WorldWideScience

Sample records for projected temperature trends

  1. Updating temperature and salinity mean values and trends in the Western Mediterranean: The RADMED project

    Science.gov (United States)

    Vargas-Yáñez, M.; García-Martínez, M. C.; Moya, F.; Balbín, R.; López-Jurado, J. L.; Serra, M.; Zunino, P.; Pascual, J.; Salat, J.

    2017-09-01

    The RADMED project is devoted to the implementation and maintenance of a multidisciplinary monitoring system around the Spanish Mediterranean waters. This observing system is based on periodic multidisciplinary cruises covering the coastal waters, continental shelf and slope waters and some deep stations (>2000 m) from the Westernmost Alboran Sea to Barcelona in the Catalan Sea, including the Balearic Islands. This project was launched in 2007 unifying and extending some previous monitoring projects which had a more reduced geographical coverage. Some of the time series currently available extend from 1992, while the more recent ones were initiated in 2007. The present work updates the available time series up to 2015 (included) and shows the capability of these time series for two main purposes: the calculation of mean values for the properties of main water masses around the Spanish Mediterranean, and the study of the interannual and decadal variability of such properties. The data set provided by the RADMED project has been merged with historical data from the MEDAR/MEDATLAS data base for the calculation of temperature and salinity trends from 1900 to 2015. The analysis of these time series shows that the intermediate and deep layers of the Western Mediterranean have increased their temperature and salinity with an acceleration of the warming and salting trends from 1943. Trends for the heat absorbed by the water column for the 1943-2015 period, range between 0.2 and 0.6 W/m2 depending on the used methodology. The temperature and salinity trends for the same period and for the intermediate layer are 0.002 °C/yr and 0.001 yr-1 respectively. Deep layers warmed and increased their salinity at a rate of 0.004 °C/yr and 0.001 yr-1.

  2. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections

    International Nuclear Information System (INIS)

    Gourdji, Sharon M; Sibley, Adam M; Lobell, David B

    2013-01-01

    Long-term warming trends across the globe have shifted the distribution of temperature variability, such that what was once classified as extreme heat relative to local mean conditions has become more common. This is also true for agricultural regions, where exposure to extreme heat, particularly during key growth phases such as the reproductive period, can severely damage crop production in ways that are not captured by most crop models. Here, we analyze exposure of crops to physiologically critical temperatures in the reproductive stage (T crit ), across the global harvested areas of maize, rice, soybean and wheat. Trends for the 1980–2011 period show a relatively weak correspondence (r = 0.19) between mean growing season temperature and T crit exposure trends, emphasizing the importance of separate analyses for T crit . Increasing T crit exposure in the past few decades is apparent for wheat in Central and South Asia and South America, and for maize in many diverse locations across the globe. Maize had the highest percentage (15%) of global harvested area exposed to at least five reproductive days over T crit in the 2000s, although this value is somewhat sensitive to the exact temperature used for the threshold. While there was relatively little sustained exposure to reproductive days over T crit for the other crops in the past few decades, all show increases with future warming. Using projections from climate models we estimate that by the 2030s, 31, 16, and 11% respectively of maize, rice, and wheat global harvested area will be exposed to at least five reproductive days over T crit in a typical year, with soybean much less affected. Both maize and rice exhibit non-linear increases with time, with total area exposed for rice projected to grow from 8% in the 2000s to 27% by the 2050s, and maize from 15 to 44% over the same period. While faster development should lead to earlier flowering, which would reduce reproductive extreme heat exposure for wheat on a

  3. Estimating trends in the global mean temperature record

    Science.gov (United States)

    Poppick, Andrew; Moyer, Elisabeth J.; Stein, Michael L.

    2017-06-01

    Given uncertainties in physical theory and numerical climate simulations, the historical temperature record is often used as a source of empirical information about climate change. Many historical trend analyses appear to de-emphasize physical and statistical assumptions: examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for internal variability in nonparametric rather than parametric ways. However, given a limited data record and the presence of internal variability, estimating radiatively forced temperature trends in the historical record necessarily requires some assumptions. Ostensibly empirical methods can also involve an inherent conflict in assumptions: they require data records that are short enough for naive trend models to be applicable, but long enough for long-timescale internal variability to be accounted for. In the context of global mean temperatures, empirical methods that appear to de-emphasize assumptions can therefore produce misleading inferences, because the trend over the twentieth century is complex and the scale of temporal correlation is long relative to the length of the data record. We illustrate here how a simple but physically motivated trend model can provide better-fitting and more broadly applicable trend estimates and can allow for a wider array of questions to be addressed. In particular, the model allows one to distinguish, within a single statistical framework, between uncertainties in the shorter-term vs. longer-term response to radiative forcing, with implications not only on historical trends but also on uncertainties in future projections. We also investigate the consequence on inferred uncertainties of the choice of a statistical description of internal variability. While nonparametric methods may seem to avoid making explicit assumptions, we demonstrate how even misspecified parametric statistical methods, if attuned to the

  4. Assessing trends in observed and modelled climate extremes over Australia in relation to future projections

    International Nuclear Information System (INIS)

    Alexander, Lisa

    2007-01-01

    Full text: Nine global coupled climate models were assessed for their ability to reproduce observed trends in a set of indices representing temperature and precipitation extremes over Australia. Observed trends for 1957-1999 were compared with individual and multi-modelled trends calculated over the same period. When averaged across Australia the magnitude of trends and interannual variability of temperature extremes were well simulated by most models, particularly for the warm nights index. Except for consecutive dry days, the majority of models also reproduced the correct sign of trend for precipitation extremes. A bootstrapping technique was used to show that most models produce plausible trends when averaged over Australia, although only heavy precipitation days simulated from the multi-model ensemble showed significant skill at reproducing the observed spatial pattern of trends. Two of the models with output from different forcings showed that only with anthropogenic forcing included could the models capture the observed areally averaged trend for some of the temperature indices, but the forcing made little difference to the models' ability to reproduce the spatial pattern of trends over Australia. Future projected changes in extremes using three emissions scenarios were also analysed. Australia shows a shift towards significant warming of temperature extremes with much longer dry spells interspersed with periods of increased extreme precipitation irrespective of the scenario used. More work is required to determine whether regional projected changes over Australia are robust

  5. Temperature trends with reduced impact of ocean air temperature

    DEFF Research Database (Denmark)

    Lansner, Frank; Pedersen, Jens Olaf Pepke

    Temperature data 1900-2010 from meteorological stations across the world have been analysed and it has been found that all areas generally have two different valid temperature trends. Coastal stations and hill stations facing dominant ocean winds are normally more warm-trended than the valley sta...

  6. Temperature trends with reduced impact of ocean air temperature

    DEFF Research Database (Denmark)

    Lansner, Frank; Pedersen, Jens Olaf Pepke

    2018-01-01

    Temperature data 1900–2010 from meteorological stations across the world have been analyzed and it has been found that all land areas generally have two different valid temperature trends. Coastal stations and hill stations facing ocean winds are normally more warm-trended than the valley station...

  7. Canadian snow and sea ice: historical trends and projections

    Science.gov (United States)

    Mudryk, Lawrence R.; Derksen, Chris; Howell, Stephen; Laliberté, Fred; Thackeray, Chad; Sospedra-Alfonso, Reinel; Vionnet, Vincent; Kushner, Paul J.; Brown, Ross

    2018-04-01

    The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state of the art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. Here, we present an assessment from the CanSISE Network on trends in the historical record of snow cover (fraction, water equivalent) and sea ice (area, concentration, type, and thickness) across Canada. We also assess projected changes in snow cover and sea ice likely to occur by mid-century, as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of Earth system models. The historical datasets show that the fraction of Canadian land and marine areas covered by snow and ice is decreasing over time, with seasonal and regional variability in the trends consistent with regional differences in surface temperature trends. In particular, summer sea ice cover has decreased significantly across nearly all Canadian marine regions, and the rate of multi-year ice loss in the Beaufort Sea and Canadian Arctic Archipelago has nearly doubled over the last 8 years. The multi-model consensus over the 2020-2050 period shows reductions in fall and spring snow cover fraction and sea ice concentration of 5-10 % per decade (or 15-30 % in total), with similar reductions in winter sea ice concentration in both Hudson Bay and eastern Canadian waters. Peak pre-melt terrestrial snow water equivalent reductions of up to 10 % per decade (30 % in total) are projected across southern Canada.

  8. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan

    Science.gov (United States)

    Khan, Najeebullah; Shahid, Shamsuddin; Ismail, Tarmizi bin; Wang, Xiao-Jun

    2018-06-01

    Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960-2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17-0.37 °C/decade) compared to maximum temperature (0.17-0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (- 0.15 to - 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.

  9. Stratospheric Temperature Trends Observed by TIMED/SABER

    Science.gov (United States)

    Xian, T.; Tan, R.

    2017-12-01

    Trends in the stratospheric temperature are studied based on the temperature profile observation from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). The spatially trends are evaluated in different time scales ranging from decadal to monthly resolved. The results indicate a signature of BDC acceleration. There are strong warming trends (up to 9 K/decade) in the middle to upper stratosphere in the high latitude spring, summer, and autumn seasons, accompanied by strong cooling trends in the lower stratosphere. Besides, strong warming trends occurs through the whole stratosphere over the Southern Hemisphere, which confirms Antarctic ozone layer healing since 2000. In addition, the results demonstrate a significant warming trends in the middle of tropical stratosphere, which becomes strongest during June-July-August.

  10. Projections of rapidly rising surface temperatures over Africa under low mitigation

    International Nuclear Information System (INIS)

    Engelbrecht, Francois; Bopape, Mary-Jane; Naidoo, Mogesh; Garland, Rebecca; Adegoke, Jimmy; Thatcher, Marcus; McGregor, John; Katzfey, Jack; Werner, Micha; Ichoku, Charles; Gatebe, Charles

    2015-01-01

    An analysis of observed trends in African annual-average near-surface temperatures over the last five decades reveals drastic increases, particularly over parts of the subtropics and central tropical Africa. Over these regions, temperatures have been rising at more than twice the global rate of temperature increase. An ensemble of high-resolution downscalings, obtained using a single regional climate model forced with the sea-surface temperatures and sea-ice fields of an ensemble of global circulation model (GCM) simulations, is shown to realistically represent the relatively strong temperature increases observed in subtropical southern and northern Africa. The amplitudes of warming are generally underestimated, however. Further warming is projected to occur during the 21st century, with plausible increases of 4–6 °C over the subtropics and 3–5 °C over the tropics by the end of the century relative to present-day climate under the A2 (a low mitigation) scenario of the Special Report on Emission Scenarios. High impact climate events such as heat-wave days and high fire-danger days are consistently projected to increase drastically in their frequency of occurrence. General decreases in soil-moisture availability are projected, even for regions where increases in rainfall are plausible, due to enhanced levels of evaporation. The regional dowscalings presented here, and recent GCM projections obtained for Africa, indicate that African annual-averaged temperatures may plausibly rise at about 1.5 times the global rate of temperature increase in the subtropics, and at a somewhat lower rate in the tropics. These projected increases although drastic, may be conservative given the model underestimations of observed temperature trends. The relatively strong rate of warming over Africa, in combination with the associated increases in extreme temperature events, may be key factors to consider when interpreting the suitability of global mitigation targets in terms of

  11. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, M. M.; Orth, R.; Cheruy, F.; Hagemann, S.; Lorenz, R.; Hurk, B. J. J. M.; Seneviratne, S. I.

    2017-02-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate the role of soil moisture-temperature feedbacks for this response based on multimodel experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of the hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America. Soil moisture trends are more important for this response than short-term soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections.

  12. Evaluation of trends in high temperature extremes in north-western Europe in regional climate models

    International Nuclear Information System (INIS)

    Min, E; Hazeleger, W; Van Oldenborgh, G J; Sterl, A

    2013-01-01

    Projections of future changes in weather extremes on the regional and local scale depend on a realistic representation of trends in extremes in regional climate models (RCMs). We have tested this assumption for moderate high temperature extremes (the annual maximum of the daily maximum 2 m temperature, T ann.max ). Linear trends in T ann.max from historical runs of 14 RCMs driven by atmospheric reanalysis data are compared with trends in gridded station data. The ensemble of RCMs significantly underestimates the observed trends over most of the north-western European land surface. Individual models do not fare much better, with even the best performing models underestimating observed trends over large areas. We argue that the inability of RCMs to reproduce observed trends is probably not due to errors in large-scale circulation. There is also no significant correlation between the RCM T ann.max trends and trends in radiation or Bowen ratio. We conclude that care should be taken when using RCM data for adaptation decisions. (letter)

  13. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, Martha Marie; Orth, René; Cheruy, Frederique; Hagemann, Stefan; Lorenz, Ruth; van den Hurk, Bart; Seneviratne, Sonia Isabelle

    2017-04-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate here the role of soil moisture-temperature feedbacks for this response based on multi-model experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate physical processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America and between 42%-52% in Amazonia, Northern Australia and Southern Africa. Soil moisture trends (multi-decadal soil moisture variability) are more important for this response than short-term (e.g. seasonal, interannual) soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections. Vogel, M.M. et al.,2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, accepted.

  14. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied to iso...

  15. Trends in continental temperature and humidity directly linked to ocean warming.

    Science.gov (United States)

    Byrne, Michael P; O'Gorman, Paul A

    2018-05-08

    In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.

  16. Temperature and ice layer trends in the summer middle atmosphere

    Science.gov (United States)

    Lübken, F.-J.; Berger, U.

    2012-04-01

    We present results from our LIMA model (Leibniz Institute Middle Atmosphere Model) which nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers known as noctilucent clouds. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere. We study temperature trends in the mesosphere at middle and polar latitudes and compared with temperature trends from satellites, lidar, and phase height observations. For the first time large observed temperature trends in the summer mesosphere can be reproduced and explained by a model. As will be shown, stratospheric ozone has a major impact on temperature trends in the summer mesosphere. The temperature trend is not uniform in time: it is moderate from 1961 (the beginning of our record) until the beginning of the 1980s. Thereafter, temperatures decrease much stronger until the mid 1990s. Thereafter, temperatures are nearly constant or even increase with time. As will be shown, trends in ozone and carbon dioxide explain most of this behavior. Ice layers in the summer mesosphere are very sensitive to background conditions and are therefore considered to be appropriate tracers for long term variations in the middle atmosphere. We use LIMA background conditions to determine ice layer characteristics in the mesopause region. We compare our results with measurements, for example with albedos from the SBUV satellites, and show that we can nicely reproduce observed trends. It turns out that temperature trends are positive (negative) in the upper (lower) part of the ice layer regime. This complicates an interpretation of NLC long term variations in terms of temperature trends.

  17. Interhemispheric Temperature Asymmetry in Historical Observations and Future Projections

    Science.gov (United States)

    Friedman, A. R.; Hwang, Y.; Chiang, J. C.; Frierson, D. M.

    2013-12-01

    The surface temperature contrast between the northern and southern hemispheres -- the interhemispheric temperature asymmetry (ITA) -- is an emerging indicator of global climate change, especially relevant to the latitude of the tropical rain bands. We investigate the ITA over historical observations and in Coupled Model Intercomparison Project phase 5 (CMIP5) historical simulations and future projections. We find that the uneven spatial impacts of greenhouse gas forcing cause amplified warming in the Arctic and northern landmasses, resulting in an increase of the ITA. However, anthropogenic sulfate aerosols, which are disproportionately emitted in the northern hemisphere, masked these effects on the ITA until around 1980. The implementation of air pollution regulations in North America and Europe combined with increased global emissions of greenhouse gases have resulted in a significant positive ITA trend since 1980. The CMIP5 historical multimodel ensembles simulate this positive ITA trend, though not its full magnitude. We explore how natural variability may account for some of the differences between the simulated and observed ITA. Future simulations project a substantial increase of the ITA over the twenty-first century, well outside its twentieth-century variability. This is largely in response to continued greenhouse gas emissions, though anthropogenic aerosol emissions are also important in some scenarios. We discuss the potential implications of this northern warming in causing a northward shift in tropical rainfall.

  18. Sea surface temperature trends in the coastal ocean

    OpenAIRE

    Amos, C.L.; Al-Rashidi, Thamer B.; Rakha, Karim; El-Gamily, Hamdy; Nicholls, R.J.

    2013-01-01

    Sea surface temperature (SST) trends in the coastal zone are shown to be increasing at rates that exceed the global trends by up to an order of magnitude. This paper compiles some of the evidence of the trends published in the literature. The evidence suggests that urbanization in the coastal hinterland is having a direct effect on SST through increased temperatures of river and lake waters, as well as through heated run-off and thermal effluent discharges from coastal infrastructure. These l...

  19. Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5

    OpenAIRE

    Alexander, Lisa V.; Arblaster, Julie M.

    2017-01-01

    This study expands previous work on climate extremes in Australia by investigating the simulation of a large number of extremes indices in the CMIP5 multi-model dataset and comparing them to multiple observational datasets over a century of observed data using consistent methods. We calculate 24 indices representing extremes of temperature and precipitation from 1911 to 2010 over Australia and show that there have been significant observed trends in temperature extremes associated with warmin...

  20. Projections of Rainfall and Temperature from CMIP5 Models over BIMSTEC Countries

    Science.gov (United States)

    Pattnayak, K. C.; Kar, S. C.; Ragi, A. R.

    2014-12-01

    Rainfall and surface temperature are the most important climatic variables in the context of climate change. Thus, these variables simulated from fifth phase of the Climate Model Inter-comparison Project (CMIP5) models have been compared against Climatic Research Unit (CRU) observed data and projected for the twenty first century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 emission scenarios. Results for the seven countries under Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) such as Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand have been examined. Six CMIP5 models namely GFDL-CM3, GFDL-ESM2M, GFDL-ESM2G, HadGEM2-AO, HadGEM2-CC and HadGEM2-ES have been chosen for this study. The study period has been considered is from 1861 to 2100. From this period, initial 145 years i.e. 1861 to 2005 is reference or historical period and the later 95 years i.e. 2005 to 2100 is projected period. The climate change in the projected period has been examined with respect to the reference period. In order to validate the models, the mean annual rainfall and temperature has been compared with CRU over the reference period 1901 to 2005. Comparison reveals that most of the models are able to capture the spatial distribution of rainfall and temperature over most of the regions of BIMSTEC countries. Therefore these model data can be used to study the future changes in the 21st Century. Four out six models shows that the rainfall over Central and North India, Thailand and eastern part of Myanmar shows decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka shows an increasing trend in both RCP 4.5 and 8.5 scenarios. In case of temperature, all of the models show an increasing trend over all the BIMSTEC countries in both scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. Annual cycles of rainfall and temperature over Bangladesh, Myanmar and Thailand

  1. Wet-bulb, dew point, and air temperature trends in Spain

    Science.gov (United States)

    Moratiel, R.; Soriano, B.; Centeno, A.; Spano, D.; Snyder, R. L.

    2017-10-01

    This study analyses trends of mean ( T m), maximum ( T x), minimum ( T n), dew point ( T d), and wet-bulb temperatures ( T w) on an annual, seasonal, and monthly time scale over Spain during the period 1981-2010. The main purpose was to determine how temperature and humidity changes are impacting on T w, which is probably a better measure of climate change than temperature alone. In this study, 43 weather stations were used to detect data trends using the nonparametric Mann-Kendall test and the Sen method to estimate the slope of trends. Significant linear trends observed for T m, T x, and T n versus year were 56, 58, and 47 % of the weather stations, respectively, with temperature ranges between 0.2 and 0.4 °C per decade. The months with bigger trends were April, May, June, and July with the highest trend for T x. The spatial behaviour of T d and T w was variable, with various locations showing trends from -0.6 to +0.3 °C per decade for T d and from -0.4 to +0.5 °C per decade for T w. Both T d and T w showed negative trends for July, August, September, November, and December. Comparing the trends versus time of each variable versus each of the other variables exhibited poor relationships, which means you cannot predict the trend of one variable from the trend of another variable. The trend of T x was not related to the trend of T n. The trends of T x, T m, and T n versus time were unrelated to the trends versus time of either T d or T w. The trend of T w showed a high coefficient of determination with the trend of T d with an annual value of R 2 = 0.86. Therefore, the T w trend is more related to changes in humidity than temperature.

  2. Population and trends in the global mean temperature

    NARCIS (Netherlands)

    Tol, Richard S.J.

    2017-01-01

    The Fisher ideal index, developed to measure price inflation, is applied to define a population-weighted temperature trend. This method has the advantages that the trend is representative for the population distribution throughout the sample but without conflating the trend in the population

  3. Is the global mean temperature trend too low?

    Science.gov (United States)

    Venema, Victor; Lindau, Ralf

    2015-04-01

    The global mean temperature trend may be biased due to similar technological and economic developments worldwide. In this study we want to present a number of recent results that suggest that the global mean temperature trend might be steeper as generally thought. In the Global Historical Climate Network version 3 (GHCNv3) the global land surface temperature is estimated to have increased by about 0.8°C between 1880 and 2012. In the raw temperature record, the increase is 0.6°C; the 0.2°C difference is due to homogenization adjustments. Given that homogenization can only reduce biases, this 0.2°C stems from a partial correction of bias errors and it seems likely that the real non-climatic trend bias will be larger. Especially in regions with sparser networks, homogenization will not be able to improve the trend much. Thus if the trend bias in these regions is similar to the bias for more dense networks (industrialized countries), one would expect the real bias to be larger. Stations in sparse networks are representative for a larger region and are given more weight in the computation of the global mean temperature. If all stations are given equal weight, the homogenization adjustments of the GHCNv3 dataset are about 0.4°C per century. In the subdaily HadISH dataset one break with mean size 0.12°C is found every 15 years for the period 1973-2013. That would be a trend bias of 0.78°C per century on a station by station basis. Unfortunately, these estimates strongly focus on Western countries having more stations. It is known from the literature that rich countries have a (statistically insignificant) stronger trend in the global datasets. Regional datasets can be better homogenized than global ones, the main reason being that global datasets do not contain all stations known to the weather services. Furthermore, global datasets use automatic homogenization methods and have less or no metadata. Thus while regional data can be biased themselves, comparing them

  4. Estimation of river and stream temperature trends under haphazard sampling

    Science.gov (United States)

    Gray, Brian R.; Lyubchich, Vyacheslav; Gel, Yulia R.; Rogala, James T.; Robertson, Dale M.; Wei, Xiaoqiao

    2015-01-01

    Long-term temporal trends in water temperature in rivers and streams are typically estimated under the assumption of evenly-spaced space-time measurements. However, sampling times and dates associated with historical water temperature datasets and some sampling designs may be haphazard. As a result, trends in temperature may be confounded with trends in time or space of sampling which, in turn, may yield biased trend estimators and thus unreliable conclusions. We address this concern using multilevel (hierarchical) linear models, where time effects are allowed to vary randomly by day and date effects by year. We evaluate the proposed approach by Monte Carlo simulations with imbalance, sparse data and confounding by trend in time and date of sampling. Simulation results indicate unbiased trend estimators while results from a case study of temperature data from the Illinois River, USA conform to river thermal assumptions. We also propose a new nonparametric bootstrap inference on multilevel models that allows for a relatively flexible and distribution-free quantification of uncertainties. The proposed multilevel modeling approach may be elaborated to accommodate nonlinearities within days and years when sampling times or dates typically span temperature extremes.

