyay, S.; Srivastava, D.K.; Ganguly, N.K.

    1976-01-01

    The interaction between heavy ions is a subject of great interest. It is well known that α-particle scattering shows most of the features which are observed in heavy ion scattering. In as much as mass-3 system is intermediate between heavy and light particles it will be interesting to investigate the scattering of mass-3 projectiles to see if it is possible to extend it to study the heavy ion scattering. Indeed; it has been seen that the 'molecular type' potentials, with a soft repulsive core and a shallow attractive well used for heavy ion collisions can be used to fit the elastic scattering data of mass-3 projectiles also. In the first part of this paper, a description is given of how this potential is generated with a special emphasis on saturation and second order effect through a density dependent interaction between nucleon and mass-3 projectiles. In the second part it is shown that the asymmetry dependence observed in the potential describing the scattering of mass-3 particles from heavier nuclei actually originates from the isospin interaction, when triton and helion are treated as two members of an isospin doublet. (Auth.)

  11. Improvements to a model of projectile fragmentation

    International Nuclear Information System (INIS)

    Mallik, S.; Chaudhuri, G.; Das Gupta, S.

    2011-01-01

    In a recent paper [Phys. Rev. C 83, 044612 (2011)] we proposed a model for calculating cross sections of various reaction products which arise from disintegration of projectile-like fragments resulting from heavy-ion collisions at intermediate or higher energy. The model has three parts: (1) abrasion, (2) disintegration of the hot abraded projectile-like fragment (PLF) into nucleons and primary composites using a model of equilibrium statistical mechanics, and (3) possible evaporation of hot primary composites. It was assumed that the PLF resulting from abrasion has one temperature T. Data suggested that, while just one value of T seemed adequate for most cross-section calculations, a single value failed when dealing with very peripheral collisions. We have now introduced a variable T=T(b) where b is the impact parameter of the collision. We argue that there are data which not only show that T must be a function of b but, in addition, also point to an approximate value of T for a given b. We propose a very simple formula: T(b)=D 0 +D 1 [A s (b)/A 0 ] where A s (b) is the mass of the abraded PLF and A 0 is the mass of the projectile; D 0 and D 1 are constants. Using this model we compute cross sections for several collisions and compare with data.

  12. An Engineering Aerodynamic Heating Method for Hypersonic Flow

    Science.gov (United States)

    Riley, Christopher J.; DeJarnette, Fred R.

    1992-01-01

    A capability to calculate surface heating rates has been incorporated in an approximate three-dimensional inviscid technique. Surface streamlines are calculated from the inviscid solution, and the axisymmetric analog is then used along with a set of approximate convective-heating equations to compute the surface heat transfer. The method is applied to blunted axisymmetric and three-dimensional ellipsoidal cones at angle of attack for the laminar flow of a perfect gas. The method is also applicable to turbulent and equilibrium-air conditions. The present technique predicts surface heating rates that compare favorably with experimental (ground-test and flight) data and numerical solutions of the Navier-Stokes (NS) and viscous shock-layer (VSL) equations. The new technique represents a significant improvement over current engineering aerothermal methods with only a modest increase in computational effort.

  13. Dispersion Analysis of the XM881APFSDS Projectile

    Directory of Open Access Journals (Sweden)

    Thomas F. Erline

    2001-01-01

    Full Text Available This study compares the results of a dispersion test with mathematical modeling. A 10-round group of modified 25-mm XM881 Armor Piercing Fin Stabilized Discarding Sabot projectiles was fired from the M242 chain gun into a designated target. The mathematical modeling results come from BALANS, a product of Arrow Tech Associates. BALANS is a finite-element lumped parameter code that has the capability to model a flexible projectile being fired from a flexible gun. It also has the unique feature of an automated statistical evaluation of dispersion. This study represents an effort to evaluate a simulation approach with experiment.

  14. Computational Aerodynamics of Shuttle Orbiter Damage Scenarios in Support of the Columbia Accident Investigation

    Science.gov (United States)

    Bibb, Karen L.; Prabhu, Ramadas K.

    2004-01-01

    In support of the Columbia Accident Investigation, inviscid computations of the aerodynamic characteristics for various Shuttle Orbiter damage scenarios were performed using the FELISA unstructured CFD solver. Computed delta aerodynamics were compared with the reconstructed delta aerodynamics in order to postulate a progression of damage through the flight trajectory. By performing computations at hypervelocity flight and CF4 tunnel conditions, a bridge was provided between wind tunnel testing in Langley's 20-Inch CF4 facility and the flight environment experienced by Columbia during re-entry. The rapid modeling capability of the unstructured methodology allowed the computational effort to keep pace with the wind tunnel and, at times, guide the wind tunnel efforts. These computations provided a detailed view of the flowfield characteristics and the contribution of orbiter components (such as the vertical tail and wing) to aerodynamic forces and moments that were unavailable from wind tunnel testing. The damage scenarios are grouped into three categories. Initially, single and multiple missing full RCC panels were analyzed to determine the effect of damage location and magnitude on the aerodynamics. Next is a series of cases with progressive damage, increasing in severity, in the region of RCC panel 9. The final group is a set of wing leading edge and windward surface deformations that model possible structural deformation of the wing skin due to internal heating of the wing structure. By matching the aerodynamics from selected damage scenarios to the reconstructed flight aerodynamics, a progression of damage that is consistent with the flight data, debris forensics, and wind tunnel data is postulated.

  15. Maximizing the Range of a Projectile.

    Science.gov (United States)

    Brown, Ronald A.

    1992-01-01

    Discusses solutions to the problem of maximizing the range of a projectile. Presents three references that solve the problem with and without the use of calculus. Offers a fourth solution suitable for introductory physics courses that relies more on trigonometry and the geometry of the problem. (MDH)

  16. Fatal lawn mower related projectile injury

    DEFF Research Database (Denmark)

    Colville-Ebeling, Bonnie; Lynnerup, Niels; Banner, Jytte

    2014-01-01

    was initially overlooked, later interpreted as a possible gunshot homicide, and finally identified as a lawn mower related projectile injury when autopsy revealed a piece of metal thread in the main bronchus to the right middle lobe, hemopericardium, and right-sided hemothorax. To our knowledge, this injury...

  17. Effect of Projectile Materials on Foreign Object Damage of a Gas-Turbine Grade Silicon Nitride

    Science.gov (United States)

    Choi, Sung R.; Racz, Zsolt; Bhatt, Ramakrishna T.; Brewer, David N.; Gyekenyesi, John P.

    2005-01-01

    Foreign object damage (FOD) behavior of AS800 silicon nitride was determined using four different projectile materials at ambient temperature. The target test specimens rigidly supported were impacted at their centers by spherical projectiles with a diameter of 1.59 mm. Four different types of projectiles were used including hardened steel balls, annealed steel balls, silicon nitride balls, and brass balls. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to better understand the severity of local impact damage. The critical impact velocity where target specimens fail upon impact was highest with brass balls, lowest with ceramic ball, and intermediate with annealed and hardened steel balls. Degree of strength degradation upon impact followed the same order as in the critical impact velocity with respect to projectile materials. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles and was correlated in terms of critical impact velocity, impact deformation, and impact load.

  18. Temperature decline thermography for laminar-turbulent transition detection in aerodynamics

    Science.gov (United States)

    von Hoesslin, Stefan; Stadlbauer, Martin; Gruendmayer, Juergen; Kähler, Christian J.

    2017-09-01

    Detailed knowledge about laminar-turbulent transition and heat transfer distribution of flows around complex aerodynamic components are crucial to achieve highest efficiencies in modern aerodynamical systems. Several measurement techniques have been developed to determine those parameters either quantitatively or qualitatively. Most of them require extensive instrumentation or give unreliable results as the boundary conditions are often not known with the required precision. This work introduces the simple and robust temperature decline method to qualitatively detect the laminar-turbulent transition and the respective heat transfer coefficients on a surface exposed to an air flow, according to patent application Stadlbauer et al. (Patentnr. WO2014198251 A1, 2014). This method provides results which are less sensitive to control parameters such as the heat conduction into the blade material and temperature inhomogeneities in the flow or blade. This method was applied to measurements with NACA0018 airfoils exposed to the flow of a calibration-free jet at various Reynolds numbers and angles of attack. For data analysis, a post-processing method was developed and qualified to determine a quantity proportional to the heat transfer coefficient into the flow. By plotting this quantity for each pixel of the surface, a qualitative, two-dimensional heat transfer map was obtained. The results clearly depicted the areas of onset and end of transition over the full span of the model and agreed with the expected behavior based on the respective flow condition. To validate the approach, surface hotfilm measurements were conducted simultaneously on the same NACA profile. Both techniques showed excellent agreement. The temperature decline method allows to visualize laminar-turbulent transitions on static or moving parts and can be applied on a very broad range of scales—from tiny airfoils up to large airplane wings.

  19. Distributed Aerodynamic Sensing and Processing Toolbox

    Science.gov (United States)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  20. Mathematical Modeling of Heat Friction Contact Master Belt with the Gun Mount Barrel During the Process of High-Speed Motion

    Directory of Open Access Journals (Sweden)

    Zezulinsky Jaroslav

    2016-01-01

    Full Text Available The friction in the gun mount barrel at sliding speeds of artillery projectile 500 - 700 m/s is not sufficiently studied. The main problem is to increase the efficiency of the master belt with a significant increase of the interaction parameters of the barrel with the projectile. To determine the effect of heating on the change of physical and mechanical properties of the surface layer and friction coefficient on the surface of the master belt were made mathematical modeling of heat transfer.

  1. Effect of Nonsmooth Nose Surface of the Projectile on Penetration Using DEM Simulation

    Directory of Open Access Journals (Sweden)

    Jing Han

    2017-01-01

    Full Text Available The nonsmooth body surface of the reptile in nature plays an important role in reduction of resistance and friction when it lives in a soil environment. To consider whether it was feasible for improving the performance of penetrating projectile we investigated the influence of the convex as one of nonsmooth surfaces for the nose of projectile. A numerical simulation study of the projectile against the concrete target was developed based on the discrete element method (DEM. The results show that the convex nose surface of the projectile is beneficial for reducing the penetration resistance greatly, which is also validated by the experiments. Compared to the traditional smooth nose structure, the main reason of difference is due to the local contact normal pressure, which increases dramatically due to the abrupt change of curvature caused by the convex at the same condition. Accordingly, the broken particles of the concrete target obtain more kinetic energy and their average radial flow velocities will drastically increase simultaneously, which is in favor of decreasing the interface friction and the compaction density of concrete target around the nose of projectile.

  2. Charge dependence of one and two electron processes in collisions between hydrogen molecules and fast projectiles

    International Nuclear Information System (INIS)

    Wells, E.; Ben-Itzhak, I.; Carnes, K.D.; Krishnamurthi, V.

    1996-01-01

    The ratio of double- to single-ionization (DI/SI) as well as the ratio of ionization-excitation to single-ionization (IE/SI) in hydrogen molecules was studied by examining the effect of the projectile charge on these processes. The DI/SI and IE/SI ratios were measured using the coincidence time of flight technique at a fixed velocity (1 MeV/amu) over a range of projectile charge states (q = 1-9,14,20). Preliminary results indicate that for a highly charged F 9+ projectile the DI/SI and IE/SI ratios are 6.8% and 24.7%, respectively, a large increase from the ratios of 0.13% and 1.95%, respectively, for H + projectiles. For low charge states, the DI/SI is negligible relative to the IE/SI ratio, while for more highly charged projectiles the DI/SI ratio becomes comparable to the IE/SI ratio. This indicates that double-ionization increases much more rapidly with projectile charge than ionization-excitation

  3. Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates

    Directory of Open Access Journals (Sweden)

    Aizik F.

    2012-08-01

    Full Text Available In this study, a constitutive strength and failure model for a steel core of a14.5 mm API projectile was developed. Dynamic response of a projectile steel core was described by the Johnson-Cook constitutive model combined with principal tensile stress spall model. In order to obtain the parameters required for numerical description of projectile core material behavior, a series of planar impact experiments was done. The parameters of the Johnson-Cook constitutive model were extracted by matching simulated and experimental velocity profiles of planar impact. A series of oblique ballistic experiments with x-ray monitoring was carried out to study the effect of obliquity angle and armor steel plate thickness on shattering behavior of the 14.5 mm API projectile. According to analysis of x-ray images the fragmentation level increases with both steel plate thickness and angle of inclination. The numerical modeling of the ballistic experiments was done using commercial finite element code, LS-DYNA. Dynamic response of high hardness (HH armor steel was described using a modified Johnson-Cook strength and failure model. A series of simulations with various values of maximal principal tensile stress was run in order to capture the overall fracture behavior of the projectile’s core. Reasonable agreement between simulated and x-ray failure pattern of projectile core has been observed.

  4. Computational Simulation of High-Speed Projectiles in Air, Water, and Sand

    Science.gov (United States)

    2007-12-03

    Supercavitating projectiles can be used for underwater mine neutralization, beach and surf zone mine clearance, littoral ASW, and neutralizing combat...swimmer systems. The water entry phase of flight is interesting and challenging due to projectile transitioning from flight in air to supercavitating ...is formed. Neaves and Edwards [1] simulated this case using a supercavitation code developed at NSWC-PC. The results presented are in good agreement

  5. Energy-dependent expansion of .177 caliber hollow-point air gun projectiles.

    Science.gov (United States)

    Werner, Ronald; Schultz, Benno; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2017-05-01

    Amongst hundreds of different projectiles for air guns available on the market, hollow-point air gun pellets are of special interest. These pellets are characterized by a tip or a hollowed-out shape in their tip which, when fired, makes the projectiles expand to an increased diameter upon entering the target medium. This results in an increase in release of energy which, in turn, has the potential to cause more serious injuries than non-hollow-point projectiles. To the best of the authors' knowledge, reliable data on the terminal ballistic features of hollow-point air gun projectiles compared to standard diabolo pellets have not yet been published in the forensic literature. The terminal ballistic performance (energy-dependent expansion and penetration) of four different types of .177 caliber hollow-point pellets discharged at kinetic energy levels from approximately 3 J up to 30 J into water, ordnance gelatin, and ordnance gelatin covered with natural chamois as a skin simulant was the subject of this investigation. Energy-dependent expansion of the tested hollow-point pellets was observed after being shot into all investigated target media. While some hollow-point pellets require a minimum kinetic energy of approximately 10 J for sufficient expansion, there are also hollow-point pellets which expand at kinetic energy levels of less than 5 J. The ratio of expansion (RE, calculated by the cross-sectional area (A) after impact divided by the cross-sectional area (A 0 ) of the undeformed pellet) of hollow-point air gun pellets reached values up of to 2.2. The extent of expansion relates to the kinetic energy of the projectile with a peak for pellet expansion at the 15 to 20 J range. To conclude, this work demonstrates that the hollow-point principle, i.e., the design-related enlargement of the projectiles' frontal area upon impact into a medium, does work in air guns as claimed by the manufacturers.

  6. Simulation of the flow past a long-range artillery projectile

    OpenAIRE

    Kaurinkoski, Petri

    2000-01-01

    In this work, an eddy breakup model for chemical reactions is implemented to an existing multi-block Navier-Stokes solver, which is then used to solve the flow past a supersonic long-range base-bleed projectile. The new scheme is validated by simulating an axisymmetric bluff-body stabilized flame, which has been measured in a wind tunnel and simulated numerically by other work groups. Comparison of the numerical results for the projectile shows the importance of the chemistry modelling fo...

  7. Measurements of recoil and projectile momentum distributions for 19-MeV F9+ + Ne collisions

    International Nuclear Information System (INIS)

    Frohne, V.; Cheng, S.; Ali, R.M.; Raphaelian, M.L.; Cocke, C.L.; Olson, R.

    1996-01-01

    The collision system of 19-MeV F 9+ on Ne has been studied using recoil and projectile momentum spectroscopy. For each event, identified by final recoil and projectile charge state, the three-dimensional momentum vector of the recoil ion and the transverse momentum vector of the projectile ion were measured. The transverse momenta of the recoil and projectile ions were found to be equal in magnitude and opposite in direction, indicating that the transverse momentum exchange is dominated by interactions between the two ion cores. The transverse momentum distributions are well described by nCTMC calculations. The longitudinal momentum distributions of the recoil ions show that a large fraction of the momentum transferred to the projectile is carried off by continuum electrons. The recoil ions are scattered slightly backward, in partial agreement with predictions of nCTMC calculations. copyright 1996 The American Physical Society

  8. Projectile fragmentation processes in 35-MeV/amu (α,xy) reactions

    International Nuclear Information System (INIS)

    Koontz, R.W.; Chang, C.C.; Holmgren, H.D.; Wu, J.R.

    1979-01-01

    Coincidence measurements with 35-MeV/amu α particles show that at least three projectile-fragmentation processes occur. The dominant process is ''absorptive'' breakup, where one component of the projectile interacts strongly with the target resulting in the emission of evaporation or nonstatistical particles while the other component behaves as a spectator. The other fragmentation processes which are observed account for only a few percent of the breakup cross section

  9. Experimental study of the penetrating of plates by projectile at low initial speeds

    Science.gov (United States)

    Orlov, M. Yu; Orlova, Yu N.; Smakotin, Ig L.; Glazyrin, V. P.; Orlov, Yu N.

    2017-11-01

    The research of the penetration process of lightweight plates by a projectile in the range of initial velocities up to 325 m/s was attempted. The projectile was a shell bullet and the barriers were of ice, MDF-panels and plexiglas barriers. The response of barriers to impact loading is studied. High-speed shooting of each experiment is obtained, including photos of the front and rear sides of the barriers. An attempt was made to reproduce the scenario of the destruction of barriers. The results of experiments can be interpreted only as qualitative tests. Projectile was not destroyed.

  10. Ballistics considerations for small-caliber, low-density projectiles

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Milora, S.L.; Qualls, A.L.

    1993-01-01

    One major application for single- and two-stage light gas guns is for fueling magnetic fusion confinement devices. Powder guns are not a feasible alternative due to possible plasma contamination by residual powder gases and the eventual requirement of steady-state operation at ∼ 1 Hz, which will dictate a closed gas handling system where propellant gases are recovered, processed and recompressed. Interior ballistic calculations for single-stage light gas guns, both analytical and numerical, are compared to an extensive data base for low density hydrogenic projectiles (pellets). Some innovative range diagnostics are described for determining the size and velocity of these small (several mm) size projectiles. A conceptual design of a closed cycle propellant gas system is presented including tradeoffs between different light propellant gases

  11. Model technique for aerodynamic study of boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    1966-02-01

    The help of the Division was recently sought to improve the heat transfer and reduce the exit gas temperature in a pulverized-fuel-fired boiler at an Australian power station. One approach adopted was to construct from Perspex a 1:20 scale cold-air model of the boiler furnace and to use a flow-visualization technique to study the aerodynamic patterns established when air was introduced through the p.f. burners of the model. The work established good correlations between the behaviour of the model and of the boiler furnace.

  12. Extended Range of a Gun Launched Smart Projectile Using Controllable Canards

    OpenAIRE

    Mark Costello

    2001-01-01

    This effort investigates the extent to which moveable canards can extend the range of indirect fire munitions using both projectile body and canard lift. Implications on terminal velocity and time of flight using this mechanism to extend range are examined for various canard configurations. Performance predictions are conducted using a six-degree-of-freedom simulation model that has previously been validated against range data. The projectile dynamic equations are formed in the body frame and...

  13. Microadaptive Flow Control Applied to a Spinning Projectile

    National Research Council Canada - National Science Library

    McMichael, J; Lovas, A; Plostins, P; Sahu, J; Brown, G; Glezer, A

    2005-01-01

    ... technology developed, the flight control technology required to enable the MAFC on spinning projectiles, the design of the flight test and validation hardware, and the results of the open-loop flight test...

  14. Electromagnetic projectile acceleration utilizing distributed energy sources

    International Nuclear Information System (INIS)

    Parker, J.V.

    1982-01-01

    Circuit equations are derived for an electromagnetic projectile accelerator (railgun) powered by a large number of capacitive discharge circuits distributed along its length. The circuit equations are put into dimensionless form and the parameters governing the solutions derived. After specializing the equations to constant spacing between circuits, the case of lossless rails and negligible drag is analyzed to show that the electrical to kinetic energy transfer efficiency is equal to sigma/2, where sigma = 2mS/Lq 2 0 and m is the projectile mass, S the distance between discharge circuit, Lthe rail inductance per unit length, and q 0 the charge on the first stage capacitor. For sigma = 2 complete transfer of electrical to kinetic energy is predicted while for sigma>2 the projective-discharge circuit system is unstable. Numerical solutions are presented for both lossless rails and for finite rail resistance. When rail resistance is included, >70% transfer is calculated for accelerators of arbitrary length. The problem of projectile startup is considered and a simple modification of the first two stages is described which provides proper startup. Finally, the results of the numerical solutions are applied to a practical railgun design. A research railgun designed for repeated operation at 50 km/sec is described. It would have an overall length of 77 m, an electrical efficiency of 81%, a stored energy per stage of 105 kJ, and a charge transfer of <50 C per stage. A railgun of this design appears to be practicable with current pulsed power technology

  15. Ground effect aerodynamics of racing cars

    OpenAIRE

    Zhang, Xin; Toet, Willem; Zerihan, Jonathan

    2006-01-01

    We review the progress made during the last thirty years on ground effect aerodynamics associated with race cars, in particular open wheel race cars. Ground effect aerodynamics of race cars is concerned with generating downforce, principally via low pressure on the surfaces nearest to the ground. The “ground effected” parts of an open wheeled car's aerodynamics are the most aerodynamically efficient and contribute less drag than that associated with, for example, an upper rear wing. Whilst dr...

  16. Electromagnetic interference analysis of magnetic resistance sensors inside a projectile under complex electromagnetic environments

    International Nuclear Information System (INIS)

    Guo, Qingwei; Gao, Min; Lu, Zhicai; Yang, Peijie

    2013-01-01

    Accurate measurement of angular motion has long been recognized as a daunting task. In recent years the measurement of projectiles utilizing magnetic resistance sensors has become a hot research field. Electromagnetic interference on attitude measurement cannot be ignored in complex electromagnetic environments such as battlefield conditions. In this paper, the influence and function pattern of electromagnetic interference on the measuring performance are theoretically analyzed, and the shielding effectiveness (SE) simulation of projectile is conducted via software Computer Simulation Technology (CST). Considering the specific tests, the intensity of the influence is judged. The simulation indicates that the battlefield's complex electromagnetic environment influences the environment inside the projectile, especially its electronic components and capability. The research results can provide important theoretical support on the errors compensation and precision improvement of the projectile attitude measurement with Magnetic Resistance sensor.

  17. Aerodynamic Aspects of Wind Energy Conversion

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2011-01-01

    This article reviews the most important aerodynamic research topics in the field of wind energy. Wind turbine aerodynamics concerns the modeling and prediction of aerodynamic forces, such as performance predictions of wind farms, and the design of specific parts of wind turbines, such as rotor...

  18. Aerodynamic design on high-speed trains

    Science.gov (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  19. Modeling of aerodynamics in vortex furnace

    Energy Technology Data Exchange (ETDEWEB)

    Anufriev, I.; Krasinsky, D. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Salomatov, V.; Anikin, Y.; Sharypov, O. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Novosibirsk State Univ. (Russian Federation); Enkhjargal, Kh. [Mongol Univ. of Science and Technology, Ulan Bator (Mongolia)

    2013-07-01

    At present, the torch burning technology of pulverized-coal fuel in vortex flow is one of the most prospective and environmentally-friendly combustion technologies of low-grade coals. Appropriate organization of aerodynamics may influence stability of temperature and heat flux distributions, increase slag catching, and reduce toxic emissions. Therefore, from scientific point of view it is interesting to investigate aerodynamics in the devices aiming at justification of design and operating parameters for new steam generators with vortex furnace, and upgrade of existing boiler equipment. The present work is devoted to physical and mathematical modeling of interior aerodynamics of vortex furnace of steam generator of thermal power plants. Research was carried out on the air isothermal model which geometry was similar to one section of the experimental- industrial boiler TPE-427 of Novosibirsk TPS-3. Main elements of vortex furnace structure are combustion chamber, diffuser, and cooling chamber. The model is made from organic glass; on the front wall two rectangular nozzles (through which compressed air is injected) are placed symmetrically at 15 to the horizon. The Laser Doppler Velocimeter LAD-05 was used for non-contact measurement of vortex flow characteristics. Two velocity components in the XY-plane (in different cross- sections of the model) were measured in these experiments. Reynolds number was 3.10{sup 5}. Numerical simulation of 3-D turbulent isothermal flow was performed with the use of CFD package FLUENT. Detailed structure of the flow in vortex furnace model has been obtained in predictions. The distributions of main flow characteristics (pressure, velocity and vorticity fields, turbulent kinetic energy) are presented. The obtained results may be used at designing boilers with vortex furnace. Computations were performed using the supercomputer NKS-160.

  20. Aerodynamic Noise Generated by Shinkansen Cars

    Science.gov (United States)

    KITAGAWA, T.; NAGAKURA, K.

    2000-03-01

    The noise value (A -weighted sound pressure level, SLOW) generated by Shinkansen trains, now running at 220-300 km/h, should be less than 75 dB(A) at the trackside. Shinkansen noise, such as rolling noise, concrete support structure noise, and aerodynamic noise are generated by various parts of Shinkansen trains. Among these aerodynamic noise is important because it is the major contribution to the noise generated by the coaches running at high speed. In order to reduce the aerodynamic noise, a number of improvements to coaches have been made. As a result, the aerodynamic noise has been reduced, but it still remains significant. In addition, some aerodynamic noise generated from the lower parts of cars remains. In order to investigate the contributions of these noises, a method of analyzing Shinkansen noise has been developed and applied to the measured data of Shinkansen noise at speeds between 120 and 315 km/h. As a result, the following conclusions have been drawn: (1) Aerodynamic noise generated from the upper parts of cars was reduced considerably by smoothing car surfaces. (2) Aerodynamic noise generated from the lower parts of cars has a major influence upon the wayside noise.

  1. The scaling and dynamics of a projectile obliquely impacting a granular medium.

    Science.gov (United States)

    Wang, Dengming; Ye, Xiaoyan; Zheng, Xiaojing

    2012-01-01

    In this paper, the dynamics of a spherical projectile obliquely impacting into a two-dimensional granular bed is numerically investigated using the discrete element method. The influences of projectile's initial velocities and impacting angles are mainly considered. Numerical results show that the relationship between the final penetration depth and the initial impact velocity is very similar to that in the vertical-impact case. However, the dependence of the stopping time on the impact velocity of the projectile exhibits critical characteristics at different impact angles: the stopping time approximately increases linearly with the impact velocity for small impact angles but decreases in an exponential form for larger impact angles, which demonstrates the existence of two different regimes at low and high impact angles. When the impact angle is regarded as a parametric variable, a phenomenological force model at large impact angles is eventually proposed based on the simulation results, which can accurately describe the nature of the resistance force exerted on the projectile by the granular medium at different impact angels during the whole oblique-impact process. The degenerate model agrees well with the existing experimental results in the vertical-impact cases.

  2. The Locus of the apices of projectile trajectories under constant drag

    OpenAIRE

    Hernández-Saldaña, H.

    2017-01-01

    We present an analytical solution for the projectile coplanar motion under constant drag parametrised by the velocity angle. We found the locus formed by the apices of the projectile trajectories. The range and time of flight are obtained numerically and we find that the optimal launching angle is smaller than in the free drag case. This is a good example of problems with constant dissipation of energy that includes curvature, and it is proper for intermediate courses of mechanics.

  3. A note on supersonic flow control with nanosecond plasma actuator

    Science.gov (United States)

    Zheng, J. G.; Cui, Y. D.; Li, J.; Khoo, B. C.

    2018-04-01

    A concept study on supersonic flow control using nanosecond pulsed plasma actuator is conducted by means of numerical simulation. The nanosecond plasma discharge is characterized by the generation of a micro-shock wave in ambient air and a residual heat in the discharge volume arising from the rapid heating of near-surface gas by the quick discharge. The residual heat has been found to be essential for the flow separation control over aerodynamic bodies like airfoil and backward-facing step. In this study, novel experiment is designed to utilize the other flow feature from discharge, i.e., instant shock wave, to control supersonic flow through shock-shock interaction. Both bow shock in front of a blunt body and attached shock anchored at the tip of supersonic projectile are manipulated via the discharged-induced shock wave in an appropriate manner. It is observed that drag on the blunt body is reduced appreciably. Meanwhile, a lateral force on sharp-edged projectile is produced, which can steer the body and give it an effective angle of attack. This opens a promising possibility for extending the applicability of this flow control technique in supersonic flow regime.

  4. Advanced turbine cooling, heat transfer, and aerodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Je-Chin Han; Schobeiri, M.T. [Texas A& M Univ., College Station, TX (United States)

    1995-10-01

    The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect on Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

  5. Emission of projectile helium fragments in 14N interactions at 2.1 GeV/nucleon

    International Nuclear Information System (INIS)

    Bhanja, R.; Devi, N.A.L.; Joseph, R.R.; Ojha, I.D.; Shyam, M.; Tuli, S.K.

    1983-01-01

    An analysis of projectile helium fragments has been performed from the point of view of testing the factorization and limiting fragmentation hypothesis. An event-by-event examination of 923 interactions of 14 N in emulsion at 2.1 GeV per nucleon has been made for target identification. Events with projectile fragments have been divided into various reaction channels according to the multiplicity of He nuclei. The multiplicity distribution, angular structure and other properties of the projectile He fragments have been investigated to see the dependence on different targets and target excitation. The properties of He fragments emitted from the projectile have been found to remain independent of target in peripheral collision processes. The target and projectile breakup properties have been analysed in terms of the collision geometry. Gaussian distributions have been fitted to the projected angular distribution data for He fragments at various intervals of impact parameter and in different reaction channels. The properties of emitted He nuclei exhibit characteristic features of factorization and limiting fragmentation. (orig.)

  6. Inclusive projectile fragmentation in the spectator model

    International Nuclear Information System (INIS)

    Hussein, M.S.; McVoy, K.W.