  5. Integrated Project Delivery (IPD Research Trends.

    Directory of Open Access Journals (Sweden)

    Kahvandi, Z.

    2017-07-01

    Full Text Available Integrated Project Delivery (IPD is introduced as a vibrant approach to enhance project implementation, having particular position in recent studies among construction researchers. This study analyzes the research trends on the field of IPD to provide an appropriate vision for future researchers in this specialized field. While so far no comprehensive research has been done in this field, this study provides a comprehensive review of existing studies through in-depth literature review method. This research evaluates studies conducted in the field of IPD, which is a basis for future researchers to improve conditions of IPD implementation in different countries. For that this study Using library studies, the trend of researches conducted on various concepts and domains during various years, has been investigated. Future studies can simply use the outputs of this research to shape their research flow on establishing continuing progress of IPD. The data obtained from descriptive analyses are illustrated quantitatively, followed by comprehensive analyses and discussion of the results. Moreover, this study concluded that during recent years, the trend of studies conducted about IPD has increased, particularly articles examined challenges. In the next step, more studies have been performed in the field of construction. Those articles are preferred that have evaluated principles, challenges, and solutions for resolving barriers. Proper IPD implementation facilitates enhanced share of information and early identification of stakeholders through a proper timing as vital keys to realize objectives of the construction projects, reduce risks, and increase the chance of project success.

  6. On the urban heat island effect dependence on temperature trends

    International Nuclear Information System (INIS)

    Camilloni, I.; Barros, V.

    1997-01-01

    For US, Argentine and Australian cities, yearly mean urban to rural temperature differences (ΔT u-r ) and rural temperatures (T r ) are negatively correlated in almost every case, suggesting that urban heat island intensity depends, among other parameters on the temperature itself. This negative correlation is related to the fact that interannual variability of temperature is generally lower in urban environments than in rural areas. This seems to hold true at low frequencies leading to opposite trends in the two variables. Hence, urban stations are prone to have lower trends in absolute value than rural ones. Therefore, regional data sets including records from urban locations, in addition to urban growth bias may have a second type of urban bias associated with temperature trends. A bulk estimate of this second urban bias trend for the contiguous United States during 1901-1984 indicates that it could be of the same order as the urban growth bias and of opposite sign. If these results could be extended to global data, it could be expected that the spurious influence of urban growth on global temperature trends during warming periods will be offset by the diminishing of the urban heat island intensity. 36 refs., 7 figs., 2 tabs

  7. Trend analysis of air temperature and precipitation time series over Greece: 1955-2010

    Science.gov (United States)

    Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.

    2012-04-01

    In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.

  8. Evaluation of CMIP5 Ability to Reproduce 20th Century Regional Trends in Surface Air Temperature and Precipitation over CONUS

    Science.gov (United States)

    Lee, J.; Waliser, D. E.; Lee, H.; Loikith, P. C.; Kunkel, K.

    2017-12-01

    Monitoring temporal changes in key climate variables, such as surface air temperature and precipitation, is an integral part of the ongoing efforts of the United States National Climate Assessment (NCA). Climate models participating in CMIP5 provide future trends for four different emissions scenarios. In order to have confidence in the future projections of surface air temperature and precipitation, it is crucial to evaluate the ability of CMIP5 models to reproduce observed trends for three different time periods (1895-1939, 1940-1979, and 1980-2005). Towards this goal, trends in surface air temperature and precipitation obtained from the NOAA nClimGrid 5 km gridded station observation-based product are compared during all three time periods to the 206 CMIP5 historical simulations from 48 unique GCMs and their multi-model ensemble (MME) for NCA-defined climate regions during summer (JJA) and winter (DJF). This evaluation quantitatively examines the biases of simulated trends of the spatially averaged temperature and precipitation in the NCA climate regions. The CMIP5 MME reproduces historical surface air temperature trends for JJA for all time period and all regions, except the Northern Great Plains from 1895-1939 and Southeast during 1980-2005. Likewise, for DJF, the MME reproduces historical surface air temperature trends across all time periods over all regions except the Southeast from 1895-1939 and the Midwest during 1940-1979. The Regional Climate Model Evaluation System (RCMES), an analysis tool which supports the NCA by providing access to data and tools for regional climate model validation, facilitates the comparisons between the models and observation. The RCMES Toolkit is designed to assist in the analysis of climate variables and the procedure of the evaluation of climate projection models to support the decision-making processes. This tool is used in conjunction with the above analysis and results will be presented to demonstrate its capability to

  9. Projections of Seasonal Patterns in Temperature- Related Deaths for Manhattan, New York

    Science.gov (United States)

    Li, Tiantian; Horton, Radley M.; Kinney, Patrick L.

    2013-01-01

    Global average temperatures have been rising for the past half-century, and the warming trend has accelerated in recent decades. Further warming is expected over the next few decades, with significant regional variations. These warming trends will probably result in more frequent, intense and persistent periods of hot temperatures in summer, and generally higher temperatures in winter. Daily death counts in cities increase markedly when temperatures reach levels that are very high relative to what is normal in a given location. Relatively cold temperatures also seem to carry risk. Rising temperatures may result in more heat-related mortality but may also reduce cold-related mortality, and the net impact on annual mortality remains uncertain. Here we use 16 downscaled global climate models and two emissions scenarios to estimate present and future seasonal patterns in temperature-related mortality in Manhattan, New York. All 32 projections yielded warm-season increases and cold-season decreases in temperature-related mortality, with positive net annual temperature-related deaths in all cases. Monthly analyses showed that the largest percentage increases may occur in May and September. These results suggest that, over a range of models and scenarios of future greenhouse gas emissions, increases in heat-related mortality could outweigh reductions in cold-related mortality, with shifting seasonal patterns.

  10. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change

  11. Spatio-temporal long-term (1950-2009) temperature trend analysis in North Carolina, United States

    Science.gov (United States)

    Sayemuzzaman, Mohammad; Jha, Manoj K.; Mekonnen, Ademe

    2015-04-01

    This study analyzed long-term (1950-2009) annual and seasonal time series data of maximum and minimum temperature from 249 uniformly distributed stations across the State of North Carolina, United States. The Mann-Kendall and Theil-Sen approach were applied to quantify the significance and magnitude of trend, respectively. A pre-whitening technique was applied to eliminate the effect of lag-1 serial correlation. For most stations over the period of the past 60 years, the difference between minimum and maximum temperatures was found decreasing with an overall increasing trend in the mean temperature. However, significant trends (confidence level ≥ 95 %) in the mean temperature analysis were detected only in 20, 3, 23, and 20 % of the stations in summer, winter, autumn, and spring, respectively. The magnitude of the highest warming trend in minimum temperature and the highest cooling trend in maximum temperature was +0.073 °C/year in the autumn season and -0.12 °C/year in the summer season, respectively. Additional analysis in mean temperature trend was conducted on three regions of North Carolina (mountain, piedmont, and coastal). The results revealed a warming trend for the coastal zone, a cooling trend for the mountain zone, and no distinct trend for the piedmont zone. The Sequential Mann-Kendall test results indicated that the significant increasing trends in minimum temperature and decreasing trend in maximum temperature had begun around 1970 and 1960 (change point), respectively, in most of the stations. Finally, the comparison between mean surface air temperature (SAT) and the North Atlantic Oscillation (NAO) concluded that the variability and trend in SAT can be explained partially by the NAO index for North Carolina.

  12. COMPARISON OF TREND PROJECTION METHODS AND BACKPROPAGATION PROJECTIONS METHODS TREND IN PREDICTING THE NUMBER OF VICTIMS DIED IN TRAFFIC ACCIDENT IN TIMOR TENGAH REGENCY, NUSA TENGGARA

    Directory of Open Access Journals (Sweden)

    Aleksius Madu

    2016-10-01

    Full Text Available The purpose of this study is to predict the number of traffic accident victims who died in Timor Tengah Regency with Trend Projection method and Backpropagation method, and compare the two methods based on the degree of guilt and predict the number traffic accident victims in the Timor Tengah Regency for the coming year. This research was conducted in Timor Tengah Regency where data used in this study was obtained from Police Unit in Timor Tengah Regency. The data is on the number of traffic accidents in Timor Tengah Regency from 2000 – 2013, which is obtained by a quantitative analysis with Trend Projection and Backpropagation method. The results of the data analysis predicting the number of traffic accidents victims using Trend Projection method obtained the best model which is the quadratic trend model with equation Yk = 39.786 + (3.297 X + (0.13 X2. Whereas by using back propagation method, it is obtained the optimum network that consists of 2 inputs, 3 hidden screens, and 1 output. Based on the error rates obtained, Back propagation method is better than the Trend Projection method which means that the predicting accuracy with Back propagation method is the best method to predict the number of traffic accidents victims in Timor Tengah Regency. Thus obtained predicting the numbers of traffic accident victims for the next 5 years (Years 2014-2018 respectively - are 106 person, 115 person, 115 person, 119 person and 120 person.   Keywords: Trend Projection, Back propagation, Predicting.

  13. Future risk assessment by estimating historical heat wave trends with projected heat accumulation using SimCLIM climate model in Pakistan

    Science.gov (United States)

    Nasim, Wajid; Amin, Asad; Fahad, Shah; Awais, Muhammad; Khan, Naeem; Mubeen, Muhammad; Wahid, Abdul; Turan, Veysel; Rehman, Muhammad Habibur; Ihsan, Muhammad Zahid; Ahmad, Shakeel; Hussain, Sajjad; Mian, Ishaq Ahmad; Khan, Bushra; Jamal, Yousaf

    2018-06-01

    Climate change has adverse effects at global, regional and local level. Heat wave events have serious contribution for global warming and natural hazards in Pakistan. Historical (1997-2015) heat wave were analyzed over different provinces (Punjab, Sindh and Baluchistan) of Pakistan to identify the maximum temperature trend. Heat accumulation in Pakistan were simulated by the General Circulation Model (GCM) combined with 3 GHG (Green House Gases) Representative Concentration Pathways (RCPs) (RCP-4.5, 6.0, and 8.5) by using SimCLIM model (statistical downscaling model for future trend projections). Heat accumulation was projected for year 2030, 2060, and 2090 for seasonal and annual analysis in Pakistan. Heat accumulation were projected to increase by the baseline year (1995) was represented in percentage change. Projection shows that Sindh and southern Punjab was mostly affected by heat accumulation. This study identified the rising trend of heat wave over the period (1997-2015) for Punjab, Sindh and Baluchistan (provinces of Pakistan), which identified that most of the meteorological stations in Punjab and Sindh are highly prone to heat waves. According to model projection; future trend of annual heat accumulation, in 2030 was increased 17%, 26%, and 32% but for 2060 the trends were reported by 54%, 49%, and 86% for 2090 showed highest upto 62%, 75%, and 140% for RCP-4.5, RCP-6.0, and RCP-8.5, respectively. While seasonal trends of heat accumulation were projected to maximum values for monsoon and followed by pre-monsoon and post monsoon. Heat accumulation in monsoon may affect the agricultural activities in the region under study.

  14. Spatiotemporal trends in mean temperatures and aridity index over Rwanda

    Science.gov (United States)

    Muhire, I.; Ahmed, F.

    2016-01-01

    This study aims at quantifying the trends in mean temperatures and aridity index over Rwanda for the period of 1961-1992, based on analysis of climatic data (temperatures, precipitations, and potential evapotranspiration). The analysis of magnitude and significance of trends in temperatures and aridity index show the degree of climate change and mark the level of vulnerability to extreme events (e.g., droughts) in different areas of the country. The study reveals that mean temperatures increased in most parts of the country, with a significant increase observed in the eastern lowlands and in the southwestern parts. The highlands located in the northwest and the Congo-Nile crest showed a nonsignificant increase in mean temperatures. Aridity index increased only in March, April, October, and November, corresponding with the rainy seasons. The remaining months of the year showed a decreasing trend. At an annual resolution, the highlands and the western region showed a rise in aridity index with a decreasing pattern over the eastern lowlands and the central plateau. Generally, the highlands presented a nonsignificant increase in mean temperatures and aridity index especially during the rainy seasons. The eastern lowlands showed a significant increase in mean temperatures and decreasing trends in aridity index. Therefore, these areas are bound to experience more droughts, leading to reduced water and consequent decline in agricultural production. On the other hand, the north highlands and southwest region will continue to be more productive.

  15. Spatiotemporal trends in extreme rainfall and temperature indices over Upper Tapi Basin, India

    Science.gov (United States)

    Sharma, Priyank J.; Loliyana, V. D.; S. R., Resmi; Timbadiya, P. V.; Patel, P. L.

    2017-12-01

    The flood risk across the globe is intensified due to global warming and subsequent increase in extreme temperature and precipitation. The long-term trends in extreme rainfall (1944-2013) and temperature (1969-2012) indices have been investigated at annual, seasonal, and monthly time scales using nonparametric Mann-Kendall (MK), modified Mann-Kendall (MMK), and Sen's slope estimator tests. The extreme rainfall and temperature indices, recommended by the Expert Team on Climate Change Detection Monitoring Indices (ETCCDMI), have been analyzed at finer spatial scales for trend detection. The results of trend analyses indicate decreasing trend in annual total rainfall, significant decreasing trend in rainy days, and increasing trend in rainfall intensity over the basin. The seasonal rainfall has been found to decrease for all the seasons except postmonsoon, which could affect the rain-fed agriculture in the basin. The 1- and 5-day annual maximum rainfalls exhibit mixed trends, wherein part of the basin experiences increasing trend, while other parts experience a decreasing trend. The increase in dry spells and concurrent decrease in wet spells are also observed over the basin. The extreme temperature indices revealed increasing trends in hottest and coldest days, while decreasing trends in coldest night are found over most parts of the basin. Further, the diurnal temperature range is also found to increase due to warming tendency in maximum temperature (T max) at a faster rate compared to the minimum temperature (T min). The increase in frequency and magnitude of extreme rainfall in the basin has been attributed to the increasing trend in maximum and minimum temperatures, reducing forest cover, rapid pace of urbanization, increase in human population, and thereby increase in the aerosol content in the atmosphere. The findings of the present study would significantly help in sustainable water resource planning, better decision-making for policy framework, and setting up

  16. Long-term trends of daily maximum and minimum temperatures for the major cities of South Korea and their implications on human health

    Czech Academy of Sciences Publication Activity Database

    Choi, B. C.; Kim, J.; Lee, D. G.; Kyselý, Jan

    2007-01-01

    Roč. 17, č. 2 (2007), s. 171-183 ISSN N R&D Projects: GA ČR GC205/07/J044 Institutional research plan: CEZ:AV0Z30420517 Keywords : Temperature trends * Biometeorology * Climate change * Global warming * Human health * Temperature extremes * Urbanization Subject RIV: DG - Athmosphere Sciences, Meteorology

  17. Detecting Variation Trends of Temperature and Precipitation for the Dadu River Basin, China

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2016-01-01

    Full Text Available This study analyzes the variation trends of temperature and precipitation in the Dadu River Basin of China based on observed records from fourteen meteorological stations. The magnitude of trends was estimated using Sen’s linear method while its statistical significance was evaluated using Mann-Kendall’s test. The results of analysis depict increase change from northwest to southeast of annual temperature and precipitation in space. In temporal scale, the annual temperature showed significant increase trend and the annual precipitation showed increase trend. For extreme indices, the trends for temperature are more consistent in the region compared to precipitation. This paper has practical meanings for an effective management of climate risk and provides a foundation for further study of hydrological situation in this river basin.

  18. Projection display technology and product trends

    Science.gov (United States)

    Kahn, Frederic J.

    1999-05-01

    Major technology and market trends that could generate a 20 billion dollar electronic projector market by 2010 are reviewed in the perspective of recent product introductions. A log linear analysis shows that the light outputs of benchmark transportable data video projectors have increased at a rate of almost 90 percent per year since 1993. The list prices of these same projectors have decreased at a rate of over 40 percent per year. The tradeoffs of light output vs. resolution and weight are illustrated. Recent trends in projector efficacy vs. year are discussed. Lumen output per dollar of list price is shown to be a useful market metric. Continued technical advances and innovations including higher throughput light valve technologies with integrated drivers, brighter light source, field sequential color, integrated- and micro-optical components, and aerospace materials are likely to sustain these trends. The new technologies will enable projection displays for entertainment and computer applications with unprecedented levels of performance, compactness, and cost-effectiveness.

  19. Long-Term Trend Analysis of Precipitation and Air Temperature for Kentucky, United States

    Directory of Open Access Journals (Sweden)

    Somsubhra Chattopadhyay

    2016-02-01

    Full Text Available Variation in quantities such as precipitation and temperature is often assessed by detecting and characterizing trends in available meteorological data. The objective of this study was to determine the long-term trends in annual precipitation and mean annual air temperature for the state of Kentucky. Non-parametric statistical tests were applied to homogenized and (as needed pre-whitened annual series of precipitation and mean air temperature during 1950–2010. Significant trends in annual precipitation were detected (both positive, averaging 4.1 mm/year for only two of the 60 precipitation-homogenous weather stations (Calloway and Carlisle counties in rural western Kentucky. Only three of the 42 temperature-homogenous stations demonstrated trends (all positive, averaging 0.01 °C/year in mean annual temperature: Calloway County, Allen County in southern-central Kentucky, and urbanized Jefferson County in northern-central Kentucky. In view of the locations of the stations demonstrating positive trends, similar work in adjacent states will be required to better understand the processes responsible for those trends and to properly place them in their larger context, if any.

  20. Characterizing and attributing the warming trend in sea and land surface temperatures

    NARCIS (Netherlands)

    Estrada, Francisco; Martins, Luis Filipe; Perron, Pierre

    2017-01-01

    Because of low-frequency internal variability, the observed and underlying warming trends in temperature series can be markedly different. Important differences in the observed nonlinear trends in hemispheric temperature series suggest that the northern and southern hemispheres have responded

  1. Urban and peri-urban precipitation and air temperature trends in mega cities of the world using multiple trend analysis methods

    Science.gov (United States)

    Ajaaj, Aws A.; Mishra, Ashok K.; Khan, Abdul A.

    2018-04-01

    Urbanization plays an important role in altering local to regional climate. In this study, the trends in precipitation and the air temperature were investigated for urban and peri-urban areas of 18 mega cities selected from six continents (representing a wide range of climatic patterns). Multiple statistical tests were used to examine long-term trends in annual and seasonal precipitation and air temperature for the selected cities. The urban and peri-urban areas were classified based on the percentage of land imperviousness. Through this study, it was evident that removal of the lag-k serial correlation caused a reduction of approximately 20 to 30% in significant trend observability for temperature and precipitation data. This observation suggests that appropriate trend analysis methodology for climate studies is necessary. Additionally, about 70% of the urban areas showed higher positive air temperature trends, compared with peri-urban areas. There were not clear trend signatures (i.e., mix of increase or decrease) when comparing urban vs peri-urban precipitation in each selected city. Overall, cities located in dry areas, for example, in Africa, southern parts of North America, and Eastern Asia, showed a decrease in annual and seasonal precipitation, while wetter conditions were favorable for cities located in wet regions such as, southeastern South America, eastern North America, and northern Europe. A positive relationship was observed between decadal trends of annual/seasonal air temperature and precipitation for all urban and peri-urban areas, with a higher rate being observed for urban areas.

  2. Mesopause region temperature variability and its trend in southern Brazil

    Science.gov (United States)

    Venturini, Mateus S.; Bageston, José V.; Caetano, Nattan R.; Peres, Lucas V.; Bencherif, Hassan; Schuch, Nelson J.

    2018-03-01

    Nowadays, the study of the upper atmosphere is increasing, mostly because of the need to understand the patterns of Earth's atmosphere. Since studies on global warming have become very important for the development of new technologies, understanding all regions of the atmosphere becomes an unavoidable task. In this paper, we aim to analyze the temperature variability and its trend in the mesosphere and lower thermosphere (MLT) region during a period of 12 years (from 2003 to 2014). For this purpose, three different heights, i.e., 85, 90 and 95 km, were focused on in order to investigate the upper atmosphere, and a geographic region different to other studies was chosen, in the southern region of Brazil, centered in the city of Santa Maria, RS (29°41'02'' S; 53°48'25'' W). In order to reach the objectives of this work, temperature data from the SABER instrument (Sounding of the Atmosphere using Broadband Emission Radiometry), aboard NASA's Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite, were used. Finally, two cases were studied related to distinct grids of latitude/longitude used to obtain the mean temperature profiles. The first case considered a grid of 20° × 20° lat/long, centered in Santa Maria, RS, Brazil. In the second case, the region was reduced to a size of 15° × 15° in order to compare the results and discuss the two cases in terms of differences or similarities in temperature trends. Observations show that the size of the geographical area used for the average temperature profiles can influence the results of variability and trend of the temperature. In addition, reducing the time duration of analyses from 24 to 12 h a day also influences the trend significantly. For the smaller geographical region (15° × 15°) and the 12 h daily time window (09:00-21:00 UT) it was found that the main contributions for the temperature variability at the three heights were the annual and semi-annual cycles and the solar flux influence

  3. Trend Analysis of Monthly and Annual Temperature Series of Quetta, Pakistan

    Directory of Open Access Journals (Sweden)

    Farhat Iqbal

    2014-12-01

    Full Text Available The monthly average temperature series of Quetta – Pakistan from 1950 – 2000 is examined. A straight line is fitted to the data and seasonal variation and trend in temperature for each month of the year were obtained. An overall model is constructed as large variations in the monthly slopes were observed. In order to describe the seasonal pattern and trend in temperature, corresponding to the different months, both sine/cosine waves and sine/cosine waves multiplied by the time were included in the model as independent variables. The lag-1 autocorrelation was found in the residual of the model and hence another model was fitted to the pre-whiten series that shows a good fit ( and is free from correlated residuals. Both parametric and non-parametric tests applied to each month temperature show significant trend in all months except February and March.

  4. Temperature Trend Detection in Upper Indus Basin by Using Mann-Kendall Test

    Directory of Open Access Journals (Sweden)

    Ateeq Ur Rauf

    2016-10-01

    Full Text Available Global warming and Climate change are commonly acknowledged as the most noteworthy environmental quandary the world is undergoing today. Contemporary studies have revealed that the Earth’s surface air temperature has augmented by 0.6°C – 0.8°C in the course of the 20th century, together with alterations in the hydrological cycle. This study focuses on detecting trends in seasonal temperature for the five selected stations in the Upper Indus Basin. The Mann-Kendall test was run at 5% significance level on time series data for each of the five stations during the time period, 1985 to 2014. The Standard Test Statistic (Zs indicates the presence of trend and whether it is increasing or decreasing. The analysis showed an increasing trend in mean monthly temperature at Astore, Gilgit and Gupiz in March and a decreasing trend for Astore, Drosh, Gilgit and Skardu in September. Gilgit and Gupiz showed unexpected increasing trend in October. This study concludes that the temperature starts increasing in March and stays elevated till the month of June and starts rising again in October thus resulting in expansion of summer season and prolonged glacial melting.