    1985-01-01

    Crazing-angle single spectra for projectile fragments from nuclear collisions exhibit a broad peak centered near the beam velocity, suggesting that these observed fragments play only a 'spectator' role in the reaction. Using only this spectator assumption (but not DWBA), it is found that a 'prior form' formulation of the reaction leads, via closure, to a -type estimate of the inclusive spectator spectrum, thus relating it to the reaction cross section for the 'participant' with the target. It is shown explicitly that this expression includes an improved multi-channel version of the Udagawa-Tamura formula for the 'breakup-fusion' or incomplete fusion cross section, and identifies it as the fluctuation part of the participant-target reaction cross section. A Glauber-type estimate of the distorted wave functions which enter clearly shows how the width of the peak in the spectator spectrum arises from the 'Fermi motion' within the projectile, as in the simple Serber model, but is modified by the 'overlap geometry' of the collision. (Author) [pt

  7. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin; Etude des quasi-projectiles produits dans les collisions Ni+Ni et Ni+Au: energie d'excitation et spin

    Energy Technology Data Exchange (ETDEWEB)

    Buta, A

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  8. Experimental investigation of magnetoplasma acceleration of dielectric projectiles in a rail gun

    International Nuclear Information System (INIS)

    Kondratenko, M.M.; Lebedev, E.F.; Ostashev, V.E.; Safonov, V.I.; Fortov, V.E.; Ul'yanov, A.V.

    1988-01-01

    The authors present results of experimental investigations of the process of a nondestructive electrodynamic acceleration of dielectric projectiles in a magnetoplasma accelerator of rail gun type upon discharge of the electrical energy of the capacitor bank. They describe the phenomenon of decay of the plasma driving piston. They describe the causes of this phenomenon and the practical steps to avoid it. In a specific facility regimes have been achieved with electrodynamic acceleration of projectiles without plasma piston decay at working currents of up to 0.7 MA. In acceleration of projectiles of mass ∼ 1 g a speed of 6 km/sec has been attained and reproduced. The facility constructed can be used efficiently in experiments to investigate the thermophysical properties of substances using dynamic methods as a means of creating intense kinetic energy pulses

  9. Experimental study on the penetration effect of ceramics composite projectile on ceramic / A3 steel compound targets

    Directory of Open Access Journals (Sweden)

    Di-qi Hu

    2017-08-01

    Full Text Available In order to improve the penetration of projectiles into ceramic composite armors, the nose of 30 mm standard projectile was replaced by a toughened ceramic nose, and the performance of ceramic-nose projectiles penetrating into ceramic/A3 steel composite targets has been experimentally researched. According to impact dynamics theory,, the performances of 30 mm ceramic-nose projectile and 30 mm standard projectile penetrating into the ceramic/A3 steel composite targets were analyzed and compared using DOP method, especially focusing on the effects made by different nose structures and materials. The aperture and depth of perforation of projectile into the armor plates as well as the residual mass of bullet core under the same conditions were comparatively analyzed. A numerical simulation was built and computed by ANSYS/LS-DYNA. Based on the simulated results, the penetration performance was further analyzed in terms of the residual mass of bullet core. The results show that the ceramic nose has a great effect on the protection of bullet core.

  10. First spatial isotopic separation of relativistic uranium projectile fragments

    International Nuclear Information System (INIS)

    Magel, A.; Voss, B.; Armbruster, P.; Aumann, T.; Clerc, H.G.; Czajkowski, S.; Folger, H.; Grewe, A.; Hanelt, E.; Heinz, A.; Irnich, H.; Jong, M. de; Junghans, A.; Nickel, F.; Pfuetzner, M.; Roehl, C.; Scheidenberger, C.; Schmidt, K.H.; Schwab, W.; Steinhaeuser, S.; Suemmerer, K.; Trinder, W.; Wollnik, H.

    1994-07-01

    Spatial isotopic separation of relativistic uranium projectile fragments has been achieved for the first time. The fragments were produced in peripheral nuclear collisions and spatially separated in-flight with the fragment separator FRS at GSI. A two-fold magnetic-rigidity analysis was applied exploiting the atomic energy loss in specially shaped matter placed in the dispersive central focal plane. Systematic investigations with relativistic projectiles ranging from oxygen up to uranium demonstrate that the FRS is a universal and powerful facility for the production and in-flight separation of monoisotopic, exotic secondary beams of all elements up to Z=92. This achievement has opened a new area in heavy-ion research and applications. (orig.)

  11. Locus of the apices of projectile trajectories under constant drag

    Science.gov (United States)

    Hernández-Saldaña, H.

    2017-11-01

    Using the hodograph method, we present an analytical solution for projectile coplanar motion under constant drag, parametrised by the velocity angle. We find the locus formed by the apices of the projectile trajectories, and discuss its implementation for the motion of a particle on an inclined plane in presence of Coulomb friction. The range and time of flight are obtained numerically, and we find that the optimal launching angle is smaller than in the drag-free case. This is a good example of a problem with constant dissipation of energy that includes curvature; it is appropriate for intermediate courses of mechanics.

  12. Studies of projectile-like fragments in the 16O + 238U reaction at 20 MeV/u

    International Nuclear Information System (INIS)

    Dyer, P.; Awes, T.C.; Gelbke, C.K.; Back, B.B.; Mignerey, A.C.; Wolf, K.L.; Breuer, H.; Viola, V.E.; Meyer, W.G.

    1979-01-01

    Projectile residues were studied in coincidence with angle-correlated fission fragments resulting from reactions of 20-MeV/u 16 O ions on 238 U. Distributions of the missing parallel momentum are shown for different projectile residues, and the dependence of the average parallel recoil momentum on the average parallel momentum of the projectile residue is plotted. 2 figures

  13. Inelastic scattering of quasifree electrons on O7+ projectiles

    International Nuclear Information System (INIS)

    Toth, G.; Grabbe, S.; Richard, P.; Bhalla, C.P.

    1996-01-01

    Absolute doubly differential cross sections (DDCS close-quote s) for the resonant inelastic scattering of quasifree target electrons on H-like projectiles have been measured. Electron spectra for 20.25-MeV O 7+ projectiles on an H 2 target were measured. The spectra contain a resonant contribution from the 3l3l ' doubly excited states of O 6+ , which decay predominantly to the 2l states of the O 7+ via autoionization, and a nonresonant contribution from the direct excitation of the projectiles to the O 7+ (2l) state by the quasifree target electrons. Close-coupling R-matrix calculations for the inelastic scattering of free electrons on O 7+ ions were performed. The relation between the electron-ion inelastic scattering calculation and the electron DDCS close-quote s for the ion-atom collision was established by using the inelastic scattering model (ISM). We found excellent agreement between the theoretical and measured resonant peak positions and relative peak heights. The calculated absolute double differential cross sections for the resonance processes are also in good agreement with the measured data. The implication is that collisions of highly charged ions on hydrogen can be used to obtain high-resolution, angle- resolved differential inelastic electron-scattering cross section. copyright 1996 The American Physical Society

  14. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    OpenAIRE

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course corr...

  15. Evaluating simulant materials for understanding cranial backspatter from a ballistic projectile.

    Science.gov (United States)

    Das, Raj; Collins, Alistair; Verma, Anurag; Fernandez, Justin; Taylor, Michael

    2015-05-01

    In cranial wounds resulting from a gunshot, the study of backspatter patterns can provide information about the actual incidents by linking material to surrounding objects. This study investigates the physics of backspatter from a high-speed projectile impact and evaluates a range of simulant materials using impact tests. Next, we evaluate a mesh-free method called smoothed particle hydrodynamics (SPH) to model the splashing mechanism during backspatter. The study has shown that a projectile impact causes fragmentation at the impact site, while transferring momentum to fragmented particles. The particles travel along the path of least resistance, leading to partial material movement in the reverse direction of the projectile motion causing backspatter. Medium-density fiberboard is a better simulant for a human skull than polycarbonate, and lorica leather is a better simulant for a human skin than natural rubber. SPH is an effective numerical method for modeling the high-speed impact fracture and fragmentations. © 2015 American Academy of Forensic Sciences.

  16. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers

    Directory of Open Access Journals (Sweden)

    Aleksandr Cherniaev

    2017-01-01

    Full Text Available This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and aluminum plate provides better fragmentation of small hypervelocity projectiles. At the same time, none of the combined mesh/plate bumpers provide a significant increase of ballistic properties as compared to an aluminum plate bumper. This indicates that the positive results reported in the literature for bumpers with metallic meshes and large projectiles are not scalable down to millimeter-sized particles. Based on this investigation’s results, a possible modification of the combined mesh/plate bumper is proposed for the future study.

  17. Backscattering of projectile-bound electrons from solid surfaces

    International Nuclear Information System (INIS)

    Tobisch, M.; Schosnig, M.; Kroneberger, K.; Kuzel, M.; Maier, R.; Jung, M.; Fiedler, C.; Rothard, H.; Clouvas, A.; Suarez, S.; Groeneveld, K.O.

    1994-01-01

    The contribution of projectile ionization (PI) to secondary electron emission is studied by collision of H 2 + and H 3 + ions (400 keV/u and 700 keV/u) with carbon, copper and gold targets (600 A). The measured doubly differential intensity distribution shows a peak of lost projectile electrons near - v p . We describe the subtraction of the contribution of target ionization (TI), and compare the remaining electron intensities with a BEA calculation. For solids we observe a strong energy shift of the electron loss peak, which is compared with the influence of electron transport and binding energy. Furthermore, the low energy tail of the electron loss peak indicates the simultaneous occurrence of PI and TI. Finally we discuss the influence of surface conditions and the dependence of the observation angles on the measured electron intensities. (orig.)

  18. Speed, Acceleration, Chameleons and Cherry Pit Projectiles

    Science.gov (United States)

    Planinsic, Gorazd; Likar, Andrej

    2012-01-01

    The paper describes the mechanics of cherry pit projectiles and ends with showing the similarity between cherry pit launching and chameleon tongue projecting mechanisms. The whole story is written as an investigation, following steps that resemble those typically taken by scientists and can therefore serve as an illustration of scientific…

  19. Quantitative functional analysis of Late Glacial projectile points from northern Europe

    DEFF Research Database (Denmark)

    Dev, Satya; Riede, Felix

    2012-01-01

    This paper discusses the function of Late Glacial arch-backed and tanged projectile points from northern Europe in general and southern Scandinavia in particular. Ballistic requirements place clear and fairly well understood constraints on the design of projectile points. We outline the argument...... surely fully serviceable, diverged considerably from the functional optimum predicated by ballistic theory. These observations relate directly to southern Scandinavian Late Glacial culture-history which is marked by a sequence of co-occurrence of arch-backed and large tanged points in the earlier part...

  20. Modeling and Experiments on Ballistic Impact into UHMWPE Yarns Using Flat and Saddle-Nosed Projectiles

    Directory of Open Access Journals (Sweden)

    Stuart Leigh Phoenix

    2017-03-01

    Full Text Available Yarn shooting experiments were conducted to determine the ballistically-relevant, Young’s modulus and tensile strength of ultra-high molecular weight polyethylene (UHMWPE fiber. Target specimens were Dyneema® SK76 yarns (1760 dtex, twisted to 40 turns/m, and initially tensioned to stresses ranging from 29 to 2200 MPa. Yarns were impacted, transversely, by two types of cylindrical steel projectiles at velocities ranging from 150 to 555 m/s: (i a reverse-fired, fragment simulating projectile (FSP where the flat rear face impacted the yarn rather than the beveled nose; and (ii a ‘saddle-nosed projectile’ having a specially contoured nose imparting circular curvature in the region of impact, but opposite curvature transversely to prevent yarn slippage off the nose. Experimental data consisted of sequential photographic images of the progress of the triangular transverse wave, as well as tensile wave speed measured using spaced, piezo-electric sensors. Yarn Young’s modulus, calculated from the tensile wave-speed, varied from 133 GPa at minimal initial tension to 208 GPa at the highest initial tensions. However, varying projectile impact velocity, and thus, the strain jump on impact, had negligible effect on the modulus. Contrary to predictions from the classical Cole-Smith model for 1D yarn impact, the critical velocity for yarn failure differed significantly for the two projectile types, being 18% lower for the flat-faced, reversed FSP projectile compared to the saddle-nosed projectile, which converts to an apparent 25% difference in yarn strength. To explain this difference, a wave-propagation model was developed that incorporates tension wave collision under blunt impact by a flat-faced projectile, in contrast to outward wave propagation in the classical model. Agreement between experiment and model predictions was outstanding across a wide range of initial yarn tensions. However, plots of calculated failure stress versus yarn pre

  1. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    Science.gov (United States)

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-06

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.

  2. Experimental impact-parameter--dependent probabilities for K-shell vacancy production by fast heavy-ion projectiles

    International Nuclear Information System (INIS)

    Randall, R.R.; Bednar, J.A.; Curnutte, B.; Cocke, C.L.

    1976-01-01

    The impact-parameter dependence of the probability for production of target K x rays has been measured for oxygen projectiles on copper and for carbon and fluorine projectiles on argon at scaled velocities near 0.5. The O-on-Cu data were taken for 1.56-, 1.88-, and 2.69-MeV/amu O beams incident upon thin Cu foils. A thin Ar-gas target was used for 1.56-MeV/amu C and F beams, permitting measurements to be made for charge-pure C +4 , C +6 , F +9 and F +5 projectiles. Ar and Cu K x rays were observed with a Si(Li) detector and scattered projectiles with a collimated surface-barrier detector. Comparison of the shapes of the measured K-vacancy--production probability curves with predictions of the semiclassical Coulomb approximation (SCA) shows adequate agreement for the O-on-Cu system. For the higher ratio of projectile-to-target nuclear charge (Z 1 /Z 2 ) characterizing the C-on-Ar and F-on-Ar systems, the SCA predictions are entirely inadequate in describing the observed impact-parameter dependence. In particular, they cannot account for large probabilities found at large impact parameters. Furthermore, the dependence of the shapes on the projectile charge state is found to become pronounced at larger Z 1 /Z 2 . Attempts to account for this behavior in terms of alternative vacancy-production processes are discussed

  3. Supercavitating Projectile Tracking System and Method

    Science.gov (United States)

    2009-12-30

    Distribution is unlimited 20100104106 Attorney Docket No. 96681 SUPERCAVITATING PROJECTILE TRACKING SYSTEM AND METHOD STATEMENT OF GOVERNMENT...underwater track or path 14 of a supercavitating vehicle under surface 16 of a body of water. In this embodiment, passive acoustic or pressure...transducers 12 are utilized to measure a pressure field produced by a moving supercavitating vehicle. The present invention provides a low-cost, reusable

  4. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    Science.gov (United States)

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  5. Unusual behavior of projectile fragments formed in the bombardment of copper with relativistic Ar ions

    International Nuclear Information System (INIS)

    Dersch, G.; Beckmann, R.; Feige, G.

    1985-01-01

    The interaction properties of projectile fragments from the fragmentation of 0.9 GeV/nucleon and 1.8 GeV/nucleon 40 Ar with Cu have been studied using radioactivation techniques. In this experiment, two identical copper blocks, 1 cm thick and 8 cm in diameter, are irradiated by relativistic projectiles in different configurations. In configuration 0, the blocks are touching while in configuration 10 or 20, the blocks are separated by 10 or 20 cm of air, respectively. It is assumed that when the relativistic projectiles interact with the first block of each pair, projectile fragments are created which interact with other nuclei in the first and second blocks. What is measured is the ratio of some target fragment activity, such as 24 Na or 28 Mg, produced in the second block relative to the first block, R

  6. Deformations on Hole and Projectile Surfaces Caused By High Velocity Friction During Ballistic Impact

    Science.gov (United States)

    Karamış, M. B.

    2018-01-01

    In this study, the deformations caused by the ballistic impact on the MM composites and on projectile surfaces are examined. The hole section and grain deformation of unreinforced targets are also examined after impact. The relatively high complexity of impact problems is caused by the large number of intervening parameters like relative velocity of projectile and target, shape of colliding objects, relative stiffness and masses, time-dependent surface of contact, geometry and boundary conditions and material characteristics. The material used in this investigation are 2024 and 7075 aluminum alloys as matrix reinforced with SiC and Al2O3 particles. The matrix materials are extensively used in defense applications due to its favorable ballistic properties, moderate strength, high corrosion resistance and super plastic potential. Two different composites were produced; one by casting and the other by lamination. The ballistic tests of the composite targets were carried out according to NIJ Standard-0101.04, Temperature 21 °C, RH=65% with 7.62 mm projectiles. The bullet weight was 9.6 g and their muzzle velocities were in the range of 770-800 m/s. The projectiles consisted of a steel core, copper jacket and lead material. The composite targets were positioned 15 m from the rifle. The interaction between projectiles and the target hole created after impact were examined by light microscopy and photography. Different damage and failure mechanisms such as petalling, cracking, spalling, dishing, etc., were observed on the target body. On the other hand, dramatic wear and damages on the projectile surface were also observed. The targets were supported with Al-5083 backing blocks having 40 mm thickness.

  7. Projectile like fragment production in Ar induced reactions around the Fermi energy

    International Nuclear Information System (INIS)

    Borrel, V.; Gatty, B.; Jacquet, D.; Galin, J.

    1986-01-01

    The production of projectile like fragments (PLF) has been studied in Ar induced reactions on various targets. It shows very clearly, that besides the predominance of fragmentation for most of the products, the transfer process is still a very strong component for products nearby the projectile. The influence of the target neutron excess on the PLF production is investigated as well as the evolution with incident energy of the characteristics of the different competing processes

  8. Experimental characterisation of sprays resulting from impacts of liquid-containing projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Hostikka, Simo, E-mail: simo.hostikka@aalto.fi [Aalto University, Espoo (Finland); Silde, Ari; Sikanen, Topi; Vepsä, Ari; Paajanen, Antti [VTT Technical Research Centre of Finland Ltd, Espoo (Finland); Honkanen, Markus [Pixact Oy, Tampere (Finland)

    2015-12-15

    Highlights: • Detailed characterisation of sprays resulting from the impacts of water-filled metal projectiles on a hard wall. • Experimental measurements of spray speed, direction and droplet size. • Detailed analysis of overall spray evolution. • The spray characterisation information can be used in CFD analyses of aircraft impact fires. - Abstract: Modelling and analysing fires following aircraft impacts requires information about the behaviour of liquid fuel. In this study, we investigated sprays resulting from the impacts of water-filled metal projectiles on a hard wall. The weights of the projectiles were in the range of 38–110 kg, with 8.6–68 kg water, and the impact speeds varied between 96 and 169 m/s. The overall spray behaviour was observed with high-speed video cameras. Ultra-high-speed cameras were used in backlight configuration for measuring the droplet size and velocity distributions. The results indicate that the liquid leaves the impact position as a thin sheet of spray in a direction perpendicular to the projectile velocity. The initial spray speeds were 1.5–2.5 times the impact speed, and the Sauter mean diameters were in the 147–344 μm range. This data can be used as boundary conditions in CFD fire analyses, considering the two-phase fuel flow. The overall spray observations, including the spray deceleration rate, can be used for validating the model.

  9. Projectile metallic foreign bodies in the orbit: a retrospective study of epidemiologic factors, management, and outcomes.

    Science.gov (United States)

    Finkelstein, M; Legmann, A; Rubin, P A

    1997-01-01

    Intraorbital projectile metallic foreign bodies are associated with significant ocular and orbital injuries. The authors sought to evaluate epidemiologic factors, the incidence of associated ocular and orbital injury, and the nature and necessity of surgical intervention in these cases. Charts of all patients with projectile intraorbital metallic foreign bodies seen at our institution (27) over the preceding 7 years were evaluated with respect to age, sex, type of injury, associated ocular and orbital injuries, location of the projectile (anterior, epibulbar, or posterior), postinjury visual acuity, and surgical intervention. The majority of patients were male, between the ages of 11 and 30, and had BB pellet injuries. Thirteen projectiles were lodged anteriorly, 4 were in an epibulbar position, and the remaining 10 were posterior to the equator. Twelve of 13 anterior, and 4 of 4 epibulbar foreign bodies were removed surgically, whereas only 2 of 10 posterior foreign bodies required surgery. No case of surgical intervention resulted in a decrease of visual acuity. Associated ocular injuries were both more common and severe in patients with posteriorly located foreign bodies. Final visual acuity was better at presentation and at discharge in patients with anteriorly located foreign bodies. Intraorbital projectile metallic foreign bodies can be a source of significant ocular morbidity. Management of these cases is dependent on the location of the projectile. Ancillary radiographic studies can be helpful. Surgery to remove the projectile should be considered in each case, but foreign bodies that are not readily accessible often may be left safely in place. Closer regulation of the pellet gun industry, with an emphasis on education and protective eyewear use, would be helpful in reducing these injuries.

  10. Commissioning the A1900 projectile fragment separator

    CERN Document Server

    Morrissey, D J; Steiner, M; Stolz, A; Wiedenhöver, I

    2003-01-01

    An important part of the recent upgrade of the NSCL facility is the replacement of the A1200 fragment separator with a new high acceptance device called the A1900. The design of the A1900 device represents a third generation projectile fragment separator (relative to the early work at LBL) as it is situated immediately after the primary accelerator, has a very large acceptance, a bending power significantly larger than that of the cyclotron and is constructed from large superconducting magnets (quadrupoles with 20 and 40 cm diameter warm bores). The A1900 can accept over 90% of a large range of projectile fragmentation products produced at the NSCL, leading to large gains in the intensity of the secondary beams. The results of initial tests of the system with a restricted momentum acceptance (+-0.5%) indicate that the A1900 is performing up to specifications. Further large gains in the intensities of primary beams, typically two or three orders of magnitude, will be possible as the many facets of high current...

  11. Backward ejected electrons produced by 1-MeV/u Oq+ (q=3--8) projectile ions colliding with argon gas

    International Nuclear Information System (INIS)

    Breinig, M.; Berryman, J.W.; Segner, F.; Desai, D.D.

    1994-01-01

    The cross sections for ejecting electrons into a cone of half-angle ∼2 degree centered on the backward direction have been measured as a function of electron energy for 1-MeV/u O q+ (q=3--8) projectiles colliding with Ar. For O 3+ and O 4+ projectiles, the cross sections have also been measured in coincidence with exit charge states (q+1) and (q+2) of the projectile. A prominent feature in all spectra is a target LMM Auger peak. The cross sections for producing Ar LMM Auger electrons are nearly independent of projectile incident charge states. A projectile electron-loss peak is produced when the projectile brings loosely bound L-shell electrons into the collision. The shape of this peak is independent of the projectile exit charge state within experimental error. The measured electron-loss production cross sections at 180 degree are compared with the predictions of various on-shell approximations to the impulse approximation. Peak height and position are sensitive functions of the on-shell approximation used. The predictions of the elastic scattering model agree well with the data

  12. Wind Turbine Aerodynamics from an Aerospace Perspective

    NARCIS (Netherlands)

    van Garrel, Arne; ten Pas, Sebastiaan; Venner, Cornelis H.; van Muijden, Jaap

    2018-01-01

    The current challenges in wind turbine aerodynamics simulations share a number of similarities with the challenges that the aerospace industry has faced in the past. Some of the current challenges in the aerospace aerodynamics community are also relevant for today’s wind turbine aerodynamics

  13. Aerodynamic characteristics and heat radiation performance of sportswear fabrics

    Science.gov (United States)

    Koga, H.; Hiratsuka, M.; Ito, S.; Konno, A.

    2017-10-01

    Sports such as swimming, speed skating, and marathon are sports competing for time. In recent years, reduction of the fluid drag of sportswear is required for these competitions in order to improve the record. In addition, sweating and discomfort due to body temperature rise during competition are thought to affect competitor performance, and heat radiation performance is also an important factor for sportswear. The authors have measured fluid force drag by wrapping cloth around a cylinder and have confirmed their differences due to the roughness of the fabric surface, differences in sewing. The authors could be verified the drag can be reduced by the position of the wear stitch. This time, we measured the heat radiation performance of 14 types of cloths whose aero dynamic properties are known using cylinders which are regarded as human fuselages, and found elements of cloth with heat radiation performance. It was found to be important for raising the heat radiation performance of sportswear that the fabric is thin and flat surface processing.

  14. Time of flight and range of the motion of a projectile in a constant gravitational field

    Directory of Open Access Journals (Sweden)

    P. A. Karkantzakos

    2009-01-01

    Full Text Available In this paper we study the classical problem of the motion of a projectile in a constant gravitational field under the influenceof a retarding force proportional to the velocity. Specifically, we express the time of flight, the time of fall and the range ofthe motion as a function of the constant of resistance per unit mass of the projectile. We also prove that the time of fall isgreater than the time of rise with the exception of the case of zero constant of resistance where we have equality. Finally weprove a formula from which we can compute the constant of resistance per unit mass of the projectile from time of flight andrange of the motion when the acceleration due to gravity and the initial velocity of the projectile are known.

  15. Rarefaction Effects in Hypersonic Aerodynamics

    Science.gov (United States)

    Riabov, Vladimir V.

    2011-05-01

    The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.

  16. NASA Iced Aerodynamics and Controls Current Research

    Science.gov (United States)

    Addy, Gene

    2009-01-01

    This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.

  17. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan

    , and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version......The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional flow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the flow field around bridge sections...

  18. Numerical Study on the Projectile Impact Resistance of Multi-Layer Sandwich Panels with Cellular Cores

    Directory of Open Access Journals (Sweden)

    Liming Chen

    Full Text Available Abstract The projectile impact resistance of sandwich panels with cellular cores with different layer numbers has been numerically investigated by perpendicular impact of rigid blunt projectile in ABAQUS/Explicit. These panels with corrugation, hexagonal honeycomb and pyramidal truss cores are impacted at velocities between 50 m/s and 202 m/s while the relative density ranges from 0.001 to 0.15 The effects of core configuration and layer number on projectile impact resistance of sandwich panels with cellular cores are studied. At low impact velocity, sandwich panels with cellular cores outperform the corresponding solid ones and non-montonicity between relative density and projectile resistance of sandwich panels is found and analyzed. Multiplying layer can reduce the maximum central deflection of back face sheet of the above three sandwich panels except pyramidal truss ones in high relative density. Hexagonal honeycomb sandwich panel is beneficial to increasing layer numbers in lowering the contact force and prolonging the interaction time. At high impact velocity, though corrugation and honeycomb sandwich panels are inferior to the equal-weighted solid panels, pyramidal truss ones with high relative density outperform the corresponding solid panels. Multiplying layer is not the desirable way to improve high-velocity projectile resistance.

  19. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin

    International Nuclear Information System (INIS)

    Buta, A.

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  20. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis.

    Science.gov (United States)

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-06-16

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.

  1. Reaction dynamics of {sup 34-38}Mg projectile with carbon target using Glauber model

    Energy Technology Data Exchange (ETDEWEB)

    Shama, Mahesh K., E-mail: maheshphy82@gmail.com [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Department of Applied Sciences, Chandigarh Engineering College, Landran Mohali-140307 (India); Panda, R. N. [Department of Physics, ITER, Shiksha O Anusandhan University, Bhubaneswar-751030 (India); Sharma, Manoj K. [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Patra, S. K. [Institute of Physics, Sachivalaya marg Bhubneswar-751005 (India)

    2015-08-28

    We have studied nuclear reaction cross-sections for {sup 34-38}Mg isotopes as projectile with {sup 12}C target at projectile energy 240AMeV using Glauber model with the conjunction of densities from relativistic mean filed formalism. We found good agreement with the available experimental data. The halo status of {sup 37}Mg is also investigated.

  2. Aerodynamic drag on intermodal railcars

    Science.gov (United States)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  3. An Experimental and Numerical Investigation of Endwall Aerodynamics and Heat Transfer in a Gas Turbine Nozzle Guide Vane with Slot Film Cooling

    Science.gov (United States)

    Alqefl, Mahmood Hasan

    In many regions of the high-pressure gas turbine, film cooling flows are used to protect the turbine components from the combustor exit hot gases. Endwalls are challenging to cool because of the complex system of secondary flows that disturb surface film coolant coverage. The secondary flow vortices wash the film coolant from the surface into the mainstream significantly decreasing cooling effectiveness. In addition to being effected by secondary flow structures, film cooling flow can also affect these structures by virtue of their momentum exchange. In addition, many studies in the literature have shown that endwall contouring affects the strength of passage secondary flows. Therefore, to develop better endwall cooling schemes, a good understanding of passage aerodynamics and heat transfer as affected by interactions of film cooling flows with secondary flows is required. This experimental and computational study presents results from a linear, stationary, two-passage cascade representing the first stage nozzle guide vane of a high-pressure gas turbine with an axisymmetrically contoured endwall. The sources of film cooling flows are upstream combustor liner coolant and endwall slot film coolant injected immediately upstream of the cascade passage inlet. The operating conditions simulate combustor exit flow features, with a high Reynolds number of 390,000 and approach flow turbulence intensity of 11% with an integral length scale of 21% of the chord length. Measurements are performed with varying slot film cooling mass flow to mainstream flow rate ratios (MFR). Aerodynamic effects are documented with five-hole probe measurements at the exit plane. Heat transfer is documented through recovery temperature measurements with a thermocouple. General secondary flow features are observed. Total pressure loss measurements show that varying the slot film cooling MFR has some effects on passage loss. Velocity vectors and vorticity distributions show a very thin, yet intense

  4. Unsteady Aerodynamics of Deformable Thin Airfoils

    OpenAIRE

    Walker, William Paul

    2009-01-01

    Unsteady aerodynamic theories are essential in the analysis of bird and insect flight. The study of these types of locomotion is vital in the development of flapping wing aircraft. This paper uses potential flow aerodynamics to extend the unsteady aerodynamic theory of Theodorsen and Garrick (which is restricted to rigid airfoil motion) to deformable thin airfoils. Frequency-domain lift, pitching moment and thrust expressions are derived for an airfoil undergoing harmonic oscillations and def...

  5. Electromagnetic dissociation of target nuclei by $^{16}$O and $^{32}$S projectiles

    CERN Multimedia

    2002-01-01

    We have measured the inclusive cross sections for electromagnetic dissociation (ED) of $^{197}$Au targets by 60 and 200 GeV/nucleon $^{16}$O and $^{32}$S projectiles. This is an extension of similar measurements carried out earlier at 2 GeV/nucleon. ED is a purely electromagnetic process occuring when a virtual photon is exchanged between projectile and target. The experiment emphasized precise measurement of total one-neutron-out cross sections. A secondary goal was to test the applicability of the concepts of factorization and limiting fragmentation at ultrarelativistic energies.\\\\ \\\\ Each individual target will be irradiated upstream and parasitic to experiment NA38 on the dimuon spectrometer. Cross sections for reactions of interest will be determined by off-line counting of the appropriate residual $\\gamma$ ray activities in Ames, Iowa, USA. Preliminary results indicate an ED one-neutron removal cross section for 200 GeV/nucleon $^{16}$O projectiles on $^{197}$Au of approximately 0.45~barns. The result i...