  5. Arctic temperature and moisture trends during the past 2000 years - Progress from multiproxy-paleoclimate data compilations

    Science.gov (United States)

    Kaufman, Darrell; Routson, Cody; McKay, Nicholas; Beltrami, Hugo; Jaume-Santero, Fernando; Konecky, Bronwen; Saenger, Casey

    2017-04-01

    Instrumental climate data and climate-model projections show that Arctic-wide surface temperature and precipitation are positively correlated. Higher temperatures coincide with greater moisture by: (1) expanding the duration and source area for evaporation as sea ice retracts, (2) enhancing the poleward moisture transport, and (3) increasing the water-vapor content of the atmosphere. Higher temperature also influences evaporation rate, and therefore precipitation minus evaporation (P-E), the climate variable often sensed by paleo-hydroclimate proxies. Here, we test whether Arctic temperature and moisture also correlate on centennial timescales over the Common Era (CE). We use the new PAGES2k multiproxy-temperature dataset along with a first-pass compilation of moisture-sensitive proxy records to calculate century-scale composite timeseries, with a focus on longer records that extend back through the first millennium CE. We present a new Arctic borehole temperature reconstruction as a check on the magnitude of Little Ice Age cooling inferred from the proxy records, and we investigate the spatial pattern of centennial-scale variability. Similar to previous reconstructions, v2 of the PAGES2k proxy temperature dataset shows that, prior to the 20th century, mean annual Arctic-wide temperature decreased over the CE. The millennial-scale cooling trend is most prominent in proxy records from glacier ice, but is also registered in lake and marine sediment, and trees. In contrast, the composite of moisture-sensitive (primarily P-E) records does not exhibit a millennial-scale trend. Determining whether fluctuations in the mean state of Arctic temperature and moisture were in fact decoupled is hampered by the difficulty in detecting a significant trend within the relatively small number of spatially heterogeneous multi-proxy moisture-sensitive records. A decoupling of temperature and moisture would indicate that evaporation had a strong counterbalancing effect on precipitation

  6. Seasonal and elevational contrasts in temperature trends in Central Chile between 1979 and 2015

    Science.gov (United States)

    Burger, F.; Brock, B.; Montecinos, A.

    2018-03-01

    We analyze trends in temperature from 18 temperature stations and one upper air sounding site at 30°-35° S in central Chile between 1979-2015, to explore geographical and season temperature trends and their controls, using regional ocean-atmosphere indices. Significant warming trends are widespread at inland stations, while trends are non-significant or negative at coastal sites, as found in previous studies. However, ubiquitous warming across the region in the past 8 years, suggests the recent period of coastal cooling has ended. Significant warming trends are largely restricted to austral spring, summer and autumn seasons, with very few significant positive or negative trends in winter identified. Autumn warming is notably strong in the Andes, which, together with significant warming in spring, could help to explain the negative mass balance of snow and glaciers in the region. A strong Pacific maritime influence on regional temperature trends is inferred through correlation with the Interdecadal Pacific Oscillation (IPO) index and coastal sea surface temperature, but the strength of this influence rapidly diminishes inland, and the majority of valley, and all Andes, sites are independent of the IPO index. Instead, valley and Andes sites, and mid-troposphere temperature in the coastal radiosonde profile, show correlation with the autumn Antarctic Oscillation which, in its current positive phase, promotes subsidence and warming at the latitude of central Chile.

  7. A project for monitoring trends in burn severity

    Science.gov (United States)

    Eidenshink, Jeffery C.; Schwind, Brian; Brewer, Ken; Zhu, Zhu-Liang; Quayle, Brad; Howard, Stephen M.

    2007-01-01

    Jeff Eidenshink, Brian Schwind, Ken Brewer, Zhi-Liang Zhu, Brad Quayle, and Elected officials and leaders of environmental agencies need information about the effects of large wildfires in order to set policy and make management decisions. Recently, the Wildland Fire Leadership Council (WFLC), which implements and coordinates the National Fire Plan (NFP) and Federal Wildland Fire Management Policies (National Fire Plan 2004), adopted a strategy to monitor the effectiveness of the National Fire Plan and the Healthy Forests Restoration Act (HFRA). One component of this strategy is to assess the environmental impacts of large wildland fires and identify the trends of burn severity on all lands across the United States. To that end, WFLC has sponsored a six-year project, Monitoring Trends in Burn Severity (MTBS), which requires the U.S. Department of Agriculture Forest Service (USDA-FS) and the U.S. Geological Survey (USGS) to map and assess the burn severity for all large current and historical fires. Using Landsat data and the differenced Normalized Burn Ratio (dNBR) algorithm, the USGS Center for Earth Resources Observation and Science (EROS) and USDA-FS Remote Sensing Applications Center will map burn severity of all fires since 1984 greater than 202 ha (500ac) in the east, and 404 ha (1,000 ac) in the west. The number of historical fires from this period combined with current fires occurring during the course of the project will exceed 9,000. The MTBS project will generate burn severity data, maps, and reports, which will be available for use at local, state, and national levels to evaluate trends in burn severity and help develop and assess the effectiveness of land management decisions. Additionally, the information developed will provide a baseline from which to monitor the recovery and health of fire-affected landscapes over time. Spatial and tabular data quantifying burn severity will augment existing information used to estimate risk associated with a range

  8. Importance of ensembles in projecting regional climate trends

    Science.gov (United States)

    Arritt, Raymond; Daniel, Ariele; Groisman, Pavel

    2016-04-01

    We have performed an ensemble of simulations using RegCM4 to examine the ability to reproduce observed trends in precipitation intensity and to project future changes through the 21st century for the central United States. We created a matrix of simulations over the CORDEX North America domain for 1950-2099 by driving the regional model with two different global models (HadGEM2-ES and GFDL-ESM2M, both for RCP8.5), by performing simulations at both 50 km and 25 km grid spacing, and by using three different convective parameterizations. The result is a set of 12 simulations (two GCMs by two resolutions by three convective parameterizations) that can be used to systematically evaluate the influence of simulation design on predicted precipitation. The two global models were selected to bracket the range of climate sensitivity in the CMIP5 models: HadGEM2-ES has the highest ECS of the CMIP5 models, while GFDL-ESM2M has one of the lowestt. Our evaluation metrics differ from many other RCM studies in that we focus on the skill of the models in reproducing past trends rather than the mean climate state. Trends in frequency of extreme precipitation (defined as amounts exceeding 76.2 mm/day) for most simulations are similar to the observed trend but with notable variations depending on RegCM4 configuration and on the driving GCM. There are complex interactions among resolution, choice of convective parameterization, and the driving GCM that carry over into the future climate projections. We also note that biases in the current climate do not correspond to biases in trends. As an example of these points the Emanuel scheme is consistently "wet" (positive bias in precipitation) yet it produced the smallest precipitation increase of the three convective parameterizations when used in simulations driven by HadGEM2-ES. However, it produced the largest increase when driven by GFDL-ESM2M. These findings reiterate that ensembles using multiple RCM configurations and driving GCMs are

  9. U.S. Coastal Flood Damage Reduction Projects: Federal Authorization and Investment Trends

    Science.gov (United States)

    Carter, N. T.

    2015-12-01

    The 2015 U.S. Environmental Protection Agency report Climate Change in the United States: Benefits of Global Action estimated the potential cumulative future economic impacts of storm surge and sea-level rise on U.S. coasts during this century at 5 trillion (2014 dollars) if no adaptation measures are implemented. These impacts drop to 0.8 trillion if investments are made in cost-effective adaptations and protections. Awareness of flood risk and its long-term fiscal impact historically has proven insufficient to motivate pre-disaster land use changes and investments in mitigation and protection. While many adaptations and protections fall largely under state and local authority, some stakeholders are interested in federal coastal flood protection projects, including projects by the U.S. Army Corps of Engineers. Since the 1950s, Congress has authorized the Corps to construct specific coastal projects. The broad vision, strategy, and priorities for the federal role in coastal flood damage reduction projects nonetheless remain ill-defined. This research analyzes (1) the authorization and appropriations trends for Corps coastal storm damage reduction projects, and (2) how Corps feasibility studies account for and address coastal flood hazards. Identified trends include: emergency appropriations for storm-damaged areas outstrip annual investments in coastal flood projects; the rate at which projects are congressionally approved for construction outpaces the rate at which construction is funded; and how coastal protection projects are evaluated in Corps feasibility studies shows variation and change in agency practices. These trends have consequences; they affect public and local expectations when projects begin providing protection benefits, and may influence investments in other adaptation measures. These trends also raise questions for policymakers at all levels and for scientists and practitioners interested in coastal flood resilience.

  10. An analysis of surface air temperature trends and variability along the Andes

    Science.gov (United States)

    Franquist, Eric S.

    Climate change is difficult to study in mountainous regions such as the Andes since steep changes in elevation cannot always be resolved by climate models. However, it is important to examine temperature trends in this region as rises in surface air temperature are leading to the melting of tropical glaciers. Local communities rely on the glacier-fed streamflow to get their water for drinking, irrigation, and livestock. Moreover, communities also rely on the tourism of hikers who come to the region to view the glaciers. As the temperatures increase, these glaciers are no longer in equilibrium with their current climate and are receding rapidly and decreasing the streamflow. This thesis examines surface air temperature from 858 weather stations across Ecuador, Peru, and Chile in order to analyze changes in trends and variability. Three time periods were studied: 1961--1990, 1971--2000, and 1981--2010. The greatest warming occurred during the period of 1971--2000 with 92% of the stations experiencing positive trends with a mean of 0.24°C/decade. There was a clear shift toward cooler temperatures at all latitudes and below elevations of 500 m during the most recent time period studied (1981--2010). Station temperatures were more strongly correlated with the El Nino Southern Oscillation (ENSO), than the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM). A principal component analysis confirmed ENSO as the main contributor of variability with the most influence in the lower latitudes. There were clear multidecadal changes in correlation strength for the PDO. The PDO contributed the most to the increases in station temperature trends during the 1961--1990 period, consistent with the PDO shift to the positive phase in the middle of this period. There were many strong positive trends at individual stations during the 1971--2000 period; however, these trends could not fully be attributed to ENSO, PDO, or SAM, indicating anthropogenic effects of

  11. Alberta air emissions : trends and projections

    International Nuclear Information System (INIS)

    2008-06-01

    This paper provided a summary of air emissions trends and projections for Alberta. Predicted regional distribution trends and industry sector emissions were presented. Historical and projected emissions included sulfur oxides (SO x ) nitrogen oxide (NO x ), volatile organic compounds (VOCs), and ammonia (NH 3 ). Results of the study indicated that carbon monoxide (CO) emissions were decreasing, while VOCs, NO x , SO x , PM 2.5 and NH 3 levels were increasing. Approximately 9 per cent of ammonia emissions were from point sources, while the majority of PM 2.5 emissions were attributed to unpaved roads and construction operations. Agricultural animal operations accounted for most of the VOC source emissions in the region. Increased development of the oil sands industry is contributing to increases in VOC emissions. Increases in NH 3 were attributed to growth in the agricultural sector and the increasing use of confined feeding operations in the region. Results of the study indicated that greenhouse gas (GHG) emissions in Alberta will keep increasing as a result of Alberta's growing economy. It was concluded that emissions from other industrial sectors are also expected to increase. In 2005, Alberta's total GHG emissions were 233 megatonnes of CO 2 equivalent, of which 168 megatonnes were attributed to industry. Results were presented in both graph and tabular formats. 3 tabs., 25 figs

  12. Change features and regional distribution of temperature trend and variability joint mode in mainland China

    Science.gov (United States)

    Chen, Xi; Li, Ning; Zhang, Zhengtao; Feng, Jieling; Wang, Ye

    2018-05-01

    Adaption for temperature should be suitable to local conditions for regional differences in temperature change features. This paper proposed to utilize nine temperature modes that joint the trend (increasing/decreasing/unchanged) with variability (intensifying/weakening/unchanged) to investigate features of temperature change in mainland China. Monthly temperature data over the period 1960-2013 were obtained from 522 national basic and reference meteorological stations. Here, temperature trend (TT) was reflected by the trend of mean annual temperature (MAT) and the uptrend (downtrend) of inter-monthly sliding standard deviation (SSD) series with a sliding length of 29 years (348 months) was used for representing the intensification (weakening) of temperature variability (TV). The Mann-Kendall method and the least squares method were applied to assess the significance and quantify the magnitude of trend in MAT and SSD time series, respectively. The results show that there is a consistent warming trend throughout the country except for only three stations in which a cooling trend is identified. Moreover, the overall increasing rate in the north of 35° N is the highest, over 0.4 °C/decade for most stations. TV is weakened for almost 98% of the stations, indicating the low instability of temperature at a national scale. Finally, temperature mode (TM), for more than 90% of the stations, is the combination of an increasing TT with a weakened TV (mode 8). So, it is more important for people to adapt to the increasing temperature in these regions. Compared to using annual temperature data to calculate SSD, monthly data can accurately reflect the inter-monthly change of temperature and reserve more initial characteristics of temperature.

  13. Investigation of Breakpoint and Trend of Daily Air Temperature Range for Mashhad, Iran

    Directory of Open Access Journals (Sweden)

    shideh shams

    2017-01-01

    Full Text Available Introduction: Air temperature as an important climatic factor can influence variability and distribution of other climatic parameters. Therefore, tracking the changes in air temperature is a popular procedure in climate change studies.. According to the national academy in the last decade, global temperature has raised 0.4 to 0.8⁰C. Instrumental records show that, with the exception of 1998, the 10 warmest year (during the last 150 years, occurred since 2000, and 2014 was the warmest year. Investigation of maximum and minimum air temperature temporal trend indicates that these two parameters behave differently over time. It has been shown that the minimum air temperature raises noticeably more than the maximum air temperature, which causes a reduction in the difference of maximum and minimum daily air temperature (daily temperature range, DTR. There are several factors that have an influence on reducing DTR such as: Urban development, farms’ irrigation and desertification. It has been shown that DTR reduction occurs mostly during winter and is less frequent during summer, which shows the season’s effect on the temperature trend. Considering the significant effects of the climatological factors on economic and agricultural management issues, the aim of this study is to investigate daily air temperature range for yearly, seasonal and monthly time scales, using available statistical methods. Materials and Methods: Daily maximum and minimum air temperature records (from 1950 to 2010 were obtained from Mashhad Meteorological Organization. In order to control the quality of daily Tmax and Tmin data, four different types of quality controls were applied. First of all, gross errors were checked. In this step maximum and minimum air temperature data exceeding unlikely air temperature values, were eliminated from data series. Second, data tolerance was checked by searching for periods longer than a certain number of consecutive days with exactly the

  14. Variability and trends of wet season temperature in the Sudano-Sahelian zone and relationships with precipitation

    Science.gov (United States)

    Oueslati, Boutheina; Camberlin, Pierre; Zoungrana, Joël; Roucou, Pascal; Diallo, Saliou

    2018-02-01

    The relationships between precipitation and temperature in the central Sudano-Sahelian belt are investigated by analyzing 50 years (1959-2008) of observed temperature (Tx and Tn) and rainfall variations. At daily time-scale, both Tx and Tn show a marked decrease as a response to rainfall occurrence, with a strongest departure from normal 1 day after the rainfall event (-0.5 to -2.5 °C depending on the month). The cooling is slightly larger when heavy rainfall events (>5 mm) are considered. The temperature anomalies weaken after the rainfall event, but are still significant several days later. The physical mechanisms accounting for the temperature response to precipitation are analysed. The Tx drop is accounted for by reduced incoming solar radiation associated with increased cloud cover and increased surface evaporation following surface moistening. The effect of evaporation becomes dominant a few days after the rainfall event. The reduced daytime heat storage and the subsequent sensible heat flux result in a later negative Tn anomaly. The effect of rainfall variations on temperature is significant for long-term warming trends. The rainfall decrease experienced between 1959 and 2008 accounts for a rainy season Tx increase of 0.15 to 0.3 °C, out of a total Tx increase of 1.3 to 1.5 °C. These results have strong implications on the assessment of future temperature changes. The dampening or amplifying effects of precipitation are determined by the sign of future precipitation trends. Confidence on temperature changes under global warming partly depend on the robustness of precipitation projections.

  15. Temperature and Heat-Related Mortality Trends in the Sonoran and Mojave Desert Region

    Directory of Open Access Journals (Sweden)

    Polioptro F. Martinez-Austria

    2017-03-01

    Full Text Available Extreme temperatures and heat wave trends in five cities within the Sonoran Desert region (e.g., Tucson and Phoenix, Arizona, in the United States and Ciudad Obregon and San Luis Rio Colorado, Sonora; and Mexicali, Baja California, in Mexico and one city within the Mojave Desert region (e.g., Las Vegas, Nevada were assessed using field data collected from 1950 to 2014. Instead of being selected by watershed, the cities were selected because they are part of the same arid climatic region. The data were analyzed for maximum temperature increases and the trends were confirmed statistically using Spearman’s nonparametric test. Temperature trends were correlated with the mortality information related with extreme heat events in the region. The results showed a clear trend of increasing maximum temperatures during the months of June, July, and August for five of the six cities and statically confirmed using Spearman’s rho values. Las Vegas was the only city where the temperature increase was not confirmed using Spearman’s test, probably because it is geographically located outside of the Sonoran Desert or because of its proximity to the Hoover Dam. The relationship between mortality and temperature was analyzed for the cities of Mexicali, Mexico and Phoenix. Arizona.

  16. Temperature changes in Three Gorges Reservoir Area and linkage with Three Gorges Project

    Science.gov (United States)

    Song, Zhen; Liang, Shunlin; Feng, Lian; He, Tao; Song, Xiao-Peng; Zhang, Lei

    2017-05-01

    The Three Gorges Project (TGP) is one of the largest hydroelectric projects throughout the world. It has brought many benefits to the society but also led to endless debates about its environmental and climatic impacts. Monitoring the spatiotemporal variations of temperature in the Three Gorges Reservoir Area (TGRA) is important for understanding the climatic impacts of the TGP. In this study, we used remote sensing-based land surface temperature (LST) and ground-measured air temperature data to investigate temperature changes in the TGRA. Results showed that during the daytime in summer, LST exhibited significant cooling (1-5°C) in the downstream region of the reservoir, whereas LST during the nighttime in winter exhibited significant warming (1-5°C) across the entire reservoir. However, these cooling and warming effects were both locally constrained within 5 km buffer along the reservoir. The changes in air temperature were consistent with those in LST, with 0.67°C cooling in summer and 0.33°C warming in winter. The temperature changes along the reservoir not only resulted from the land-water conversion induced by the dam impounding but were also related to the increase of vegetation cover caused by the ecological restoration projects. Significant warming trends were also found in the upstream of TGRA, especially during the daytime in summer, with up to 5°C for LST and 0.52°C for air temperature. The warming was caused mainly by urban expansion, which was driven in part by the population resettlement of TGP. Based on satellite observations, we investigated the comprehensive climatic impacts of TGP caused by multiple factors.

  17. Reconciling divergent trends and millennial variations in Holocene temperatures

    Science.gov (United States)

    Marsicek, Jeremiah; Shuman, Bryan N.; Bartlein, Patrick J.; Shafer, Sarah L.; Brewer, Simon

    2018-02-01

    Cooling during most of the past two millennia has been widely recognized and has been inferred to be the dominant global temperature trend of the past 11,700 years (the Holocene epoch). However, long-term cooling has been difficult to reconcile with global forcing, and climate models consistently simulate long-term warming. The divergence between simulations and reconstructions emerges primarily for northern mid-latitudes, for which pronounced cooling has been inferred from marine and coastal records using multiple approaches. Here we show that temperatures reconstructed from sub-fossil pollen from 642 sites across North America and Europe closely match simulations, and that long-term warming, not cooling, defined the Holocene until around 2,000 years ago. The reconstructions indicate that evidence of long-term cooling was limited to North Atlantic records. Early Holocene temperatures on the continents were more than two degrees Celsius below those of the past two millennia, consistent with the simulated effects of remnant ice sheets in the climate model Community Climate System Model 3 (CCSM3). CCSM3 simulates increases in ‘growing degree days’—a measure of the accumulated warmth above five degrees Celsius per year—of more than 300 kelvin days over the Holocene, consistent with inferences from the pollen data. It also simulates a decrease in mean summer temperatures of more than two degrees Celsius, which correlates with reconstructed marine trends and highlights the potential importance of the different subseasonal sensitivities of the records. Despite the differing trends, pollen- and marine-based reconstructions are correlated at millennial-to-centennial scales, probably in response to ice-sheet and meltwater dynamics, and to stochastic dynamics similar to the temperature variations produced by CCSM3. Although our results depend on a single source of palaeoclimatic data (pollen) and a single climate-model simulation, they reinforce the notion that

  18. Precipitation and temperature trends over central Italy (Abruzzo Region): 1951-2012

    Science.gov (United States)

    Scorzini, Anna Rita; Leopardi, Maurizio

    2018-02-01

    This study analyses spatial and temporal trends of precipitation and temperatures over Abruzzo Region (central Italy), using historical climatic data from a dense observation network. The results show a general, although not significant, negative trend in the regionally averaged annual precipitation (- 1.8% of the yearly mean rainfall per decade). This reduction is particularly evident in winter, especially at mountain stations (average - 3% change/decade). Despite this general decreasing trend, a partial rainfall recovery is observed after the 1980s. Furthermore, the majority of meteorological stations register a significant warming over the last 60 years, (mean annual temperature increase of + 0.15 °C/decade), which reflects a rise in both minimum and maximum temperatures, with the latter generally increasing at a faster rate. Spring and summer are the seasons which contribute most to the general temperature increase, in particular at high elevation sites, which exhibit a more pronounced warming (+ 0.24 °C/decade). However, this tendency has not been uniform over 1951-2012, but it has been characterised by a cooling phenomenon in the first 30 years (1951-1981), followed by an even stronger warming during the last three decades (1982-2012). Finally, correlations between the climatic variables and the dominant teleconnection patterns in the Mediterranean basin are analysed to identify the potential influence of large-scale atmospheric dynamics on observed trends in Abruzzo. The results highlight the dominant role of the East-Atlantic pattern on seasonal temperatures, while more spatially heterogeneous associations, depending on the complex topography of the region, are identified between winter precipitation and the North Atlantic Oscillation, East-Atlantic and East-Atlantic/Western Russian patterns.

  19. Global Trend Analysis of Multi-decade Soil Temperature Records Show Soils Resistant to Warming

    Science.gov (United States)

    Frey, S. D.; Jennings, K.

    2017-12-01

    Soil temperature is an important determinant of many subterranean ecological processes including plant growth, nutrient cycling, and carbon sequestration. Soils are expected to warm in response to increasing global surface temperatures; however, despite the importance of soil temperature to ecosystem processes, less attention has been given to examining changes in soil temperature over time. We collected long-term (> 20 years) soil temperature records from approximately 50 sites globally, many with multiple depths (5 - 100 cm), and examined temperature trends over the last few decades. For each site and depth we calculated annual summer means and conducted non-parametric Mann Kendall trend and Sen slope analysis to assess changes in summer soil temperature over the length of each time series. The mean summer soil temperature trend across all sites and depths was not significantly different than zero (mean = 0.004 °C year-1 ± 0.033 SD), suggesting that soils have not warmed over the observation period. Of the subset of sites that exhibit significant increases in temperature over time, site location, depth of measurement, time series length, and neither start nor end date seem to be related to trend strength. These results provide evidence that the thermal regime of soils may have a stronger buffering capacity than expected, having important implications for the global carbon cycle and feedbacks to climate change.