  6. Study of the effect of hard projectiles impacting reinforced concrete walls

    International Nuclear Information System (INIS)

    Berriaud, C.; Sokolovsky, A.

    1977-01-01

    Among the risks examined in the framework of nuclear safety in France, quite unlikely events are examined as constituting a safety cover. This type of event includes the possible impact of aircrafts, or rotor splinters. Research on the limit strength of a wall under the impact of a hard projectile presently gives incentive results. First, a good agreement appears between works performed in parallel directions by EDF and CEA. Secondly, the special field of aerial projectiles is much better known as it was with previous formulations. Third, such research highly contributes to the knowledge of the mechanical strength of reinforced concrete structures [fr

  7. Multiple electromagnetic excitations of relativistic projectiles

    International Nuclear Information System (INIS)

    Llope, W.J.; Braun-Munzinger, P.

    1992-01-01

    Conditions optimum for the first experimental verification of the multiplication electromagnetic excitations of nuclei in relativistic nucleus-nucleus collisions are described. The relative magnitudes of three important physical processes that might interfere with such a measurement are compared to the predicted strengths for the single and multiple electromagnetic excitations for various choices of the projectile mass and beam energy. Strategies are presented for making inferences concerning the presence of multiple excitation strength in experimental data

  8. Spalled, aerodynamically modified moldavite from Slavice, Moravia, Czechoslovakia

    Science.gov (United States)

    Chao, E.C.T.

    1964-01-01

    A Czechoslovakian tektite or moldavite shows clear, indirect evidence of aerodynamic ablation. This large tektite has the shape of a teardrop, with a strongly convex, deeply corroded, but clearly identifiable front and a planoconvex, relatively smooth, posterior surface. In spite of much erosion and corrosion, demarcation of the posterior and the anterior part of the specimen (the keel) is clearly preserved locally. This specimen provides the first tangible evidence that moldavites entered the atmosphere cold, probably at a velocity exceeding 5 kilometers per second; the result was selective heating of the anterior face and perhaps ablation during the second melting. This provides evidence of the extraterrestial origin of moldavites.

  9. Penetration Experiments with 6061-T6511 Aluminum Targets and Spherical-Nose Steel Projectiles at Striking Velocities Between 0.5 and 3.0 km/s

    Energy Technology Data Exchange (ETDEWEB)

    Forrestal, M.J.; Piekutowski, A.J.

    1999-02-04

    We conducted depth of penetration experiments with 7.11-mm-diameter, 74.7-mm-long, spherical-nose, 4340 steel projectiles launched into 250-mm-diameter, 6061-T6511 aluminum targets. To show the effect of projectile strength, we used projectiles that had average Rockwell harnesses of R{sub c} = 36.6, 39.5, and 46.2. A powder gun and two-stage, light-gas guns launched the 0.023 kg projectiles at striking velocities between 0.5 and 3.0 km/s. Post-test radiographs of the targets showed three response regions as striking velocities increased: (1) the projectiles remained visibly undeformed, (2) the projectiles permanently deformed without erosion, and (3) the projectiles eroded and lost mass. To show the effect of projectile strength, we compared depth-of-penetration data as a function of striking velocity for spherical-nose rods with three Rockwell harnesses at striking velocities ranging from 0.5 to 3.0 km/s. To show the effect of nose shape, we compared penetration data for the spherical-nose projectiles with previously published data for ogive-nose projectiles.

  10. Thermophysical fundamentals of cyclonic recirculating heating devices

    Science.gov (United States)

    Karpov, S. V.; Zagoskin, A. A.

    2017-10-01

    This report presents the results of experimental and theoretical research of aerodynamics and convective heat transfer in cyclone devices with the new system of external recirculation of heating gas under the influence of radial pressure gradient in a heat carrier’s swirling turbulent flow. The dynamic problem of tangential velocity distribution in a clearance volume is solved at various re-circulation ratio values including limiting quantities (kr = 0; 1) and variations in cyclonic combustion chamber’s design parameters and operating conditions (Rer); the integrated calculation ratios for fundamental aerodynamic characteristics of a recirculation device are derived. The first experimental and numerical studies of convective heat transfer on internal and external surfaces of a hollow shaft in a swirling recirculation flow are derived through the instrumentality of OpenFOAM, these studies are also conducted for a setting of several cylindrical solid inserts. The external surface heat problem of a hollow cylindrical insert is solved with integral and digital methods; generalized similarity equations for the internal and external surfaces extended in range of Reynolds number are derived. The experimental data is in reasonable agreement with the derived curves and the results of mathematic modelling of convective heat transfer. Calculation recommendations for optimal selection of kr values at various ratios of their geometric characteristics and products utilization rate are obtained.

  11. Fusion with projectiles form carbon to argon at energies between 20A and 60A MeV

    International Nuclear Information System (INIS)

    Galin, J.

    1986-03-01

    A review of the linear momentum transfer is made, considering essentially heavy targets and two important parameters in the entrance channel: the projectile energy and its mass. Over a broad mass range, and for energies up to 30A MeV, the momentum transfer scales with the mass of the projectile. At 30A MeV, the most probable value of projectile momentum transferred to the fused system is 80%, and this represents roughly 180 MEV/c per projectile nucleon. At higher bombarding energies, the momentum distribution in the fused systems, as observed from binary fission events, seems to depend on the mass of the projectile. Further studies are still needed to understand this behaviour. Finally, the decay of highly excited (E* approximately 500-800 MeV) fused systems, with masses close to 270 amu, is studied from the characteristics of both fusion fragments and light charged particles. It is shown that thermal equilibrium is reached before fission, even for such high energy deposition. However, the decay sequence is sensitive to dynamical effects and does not depend only on available phase space

  12. Ionization of hydrogen by a relativistic heavy projectile

    International Nuclear Information System (INIS)

    Hofstetter, S.; Hofmann, C.; Soff, G.

    1991-10-01

    Using a relativistic analogue of the classical trajectory Monte-Carlo method we investigate the influence of the magnetic field of a relativistic heavy projectile on the ionization cross section of hydrogen. In particular we focus our attention on the angular and energy distribution of the emitted delta electrons. (orig.)

  13. Aerodynamics of Race Cars

    Science.gov (United States)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  14. Effect of a Bore Evacuator on Projectile In-Bore Dynamics

    National Research Council Canada - National Science Library

    Carlucci, Donald

    2004-01-01

    Projectile base pressure measurements were taken in a 155-mm M284 gun tube using an Armament Research, Development and Engineering Center-designed instrumentation package incorporated into a modified...

  15. Study of momentum distributions for projectile fragments of 22Ne and 28Si nuclei in collisions with emulsion

    International Nuclear Information System (INIS)

    Abou-Steit, S.A.H.

    2000-01-01

    The charge and mass yield curves and the momentum distributions of the projectile fragments produced in the interactions of 4.1 A GeV/c 22 Ne and 4.5 A GeV/c 28 Si with emulsion have been studied. The overall charge distributions of the projectile fragments resulting from these interactions are presented. The dependence of the mass yield distributions of the projectile fragments on the impact parameter has been tested. The momentum distributions for the considered reactions have been investigated by two methods. First, the projected momentum distributions in the plane of the microscope have been achieved by fitting the projected angular distributions to gaussian ones. It has been found that the width of the distribution changes with the charge of the projectile fragment and it decreases with the increase of the projectile fragment charge. Secondly, the transverse momentum distributions have been compared with previous studies. The momentum distribution, in the forward cone, is a typically narrow gaussian one

  16. Modeling Fragment Simulating Projectile Penetration into Steel Plates Using Finite Elements and Meshfree Particles

    Directory of Open Access Journals (Sweden)

    James O’Daniel

    2011-01-01

    Full Text Available Simulating fragment penetration into steel involves complicated modeling of severe behavior of the materials through multiple phases of response. Penetration of a fragment-like projectile was simulated using finite element (FE and meshfree particle formulations. Extreme deformation and failure of the material during the penetration event were modeled with several approaches to evaluate each as to how well it represents the actual physics of the material and structural response. A steel Fragment Simulating Projectile (FSP – designed to simulate a fragment of metal from a weapon casing – was simulated for normal impact into a flat square plate. A range of impact velocities was used to examine levels of exit velocity ranging from relatively small to one on the same level as the impact velocity. The numerical code EPIC, used for all the simulations presented herein, contains the element and particle formulations, as well as the explicit methodology and constitutive models needed to perform these simulations. These simulations were compared against experimental data, evaluating the damage caused to the projectile and the target plates, as well as comparing the residual velocity when the projectile perforated the target.

  17. Research of the launch vehicle design made of composite materials under the aerodynamic, thermal and acoustic loadings

    Directory of Open Access Journals (Sweden)

    Davydovich Denis

    2017-01-01

    Full Text Available The experimental research of the carbon composite material sample of payload fairing half structural element was carried out under different types of loading. Mathematical and physical modeling of the sample loading using aerodynamic flow was conducted. Heat loading was researched by the method of a thermal analysis during which typical heat dots corresponding to the changes in the sample structure were determined. Ultrasonic influence on the sample characteristics was considered. As a result, the value of heat leak to the structure surface while moving in the atmospheric phase of the descent was determined.

  18. Explanation of the observed trend in the mean excitation energy of a target as determined using several projectiles

    International Nuclear Information System (INIS)

    Cabrera-Trujillo, R.; Sabin, J.R.; Oddershede, J.

    2003-01-01

    Recently, Porter observed [L.E. Porter, Int. J. Quantum Chem. 90, 684 (2002)] that the mean excitation energy and stopping cross section of a target, obtained from fitting experimental data at given projectile charge to a modified Bethe-Block theory, gives projectile dependent results. The main result of his work is that there is a trend for the inferred target mean excitation energy, to decrease as the projectile atomic number increases. However, this result is inconsistent with the usual definition of the mean excitation energy as a function of target excitation properties only. Here we present an explanation of Porter's results based on the Bethe theory extended to take projectile electronic structure explicitly into account

  19. Classical molecular dynamics simulation of weakly-bound projectile heavy-ion reactions

    Directory of Open Access Journals (Sweden)

    Morker Mitul R.

    2015-01-01

    Full Text Available A 3-body classical molecular dynamics approach for heavy-ion reactions involving weakly bound projectiles is developed. In this approach a weakly bound projectile is constructed as a two-body cluster of the constituent tightly bound nuclei in a configuration corresponding to the observed breakup energy. This 3-body system with their individual nucleon configuration in their ground state is dynamically evolved for given initial conditions using the three-stage classical molecular dynamics approach (3S-CMD. Various levels of rigidbody constraints on the projectile constituents and the target are considered at appropriate stages. This 3-dimensional approach explicitly takes into account not only the long range Coulomb reorientation of the deformed collision partner but internal excitations and breakup probabilities at distances close to the barrier also. Dynamical simulations of 6Li+209Bi show all the possible reaction mechanism like complete fusion, incomplete fusion, scattering and breakup scattering. Complete fusion cross sections of 6Li+209Bi and 7Li+209Bi reactions are calculated in this approach with systematic relaxations of the rigid-body constraints on one or more constituent nuclei.

  20. Morphology and chemistry of projectile residue in small experimental impact craters

    Science.gov (United States)

    Horz, F.; Fechtig, H.; Janicke, J.; Schneider, E.

    1983-01-01

    Small-scale impact craters (5-7 mm in diameter) were produced with a light gas gun in high purity Au and Cu targets using soda lime glass (SL) and man-made basalt glass (BG) as projectiles. Maximum impact velocity was 6.4 km/s resulting in peak pressures of approximately 120-150 GPa. Copious amounts of projectile melts are preserved as thin glass liners draping the entire crater cavity; some of this liner may be lost by spallation, however. SEM investigations reveal complex surface textures including multistage flow phenomena and distinct temporal deposition sequences of small droplets. Inasmuch as some of the melts were generated at peak pressures greater than 120 GPa, these glasses represent the most severely shocked silicates recovered from laboratory experiments to date. Major element analyses reveal partial loss of alkalis; Na2O loss of 10-15 percent is observed, while K2O loss may be as high as 30-50 percent. Although the observed volatile loss in these projectile melts is significant, it still remains uncertain whether target melts produced on planetary surfaces are severely fractionated by selective volatilization processes.

  1. Migration spontanee de projectile intracranien: presentation clinique ...

    African Journals Online (AJOL)

    Les traumatismes crâniens par arme à feu sont graves. Les manifestations cliniques sont variables et peuvent présenter quelques particularités. Les auteurs rapportent un cas de migration spontané de projectile intracérébral survenue après un traumatisme crânien par arme à feu au cours d'une partie de chasse. Elle a été ...

  2. Projectile Motion in the "Language" of Orbital Motion

    Science.gov (United States)

    Zurcher, Ulrich

    2011-01-01

    We consider the orbit of projectiles launched with arbitrary speeds from the Earth's surface. This is a generalization of Newton's discussion about the transition from parabolic to circular orbits, when the launch speed approaches the value [image omitted]. We find the range for arbitrary launch speeds and angles, and calculate the eccentricity of…

  3. Aerodynamic analysis of Pegasus - Computations vs reality

    Science.gov (United States)

    Mendenhall, Michael R.; Lesieutre, Daniel J.; Whittaker, C. H.; Curry, Robert E.; Moulton, Bryan

    1993-01-01

    Pegasus, a three-stage, air-launched, winged space booster was developed to provide fast and efficient commercial launch services for small satellites. The aerodynamic design and analysis of Pegasus was conducted without benefit of wind tunnel tests using only computational aerodynamic and fluid dynamic methods. Flight test data from the first two operational flights of Pegasus are now available, and they provide an opportunity to validate the accuracy of the predicted pre-flight aerodynamic characteristics. Comparisons of measured and predicted flight characteristics are presented and discussed. Results show that the computational methods provide reasonable aerodynamic design information with acceptable margins. Post-flight analyses illustrate certain areas in which improvements are desired.

  4. Ionization of heavy targets by impact of relativistic projectiles

    International Nuclear Information System (INIS)

    Deco, G.R.; Fainstein, P.D.; Comision Nacional de Energia Atomica, San Carlos de Bariloche; Rivarola, R.D.

    1988-01-01

    Electron ejection from atomic targets by impact of bare heavy projectiles at relativistic collision energies is studied theoretically. First-order Born calculations are presented by using initial Darwin and final Sommerfeld-Maue wavefunctions. Comparisons with other calculations and experimental data are given. (orig.)

  5. Calculation of projectile velocity in an electromagnetic mass driver

    International Nuclear Information System (INIS)

    Ikuta, K.

    1986-08-01

    The formula for the velocity increase of a projectile accelerated by the single z-pinch between the cylindrical electrodes is established. This formula enables one to consider the necessary stages in the cylindrical electrode array of the accelerator for a required velocity. (author)

  6. Excitation and multiple dissociation of 12C, 14N, and 16O projectiles in peripheral collisions at 32.5 MeV/nucleon

    International Nuclear Information System (INIS)

    Pouliot, J.; Chan, Y.; DiGregorio, D.E.; Harmon, B.A.; Knop, R.; Moisan, C.; Roy, R.; Stokstad, R.G.; Laboratoire de physique nucleaire, Universite Laval, Quebec, P.Q., Canada G1K7P4)

    1991-01-01

    Cross sections for the multiple breakup of 16 O, 14 N, and 12 C projectiles scattered by an Au target were measured with an array of 34 phoswich detectors. The dissociation of the projectiles into as many as five charged particles has been observed. The yields of different exit channels correlate approximately with the threshold energy for separation of the projectile into the observed fragments. The excitation spectrum of the primary projectile-like nucleus was reconstructed from the measured positions and kinetic energies of the individual fragments. The energy sharing between projectile and target is consistent with a fast excitation mechanism in which differential increases in projectile excitation energy appear to be accompanied by comparable increases in target excitation. Calculations of the yields based on a sequence of binary decays are presented

  7. High speed photography of the plasma flow and the projectiles in the T.U.M. hypervelocity accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.; Kuczera, H.; Schroeder, B.

    1979-01-01

    The hypervelocity accelerator at the Technische Universitaet Muenchen, FRG, accelerates small projectiles (0.1 to 1.0 mm diameter) to velocities around 20 km/s. The photographic equipment consists of two Cordin single-frame image converter cameras and one TRW image converter camera with streak units and multiple-frame units. They are used for plasma flow diagnostics and the measurement of the position and the velocity of the projectiles. The single-frame cameras are triggered with a Laser light bar and the photographic measurement of the projectile velocity will be compared with Doppler-Radar. (author)

  8. Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is nonexistent but necessary to protect the heart and lungs. In tests against ballistic projectiles, protective apparel is placed over ballistic clay and the projectiles are fired into the armor/clay target. The clay represents the human torso and its behind-armor, permanent deflection is the principal metric used to assess armor protection. Although this approach provides relative merit assessment of protection, it does not examine the behind-armor blunt trauma to crucial torso organs. We propose a modeling and simulation (M&S) capability for wound injury scenarios to the head, neck, and torso of the warfighter. We will use this toolset to investigate the consequences of, and mitigation against, blast exposure, blunt force impact, and ballistic projectile penetration leading to damage of critical organs comprising the central nervous, cardiovascular, and respiratory systems. We will leverage Sandia codes and our M&S expertise on traumatic brain injury to develop virtual anatomical models of the head, neck, and torso and the simulation methodology to capture the physics of wound mechanics. Specifically, we will investigate virtual wound injuries to the head, neck, and torso without and with protective armor to demonstrate the advantages of performing injury simulations for the development of body armor. The proposed toolset constitutes a significant advance over current methods by providing a virtual simulation capability to investigate wound injury and optimize armor design without the need for extensive field testing.

  9. A large-scale computer facility for computational aerodynamics

    International Nuclear Information System (INIS)

    Bailey, F.R.; Balhaus, W.F.

    1985-01-01

    The combination of computer system technology and numerical modeling have advanced to the point that computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. To provide for further advances in modeling of aerodynamic flow fields, NASA has initiated at the Ames Research Center the Numerical Aerodynamic Simulation (NAS) Program. The objective of the Program is to develop a leading-edge, large-scale computer facility, and make it available to NASA, DoD, other Government agencies, industry and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. The Program will establish an initial operational capability in 1986 and systematically enhance that capability by incorporating evolving improvements in state-of-the-art computer system technologies as required to maintain a leadership role. This paper briefly reviews the present and future requirements for computational aerodynamics and discusses the Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans

  10. Heavy-ion stopping powers and the low-velocity-projectile z3 effect

    International Nuclear Information System (INIS)

    Porter, L.E.

    1977-01-01

    Recent heavy-ion stopping-power measurements with elemental solid targets have been analyzed in order to ascertain the influence on effective ion charge of incorporating the low-velocity-projectile z 3 effect in Bethe-Bloch calculations. Shell corrections and the mean excitation energy of a given target were held fixed while searching for the best-fit value of a single charge-state parameter. In general, excellent fits to the stopping powers at projectile energies above 0.3 MeV/amu were achieved. Results of the present study compare very favorably with those from other extant methods of analysis

  11. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  12. Eikonal calculation of electron-capture cross sections in collisions of H atoms with fast projectiles

    International Nuclear Information System (INIS)

    Ho, T.S.; Lieber, M.; Chan, F.T.

    1981-01-01

    We have employed the eikonal method to calculate the cross section for the capture of an electron into an arbitrary nl subshell in collisions between hydrogen atoms and fast projectiles. the projectiles were protons, C 6+ , O 8+ , and Fe 24+ . The energy ranges considered were 20--100 keV in the proton case, and 40--200 keV per nucleon in the other cases. These projectiles were selected because of their importance in fusion plasmas. For the highly charged case of Fe 24+ we found that our formulas, while exact, involved a high degree of cancellation and produced unreliable numerical results, so that a numerical integration of the penultimate formula was substituted. In the proton case agreement with recent experimental data is excellent

  13. Fusion with projectiles from carbon to argon at energies between 20A MeV and 60A MeV

    International Nuclear Information System (INIS)

    Galin, J.

    1986-01-01

    Fusion reactions are known to be the dominant reaction channel at low bombarding energies and can now be investigated with a large variety of projectiles at several tens of MeV per nucleon. The gross characteristics of the fusion process can be studied by measuring global quantities, such as the linear momentum transferred from projectile to target and the dissipated energy of the reaction. The strong correlation between these two quantities is demonstrated at moderate bombarding energies, with a Ne projectile on a U target. It is expected that light particle (charged or neutron) multiplicity measurements can be extended to this higher energy domain and be used to selectively filter these collisions, according to their degree of violence. A review of the linear momentum transfer is made, considering essentially heavy targets and two important parameters in the entrance channel: the projectile energy and its mass. Over a broad mass range, and for energies up to 30A MeV, the momentum transfer scales with the mass of the projectile. At 30A MeV, the most probable value of projectile momentum transferred to the fused system is 80%, and this represents roughly 180 MeV/c per projectile nucleon. At higher bombarding energies, the momentum distribution in the fused systems, as observed from binary fission events, seems to depend on the mass of the projectile. Further studies are still needed to understand this behavior. Finally, the decay of highly excited (E* similarly ordered 500-800 MeV) fused systems, with masses close to 270 amu, is studied from the characteristics of both fusion fragments and light charged particles. It is shown that thermal equilibrium is reached before fission, even for such high energy deposition. However, the decay sequence is sensitive to dynamical effects and does not depend only on available phase space

  14. Some physical magnitudes of interest for nuclear reactions and their dependence on the projectile-target system

    International Nuclear Information System (INIS)

    Fernandez Niello, J.O.; Pacheco, A.J.

    1984-01-01

    The design and analysis of experiences with heavy ions requires the knwoledge of several characteristic parameters of the collision and their dependence on the reactant system. In the case of an electrostatic accelerator as the TANDAR, the bombarding energy (function of the projectile) is a direct consequence of the evolution of the charged state distribution for the projectile at the exit of the last stripper, as a function of the atomic number. The complexity resulting from this dependence originated the confection of a series of diagrams. The diagrams correpond to the different physical magnitudes of interest in the analysis of nuclear reactions as a function of the projectile-target combination for terminal tensions similar to those expected to reach at the TANDAR. In each case, the curves are refered to the following physical magnitudes: Ecm/Bc Kinetic energy in the center of the mass system and Coulomb barrier for the projectile-target system, Lgr = angular momentum corresponding to the grazing collisions. Diagrams of the average projectile energy per nucleon for the different values of the terminal tensions with one or two solid strippers are included. The use of the diagrams in some practical applications is illustrated through four examples. The diagrams may be extended, if necesary, to other physical magnitudes, at different accelerator's operating conditions. (M.E.L.) [es

  15. Bringing solid fuel ramjet projectiles closer to application - An overview of the TNO/RWMS technology demonstration programme

    NARCIS (Netherlands)

    Veraar, R.G.; Giusti, G.

    2005-01-01

    TNO executed a technology demonstration programme in co-operation with RWMS on the application of solid fuel ramjet propulsion technology to medium calibre air defence projectiles. From 2000 to 2004 a complete and integrated structural and aero-thermodynamic projectile design was conceived

  16. Fusion, reaction and break-up cross sections of weakly bound projectiles on 64Zn

    International Nuclear Information System (INIS)

    Gomes, P.R.S.; Padron, I.; Rodriguez, M.D.; Marti, G.V.; Anjos, R.M.; Lubian, J.; Veiga, R.; Liguori Neto, R.; Crema, E.; Added, N.; Chamon, L.C.; Fernandez Niello, J.O.; Capurro, O.A.; Pacheco, A.J.; Testoni, J.E.; Abriola, D.; Arazi, A.; Ramirez, M.; Hussein, M.S.

    2004-01-01

    We present new measurements and a general discussion of the behavior of the fusion, break-up and reaction cross sections of different projectiles on the same target 64 Zn, at near and above barrier energies. The projectiles are the tightly bound 16 O, the stable weakly bound 6 Li, 7 Li and 9 Be and the radioactive very weakly bound 6 He nuclei. We also compare the results with the ones for heavier targets

  17. Unsteady Aerodynamic Force Sensing from Measured Strain

    Science.gov (United States)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  18. Review paper on wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Aagaard Madsen, Helge

    2011-01-01

    The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models...

  19. Study of the multiple ionization in the ion-atom collisions with highly charged sulfur as well as with neutral and lowly charged fluorine projectiles

    International Nuclear Information System (INIS)

    Konrad, J.

    1986-01-01

    With the collisional systems 115 MeV S +Q (Q=+13, +15, +16) on He, Ne, Ar, and Kr as well as 4 MeV F +Q (Q=-1, 0, +1) on Ne the multiple ionization in the ion-atom collision was studied. With the collisional system 4 MeV F +Q on Ne the multiple ionization of target and projectile was studied by coincidence measurement between the recoil ions and projectiles with the charge state Q' after the collision (Q'=-1 to +3). In the pure ionization (no change of the projectile charge) the measured ionization cross sections for the single positive and negative charged projectile are equally large, those of the neutral F projectiles are lower. The comparison with the point particles protons and electrons resulted that the ionization cross sections of the F projectiles are larger and more strongly higher charged recoil ions are produced. The measured ionization cross sections of the F projectile are larger than those of the Ne target atom which is to be reduced to the lower ionization energies of the F projectile. With the highly charged S projectiles the multiple ionization with capture into the projectile was studied. By the measurement of triple coincidcences between recoil ions, projectiles, and SKX-radiation the cases with and without capture into the K shell can be discriminated. The charge distribution with is shifted against that without capture into the K shell to higher charges. This shift is to be reduced to the decay of autoionization states which arise by the capture into the K shell. (orig./HSI) [de

  20. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    Science.gov (United States)

    Cernusca, S.; Winter, HP.; Aumayr, F.; Díez Muiño, R.; Juaristi, J. I.

    2003-04-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to "projectile molecular effects" (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  1. Devices for launching 0.1-g projectiles to 150 km/s or more to initiate fusion. Part 1. Magnetic-gradient and electrostatic accelerators

    International Nuclear Information System (INIS)

    Brittingham, J.N.

    1979-01-01

    The feasibility of using magnetic-gradient and electrostatic accelerators to launch a 0.1-g projectile to hypervelocities (150 km/s or more) is studied. Such hypervelocity projectiles could be used to ignite deuterium-tritium fuel pellets in a fusion reactor. For the magnetic-gradient accelerator, several types of projectile were studied: shielded and unshielded copper, ferromagnetic, and superconducting. The calculations revealed the superconducting projectile to be the best of those materials. It would require a 3.2-km-long magnetic-gradient accelerator and achieve a 92% efficiency. This accelerator-projectile combination would be the one most likely to launch a 0.1-g projectile to 150 km/s or more. Its components would cost $58.9 million. The electrostatic accelerator was found to be impractical because of its excessive length of 23 km

  2. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  3. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2016-01-01

    In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references.   The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.

  4. Fragmentation of small molecules induced by 46 keV/amu N+ and N2+ projectiles

    International Nuclear Information System (INIS)

    Kovacs, S.T.S.; Juhasz, Z.; Herczku, P.; Sulik, B.

    2012-01-01

    Complete text of publication follows. Collisional molecule fragmentation experiments has gain increasing attention in several research and applied fields. In order to understand the fundamental processes of molecule fragmentation one has to start with collisions of small few-atomic molecules. Moreover, fragments of small molecules such as water can cause damages of large molecules (DNA) very effectively in living tissues. In the last few years a new experimental setup was developed at Atomki. It was designed especially for molecule fragmentation experiments. Now the measurements using this system are running routinely. In 2012 the studied targets were water vapor, methane and nitrogen gases, injected into the collision area by an effusive molecular gas jet system. 650 keV N + and 1,3 MeV N 2 + ions were used as projectiles produced by the VdG-5 electrostatic accelerator. The velocity of the two types of projectiles was the same. Energy and angular distribution of the produced fragments was measured by an energy dispersive electrostatic spectrometer. For atomic ionization a symmetric, diatomic molecular projectile (e.g. N 2 + ) yields about twice more electrons compared to those of singly charged ion projectiles of the same atom (N + ) at the same velocity. In such cases the two atomic centers in the molecular ion can be considered as two individual atomic centers. For the fragmentation of molecular targets the picture is not so simple because in this case close collision of two extended systems is investigated. As figure 1 and 2 show, the measured yields for molecular projectile is not simply twice of the ones for atomic projectile. The shape of the energy spectra are different. The measured data are under evaluation. Acknowledgements. This work was supported by the Hungarian National Science Foundation OTKA (Grant: K73703) and by the TAMOP-4.2.2/B-10/1-2010-0024 project. The project is cofinanced by the European Union and the European Social Fund.

  5. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  6. Fusion of a polarized projectile with a polarized target

    International Nuclear Information System (INIS)

    Christley, J.A.; Johnson, R.C.; Thompson, I.J.

    1995-01-01

    The fusion cross sections for a polarized target with both unpolarized and polarized projectiles are studied. Expressions for the observables are given for the case when both nuclei are polarized. Calculations for fusion of an aligned 165 Ho target with 16 O and polarized 7 Li beams are presented

  7. Penetration of a Small Caliber Projectile into Single and Multi-layered Targets

    Directory of Open Access Journals (Sweden)

    Riad A.M.

    2010-06-01

    Full Text Available The normal penetration of armor-piercing projectiles into single and multi-layered steel plates has been investigated. An experimental program has been conducted to study the effect of spaced and in-contact layered targets on their ballistic resistance. Armor piercing projectiles with caliber of 7.62 mm were fired against a series of single and multi-layered steel targets. The projectile impact velocities were ranged from 300-600 m/s, whereas the total thicknesses of the tested single, spaced and in-contact layered steel targets were 3 mm. The penetration process of different tested target configurations has been simulated using Autodayn-2D hydrocode. The experimental measurements of the present work were used to discuss the effect of impact velocity, target configurations and number of layers of different spaced and in-contact layered steel targets on their ballistic resistance. In addition, the post-firing examination of the tested targets over the used impact velocity range showed that the single and each layer of spaced and in-contact laminated steel targets were failed by petalling. Finally, the obtained experimental measurements were compared with the corresponding numerical results of Autodyn-2D hydrocode, good agreement was generally obtained.

  8. Dynamic soaring: aerodynamics for albatrosses

    International Nuclear Information System (INIS)

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration

  9. Projectile electron loss in collisions of light charged ions with helium

    International Nuclear Information System (INIS)

    Yin Yong-Zhi; Chen Xi-Meng; Wang Yun

    2014-01-01

    We investigate the single-electron loss processes of light charged ions (Li 1+,2+ , C 2+,3+,5+ , and O 2+,3+ ) in collisions with helium. To better understand the experimental results, we propose a theoretical model to calculate the cross section of projectile electron loss. In this model, an ionization radius of the incident ion was defined under the classical over-barrier model, and we developed ''strings'' to explain the processes of projectile electron loss, which is similar with the molecular over-barrier model. Theoretical calculations are in good agreement with the experimental results for the cross section of single-electron loss and the ratio of double-to-single ionization of helium associated with one-electron loss. (atomic and molecular physics)

  10. Test-retest reliability for aerodynamic measures of voice.

    Science.gov (United States)

    Awan, Shaheen N; Novaleski, Carolyn K; Yingling, Julie R

    2013-11-01

    The purpose of this study was to investigate the intrasubject reliability of aerodynamic characteristics of the voice within typical/normal speakers across testing sessions using the Phonatory Aerodynamic System (PAS 6600; KayPENTAX, Montvale, NJ). Participants were 60 healthy young adults (30 males and 30 females) between the ages 18 and 31 years with perceptually typical voice. Participants were tested using the PAS 6600 (Phonatory Aerodynamic System) on two separate days with approximately 1 week between each session at approximately the same time of day. Four PAS protocols were conducted (vital capacity, maximum sustained phonation, comfortable sustained phonation, and voicing efficiency) and measures of expiratory volume, maximum phonation time, mean expiratory airflow (during vowel production) and target airflow (obtained via syllable repetition), peak air pressure, aerodynamic power, aerodynamic resistance, and aerodynamic efficiency were obtained during each testing session. Associated acoustic measures of vocal intensity and frequency were also collected. All phonations were elicited at comfortable pitch and loudness. All aerodynamic and associated variables evaluated in this study showed useable test-retest reliability (ie, intraclass correlation coefficients [ICCs] ≥ 0.60). A high degree of mean test-retest reliability was found across all subjects for aerodynamic and associated acoustic measurements of vital capacity, maximum sustained phonation, glottal resistance, and vocal intensity (all with ICCs > 0.75). Although strong ICCs were observed for measures of glottal power and mean expiratory airflow in males, weaker overall results for these measures (ICC range: 0.60-0.67) were observed in females subjects and sizable coefficients of variation were observed for measures of power, resistance, and efficiency in both men and women. Differences in degree of reliability from measure to measure were revealed in greater detail using methods such as ICCs and

  11. Projectile and target fragmentation at intermediate energies (20 MeV <= E/A <= 100 MeV)

    International Nuclear Information System (INIS)

    Dayras, R.A.

    1985-04-01

    In order to follow the evolution of the reaction mechanisms in the transition region of the intermediate energy range, detailed studies of projectile-like fragments from a 44 MeV/u 40 Ar projectile bombarding 27 Al and sup(NAT)T: targets have been made. Experimental results are given. Discussion of the data is presented: transfer reactions, isotopic distributions, the fragmentation model, and abrasion model are used in the discussion

  12. Radiative electron capture into the K-, L-, and M-shell of decelerated, hydrogenic Ge projectiles

    International Nuclear Information System (INIS)

    Stoehlker, T.; Kozhuharov, C.; Livingston, A.E.; Mokler, P.H.; Stachura, Z.; Warczak, A.

    1991-12-01

    Radiative Electron Capture (REC) in 4 to 12 MeV/u Ge 31+ →H 2 collisions has been studied using an X-ray/particle coincidence technique. This technique allowed a systematic investigation of K-shell REC as well as a separation of REC into the projectile L- and M-shells. The cross sections are discussed within a general scaling picture based on the reduced projectile velocity. (orig.)

  13. Take-off aerodynamics in ski jumping.

    Science.gov (United States)

    Virmavirta, M; Kivekäs, J; Komi, P V

    2001-04-01

    The effect of aerodynamic forces on the force-time characteristics of the simulated ski jumping take-off was examined in a wind tunnel. Vertical and horizontal ground reaction forces were recorded with a force plate installed under the wind tunnel floor. The jumpers performed take-offs in non-wind conditions and in various wind conditions (21-33 m s(-1)). EMGs of the important take-off muscles were recorded from one jumper. The dramatic decrease in take-off time found in all jumpers can be considered as the result of the influence of aerodynamic lift. The loss in impulse due to the shorter force production time with the same take-off force is compensated with the increase in lift force, resulting in a higher vertical velocity (V(v)) than is expected from the conventional calculation of V(v) from the force impulse. The wind conditions emphasized the explosiveness of the ski jumping take-off. The aerodynamic lift and drag forces which characterize the aerodynamic quality of the initial take-off position (static in-run position) varied widely even between the examined elite ski jumpers. According to the computer simulation these differences can decisively affect jumping distance. The proper utilization of the prevailing aerodynamic forces before and during take-off is a very important prerequisite for achieving a good flight position.

  14. Singly and Doubly Charged Projectile Fragments in Nucleus-Emulsion Collisions at Dubna Energy in the Framework of the Multi-Source Model

    International Nuclear Information System (INIS)

    Er-Qin, Wang; Fu-Hu, Liu; Jian-Xin, Sun; Rahim, Magda A.; Fakhraddin, S.

    2011-01-01

    The multiplicity distributions of projectile fragments emitted in interactions of different nuclei with emulsion are studied by using a multi-source model. Our calculated results show that the projectile fragments can be described by the model and each source contributes an exponential distribution. As the weighted sum of the folding result of many exponential distributions, a multi-component Erlang distribution is used to describe the experimental data. The relationship between the height (or width) of the distribution and the mass of the incident projectile, as well as the dependence of projectile fragments on target groups, are investigated too. (nuclear physics)

  15. Assessment of empirical formulae for local response of concrete structures to hard projectile impact

    International Nuclear Information System (INIS)

    Buzaud, E.; Cazaubon, Ch.; Chauvel, D.

    2007-01-01

    The outcome of the impact of a hard projectile on a reinforced concrete structure is affected by different parameters such as the configuration of the interaction, the projectile geometry, mass and velocity and the target geometry, reinforcement, and concrete mechanical properties. Those parameters have been investigated experimentally during the last 30 years, hence providing a basis of simplified mathematical models like empirical formulae. The aim of the authors is to assess the relative performances of classical and more recent empirical formulae. (authors)

  16. Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths

    NARCIS (Netherlands)

    Ma, Y.M.; Menenti, M.; Feddes, R.A.; Wang, J.M.

    2008-01-01

    The land surface heterogeneity has a very significant impact on atmospheric variables (air temperature T-a, wind speed u, and humidity q), the aerodynamic roughness length z(0m), thermodynamic roughness length z(0h), and the excess resistance to heat transfer kB(-1). First, in this study the land

  17. Single capture and transfer ionization in collisions of Clq+ projectile ions incident on helium

    International Nuclear Information System (INIS)

    Wong, K.L.; Ben-Itzhak, I.; Cocke, C.L.; Giese, J.P.; Richard, P.

    1995-01-01

    The Kansas State University linac has been used to measure the ratio of the cross sections for the processes of transfer ionization (TI) and single capture (SC) for 2 MeV/amu Cl q+ where q=7, 9, 13, 14, and 15 projectile ions incident on a helium target. The ratio was determined using a helium gas jet target by measuring coincidences between projectile-ion and recoil-ion final charge states. The σ TI /σ SC for Cl q+ were compared to measurements of bare F 9+ and hydrogenlike F 8+ and O 7+ taken at the same velocity. The ratios deviate from a q 2 scaling which is predicted in the perturbative regime. This deviation is attributed to screening by the projectile electrons for low q=7 and 9, and to the collision being non-perturbative for high q. A possible saturation effect in the ratio was observed for q similar 14. (orig.)

  18. Influences of surface temperature on a low camber airfoil aerodynamic performances

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2016-03-01

    Full Text Available The current note refers to the comparison between a NACA 2510 airfoil with adiabatic walls and the same airfoil with heated patches. Both suction and pressure sides were divided into two regions covering the leading edge (L.E. and trailing edge (T.E.. A RANS method sensitivity test has been performed in the preliminary stage while for the extended 3D cases a DES-SST approach was used. Results indicate that surface temperature distribution influences the aerodynamics of the airfoil, in particular the viscous drag component but also the lift of the airfoil. Moreover, the influence depends not only on the surface temperature but also on the positioning of the heated surfaces, particularly in the case of pressure lift and drag. Further work will be needed to optimize the temperature distribution for airfoil with higher camber.

  19. Backward ejected electrons from collisions of 1 MeV/u Oq+ projectiles with argon gas

    International Nuclear Information System (INIS)

    Berryman, J.W.; Breinig, M.; Segner, F.; Desai, D.

    1993-01-01

    We will be presenting results from a series of experiments measuring the yields and energy distributions of electrons emitted at 1800 with respect to the 1 MeV/u O q+ [q=3-8] ion beam. We have systematically studied the yield per incident ion and the energy distribution of electrons as a function of the incident projectile charge state. The energy distributions show two prominent structures: a narrow peak due to target LMM Auger electrons and a broad hump due to projectile binary-encounter electrons. The shapes and yields of the Auger electron peaks are nearly independent of the incident charge state. The shapes and yields of the binary-encounter electron peaks are sensitive functions of the number of projectile electrons carried into the collision. A well defined binary-encounter electron peak appears only for charge states q=3, 4, and 5

  20. Signatures of projectile-nucleus scattering in three-dimensional (e,2e) cross sections for argon

    Energy Technology Data Exchange (ETDEWEB)

    Ren Xueguang; Senftleben, Arne; Pflueger, Thomas; Dorn, Alexander; Ullrich, Joachim [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Bartschat, Klaus, E-mail: Xueguang.Ren@mpi-hd.mpg.d, E-mail: Alexander.Dorn@mpi-hd.mpg.d [Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311 (United States)

    2010-02-14

    Electron impact ionization (E{sub 0} = 195 eV) of the 3p-orbital in argon is investigated experimentally and theoretically. The triple-differential cross sections (TDCS) obtained using a multi-particle momentum spectrometer (reaction microscope) cover more than 80% of the full solid angle for the slow emitted electron up to an energy of 25 eV and a range of projectile scattering angles from -5 deg. to -15 deg. Inside the projectile scattering plane the TDCS shape is in rather good agreement with a hybrid distorted-wave plus R-matrix (DWBA-RM) calculation. Outside the scattering plane relatively strong electron emission is observed which is reproduced by theory in magnitude but not in shape. A systematic study of the TDCS behaviour and structure in this region indicates that its origin lies in high-order projectile-target interaction.

  1. Occult lawn mower projectile injury presenting with hemoptysis

    Directory of Open Access Journals (Sweden)

    Patric J. Darvie, BS

    2017-12-01

    Full Text Available We present the case of a 72-year-old man with hemoptysis after a thoracic projectile injury, which occurred while mowing the lawn. Chest radiograph followed by a computed tomography angiogram revealed a metallic foreign body in the right middle lobe of the lung. The patient underwent a right anterolateral thoracotomy where the object was successfully retrieved. The patient had an uneventful postoperative recovery.

  2. Occult lawn mower projectile injury presenting with hemoptysis.

    Science.gov (United States)

    Darvie, Patric J; Ballard, David H; Harris, Nicholas; Bhargava, Peeyush; Rao, Vyas R; Samra, Navdeep S

    2017-12-01

    We present the case of a 72-year-old man with hemoptysis after a thoracic projectile injury, which occurred while mowing the lawn. Chest radiograph followed by a computed tomography angiogram revealed a metallic foreign body in the right middle lobe of the lung. The patient underwent a right anterolateral thoracotomy where the object was successfully retrieved. The patient had an uneventful postoperative recovery.

  3. Occult lawn mower projectile injury presenting with hemoptysis

    OpenAIRE

    Patric J. Darvie, BS; David H. Ballard, MD; Nicholas Harris, MD; Peeyush Bhargava, MD, MBA; Vyas R. Rao, MD; Navdeep S. Samra, MD

    2017-01-01

    We present the case of a 72-year-old man with hemoptysis after a thoracic projectile injury, which occurred while mowing the lawn. Chest radiograph followed by a computed tomography angiogram revealed a metallic foreign body in the right middle lobe of the lung. The patient underwent a right anterolateral thoracotomy where the object was successfully retrieved. The patient had an uneventful postoperative recovery.

  4. Aerodynamics and Control of Quadrotors

    Science.gov (United States)

    Bangura, Moses

    Quadrotors are aerial vehicles with a four motor-rotor assembly for generating lift and controllability. Their light weight, ease of design and simple dynamics have increased their use in aerial robotics research. There are many quadrotors that are commercially available or under development. Commercial off-the-shelf quadrotors usually lack the ability to be reprogrammed and are unsuitable for use as research platforms. The open-source code developed in this thesis differs from other open-source systems by focusing on the key performance road blocks in implementing high performance experimental quadrotor platforms for research: motor-rotor control for thrust regulation, velocity and attitude estimation, and control for position regulation and trajectory tracking. In all three of these fundamental subsystems, code sub modules for implementation on commonly available hardware are provided. In addition, the thesis provides guidance on scoping and commissioning open-source hardware components to build a custom quadrotor. A key contribution of the thesis is then a design methodology for the development of experimental quadrotor platforms from open-source or commercial off-the-shelf software and hardware components that have active community support. Quadrotors built following the methodology allows the user access to the operation of the subsystems and, in particular, the user can tune the gains of the observers and controllers in order to push the overall system to its performance limits. This enables the quadrotor framework to be used for a variety of applications such as heavy lifting and high performance aggressive manoeuvres by both the hobby and academic communities. To address the question of thrust control, momentum and blade element theories are used to develop aerodynamic models for rotor blades specific to quadrotors. With the aerodynamic models, a novel thrust estimation and control scheme that improves on existing RPM (revolutions per minute) control of

  5. Switchable and Tunable Aerodynamic Drag on Cylinders

    Science.gov (United States)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  6. Future Computer Requirements for Computational Aerodynamics

    Science.gov (United States)

    1978-01-01

    Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

  7. A Bayesian approach to estimate sensible and latent heat over vegetated land surface

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2009-06-01

    Full Text Available Sensible and latent heat fluxes are often calculated from bulk transfer equations combined with the energy balance. For spatial estimates of these fluxes, a combination of remotely sensed and standard meteorological data from weather stations is used. The success of this approach depends on the accuracy of the input data and on the accuracy of two variables in particular: aerodynamic and surface conductance. This paper presents a Bayesian approach to improve estimates of sensible and latent heat fluxes by using a priori estimates of aerodynamic and surface conductance alongside remote measurements of surface temperature. The method is validated for time series of half-hourly measurements in a fully grown maize field, a vineyard and a forest. It is shown that the Bayesian approach yields more accurate estimates of sensible and latent heat flux than traditional methods.

  8. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  9. Aerodynamical calculation of turbomachinery bladings

    International Nuclear Information System (INIS)

    Fruehauf, H.H.

    1978-01-01

    Various flow models are presented in comparison to one another, these flow models being obtained from the basic equations of turbomachinery aerodynamics by means of a series of simplifying assumptions on the spatial distribution of the flow quantities. The simplifying assumptions are analysed precisely. With their knowledge it is possible to construct more accurate simplified flow models, which are necessary for the efficient aerodynamical development of highperformance turbomachinery bladings by means of numerical methods. (orig.) 891 HP [de

  10. Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Owis, F.M.; Nayfeh, A.H. [Blacksburg State University, Dept. of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute, VA (United States)

    2004-04-01

    The hydrodynamic cavitation over axisymmetric projectiles is computed using the unsteady incompressible Navier-Stokes equations for multi-fluid elements. The governing equations are discretized on a structured grid using an upwind difference scheme with flux limits. A preconditioning dual-time stepping method is used for the unsteady computations. The Eigen-system is derived for the Jacobian matrices. This Eigen-system is suitable for high-density ratio multi-fluid flows and it provides high numerical stability and fast convergence. This method can be used to compute single- as well as multi-phase flows. Cavitating flows over projectiles with different geometries are computed and the results are in good agreement with available experimental data and other published computations. (authors)

  11. Multifragmentation induced by light relativistic projectiles and heavy ions: similarities and differences

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Kuznetsov, V.D.

    1998-01-01

    The experimental data on fragment multiplicities, their energy and charge distributions, the emission times are considered for the nuclear multifragmentation process induced by relativistic light projectiles (protons, helium) and heavy ions. With light projectiles, the multifragmentation is a pure 'thermal' process, well described by the statistical models. Heavy-ion-induced multifragmentation is influenced by dynamic effects related first of all to the compression of the system in the collision. But statistical models can also be applied to rendering the partition of the system if the excitation energy is less than 10 MeV/nucleon and compression is modest. For the central collision of heavy ions the statistical approach fails to describe the data

  12. Projectile excitation energy evolution in peripheral collisions for 16O + 197Au at 32.5, 50 and 70 MeV/N

    International Nuclear Information System (INIS)

    Pouliot, J.; Dore, D.; Houde, S.; Laforest, R.; Roy, R.; St-Pierre, C.; Chan, Y.; Horn, D.; Horn, D.

    1991-01-01

    A comparison of the multiple breakup of 16 O projectiles scattered by a Au target at three different energies (32.5, 50 and 70 MeV/N) is presented. The excitation energy spectra of the primary projectile-like nuclei decaying into specific output channels were reconstructed. The excitation energy of the target is found to increase faster with beam energy than the one for the quasi-projectile

  13. Projectile break-up of 14N at 62,7 MeV

    International Nuclear Information System (INIS)

    Bozek, E.; Cassagnou, Y.; Dayras, R.; Legrain, R.; Pagano, A.; Rodriguez, L.; Lanzano, G.; Palmeri, A.; Pappalardo, G.

    1983-01-01

    In plane and out of plane angular correlations between light particles and heavy ions have been measured in the reaction 14 N + 12 C at 62.7 MeV bombarding energy. Special attention has been given to the break-up of 14 N into 13 C + p, 12 C + d and 10 B + α. The observed correlations are consistent with sequential break-up of the 14 N projectile. A Monte-Carlo calculation assuming isotropic emission of particles in the rest frame of the projectile from well defined states in 14 N is in good agreement with the experimental angular correlations. From a comparison between calculated and experimental boron and carbon single energy spectra, it appears that after transfer reactions, sequential break-up of 14 N is the dominant process to produce these nuclei

  14. When Does Air Resistance Become Significant in Projectile Motion?

    Science.gov (United States)

    Mohazzabi, Pirooz

    2018-01-01

    In an article in this journal, it was shown that air resistance could never be a significant source of error in typical free-fall experiments in introductory physics laboratories. Since projectile motion is the two-dimensional version of the free-fall experiment and usually follows the former experiment in such laboratories, it seemed natural to…

  15. Simulations of the Penetration of 6061-T6511 Aluminum Targets by Spherical-Nosed VAR 4340 Steel Projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Tabbara, M.R.; Warren, T.L.

    1998-10-21

    In certain penetration events it is proposed that the primary mode of deformation of the target can be approximated by known analytical expressions. In the context of an analysis code, this approximation eliminates the need for discretizing the target as well as the need for a contact algorithm. Thus, this method substantially reduces the computer time and memory requirements. In this paper a forcing function which is derived from a spherical-cavity expansion (SCE) analysis has been implemented in a transient dynamic finite element code. This irnplementation is capable of computing the structural and component responses of a projectile due to a three dimensional penetration event. Simulations are presented for 7.1 l-mm-diameter, 74.7-mm-long, spherical-nose, vacuum- arc-remelted (VAR) 4340 steel projectiles that penetrate 6061-T6511 aluminum targets. Final projectile configurations obtained from the simulations are compared with post-test radiographs obtained from the corresponding experiments. It is shown that the simulations accurately predict the permanent projectile deformation for three dimensional loadings due to incident pitch and yaw over a wide range of striking velocities.

  16. Comparison of high speed movie and flash x-ray measurement of the translational and rotational motions of projectiles penetrating gelatin

    International Nuclear Information System (INIS)

    Roecker, E.T.

    1979-01-01

    Projectiles penetrating a gelatin block were simultaneously measured by a high speed movie camera, Dynafax, and by a sequential, orthogonal, flash x-ray system. The eight orthogonal views of the x-ray system provided position and orientation of the projectiles vs. time. From onset of tumble in the gelatin, owing to gyroscopic instability, the growth of yaw was the same for each round in a replicated set. This phenomenon provided a legitimate procedure for pooling the x-ray data, giving well determined curves of velocity decay and yaw growth. The movie camera observed the progress of the cavity formed by the projectile. The resulting velocity decay of the cavity tip was compared to that of the projectile as measured by the x-ray technique. (author)

  17. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  18. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    International Nuclear Information System (INIS)

    Cernusca, S.; Winter, H.P.; Aumayr, F.; Diez Muino, R.; Juaristi, J.I.

    2003-01-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy <10 keV) on atomically clean surfaces of carbon-fiber inforced graphite used as first-wall armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to 'projectile molecular effects' (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials

  19. Angular distributions of projectiles following electron capture from C60 by 2.5-keV Ar8+

    International Nuclear Information System (INIS)

    Walch, B.; Thumm, U.; Stoeckli, M.; Cocke, C.L.; Klawikowski, S.

    1998-01-01

    Experimental measurements of the projectile angular distributions for 2.5-keV Ar 8+ ions capturing one to five electrons from a gas-phase C 60 target are presented. The number of captured electrons was determined by demanding a coincidence between the scattered projectile and a charge-state-analyzed intact C 60 recoil ion. The results are compared to calculations based on a dynamical classical overbarrier model. Good agreement is obtained only if the influence on the projectile trajectory by the large polarizability of the C 60 target is taken into account, thereby making the collective dielectric response of the cluster target observable in a scattering experiment. copyright 1998 The American Physical Society

  20. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    CERN Document Server

    Cernusca, S; Aumayr, F; Diez-Muino, R; Juaristi, J I

    2003-01-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy <10 keV) on atomically clean surfaces of carbon-fiber inforced graphite used as first-wall armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to 'projectile molecular effects' (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  1. Aerodynamic-structural model of offwind yacht sails

    Science.gov (United States)

    Mairs, Christopher M.

    An aerodynamic-structural model of offwind yacht sails was created that is useful in predicting sail forces. Two sails were examined experimentally and computationally at several wind angles to explore a variety of flow regimes. The accuracy of the numerical solutions was measured by comparing to experimental results. The two sails examined were a Code 0 and a reaching asymmetric spinnaker. During experiment, balance, wake, and sail shape data were recorded for both sails in various configurations. Two computational steps were used to evaluate the computational model. First, an aerodynamic flow model that includes viscosity effects was used to examine the experimental flying shapes that were recorded. Second, the aerodynamic model was combined with a nonlinear, structural, finite element analysis (FEA) model. The aerodynamic and structural models were used iteratively to predict final flying shapes of offwind sails, starting with the design shapes. The Code 0 has relatively low camber and is used at small angles of attack. It was examined experimentally and computationally at a single angle of attack in two trim configurations, a baseline and overtrimmed setting. Experimentally, the Code 0 was stable and maintained large flow attachment regions. The digitized flying shapes from experiment were examined in the aerodynamic model. Force area predictions matched experimental results well. When the aerodynamic-structural tool was employed, the predictive capability was slightly worse. The reaching asymmetric spinnaker has higher camber and operates at higher angles of attack than the Code 0. Experimentally and computationally, it was examined at two angles of attack. Like the Code 0, at each wind angle, baseline and overtrimmed settings were examined. Experimentally, sail oscillations and large flow detachment regions were encountered. The computational analysis began by examining the experimental flying shapes in the aerodynamic model. In the baseline setting, the

  2. Research on critical behaviour during fragmentation of the projectile in the Xe+Sn (at 50 MeV/A) reaction; Recherche d`un comportement critique dans la fragmentation du projectile dans la reaction Xe+Sn a 50 MeV/A

    Energy Technology Data Exchange (ETDEWEB)

    Benlliure, J

    1995-03-01

    The study of moments of fragments charge distributions produced in heavy ions collisions can give us evidence of a critical behavior of nuclear matter which could explain the multifragmentation pattern. From an experimental point of view, in order to perform this capabilities of the INDRA detector has made it possible to identify all these particles and to reconstruct the initial projectile-like fragment coming from binary collisions in the reaction Xe+Sn at 50 MeV/A. We have selected events where the initial projectile-like fragments keep their entire charge in a large range of excitation energy. The study of these fragment`s characteristics show clearly a change in the deexcitation pattern. The evolution of moments of the fragment charge distributions has been reproduced within a percolation model, in this sense we can interpreter this change in the deexcitation pattern as a function of the initial projectile-like fragment`s size shows the existence of finite-size effects. However, the signature of a phase transition remains independent on the projectile-like fragment`s size. (author). 74 refs., 58 figs., 9 tabs.

  3. Study of atomic excitations in sputtering with the use of N, O, F, Ne, Na, Cl, and Ar projectiles

    International Nuclear Information System (INIS)

    Jensen, H.K.; Veje, E.

    1985-01-01

    Solid magnesium has been bombarded with 80 keV ions of N, O, F, Ne, Na, Cl, and Ar, and excitation of sputtered magnesium atoms and ions has been studied. Relative level excitation probabilities depend strongly on the projectile, the dependences for Mg I levels being different from those for Mg II levels. With all projectiles, the resonance level in Mg II is excited stronger than the resonance level in Mg I. Very little radiation is observed from the projectiles except for sodium. The results are discussed. (orig.)

  4. Urban Aerodynamic Roughness Length Mapping Using Multitemporal SAR Data

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2017-01-01

    Full Text Available Aerodynamic roughness is very important to urban meteorological and climate studies. Radar remote sensing is considered to be an effective means for aerodynamic roughness retrieval because radar backscattering is sensitive to the surface roughness and geometric structure of a given target. In this paper, a methodology for aerodynamic roughness length estimation using SAR data in urban areas is introduced. The scale and orientation characteristics of backscattering of various targets in urban areas were firstly extracted and analyzed, which showed great potential of SAR data for urban roughness elements characterization. Then the ground truth aerodynamic roughness was calculated from wind gradient data acquired by the meteorological tower using fitting and iterative method. And then the optimal dimension of the upwind sector for the aerodynamic roughness calculation was determined through a correlation analysis between backscattering extracted from SAR data at various upwind sector areas and the aerodynamic roughness calculated from the meteorological tower data. Finally a quantitative relationship was set up to retrieve the aerodynamic roughness length from SAR data. Experiments based on ALOS PALSAR and COSMO-SkyMed data from 2006 to 2011 prove that the proposed methodology can provide accurate roughness length estimations for the spatial and temporal analysis of urban surface.

  5. Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC-Requirements: Endwall Contouring, Leading Edge and Blade Tip Ejection under Rotating Turbine Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schobeiri, Meinhard; Han, Je-Chin

    2014-09-30

    This report deals with the specific aerodynamics and heat transfer problematic inherent to high pressure (HP) turbine sections of IGCC-gas turbines. Issues of primary relevance to a turbine stage operating in an IGCC-environment are: (1) decreasing the strength of the secondary flow vortices at the hub and tip regions to reduce (a), the secondary flow losses and (b), the potential for end wall deposition, erosion and corrosion due to secondary flow driven migration of gas flow particles to the hub and tip regions, (2) providing a robust film cooling technology at the hub and that sustains high cooling effectiveness less sensitive to deposition, (3) investigating the impact of blade tip geometry on film cooling effectiveness. The document includes numerical and experimental investigations of above issues. The experimental investigations were performed in the three-stage multi-purpose turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. For the numerical investigations a commercial Navier-Stokes solver was utilized.

  6. Mehanizam trenja i trošenja vodećeg prstena projektila / Friction and wear mechanism of the projectile rotating band

    Directory of Open Access Journals (Sweden)

    Zoran Ristić

    2005-09-01

    Full Text Available U radu je opisan mehanizam trenja i trošenja vodećeg prstena projektila usled zagrevanja i topljenja kontaktne površine projektila. Primenjen je model hidrodinamičkog klizanja vodećeg prstena i postavljena Rejnoldsova jednačina za "fluid" (otopljeni film. Pretpostavlja se da je temperatura fluida konstantna i jednaka temperaturi topljenja na kontaktnim površinama. Na osnovu ukupnog prelaza toplote sa filma koji je stvoren između topljive i netopljive površine (model Landan određeni su rezultati za debljinu filma, koeficijent trenja i trošenje materijala. U raduje određena veličina trošenja vodećeg prstena i uticaj nekih parametara na silu trenja i debljinu filma otopljenog materijala prstena. Dobijeni rezultati ilustrovani su na odabranom primeru. / Friction and wear model of rotating band, due to, heating and melting material between the contact surface of a bore and projectile is described in this paper. The hydrodynamic slider-bearing model of the metal rotating band is applied and the Reynold's equation for the "fluid" (melting film has been used in this work. The fluid temperature was assumed to be constant and equal to the melting temperature on the contact surface. Based on the total heat transfer from the film, which is made, between the melting on the non-melting surface (Landan model and certain results of the film thickness, the coefficient of melt friction and the material wear were achieve. The size wears of the projectile rotating band and influence of certain parameters on the friction force and the film thickness are given in this paper. The achieved results have been illustrated by chosen example.

  7. Electron-detachment cross sections of halogen negative-ion projectiles for inertial confinement fusion

    Science.gov (United States)

    Sant'Anna, M. M.; Zappa, F.; Santos, A. C. F.; de Barros, A. L. F.; Wolff, W.; Coelho, L. F. S.; de Castro Faria, N. V.

    2004-07-01

    Negative-ion beams have recently been suggested as sources of high-energy heavy atoms to be used as drivers for inertial confinement fusion (ICF). Owing to their electron affinities limited to a few eV, anions can be efficiently photo-detached in the vicinity of the fusion chamber, with the resulting high-velocity neutral projectiles following ballistic trajectories towards the hydrogen pellet target. Electron-detachment cross sections are needed as parameters to estimate the beam attenuation in the path from the ion source to the hydrogen pellet. Halogen anions are possible projectile choices. In this paper we present experimental data for total electron-detachment cross sections for F-, Cl-, Br- and I- ions incident on N2, in the 0.94-74 keV u-1 energy range. Our measurements can benchmark theory on anion electron detachment at intermediate to high velocities. Comparison between different projectiles shows very similar collision velocity dependencies. A simple geometrical scaling is presented, providing an estimate for electron-detachment cross sections at the MeV u-1 energy range. The presented scaling indicates that the vacuum requirements due to the use of halogen anions for ICF are less critical than previously suggested.