  20. Projections of Rainfall and Surface Temperature from CMIP5 Models under RCP4.5 and 8.5 over BIMSTEC Countries

    Science.gov (United States)

    Charan Pattnayak, Kanhu; Kar, Sarat Chandra; Kumari Pattnayak, Rashmita

    2015-04-01

    Rainfall and surface temperature are the most important climatic variables in the context of climate change. Thus, these variables simulated from fifth phase of the Climate Model Inter-comparison Project (CMIP5) models have been compared against Climatic Research Unit (CRU) observed data and projected for the twenty first century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 emission scenarios. Results for the seven countries under Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) such as Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand have been examined. Six CMIP5 models namely GFDL-CM3, GFDL-ESM2M, GFDL-ESM2G, HadGEM2-AO, HadGEM2-CC and HadGEM2-ES have been chosen for this study. The study period has been considered is from 1861 to 2100. From this period, initial 145 years i.e. 1861 to 2005 is reference or historical period and the later 95 years i.e. 2005 to 2100 is projected period. The climate change in the projected period has been examined with respect to the reference period. In order to validate the models, the mean annual rainfall and temperature has been compared with CRU over the reference period 1901 to 2005. Comparison reveals that most of the models are able to capture the spatial distribution of rainfall and temperature over most of the regions of BIMSTEC countries. Therefore these model data can be used to study the future changes in the 21st Century. Four out six models shows that the rainfall over Central and North India, Thailand and eastern part of Myanmar shows decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka shows an increasing trend in both RCP 4.5 and 8.5 scenarios. In case of temperature, all of the models show an increasing trend over all the BIMSTEC countries in both scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. Annual cycles of rainfall and temperature over Bangladesh, Myanmar and Thailand

  1.  Project Management as a Global Trend for Organization Work

    DEFF Research Database (Denmark)

    Kampf, Constance

    in multination and global companies, understanding the power of visual rhetoric, genre and writing processes in the context of project management documentation can be an advantage for technical communicators.  In addition, project management tools and online documentation spaces are objects which cross...... Project Management as a Global Trend for Organization Work: Implications for Technical Communication Project Management tools and processes offer a visual approach to producing knowledge about a project in order to complete it.  As project management practices are used with increasing frequency......-cultural teams use to function.  This presentation will explore the potential of Project Management to be tightly integrated in Technical Communication curricula through a communications approach to project management.  Questions for discussion include: How tightly is project management integrated into different...

  2. Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia

    Science.gov (United States)

    Suhaila, Jamaludin; Yusop, Zulkifli

    2017-06-01

    Most of the trend analysis that has been conducted has not considered the existence of a change point in the time series analysis. If these occurred, then the trend analysis will not be able to detect an obvious increasing or decreasing trend over certain parts of the time series. Furthermore, the lack of discussion on the possible factors that influenced either the decreasing or the increasing trend in the series needs to be addressed in any trend analysis. Hence, this study proposes to investigate the trends, and change point detection of mean, maximum and minimum temperature series, both annually and seasonally in Peninsular Malaysia and determine the possible factors that could contribute to the significance trends. In this study, Pettitt and sequential Mann-Kendall (SQ-MK) tests were used to examine the occurrence of any abrupt climate changes in the independent series. The analyses of the abrupt changes in temperature series suggested that most of the change points in Peninsular Malaysia were detected during the years 1996, 1997 and 1998. These detection points captured by Pettitt and SQ-MK tests are possibly related to climatic factors, such as El Niño and La Niña events. The findings also showed that the majority of the significant change points that exist in the series are related to the significant trend of the stations. Significant increasing trends of annual and seasonal mean, maximum and minimum temperatures in Peninsular Malaysia were found with a range of 2-5 °C/100 years during the last 32 years. It was observed that the magnitudes of the increasing trend in minimum temperatures were larger than the maximum temperatures for most of the studied stations, particularly at the urban stations. These increases are suspected to be linked with the effect of urban heat island other than El Niño event.

  3. Extracting and Analyzing the Warming Trend in Global and Hemispheric Temperatures

    NARCIS (Netherlands)

    Estrada, Francisco; Perron, Pierre

    2017-01-01

    This article offers an updated and extended attribution analysis based on recently published versions of temperature and forcing datasets. It shows that both temperature and radiative forcing variables can be best represented as trend stationary processes with structural changes occurring in the

  4. The paradox of cooling streams in a warming world: Regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States

    Science.gov (United States)

    Arismendi, Ivan; Johnson, Sherri; Dunham, Jason B.; Haggerty, Roy; Hockman-Wert, David

    2012-01-01

    Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream temperature. Here, we examined the evidence for this using long-term stream temperature data from minimally and highly human-impacted sites located across the Pacific continental United States. Based on hypothesized climate impacts, we predicted that we should find warming trends in the maximum, mean and minimum temperatures, as well as increasing variability over time. These predictions were not fully realized. Warming trends were most prevalent in a small subset of locations with longer time series beginning in the 1950s. More recent series of observations (1987-2009) exhibited fewer warming trends and more cooling trends in both minimally and highly human-influenced systems. Trends in variability were much less evident, regardless of the length of time series. Based on these findings, we conclude that our perspective of climate impacts on stream temperatures is clouded considerably by a lack of long-termdata on minimally impacted streams, and biased spatio-temporal representation of existing time series. Overall our results highlight the need to develop more mechanistic, process-based understanding of linkages between climate change, other human impacts and stream temperature, and to deploy sensor networks that will provide better information on trends in stream temperatures in the future.

  5. Trends and Variability in Temperature Sensitivity of Lilac Flowering Phenology

    Science.gov (United States)

    Wang, Huanjiong; Dai, Junhu; Rutishauser, This; Gonsamo, Alemu; Wu, Chaoyang; Ge, Quansheng

    2018-03-01

    The responses of plant phenology to temperature variability have many consequences for ecological processes, agriculture, forestry, and human health. Temperature sensitivity (ST) of phenology could measure how and to what degree plant could phenologically track climate change. The long-term trends and spatial patterns in ST have been well studied for vegetative phenology such as leaf unfolding, but trends to be expected for reproductive phenology in the future remain unknown. Here we investigate trends and factors driving the temporal variation of ST of first bloom date (FBD). Using the long-term FBD records during 1963-2013 for common lilac (Syringa vulgaris) from 613 stations in Europe, we compared changes in ST from the beginning to the end of the study period. The Spearman partial correlations were used to assess the importance of four influencing factors. The results showed that the temporal changes in ST of FBD varied considerably among time scales. Mean ST decreased significantly by 0.92 days °C-1 from 1963-1972 to 2004-2013 (P plant species in other climates and environments using similar methods to our study.

  6. Projections of precipitation, air temperature and potential ...

    African Journals Online (AJOL)

    mabouelhaggag

    Precipitation and air temperature records from 6 sites in Rwanda in the period from 1964 to 2010 are used for past/present climate assessment. Future climate projections (2010-2099) based on 3 general circulation models and 2 emission scenarios (A2 and B1) are used for climate projections. Precipitation, air temperature ...

  7. Forcing, feedback and internal variability in global temperature trends.

    Science.gov (United States)

    Marotzke, Jochem; Forster, Piers M

    2015-01-29

    Most present-generation climate models simulate an increase in global-mean surface temperature (GMST) since 1998, whereas observations suggest a warming hiatus. It is unclear to what extent this mismatch is caused by incorrect model forcing, by incorrect model response to forcing or by random factors. Here we analyse simulations and observations of GMST from 1900 to 2012, and show that the distribution of simulated 15-year trends shows no systematic bias against the observations. Using a multiple regression approach that is physically motivated by surface energy balance, we isolate the impact of radiative forcing, climate feedback and ocean heat uptake on GMST--with the regression residual interpreted as internal variability--and assess all possible 15- and 62-year trends. The differences between simulated and observed trends are dominated by random internal variability over the shorter timescale and by variations in the radiative forcings used to drive models over the longer timescale. For either trend length, spread in simulated climate feedback leaves no traceable imprint on GMST trends or, consequently, on the difference between simulations and observations. The claim that climate models systematically overestimate the response to radiative forcing from increasing greenhouse gas concentrations therefore seems to be unfounded.

  8. Trends in extreme daily temperatures and humidex index in the United Arab Emirates over 1948-2014.

    Science.gov (United States)

    Yang, H. W.; Ouarda, T.

    2015-12-01

    This study deals with the analysis of the characteristics of extreme temperature events in the Middle East, using NCEP reanalysis gridded data, for the summer (May-October) and winter (November-April) seasons. Trends in the occurrences of three types of heat spells during 1948-2014 are studied by both Linear Regression (LR) and Mann-Kendall (MK) test. Changes in the diurnal temperature range (DTR) are also investigated. To better understand the effects of heat spells on public health, the Humidex, a combination index of ambient temperature and relative humidity, is also used. Using percentile threshold, temperature (Humidex) Type-A and Type-B heat spells are defined respectively by daily maximum and minimum temperature (Humidex). Type-C heat spells are defined as the joint occurrence of Type-A and Type-B heat spells at the same time. In the Middle East, it is found that no coherent trend in temperature Type-A heat spells is observed. However, the occurrences of temperature Type-B and C heat spells have consistently increased since 1948. For Humidex heat spells, coherently increased activities of all three types of heat spells are observed in the area. During the summer, the magnitude of the positive trends in Humidex heat spells are generally stronger than temperature heat spells. More than half of the locations in the area show significantly negative DTR trends in the summer, but the trends vary according to the region in the winter. Annual mean temperature has increased an average by 0.5°C, but it is mainly associated with the daily minimum temperature which has warmed up by 0.84°C.Daily maximum temperature showed no significant trends. The warming is hence stronger in minimum temperatures than in maximum temperatures resulting in a decrease in DTR by 0.16 °C per decade. This study indicates hence that the UAE has not become hotter, but it has become less cold during 1948 to 2014.

  9. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region

    Science.gov (United States)

    Thankamani Akhil Raj, Sivan; Venkat Ratnam, Madineni; Narayana Rao, Daggumati; Venkata Krishna Murthy, Boddam

    2018-01-01

    We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993-2005), Aura Microwave Limb Sounder (MLS, 2004-2015), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002-2015) on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics)) observations covering the period 1993-2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E) and New Delhi (28° N, 77° E), covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E), for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (-1.71 ± 0.49 K decade-1) and New Delhi (-1.15 ± 0.55 K decade-1). The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998-2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (˜ 10 hPa) and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.

  10. Worldwide surface temperature trends since the mid-19th century

    International Nuclear Information System (INIS)

    Parker, D.E.; Folland, C.K.

    1990-01-01

    Sea surface temperatures (SSTs) for the period 1856 to the present have been corrected to compensate for the use of uninsulated buckets prior to the early 1940s. Trends in the corrected SST are consistent with trends in independently corrected nighttime marine air temperatures (NMAT). Global-scale patterns of variation of annual anomalies of SST and NMAT, as revealed by the first three covariance eigenvectors, are also in close agreement. The corrected SST anomalies are also compared with those of nearby coastal and island land air temperatures. Global-scale agreement is good except in the early 20th century when the land data were relatively warm by up to 0.2 C. Proposed causes are the siting of thermometers in open-sided thatched sheds in tropical regions at that time, along with a marked tendency to warm westerly atmospheric circulation over Europe in winter. Combined fields of SST and land air temperature are presented. The relative overall coldness of the late 19th century land air temperatures appears to have arisen from inner-continental and high-latitude regions, especially in winter. Combined fields do not yield full global coverage even in the 1980s, so satellite-based SST data need to be blended carefully with the ship-based observations if monitoring of global climate is to be complete

  11. Worldwide surface temperature trends since the mid-19th century

    International Nuclear Information System (INIS)

    Parker, D.E.; Folland, C.K.

    1991-01-01

    Sea surface temperatures (SSTs) for the period 1856 to the present have been corrected to compensate for the use of uninsulated buckets prior to the early 1940s. Trends in the corrected SST are consistent with trends in independently corrected nighttime marine air temperatures (NMAT). Global-scale patterns of variation of annual anomalies of SST and NMAT, as revealed by the first three covariance eigenvectors, are also in close agreement. The corrected SST anomalies are also compared with those of nearby coastal and island land air temperatures. Global-scale agreement is good except in the early 20th century when the land data were relatively warm by up to 0.2 C. Proposed causes are the siting of thermometers in open-sided thatched sheds in tropical regions at that time, along with a marked tendency to warm westerly atmospheric circulation over Europe in winter. Combined fields of SST and land air temperature are presented. The relative overall coldness of the late 19th century land air temperatures appears to have arisen from inner-continental and high-latitude regions, especially in winter. Combined fields do not yield full global coverage even in the 1980s, so satellite-based SST data need to be blended carefully with the ship-based observations if monitoring of global climate is to be complete. 32 refs.; 16 figs

  12. Trends in Mean Annual Minimum and Maximum Near Surface Temperature in Nairobi City, Kenya

    Directory of Open Access Journals (Sweden)

    George Lukoye Makokha

    2010-01-01

    Full Text Available This paper examines the long-term urban modification of mean annual conditions of near surface temperature in Nairobi City. Data from four weather stations situated in Nairobi were collected from the Kenya Meteorological Department for the period from 1966 to 1999 inclusive. The data included mean annual maximum and minimum temperatures, and was first subjected to homogeneity test before analysis. Both linear regression and Mann-Kendall rank test were used to discern the mean annual trends. Results show that the change of temperature over the thirty-four years study period is higher for minimum temperature than maximum temperature. The warming trends began earlier and are more significant at the urban stations than is the case at the sub-urban stations, an indication of the spread of urbanisation from the built-up Central Business District (CBD to the suburbs. The established significant warming trends in minimum temperature, which are likely to reach higher proportions in future, pose serious challenges on climate and urban planning of the city. In particular the effect of increased minimum temperature on human physiological comfort, building and urban design, wind circulation and air pollution needs to be incorporated in future urban planning programmes of the city.

  13. Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898–2012

    Directory of Open Access Journals (Sweden)

    Øyvind Nordli

    2014-01-01

    Full Text Available One of the few long instrumental records available for the Arctic is the Svalbard Airport composite series that hitherto began in 1911, with observations made on Spitsbergen, the largest island in the Svalbard Archipelago. This record has now been extended to 1898 with the inclusion of observations made by hunting and scientific expeditions. Temperature has been observed almost continuously in Svalbard since 1898, although at different sites. It has therefore been possible to create one composite series for Svalbard Airport covering the period 1898–2012, and this valuable new record is presented here. The series reveals large temperature variability on Spitsbergen, with the early 20th century warming as one striking feature: an abrupt change from the cold 1910s to the local maxima of the 1930s and 1950s. With the inclusion of the new data it is possible to show that the 1910s were colder than the years at the start of the series. From the 1960s, temperatures have increased, so the present temperature level is significantly higher than at any earlier period in the instrumental history. For the entire period, and for all seasons, there are positive, statistically significant trends. Regarding the annual mean, the total trend is 2.6°C/century, whereas the largest trend is in spring, at 3.9°C/century. In Europe, it is the Svalbard Archipelago that has experienced the greatest temperature increase during the latest three decades. The composite series may be downloaded from the home page of the Norwegian Meteorological Institute and should be used with reference to the present article.

  14. Temperature and Precipitation trends in Kashmir valley, North Western Himalayas

    Science.gov (United States)

    Shafiq, Mifta Ul; Rasool, Rehana; Ahmed, Pervez; Dimri, A. P.

    2018-01-01

    Climate change has emerged as an important issue ever to confront mankind. This concern emerges from the fact that our day-to-day activities are leading to impacts on the Earth's atmosphere that has the potential to significantly alter the planet's shield and radiation balance. Developing countries particularly whose income is particularly derived from agricultural activities are at the forefront of bearing repercussions due to changing climate. The present study is an effort to analyze the changing trends of precipitation and temperature variables in Kashmir valley along different elevation zones in the north western part of India. As the Kashmir valley has a rich repository of glaciers with its annual share of precipitation, slight change in the temperature and precipitation regime has far reaching environmental and economic consequences. The results from Indian Meteorological Department (IMD) data of the period 1980-2014 reveals that the annual mean temperature of Kashmir valley has increased significantly. Accelerated warming has been observed during 1980-2014, with intense warming in the recent years (2001-2014). During the period 1980-2014, steeper increase, in annual mean maximum temperature than annual mean minimum temperature, has been observed. In addition, mean maximum temperature in plain regions has shown higher rate of increase when compared with mountainous areas. In case of mean minimum temperature, mountainous regions have shown higher rate of increase. Analysis of precipitation data for the same period shows a decreasing trend with mountainous regions having the highest rate of decrease which can be quite hazardous for the fragile mountain environment of the Kashmir valley housing a large number of glaciers.

  15. Towards constraining extreme temperature projections of the CMIP5 ensemble

    Science.gov (United States)

    Vogel, Martha-Marie; Orth, René; Isabelle Seneviratne, Sonia

    2016-04-01

    The frequency and intensity of heat waves is expected to change in future in response to global warming. Given the severe impacts of heat waves on ecosystems and society it is important to understand how and where they will intensify. Projections of extreme hot temperatures in the IPCC AR5 model ensemble show large uncertainties for projected changes of extreme temperatures in particular in Central Europe. In this region land-atmosphere coupling can contribute substantially to the development of heat waves. This coupling is also subject to change in future, while model projections display considerable spread. In this work we link projections of changes in extreme temperatures and of changes in land-atmosphere interactions with a particular focus on Central Europe. Uncertainties in projected extreme temperatures can be partly explained by different projected changes of the interplay between latent heat and temperature as well as soil moisture. Given the considerable uncertainty in land-atmosphere coupling representation already in the current climate, we furthermore employ observational data sets to constrain the model ensemble, and consequently the extreme temperature projections.

  16. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region

    Directory of Open Access Journals (Sweden)

    S. T. Akhil Raj

    2018-01-01

    Full Text Available We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993–2005, Aura Microwave Limb Sounder (MLS, 2004–2015, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002–2015 on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics observations covering the period 1993–2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E and New Delhi (28° N, 77° E, covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E, for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (−1.71 ± 0.49 K decade−1 and New Delhi (−1.15 ± 0.55 K decade−1. The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998–2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (∼ 10 hPa and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.

  17. Are Simulated and Observed Twentieth Century Tropical Pacific Sea Surface Temperature Trends Significant Relative to Internal Variability?

    Science.gov (United States)

    Coats, S.; Karnauskas, K. B.

    2017-10-01

    Historical trends in the tropical Pacific zonal sea surface temperature gradient (SST gradient) are analyzed herein using 41 climate models (83 simulations) and 5 observational data sets. A linear inverse model is trained on each simulation and observational data set to assess if trends in the SST gradient are significant relative to the stationary statistics of internal variability, as would suggest an important role for external forcings such as anthropogenic greenhouse gasses. None of the 83 simulations have a positive trend in the SST gradient, a strengthening of the climatological SST gradient with more warming in the western than eastern tropical Pacific, as large as the mean trend across the five observational data sets. If the observed trends are anthropogenically forced, this discrepancy suggests that state-of-the-art climate models are not capturing the observed response of the tropical Pacific to anthropogenic forcing, with serious implications for confidence in future climate projections. There are caveats to this interpretation, however, as some climate models have a significant strengthening of the SST gradient between 1900 and 2013 Common Era, though smaller in magnitude than the observational data sets, and the strengthening in three out of five observational data sets is insignificant. When combined with observational uncertainties and the possibility of centennial time scale internal variability not sampled by the linear inverse model, this suggests that confident validation of anthropogenic SST gradient trends in climate models will require further emergence of anthropogenic trends. Regardless, the differences in SST gradient trends between climate models and observational data sets are concerning and motivate the need for process-level validation of the atmosphere-ocean dynamics relevant to climate change in the tropical Pacific.

  18. Diurnal temperature range trend over North Carolina and the associated mechanisms

    Science.gov (United States)

    Sayemuzzaman, Mohammad; Mekonnen, Ademe; Jha, Manoj K.

    2015-06-01

    This study seeks to investigate the variability and presence of trend in the diurnal surface air temperature range (DTR) over North Carolina (NC) for the period 1950-2009. The significance trend test and the magnitude of trends were determined using the non-parametric Mann-Kendall test and the Theil-Sen approach, respectively. Statewide significant trends (p < 0.05) of decreasing DTR were found in all seasons and annually during the analysis period. Highest (lowest) temporal DTR trends of magnitude - 0.19 (- 0.031) °C/decade were found in summer (winter). Potential mechanisms for the presence/absence of trend in DTR have been highlighted. Historical data sets of the three main moisture components (precipitation, total cloud cover (TCC), and soil moisture) and the two major atmospheric circulation modes (North Atlantic Oscillation and Southern Oscillation) were used for correlation analysis. The DTRs were found to be negatively correlated with the precipitation, TCC and soil moisture across the state for all the seasons and annual basis. It appears that the moisture components related better to the DTR than to the atmospheric circulation modes.

  19. Evaluation of surface air temperature trend and climate change in the north - east of I. R. of Iran

    International Nuclear Information System (INIS)

    Alireza, Shahabfar

    2004-01-01

    In this paper maximum, minimum and mean surface air temperature recorded, analysed to reveal spatial and temporal patterns of long-term trends, change points, significant warming (cooling) periods and linear trend per decade. According to this research summer minimum temperatures have generally increased at a larger rate than in spring and autumn minimum temperatures. On the other hand, nighttime warming rates of spring and summer are generally stronger than those that exist in spring and summer daytime temperatures. Considering the significant increasing trends in annual, spring and summer temperatures, it is seen that night-time warming rates are stronger in the northern regions, which are characterized by the Khorasan Province macro climate type: a very hot summer, a relatively hot and late spring and early autumn, and a moderate winter. We have seriously considered the strong warming trends in spring and summer and thus likely in annual minimum air temperatures. It is very likely that significant and very rapid night-time warming trends over much of the province can be related to the widespread, rapid and increased urbanization in Khorasan Province, in addition to long-term and global effects of the human-induced climate change on air temperatures. (Author)

  20. Probability Distribution and Projected Trends of Daily Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    CAO; Li-Ge; ZHONG; Jun; SU; Bu-Da; ZHAI; Jian-Qing; Macro; GEMMER

    2013-01-01

    Based on observed daily precipitation data of 540 stations and 3,839 gridded data from the high-resolution regional climate model COSMO-Climate Limited-area Modeling(CCLM)for 1961–2000,the simulation ability of CCLM on daily precipitation in China is examined,and the variation of daily precipitation distribution pattern is revealed.By applying the probability distribution and extreme value theory to the projected daily precipitation(2011–2050)under SRES A1B scenario with CCLM,trends of daily precipitation series and daily precipitation extremes are analyzed.Results show that except for the western Qinghai-Tibetan Plateau and South China,distribution patterns of the kurtosis and skewness calculated from the simulated and observed series are consistent with each other;their spatial correlation coefcients are above 0.75.The CCLM can well capture the distribution characteristics of daily precipitation over China.It is projected that in some parts of the Jianghuai region,central-eastern Northeast China and Inner Mongolia,the kurtosis and skewness will increase significantly,and precipitation extremes will increase during 2011–2050.The projected increase of maximum daily rainfall and longest non-precipitation period during flood season in the aforementioned regions,also show increasing trends of droughts and floods in the next 40 years.