  8. Electron-detachment cross sections of halogen negative-ion projectiles for inertial confinement fusion

    International Nuclear Information System (INIS)

    Sant'Anna, M M; Zappa, F; Santos, A C F; Barros, A L F de; Wolff, W; Coelho, L F S; Faria, N V de Castro

    2004-01-01

    Negative-ion beams have recently been suggested as sources of high-energy heavy atoms to be used as drivers for inertial confinement fusion (ICF). Owing to their electron affinities limited to a few eV, anions can be efficiently photo-detached in the vicinity of the fusion chamber, with the resulting high-velocity neutral projectiles following ballistic trajectories towards the hydrogen pellet target. Electron-detachment cross sections are needed as parameters to estimate the beam attenuation in the path from the ion source to the hydrogen pellet. Halogen anions are possible projectile choices. In this paper we present experimental data for total electron-detachment cross sections for F - , Cl - , Br - and I - ions incident on N 2 , in the 0.94-74 keV u -1 energy range. Our measurements can benchmark theory on anion electron detachment at intermediate to high velocities. Comparison between different projectiles shows very similar collision velocity dependencies. A simple geometrical scaling is presented, providing an estimate for electron-detachment cross sections at the MeV u -1 energy range. The presented scaling indicates that the vacuum requirements due to the use of halogen anions for ICF are less critical than previously suggested

  9. L and M shell coulomb ionization by heavy charged projectiles

    International Nuclear Information System (INIS)

    Karmaker, R.

    1980-01-01

    Universal cross sections for L and M shell ionization have been extracted from the semiclassical approximation (SCA) model in the straight line path approximation of the projectile. It has been shown that it is possible to organise the calculation of the SCA in a suitable way so that it is not necessary to calculate the cross section for different targets. The agreement between the theoretical curve in the SCA model and the available experimental data for different target elements, is reasonably good. Cross sections for L and M shell ionization in the straight line path of the projectile in the SCA model for Pb, Au and U targets by the impact of protons have been calculated. The results have been compared with those calculated in the Binary Encounter Approximation (BEA) and the Plane Wave Born Approximation (PWBA) as well as with the available experimental results. The present calculations are in good agreement with the existing theoretical and the experimental results. (author)

  10. Aerodynamics of Ventilation in Termite Mounds

    Science.gov (United States)

    Bailoor, Shantanu; Yaghoobian, Neda; Turner, Scott; Mittal, Rajat

    2017-11-01

    Fungus-cultivating termites collectively build massive, complex mounds which are much larger than the size of an individual termite and effectively use natural wind and solar energy, as well as the energy generated by the colony's own metabolic activity to maintain the necessary environmental condition for the colony's survival. We seek to understand the aerodynamics of ventilation and thermoregulation of termite mounds through computational modeling. A simplified model accounting for key mound features, such as soil porosity and internal conduit network, is subjected to external draft conditions. The role of surface flow conditions in the generation of internal flow patterns and the ability of the mound to transport gases and heat from the nursery are examined. The understanding gained from our study could be used to guide sustainable bio-inspired passive HVAC system design, which could help optimize energy utilization in commercial and residential buildings. This research is supported by a seed Grant from the Environment, Energy Sustainability and Health Institute of the Johns Hopkins University.

  11. Application Program Interface for the Orion Aerodynamics Database

    Science.gov (United States)

    Robinson, Philip E.; Thompson, James

    2013-01-01

    The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The

  12. Devices for launching 0.1-g projectiles to 150 km/s or more to initiate fusion. Part 2. Railgun accelerators

    International Nuclear Information System (INIS)

    Hawke, R.S.

    1979-01-01

    The possibility of using a railgun accelerator to launch 0.1-g projectiles to hypervelocities (150 km/s or more) to initiate thermonuclear fusion is studied. The analysis revealed that a railgun with a plasma-arc armature is a viable approach to the goal. When calculating the railgun's probable performance, it was discovered that this launch system might possibly be designed to avoid adverse effects from boundary layer drag. An appendix provided by A.C. Buckingham summarizes his calculations that predict the amount of erosive drag between projectile and rail. Finally, it was found that certain properties of railgun and projectile materials can impose operational limits. Using these limits, single- and multistage accelerators were designed. Within such limits, a railgun could accelerate a 0.1-g projectile to hypervelocities

  13. Aerodynamic Flight-Test Results for the Adaptive Compliant Trailing Edge

    Science.gov (United States)

    Cumming, Stephen B.; Smith, Mark S.; Ali, Aliyah N.; Bui, Trong T.; Ellsworth, Joel C.; Garcia, Christian A.

    2016-01-01

    The aerodynamic effects of compliant flaps installed onto a modified Gulfstream III airplane were investigated. Analyses were performed prior to flight to predict the aerodynamic effects of the flap installation. Flight tests were conducted to gather both structural and aerodynamic data. The airplane was instrumented to collect vehicle aerodynamic data and wing pressure data. A leading-edge stagnation detection system was also installed. The data from these flights were analyzed and compared with predictions. The predictive tools compared well with flight data for small flap deflections, but differences between predictions and flight estimates were greater at larger deflections. This paper describes the methods used to examine the aerodynamics data from the flight tests and provides a discussion of the flight-test results in the areas of vehicle aerodynamics, wing sectional pressure coefficient profiles, and air data.

  14. New projectiles: multicharged metal clusters and biopolymers

    International Nuclear Information System (INIS)

    Della-Negra, S.; Gardes, D.; Le Beyec, Y.; Waast, B.

    1991-01-01

    Metal clusters and molecules are the one mean to realize simultaneous impacts of several atoms on a reduced surface(∼100A). The interaction characteristics is the non-linearity of energy deposition; the perturbation that the cluster produces, is above than the sum of the perturbation induced by its components, taken separately. The purpose of ORION project is to accelerate these new projectiles at ORSAY Tandem. The considered mass range is from 100 Daltons to 100 000 Daltons and energy range from MeV to GeV

  15. Ionization of atoms by bare ion projectiles

    International Nuclear Information System (INIS)

    Tribedi, L.C.

    1997-01-01

    The double differential cross sections (DDCS) for low energy electron emission can provide stringent tests to the theoretical models for ionization in ion-atom collision. The two-center effects and the post collision interactions play a major role in ionization by highly charged, high Z projectiles. We close-quote ll review the recent developments in this field and describe our efforts to study the energy and angular distributions of the low energy electrons emitted in ion-atom ionization. copyright 1997 American Institute of Physics

  16. Effectiveness of projectile screening in single and multiple ionization of Ne by B{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, W.; Luna, H.; Santos, A. C. F.; Montenegro, E. C. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, 21945-970 RJ (Brazil); DuBois, R. D. [Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States); Montanari, C. C.; Miraglia, J. E. [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, C1428EGA, Buenos Aires (Argentina)

    2011-10-15

    Pure multiple ionization cross sections of Ne by B{sup 2+} projectiles have been measured in the energy range of 0.75 to 4.0 MeV and calculated using the continuum distorted wave-eikonal initial state approximation. The experiment and calculations show that the ionization cross sections by B{sup 2+}, principally for the production of highly charged recoils, is strongly enhanced when compared to the bare projectile with the same charge state, He{sup 2+}, at the same velocities.

  17. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    OpenAIRE

    Sasaki, Daisuke; Nakahashi, Kazuhiro

    2011-01-01

    An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achiev...

  18. Unsteady CFD modeling of micro-adaptive flow control for an axisymmetric body

    International Nuclear Information System (INIS)

    Sahu, J.; Heavey, K.R.

    2005-01-01

    This paper describes a computational study undertaken, as part of a grand challenge project, to consider the aerodynamic effect of micro-adaptive flow control as a means to provide the divert authority needed to maneuver a projectile at a low subsonic speed. A time-accurate Navier-Stokes computational technique has been used to obtain numerical solutions for the unsteady microjet-interaction flow field for the axisymmetric projectile body at subsonic speeds, Mach = 0.11 and 0.24 and angles of attack, 0 o to 4 o . Numerical solutions have been obtained using both Renolds-Averaged Navier-Stokes (RANS) and a hybrid RANS/Large Eddy Simulation (LES) turbulence models. Unsteady numerical results show the effect of the jet on the flow field and the aerodynamic coefficients, in particular the lift force. This research has provided an increased fundamental understanding of the complex, three-dimensional, time-dependent, aerodynamic interactions associated with micro-jet control for yawing spin-stabilized munitions. (author)

  19. Unsteady CFD modeling of micro-adaptive flow control for an axisymmetric body

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, J.; Heavey, K.R. [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD (United States)]. E-mail: sahu@arl.army.mil

    2005-07-01

    This paper describes a computational study undertaken, as part of a grand challenge project, to consider the aerodynamic effect of micro-adaptive flow control as a means to provide the divert authority needed to maneuver a projectile at a low subsonic speed. A time-accurate Navier-Stokes computational technique has been used to obtain numerical solutions for the unsteady microjet-interaction flow field for the axisymmetric projectile body at subsonic speeds, Mach = 0.11 and 0.24 and angles of attack, 0{sup o} to 4{sup o}. Numerical solutions have been obtained using both Renolds-Averaged Navier-Stokes (RANS) and a hybrid RANS/Large Eddy Simulation (LES) turbulence models. Unsteady numerical results show the effect of the jet on the flow field and the aerodynamic coefficients, in particular the lift force. This research has provided an increased fundamental understanding of the complex, three-dimensional, time-dependent, aerodynamic interactions associated with micro-jet control for yawing spin-stabilized munitions. (author)

  20. Angry Birds realized: water balloon launcher for teaching projectile motion with drag

    International Nuclear Information System (INIS)

    Edwards, Boyd F; Sam, David D; Christiansen, Michael A; Booth, William A; Jessup, Leslie O

    2014-01-01

    A simple, collapsible design for a large water balloon slingshot launcher features a fully adjustable initial velocity vector and a balanced launch platform. The design facilitates quantitative explorations of the dependence of the balloon range and time of flight on the initial speed, launch angle, and projectile mass, in an environment where quadratic air drag is important. Presented are theory and experiments that characterize this drag, and theory and experiments that characterize the nonlinear elastic energy and hysteresis of the latex tubing used in the slingshot. The experiments can be carried out with inexpensive and readily available tools and materials. The launcher provides an engaging way to teach projectile motion and elastic energy to students of a wide variety of ages. (paper)

  1. Evaluation of aerodynamic derivatives from a magnetic balance system

    Science.gov (United States)

    Raghunath, B. S.; Parker, H. M.

    1972-01-01

    The dynamic testing of a model in the University of Virginia cold magnetic balance wind-tunnel facility is expected to consist of measurements of the balance forces and moments, and the observation of the essentially six degree of freedom motion of the model. The aerodynamic derivatives of the model are to be evaluated from these observations. The basic feasibility of extracting aerodynamic information from the observation of a model which is executing transient, complex, multi-degree of freedom motion is demonstrated. It is considered significant that, though the problem treated here involves only linear aerodynamics, the methods used are capable of handling a very large class of aerodynamic nonlinearities. The basic considerations include the effect of noise in the data on the accuracy of the extracted information. Relationships between noise level and the accuracy of the evaluated aerodynamic derivatives are presented.

  2. Effects of dust-charge fluctuations on the potential of an array of projectiles in a partially ionized dusty plasma

    International Nuclear Information System (INIS)

    Ali, S.; Nasim, M.H.; Murtaza, G.

    2003-01-01

    The expressions for the Debye and the wake potential are derived by incorporating dust-charge fluctuations of a single projectile, as well as of an array of dust grain projectiles, propagating through a partially ionized dusty plasma with a constant velocity. Numerically, the effects of the dust-charge fluctuations and the dust-neutral collisions on the electrostatic potential for a single, three, six and ten projectiles are examined. The dust-charge relaxation rate modifies the shape of the Debye as well as the wake potential. For smaller values of the relaxation rates a potential well is formed instead of Debye potential

  3. Isotopic distribution of the projectile-like products in the reaction 36Ar + 124Sn at 35 MeV/u

    International Nuclear Information System (INIS)

    Xiao Zhigang; Jin Genming; Wu Heyu; Hu Rongjiang; Wang Hongwei; Li Zuyu; Duan Limin; Wang Sufang; Wei Zhiyong; Zhang Baoguo; Liu Jianye; Zhu Yongtai

    2003-01-01

    The projectile-like products at 5.3 degree in the reaction 35 MeV/u 36 Ar + 124 Sn were inclusively measured with good isotopic identification. With increasing kinetic energy, the average N/Z ratio of the products gradually decreases, approaching to that of the projectile. It is shown from the isospin dependent quantum mechanics (IQMD) that with the increasing of reaction time, the average kinetic energy of the projectile-like products decreases, while the N/Z ratio increases gradually. Moreover, the isotropic composition is obviously dependent on the impact parameter, and the N/Z radio is becoming smaller with increasing collision centrality

  4. Research status and trend of wind turbine aerodynamic noise?

    Institute of Scientific and Technical Information of China (English)

    Xiaodong LI; Baohong BAI; Yingbo XU; Min JIANG

    2016-01-01

    The main components of the wind turbine aerodynamic noise are introduced. A detailed review is given on the theoretical prediction, experimental measurement, and numerical simulation methods of wind turbine noise, with speci?c attention to appli-cations. Furthermore, suppression techniques of wind turbine aerodynamic noise are discussed. The perspective of future research on the wind turbine aerodynamic noise is presented.

  5. Projectile fragmentation of neutron-rich nuclei on light target (momentum distribution and nucleon-removal cross section)

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tanihata, I.; Suzuki, T.

    1992-01-01

    Transverse momentum distributions of the projectile fragments from β-unstable nuclei have been measured with various projectile and target combinations. The momentum correlation of two neutrons in the neutron halo is extracted from the P c t distribution of 9 Li and hat of the neutrons. It is found that the two neutrons are moving in the same direction on average and thus strongly suggests the formation of a di-neutron in 11 Li. (Author)

  6. Projectile deformation effects in the breakup of 37Mg

    Directory of Open Access Journals (Sweden)

    Shubhchintak

    2016-01-01

    Full Text Available We study the breakup of 37Mg on Pb at 244MeV/u with the recently developed extended theory of Coulomb breakup within the postform finite range distorted wave Born approximation that includes deformation of the projectile. Comparing our calculated cross section with the available Coulomb breakup data we determine the possible ground state configuration of 37Mg.

  7. New Look at Nonlinear Aerodynamics in Analysis of Hypersonic Panel Flutter

    Directory of Open Access Journals (Sweden)

    Dan Xie

    2017-01-01

    Full Text Available A simply supported plate fluttering in hypersonic flow is investigated considering both the airflow and structural nonlinearities. Third-order piston theory is used for nonlinear aerodynamic loading, and von Karman plate theory is used for modeling the nonlinear strain-displacement relation. The Galerkin method is applied to project the partial differential governing equations (PDEs into a set of ordinary differential equations (ODEs in time, which is then solved by numerical integration method. In observation of limit cycle oscillations (LCO and evolution of dynamic behaviors, nonlinear aerodynamic loading produces a smaller positive deflection peak and more complex bifurcation diagrams compared with linear aerodynamics. Moreover, a LCO obtained with the linear aerodynamics is mostly a nonsimple harmonic motion but when the aerodynamic nonlinearity is considered more complex motions are obtained, which is important in the evaluation of fatigue life. The parameters of Mach number, dynamic pressure, and in-plane thermal stresses all affect the aerodynamic nonlinearity. For a specific Mach number, there is a critical dynamic pressure beyond which the aerodynamic nonlinearity has to be considered. For a higher temperature, a lower critical dynamic pressure is required. Each nonlinear aerodynamic term in the full third-order piston theory is evaluated, based on which the nonlinear aerodynamic formulation has been simplified.

  8. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  9. An Aerodynamic Investigation of a Forward Swept Wing

    Science.gov (United States)

    1977-12-01

    attached flow at higher angles of attack. 59 -. - . -- ~II The use of winglets should-also be considered to determine their effect on the aerodynamic ...INVSTGAIO OF A" ’/7AI/A/A7D1 ¾~nnt ¾ý’i ~~~)a al -A ApprovedYA~I forSIATO OFli Aees;dsrbuinulmtd AFIT/GAE/AA/77D -4 .1 AN AERODYNAMIC INVESTIGATION OF A...this study was to experimentally and analytically determine certain aerodynamic characteristics of a recently proposed high subsonic, forward swept wing

  10. General purpose heat source task group. Final report

    International Nuclear Information System (INIS)

    1979-01-01

    The results of thermal analyses and impact tests on a modified design of a 238 Pu-fueled general purpose heat source (GPHS) for spacecraft power supplies are presented. This work was performed to establish the safety of a heat source with pyrolytic graphite insulator shells located either inside or outside the graphite impact shell. This safety is dependent on the degree of aerodynamic heating of the heat source during reentry and on the ability of the heat source capsule to withstand impact after reentry. Analysis of wind tunnel and impact test data result in a recommended GPHS design which should meet all temperature and safety requirements. Further wind tunnel tests, drop tests, and impact tests are recommended to verify the safety of this design

  11. ''Theta gun,'' a multistage, coaxial, magnetic induction projectile accelerator

    International Nuclear Information System (INIS)

    Burgess, T.J.; Duggin, B.W.; Cowan, M. Jr.

    1985-11-01

    We experimentally and theoretically studied a multistage coaxial magnetic induction projectile accelerator. We call this system a ''theta gun'' to differentiate it from other coaxial accelerator concepts such as the mass driver. We conclude that this system can theoretically attain railgun performance only for large caliber or very high injection velocity and, even then, only for long coil geometry. Our experiments with a three-stage, capactor bank-driven accelerator are described. The experiments are modeled with a 1-1/2 dimensional equivalent circuit-hydrodynamics code which is also described. We derive an expression for the conditions of coaxial accelerator-railgun ''velocity breakeven'' in the absence of ohmic and hydrodynamic effects. This, in conjunction with an expression for the magnetic coupling coefficient, defines a set of geometric relations which the coaxial system must simultaneously satisfy. Conclusions concerning both the existence and configuration of a breakeven coaxial system follow from this requirement. The relative advantages and disadvantages of the coaxial induction projectile accelerator, previously cited in the literature, are critiqued from the viewpoint of our analysis and experimental results. We find that the advantages vis-a-vis the railgun have been overstated. 13 refs., 17 figs

  12. [Role of aerodynamic parameters in voice function assessment].

    Science.gov (United States)

    Guo, Yong-qing; Lin, Sheng-zhi; Xu, Xin-lin; Zhou, Li; Zhuang, Pei-yun; Jiang, Jack J

    2012-10-01

    To investigate the application and significance of aerodynamic parameters in voice function assessment. The phonatory aerodynamic system (PAS) was used to collect aerodynamic parameters from subjects with normal voice, vocal fold polyp, vocal fold cyst, and vocal fold immobility. Multivariate statistical analysis was used to compare measurements across groups. Phonation threshold flow (PTF), mean flow rate (MFR), maximum phonation time (MPT), and glottal resistance (GR) in one hundred normal subjects were significantly affected by sex (P efficiency (VE) were not (P > 0.05). PTP, PTF, MFR, SGP, and MPT were significantly different between normal voice and voice disorders (P 0.05). Receiver operating characteristic (ROC) analysis found that PTP, PTF, SGP, MFR, MPT, and VE in one hundred thirteen voice dis orders had similar diagnostic utility (P aerodynamic parameters of the three degrees of voice dysfunction due to vocal cord polyps were compared and found to have no significant differences (P > 0.05). PTP, PTF, MFR, SGP and MPT in forty one patients with vocal polyps were significantly different after surgical resection of vocal cord polyps (P aerodynamic parameters can objectively and effectively evaluate the variations of vocal function, and have good auxiliary diagnostic value.

  13. Theoretical and applied aerodynamics and related numerical methods

    CERN Document Server

    Chattot, J J

    2015-01-01

    This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...

  14. On the Horizontal Deviation of a Spinning Projectile Penetrating into Granular Systems

    Directory of Open Access Journals (Sweden)

    Waseem Ghazi Alshanti

    2017-01-01

    Full Text Available The absence of a general theory that describes the dynamical behavior of the particulate materials makes the numerical simulations the most current powerful tool that can grasp many mechanical problems relevant to the granular materials. In this paper, based on a two-dimensional soft particle discrete element method (DEM, a numerical approach is developed to investigate the consequence of the orthogonal impact into various granular beds of projectile rotating in both clockwise (CW and counterclockwise (CCW directions. Our results reveal that, depending on the rotation direction, there is a significant deviation of the x-coordinate of the final stopping point of a spinning projectile from that of its original impact point. For CW rotations, a deviation to the right occurs while a left deviation has been recorded for CCW rotation case.

  15. Investigations in atomic physics by heavy ion projectiles

    International Nuclear Information System (INIS)

    Berenyi, D.

    1983-01-01

    The utilization of heavy ion reactions in atomic physics is surveyed. The basic collision mechanisms and their consequences in atomic physics are summarized. The atomic and electronic processes during and after heavy ion collisions are reviewed as functions of the projectile energy. The main detection and measuring methods are described. Reviews of new information about the structure of electronic cloud and about fundamental processes based on the analysis of heavy ion reaction data are given. (D.Gy.)

  16. COMPUTATIONAL FLOW MODELLING OF FORMULA-SAE SIDEPODS FOR OPTIMUM RADIATOR HEAT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    C. M. DE SILVA

    2011-02-01

    Full Text Available Formula SAE vehicles, over the program’s history have showcased a myriad of aerodynamic packages, each claiming specific quantitative and qualitative features. This paper attempts to critique differing aerodynamic sidepod designs and their effect upon radiator heat management. Various features from inlet size, sidepod shape and size, presence of an undertray, suspension cover, gills and chimneys are analysed for their effects. Computational Fluid Dynamics (CFD analyses are performed in the FLUENT environment, with the aid of GAMBIT meshing software and SolidWorks modelling.

  17. Application of porous material to reduce aerodynamic sound from bluff bodies

    International Nuclear Information System (INIS)

    Sueki, Takeshi; Takaishi, Takehisa; Ikeda, Mitsuru; Arai, Norio

    2010-01-01

    Aerodynamic sound derived from bluff bodies can be considerably reduced by flow control. In this paper, the authors propose a new method in which porous material covers a body surface as one of the flow control methods. From wind tunnel tests on flows around a bare cylinder and a cylinder with porous material, it has been clarified that the application of porous materials is effective in reducing aerodynamic sound. Correlation between aerodynamic sound and aerodynamic force fluctuation, and a surface pressure distribution of cylinders are measured to investigate a mechanism of aerodynamic sound reduction. As a result, the correlation between aerodynamic sound and aerodynamic force fluctuation exists in the flow around the bare cylinder and disappears in the flow around the cylinder with porous material. Moreover, the aerodynamic force fluctuation of the cylinder with porous material is less than that of the bare cylinder. The surface pressure distribution of the cylinder with porous material is quite different from that of the bare cylinder. These facts indicate that aerodynamic sound is reduced by suppressing the motion of vortices because aerodynamic sound is induced by the unstable motion of vortices. In addition, an instantaneous flow field in the wake of the cylinder is measured by application of the PIV technique. Vortices that are shed alternately from the bare cylinder disappear by application of porous material, and the region of zero velocity spreads widely behind the cylinder with porous material. Shear layers between the stationary region and the uniform flow become thin and stable. These results suggest that porous material mainly affects the flow field adjacent to bluff bodies and reduces aerodynamic sound by depriving momentum of the wake and suppressing the unsteady motion of vortices. (invited paper)

  18. Aerodynamics and Optimal Design of Biplane Wind Turbine Blades

    Science.gov (United States)

    Chiu, Phillip

    In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under

  19. Effect of projectile on incomplete fusion reactions at low energies

    Directory of Open Access Journals (Sweden)

    Sharma Vijay R.

    2017-01-01

    Full Text Available Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n excess projectile 13C (as compared to 12C results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B and forward (F α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  20. Effect of projectile on incomplete fusion reactions at low energies

    Science.gov (United States)

    Sharma, Vijay R.; Shuaib, Mohd.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj K.; Kumar, R.; Singh, Devendra P.; Singh, B. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.; Prasad, R.

    2017-11-01

    Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF) is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n) excess projectile 13C (as compared to 12C) results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B) and forward (F) α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  1. Calculation of forces arising from impacting projectiles upon yielding structures

    International Nuclear Information System (INIS)

    Drittler, K.; Gruner, P.; Krivy, J.

    1977-01-01

    Calculations concerning the impact of airplanes upon nuclear power plant buildings usually imply that the building 'acts' as a rigid target. This assumption is justified for considerations concerning the structural integrity of the building being hit. However, for investigating induced vibrations of components within the structure, this approach might -in general- be too conservative. It is expected, that yielding of the structure during impact reduces the peak values of the loads and changes the temporal behavior of the load function which is obtained for a rigid target. To calculate the changes of the load function which are due to deformations of the structure, Riera's method is extended for the case of a yielding target. In view of the applications of the calculations to the impact of airplanes upon buildings which are constructed to withstand loads of this kind without serious damage and without large deformations, it is possible to simplify the calculations to some extent. That is, the investigations need not take into account in detail the behavior of the target during impact. The calculations are performed with a one-dimensional model for the projectile. The direction of impact is perpendicular to the target surface; direction of impact and projectile axis coincide. The calculations were performed for several initial velocities of the projectiles simulating a fast flying military airplane. Variations of the peak values of the load functions as compared to corresponding values for a rigid target do not exceed about 10%. The overall temporal behavior of the load curves turns out to be not very sensitive to the yielding of the target, though, in some cases displacements in time of the peak positions within a single load curve do arise

  2. The motion of an arbitrarily rotating spherical projectile and its application to ball games

    International Nuclear Information System (INIS)

    Robinson, Garry; Robinson, Ian

    2013-01-01

    In this paper the differential equations which govern the motion of a spherical projectile rotating about an arbitrary axis in the presence of an arbitrary ‘wind’ are developed. Three forces are assumed to act on the projectile: (i) gravity, (ii) a drag force proportional to the square of the projectile's velocity and in the opposite direction to this velocity and (iii) a lift or ‘Magnus’ force also assumed to be proportional to the square of the projectile's velocity and in a direction perpendicular to both this velocity and the angular velocity vector of the projectile. The problem has been coded in Matlab and some illustrative model trajectories are presented for ‘ball-games’, specifically golf and cricket, although the equations could equally well be applied to other ball-games such as tennis, soccer or baseball. Spin about an arbitrary axis allows for the treatment of situations where, for example, the spin has a component about the direction of travel. In the case of a cricket ball the subtle behaviour of so-called ‘drift’, particularly ‘late drift’, and also ‘dip’, which may be produced by a slow bowler's off or leg-spin, are investigated. It is found that the trajectories obtained are broadly in accord with those observed in practice. We envisage that this paper may be useful in two ways: (i) for its inherent scientific value as, to the best of our knowledge, the fundamental equations derived here have not appeared in the literature and (ii) in cultivating student interest in the numerical solution of differential equations, since so many of them actively participate in ball-games, and they will be able to compare their own practical experience with the overall trends indicated by the numerical results. As the paper presents equations which can be further extended, it may be of interest to research workers. However, since only the most basic principles of fundamental mechanics are employed, it should be well within the grasp of first

  3. The motion of an arbitrarily rotating spherical projectile and its application to ball games

    Science.gov (United States)

    Robinson, Garry; Robinson, Ian

    2013-07-01

    In this paper the differential equations which govern the motion of a spherical projectile rotating about an arbitrary axis in the presence of an arbitrary ‘wind’ are developed. Three forces are assumed to act on the projectile: (i) gravity, (ii) a drag force proportional to the square of the projectile's velocity and in the opposite direction to this velocity and (iii) a lift or ‘Magnus’ force also assumed to be proportional to the square of the projectile's velocity and in a direction perpendicular to both this velocity and the angular velocity vector of the projectile. The problem has been coded in Matlab and some illustrative model trajectories are presented for ‘ball-games’, specifically golf and cricket, although the equations could equally well be applied to other ball-games such as tennis, soccer or baseball. Spin about an arbitrary axis allows for the treatment of situations where, for example, the spin has a component about the direction of travel. In the case of a cricket ball the subtle behaviour of so-called ‘drift’, particularly ‘late drift’, and also ‘dip’, which may be produced by a slow bowler's off or leg-spin, are investigated. It is found that the trajectories obtained are broadly in accord with those observed in practice. We envisage that this paper may be useful in two ways: (i) for its inherent scientific value as, to the best of our knowledge, the fundamental equations derived here have not appeared in the literature and (ii) in cultivating student interest in the numerical solution of differential equations, since so many of them actively participate in ball-games, and they will be able to compare their own practical experience with the overall trends indicated by the numerical results. As the paper presents equations which can be further extended, it may be of interest to research workers. However, since only the most basic principles of fundamental mechanics are employed, it should be well within the grasp of first

  4. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  5. Supercavitating flow around high-speed underwater projectile near free surface induced by air entrainment

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2018-03-01

    Full Text Available Cavitating flow near free surface is a complicated issue and may provide new inspiration on high-speed surface cruising. This study observes stable supercavitating flow as a new phenomenon in a launch experiment of axisymmetric projectile when the upper side of the projectile coincides with the free surface. A numerical approach is established using large eddy-simulation and volume-of-fluid methods, and good agreements are achieved between numerical and experimental results. Supercavity formation mechanism is revealed by analyzing the experiment photographs and the iso-surface of 90% water volume fraction in numerical results. The entrainment of a large amount of air into the cavity can cause the pressure inside the cavity to similarly increase with the pressure outside the cavity, which makes the actual cavitation number close to zero and is similar to supercavitation. Cases with various headforms of the projectile and cavitation numbers on the cavitating flow, as well as the drag reduction effects are further examined. Results indicate that the present strategy near the free surface could possibly be a new effective approach for high-speed cruising after vigorous design optimization in the future.