  1. Projected change in characteristics of near surface temperature inversions for southeast Australia

    Science.gov (United States)

    Ji, Fei; Evans, Jason Peter; Di Luca, Alejandro; Jiang, Ningbo; Olson, Roman; Fita, Lluis; Argüeso, Daniel; Chang, Lisa T.-C.; Scorgie, Yvonne; Riley, Matt

    2018-05-01

    Air pollution has significant impacts on human health. Temperature inversions, especially near surface temperature inversions, can amplify air pollution by preventing convective movements and trapping pollutants close to the ground, thus decreasing air quality and increasing health issues. This effect of temperature inversions implies that trends in their frequency, strength and duration can have important implications for air quality. In this study, we evaluate the ability of three reanalysis-driven high-resolution regional climate model (RCM) simulations to represent near surface inversions at 9 sounding sites in southeast Australia. Then we use outputs of 12 historical and future RCM simulations (each with three time periods: 1990-2009, 2020-2039, and 2060-2079) from the NSW/ACT (New South Wales/Australian Capital Territory) Regional Climate Modelling (NARCliM) project to investigate changes in near surface temperature inversions. The results show that there is a substantial increase in the strength of near surface temperature inversions over southeast Australia which suggests that future inversions may intensify poor air quality events. Near surface inversions and their future changes have clear seasonal and diurnal variations. The largest differences between simulations are associated with the driving GCMs, suggesting that the large-scale circulation plays a dominant role in near surface inversion strengths.

  2. Non-uniform interhemispheric temperature trends over the past 550 years

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Richard P. [Landcare Research, PO Box 40, Lincoln (New Zealand); Lincoln University, Bio-Protection Research Centre, PO Box 84, Lincoln (New Zealand); Fenwick, Pavla; Palmer, Jonathan G. [Gondwana Tree-ring Laboratory, PO Box 14, Canterbury (New Zealand); McGlone, Matt S. [Landcare Research, PO Box 40, Lincoln (New Zealand); Turney, Chris S.M. [University of Exeter, School of Geography, Exeter (United Kingdom)

    2010-12-15

    The warming trend over the last century in the northern hemisphere (NH) was interrupted by cooling from ad 1940 to 1975, a period during which the southern hemisphere experienced pronounced warming. The cause of these departures from steady warming at multidecadal timescales are unclear; the prevailing explanation is that they are driven by non-uniformity in external forcings but recent models suggest internal climate drivers may play a key role. Paleoclimate datasets can help provide a long-term perspective. Here we use tree-rings to reconstruct New Zealand mean annual temperature over the last 550 years and demonstrate that this has frequently cycled out-of-phase with NH mean annual temperature at a periodicity of around 30-60 years. Hence, observed multidecadal fluctuations around the recent warming trend have precedents in the past, strongly implicating natural climate variation as their cause. We consider the implications of these changes in understanding and modelling future climate change. (orig.)

  3. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica; Dreano, Denis; Agusti, Susana; Duarte, Carlos M.; Hoteit, Ibrahim

    2017-01-01

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  4. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica

    2017-08-09

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea\\'s thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  5. Decadal trends in Red Sea maximum surface temperature.

    Science.gov (United States)

    Chaidez, V; Dreano, D; Agusti, S; Duarte, C M; Hoteit, I

    2017-08-15

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade -1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century 1 . However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade -1 , while the northern Red Sea is warming between 0.40 and 0.45 °C decade -1 , all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  6. Maximum And Minimum Temperature Trends In Mexico For The Last 31 Years

    Science.gov (United States)

    Romero-Centeno, R.; Zavala-Hidalgo, J.; Allende Arandia, M. E.; Carrasco-Mijarez, N.; Calderon-Bustamante, O.

    2013-05-01

    Based on high-resolution (1') daily maps of the maximum and minimum temperatures in Mexico, an analysis of the last 31-year trends is performed. The maps were generated using all the available information from more than 5,000 stations of the Mexican Weather Service (Servicio Meteorológico Nacional, SMN) for the period 1979-2009, along with data from the North American Regional Reanalysis (NARR). The data processing procedure includes a quality control step, in order to eliminate erroneous daily data, and make use of a high-resolution digital elevation model (from GEBCO), the relationship between air temperature and elevation by means of the average environmental lapse rate, and interpolation algorithms (linear and inverse-distance weighting). Based on the monthly gridded maps for the mentioned period, the maximum and minimum temperature trends calculated by least-squares linear regression and their statistical significance are obtained and discussed.

  7. Sensitivity Analysis of Arctic Sea Ice Extent Trends and Statistical Projections Using Satellite Data

    Directory of Open Access Journals (Sweden)

    Ge Peng

    2018-02-01

    Full Text Available An ice-free Arctic summer would have pronounced impacts on global climate, coastal habitats, national security, and the shipping industry. Rapid and accelerated Arctic sea ice loss has placed the reality of an ice-free Arctic summer even closer to the present day. Accurate projection of the first Arctic ice-free summer year is extremely important for business planning and climate change mitigation, but the projection can be affected by many factors. Using an inter-calibrated satellite sea ice product, this article examines the sensitivity of decadal trends of Arctic sea ice extent and statistical projections of the first occurrence of an ice-free Arctic summer. The projection based on the linear trend of the last 20 years of data places the first Arctic ice-free summer year at 2036, 12 years earlier compared to that of the trend over the last 30 years. The results from a sensitivity analysis of six commonly used curve-fitting models show that the projected timings of the first Arctic ice-free summer year tend to be earlier for exponential, Gompertz, quadratic, and linear with lag fittings, and later for linear and log fittings. Projections of the first Arctic ice-free summer year by all six statistical models appear to converge to the 2037 ± 6 timeframe, with a spread of 17 years, and the earliest first ice-free Arctic summer year at 2031.

  8. Road structural elements temperature trends diagnostics using sensory system of own design

    Science.gov (United States)

    Dudak, Juraj; Gaspar, Gabriel; Sedivy, Stefan; Pepucha, Lubomir; Florkova, Zuzana

    2017-09-01

    A considerable funds is spent for the roads maintenance in large areas during the winter. The road maintenance is significantly affected by the temperature change of the road structure. In remote locations may occur a situation, when it is not clear whether the sanding is actually needed because the lack of information on road conditions. In these cases, the actual road conditions are investigated by a personal inspection or by sending out a gritting vehicle. Here, however, is a risk of unnecessary trip the sanding vehicle. This situation is economically and environmentally unfavorable. The proposed system solves the problem of measuring the temperature profile of the road and the utilization of the predictive model to determine the future development trend of temperature. The system was technically designed as a set of sensors to monitor environmental values such as the temperature of the road, ambient temperature, relative air humidity, solar radiation and atmospheric pressure at the measuring point. An important part of the proposal is prediction model which based on the inputs from sensors and historical measurements can, with some probability, predict temperature trends at the measuring point. The proposed system addresses the economic and environmental aspects of winter road maintenance.

  9. Trends of precipitation characteristics in the Czech Republic over 1961–2012, their spatial patterns and links to temperature and the North Atlantic Oscillation

    Czech Academy of Sciences Publication Activity Database

    Beranová, Romana; Kyselý, Jan

    (2017) ISSN 0899-8418 R&D Projects: GA ČR(CZ) GA16-04676S Institutional support: RVO:68378289 Keywords : precipitation * trend analysis * spatial pattern * temperature * the North Atlantic Oscillation * the Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.760, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/joc.5392/full

  10. Ischaemic heart disease deaths in Brazil: current trends, regional disparities and future projections.

    Science.gov (United States)

    Baena, Cristina P; Chowdhury, Rajiv; Schio, Nicolle Amboni; Sabbag, Ary Elias; Guarita-Souza, Luiz Cesar; Olandoski, Marcia; Franco, Oscar H; Faria-Neto, José Rocha

    2013-09-01

    To quantify the trend of ischaemic heart disease (IHD) deaths in Brazil during the last decade (2000-2010) for various population characteristics and to forecast the upcoming mortality trends across regions in Brazil until the year 2015. Nationwide comparative observational study. The population studied encompassed all adult residents (≥ 20 years) living in five Brazilian regions between 2000 and 2010. Demographic, economic and mortality data were obtained from Brazilian National Mortality Data System and National Applied Economics Research Institute. Subnotified deaths were redistributed proportionally to IHD deaths. Age-standardised mortality rates (ASMRs) per 100 000 inhabitants, by sex and region, were calculated employing a standard Brazilian population and constructing multivariate regression models to quantify and to project temporal trends. Absolute numbers of death due to IHD and region-specific death rates in Brazil by age and sex. During the study period, 627 786 men and 452 690 women died due to IHD in Brazil. ASMR trends across all regions for men and women converged, driven by a declining trend in the South and Southeast and an opposite incline in the North and Northeast (p < 0.05). Future projections demonstrated potential widening of the observed North-South gap in coming years. The IHD death trend in Brazil has changed from a decline to a stagnant state. However, a significant discrepancy in mortality trends exists between the northern and southern regions, which is likely to widen further. Reappraisal of the public health policies tailored to populations with diverse socioeconomic structures is urgently required.

  11. Temperature-dependent particle-number projected moment of inertia

    International Nuclear Information System (INIS)

    Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R.

    2008-01-01

    Expressions of the parallel and perpendicular temperature-dependent particle-number projected nuclear moment of inertia have been established by means of a discrete projection method. They generalize that of the FTBCS method and are well adapted to numerical computation. The effects of particle-number fluctuations have been numerically studied for some even-even actinide nuclei by using the single-particle energies and eigenstates of a deformed Woods-Saxon mean field. It has been shown that the parallel moment of inertia is practically not modified by the use of the projection method. In contrast, the discrepancy between the projected and FTBCS perpendicular moment of inertia values may reach 5%. Moreover, the particle-number fluctuation effects vary not only as a function of the temperature but also as a function of the deformation for a given temperature. This is not the case for the system energy

  12. Recent trends in rainfall and temperature over North West India during 1871-2016

    Science.gov (United States)

    Saxena, Rani; Mathur, Prasoon

    2018-03-01

    Rainfall and temperature are the most important environmental factors influencing crop growth, development, and yield. The northwestern (NW) part of India is one of the main regions of food grain production of the country. It comprises of six meteorological subdivisions (Haryana, Punjab, West Rajasthan, East Rajasthan, Gujarat and Saurashtra, Kutch and Diu). In this study, attempts were made to study variability and trends in rainfall and temperature during 30-year climate normal periods (CN) and 10-year decadal excess or deficit rainfall frequency during the historical period from 1871 to 2016. The Mann-Kendall and Spearman's rank correlation (Spearman's rho) tests were used to determine significance of trends. Least square linear fitting method was adopted to find out the slopes of the trend lines. The long-term mean annual rainfall over North West India is 587.7 mm (standard deviation of 153.0 mm and coefficient of variation 26.0). There was increasing trend in minimum and maximum temperatures during post monsoon season in entire study period and current climate normal period (1991-2016) due to which the sowing of rabi season crops may be delayed and there may be germination problem too. There was a non-significant decreasing trend in rainfall during monsoon season and an increasing trend in rainfall during post monsoon over North West India during entire study period. During current CN5 (1991-2016), all the subdivision (except the Saurashtra region) showed a decreasing trend in rainfall during monsoon season which is a matter of concern for kharif crops and those rabi crops which are grown as rainfed on conserved soil moisture. The decadal annual and seasonal frequencies of excess and deficit years results revealed that the annual total deficit rainfall years (24) exceeded total excess rainfall years (22) in North West India during the entire study period. While during the current decadal period (2011 to 2016), single year was the excess year and 2 years were

  13. An assessment of historical Antarctic precipitation and temperature trend using CMIP5 models and reanalysis datasets

    Science.gov (United States)

    Tang, Malcolm S. Y.; Chenoli, Sheeba Nettukandy; Samah, Azizan Abu; Hai, Ooi See

    2018-03-01

    The study of Antarctic precipitation has attracted a lot of attention recently. The reliability of climate models in simulating Antarctic precipitation, however, is still debatable. This work assess the precipitation and surface air temperature (SAT) of Antarctica (90 oS to 60 oS) using 49 Coupled Model Intercomparison Project phase 5 (CMIP5) global climate models and the European Centre for Medium-range Weather Forecasts "Interim" reanalysis (ERA-Interim); the National Centers for Environmental Prediction Climate Forecast System Reanalysis (CFSR); the Japan Meteorological Agency 55-year Reanalysis (JRA-55); and the Modern Era Retrospective-analysis for Research and Applications (MERRA) datasets for 1979-2005 (27 years). For precipitation, the time series show that the MERRA and JRA-55 have significantly increased from 1979 to 2005, while the ERA-Int and CFSR have insignificant changes. The reanalyses also have low correlation with one another (generally less than +0.69). 37 CMIP5 models show increasing trend, 18 of which are significant. The resulting CMIP5 MMM also has a significant increasing trend of 0.29 ± 0.06 mm year-1. For SAT, the reanalyses show insignificant changes and have high correlation with one another, while the CMIP5 MMM shows a significant increasing trend. Nonetheless, the variability of precipitation and SAT of MMM could affect the significance of its trend. One of the many reasons for the large differences of precipitation is the CMIP5 models' resolution.

  14. Long-term dynamics of OH * temperatures over central Europe: trends and solar correlations

    Directory of Open Access Journals (Sweden)

    C. Kalicinsky

    2016-12-01

    Full Text Available We present the analysis of annual average OH* temperatures in the mesopause region derived from measurements of the Ground-based Infrared P-branch Spectrometer (GRIPS at Wuppertal (51° N, 7° E in the time interval 1988 to 2015. The new study uses a temperature time series which is 7 years longer than that used for the latest analysis regarding the long-term dynamics. This additional observation time leads to a change in characterisation of the observed long-term dynamics. We perform a multiple linear regression using the solar radio flux F10.7 cm (11-year cycle of solar activity and time to describe the temperature evolution. The analysis leads to a linear trend of (−0.089 ± 0.055 K year−1 and a sensitivity to the solar activity of (4.2 ± 0.9 K (100 SFU−1 (r2 of fit 0.6. However, one linear trend in combination with the 11-year solar cycle is not sufficient to explain all observed long-term dynamics. In fact, we find a clear trend break in the temperature time series in the middle of 2008. Before this break point there is an explicit negative linear trend of (−0.24 ± 0.07 K year−1, and after 2008 the linear trend turns positive with a value of (0.64 ± 0.33 K year−1. This apparent trend break can also be described using a long periodic oscillation. One possibility is to use the 22-year solar cycle that describes the reversal of the solar magnetic field (Hale cycle. A multiple linear regression using the solar radio flux and the solar polar magnetic field as parameters leads to the regression coefficients Csolar = (5.0 ± 0.7 K (100 SFU−1 and Chale = (1.8 ±  0.5 K (100 µT−1 (r2 = 0.71. The second way of describing the OH* temperature time series is to use the solar radio flux and an oscillation. A least-square fit leads to a sensitivity to the solar activity of (4.1 ± 0.8 K (100 SFU−1, a period P  =  (24.8 ± 3.3 years, and

  15. Projection of temperature-related mortality due to cardiovascular disease in beijing under different climate change, population, and adaptation scenarios.

    Science.gov (United States)

    Zhang, Boya; Li, Guoxing; Ma, Yue; Pan, Xiaochuan

    2018-04-01

    Human health faces unprecedented challenges caused by climate change. Thus, studies of the effect of temperature change on total mortality have been conducted in numerous countries. However, few of those studies focused on temperature-related mortality due to cardiovascular disease (CVD) or considered future population changes and adaptation to climate change. We present herein a projection of temperature-related mortality due to CVD under different climate change, population, and adaptation scenarios in Beijing, a megacity in China. To this end, 19 global circulation models (GCMs), 3 representative concentration pathways (RCPs), 3 socioeconomic pathways, together with generalized linear models and distributed lag non-linear models, were used to project future temperature-related CVD mortality during periods centered around the years 2050 and 2070. The number of temperature-related CVD deaths in Beijing is projected to increase by 3.5-10.2% under different RCP scenarios compared with that during the baseline period. Using the same GCM, the future daily maximum temperatures projected using the RCP2.6, RCP4.5, and RCP8.5 scenarios showed a gradually increasing trend. When population change is considered, the annual rate of increase in temperature-related CVD deaths was up to fivefold greater than that under no-population-change scenarios. The decrease in the number of cold-related deaths did not compensate for the increase in that of heat-related deaths, leading to a general increase in the number of temperature-related deaths due to CVD in Beijing. In addition, adaptation to climate change may enhance rather than ameliorate the effect of climate change, as the increase in cold-related CVD mortality greater than the decrease in heat-related CVD mortality in the adaptation scenarios will result in an increase in the total number of temperature-related CVD mortalities. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Trends in extremes of temperature, dew point, and precipitation from long instrumental series from central Europe

    Science.gov (United States)

    Kürbis, K.; Mudelsee, M.; Tetzlaff, G.; Brázdil, R.

    2009-09-01

    For the analysis of trends in weather extremes, we introduce a diagnostic index variable, the exceedance product, which combines intensity and frequency of extremes. We separate trends in higher moments from trends in mean or standard deviation and use bootstrap resampling to evaluate statistical significances. The application of the concept of the exceedance product to daily meteorological time series from Potsdam (1893 to 2005) and Prague-Klementinum (1775 to 2004) reveals that extremely cold winters occurred only until the mid-20th century, whereas warm winters show upward trends. These changes were significant in higher moments of the temperature distribution. In contrast, trends in summer temperature extremes (e.g., the 2003 European heatwave) can be explained by linear changes in mean or standard deviation. While precipitation at Potsdam does not show pronounced trends, dew point does exhibit a change from maximum extremes during the 1960s to minimum extremes during the 1970s.

  17. Temperature and Snowfall in Western Queen Maud Land Increasing Faster Than Climate Model Projections

    Science.gov (United States)

    Medley, B.; McConnell, J. R.; Neumann, T. A.; Reijmer, C. H.; Chellman, N.; Sigl, M.; Kipfstuhl, S.

    2018-02-01

    East Antarctic Ice Sheet (EAIS) mass balance is largely driven by snowfall. Recently, increased snowfall in Queen Maud Land led to years of EAIS mass gain. It is difficult to determine whether these years of enhanced snowfall are anomalous or part of a longer-term trend, reducing our ability to assess the mitigating impact of snowfall on sea level rise. We determine that the recent snowfall increases in western Queen Maud Land (QML) are part of a long-term trend (+5.2 ± 3.7% decade-1) and are unprecedented over the past two millennia. Warming between 1998 and 2016 is significant and rapid (+1.1 ± 0.7°C decade-1). Using these observations, we determine that the current accumulation and temperature increases in QML from an ensemble of global climate simulations are too low, which suggests that projections of the QML contribution to sea level rise are potentially overestimated with a reduced mitigating impact of enhanced snowfall in a warming world.

  18. Cancer incidence in Canada: trends and projections (1983-2032

    Directory of Open Access Journals (Sweden)

    Lin Xie

    2015-01-01

    liver cancer and leukemia in both sexes. In contrast, this region is projected to experience elevated incidence rates in males for about half the cancers studied. The incidence rates for all cancers combined are projected to continue to be highest for males in the Atlantic region and for females in Quebec in 15 years but in Ontario thereafter, and lowest in British Columbia. The inter-regional differences are larger in males than in females, possibly due to variations in prostate-specific antigen (PSA testing (for prostate cancer and risk factors. In both males and females, colorectal cancer incidence rates will remain highest in the Atlantic region and lowest in British Columbia. Lung cancer incidence rates are projected to be highest in Quebec and lowest in Ontario and British Columbia for both sexes. The similar regional rates of breast cancer in females are expected to persist. The significantly lowest rates of prostate cancer in Quebec are projected to continue, as are the elevated rates in the Atlantic region. Incidence by sex and age: Cancer is more common in males than in females except in those aged under 55. The overall cancer incidence rate in men aged 65 or older has been falling and will continue to do so. The decrease in lung cancer rates in men aged 65 or older from decreased tobacco use and the decrease in prostate cancer rates in men aged 75 or older have contributed to the overall decrease in this age range. In women aged 65 or older, the relatively stable rate is primarily the result of an increase in lung cancer incidence offset by decreases in incidence for the other cancer sites. This stable trend is projected to continue. Targeted cancer prevention efforts and specific needs for health care services can be expected to vary at different points in the age continuum for males and females. Smoking-related cancers: Between 2003-2007 and 2028-2032, substantial risk reductions are projected for major common tobacco-related cancers in Canada, even with

  19. Trends in low-temperature water–gas shift reactivity on transition metals

    DEFF Research Database (Denmark)

    Schumacher, Nana Maria Pii; Boisen, Astrid; Dahl, Søren

    2005-01-01

    Low-temperature water–gas shift reactivity trends on transition metals were investigated with the use of a microkinetic model based on a redox mechanism. It is established that the adsorption energies for carbon monoxide and oxygen can describe to a large extent changes in the remaining activation...

  20. High Temperature Properties and Recent Research Trend of Mg-RE Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Soo Woo [Korea Institute of Science and Technology Information, Seoul (Korea, Republic of)

    2017-04-15

    For the applications in automotive, aircraft, aerospace, and electronic industries, the lightest structural Mg alloys have received much attention since 2000. There has been some progress for the improvement of the mechanical properties such as room temperature strength, formability and mechanical anisotropy. However, the high temperature strength of Mg alloys is very low to be used for the parts and structures of high temperature conditions. For the last decade, considerable efforts are concentrated for the development of Mg alloys to be used at high temperature. Newly developing Mg-RE alloys are the good examples for the high temperature use. In this regard, this review paper introduces the recent research trends for the development of Mg-RE alloys strengthened with some precipitates and the long period stacking ordered (LPSO) structures related RE elements.

  1. High Temperature Properties and Recent Research Trend of Mg-RE Alloys

    International Nuclear Information System (INIS)

    Nam, Soo Woo

    2017-01-01

    For the applications in automotive, aircraft, aerospace, and electronic industries, the lightest structural Mg alloys have received much attention since 2000. There has been some progress for the improvement of the mechanical properties such as room temperature strength, formability and mechanical anisotropy. However, the high temperature strength of Mg alloys is very low to be used for the parts and structures of high temperature conditions. For the last decade, considerable efforts are concentrated for the development of Mg alloys to be used at high temperature. Newly developing Mg-RE alloys are the good examples for the high temperature use. In this regard, this review paper introduces the recent research trends for the development of Mg-RE alloys strengthened with some precipitates and the long period stacking ordered (LPSO) structures related RE elements.

  2. Understanding Climate Change Impacts in a Cholera Endemic Megacity: Disease Trends, Hydroclimatic Indicators and Near Future-Term Projections

    Science.gov (United States)

    Akanda, A. S. S.; Hasan, M. A.; Serman, E. A.; Jutla, A.; Huq, A.; Colwell, R. R.

    2015-12-01

    The last three decades of surveillance data shows a drastic increase of cholera prevalence in the largest cholera-endemic city in the world - Dhaka, Bangladesh. While an endemic trend is getting stronger in the dry season, the post-monsoon season shows increased variability and is epidemic in nature. The pre-monsoon dry season is becoming the dominant cholera season of the year, followed by monsoon flood related propagation in later months of the year. Although the heavily populated and rapidly urbanizing Dhaka region has experienced noticeable shifts in pre monsoon temperature and precipitation patterns and subsequent monsoon variations, to date, there has not been any systematic study on linking the long-term disease trends with observed changes in hydroclimatic indicators. Here, we focus on the past 30-year dynamics of urban cholera prevalence in Dhaka with changes in climatic or anthropogenic forcings to develop projections for the next 30-year period. We focus on the dry and the wet season indicators individually, and develop trends of maximum rainfall intensity, lowest rainfall totals in the pre-monsoon period, number of consecutive dry days, number of wet days, and number of rainy days with greater than 500mm rainfall using a recently developed gridded data product - and compare with regional hydrology, flooding, water usage, changes in distribution systems, population growth and density in urban settlements, and frequency of natural disasters. We then use a bias correction method to develop the next 30 years projections of CMIP5 Regional Climate Model outputs and impacts on cholera prevalence using a probabilistic forecasting approach.

  3. Can air temperature be used to project influences of climate change on stream temperature?

    Science.gov (United States)

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  4. Trends and habitat associations of waterbirds using the South Bay Salt Pond Restoration Project, San Francisco Bay, California

    Science.gov (United States)

    De La Cruz, Susan E. W.; Smith, Lacy M.; Moskal, Stacy M.; Strong, Cheryl; Krause, John; Wang, Yiwei; Takekawa, John Y.

    2018-04-02

    Executive SummaryThe aim of the South Bay Salt Pond Restoration Project (hereinafter “Project”) is to restore 50–90 percent of former salt evaporation ponds to tidal marsh in San Francisco Bay (SFB). However, hundreds of thousands of waterbirds use these ponds over winter and during fall and spring migration. To ensure that existing waterbird populations are supported while tidal marsh is restored in the Project area, managers plan to enhance the habitat suitability of ponds by adding islands and berms to change pond topography, manipulating water salinity and depth, and selecting appropriate ponds to maintain for birds. To help inform these actions, we used 13 years of monthly (October–April) bird abundance data from Project ponds to (1) assess trends in waterbird abundance since the inception of the Project, and (2) evaluate which pond habitat characteristics were associated with highest abundances of different avian guilds and species. For comparison, we also evaluated waterbird abundance trends in active salt production ponds using 10 years of monthly survey data.We assessed bird guild and species abundance trends through time, and created separate trend curves for Project and salt production ponds using data from every pond that was counted in a year. We divided abundance data into three seasons—fall (October–November), winter (December–February), and spring (March–April). We used the resulting curves to assess which periods had the highest bird abundance and to identify increasing or decreasing trends for each guild and species.

  5. Observed trends in climate over Southern Africa

    CSIR Research Space (South Africa)

    Davis-Reddy, Claire L

    2017-10-01

    Full Text Available The body of work on historical climate trends has been steadily increasing during the last decade. Global mean annual temperatures have increased by 0.85°C since 1880 and are projected to increase by 0.3 to 2.5 °C by 2050, relative to the 1985...

  6. Monitoring sea level and sea surface temperature trends from ERS satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Beckley, B.

    2002-01-01

    Data from the two ESA satellites ERS-1 and ERS-2 are used in global and regional analysis of sea level and sea surface temperature trends over the last, 7.8 years. T he ERS satellites and in the future the ENVISAT satellite provide unique opportunity for monitoring both changes in sea level and sea...

  7. Can air temperature be used to project influences of climate change on stream temperature?

    Science.gov (United States)

    Ivan Arismendi; Mohammad Safeeq; Jason B Dunham; Sherri L Johnson

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To...

  8. Mars Exospheric Temperature Trends as Revealed by MAVEN NGIMS Measurements

    Science.gov (United States)

    Bougher, Stephen W.; Olsen, Kirk; Roeten, Kali; Bell, Jared; Mahaffy, Paul; Benna, Mehdi; Elrod, Meredith; Jakosky, Bruce

    2015-11-01

    The Martian dayside upper thermosphere and exosphere temperatures (Texo) have been the subject of considerable debate and study since the first Mariner ultraviolet spectrometer (UVS) measurements (1969-1972), up to recent Mars Express SPICAM UVS measurements (2004-present) (e.g., see reviews by Stewart 1987; Bougher et al. 2000, 2014; Müeller-Wodarg et al. 2008; Stiepen et al. 2014). Prior to MAVEN, the Martian upper atmosphere thermal structure was poorly constrained by a limited number of both in-situ and remote sensing measurements at selected locations, seasons, and periods scattered throughout the solar cycle. Nevertheless, it is recognized that the Mars orbit eccentricity determines that both the solar cycle and seasonal variations in upper atmosphere temperatures must be considered together. The MAVEN NGIMS instrument measures the neutral composition of the major gas species (e.g. He, N, O, CO, N2, O2, NO, Ar and CO2) and their major isotopes, with a vertical resolution of ~5 km for targeted species and a target accuracy of <25% for most of these species (Mahaffy et al. 2014; 2015). Corresponding temperatures can now be derived from the neutral scale heights (especially CO2, Ar, and N2) (e.g. Mahaffy et al. 2015; Bougher et al. 2015). Texo mean temperatures spanning ~200 to 300 km are examined for both Deep Dip and Science orbits over 11-February 2015 (Ls ~ 290) to 14-July 2015 (Ls ~ 12). During these times, dayside sampling below 300 km occurred from the dusk terminator, across the dayside, and approaching the dawn terminator. NGIMS temperatures are investigated to extract spatial (e.g. SZA) and temporal (e.g. orbit-to-orbit, seasonal, solar rotational) variability and trends over this sampling period. Solar and seasonal driven trends in Texo are clearly visible, but orbit-to-orbit variability is significant, and demands further investigation to uncover the major drivers that are responsible.

  9. Projecting range-wide sun bear population trends using tree cover and camera-trap bycatch data.

    Directory of Open Access Journals (Sweden)

    Lorraine Scotson

    Full Text Available Monitoring population trends of threatened species requires standardized techniques that can be applied over broad areas and repeated through time. Sun bears Helarctos malayanus are a forest dependent tropical bear found throughout most of Southeast Asia. Previous estimates of global population trends have relied on expert opinion and cannot be systematically replicated. We combined data from 1,463 camera traps within 31 field sites across sun bear range to model the relationship between photo catch rates of sun bears and tree cover. Sun bears were detected in all levels of tree cover above 20%, and the probability of presence was positively associated with the amount of tree cover within a 6-km2 buffer of the camera traps. We used the relationship between catch rates and tree cover across space to infer temporal trends in sun bear abundance in response to tree cover loss at country and global-scales. Our model-based projections based on this "space for time" substitution suggested that sun bear population declines associated with tree cover loss between 2000-2014 in mainland southeast Asia were ~9%, with declines highest in Cambodia and lowest in Myanmar. During the same period, sun bear populations in insular southeast Asia (Malaysia, Indonesia and Brunei were projected to have declined at a much higher rate (22%. Cast forward over 30-years, from the year 2000, by assuming a constant rate of change in tree cover, we projected population declines in the insular region that surpassed 50%, meeting the IUCN criteria for endangered if sun bears were listed on the population level. Although this approach requires several assumptions, most notably that trends in abundance across space can be used to infer temporal trends, population projections using remotely sensed tree cover data may serve as a useful alternative (or supplement to expert opinion. The advantages of this approach is that it is objective, data-driven, repeatable, and it requires that

  10. Non-linear trends and fluctuations in temperature during different growth stages of summer maize in the North China Plain from 1960 to 2014

    Science.gov (United States)

    Wang, Cailin; Wu, Jidong; Wang, Xu; He, Xin; Li, Ning

    2017-12-01

    North China Plain has undergone severe warming trends since the 1950s, but whether this trend is the same during different growth phases for crops remains unknown. Thus, we analyzed the non-linear changes in the minimum temperature (T min ), mean temperature (T mean ) and maximum temperature (T max ) using the Ensemble Empirical Mode Decomposition method during each growth stage of summer maize based on daily temperature data from 1960 to 2014. Our results strongly suggest that the trends and fluctuations in temperature change are non-linear. These changes can be categorized into four types of trend change according to the combinations of decreasing and increasing trends, and 8 fluctuation modes dominated by the fluctuations of expansion and shrinkage. The amplitude of the fluctuation is primarily expansion in the sowing-jointing stage and shrinkage in the jointing-maturity stage. Moreover, the temperature changes are inconsistent within each growth stage and are not consistent with the overall warming trend observed over the last 55 years. A transition period occurred in both the 1980s and the 1990s for temperatures during the sowing-tasseling stage. Furthermore, the cooling trend of the T max was significant in the sowing-emergence stage, while this cooling trend was not obvious for both T mean and T min in the jointing-tasseling stage. These results showed that temperature change was significantly different in different stages of the maize growth season. The results can serve as a scientific basis for a better understanding of the actual changes in the regional surface air temperature and agronomic heat resources.

  11. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    Science.gov (United States)

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  12. Revisiting Southern Hemisphere polar stratospheric temperature trends in WACCM: The role of dynamical forcing

    Science.gov (United States)

    Calvo, N.; Garcia, R. R.; Kinnison, D. E.

    2017-04-01

    The latest version of the Whole Atmosphere Community Climate Model (WACCM), which includes a new chemistry scheme and an updated parameterization of orographic gravity waves, produces temperature trends in the Antarctic lower stratosphere in excellent agreement with radiosonde observations for 1969-1998 as regards magnitude, location, timing, and persistence. The maximum trend, reached in November at 100 hPa, is -4.4 ± 2.8 K decade-1, which is a third smaller than the largest trend in the previous version of WACCM. Comparison with a simulation without the updated orographic gravity wave parameterization, together with analysis of the model's thermodynamic budget, reveals that the reduced trend is due to the effects of a stronger Brewer-Dobson circulation in the new simulations, which warms the polar cap. The effects are both direct (a trend in adiabatic warming in late spring) and indirect (a smaller trend in ozone, hence a smaller reduction in shortwave heating, due to the warmer environment).

  13. Research Trends on Defect and Life Assessment of High Temperature Structure

    International Nuclear Information System (INIS)

    Lee, Hyeong Yeon; Lee Jae Han

    2008-01-01

    This report presents the analysis on the state-of-the-art research trends on defect assessment and life evaluation of high temperature structure based on the papers presented in the two international conferences of ASME PVP 2007 / CREEP 8 which was held in 2007 and ICFDSM VI(International Conference on Fatigue Damage of Structural Materials VI) which was held in 2006

  14. Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia

    International Nuclear Information System (INIS)

    Miao, Chiyuan; Duan, Qingyun; Sun, Qiaohong; Kong, Dongxian; Ye, Aizhong; Di, Zhenhua; Gong, Wei; Huang, Yong; Yang, Tiantian

    2014-01-01

    Assessing the performance of climate models in surface air temperature (SAT) simulation and projection have received increasing attention during the recent decades. This paper assesses the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) in simulating intra-annual, annual and decadal temperature over Northern Eurasia from 1901 to 2005. We evaluate the skill of different multi-model ensemble techniques and use the best technique to project the future SAT changes under different emission scenarios. The results show that most of the general circulation models (GCMs) overestimate the annual mean SAT in Northern Eurasia and the difference between the observation and the simulations primarily comes from the winter season. Most of the GCMs can approximately capture the decadal SAT trend; however, the accuracy of annual SAT simulation is relatively low. The correlation coefficient R between each GCM simulation and the annual observation is in the range of 0.20 to 0.56. The Taylor diagram shows that the ensemble results generated by the simple model averaging (SMA), reliability ensemble averaging (REA) and Bayesian model averaging (BMA) methods are superior to any single GCM output; and the decadal SAT change generated by SMA, REA and BMA are almost identical during 1901–2005. Heuristically, the uncertainty of BMA simulation is the smallest among the three multi-model ensemble simulations. The future SAT projection generated by the BMA shows that the SAT in Northern Eurasia will increase in the 21st century by around 1.03 °C/100 yr, 3.11 °C/100 yr and 7.14 °C/100 yr under the RCP 2.6, RCP 4.5 and RCP 8.5 scenarios, respectively; and the warming accelerates with the increasing latitude. In addition, the spring season contributes most to the decadal warming occurring under the RCP 2.6 and RCP 4.5 scenarios, while the winter season contributes most to the decadal warming occurring under the RCP 8.5 scenario. Generally, the uncertainty of the SAT

  15. Temporal trends in United States dew point temperatures

    Science.gov (United States)

    Robinson, Peter J.

    2000-07-01

    In this study, hourly data for the 1951-1990 period for 178 stations in the coterminous United States were used to establish temporal trends in dew point temperature. Although the data had been quality controlled previously (Robinson, 1998. Monthly variations of dew point temperatures in the coterminous United States. International Journal of Climatology 18: 1539-1556), comparisons of values between nearby stations suggested that instrumental changes, combined with locational changes, may have modified the results by as much as 1°C during the 40-year period. Nevertheless, seasonally averaged results indicated an increase over much of the area, of slightly over 1°C/100 years in spring and autumn, slightly less than this in summer. Winter displayed a drying of over 1°C/100 years. When only the 1961-1990 period was considered, the patterns were similar and trends increased by approximately 1-2°C/100 years, except in autumn, which displayed a slight drying. Analyses for specific stations indicated periods of both increasing and decreasing Td, the change between them varying with observation hour. No single change point was common over a wide area, although January commonly indicated maximum values early in the period in the east and west, and much later in the north-central portion. Rates of increase were generally higher in daytime than at night, especially in summer. Investigation of the inter-decadal differences in dew point, as a function of wind conditions, indicated that changes during calm conditions were commonly similar in magnitude to that of the overall average changes, suggesting an important role for the local hydrologic cycle in driving changes. Other inter-decadal changes could be attributed to the changes in the frequency and moisture content of invading air-streams. This was particularly clear for the changes in north-south flow in the interior.

  16. Recent Trends of the Tropical Hydrological Cycle Inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    Science.gov (United States)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-01-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  17. Managing water, fish and power : trends in environmental regulation of hydropower projects

    Energy Technology Data Exchange (ETDEWEB)

    Bursey, D.; McLean, J.; Longe, R. [Bull, Housser and Tupper LLP, Vancouver, BC (Canada)

    2009-07-01

    Recent trends in federal legislation related to the environmental impacts of hydroelectric power projects were reviewed. The study focused on a discussion of recent and proposed amendments to the Species at Risk Act, the Fisheries Act, and the Navigable Waters Protection Act. Challenges associated with risk management, the public perception of risk, and the communication of decisions related to the management and protection of aquatic ecosystems were discussed. The Brilliant Expansion Power Project (BRX) examined the interactions with white sturgeon on the Kootenay River in British Columbia (BC). A monitoring program was conducted during the project's construction in order to reduce the risk to sturgeon from blasting. A habitat enhancement feature was also constructed. It was concluded that the mitigation strategies used during the BRX project provide a useful example of innovation and adaptive management. 19 refs.

  18. MORTALITY TRENDS FOR MOST COMMON TYPES OF CANCER IN SILESIA VOIVODESHIP IN SHORT TERM PROJECTION

    Directory of Open Access Journals (Sweden)

    Brunon Zemła

    2011-06-01

    Full Text Available Background: The incidence of morbidity and mortality of cancers rapidly increase in the world and so it is in case of Poland and Silesia Voivodeship. Therefore an attempt is made to assess this phenomenon in projection scale within Silesia Voivodeship. Materials and methods: The time-trends analysis of the six most common types of cancer have been selected: stomach, colorectal, pancreas and lung (among both genders, prostate (among males and breast (among females. For the period 1990–2008 age standardized mortality rates have been determined. Time-trends in mortality with employment of joinpoint regression have been estimated and depending on trends linear or log-linear regression models were used which set up the base for short-term projection. Results: For the year 2018 projection values of mortality rates among males will drop (with the exception of lung and colorectal cancers. For prostate cancer – the values will be increasing. Among females stomach mortality rates will drop, but again lung cancer mortality rate will double in comparison to data for 1990. Conclusions: 1. The prognostic number of death to 2018 year concern all studied cancer increasing, for exept stomach cancer. 2. Especially will be increasing cancer mortality standardized rates for lung cancer among females and prostate and colorectal cancers among males.

  19. Identification and analysis of recent temporal temperature trends for Dehradun, Uttarakhand, India

    Science.gov (United States)

    Piyoosh, Atul Kant; Ghosh, Sanjay Kumar

    2018-05-01

    Maximum and minimum temperatures (T max and T min) are indicators of changes in climate. In this study, observed and gridded T max and T min data of Dehradun are analyzed for the period 1901-2014. Observed data obtained from India Meteorological Department and National Institute of Hydrology, whereas gridded data from Climatic Research Unit (CRU) were used. Efficacy of elevation-corrected CRU data was checked by cross validation using data of various stations at different elevations. In both the observed and gridded data, major change points were detected using Cumulative Sum chart. For T max, change points occur in the years 1974 and 1997, while, for T min, in 1959 and 1986. Statistical significance of trends was tested in three sub-periods based on change points using Mann-Kendall (MK) test, Sen's slope estimator, and linear regression (LR) method. It has been found that both the T max and T min have a sequence of rising, falling, and rising trends in sub-periods. Out of three different methods used for trend tests, MK and SS have indicated similar results, while LR method has also shown similar results for most of the cases. Root-mean-square error for actual and anomaly time series of CRU data was found to be within one standard deviation of observed data which indicates that the CRU data are very close to the observed data. The trends exhibited by CRU data were also found to be similar to the observed data. Thus, CRU temperature data may be quite useful for various studies in the regions of scarcity of observational data.

  20. The effect of interpolation methods in temperature and salinity trends in the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    M. VARGAS-YANEZ

    2012-04-01

    Full Text Available Temperature and salinity data in the historical record are scarce and unevenly distributed in space and time and the estimation of linear trends is sensitive to different factors. In the case of the Western Mediterranean, previous works have studied the sensitivity of these trends to the use of bathythermograph data, the averaging methods or the way in which gaps in time series are dealt with. In this work, a new factor is analysed: the effect of data interpolation. Temperature and salinity time series are generated averaging existing data over certain geographical areas and also by means of interpolation. Linear trends from both types of time series are compared. There are some differences between both estimations for some layers and geographical areas, while in other cases the results are consistent. Those results which do not depend on the use of interpolated or non-interpolated data, neither are influenced by data analysis methods can be considered as robust ones. Those results influenced by the interpolation process or the factors analysed in previous sensitivity tests are not considered as robust results.

  1. Actual and future trends of extreme values of temperature for the NW Iberian Peninsula

    Science.gov (United States)

    Taboada, J.; Brands, S.; Lorenzo, N.

    2009-09-01

    It is now very well established that yearly averaged temperatures are increasing due to anthropogenic climate change. In the area of Galicia (NW Spain) this trend has also been determined. The main objective of this work is to assess actual and future trends of different extreme indices of temperature, which are of curcial importance for many impact studies. Station data for the study was provided by the CLIMA database of the regional government of Galicia (NW Spain). As direct GCM-output significantly underestimates the variance of daily surface temperature variables in NW Spain, these variables are obtained by applying a statistical downscaling technique (analog method), using 850hPa temperature and mean sea level pressure as combined predictors. The predictor fields have been extracted from three GCMs participating in the IPCC AR4 under A1, A1B and A2 scenarios. The definitions of the extreme indices have been taken from the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI) This group has defined a set of standard extreme values to simplify intercomparisons of data from different regions of the world. For the temperatures in the period 1960-2006, results show a significant increase of the number of days with maximum temperatures above the 90th percentile. Furthermore, a significant decrease of the days with maximum temperatures below the 10th percentile has been found. The tendencies of minimum temperatures are reverse: less nights with minimum temperatures below 10th percentile, and more with minimum temperatures above 90th percentile. Those tendencies can be observed all over the year, but are more pronounced in summer. We have also calculated the relationship between the above mentioned extreme values and different teleconnection patterns appearing in the North Atlantic area. Results show that local tendencies are associated with trends of EA (Eastern Atlantic) and SCA (Scandinavian) patterns. NAO (North Atlantic

  2. Trends and periodicity of daily temperature and precipitation extremes during 1960-2013 in Hunan Province, central south China

    Science.gov (United States)

    Chen, Ajiao; He, Xinguang; Guan, Huade; Cai, Yi

    2018-04-01

    In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960-2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960-1986 and 1987-2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide

  3. ESCO market and industry trends: Updated results from the NAESCO database project

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Julie G.; Goldman, Charles A.; Hopper, Nicole C.

    2001-10-15

    Today's U.S. energy efficiency services industry is one of the most successful examples of private sector energy efficiency services in the world, yet little empirical information is available on the actual market activity of this industry. LBNL, together with the National Association of Energy Services Companies (NAESCO), has compiled the most comprehensive dataset of the energy efficiency services industry: nearly 1,500 case studies of energy efficiency projects. Our analysis of these projects helps shed light on some of the conventional wisdom regarding industry performance and evolution. We report key statistics about typical projects and industry trends that will aid state, federal, and international policymakers, and other investors interested in the development of a private sector energy efficiency services industry.

  4. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming

    Science.gov (United States)

    Lin, Yong; Franzke, Christian L. E.

    2015-01-01

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary. PMID:26259555

  5. Comparison between linear and nonlinear trends in NOAA-15 AMSU-A brightness temperatures during 1998-2010

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Z. [Nanjing University of Information Science and Technology, Center of Data Assimilation for Research and Application, Nanjing (China); Zou, X. [Nanjing University of Information Science and Technology, Center of Data Assimilation for Research and Application, Nanjing (China); Florida State University, Department of Earth, Ocean and Atmospheric Sciences, Tallahassee, FL (United States); Weng, F. [NOAA/NESDIS, Center for Satellite Applications and Research, Camp Springs, MD (United States)

    2012-10-15

    Brightness temperature observations from Microwave Sounding Unit and Advanced Microwave Sounding Unit-A (AMSU-A) on board National Oceanic and Atmospheric Administration (NOAA) satellites have been widely utilized for estimating the global climate trend in the troposphere and stratosphere. A common approach for deriving the trend is linear regression, which implicitly assumes the trend being a straight line over the whole length of a time series and is often highly sensitive to the data record length. This study explores a new adaptive and temporally local data analysis method - Ensemble Empirical Mode Decomposition (EEMD) - for estimating the global trends. In EEMD, a non-stationary time series is decomposed adaptively and locally into a sequence of amplitude-frequency modulated oscillatory components and a time-varying trend. The AMSU-A data from the NOAA-15 satellite over the time period from October 26, 1998 to August 7, 2010 are employed for this study. Using data over Amazon rainforest areas, it is shown that channel 3 is least sensitive to the orbital drift among four AMSU-A surface sensitive channels. The decadal trends of AMSU-A channel 3 and other eight channels in the troposphere and stratosphere are deduced and compared using both methods. It is shown that the decadal climate trends of most AMSU-A channels are nonlinear except for channels 3-4 in Northern Hemisphere only and channels 12-13. Although the decadal trend variation of the global average brightness temperature is no more than 0.2 K, the regional decadal trend variation could be more (less) than 3 K (-3 K) in high latitudes and over high terrains. (orig.)

  6. Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana

    Science.gov (United States)

    Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.

    2018-03-01

    Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann-Kendall and Sen's Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.