  6. Numerical Simulation of Projectile Impact on Mild Steel Armour Platesusing LS-DYNA, Part II: Parametric Studies

    OpenAIRE

    M. Raguraman; A. Deb; N. K. Gupta; D. K. Kharat

    2008-01-01

    In Part I of the current two-part series, a comprehensive simulation-based study of impact of jacketed projectiles on mild steel armour plates has been presented. Using the modelling procedures developed in Part I, a number of parametric studies have been carried out for the same mild steel plates considered in Part I and reported here in Part II. The current investigation includes determination of ballistic limits of a given target plate for different projectile diameters and impact velociti...

  7. The Aerodynamic Performance of the 24 Inch Houck Configuration

    Science.gov (United States)

    2007-03-01

    Winglets “ Winglets are aerodynamic components, placed at the tip of a wing to improve its efficiency during cruise” (6). The purpose of the winglet ... winglets have, by and large, been accepted as effective fuel-saving aerodynamic devices by both small and large aircraft manufacturers. 12 2.6... Winglet Airfoil for Low-Speed Aircraft.” AIAA 19th Applied Aerodynamics Conference, 11-14 June, 2001. AIAA Paper 2001-2406. 22. Mock, R. M. “The

  8. The Aerodynamic Performance of the Houck Configuration Flow Guides

    Science.gov (United States)

    2007-06-01

    efficiency factor (e = 1 for elliptical wing). 2.5 Winglets A winglet is best described by Jean Chattot’s quote: “ Winglets are aerodynamic components...spite of all the disadvantages, many aviation manufacturers have accepted winglets as a proven fuel- saving aerodynamic device (4). A study...conducted by Smith and Campbell in 1996 showed the effect of winglets on aerodynamic efficiency of a low-aspect-ratio model with respect to lift-to-drag

  9. Aerodynamics of magnetic levitation (MAGLEV) trains

    Science.gov (United States)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  10. Future requirements and roles of computers in aerodynamics

    Science.gov (United States)

    Gregory, T. J.

    1978-01-01

    While faster computers will be needed to make solution of the Navier-Stokes equations practical and useful, most all of the other aerodynamic solution techniques can benefit from faster computers. There is a wide variety of computational and measurement techniques, the prospect of more powerful computers permits extension and an enhancement across all aerodynamic methods, including wind-tunnel measurement. It is expected that, as in the past, a blend of methods will be used to predict aircraft aerodynamics in the future. These will include methods based on solution of the Navier-Stokes equations and the potential flow equations as well as those based on empirical and measured results. The primary flows of interest in aircraft aerodynamics are identified, the predictive methods currently in use and/or under development are reviewed and two of these methods are analyzed in terms of the computational resources needed to improve their usefulness and practicality.

  11. Electron-hydrogen collisions with dressed target and Volkov projectile states in a laser field

    International Nuclear Information System (INIS)

    Smith, P.H.G.; Flannery, M.R.

    1992-01-01

    Cross sections for the 1S-2S and 1S-2P O transitions in laser-assisted e - -H(1S) collisions are calculated in both the multi-channel eikonal treatment and the Born wave approximation, as a function of impact energy and laser field intensity. The laser considered is a monotonic, plane-polarized CO 2 laser (photon energy = 0.117 eV) with the polarization direction parallel to the initial projectile velocity. The first part of this paper confines the laser perturbation to the bound electrons of the atom. The second part extends the laser perturbation to the projectile electron, and the familiar Volkov dressed states are used. (author)

  12. The impact of aerodynamics on fuel consumption in railway applications

    Directory of Open Access Journals (Sweden)

    Bogdan TARUS

    2012-03-01

    Full Text Available The main consequence of on air flow surrounding a moving train resides in the aerodynamic drag and a certain pressure distribution on the frontal and lateral surfaces of the vehicle. The actual value of the aerodynamic drag (if pre-determined may lead to a more accurate design of the whole locomotive power transmission. The aerodynamic drag may be estimated by using two specific experiments: the traction method and the free launch method. While the first one uses highly complex equipment, the second is easier to use due to the relative low number of devices required. The present work’s main goal is to illustrate the importance of aerodynamic design of the railway vehicles, as their performances are influenced by the aerodynamic drag. In order to illustrate the influence of the aerodynamic shape of o locomotive body, we have chosen the latest diesel model available on the local market, the Class 621 EGM locomotives, currently in service at the national passenger railway operator, CFR Călători SA.

  13. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    Science.gov (United States)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover, the aerodynamic damping is almost independent of the rotor azimuth angle, and is to some extent sensitive to the blade number.

  14. Rapid Assessment of Small Changes to Major Gun and Projectile Dynamic Parameters

    National Research Council Canada - National Science Library

    Erline, Thomas

    1997-01-01

    The U.S. Navy's 5-in 54-cal. (5"/54) gun system Mark (Mk) 45 was subjected to first-order dynamic analysis tools that allowed rapid assessment of ballistic dispersion of a typical naval high explosive projectile...

  15. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2016-01-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based...... on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT...... to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover...

  16. Role of hexadecapole deformation of projectile 28Si in heavy-ion fusion reactions near the Coulomb barrier

    Science.gov (United States)

    Kaur, Gurpreet; Hagino, K.; Rowley, N.

    2018-06-01

    The vast knowledge regarding the strong influence of quadrupole deformation β2 of colliding nuclei in heavy-ion sub-barrier fusion reactions inspires a desire to quest the sensitivity of fusion dynamics to higher order deformations, such as β4 and β6 deformations. However, such studies have rarely been carried out, especially for deformation of projectile nuclei. In this article, we investigated the role of β4 of the projectile nucleus in the fusion of the 28Si+92Zr system. We demonstrated that the fusion barrier distribution is sensitive to the sign and value of the β4 parameter of the projectile, 28Si, and confirmed that the 28Si nucleus has a large positive β4. This study opens an indirect way to estimate deformation parameters of radioactive nuclei using fusion reactions, which is otherwise difficult because of experimental constraints.

  17. Investigations of nuclear projectile break-up reactions

    International Nuclear Information System (INIS)

    Rebel, H.

    1986-10-01

    The cross sections for radiative capture of α-particles, deuterons and protons by light nuclei at very low relative energies are of particular importance for the understanding of the nucleosynthesis of chemical elements and for determining the relative elemental abundances in stellar burning processes at various astrophysical sites. As example we quote the reactions α+d → 6 Li+γ, α+ 3 He → 7 Be+γ, or α+ 12 C → 16 O+γ. As an alternative to the direct experimental study of these processes we consider the inverse process, the photodisintegration, by means of the virtual photons provided by a nuclear Coulomb field: Z+a → Z+b+c. The radiative capture process b+c → a+γ is related to the inverse process, the photodisintegration γ+a → b+c by the detailed balance theorem. Except for the extreme case very close to the threshold the phase space favours the photodisintegration cross section as compared to the radiative capture. The Coulomb dissociation cross section proves to be enhanced due to the large virtual photon number, seen by the passing projectile, and the kinematics of the process leads to particular advantages for studies of the interaction of the two break-up fragments at small relative energies E bc . The conditions of dedicated experimental investigations are discussed and demonstrated by recent experimental and theoretical studies of the break-up of 156 MeV 6 Li projectiles. In addition, a brief review about general features of break-up processes of light ions in the field of atomic nuclei is given. (orig.) [de

  18. Coincidence measurement between α-particles and projectile-like fragments in the reaction of 82.7 MeV 16O on 27Al

    International Nuclear Information System (INIS)

    Shen Wenqing; Zhan Wenlong; Zhu Yongtai

    1988-01-01

    In a coincidence measurement between α-particles and projectile-like fragments in the reaction of 82.7 MeV 16 O on 27 Al, the contour plot of Galilean-invariant cross section of the coincidence between C-fragments and α-particles in the velocity plane, and the coincident angular correlation have been obtained. The correlated α-particles measured at positive angles (on the same side of the beam as the projectile-like fragments) were emitted mainly from the projectile-like fragments;the α-particles at large negative angles were emitted from the target-like fragments;the α-particles at small negative angles came from the fragmentation of the 16 O projectile. A possible reaction mechanism in which the residue produced in the fragmentation of the projectile continues the dissipation process during the interaction with the target has been discussed. It is also pointed out that in the large yield of C-fragments observed in the inclusive experiment, the contribution of C-fragments produced by the excited 16 O of DIC product via α-emission is quite small

  19. Tissue simulant response at projectile impact on flexible fabric armour systems

    NARCIS (Netherlands)

    Bree, J.L.M.J. van; Volker, A.; Heiden, N. van der

    2006-01-01

    Behind Armour Blunt Trauma is a phenomenon which has been studied extensively for rigid personal protective armour systems. These systems used in e.g. bullet proof vests manage to defeat high velocity small arms projectiles. Tissue simulants are used to study behind armour effects. At high velocity

  20. CDW-EIS theoretical calculations of projectile deflection for single ionization in highly charged ion-atom collisions

    International Nuclear Information System (INIS)

    Rodriguez, V.D.

    2003-01-01

    We present continuum distorted wave-eikonal initial state (CDW-EIS) theoretical calculations for the projectile deflection in single ionization of helium by heavy-ion impact as a function of ionized electron energies. These calculations account for the helium passive electron shielding in the internuclear interaction improving standard CDW-EIS theory. The results are compared with recent experimental results by impact of 100 MeV/amu C 6+ and 3.6 MeV/amu Au 53+ . For highly charged projectiles there is a poor quantitative agreement between theory and experiment. However, this refined calculation does share some qualitative features with the data. In particular the variation of the effective charge of the residual He + ion from Z eff =1 to Z eff =2 when going from small to large projectile scattering angles is able to represent a shoulder observed in the double differential cross sections. Important qualitative differences are observed at the level of triple differential cross sections

  1. Charm production yield from target nuclei filtering intrinsic projectile charm

    International Nuclear Information System (INIS)

    Quack, E.; Nemes, M.C.

    1990-01-01

    Estimating the process of filtering an intrinsic projectile charm component by a target nucleus as proposed earlier, we obtain upper limits for the cross sections of open charm and J/Ψ. Comparing with experiment, we conclude that this filtering mechanism is not sufficient to explain the observed A α-dependence at large final state momenta. (author)

  2. Projectile General Motion in a Vacuum and a Spreadsheet Simulation

    Science.gov (United States)

    Benacka, Jan

    2015-01-01

    This paper gives the solution and analysis of projectile motion in a vacuum if the launch and impact heights are not equal. Formulas for the maximum horizontal range and the corresponding angle are derived. An Excel application that simulates the motion is also presented, and the result of an experiment in which 38 secondary school students…

  3. On the Trajectories of Projectiles Depicted in Early Ballistic Woodcuts

    Science.gov (United States)

    Stewart, Sean M.

    2012-01-01

    Motivated by quaint woodcut depictions often found in many late 16th and 17th century ballistic manuals of cannonballs fired in air, a comparison of their shapes with those calculated for the classic case of a projectile moving in a linear resisting medium is made. In considering the asymmetrical nature of such trajectories, the initial launch…

  4. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    Science.gov (United States)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  5. Management of in-tube projectiles using acoustic channel

    Science.gov (United States)

    Kostina, M. A.; Bortalevich, S. I.; Loginov, E. L.; Shinyakov, Y. A.; Sukhorukov, M. P.

    2018-03-01

    The article describes the method of measuring the distance from the operator's console installed outside the pipe to the in-tube projectile. A method for measuring distance in the absence of an echo signal is proposed. To do this, two identical ultrasonic locators operating at different frequencies were installed inside and outside the pipeline. The change in the duration of an acoustic pulse propagating in a circular waveguide with rigid walls is shown, which leads to a decrease in the data transfer rate.

  6. Excitation and ionization of ethylene by charged projectiles

    International Nuclear Information System (INIS)

    Wang Zhiping; Wang Jing; Zhang Fengshou

    2010-01-01

    Using the time dependent local density approximation, applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions, the collision process between ethylene and fast charged projectiles is studied in the microscopic way. The impact of ionic motion on the ionization is explored to show the importance of treating electronic and ionic degrees of freedom simultaneously. The number of escaped electrons, ionization probabilities are obtained. Furthermore, it is found that the ionic extensions in different directions show the different patterns. (authors)

  7. Aerodynamical study of a photovoltaic solar tracker

    OpenAIRE

    Gutiérrez Castillo, José Leonardo

    2016-01-01

    Investigate the aerodynamic features of ground-mounted solar trackers under atmospheric boundary layer flows. Study and identify the aerodynamical interactions of solar trackers when they are displayed as an array. State of the art. Literature review about CFD applied to solar panels. Analytic approach of the problem. Application of CFD analysis. Validation of the results. Discussion of the results. Improvements proposal.

  8. Projectile-z3 and -z4 corrections to basic Bethe-Bloch stopping power theory and mean excitation energies of Al, Si, Ni, Ge, Se, Y, Ag and Au

    International Nuclear Information System (INIS)

    Porter, L.E.; Bryan, S.R.

    1980-01-01

    Three independent sets of measurements of the stopping power of solid elemental targets for alpha particles were previously analyzed in terms of basic Bethe-Bloch theory with the low velocity projectile-z 3 correction term included. These data for Al, Si, Ni, Ge, Se, Y, Ag and Au have now been analyzed with the Bloch projectile-z 4 term and a revised projectile-z 3 term incorporated in the Bethe-Bloch formula, the projectile-z 3 revision having been effected by variation of the single free parameter of the projectile-z 3 effect formalism. The value of this parameter, fixed at 1.8 in previous studies, which counteracts inclusion of the projectile-z 4 term is 1.3 +- 0.1 for all target elements except Si. (orig.)

  9. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    Science.gov (United States)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  10. Aerodynamic characteristics of an ogive-nose spinning projectile

    Indian Academy of Sciences (India)

    J LIJIN

    2018-04-16

    Apr 16, 2018 ... in mass are considered as the common cause for stability ... moment produced about the centre of gravity due to the ... the cross flow plane. ... that can measure the side force and normal force coeffi- ... Apache sounding rocket in the Mach number range of 2–6 ..... elaborated in detail in the next section.

  11. ["Bolt projectiles" discharged from modified humane killers (author's transl)].

    Science.gov (United States)

    Pollak, S; Reiter, C

    1981-01-01

    Some common types of "humane killers" are supplied with rubber bushings and recoil springs holding back the bolt, which afterwards is rebound into the barrel. Removal of the rubber bush and withdrawal spring before firing can cause the bolt to break and become a free projectile. A suicide case is reported, in which a livestock stunner discharged a steel bolt penetrating the forehead and getting stuck in the skull.

  12. Experimental study of canard UAV aerodynamics

    Directory of Open Access Journals (Sweden)

    Panayotov Hristian

    2017-01-01

    Full Text Available The present paper presents the aerodynamic characteristics of a canard fixed-wing unmanned aircraft TERES-02. A wind tunnel experiment is conducted using a specially designed model of the aircraft. The model is produced through the methods of rapid prototyping using a FDM 3D printer. Aerodynamic corrections are made and thorough analysis and discussion of the results is carried out. The obtained results can be used to determine the accuracy of numerical methods for analysis of aircraft performance.

  13. Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics

    Science.gov (United States)

    Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming

    The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.

  14. Aerodynamic analysis of an isolated vehicle wheel

    Science.gov (United States)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  15. Aerodynamic analysis of an isolated vehicle wheel

    International Nuclear Information System (INIS)

    Leśniewicz, P; Kulak, M; Karczewski, M

    2014-01-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  16. Aerodynamics and flow characterisation of multistage rockets

    Science.gov (United States)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  17. Research on the Aerodynamic Resistance of Trickle Biofilter

    Directory of Open Access Journals (Sweden)

    Alvydas Zagorskis

    2011-12-01

    Full Text Available A four – section trickle biofilter was constructed for experimental research. The filter was filled with the packing material of artificial origin. The material consists of plastic balls having a large surface area. The dependence of biofilter aerodynamic resistance on supply air flow rate and the number of filter sections was determined. The aerodynamic resistance of the biofilter was measured in two cases. In the first case, the packing material of the filter was dry, whereas in the second case it was wet. The experimental research determined that an increase in the air flow rate from 0.043 m/s to 0.076 m/s causes an increase in biofilter aerodynamic resistance from 30.5 to 62.5 Pa after measuring four layers of dry packing material. In case of wet packing material, biofilter aerodynamic resistance after measuring four layers of plastic balls increases from 42.1 to 90.4 Pa.Article in Lithuanian

  18. Quasi-steady state aerodynamics of the cheetah tail

    Directory of Open Access Journals (Sweden)

    Amir Patel

    2016-08-01

    Full Text Available During high-speed pursuit of prey, the cheetah (Acinonyx jubatus has been observed to swing its tail while manoeuvring (e.g. turning or braking but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.

  19. Heat transfer and velocity characteristics of single- and two-phase flows in a subsonic model gun

    International Nuclear Information System (INIS)

    Bicen, A.F.; Khezzar, L.; Schmidt, M.; Whitelaw, J.H.

    1989-01-01

    Heat transfer and velocity measurements are reported for single- and two-phase flows in the wake of an in-bore projectile propelled by an inert gas at an initial gauge pressure of 8 bars to an exit velocity over 40 m/s in ∼ 33 ms. The results show that with the single phase the turbulent velocity boundary layers occupy over 20% of the barrel radius and that the wall heat transfer increases with distance from the breech and decreases with time during the shot. In the initial chamber, and later in the shot, the heat transfer results are close to those obtained from a convection correlation for a steady turbulent boundary layer, contrary to those at locations swept by the projectile, which are higher by up to 50% throughout the shot. The two-phase flow results show that 55-μm particles with loadings of 1.3% and 4% by volume initially lag the fluid and this lag increases with distance from the breech. Later in the shot the particles catch up and lead the decelerating fluid by an amount that is greater, with the higher particle loading and with a tendency for the particle velocity to increase around the edge of the boundary layer

  20. On the calculation of dynamic and heat loads on a three-dimensional body in a hypersonic flow

    Science.gov (United States)

    Bocharov, A. N.; Bityurin, V. A.; Evstigneev, N. M.; Fortov, V. E.; Golovin, N. N.; Petrovskiy, V. P.; Ryabkov, O. I.; Teplyakov, I. O.; Shustov, A. A.; Solomonov, Yu S.

    2018-01-01

    We consider a three-dimensional body in a hypersonic flow at zero angle of attack. Our aim is to estimate heat and aerodynamic loads on specific body elements. We are considering a previously developed code to solve coupled heat- and mass-transfer problem. The change of the surface shape is taken into account by formation of the iterative process for the wall material ablation. The solution is conducted on the multi-graphics-processing-unit (multi-GPU) cluster. Five Mach number points are considered, namely for M = 20-28. For each point we estimate body shape after surface ablation, heat loads on the surface and aerodynamic loads on the whole body and its elements. The latter is done using Gauss-type quadrature on the surface of the body. The comparison of the results for different Mach numbers is performed. We also estimate the efficiency of the Navier-Stokes code on multi-GPU and central processing unit architecture for the coupled heat and mass transfer problem.

  1. Aerodynamics Research Revolutionizes Truck Design

    Science.gov (United States)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  2. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    Science.gov (United States)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  3. CALCULATION OF ROCKET NOSE FAIRING SHELLS AERODYNAMIC CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Vladimir T. Kalugin

    2018-01-01

    Full Text Available The aerodynamic characteristics of the detachable elements of transport systems are introduced, they allow to calculate the trajectories of these elements after their separation and determine the size of elements impact areas. Special consideration is given to head fairing shells, containing cylindrical, conical and spherical sections. Head fairing shells have high lift-to-drag ratio and the widest impact areas. Aerodynamics of bodies of such configurations has been insufficiently studied. The paper presents the numerical results of modeling the flow around a typical head fairing shell in free flight. Open source OpenFOAM package is used for numerical simulation. The aerodynamic characteristics at trans- and supersonic velocities are obtained, flow pattern transformation with the change of the angle of attack and Mach number is analyzed. The possibility of OpenFOAM package for aerodynamic calculations of thin shells is shown. The analysis of the obtained results demonstrate that there are many complex shock waves interacting with each other at flow supersonic speeds, at subsonic speeds vast regions of flow separations are observed. The authors identify intervals of angles of attack, where different types of flow structures are realized, both for trans- and supersonic flow speeds. The flow pattern change affects the aerodynamic characteristics, the aerodynamic coefficients significantly change with increase of the angle of attack. There are two trim angles of attack at all examined flow velocities. The results obtained can be used to develop a passive stabilization system for fairing shell that will balance the body at the angle of attack with minimum lift-to-drag ratio and will reduce random deviations.

  4. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2014-01-01

    In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient s...... software. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence was established in 2010 in order to create a world-leading cross-disciplinary flow center that covers all relevant disciplines within wind farm meteorology and aerodynamics.......In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient...

  5. Quasi steady-state aerodynamic model development for race vehicle simulations

    Science.gov (United States)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  6. Excitation and Ionization of Ethylene by Charged Projectiles

    International Nuclear Information System (INIS)

    Zhi-Ping, Wang; Jing, Wang; Feng-Shou, Zhang

    2010-01-01

    Using the time dependent local density approximation, applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions, the collision process between ethylene and fast charged projectiles is studied in the microscopic way. The impact of ionic motion on the ionization is explored to show the importance of treating electronic and ionic degrees of freedom simultaneously. The number of escaped electrons, ionization probabilities are obtained. Furthermore, it is found that the ionic extensions in different directions show the different patterns. (atomic and molecular physics)

  7. Study of Swept Angle Effects on Grid Fins Aerodynamics Performance

    Science.gov (United States)

    Faza, G. A.; Fadillah, H.; Silitonga, F. Y.; Agoes Moelyadi, Mochamad

    2018-04-01

    Grid fin is an aerodynamic control surface that usually used on missiles and rockets. In the recent several years many researches have conducted to develop a more efficient grid fins. There are many possibilities of geometric combination could be done to improve aerodynamics characteristic of a grid fin. This paper will only discuss about the aerodynamics characteristics of grid fins compared by another grid fins with different swept angle. The methodology that used to compare the aerodynamics is Computational Fluid Dynamics (CFD). The result of this paper might be used for future studies to answer our former question or as a reference for related studies.

  8. Passive control of cavitating flow around an axisymmetric projectile by using a trip bar

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2017-07-01

    Full Text Available Quasi-periodical evolutions such as shedding and collapsing of unsteady cloud cavitating flow, induce strong pressure fluctuations, what may deteriorate maneuvering stability and corrode surfaces of underwater vehicles. This paper analyzed effects on cavitation stability of a trip bar arranged on high-speed underwater projectile. Small scale water tank experiment and large eddy simulation using the open source software OpenFOAM were used, and the results agree well with each other. Results also indicate that trip bar can obstruct downstream re-entrant jet and pressure wave propagation caused by collapse, resulting in a relatively stable sheet cavity between trip bar and shoulder of projectiles. Keywords: Unsteady cavitating flow, Trip bar, Re-entrant jet, Passive flow control

  9. Influence of Unsteady Aerodynamics on Driving Dynamics of Passenger Cars

    OpenAIRE

    Huemer, J.; Stickel, T.; Sagan, E.; Schwarz, M.; Wall, W.A.

    2015-01-01

    Recent approaches towards numerical investigations with CFD-Methods on unsteady aerodynamic loads of passenger cars identified major differences compared to steady state aerodynamic excitations. Furthermore innovative vehicle concepts like electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve...

  10. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

  11. The WRAIR projectile concussive impact model of mild traumatic brain injury: re-design, testing and preclinical validation.

    Science.gov (United States)

    Leung, Lai Yee; Larimore, Zachary; Holmes, Larry; Cartagena, Casandra; Mountney, Andrea; Deng-Bryant, Ying; Schmid, Kara; Shear, Deborah; Tortella, Frank

    2014-08-01

    The WRAIR projectile concussive impact (PCI) model was developed for preclinical study of concussion. It represents a truly non-invasive closed-head injury caused by a blunt impact. The original design, however, has several drawbacks that limit the manipulation of injury parameters. The present study describes engineering advancements made to the PCI injury model including helmet material testing, projectile impact energy/head kinematics and impact location. Material testing indicated that among the tested materials, 'fiber-glass/carbon' had the lowest elastic modulus and yield stress for providing an relative high percentage of load transfer from the projectile impact, resulting in significant hippocampal astrocyte activation. Impact energy testing of small projectiles, ranging in shape and size, showed the steel sphere produced the highest impact energy and the most consistent impact characteristics. Additional tests confirmed the steel sphere produced linear and rotational motions on the rat's head while remaining within a range that meets the criteria for mTBI. Finally, impact location testing results showed that PCI targeted at the temporoparietal surface of the rat head produced the most prominent gait abnormalities. Using the parameters defined above, pilot studies were conducted to provide initial validation of the PCI model demonstrating quantifiable and significant increases in righting reflex recovery time, axonal damage and astrocyte activation following single and multiple concussions.

  12. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi

    2013-04-01

    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  13. Physics-Based Virtual Fly-Outs of Projectiles on Supercomputers

    National Research Council Canada - National Science Library

    Sahu, Jubaraj

    2006-01-01

    ...) have been successfully fully coupled on high performance computing (HPC) platforms for Virtual Fly-Outs of guided munitions identical to actual free flight tests in the aerodynamic experimental facilities...

  14. Numerical simulation of projectile impact on mild steel armour plates using LS-DYNA, Part II: Parametric studies

    OpenAIRE

    Raguraman, M; Deb, A; Gupta, NK; Kharat, DK

    2008-01-01

    In Part I of the current two-part series, a comprehensive simulation-based study of impact of Jacketed projectiles on mild steel armour plates has been presented. Using the modelling procedures developed in Part I, a number of parametric studies have been carried out for the same mild steel plates considered in Part I and reported here in Part II. The current investigation includes determination of ballistic limits of a given target plate for different projectile diameters and impact velociti...

  15. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  16. Considerations about projectile and target X-rays induced during heavy ion bombardment

    Science.gov (United States)

    Fernandes, F.; Bauer, D. V.; Duarte, A.; Ferrari, T. M.; Niekraszewicz, L. A. B.; Amaral, L.; Dias, J. F.

    2018-02-01

    In this work we present some results concerning the X-rays emitted by heavy ions during target bombardment. In this case, Cl4+ and Cl5+ ions with energies from 4 MeV to 10 MeV were employed to irradiate vitreous carbon planchets. Moreover, total X-ray production cross sections of titanium X-rays induced by chlorine ions were obtained as well for the same energy range. Only inner shell transitions were considered in the present work. The titanium target consisted of a thin film deposited over vitreous carbon planchets. The results indicate that the projectile X-ray yields increase as a function of the bombarding energy for the present energy range. Effects due to projectile charge state appears to be of minor importance at these low ion velocities. It is shown that a simple exponential function can represent the continuum background of such complex spectra. The chlorine transition rates Kβ/Kα obtained from chlorine acting as a projectile interacting with a carbon target are about half the value when compared to the chlorine Kβ/Kα ratios obtained when a LiCl target is bombarded with C+ and C3+ ions with energies from 2 MeV to 6 MeV. As far as the total X-ray production cross sections of Ti induced by chlorine ions are concerned, the ECPSSR theory underestimates the Ti total X-rays production cross sections by several orders of magnitude. The role of electron capture and possible mechanisms responsible for these effects are discussed.

  17. The Response of Clamped Shallow Sandwich Arches with Metallic Foam Cores to Projectile Impact Loading

    Directory of Open Access Journals (Sweden)

    Yanping Fan

    Full Text Available Abstract The dynamic response and energy absorption capabilities of clamped shallow sandwich arches with aluminum foam core were numerically investigated by impacting the arches at mid-span with metallic foam projectiles. The typical deformation modes, deflection response, and core compression of sandwich arches obtained from the tests were used to validate the computation model. The resistance to impact loading was quantified by the permanent transverse deflection at mid-span of the arches as a function of projectile momentum. The sandwich arches have a higher shock resistance than the monolithic arches of equal mass, and shock resistance could be significantly enhanced by optimizing geometrical configurations. Meanwhile, decreasing the face-sheet thickness and curvature radius could enhance the energy absorption capability of the sandwich arches. Finite element calculations indicated that the ratio of loading time to structural response time ranged from 0.1 to 0.4. The projectile momentum, which was solely used to quantify the structural response of sandwich arches, was insufficient. These findings could provide guidance in conducting further theoretical studies and producing the optimal design of metallic sandwich structures subjected to impact loading.

  18. The Experimental Projectile Impact Chamber (EPIC) at Centro de Astrobiología, Spain: Reproducibility and verification of scaling relations.

    Science.gov (United States)

    Ormö, J.; Wünnemann, K.; Collins, G.; Melero Asensio, I.

    2012-09-01

    The Experimental Projectile Impact Chamber (EPIC) consists of a 20.5mm caliber, compressed gas gun and a 7m wide test bed. It is possible to vary the projectile size and density, the velocity up to about 5001n/"s, the impact angle. and the target composition. The EPIC is especially designed for the analysis of impacts into unconsolidated and liquid targets. i.e. allowing the use of gravity scaling. The general objective with the EPIC is to analyze the cratering and modification processes at wet-target (e.g. marinle) impacts. We have carried out 14 shots into dry sand targets with two projectile compositions (light and weak; heavy and strong), at two impact angles. at three impact velocities, and in both quarter-space and half- space geometries. We recorded the impacts with a high-speed camera and compared the results with numerical simulations using iSALE. The evaluation demonstrated that there are noticeable differences between the results from the two projectile types, but that the crater dimensions are consistent with scaling laws based on other impact experiments [1]. This proves the usefulness of the EPIC in the analysis of natural impacts.

  19. Research on aerodynamic means of isotope enrichment

    International Nuclear Information System (INIS)

    Cattolica, R.J.; Gallagher, R.J.; Talbot, L.; Willis, D.R.; Hurlbut, F.C.; Fiszdon, W.; Anderson, J.B.