  7. Recent trends, drivers, and projections of carbon cycle processes in forests and grasslands of North America

    Science.gov (United States)

    Domke, G. M.; Williams, C. A.; Birdsey, R.; Pendall, E.

    2017-12-01

    In North America forest and grassland ecosystems play a major role in the carbon cycle. Here we present the latest trends and projections of United States and North American carbon cycle processes, stocks, and flows in the context of interactions with global scale budgets and climate change impacts in managed and unmanaged grassland and forest ecosystems. We describe recent trends in natural and anthropogenic disturbances in these ecosystems as well as the carbon dynamics associated with land use and land cover change. We also highlight carbon management science and tools for informing decisions and opportunities for improving carbon measurements, observations, and projections in forests and grasslands.

  8. High Temperature Gas-cooled Reactor Projected Markets and Scoping Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2010-08-01

    The NGNP Project has the objective of developing the high temperature gas-cooled reactor (HTGR) technology to supply high temperature process heat to industrial processes as a substitute for burning of fossil fuels, such as natural gas. Applications of the HTGR technology that have been evaluated by the NGNP Project for supply of process heat include supply of electricity, steam and high-temperature gas to a wide range of industrial processes, and production of hydrogen and oxygen for use in petrochemical, refining, coal to liquid fuels, chemical, and fertilizer plants.

  9. Reassessment of urbanization effect on surface air temperature trends at an urban station of North China

    Science.gov (United States)

    Bian, Tao; Ren, Guoyu

    2017-11-01

    Based on a homogenized data set of monthly mean temperature, minimum temperature, and maximum temperature at Shijiazhuang City Meteorological Station (Shijiazhuang station) and four rural meteorological stations selected applying a more sophisticated methodology, we reanalyzed the urbanization effects on annual, seasonal, and monthly mean surface air temperature (SAT) trends for updated time period 1960-2012 at the typical urban station in North China. The results showed that (1) urbanization effects on the long-term trends of annual mean SAT, minimum SAT, and diurnal temperature range (DTR) in the last 53 years reached 0.25, 0.47, and - 0.50 °C/decade, respectively, all statistically significant at the 0.001 confidence level, with the contributions from urbanization effects to the overall long-term trends reaching 67.8, 78.6, and 100%, respectively; (2) the urbanization effects on the trends of seasonal mean SAT, minimum SAT, and DTR were also large and statistically highly significant. Except for November and December, the urbanization effects on monthly mean SAT, minimum SAT, and DTR were also all statistically significant at the 0.05 confidence level; and (3) the annual, seasonal, and monthly mean maximum SAT series at the urban station registered a generally weaker and non-significant urbanization effect. The updated analysis evidenced that our previous work for this same urban station had underestimated the urbanization effect and its contribution to the overall changes in the SAT series. Many similar urban stations were being included in the current national and regional SAT data sets, and the results of this paper further indicated the importance and urgency for paying more attention to the urbanization bias in the monitoring and detection of global and regional SAT change based on the data sets.

  10. Timescales for determining temperature and dissolved oxygen trends in the Long Island Sound (LIS) estuary

    Science.gov (United States)

    Staniec, Allison; Vlahos, Penny

    2017-12-01

    Long-term time series represent a critical part of the oceanographic community's efforts to discern natural and anthropogenically forced variations in the environment. They provide regular measurements of climate relevant indicators including temperature, oxygen concentrations, and salinity. When evaluating time series, it is essential to isolate long-term trends from autocorrelation in data and noise due to natural variability. Herein we apply a statistical approach, well-established in atmospheric time series, to key parameters in the U.S. east coast's Long Island Sound estuary (LIS). Analysis shows that the LIS time series (established in the early 1990s) is sufficiently long to detect significant trends in physical-chemical parameters including temperature (T) and dissolved oxygen (DO). Over the last two decades, overall (combined surface and deep) LIS T has increased at an average rate of 0.08 ± 0.03 °C yr-1 while overall DO has dropped at an average rate of 0.03 ± 0.01 mg L-1yr-1 since 1994 at the 95% confidence level. This trend is notably faster than the global open ocean T trend (0.01 °C yr-1), as might be expected for a shallower estuarine system. T and DO trends were always significant for the existing time series using four month data increments. Rates of change of DO and T in LIS are strongly correlated and the rate of decrease of DO concentrations is consistent with the expected reduced solubility of DO at these higher temperatures. Thus, changes in T alone, across decadal timescales can account for between 33 and 100% of the observed decrease in DO. This has significant implications for other dissolved gases and the long-term management of LIS hypoxia.

  11. The paradox of cooling streams in a warming world: regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States

    Science.gov (United States)

    Ivan Arismendi; Sherri L. Johnson; Jason B. Dunham; Roy Haggerty

    2012-01-01

    Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream...

  12. Projections of temperature-related excess mortality under climate change scenarios.

    Science.gov (United States)

    Gasparrini, Antonio; Guo, Yuming; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Huber, Veronika; Tong, Shilu; de Sousa Zanotti Stagliorio Coelho, Micheline; Nascimento Saldiva, Paulo Hilario; Lavigne, Eric; Matus Correa, Patricia; Valdes Ortega, Nicolas; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Jaakkola, Jouni J K; Ryti, Niilo R I; Pascal, Mathilde; Goodman, Patrick G; Zeka, Ariana; Michelozzi, Paola; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Hurtado-Diaz, Magali; Cesar Cruz, Julio; Seposo, Xerxes; Kim, Ho; Tobias, Aurelio; Iñiguez, Carmen; Forsberg, Bertil; Åström, Daniel Oudin; Ragettli, Martina S; Guo, Yue Leon; Wu, Chang-Fu; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L; Dang, Tran Ngoc; Van, Dung Do; Heaviside, Clare; Vardoulakis, Sotiris; Hajat, Shakoor; Haines, Andy; Armstrong, Ben

    2017-12-01

    Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes. Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat

  13. Stroke trends in an aging population. The Technology Assessment Methods Project Team.

    Science.gov (United States)

    Niessen, L W; Barendregt, J J; Bonneux, L; Koudstaal, P J

    1993-07-01

    Trends in stroke incidence and survival determine changes in stroke morbidity and mortality. This study examines the extent of the incidence decline and survival improvement in the Netherlands from 1979 to 1989. In addition, it projects future changes in stroke morbidity during the period 1985 to 2005, when the country's population will be aging. A state-event transition model is used, which combines Dutch population projections and existing data on stroke epidemiology. Based on the clinical course of stroke, the model describes historical national age- and sex-specific hospital admission and mortality rates for stroke. It extrapolates observed trends and projects future changes in stroke morbidity rates. There is evidence of a continuing incidence decline. The most plausible rate of change is an annual decline of -1.9% (range, -1.7% to -2.1%) for men and -2.4% (range, -2.3% to -2.8%) for women. Projecting a constant mortality decline, the model shows a 35% decrease of the stroke incidence rate for a period of 20 years. Prevalence rates for major stroke will decline among the younger age groups but increase among the oldest because of increased survival in the latter. In absolute numbers this results in an 18% decrease of acute stroke episodes and an 11% increase of major stroke cases. The increase in survival cannot fully explain the observed mortality decline and, therefore, a concomitant incidence decline has to be assumed. Aging of the population partially outweighs the effect of an incidence decline on the total burden of stroke. Increase in cardiovascular survival leads to a further increase in major stroke prevalence among the oldest age groups.

  14. Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985-2012

    Science.gov (United States)

    Heron, Scott F.; Maynard, Jeffrey A.; van Hooidonk, Ruben; Eakin, C. Mark

    2016-12-01

    Coral reefs across the world’s oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world’s reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985-2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the ‘winter’ reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985-91 and 2006-12 - a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress.

  15. Mean and variance evolutions of the hot and cold temperatures in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Parey, Sylvie [EDF/R and D, Chatou Cedex (France); Dacunha-Castelle, D. [Universite Paris 11, Laboratoire de Mathematiques, Orsay (France); Hoang, T.T.H. [Universite Paris 11, Laboratoire de Mathematiques, Orsay (France); EDF/R and D, Chatou Cedex (France)

    2010-02-15

    In this paper, we examine the trends of temperature series in Europe, for the mean as well as for the variance in hot and cold seasons. To do so, we use as long and homogenous series as possible, provided by the European Climate Assessment and Dataset project for different locations in Europe, as well as the European ENSEMBLES project gridded dataset and the ERA40 reanalysis. We provide a definition of trends that we keep as intrinsic as possible and apply non-parametric statistical methods to analyse them. Obtained results show a clear link between trends in mean and variance of the whole series of hot or cold temperatures: in general, variance increases when the absolute value of temperature increases, i.e. with increasing summer temperature and decreasing winter temperature. This link is reinforced in locations where winter and summer climate has more variability. In very cold or very warm climates, the variability is lower and the link between the trends is weaker. We performed the same analysis on outputs of six climate models proposed by European teams for the 1961-2000 period (1950-2000 for one model), available through the PCMDI portal for the IPCC fourth assessment climate model simulations. The models generally perform poorly and have difficulties in capturing the relation between the two trends, especially in summer. (orig.)

  16. Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections

    Directory of Open Access Journals (Sweden)

    B. Orlowsky

    2013-05-01

    Full Text Available Recent years have seen a number of severe droughts in different regions around the world, causing agricultural and economic losses, famines and migration. Despite their devastating consequences, the Standardised Precipitation Index (SPI of these events lies within the general range of observation-based SPI time series and simulations from the 5th phase of the Coupled Model Intercomparison Project (CMIP5. In terms of magnitude, regional trends of SPI over the last decades remain mostly inconclusive in observation-based datasets and CMIP5 simulations, but Soil Moisture Anomalies (SMAs in CMIP5 simulations hint at increased drought in a few regions (e.g., the Mediterranean, Central America/Mexico, the Amazon, North-East Brazil and South Africa. Also for the future, projections of changes in the magnitude of meteorological (SPI and soil moisture (SMA drought in CMIP5 display large spreads over all time frames, generally impeding trend detection. However, projections of changes in the frequencies of future drought events display more robust signal-to-noise ratios, with detectable trends towards more frequent drought before the end of the 21st century in the Mediterranean, South Africa and Central America/Mexico. Other present-day hot spots are projected to become less drought-prone, or display non-significant changes in drought occurrence. A separation of different sources of uncertainty in projections of meteorological and soil moisture drought reveals that for the near term, internal climate variability is the dominant source, while the formulation of Global Climate Models (GCMs generally becomes the dominant source of spread by the end of the 21st century, especially for soil moisture drought. In comparison, the uncertainty from Green-House Gas (GHG concentrations scenarios is negligible for most regions. These findings stand in contrast to respective analyses for a heat wave index, for which GHG concentrations scenarios constitute the main source

  17. Endometrial Cancer Trends by Race and Histology in the USA: Projecting the Number of New Cases from 2015 to 2040.

    Science.gov (United States)

    Gaber, Charles; Meza, Rafael; Ruterbusch, Julie J; Cote, Michele L

    2016-10-17

    The aim of this study is to explore incidence and incidence-based mortality trends for endometrial cancer in the USA and project future incident cases, accounting for differences by race and histological subtype. Data on age-adjusted and age-specific incidence and mortality rates of endometrial cancer were obtained from the Surveillance, Epidemiology, and End Results 18 registries. Trends in rates were analyzed using Joinpoint regression, and average annual percent change (AAPC) in recent years (2006-2011) was computed for histological subtypes by race. Age, histological, and race-specific rates were applied to US Census Bureau population census estimates to project new cases from 2015 to 2040, accounting for observed AAPC trends, which were progressively attenuated for the future years. The annual number of cases is projected to increase substantially from 2015 to 2040 across all racial groups. Considerable variation in incidence and mortality trends was observed both between and within racial groups when considering histology. As the US population undergoes demographic changes, incidence of endometrial cancer is projected to rise. The increase will occur in all racial groups, but larger increases will be seen in aggressive histology subtypes that disproportionately affect black women.

  18. A Novel Method making direct use of AIRS and IASI Calibrated Radiances for Measuring Trends in Surface Temperatures

    Science.gov (United States)

    Aumann, H. H.; Ruzmaikin, A.

    2014-12-01

    Making unbiased measurements of trends in the surface temperatures, particularly on a gobal scale, is challenging: While the non-frozen oceans temperature measurements are plentiful and accurate, land and polar areas are much less accurately or fairly sampled. Surface temperature deduced from infrared radiometers on polar orbiting satellites (e.g. the Atmospheric Infrared Sounder (AIRS) at 1:30PM, the Interferometer Atmosphere Sounding Interferometer (IASI) at 9:30 AM and the MODerate resolution Imaging Spectro-radiometer (MODIS) at 1:30PM), can produce what appear to be well sampled data, but dealing with clouds either by cloud filtering (MODIS, IASI) or cloud-clearing (AIRS) can create sampling bias. We use a novel method: Random Nadir Sampling (RNS) combined with Probability Density Function (PDF) analysis. We analyze the trend in the PDF of st1231, the water vapor absorption corrected brightness temperatures measured in the 1231 cm-1 atmospheric window channel. The advantage of this method is that trends can be directly traced to the known, less than 3 mK/yr trend for AIRS, in st1231. For this study we created PDFs from 22,000 daily RNS from the AIRS and IASI data. We characterized the PDFs by its daily 90%tile value, st1231p90, and analysed the statistical properties of the this time series between 2002 and 2014. The method was validated using the daily NOAA SST (RTGSST) from the non-frozen oceans: The mean, seasonal variability and anomaly trend of st1231p90 agree with the corrsponding values from the RTGSST and the anomaly correlation is larger than 0.9. Preliminary results (August 2014) confirm the global hiatus in the increase of the globally averaged surface temperatures between 2002 and 2014, with a change of less than 10 mK/yr. This uncertainty is dominated by the large interannual variability related to El Niño events. Further insite is gained by analyzing land/ocean, day/night, artic and antarctic trends. We observe a massive warming trend in the

  19. Curie temperature trends in (III, Mn)V ferromagnetic semiconductors

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; König, J.; Sinova, J.; Kučera, Jan; MacDonald, A. H.

    2002-01-01

    Roč. 66, č. 1 (2002), s. 012402-1-012402-4 ISSN 0163-1829 R&D Projects: GA MŠk OC P5.10; GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * Curie temperature Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  20. Natural gas consumption trends and demand projections for Pakistan

    International Nuclear Information System (INIS)

    Uqaili, M.A.; Harijan, K.; Memon, H.U.R.

    2005-01-01

    Pakistan is an energy deficient country and heavily depends on imported energy. Natural gas is a dominating source of commercial energy in the country. This paper presents the natural gas consumption trends and future demand projections for Pakistan. The paper also investigates the potential utilization options of natural gas in the country. The study indicates that the natural gas consumption in the country increased rapidly at an average growth rate of about 6.8% per annum during the last three decades. Currently, natural gas contributes about 44.2% of the primary commercial energy supply in the country. Power, Fertilizer, General industry and Domestic sectors are the major consumers of gas in the country. The paper concludes the natural gas demand in the country is projected to increase to about 34-64 MTOE (Million Tonnes of Oil Equivalent) by the year 2018. Enhancement in the indigenous exploration and modulation of gas and import of gas from central Asian Sates is essential for meeting the growing gas demand, protecting the environment and increasing the economic independence in the country. (author)

  1. Historical trends in tank 241-SY-101 waste temperatures and levels

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1993-09-01

    The gas release and fluctuating level of the waste in tank 241-SY-101 have prompted more detailed interest in its historical behavior, in hopes of achieving a better understanding of its current status. To examine the historical behavior, essentially all of the tank waste temperature and level data record has been retrieved, examined, and plotted in various ways. To aid in interpreting the data, the depth of the non-convective waste layer was estimated by using a least-squares Chebyshev approximation to the temperatures. This report documents the retrieval critical examination, and graphic presentation of 241-SY-101 temperature and waste level histories. The graphic presentations clearly indicate a tank cooling trend that has become precipitous since late 1991. The plots also clearly show the decreasing frequency of waste gas release events, increasing height of the non-convective layer, and larger level drops per event

  2. Programmes and projects for high-temperature reactor development

    International Nuclear Information System (INIS)

    Bogusch, Edgar; Hittner, Dominique

    2009-01-01

    An increasing attention has to be recognised worldwide on the development of High-Temperature Reactors (HTR) which has started in Germany and other countries in the 1970ies. While pebble bed reactors with spherical fuel elements have been developed and constructed in Germany, countries such as France, the US and Russia investigated HTR concepts with prismatic block-type fuel elements. The concept of a modular HTR formerly developed by Areva NP was an essential basis for the HTR-10 in China. A pebble bed HTR for electricity production is developed in South Africa. The construction is planned after the completion of the licensing procedure. Also the US is planning an HTR under the NGNP (Next Generation Nuclear Plant) Project. Due to the high temperature level of the helium coolant, the HTR can be used not only for electricity production but also for supply of process heat. Including its inherent safety features the HTR is an attractive candidate for heat supply to various types of plants e.g. for hydrogen production or coal liquefactions. The conceptual design of an HTR with prismatic fuel elements for the cogeneration of electricity and process heat has been developed by Areva NP. On the European scale the HTR development is promoted by the RAPHAEL (ReActor for Process heat, Hydrogen And ELectricity generation) project. RAPHAEL is an Integrated Project of the Euratom 6th Framework Programme for the development of technologies towards a Very High-Temperature Reactor (VHTR) for the production of electricity and heat. It is financed jointly by the European Commission and the partners of the HTR Technology Network (HTR-TN) and coordinated by Areva NP. The RAPHAEL project not only promotes HTR development but also the cooperation with other European projects such as the material programme EXTREMAT. Furthermore HTR technology is investigated in the frame of Generation IV International Forum (GIF). The development of a VHTR with helium temperatures above 900 C for the

  3. EnviroAtlas - Ecosystem Service Market and Project Locations, U.S., 2015, Forest Trends' Ecosystem Marketplace

    Science.gov (United States)

    This EnviroAtlas dataset contains points depicting the location of market-based programs, referred to herein as markets, and projects addressing ecosystem services protection in the United States. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace from 2008 to 2016 on biodiversity (i.e., imperiled species/habitats; wetlands and streams), carbon, and water markets. Additional biodiversity data were obtained from the Regulatory In-lieu Fee and Bank Information Tracking System (RIBITS) database in 2015. Points represent the centroids (i.e., center points) of market coverage areas, project footprints, or project primary impact areas in which ecosystem service markets or projects operate. National-level markets are an exception to this norm with points representing administrative headquarters locations. Attribute data include information regarding the methodology, design, and development of biodiversity, carbon, and water markets and projects. This dataset was produced by Forest Trends' Ecosystem Marketplace for EnviroAtlas in order to support public access to and use of information related to environmental markets. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) o

  4. A three-stage hybrid model for regionalization, trends and sensitivity analyses of temperature anomalies in China from 1966 to 2015

    Science.gov (United States)

    Wu, Feifei; Yang, XiaoHua; Shen, Zhenyao

    2018-06-01

    Temperature anomalies have received increasing attention due to their potentially severe impacts on ecosystems, economy and human health. To facilitate objective regionalization and examine regional temperature anomalies, a three-stage hybrid model with stages of regionalization, trends and sensitivity analyses was developed. Annual mean and extreme temperatures were analyzed using the daily data collected from 537 stations in China from 1966 to 2015, including the annual mean, minimum and maximum temperatures (Tm, TNm and TXm) as well as the extreme minimum and maximum temperatures (TNe and TXe). The results showed the following: (1) subregions with coherent temperature changes were identified using the rotated empirical orthogonal function analysis and K-means clustering algorithm. The numbers of subregions were 6, 7, 8, 9 and 8 for Tm, TNm, TXm, TNe and TXe, respectively. (2) Significant increases in temperature were observed in most regions of China from 1966 to 2015, although warming slowed down over the last decade. This warming primarily featured a remarkable increase in its minimum temperature. For Tm and TNm, 95% of the stations showed a significant upward trend at the 99% confidence level. TNe increased the fastest, at a rate of 0.56 °C/decade, whereas 21% of the stations in TXe showed a downward trend. (3) The mean temperatures (Tm, TNm and TXm) in the high-latitude regions increased more quickly than those in the low-latitude regions. The maximum temperature increased significantly at high elevations, whereas the minimum temperature increased greatly at middle-low elevations. The most pronounced warming occurred in eastern China in TNe and northwestern China in TXe, with mean elevations of 51 m and 2098 m, respectively. A cooling trend in TXe was observed at the northwestern end of China. The warming rate in TNe varied the most among the subregions (0.63 °C/decade).

  5. Observed and simulated temperature extremes during the recent warming hiatus

    International Nuclear Information System (INIS)

    Sillmann, Jana; Donat, Markus G; Fyfe, John C; Zwiers, Francis W

    2014-01-01

    The discrepancy between recent observed and simulated trends in global mean surface temperature has provoked a debate about possible causes and implications for future climate change projections. However, little has been said in this discussion about observed and simulated trends in global temperature extremes. Here we assess trend patterns in temperature extremes and evaluate the consistency between observed and simulated temperature extremes over the past four decades (1971–2010) in comparison to the recent 15 years (1996–2010). We consider the coldest night and warmest day in a year in the observational dataset HadEX2 and in the current generation of global climate models (CMIP5). In general, the observed trends fall within the simulated range of trends, with better consistency for the longer period. Spatial trend patterns differ for the warm and cold extremes, with the warm extremes showing continuous positive trends across the globe and the cold extremes exhibiting a coherent cooling pattern across the Northern Hemisphere mid-latitudes that has emerged in the recent 15 years and is not reproduced by the models. This regional inconsistency between models and observations might be a key to understanding the recent hiatus in global mean temperature warming. (letters)

  6. Project-based production and project management: Findings and trends in research on temporary systems in multiple contexts

    Directory of Open Access Journals (Sweden)

    Tinus Pretorius

    2014-02-01

    Full Text Available Globalisation is challenging almost every aspect of the political, economic, social and technological environment. Organisations, whether public or private, have to adapt their strategies and operations to stay competitive and efficient. Historically, organisations adopted project-based operations as a mode to stay competitive, although the applications tended to be the oneoff type of operations such as construction and system development projects (Edum-Fotwe & McCaffer, 2000. As the world changed from an industrially driven to a more knowledge driven economy and the pace of continuous change became more intense, organisations adopted a project-based mode of operations on a broader scale. The knowledge economy lead to the creation of many service orientated industries. Organisations started facing portfolios of projects where the nature of these projects differed in technological complexity, urgency, customer value and social impact (Gutjahr & Froeschl, 2013. Based on their experience with more technically orientated projects, organisations focused their attention more intensely on new project management methods, tools and processes and not necessarily on the human and organisational interfaces. This paradigm changed however, especially since the 1980s and more and more organisations adopted temporary organisational forms (Bakker, 2010 in order to improve their competitiveness. The contributions in this special edition of the South African Journal of Economic and Management Sciences have a common focus on the importance of the human and organisational interface of project-based operations on project success. The purpose of this concluding article is to analyse the findings and recommendations in these papers and to detect trends and future research opportunities in the field of project-based operations.