    1978-03-01

    The results of a research program directed toward the understanding of the fundamental gas dynamics involved in aerodynamic isotope enrichment are summarized. The specific aerodynamic isotope enrichment method which was examined in this research is based on a velocity slip phenomenon which occurs in the rarefied hypersonic expansion of a heavy molecular weight gas and a light carrier gas in a nozzle or free jet. This particular aerodynamic method was chosen for study because it contains the fundamental molecular physics of other more complex techniques within the context of a one-dimensional flow without boundary effects. From both an experimental and theoretical modeling perspective this provides an excellent basis for testing the experimental and numerical tools with which to investigate more complex aerodynamic isotope enrichment processes. This report consists of three separate parts. Part I contains a theoretical analysis of the velocity slip effect in free jet expansions of binary and ternary gas mixtures. The analysis, based on a source flow model and using moment equations is derived from the Boltzmann equation using the hypersonic approximation. Part II contains the experimental measurements of velocity slip. The numerical simulation of the slip process was carried out by using a Monte-Carlo numerical technique. In addition, comparisons between the theoretical analysis of Part I and the experiments are presented. Part III describes impact pressure measurements of free jet expansions from slot shaped two dimensional nozzles. At least two methods of aerodynamic isotope enrichment (opposed jet and velocity slip) would depend on the use of this type of two dimensional expansion. Flow surveys of single free jet and the interferene of crossed free jets are presented

  20. Bifurcation Analysis with Aerodynamic-Structure Uncertainties by the Nonintrusive PCE Method

    Directory of Open Access Journals (Sweden)

    Linpeng Wang

    2017-01-01

    Full Text Available An aeroelastic model for airfoil with a third-order stiffness in both pitch and plunge degree of freedom (DOF and the modified Leishman–Beddoes (LB model were built and validated. The nonintrusive polynomial chaos expansion (PCE based on tensor product is applied to quantify the uncertainty of aerodynamic and structure parameters on the aerodynamic force and aeroelastic behavior. The uncertain limit cycle oscillation (LCO and bifurcation are simulated in the time domain with the stochastic PCE method. Bifurcation diagrams with uncertainties were quantified. The Monte Carlo simulation (MCS is also applied for comparison. From the current work, it can be concluded that the nonintrusive polynomial chaos expansion can give an acceptable accuracy and have a much higher calculation efficiency than MCS. For aerodynamic model, uncertainties of aerodynamic parameters affect the aerodynamic force significantly at the stage from separation to stall at upstroke and at the stage from stall to reattach at return. For aeroelastic model, both uncertainties of aerodynamic parameters and structure parameters impact bifurcation position. Structure uncertainty of parameters is more sensitive for bifurcation. When the nonlinear stall flutter and bifurcation are concerned, more attention should be paid to the separation process of aerodynamics and parameters about pitch DOF in structure.

  1. Fragmentation of the projectile near the Fermi energy

    International Nuclear Information System (INIS)

    Dayras, R.

    1986-05-01

    The experimental data about projectile fragmentation around the Fermi energy are reviewed. Comparisons with low and high energy data suggest that this energy domain is indeed a transition region. Reaction mechanisms dominated by the mean field at low energy progressively give way to individual n-n collisions. In the present case, this transition manifests itself by a rapid decrease of transfer reactions for the benefit of fragmentation processes. A coherent description of the observed results requires to take into account mean field effects as well as individual n-n collisions

  2. Peripheral collisions of 2 GeV/nucleon Fe nuclei in nuclear emulsion. I. Light projectile fragments

    International Nuclear Information System (INIS)

    Friedlander, E.M.; Crawford, H.J.; Gimpel, R.W.; Greiner, D.E.; Heckman, H.H.; Lindstrom, P.J.

    1978-01-01

    Observations on 374 collisions of 1.88-GeV/nucleon Fe nuclei in Ilford G-5 nuclear track emulsion, in which at least one projectle fragment of Z > = 3 was emitted within a 6 0 cone, revealed several features of projectile breakup. The onset of copious multiple fragmentation was observed. The relatively high α-particle multiplicities allowed for the first time a study of the α multiplicity distribution; a Poisson distribution gave an excellent fit. The data showed a significant enhancement of α-particle pairs with very small relative momenta. The transverse momentum distributions, which should reflect best the thermal motion in the projectile system, are in flagrant discrepancy with theoretical predictions; the distributions show a marked target dependence. The charges of all projectile fragments up to B were determined by measurement of gap-length distributions. Events with N/sub h/ = 0 are a class apart from the rest of the events; between N/sub h/ = 1 and N/sub h/ = 9 there is surprisingly little change in most parameters. 4 figures

  3. Summary analysis of the Gemini entry aerodynamics

    Science.gov (United States)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  4. Quasi-steady state aerodynamics of the cheetah tail.

    Science.gov (United States)

    Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-08-15

    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. © 2016. Published by The Company of Biologists Ltd.

  5. Aeroelastic Limit-Cycle Oscillations resulting from Aerodynamic Non-Linearities

    NARCIS (Netherlands)

    van Rooij, A.C.L.M.

    2017-01-01

    Aerodynamic non-linearities, such as shock waves, boundary layer separation or boundary layer transition, may cause an amplitude limitation of the oscillations induced by the fluid flow around a structure. These aeroelastic limit-cycle oscillations (LCOs) resulting from aerodynamic non-linearities

  6. Biomimetic Approach for Accurate, Real-Time Aerodynamic Coefficients, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodynamic and structural reliability and efficiency depends critically on the ability to accurately assess the aerodynamic loads and moments for each lifting...

  7. Experimental Investigation on the Characteristics of Sliding Discharge Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Song Huimin; Zhang Qiaogen; Li Yinghong; Jia Min; Wu Yun

    2011-01-01

    A new electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A microsecond-pulse high voltage with a DC component was used to energize a three-electrode actuator to generate sliding discharge. The characteristics of plasma aerodynamic actuation by sliding discharge were experimentally investigated. Discharge morphology shows that sliding discharge is formed when energized by properly adjusting microsecond-pulse and DC voltage. Compared to dielectric barrier discharge (DBD), the plasma extension of sliding discharge is quasi-diffusive and stable but longer and more intensive. Results from particle image velocimetry (PIV) test indicate that plasma aerodynamic actuation by sliding discharge can induce a ‘starting vortex’ and a quasi-steady ‘near-wall jet’. Body force induced by plasma aerodynamic actuation is about the order of mN, which is stronger than that induced by single DBD. It is inferred that microsecond-pulse sliding discharge may be more effective to generate large-scale plasma aerodynamic actuation, which is very promising for improving aircraft aerodynamic characteristics and propulsion efficiency.

  8. Experimental Investigation on the Characteristics of Sliding Discharge Plasma Aerodynamic Actuation

    Science.gov (United States)

    Song, Huimin; Li, Yinghong; Zhang, Qiaogen; Jia, Min; Wu, Yun

    2011-10-01

    A new electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A microsecond-pulse high voltage with a DC component was used to energize a three-electrode actuator to generate sliding discharge. The characteristics of plasma aerodynamic actuation by sliding discharge were experimentally investigated. Discharge morphology shows that sliding discharge is formed when energized by properly adjusting microsecond-pulse and DC voltage. Compared to dielectric barrier discharge (DBD), the plasma extension of sliding discharge is quasi-diffusive and stable but longer and more intensive. Results from particle image velocimetry (PIV) test indicate that plasma aerodynamic actuation by sliding discharge can induce a ‘starting vortex’ and a quasi-steady ‘near-wall jet’. Body force induced by plasma aerodynamic actuation is about the order of mN, which is stronger than that induced by single DBD. It is inferred that microsecond-pulse sliding discharge may be more effective to generate large-scale plasma aerodynamic actuation, which is very promising for improving aircraft aerodynamic characteristics and propulsion efficiency.

  9. Application of CAD/CAE class systems to aerodynamic analysis of electric race cars

    Science.gov (United States)

    Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.

    2015-11-01

    Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.

  10. Production of pions and anomalous projectile fragments in heavy ion collisions

    International Nuclear Information System (INIS)

    Noren, B.

    1988-05-01

    Results are presented from investigations of the mean free path (mfp) of multiply charged fragments, produced by 1.8 A GeV argon nuclei. The mfp's have been studied experimentally, and no dependence of the mfp on the distance from the preceeding collision is observed. In a Monte Carlo simulation, the mfp estimators are investigated for different statistics, with or without an enhanced reaction probability. Intermediate energy heavy ion collisions have been studied using the carbon beam produced at the CERN SC-accelerator. Cross-sections for pion + and pion - have been measured over a wide range of angles and targets. Also, coincidence measurements with projectile-like fragments have been performed. The pion - /pion + ratio has been studied for C+Li, C+C, C+Pb, C+ 116 Sn and C+ 124 Sn. Inconsistencies in the target mass dependence of the pion yield disappear if a correction for reabsorption in the target nucleus is included. The projectile breakup is significantly stronger for pion producing collisions than for the average collision, thus indicating a much stronger abundance of central collisions. (With 32 refs.) (author)

  11. Function behavior of a gas-operated accelerator for kinetic energy projectiles

    International Nuclear Information System (INIS)

    Heine, H.

    1979-01-01

    The test facility - presented here - was designed and constructed in order to make investigations on the load case 'airplane crash'. The facility consists mainly of the accelerator on a rail track, an abutment, a control centre, and a measuring-bunker.To perform a test the two parts of the accelerator - a compression chamber and an expansion tube (diameter 613 mm) - are strongly connected after the projectile has been inserted into the tube. The chamber - closed by a steel membrane - is filled with a mixture of methane and compressed air. The mixture is ignited and expands. The membrane opens and the projectile is accelerated. The velocity range can be varied between 80 and 300 m/s.The reinforced concrete slabs that are impacted during the main test series have the dimensions of 6.00 m by 6.50 m and a maximum thickness of 90 cm. During the test the slab hangs at a cross beam so that there is no friction between the specimen and the abutment. (orig.)

  12. The influence of projectile ion induced chemistry on surface pattern formation

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Prasanta, E-mail: prasantak@vecc.gov.in [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India); Satpati, Biswarup [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2016-07-14

    We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurements that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.

  13. Hypersonic Inflatable Aerodynamic Decelerator (HIAD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an entry and descent technology to enhance and enable robotic and scientific missions to destinations with atmospheres.The Hypersonic Inflatable Aerodynamic...

  14. Decay patterns of target-like and projectile-like nuclei in 84Kr+197Au, natU reactions at E/A=150 MeV

    International Nuclear Information System (INIS)

    Quednau, B.M.; Galin, J.; Ledoux, X.; Crema, E.; Gebauer, B.; Hilscher, D.; Jahnke, U.; Jacquet, D.; Leray, S.; and others.

    1996-01-01

    The reactions 84 Kr+ 197 Au and 84 Kr+ nat U were studied at E/A=150 MeV employing the large-volume neutron multiplicity filter ORION at SATURNE. The observed correlations between the atomic number of projectile-like nuclei and neutron multiplicity indicate large excitation energies in the primary projectile- and target-like fragments. Angular correlations between the fission fragments of the U-like nucleus and the projectile-like fragments show a memory of the reaction plane, however no indications of spin effects are found. (author)

  15. Simulation and control element design for a coupled aerodynamic/magnetic system

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E

    1982-11-01

    Aerodynamic effects are among the many problems raised by the Maglev technique and its industrial application, but until recently they were only regarded as disturbances. Theoretical studies as well as model experiments in wind and water tunnels were only interested in optimizing the shape of the vehicle cell. The most important goals of development were low sensitivity to side-wind and a neutral aerodynamic design of the vehicle nose. The present paper investigates the aerodynamic effects by means of extended models. Aerodynamic effects on the elevation control system are considered by a suitable control element structure.

  16. Effect of projectile structure on evaporation residue yields in incomplete fusion reactions

    CERN Document Server

    Babu, K S; Sudarshan, K; Shrivastava, B D; Goswami, A; Tomar, B S

    2003-01-01

    The excitation functions of heavy residues, representing complete and incomplete fusion products, produced in the reaction of sup 1 sup 2 C and sup 1 sup 3 C on sup 1 sup 8 sup 1 Ta have been measured over the projectile energy range of 5 to 6.5 MeV/nucleon by the recoil catcher method and off-line gamma-ray spectrometry. Comparison of the measured excitation functions with those calculated using the PACE2 code based on the statistical model revealed the occurrence of incomplete fusion reactions in the formation of alpha emission products. The fraction of incomplete fusion cross sections in the sup 1 sup 2 C + sup 1 sup 8 sup 1 Ta reaction was found to be higher, by a factor of approx 2, than that in the sup 1 sup 3 C + sup 1 sup 8 sup 1 Ta reaction. The results have been discussed in terms of the effect of alpha cluster structure of the projectile on incomplete fusion reactions.

  17. COMPUTER PROGRAM FOR CALCULATION MICROCHANNEL HEAT EXCHANGERS FOR AIR CONDITIONING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Olga V. Olshevska

    2016-08-01

    Full Text Available Creating a computer program to calculate microchannel air condensers to reduce design time and carrying out variant calculations. Software packages for thermophysical properties of the working substance and the coolant, the correlation equation for calculating heat transfer, aerodynamics and hydrodynamics, the thermodynamic equations for the irreversible losses and their minimization in the heat exchanger were used in the process of creating. Borland Delphi 7 is used for creating software package.

  18. Fourier analysis of the aerodynamic behavior of cup anemometers

    International Nuclear Information System (INIS)

    Pindado, Santiago; Pérez, Imanol; Aguado, Maite

    2013-01-01

    The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force. (paper)

  19. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    Science.gov (United States)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future. The effort was divided into three areas: Flexible Systems Development (FSD), Mission Advanced Entry Concepts (AEC), and Flight Validation. FSD consists of a Flexible Thermal Protection Systems (FTPS) element, which is investigating high temperature materials, coatings, and additives for use in the bladder, insulator, and heat shield layers; and an Inflatable Structures (IS) element which includes manufacture and testing (laboratory and wind tunnel) of inflatable structures and their associated structural elements. AEC consists of the Mission Applications element developing concepts (including payload interfaces) for missions at multiple destinations for the purpose of demonstrating the benefits and need for the HIAD technology as well as the Next Generation Subsystems element. Ground test development has been pursued in parallel with the Flight Validation IRVE-3 flight test. A larger scale (6m diameter) HIAD inflatable structure was constructed and aerodynamically tested in the National Full-scale Aerodynamics Complex (NFAC) 40ft by 80ft test section along with a duplicate of the IRVE-3 3m article. Both the 6m and 3m articles were tested with instrumented aerodynamic covers which incorporated an array of pressure taps to capture surface pressure distribution to validate Computational Fluid Dynamics (CFD) model predictions of surface pressure distribution. The 3m article also had a duplicate IRVE-3 Thermal Protection System (TPS) to test in addition to testing with the

  20. Aerodynamic profiles of women with muscle tension dysphonia/aphonia.

    Science.gov (United States)

    Gillespie, Amanda I; Gartner-Schmidt, Jackie; Rubinstein, Elaine N; Abbott, Katherine Verdolini

    2013-04-01

    In this study, the authors aimed to (a) determine whether phonatory airflows and estimated subglottal pressures (est-Psub) for women with primary muscle tension dysphonia/aphonia (MTD/A) differ from those for healthy speakers; (b) identify different aerodynamic profile patterns within the MTD/A subject group; and (c) determine whether results suggest new understanding of pathogenesis in MTD/A. Retrospective review of aerodynamic data collected from 90 women at the time of primary MTD/A diagnosis. Aerodynamic profiles were significantly different for women with MTD/A as compared with healthy speakers. Five distinct profiles were identified: (a) normal flow, normal est-Psub; (b) high flow, high est-Psub; (c) low flow, normal est-Psub; (d) normal flow, high est-Psub; and (e) high flow, normal est-Psub. This study is the first to identify distinct subgroups of aerodynamic profiles in women with MTD/A and to quantitatively identify a clinical phenomenon sometimes described in association with it-"breath holding"-that is shown by low airflow with normal est-Psub. Results were consistent with clinical claims that diverse respiratory and laryngeal functions may underlie phonatory patterns associated with MTD/A. One potential mechanism, based in psychobiological theory, is introduced to explain some of the variability in aerodynamic profiles of women with MTD/A.

  1. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    Schepers, J.G.

    1997-06-01

    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  2. Aerodynamic tailoring of the Learjet Model 60 wing

    Science.gov (United States)

    Chandrasekharan, Reuben M.; Hawke, Veronica M.; Hinson, Michael L.; Kennelly, Robert A., Jr.; Madson, Michael D.

    1993-01-01

    The wing of the Learjet Model 60 was tailored for improved aerodynamic characteristics using the TRANAIR transonic full-potential computational fluid dynamics (CFD) code. A root leading edge glove and wing tip fairing were shaped to reduce shock strength, improve cruise drag and extend the buffet limit. The aerodynamic design was validated by wind tunnel test and flight test data.

  3. Naval Aerodynamics Test Facility (NATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...

  4. Influence of hinge point on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Wu, P; Li, C

    2013-01-01

    Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon

  5. Penetrating chest trauma caused by a blank cartridge actuated rubber ball projectile: case presentation and ballistic investigation of an uncommon weapon type.

    Science.gov (United States)

    Frank, Matthias; Peters, Dieter; Klemm, Wolfram; Grossjohann, Rico; Ekkernkamp, Axel; Bockholdt, Britta; Seifert, Julia

    2017-09-01

    Recently, an increasing number of an uncommon weapon type based on a caliber 6-mm Flobert blank cartridge actuated revolver which discharges 10-mm-diameter rubber ball projectiles has been confiscated by police authorities following criminal offenses. A recent trauma case presenting with a penetrating chest injury occasioned an investigation into the basic ballistic parameters of this type of weapon. Kinetic energy E of the test projectiles was calculated between 5.8 and 12.5 J. Energy density ED of the test projectiles was close to or higher than the threshold energy density of human skin. It can be concluded that penetrating skin injuries due to free-flying rubber ball projectiles discharged at close range cannot be ruled out. However, in case of a contact shot, the main injury potential of this weapon type must be attributed to the high energy density of the muzzle gas jet which may, similar to well-known gas or alarm weapons, cause life-threatening or even lethal injuries.

  6. PyFly: A fast, portable aerodynamics simulator

    KAUST Repository

    Garcia, D.; Ghommem, M.; Collier, N.; Varga, B.O.N.; Calo, V.M.

    2018-01-01

    We present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approach to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. We simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.

  7. PyFly: A fast, portable aerodynamics simulator

    KAUST Repository

    Garcia, D.

    2018-03-18

    We present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approach to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. We simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.

  8. IEA joint action. Aerodynamics of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-12-31

    In the period 1992-1997 the IEA Annex XIV `Field Rotor Aerodynamics` was carried out. Within its framework 5 institutes from 4 different countries participated in performing detailed aerodynamic measurements on full-scale wind turbines. The Annex was successfully completed and resulted in a unique database of aerodynamic measurements. The database is stored on an ECN disc (available through ftp) and on a CD-ROM. It is expected that this base will be used extensively in the development and validation of new aerodynamic models. Nevertheless at the end of IEA Annex XIV, it was recommended to perform a new IEA Annex due to the following reasons: In Annex XIV several data exchange rounds appeared to be necessary before a satisfactory result was achieved. This is due to the huge amount of data which had to be supplied, by which a thorough inspection of all data is very difficult and very time consuming; Most experimental facilities are still operational and new, very useful, measurements are expected in the near future; The definition of angle of attack and dynamic pressure in the rotating environment is less straightforward than in the wind tunnel. The conclusion from Annex XIV was that the uncertainty which results from these different definitions is still too large and more investigation in this field is required. (EG)

  9. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    Science.gov (United States)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  10. Dependence of ion-electron emission from clean metals on the incidence angle of the projectile

    International Nuclear Information System (INIS)

    Ferron, J.; Alonso, E.V.; Baragiola, R.A.; Oliva-Florio, A.

    1981-01-01

    We have studied the dependence of electron yields γ from clean Cu and Au surfaces on the incidence angle theta of 5--50-keV He + , Ar + , and Xe + projectiles, in the angular range 0--80 0 , and under ultrahigh-vacuum conditions. We have found that, at small angles, γproportionalsec/sup f/theta, with f generally different from unity. For Xe + on Cu, γ(theta) presents an energy-dependence maximum, similar to that obtained for sputtering. The results are explained in terms of the anisotropy of the electron cascade in the solid, the depth distribution of the inelastic energy deposited by the projectile and by rapidly recoiling target atoms in the near-surface region of the solid

  11. Projectile fragmentation of a weakly-bound 11Be nucleus at 0.8 GeV/nucleon

    International Nuclear Information System (INIS)

    Kobayashi, T.

    1990-01-01

    The projectile fragmentation of a weakly-bound 11 Be projectile has been measured on a carbon target at 0.8 GeV/nucleon. The transverse momentum distribution of 10 Be fragments showed a two-Gaussian structure: a narrow component with σ ∼ 25 MeV/c on top of a wide component with σ ∼ 110 MeV/c. As in the case of 11 Li fragmentation, the narrow momentum distribution indicates a long tail in the neutron density distribution which is consistent with the large nuclear matter radius of the 11 Be nucleus. Neutrons were also measured in coincidence with 10 Be fragments. In contrast to 10 Be fragments, no narrow momentum distribution was observed for coincident neutrons

  12. Breakup conditions of projectile spectators from dynamical observables

    Energy Technology Data Exchange (ETDEWEB)

    Begemann-Blaich, M.; Lindenstruth, V.; Pochodzalla, J. [and others

    1998-03-01

    Momenta and masses of heavy projectile fragments (Z {>=} 8), produced in collisions of {sup 197}Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 {Dirac_h}/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)

  13. Breakup conditions of projectile spectators from dynamical observables

    International Nuclear Information System (INIS)

    Begemann-Blaich, M.; Lindenstruth, V.; Pochodzalla, J.

    1998-03-01

    Momenta and masses of heavy projectile fragments (Z ≥ 8), produced in collisions of 197 Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 ℎ/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)

  14. Energy distributions of H+ fragments ejected by fast proton and electron projectiles in collision with H2O molecules

    International Nuclear Information System (INIS)

    Barros, A. L. F. de; Lecointre, J.; Luna, H.; Montenegro, E. C.; Shah, M. B.

    2009-01-01

    Experimental measurements of the kinetic energy distribution spectra of H + fragment ions released during radiolysis of water molecules in collision with 20, 50, and 100 keV proton projectiles and 35, 200, 400, and 1000 eV electron projectiles are reported using a pulsed beam and drift tube time-of-flight based velocity measuring technique. The spectra show that H + fragments carrying a substantial amount of energy are released, some having energies well in excess of 20 eV. The majority of the ions lie within the 0-5 eV energy range with the proton spectra showing an almost constant profile between 1.5 and 5 eV and, below this, increasing gradually with decreasing ejection energy up to the near zero energy value while the electron spectra, in contrast, show a broad maximum between 1 and 3 eV and a pronounced dip around 0.25 eV. Beyond 5 eV, both projectile spectra show a decreasing profile with the electron spectra decreasing far more rapidly than the proton spectra. Our measured spectra thus indicate that major differences are present in the collision dynamics between the proton and the electron projectiles interacting with gas phase water molecules.

  15. Impact basins on Ganymede and Callisto and implications for the large-projectile size distribution

    Science.gov (United States)

    Wagner, R.; Neukum, G.; Wolf, U.; Greeley, R.; Klemaszewski, J. E.

    2003-04-01

    It has been conjectured that the projectile family which impacted the Galilean Satellites of Jupiter was depleted in large projectiles, concluded from a ''dearth'' in large craters (> 60 km) (e.g. [1]). Geologic mapping, aided by spatial filtering of new Galileo as well as older Voyager data shows, however, that large projectiles have left an imprint of palimpsests and multi-ring structures on both Ganymede and Callisto (e. g. [2]). Most of these impact structures are heavily degraded and hence difficult to recognize. In this paper, we present (1) maps showing the outlines of these basins, and (2) derive updated crater size-frequency diagrams of the two satellites. The crater diameter from a palimpsest diameter was reconstructed using a formula derived by [3]. The calculation of the crater diameter Dc from the outer boundary Do of a multi-ring structure is much less constrained and on the order of Dc = k \\cdot Do , with k ≈ 0.25-0.3 [4]. Despite the uncertainties in locating the ''true'' crater rims, the resulting shape of the distribution in the range from kilometer-sized craters to sizes of ≈ 500 km is lunar-like and strongly suggests a collisionally evolved projectile family, very likely of asteroidal origin. An alternative explanation for this shape could be that comets are collisionally evolved bodies in a similar way as are asteroids, which as of yet is still uncertain and in discussion. Also, the crater size distributions on Ganymede and Callisto are shifted towards smaller crater sizes compared to the Moon, caused by a much lower impact velocity of impactors which preferentially were in planetocentric orbits [5]. References: [1] Strom et al., JGR 86, 8659-8674, 1981. [2] J. E. Klemaszewski et al., Ann. Geophys. 16, suppl. III, 1998. [3] Iaquinta-Ridolfi &Schenk, LPSC XXVI (abstr.), 651-652, 1995. [4] Schenk &Moore, LPSC XXX, abstr. No. 1786 [CD-Rom], 1999. [5] Horedt & Neukum, JGR 89, 10,405-10,410, 1984.

  16. Correlated electron capture in the impact parameter and final projectile charge-state dependence of ECC cusp production in 0.53 MeV u-1 F8+ + Ne

    International Nuclear Information System (INIS)

    Skutlartz, A.; Hagmann, S.; Schmidt-Boecking, H.

    1988-01-01

    The impact parameter dependence of ECC cusp electron production in collisions of fast, highly charged ions with atoms is investigated by measuring the scattered projectiles in coincidence with cusp electrons emitted at 0 0 with respect to the beam axis. The absolute probabilities for ECC cusp production show a maximum at b ≅ 0.10 au, decrease strongly for smaller impact parameters and more gently toward larger impact parameters. In addition the final charge state of the scattered projectile is also determined simultaneously for each collision event. The probabilities, as a function of the projectile final charge state, are large for the case where at least one or more electrons are simultaneously captured into bound states of the projectile, but are surprisingly small for collisions in which a projectile did not capture an electron into a bound state. (author)

  17. Projectile X-ray emission in relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Shadi Mohammad Ibrahim

    2010-03-16

    This work reports on the study of the projectile X-ray emission in relativistic ion-atom collisions. Excitation of K-shell in He-like uranium ions, electron capture into H-like uranium ions and Simultaneous ionization and excitation of initially He-like uranium ions have been studied using the experimental storage ring at GSI. For the K{sub {alpha}}{sub 1} and K{sub {alpha}}{sub 2} transitions originating from the excitation of the He-like uranium ions, no alignment was observed. In contrast, the Ly{sub {alpha}}{sub 1} radiation from the simultaneous ionization-excitation process of the He-like uranium ions shows a clear alignment. The experimental value leads to the inclusion of a magnetic term in the interaction potential. The capture process of target electrons into the highly-charged heavy ions was studied using H-like uranium ions at an incident energy of 220 MeV/u, impinging on N{sub 2} gas-target. It was shown that, the strongly aligned electrons captured in 2p{sub 3/2} level couple with the available 1s{sub 1/2} electron which shows no initial directional preference. The magnetic sub-state population of the 2p{sub 3/2} electron is redistributed according to the coupling rules to the magnetic sub-states of the relevant two-electron states. This leads to the large anisotropy in the corresponding individual ground state transitions contributing to the K{sub {alpha}}{sub 1} emission. From the K{sub {alpha}}{sub 1}/K{sub {alpha}}{sub 2} ratio, the current results show that the incoherent addition of the E1 and M2 transition components yield to an almost isotropic emission of the total K{sub {alpha}}{sub 1}. In contrast to the radiative electron capture, the experimental results for the K-shell single excitation of He-like uranium ions indicate that only the {sup 1}P{sub 1} level contributes to the K{sub {alpha}}{sub 1} transition. For this case, the anisotropy parameter {beta}{sub 20} was found to be -0.20{+-}0.03. This work also reports on the study of a two

  18. Scaling invariance of spherical projectile fragmentation upon high-velocity impact on a thin continuous shield

    Energy Technology Data Exchange (ETDEWEB)

    Myagkov, N. N., E-mail: nn-myagkov@mail.ru [Russian Academy of Sciences, Institute of Applied Mechanics (Russian Federation)

    2017-01-15

    The problem of aluminum projectile fragmentation upon high-velocity impact on a thin aluminum shield is considered. A distinctive feature of this description is that the fragmentation has been numerically simulated using the complete system of equations of deformed solid mechanics by a method of smoothed particle hydrodynamics in three-dimensional setting. The transition from damage to fragmentation is analyzed and scaling relations are derived in terms of the impact velocity (V), ratio of shield thickness to projectile diameter (h/D), and ultimate strength (σ{sub p}) in the criterion of projectile and shield fracture. Analysis shows that the critical impact velocity V{sub c} (separating the damage and fragmentation regions) is a power function of σ{sub p} and h/D. In the supercritical region (V > V{sub c}), the weight-average fragment mass asymptotically tends to a power function of the impact velocity with exponent independent of h/D and σ{sub p}. Mean cumulative fragment mass distributions at the critical point are scale-invariant with respect to parameters h/D and σ{sub p}. Average masses of the largest fragments are also scale-invariant at V > V{sub c}, but only with respect to variable parameter σ{sub p}.

  19. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  20. Method determination of aerodynamic performances of profile in the plane airfoil cascade

    Directory of Open Access Journals (Sweden)

    Л. Г. Волянська

    2003-03-01

    Full Text Available Method determination of aerodynamic forces by direct measurement using three-component aerodynamic balance are given in the article. There are the schematic model of the facility for determination airfoil cascade aerodynamic performances in the article. Drawing and description of slewing pack of blades are shown in the article

  1. An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method

    International Nuclear Information System (INIS)

    Yabushita, Kazuki; Yamashita, Mariko; Tsuboi, Kazuhiro

    2007-01-01

    We consider the problem of two-dimensional projectile motion in which the resistance acting on an object moving in air is proportional to the square of the velocity of the object (quadratic resistance law). It is well known that the quadratic resistance law is valid in the range of the Reynolds number: 1 x 10 3 ∼ 2 x 10 5 (for instance, a sphere) for practical situations, such as throwing a ball. It has been considered that the equations of motion of this case are unsolvable for a general projectile angle, although some solutions have been obtained for a small projectile angle using perturbation techniques. To obtain a general analytic solution, we apply Liao's homotopy analysis method to this problem. The homotopy analysis method, which is different from a perturbation technique, can be applied to a problem which does not include small parameters. We apply the homotopy analysis method for not only governing differential equations, but also an algebraic equation of a velocity vector to extend the radius of convergence. Ultimately, we obtain the analytic solution to this problem and investigate the validation of the solution

  2. Variation in aerodynamic coefficients with altitude

    Science.gov (United States)

    Shahid, Faiza; Hussain, Mukkarum; Baig, Mirza Mehmood; Haq, Ihtram ul

    Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD). Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT), hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig). Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number). Similar simulations for a fixed Mach number '3' and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number). Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number) and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number) slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number) at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects.

  3. Detailed determination of the fusion nuclear radius in reactions involving weakly bound projectiles

    International Nuclear Information System (INIS)

    Gomez Camacho, A.; Aguilera, E. F.; Quiroz, E. M.

    2007-01-01

    A detailed determination of the fusion radius parameter is performed within the Distorted Wave Born Approximation for reactions involving weakly bound projectiles. Specifically, a simultaneous X 2- analysis of elastic and fusion cross section data is done using a Woods-Saxon potential with volume and surface parts. The volume part is assumed to be responsible for fusion reactions while the surface part for all other direct reactions. It is proved that in order to fit fusion data, particularly for energies below the Coulomb barrier where fusion is enhanced, it is necessary to have a value of around 1.4 fm for the fusion radial parameter of the fusion potential (W F ). This value is much higher than that frequently used in Barrier Penetration models (1.0 fm). The calculations are performed for reactions involving the weakly bound projectile 9 Be with several medium mass targets. (Author)

  4. Acceleration of a solid-density plasma projectile to ultrahigh velocities by a short-pulse ultraviolet laser

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J.; Jablonski, S. [Institute of Plasma Physics and Laser Microfusion, Euratom Association, 01-497 Warsaw (Poland)

    2011-08-15

    It is shown by means of particle-in-cell simulations that a high-fluence ({>=}1 GJ/cm{sup 2}) solid-density plasma projectile can be accelerated up to sub-relativistic velocities by radiation pressure of an ultraviolet (UV) picosecond laser pulse of moderate values of dimensionless laser amplitude a{sub 0}{approx}10. The efficiency of acceleration by the UV laser is significantly higher than in the case of long-wavelength ({lambda} {approx} 1 {mu}m) driver of a comparable value of a{sub 0}, and the motion of the projectile is fairly well described by the ''Light Sail'' acceleration model.

  5. Heat Transfer Analysis of Thermal Protection Structures for Hypersonic Vehicles

    Science.gov (United States)

    Zhou, Chen; Wang, Zhijin; Hou, Tianjiao

    2017-11-01

    This research aims to develop an analytical approach to study the heat transfer problem of thermal protection systems (TPS) for hypersonic vehicles. Laplace transform and integral method are used to describe the temperature distribution through the TPS subject to aerodynamic heating during flight. Time-dependent incident heat flux is also taken into account. Two different cases with heat flux and radiation boundary conditions are studied and discussed. The results are compared with those obtained by finite element analyses and show a good agreement. Although temperature profiles of such problems can be readily accessed via numerical simulations, analytical solutions give a greater insight into the physical essence of the heat transfer problem. Furthermore, with the analytical approach, rapid thermal analyses and even thermal optimization can be achieved during the preliminary TPS design.

  6. Particle Methods in Bluff Body Aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj

    . The implementation is two-dimensional and sequential. The implementation is validated against the analytic solution to the Perlman test case and by free-space simulations of the onset flow around fixed and rotating circular cylinders and bluff body flows around bridge sections. Finally a three-dimensional vortex...... is important. This dissertation focuses on the use of vortex particle methods and computational efficiency. The work is divided into three parts. A novel method for the simulation of the aerodynamic admittance in bluff body aerodynamics is presented. The method involves a model for describing oncoming...... section during the construction phase and the swimming motion of the medusa Aurelia aurita....

  7. Influence of unsteady aerodynamics on driving dynamics of passenger cars

    Science.gov (United States)

    Huemer, Jakob; Stickel, Thomas; Sagan, Erich; Schwarz, Martin; Wall, Wolfgang A.

    2014-11-01

    Recent approaches towards numerical investigations with computational fluid dynamics methods on unsteady aerodynamic loads of passenger cars identified major differences compared with steady-state aerodynamic excitations. Furthermore, innovative vehicle concepts such as electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore, the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve handling and ride characteristics at high velocity of the actual range of vehicle layouts, the influence of unsteady excitations on the vehicle response was investigated. For this purpose, a simulation of the vehicle dynamics through multi-body simulation was used. The impact of certain unsteady aerodynamic load characteristics on the vehicle response was quantified and key factors were identified. Through a series of driving simulator tests, the identified differences in the vehicle response were evaluated regarding their significance on the subjective driver perception of cross-wind stability. Relevant criteria for the subjective driver assessment of the vehicle response were identified. As a consequence, a design method for the basic layout of passenger cars and chassis towards unsteady aerodynamic excitations was defined.

  8. The Aerodynamics of Heavy Vehicles III : Trucks, Buses and Trains

    CERN Document Server

    Orellano, Alexander

    2016-01-01

    This volume contains papers presented at the International conference “The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains” held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future.   This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007.  The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.

  9. Reliability and Applicability of Aerodynamic Measures in Dysphonia Assessment

    Science.gov (United States)

    Yiu, Edwin M.-L.; Yuen, Yuet-Ming; Whitehill, Tara; Winkworth, Alison

    2004-01-01

    Aerodynamic measures are frequently used to analyse and document pathological voices. Some normative data are available for speakers from the English-speaking population. However, no data are available yet for Chinese speakers despite the fact that they are one of the largest populations in the world. The high variability of aerodynamic measures…

  10. Aerodynamic efficiency of a bio-inspired flapping wing rotor at low Reynolds number

    OpenAIRE

    Li, Hao; Guo, Shijun

    2018-01-01

    This study investigates the aerodynamic efficiency of a bioinspired flapping wing rotor kinematics which combines an active vertical flapping motion and a passive horizontal rotation induced by aerodynamic thrust. The aerodynamic efficiencies for producing both vertical lift and horizontal thrust of the wing are obtained using a quasi-steady aerodynamic model and two-dimensional (2D) CFD analysis at Reynolds number of 2500. The calculated efficiency data show that both efficiencies (propulsiv...

  11. Experimental Investigation of Aerodynamic Instability of Iced Bridge Cable Sections

    DEFF Research Database (Denmark)

    Koss, Holger; Lund, Mia Schou Møller

    2013-01-01

    The accretion of ice on structural bridge cables changes the aerodynamic conditions of the surface and influences hence the acting wind load process. Full-scale monitoring indicates that light precipitation at moderate low temperatures between zero and -5°C may lead to large amplitude vibrations...... of bridge cables under wind action. This paper describes the experimental simulation of ice accretion on a real bridge cable sheet HDPE tube segment (diameter 160mm) and its effect on the aerodynamic load. Furthermore, aerodynamic instability will be estimated with quasi-steady theory using the determined...

  12. Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Rimple [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Poirel, Dominique [Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, Kingston, Ontario (Canada); Pettit, Chris [Department of Aerospace Engineering, United States Naval Academy, Annapolis, MD (United States); Khalil, Mohammad [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Sarkar, Abhijit, E-mail: abhijit.sarkar@carleton.ca [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada)

    2016-07-01

    A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid–structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib–Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.

  13. A Comparative Assessment of Aerodynamic Models for Buffeting and Flutter of Long-Span Bridges

    Directory of Open Access Journals (Sweden)

    Igor Kavrakov

    2017-12-01

    Full Text Available Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This paper aims to investigate different formulations of self-excited and buffeting forces in the time domain by comparing the dynamic response of a multi-span cable-stayed bridge during the critical erection condition. The bridge is selected to represent a typical reference object with a bluff concrete box girder for large river crossings. The models are viewed from a perspective of model complexity, comparing the influence of the aerodynamic properties implied in the aerodynamic models, such as aerodynamic damping and stiffness, fluid memory in the buffeting and self-excited forces, aerodynamic nonlinearity, and aerodynamic coupling on the bridge response. The selected models are studied for a wind-speed range that is typical for the construction stage for two levels of turbulence intensity. Furthermore, a simplified method for the computation of buffeting forces including the aerodynamic admittance is presented, in which rational approximation is avoided. The critical flutter velocities are also compared for the selected models under laminar flow. Keywords: Buffeting, Flutter, Long-span bridges, Bridge aerodynamics, Bridge aeroelasticity, Erection stage

  14. Numerical simulation of aerodynamic sound radiated from a two-dimensional airfoil

    OpenAIRE

    飯田, 明由; 大田黒, 俊夫; 加藤, 千幸; Akiyoshi, Iida; Toshio, Otaguro; Chisachi, Kato; 日立機研; 日立機研; 東大生研; Mechanical Engineering Research Laboratory, Hitachi Ltd.; Mechanical Engineering Research Laboratory, Hitachi Ltd.; University of Tokyo

    2000-01-01

    An aerodynamic sound radiated from a two-dimensional airfoil has been computed with the Lighthill-Curle's theory. The predicted sound pressure level is agreement with the measured one. Distribution of vortex sound sources is also estimated based on the correlation between the unsteady vorticity fluctuations and the aerodynamic sound. The distribution of vortex sound source reveals that separated shear layers generate aerodynamic sound. This result is help to understand noise reduction method....

  15. Dependence of ion-electron emission from clean metals on the incidence angle of the projectile

    Energy Technology Data Exchange (ETDEWEB)

    Ferron, J.; Alonso, E.V.; Baragiola, R.A.; Oliva-Florio, A.

    1981-10-15

    We have studied the dependence of electron yields ..gamma.. from clean Cu and Au surfaces on the incidence angle theta of 5--50-keV He/sup +/, Ar/sup +/, and Xe/sup +/ projectiles, in the angular range 0--80 /sup 0/, and under ultrahigh-vacuum conditions. We have found that, at small angles, ..gamma..proportionalsec/sup f/theta, with f generally different from unity. For Xe/sup +/ on Cu, ..gamma..(theta) presents an energy-dependence maximum, similar to that obtained for sputtering. The results are explained in terms of the anisotropy of the electron cascade in the solid, the depth distribution of the inelastic energy deposited by the projectile and by rapidly recoiling target atoms in the near-surface region of the solid.

  16. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    International Nuclear Information System (INIS)

    Wu, P; Stanford, B K; Ifju, P G; Saellstroem, E; Ukeiley, L

    2011-01-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  17. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: diccidwp@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)

    2011-03-15

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  18. Mechanism of unconventional aerodynamic characteristics of an elliptic airfoil

    Directory of Open Access Journals (Sweden)

    Sun Wei

    2015-06-01

    Full Text Available The aerodynamic characteristics of elliptic airfoil are quite different from the case of conventional airfoil for Reynolds number varying from about 104 to 106. In order to reveal the fundamental mechanism, the unsteady flow around a stationary two-dimensional elliptic airfoil with 16% relative thickness has been simulated using unsteady Reynolds-averaged Navier–Stokes equations and the γ-Reθt‾ transition turbulence model at different angles of attack for flow Reynolds number of 5 × 105. The aerodynamic coefficients and the pressure distribution obtained by computation are in good agreement with experimental data, which indicates that the numerical method works well. Through this study, the mechanism of the unconventional aerodynamic characteristics of airfoil is analyzed and discussed based on the computational predictions coupled with the wind tunnel results. It is considered that the boundary layer transition at the leading edge and the unsteady flow separation vortices at the trailing edge are the causes of the case. Furthermore, a valuable insight into the physics of how the flow behavior affects the elliptic airfoil’s aerodynamics is provided.

  19. An improvement of the base bleed unit on base drag reduction and heat energy addition as well as mass addition

    International Nuclear Information System (INIS)

    Xue, Xiaochun; Yu, Yonggang

    2016-01-01

    Highlights: • A 2D axisymmetric Navier-Stokes equation for a multi-component reactive system is solved. • The coupling of the internal and wake flow field with secondary combustion is calculated. • Detailed data with combined effects of boattailing and post-combustion are obtained. • The mechanism of heat energy addition and thermodynamics performances is investigated. - Abstract: Numerical simulations are carried out to investigate the base drag and energy characteristics of a base-bleed projectile with and without containing the effect of a post-combustion process for a boattailed afterbody in a supersonic flow, and then to analyze the key factor of drag reduction and pressure decreasing of base bleed projectile. Detailed chemistry models for H_2−CO combustion have been incorporated into a Navier-Stokes computer code and applied to flow field simulation in the base region of a base-bleed projectile. Detailed numerical results for the flow patterns and heat energy addition as well as mass addition for different conditions are presented and compared with existing experimental data. The results shows that, the post-combustion contributes to energy addition and base drag reduction up to 78% on account of that the heat energy released from the post-combustion using fuel-rich reaction products as the fuel in the wake region is much higher than for the corresponding cold bleed and hot bleed cases. In addition, the temperature distribution regularities are changed under post-combustion effect, presenting that the peak appears in a couple of recirculation regions. The fuel-rich bleed gas flows into the shear layer along the crack between these two recirculation regions and then those can readily burn when mixing with the freestream, thus causing component changes of H_2 and CO in the base flowfield.

  20. Effects of Friction and Plastic Deformation in Shock-Comminuted Damaged Rocks on Impact Heating

    Science.gov (United States)

    Kurosawa, Kosuke; Genda, Hidenori

    2018-01-01

    Hypervelocity impacts cause significant heating of planetary bodies. Such events are recorded by a reset of 40Ar-36Ar ages and/or impact melts. Here we investigate the influence of friction and plastic deformation in shock-generated comminuted rocks on the degree of impact heating using the iSALE shock-physics code. We demonstrate that conversion from kinetic to internal energy in the targets with strength occurs during pressure release, and additional heating becomes significant for low-velocity impacts (projectile mass to temperatures for the onset of Ar loss and melting from 8 and 10 km s-1, respectively, for strengthless rocks to 2 and 6 km s-1 for typical rocks. Our results suggest that the impact conditions required to produce the unique features caused by impact heating span a much wider range than previously thought.

  1. The efficiency of aerodynamic force production in Drosophila.

    Science.gov (United States)

    Lehmann, F O

    2001-12-01

    Total efficiency of aerodynamic force production in insect flight depends on both the efficiency with which flight muscles turn metabolic energy into muscle mechanical power and the efficiency with which this power is converted into aerodynamic flight force by the flapping wings. Total efficiency has been estimated in tethered flying fruit flies Drosophila by modulating their power expenditures in a virtual reality flight simulator while simultaneously measuring stroke kinematics, locomotor performance and metabolic costs. During flight, muscle efficiency increases with increasing flight force production, whereas aerodynamic efficiency of lift production decreases with increasing forces. As a consequence of these opposite trends, total flight efficiency in Drosophila remains approximately constant within the kinematic working range of the flight motor. Total efficiency is broadly independent of different profile power estimates and typically amounts to 2-3%. The animal achieves maximum total efficiency near hovering flight conditions, when the beating wings produce flight forces that are equal to the body weight of the insect. It remains uncertain whether this small advantage in total efficiency during hovering flight was shaped by evolutionary factors or results from functional constraints on both the production of mechanical power by the indirect flight muscles and the unsteady aerodynamic mechanisms in flapping flight.

  2. In situ flash X-ray observation of projectile penetration processes and crater cavity growth in porous gypsum target analogous to low-density asteroids

    Science.gov (United States)

    Yasui, Minami; Arakawa, Masahiko; Hasegawa, Sunao; Fujita, Yukihiro; Kadono, Toshihiko

    2012-11-01

    Recent studies of impact craters formed on low-density asteroids led to the proposal of a new crater formation mechanism dominated by pore collapse and compaction. Thus, it is important to study the crater formation process associated with the projectile penetration on porous cohesive targets. Laboratory impact experiments were conducted for a porous gypsum target with porosity of 50%, and flash X-rays were used to visualize the interior of the target for in situ observation of crater formation and projectile penetration. Spherical projectiles made of three different materials, stainless steel, aluminum, and nylon were impacted at 1.9-2.4 km/s (low-velocity impact) and 5.6-6.4 km/s (high-velocity impact) by using a two-stage light-gas gun. Two imaging plates were used to take two X-ray images at a different delay time from the impact moment for one shot. Two types of crater cavity shape were found on the porous gypsum target, that is, penetration holes or hemispherical cavities, depending on the projectile size and density, and the impact velocity. The drag coefficient of a projectile was determined by measuring the penetration depth changing with time, and we found that it was closely related to the crater cavity shape: it was about 0.9 for a penetration hole, while it was 2.3-3.9 for a hemispherical cavity. This large value for a hemispherical cavity could have been caused by the deformation or the disruption of the projectile. The cratering efficiency, ρtVcr(t)/mp, was found to have a power law relationship to the scaling time for crater growth, πt = vit/rp, where vi is the impact velocity, rp is the projectile radius, and t is the time after the impact, and all data for stainless steel and aluminum projectiles merged completely and could be fitted by a power-law equation of ρtVcr(t)/mp=2.69×10-1πt1.10. Furthermore, the scaled crater volume, πV = Vcr_finalρt/mp, where Vcr_final is the final crater cavity volume, ρt is the target density, and mp is the

  3. Natural aerodynamics

    CERN Document Server

    Scorer, R S

    1958-01-01

    Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi

  4. [Acoustic and aerodynamic characteristics of the oesophageal voice].

    Science.gov (United States)

    Vázquez de la Iglesia, F; Fernández González, S

    2005-12-01

    The aim of the study is to determine the physiology and pathophisiology of esophageal voice according to objective aerodynamic and acoustic parameters (quantitative and qualitative parameters). Our subjects were comprised of 33 laryngectomized patients (all male) that underwent aerodynamic, acoustic and perceptual protocol. There is a statistical association between acoustic and aerodynamic qualitative parameters (phonation flow chart type, sound spectrum, perceptual analysis) among quantitative parameters (neoglotic pressure, phonation flow, phonation time, fundamental frequency, maximum intensity sound level, speech rate). Nevertheles, not always such observations bring practical resources to clinical practice. We consider that the facts studied may enable us to add, pragmatically, new resources to the more effective vocal rehabilitation to these patients. The physiology of esophageal voice is well understood by the method we have applied, also seeking for rehabilitation, improving oral communication skills in the laryngectomee population.

  5. Atomic Nuclei Utter Disintegration into Nucleons by High Energy Nuclear Projectiles

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1994-01-01

    The disintegration process of atomic nuclei by high energy nuclear projectiles is described. The physical basis for this process is the passage of hadrons through layers of intranuclear matter accompanied by the nucleon emission from the target nuclei observed in experiments; kinetic energies of the nucleons are from about 20 up to about 400 MeV - in the target nucleus reference system. 22 refs., 3 tabs

  6. Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Candice Frances [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is virtually nonexistent but necessary to ensure adequate protection against injury to the heart and lungs. In this report, we discuss the development of a high-fidelity human torso model, it's merging with the existing Sandia Human Head-Neck Model, and development of the modeling & simulation (M&S) capabilities necessary to simulate wound injury scenarios. Using the new Sandia Human Torso Model, we demonstrate the advantage of virtual simulation in the investigation of wound injury as it relates to the warfighter experience. We present the results of virtual simulations of blast loading and ballistic projectile impact to the tors o with and without notional protective armor. In this manner, we demonstrate the ad vantages of applying a modeling and simulation approach to the investigation of wound injury and relative merit assessments of protective body armor without the need for trial-and-error testing.

  7. Lithic raw material procurement for projectiles points in the prehistory of Uruguay

    Directory of Open Access Journals (Sweden)

    José María López Mazz

    2015-03-01

    Full Text Available This paper focuses on current research on early colonisation of the Atlantic coast of South America during the early Holocene. We present advances in the investigation of raw material procurement at the Rincón de los Indios site, located in the eastern part of Uruguay. The technological studies suggest that some aspects of different styles of projectile points are related with environmental adaptation processes, experienced by the first American people in the New World. The occupation of new spaces and new forms of exploitation of resources changes the organisation of lithic technology. The distance to good quality rocks were critical for the opportunities and economic organisation of hunting groups. The study of changes in lithic procurement strategies for projectile points helps us develop a more comprehensive knowledge of this important social adaptation process which occurred during this period. These patterns started to become stabilised in the latter part of the early Holocene across the extended territory and confirm the efficient land occupation associated an intensive hunter-gatherer economies.

  8. Resonance effects in projectile-electron loss in relativistic collisions with excited atoms

    International Nuclear Information System (INIS)

    Voitkiv, A B

    2005-01-01

    The theory of electron loss from projectile-ions in relativistic ion-atom collisions is extended to the case of collisions with excited atoms. The main feature of such collisions is a resonance which can emerge between electron transitions in the ion and atom. The resonance becomes possible due to the Doppler effect and has a well-defined impact energy threshold. In the resonance case, the ion-atom interaction is transmitted by the radiation field and the range of this interaction becomes extremely long. Because of this the presence of other atoms in the target medium and the size of the space occupied by the medium have to be taken into account and it turns out that microscopic loss cross sections may be strongly dependent on such macroscopic parameters as the target density, temperature and size. We consider both the total and differential loss cross sections and show that the resonance can have a strong impact on the angular and energy distributions of electrons emitted from the projectiles and the total number of electron loss events

  9. Experimental and numerical study of water-filled vessel impacted by flat projectiles

    Science.gov (United States)

    Zhang, Wei; Ren, Peng; Huang, Wei; Gao, Yu Bo

    2014-05-01

    To understand the failure modes and impact resistance of double-layer plates separated by water, a flat-nosed projectile was accelerated by a two-stage light gas gun against a water-filled vessel which was placed in an air-filled tank. Targets consisted of a tank made of two flat 5A06 aluminum alloy plates held by a high strength steel frame. The penetration process was recorded by a digital high-speed camera. The same projectile-target system was also used to fire the targets placed directly in air for comparison. Parallel numerical tests were also carried out. The result indicated that experimental and numerical results were in good agreement. Numerical simulations were able to capture the main physical behavior. It was also found that the impact resistance of double layer plates separated by water was lager than that of the target plates in air. Tearing was the main failure models of the water-filled vessel targets which was different from that of the target plates in air where the shear plugging was in dominate.

  10. Wind turbines. Unsteady aerodynamics and inflow noise

    Energy Technology Data Exchange (ETDEWEB)

    Riget Broe, B.

    2009-12-15

    Aerodynamical noise from wind turbines due to atmospheric turbulence has the highest emphasis in semi-empirical models. However it is an open question whether inflow noise has a high emphasis. This illustrates the need to investigate and improve the semi-empirical model for noise due to atmospheric turbulence. Three different aerodynamical models are investigated in order to estimate the lift fluctuations due to unsteady aerodynamics. Two of these models are investigated to find the unsteady lift distribution or pressure difference as function of chordwise position on the aerofoil. An acoustic model is investigated using a model for the lift distribution as input. The two models for lift distribution are used in the acoustic model. One of the models for lift distribution is for completely anisotropic turbulence and the other for perfectly isotropic turbulence, and so is also the corresponding models for the lift fluctuations derived from the models for lift distribution. The models for lift distribution and lift are compared with pressure data which are obtained by microphones placed flush with the surface of an aerofoil. The pressure data are from two experiments in a wind tunnel, one experiment with a NACA0015 profile and a second with a NACA63415 profile. The turbulence is measured by a triple wired hotwire instrument in the experiment with a NACA0015 profile. Comparison of the aerodynamical models with data shows that the models capture the general characteristics of the measurements, but the data are hampered by background noise from the fan propellers in the wind tunnel. The measurements are in between the completely anisotropic turbulent model and the perfectly isotropic turbulent model. This indicates that the models capture the aerodynamics well. Thus the measurements suggest that the noise due to atmospheric turbulence can be described and modeled by the two models for lift distribution. It was not possible to test the acoustical model by the measurements

  11. Study of uranium dioxyde sputtering induced by multicharged heavy ions at low and very low kinetic energy: projectile charge effect

    International Nuclear Information System (INIS)

    Haranger, F.

    2003-12-01

    Ion beam irradiation of a solid can lead to the emission of neutral or ionized atoms, molecules or clusters from the surface. This comes as a result of the atomic motion in the vicinity of the surface, induced by the transfer of the projectile energy. Then, the study of the sputtering process appears as a means to get a better understanding of the excited matter state around the projectile trajectory. In the case of slow multicharged ions, a strong electronic excitation can be achieved by the projectile neutralization above the solid surface and / or its deexcitation below the surface. Parallel to this, the slowing down of such ions is essentially related to elastic collision with the target atoms. The study of the effect of the initial charge state of slow multicharged ions, in the sputtering process, has been carried out by measuring the absolute angular distributions of emission of uranium atoms from a uranium dioxide surface. The experiments have been performed in two steps. First, the emitted particles are collected onto a substrate during irradiation. Secondly, the surface of the collectors is analyzed by Rutherford Backscattering Spectrometry (RBS). This method allows the characterization of the emission of neutrals, which are the vast majority of the sputtered particles. The results obtained provide an access to the evolution of the sputtering process as a function of xenon projectile ions charge state. The measurements have been performed over a wide kinetic energy range, from 81 down to 1.5 keV. This allowed a clear separation of the contribution of the kinetic energy and initial projectile charge state to the sputtering phenomenon. (author)

  12. Coupled heat transfer model and experiment study of semitransparent barrier materials in aerothermal environment

    Science.gov (United States)

    Wang, Da-Lin; Qi, Hong

    Semi-transparent materials (such as IR optical windows) are widely used for heat protection or transfer, temperature and image measurement, and safety in energy , space, military, and information technology applications. They are used, for instance, ceramic coatings for thermal barriers of spacecrafts or gas turbine blades, and thermal image observation under extreme or some dangerous environments. In this paper, the coupled conduction and radiation heat transfer model is established to describe temperature distribution of semitransparent thermal barrier medium within the aerothermal environment. In order to investigate this numerical model, one semi-transparent sample with black coating was considered, and photothermal properties were measured. At last, Finite Volume Method (FVM) was used to solve the coupled model, and the temperature responses from the sample surfaces were obtained. In addition, experiment study was also taken into account. In the present experiment, aerodynamic heat flux was simulated by one electrical heater, and two experiment cases were designed in terms of the duration of aerodynamic heating. One case is that the heater irradiates one surface of the sample continually until the other surface temperature up to constant, and the other case is that the heater works only 130 s. The surface temperature responses of these two cases were recorded. Finally, FVM model of the coupling conduction-radiation heat transfer was validated based on the experiment study with relative error less than 5%.

  13. Progress in vehicle aerodynamics and thermal management. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Jochen (ed.) [Stuttgart Univ. (DE). Inst. fuer Kraftfahrwesen und Verbrennungsmotoren (IVK); Forschungsinstitut fuer Kraftfahrwesen und Fahrzeugmotoren (FKFS), Stuttgart (Germany)

    2010-07-01

    Vehicle aerodynamics and thermal management are subjects of increasing importance for automotive development especially regarding the necessity to reduce the energy consumption of the vehicle as well as the need to improve ist comfort. This book is intended for engineers, physicists, and mathematicians who work on vehicle aerodynamics. It is also addressed to people in research organizations, at universities and agencies. It may be of interest to technical journalists and to students. (orig.)

  14. Variation in aerodynamic coefficients with altitude

    Directory of Open Access Journals (Sweden)

    Faiza Shahid

    Full Text Available Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD. Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT, hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig. Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number. Similar simulations for a fixed Mach number ‘3’ and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number. Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects. Keywords: Mach number, Reynolds number, Blunt body, Altitude effect, Angle of attacks

  15. Smart Projectiles: Design Guidelines and Development Process Keys to Success

    Science.gov (United States)

    2010-10-01

    about its principal axis. Set forward is the unspringing of the projectile as it leaves the muzzle of the weapon as described in reference 1. In...material properties at even room temperature are unknown or depend upon the mixing of two or more ingredients. The only solution is to create dog ...to setback or are required to hold in tension during set- forward ( muzzle exit), cracks or voids in the explosive that may be compressed and

  16. Aerodynamic research of a racing car based on wind tunnel test and computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Wang Jianfeng

    2018-01-01

    Full Text Available Wind tunnel test and computational fluid dynamics (CFD simulation are two main methods for the study of automotive aerodynamics. CFD simulation software solves the results in calculation by using the basic theory of aerodynamic. Calculation will inevitably lead to bias, and the wind tunnel test can effectively simulate the real driving condition, which is the most effective aerodynamics research method. This paper researches the aerodynamic characteristics of the wing of a racing car. Aerodynamic model of a racing car is established. Wind tunnel test is carried out and compared with the simulation results of computational fluid dynamics. The deviation of the two methods is small, and the accuracy of computational fluid dynamics simulation is verified. By means of CFD software simulation, the coefficients of six aerodynamic forces are fitted and the aerodynamic equations are obtained. Finally, the aerodynamic forces and torques of the racing car travel in bend are calculated.

  17. Numerical study of aerodynamic effects on road vehicles lifting surfaces

    Science.gov (United States)

    Cernat, Mihail Victor; Cernat Bobonea, Andreea

    2017-01-01

    The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.

  18. Destructive behavior of iron oxide in projectile impact

    Science.gov (United States)

    Shang, Wang; Xiaochen, Wang; Quan, Yang; Zhongde, Shan

    2017-12-01

    The damage strain values of Q235-A surface oxide scale were obtained by scanning electron microscopy (SEM/EDS) and universal tensile testing machine. The finite element simulation was carried out to study the destruction effects of oxidation at different impact rates. The results show that the damage value of the oxide strain is 0.08%. With the increase of the projectile velocity, the damage area of the oxide scale is increased, and the damage area is composed of the direct destruction area and the indirect failure area. The indirect damage area is caused by the stress/strain to the surrounding expansion after the impact of the steel body.

  19. Europa Kinetic Ice Penetrator System for Hyper Velocity Instrument Deposition

    Science.gov (United States)

    Robinson, Tessa

    Landing of a payload on any celestial body has only used a soft landing system. These systems use retro rockets and atmospheric components to match velocity and then overcome local gravity in order to land on the surface. This is a proposed system for depositing instrumentation on an icy surface at hypervelocity using the properties of different projectiles and ejecta properties that would negate the need for a soft landing system. This system uses two projectiles, a cylinder with inner aerodynamic surfaces and a payload section with a conical nose and aerodynamic surfaces. The cylinder lands first, creates a region of fractured ice, and directs that fractured material into a collimated ejecta stream. The payload travels through the ejecta and lands in the fractured region. The combination of the ejecta stream and the softened target material reduces the impact acceleration to within survivable levels.

  20. TAD- THEORETICAL AERODYNAMICS PROGRAM

    Science.gov (United States)

    Barrowman, J.

    1994-01-01

    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.