  7. Multiyear Rainfall and Temperature Trends in the Volta River Basin and their Potential Impact on Hydropower Generation in Ghana

    Directory of Open Access Journals (Sweden)

    Amos T. Kabo-Bah

    2016-10-01

    Full Text Available The effects of temperature and rainfall changes on hydropower generation in Ghana from 1960–2011 were examined to understand country-wide trends of climate variability. Moreover, the discharge and the water level trends for the Akosombo reservoir from 1965–2014 were examined using the Mann-Kendall test statistic to assess localised changes. The annual temperature trend was positive while rainfall showed both negative and positive trends in different parts of the country. However, these trends were not statistically significant in the study regions in 1960 to 2011. Rainfall was not evenly distributed throughout the years, with the highest rainfall recorded between 1960 and 1970 and the lowest rainfalls between 2000 and 2011. The Mann-Kendall test shows an upward trend for the discharge of the Akosombo reservoir and a downward trend for the water level. However, the discharge irregularities of the reservoir do not necessarily affect the energy generated from the Akosombo plant, but rather the regular low flow of water into the reservoir affected power generation. This is the major concern for the operations of the Akosombo hydropower plant for energy generation in Ghana.

  8. Assessment of the Effects of Temperature and Precipitation Variations on the Trend of River Flows in Urmia Lake Watershed

    Directory of Open Access Journals (Sweden)

    Ashkan Farokhnia

    2014-07-01

    Full Text Available Trend analysis is one of the appropriate methods to assess the hydro-climatic condition of watersheds, which is commonly used for analysis of change pattern in a single variable over time. However, in real cases, many hydrological variables such as river flow are directly affected by climate and environmental factors, which usually go unnoticed in routine analyzes. The aim of the present research is to investigate the trend of river discharge in 25 hydrometric stations in Lake Urmia river basin with and without consideration of temperature and rainfall variability. Briefly, the results showed that there is a decreasing trend in all stations, which is significant in 9 cases. Also, it has been shown that regarding to trends in precipitation and temperature, the number of stations with significant decreasing trend will reduce to 7, which shows low impact of climate factors on the reduction rate of discharge in these stations. Based on the results, it can be concluded that climate variations have direct effect in inferring significant trends in river flow, so that considering these variables in studying of river discharge can lead to different results in the detection of significant trends.

  9. The role of natural climatic variation in perturbing the observed global mean temperature trend

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, B.G. [CSIRO Marine and Atmospheric Research, Aspendale, VIC (Australia)

    2011-02-15

    Controversy continues to prevail concerning the reality of anthropogenically-induced climatic warming. One of the principal issues is the cause of the hiatus in the current global warming trend. There appears to be a widely held view that climatic change warming should exhibit an inexorable upwards trend, a view that implies there is no longer any input by climatic variability in the existing climatic system. The relative roles of climatic change and climatic variability are examined here using the same coupled global climatic model. For the former, the model is run using a specified CO{sub 2} growth scenario, while the latter consisted of a multi-millennial simulation where any climatic variability was attributable solely to internal processes within the climatic system. It is shown that internal climatic variability can produce global mean surface temperature anomalies of {+-}0.25 K and sustained positive and negative anomalies sufficient to account for the anomalous warming of the 1940s as well as the present hiatus in the observed global warming. The characteristics of the internally-induced negative temperature anomalies are such that if this internal natural variability is the cause of the observed hiatus, then a resumption of the observed global warming trend is to be expected within the next few years. (orig.)

  10. The influence of elevation, latitude and Arctic Oscillation on trends in temperature extremes over northeastern China, 1961-2011

    Science.gov (United States)

    Zeng, Wei; Yu, Zhen; Li, Xilin

    2018-04-01

    Trend magnitudes of 14 indices of temperature extremes at 70 stations with elevations, latitude and Arctic Oscillation over northeast China during 1960-2011 are examined. There are no significant correlations between elevation and trend magnitudes with the exception of TXn (Min T max), TNn (Min T min), TR20 (tropical nights) and GSL (growing season length). Analysis of trend magnitudes by topographic type has a strong influence, which overrides that of degree of urbanization. By contrast, most of the temperature indices have stronger correlations with the latitude and Arctic Oscillation index. The correlations between the Arctic Oscillation index and percentile indices, including TX10p (cool days), TX90p (warm days), TN10p (cool nights), TN90p (warm nights), are not the same in different areas. To summarize, analysis of trend magnitudes by topographic type, the latitude and the Arctic Oscillation shows three factors to have a strong influence in this dataset, which overrides that of elevation and degree of urbanization.

  11. National Status and Trends, Benthic Surveillance Project Sites, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set reports information regarding the nominal sampling locations for the National Status and Trends Benthic Surveillance Project sites. One record is...

  12. Trends in mean maximum temperature, mean minimum temperature and mean relative humidity for Lautoka, Fiji during 2003 – 2013

    Directory of Open Access Journals (Sweden)

    Syed S. Ghani

    2017-12-01

    Full Text Available The current work observes the trends in Lautoka’s temperature and relative humidity during the period 2003 – 2013, which were analyzed using the recently updated data obtained from Fiji Meteorological Services (FMS. Four elements, mean maximum temperature, mean minimum temperature along with diurnal temperature range (DTR and mean relative humidity are investigated. From 2003–2013, the annual mean temperature has been enhanced between 0.02 and 0.080C. The heating is more in minimum temperature than in maximum temperature, resulting in a decrease of diurnal temperature range. The statistically significant increase was mostly seen during the summer months of December and January. Mean Relative Humidity has also increased from 3% to 8%. The bases of abnormal climate conditions are also studied. These bases were defined with temperature or humidity anomalies in their appropriate time sequences. These established the observed findings and exhibited that climate has been becoming gradually damper and heater throughout Lautoka during this period. While we are only at an initial phase in the probable inclinations of temperature changes, ecological reactions to recent climate change are already evidently noticeable. So it is proposed that it would be easier to identify climate alteration in a small island nation like Fiji.

  13. Ultrasonic computerized tomography (CT) for temperature measurements with limited projection data based on extrapolated filtered back projection (FBP) method

    International Nuclear Information System (INIS)

    Zhu Ning; Jiang Yong; Kato, Seizo

    2005-01-01

    This study uses ultrasound in combination with tomography to obtain three-dimensional temperature measurements using projection data obtained from limited projection angle. The main feature of the new computerized tomography (CT) reconstruction algorithm is to employ extrapolation scheme to make up for the incomplete projection data, it is based on the conventional filtered back projection (FBP) method while on top of that taking into account the correlation between the projection data and Fourier transform-based extrapolation. Computer simulation is conducted to verify the above algorithm. An experimental 3D temperature distribution measurement is also carried out to validate the proposed algorithm. The simulation and experimental results demonstrate that the extrapolated FBP CT algorithm is highly effective in dealing with projection data from limited projection angle

  14. Photovoltaic System Pricing Trends. Historical, Recent, and Near-Term Projections, 2015 Edition

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seel, Joachim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Darghouth, Naïm [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-25

    This presentation, based on research at Lawrence Berkeley National Laboratory and the National Renewable Energy Laboratory, provides a high-level overview of historical, recent, and projected near-term PV pricing trends in the United States focusing on the installed price of PV systems. It also attempts to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices. This PowerPoint is the fourth edition from this series.

  15. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  16. Trends and associated uncertainty in the global mean temperature record

    Science.gov (United States)

    Poppick, A. N.; Moyer, E. J.; Stein, M.

    2016-12-01

    Physical models suggest that the Earth's mean temperature warms in response to changing CO2 concentrations (and hence increased radiative forcing); given physical uncertainties in this relationship, the historical temperature record is a source of empirical information about global warming. A persistent thread in many analyses of the historical temperature record, however, is the reliance on methods that appear to deemphasize both physical and statistical assumptions. Examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for natural variability in nonparametric rather than parametric ways. We show here that methods that deemphasize assumptions can limit the scope of analysis and can lead to misleading inferences, particularly in the setting considered where the data record is relatively short and the scale of temporal correlation is relatively long. A proposed model that is simple but physically informed provides a more reliable estimate of trends and allows a broader array of questions to be addressed. In accounting for uncertainty, we also illustrate how parametric statistical models that are attuned to the important characteristics of natural variability can be more reliable than ostensibly more flexible approaches.

  17. Projected Temperature-Related Years of Life Lost From Stroke Due To Global Warming in a Temperate Climate City, Asia: Disease Burden Caused by Future Climate Change.

    Science.gov (United States)

    Li, Guoxing; Guo, Qun; Liu, Yang; Li, Yixue; Pan, Xiaochuan

    2018-04-01

    Global warming has attracted worldwide attention. Numerous studies have indicated that stroke is associated with temperature; however, few studies are available on the projections of the burden of stroke attributable to future climate change. We aimed to investigate the future trends of stroke years of life lost (YLL) associated with global warming. We collected death records to examine YLL in Tianjin, China, from 2006 to 2011. We fitted a standard time-series Poisson regression model after controlling for trends, day of the week, relative humidity, and air pollution. We estimated temperature-YLL associations with a distributed lag nonlinear model. These models were then applied to the local climate projections to estimate temperature-related YLL in the 2050s and 2070s. We projected temperature-related YLL from stroke in Tianjin under 19 global-scale climate models and 3 different greenhouse gas emission scenarios. The results showed a slight decrease in YLL with percent decreases of 0.85%, 0.97%, and 1.02% in the 2050s and 0.94%, 1.02%, and 0.91% in the 2070s for the 3 scenarios, respectively. The increases in heat-related annual YLL and the decreases in cold-related YLL under the high emission scenario were the strongest. The monthly analysis showed that the most significant increase occurred in the summer months, particularly in August, with percent changes >150% in the 2050s and up to 300% in the 2070s. Future changes in climate are likely to lead to an increase in heat-related YLL, and this increase will not be offset by adaptation under both medium emission and high emission scenarios. Health protections from hot weather will become increasingly necessary, and measures to reduce cold effects will also remain important. © 2018 American Heart Association, Inc.

  18. Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960-2014

    Science.gov (United States)

    Fang, Xuewei; Luo, Siqiong; Lyu, Shihua

    2018-01-01

    Soil temperature, an important indicator of climate change, has rarely explored due to scarce observations, especially in the Tibetan Plateau (TP) area. In this study, changes observed in five meteorological variables obtained from the TP between 1960 and 2014 were investigated using two non-parametric methods, the modified Mann-Kendall test and Sen's slope estimator method. Analysis of annual series from 1960 to 2014 has shown that surface (0 cm), shallow (5-20 cm), deep (40-320 cm) soil temperatures (ST), mean air temperature (AT), and precipitation (P) increased with rates of 0.47 °C/decade, 0.36 °C/decade, 0.36 °C/decade, 0.35 °C/decade, and 7.36 mm/decade, respectively, while maximum frozen soil depth (MFD) as well as snow cover depth (MSD) decreased with rates of 5.58 and 0.07 cm/decade. Trends were significant at 99 or 95% confidence level for the variables, with the exception of P and MSD. More impressive rate of the ST at each level than the AT indicates the clear response of soil to climate warming on a regional scale. Monthly changes observed in surface ST in the past decades were consistent with those of AT, indicating a central place of AT in the soil warming. In addition, with the exception of MFD, regional scale increasing trend of P as well as the decreasing MSD also shed light on the mechanisms driving soil trends. Significant negative-dominated correlation coefficients (α = 0.05) between ST and MSD indicate the decreasing MSD trends in TP were attributable to increasing ST, especially in surface layer. Owing to the frozen ground, the relationship between ST and P is complicated in the area. Higher P also induced higher ST, while the inhibition of freeze and thaw process on the ST in summer. With the increasing AT, P accompanied with the decreasing MFD, MSD should be the major factors induced the conspicuous soil warming of the TP in the past decades.

  19. Future changes over the Himalayas: Maximum and minimum temperature

    Science.gov (United States)

    Dimri, A. P.; Kumar, D.; Choudhary, A.; Maharana, P.

    2018-03-01

    An assessment of the projection of minimum and maximum air temperature over the Indian Himalayan region (IHR) from the COordinated Regional Climate Downscaling EXperiment- South Asia (hereafter, CORDEX-SA) regional climate model (RCM) experiments have been carried out under two different Representative Concentration Pathway (RCP) scenarios. The major aim of this study is to assess the probable future changes in the minimum and maximum climatology and its long-term trend under different RCPs along with the elevation dependent warming over the IHR. A number of statistical analysis such as changes in mean climatology, long-term spatial trend and probability distribution function are carried out to detect the signals of changes in climate. The study also tries to quantify the uncertainties associated with different model experiments and their ensemble in space, time and for different seasons. The model experiments and their ensemble show prominent cold bias over Himalayas for present climate. However, statistically significant higher warming rate (0.23-0.52 °C/decade) for both minimum and maximum air temperature (Tmin and Tmax) is observed for all the seasons under both RCPs. The rate of warming intensifies with the increase in the radiative forcing under a range of greenhouse gas scenarios starting from RCP4.5 to RCP8.5. In addition to this, a wide range of spatial variability and disagreements in the magnitude of trend between different models describes the uncertainty associated with the model projections and scenarios. The projected rate of increase of Tmin may destabilize the snow formation at the higher altitudes in the northern and western parts of Himalayan region, while rising trend of Tmax over southern flank may effectively melt more snow cover. Such combined effect of rising trend of Tmin and Tmax may pose a potential threat to the glacial deposits. The overall trend of Diurnal temperature range (DTR) portrays increasing trend across entire area with

  20. Geriatric cancer trends in the Middle-East: Findings from Lebanese cancer projections until 2025.

    Science.gov (United States)

    Haddad, Fady Gh; Kattan, Joseph; Kourie, Hampig R; El Rassy, Elie; Assi, Tarek; Adib, Salim M

    2018-03-01

    By 2020, 70% of all cancers will occur in patients aged 65years and older, causing an increase in related morbidity, mortality, and cost. This study projects cancer trends in the elderly population in Lebanon, a country experiencing accelerating aging trends. Findings will guide future policy decisions regarding geriatric oncology in Lebanon and the surrounding Arab world. Cancer incidence rates were derived for men and women 65years and above, divided into three age groups: 65-69years, 70-74years, and 75years and above. Raw data were obtained from the National Cancer Registry reports 2003-2010. The eight consecutive year data were used to project the incidence until 2025 using a logarithmic model. The Average Annual Percent Change in incidence rates was calculated to determine whether it would significantly increase, decrease, or remain stable over time. Incidence rates are projected to increase significantly in all age groups of both genders until 2025. In men, the fastest rise is expected in prostate cancer, followed by bladder, lung, colorectal, and NHL. In women, the rise will be fastest in breast, followed by colorectal, lung, NHL, and ovary. Projected rates increase faster in the "younger" age group 65-69 compared to the "oldest" ≥75, both in men and women. Only kidney and liver cancers continue to rise significantly after 75. Cancer incidence is projected to increase in individuals between 65 and 74years of age. Lebanese and Middle Eastern physicians must implement adapted therapeutic strategies in the management of the increasing caseload among frail, elderly patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Dynamically-downscaled projections of changes in temperature extremes over China

    Science.gov (United States)

    Guo, Junhong; Huang, Guohe; Wang, Xiuquan; Li, Yongping; Lin, Qianguo

    2018-02-01

    In this study, likely changes in extreme temperatures (including 16 indices) over China in response to global warming throughout the twenty-first century are investigated through the PRECIS regional climate modeling system. The PRECIS experiment is conducted at a spatial resolution of 25 km and is driven by a perturbed-physics ensemble to reflect spatial variations and model uncertainties. Simulations of present climate (1961-1990) are compared with observations to validate the model performance in reproducing historical climate over China. Results indicate that the PRECIS demonstrates reasonable skills in reproducing the spatial patterns of observed extreme temperatures over the most regions of China, especially in the east. Nevertheless, the PRECIS shows a relatively poor performance in simulating the spatial patterns of extreme temperatures in the western mountainous regions, where its driving GCM exhibits more uncertainties due to lack of insufficient observations and results in more errors in climate downscaling. Future spatio-temporal changes of extreme temperature indices are then analyzed for three successive periods (i.e., 2020s, 2050s and 2080s). The projected changes in extreme temperatures by PRECIS are well consistent with the results of the major global climate models in both spatial and temporal patterns. Furthermore, the PRECIS demonstrates a distinct superiority in providing more detailed spatial information of extreme indices. In general, all extreme indices show similar changes in spatial pattern: large changes are projected in the north while small changes are projected in the south. In contrast, the temporal patterns for all indices vary differently over future periods: the warm indices, such as SU, TR, WSDI, TX90p, TN90p and GSL are likely to increase, while the cold indices, such as ID, FD, CSDI, TX10p and TN10p, are likely to decrease with time in response to global warming. Nevertheless, the magnitudes of changes in all indices tend to

  2. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis.

    Science.gov (United States)

    Ouyang, Ying; Parajuli, Prem B; Li, Yide; Leininger, Theodor D; Feng, Gary

    2017-08-01

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature and its impact upon forest stream flows in Lower Mississippi River Alluvial Valley (LMRAV). Four surface water monitoring stations, which locate near the headwater areas with very few land use disturbances and the long-term data records (60-90 years) in the LMRAV, were selected to obtain stream discharge and air temperature data. The wavelet analysis showed that air temperature had an increasing temporal trend around its mean value during the past several decades in the LMRAV, whereas stream flow had a decreasing temporal trend around its average value at the same time period in the same region. Results of this study demonstrated that the climate in the LMRAV did get warmer as time elapsed and the streams were drier as a result of warmer air temperature. This study further revealed that the best way to estimate the temporal trends of air temperature and stream flow was to perform the wavelet transformation around their mean values. Published by Elsevier Ltd.

  3. EMPRESS: A European Project to Enhance Process Control Through Improved Temperature Measurement

    Science.gov (United States)

    Pearce, J. V.; Edler, F.; Elliott, C. J.; Rosso, L.; Sutton, G.; Andreu, A.; Machin, G.

    2017-08-01

    A new European project called EMPRESS, funded by the EURAMET program `European Metrology Program for Innovation and Research,' is described. The 3 year project, which started in the summer of 2015, is intended to substantially augment the efficiency of high-value manufacturing processes by improving temperature measurement techniques at the point of use. The project consortium has 18 partners and 5 external collaborators, from the metrology sector, high-value manufacturing, sensor manufacturing, and academia. Accurate control of temperature is key to ensuring process efficiency and product consistency and is often not achieved to the level required for modern processes. Enhanced efficiency of processes may take several forms including reduced product rejection/waste; improved energy efficiency; increased intervals between sensor recalibration/maintenance; and increased sensor reliability, i.e., reduced amount of operator intervention. Traceability of temperature measurements to the International Temperature Scale of 1990 (ITS-90) is a critical factor in establishing low measurement uncertainty and reproducible, consistent process control. Introducing such traceability in situ (i.e., within the industrial process) is a theme running through this project.

  4. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  5. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  6. Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985–2012

    Science.gov (United States)

    Heron, Scott F.; Maynard, Jeffrey A.; van Hooidonk, Ruben; Eakin, C. Mark

    2016-01-01

    Coral reefs across the world’s oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world’s reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985–2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the ‘winter’ reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985–91 and 2006–12 – a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress. PMID:27922080

  7. The integrated project SOFC600 development of low-temperature SOFC

    DEFF Research Database (Denmark)

    Rietveld, B.; Van Berkel, F.; Zhang-Steenwinkel, Y.

    2009-01-01

    The Integrated Project SOFC600 unites 21 partners jointly working on the research and development of SOFC stack components for operation at 600oC. The project is funded by the European Commission within the 6th Framework Programme. Low-temperature operation is considered essential for achieving c...

  8. Trends in extreme temperature and precipitation in Muscat, Oman

    Directory of Open Access Journals (Sweden)

    L. N. Gunawardhana

    2014-09-01

    Full Text Available Changes in frequency and intensity of weather events often result in more frequent and intensive disasters such as flash floods and persistent droughts. In Oman, changes in precipitation and temperature have already been detected, although a comprehensive analysis to determine long-term trends is yet to be conducted. We analysed daily precipitation and temperature records in Muscat, the capital city of Oman, mainly focusing on extremes. A set of climate indices, defined in the RClimDex software package, were derived from the longest available daily series (precipitation over the period 1977–2011 and temperature over the period 1986–2011. Results showed significant changes in temperature extremes associated with cooling. Annual maximum value of daily maximum temperature (TX, on average, decreased by 1°C (0.42°C/10 year. Similarly, the annual minimum value of daily minimum temperature (TN decreased by 1.5°C (0.61°C/10 year, which, on average, cooled at a faster rate than the maximum temperature. Consequently, the annual count of days when TX > 45°C (98th percentile decreased from 8 to 3, by 5 days. Similarly, the annual count of days when TN < 15°C (2nd percentile increased from 5 to 15, by 10 days. Annual total precipitation averaged over the period 1977–2011 is 81 mm, which shows a tendency toward wetter conditions with a 6 mm/10 year rate. There is also a significant tendency for stronger precipitation extremes according to many indices. The contribution from very wet days to the annual precipitation totals steadily increases with significance at 75% level. When The General Extreme Value (GEV probability distribution is fitted to annual maximum 1-day precipitation, the return level of a 10-year return period in 1995–2011 was estimated to be 95 mm. This return level in the recent decade is about 70% higher than the return level for the period of 1977–1994. These results indicate that the long-term wetting signal apparent in total

  9. Climatology and trends of mesospheric (58-90) temperatures based upon 1982-1986 SME limb scattering profiles

    Science.gov (United States)

    Clancy, R. Todd; Rusch, David W.

    1989-01-01

    Atmospheric temperature profiles for the altitude range 58-90 km were calculated using data on global UV limb radiances from the SME satellite. The major elements of this climatology include a high vertical resolution (about 4 km) and the coverage of the 70-90 km altitude region. The analysis of this extensive data set provides a global definition of mesospheric-lower thermospheric temperature trends over the 1982-1986 period. The observations suggest a pattern of 1-2 K/year decreases in temperatures at 80-90-km altitudes accompanied by 0.5-1.5 K/year increases in temperatures at 65-80-km altitudes.

  10. CONTEMPORARY TRENDS IN PROJECT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Ana Argirova

    2015-09-01

    Full Text Available The modern information society in ever increasing business projects and time limits to achieve the objectives at minimum cost leads to a search for ways to manage them. Today, more and more managers use IT tools for project management, and the term itself is associated with software solutions for the optimization and management of projects in different fields of human activity. The paper examines the main characteristics of project management by means of information technology. Key tasks and processes in the project implementation and management are discussed.

  11. Characterization of Future Caribbean Rainfall and Temperature Extremes across Rainfall Zones

    Directory of Open Access Journals (Sweden)

    Natalie Melissa McLean

    2015-01-01

    Full Text Available End-of-century changes in Caribbean climate extremes are derived from the Providing Regional Climate for Impact Studies (PRECIS regional climate model (RCM under the A2 and B2 emission scenarios across five rainfall zones. Trends in rainfall, maximum temperature, and minimum temperature extremes from the RCM are validated against meteorological stations over 1979–1989. The model displays greater skill at representing trends in consecutive wet days (CWD and extreme rainfall (R95P than consecutive dry days (CDD, wet days (R10, and maximum 5-day precipitation (RX5. Trends in warm nights, cool days, and warm days were generally well reproduced. Projections for 2071–2099 relative to 1961–1989 are obtained from the ECHAM5 driven RCM. Northern and eastern zones are projected to experience more intense rainfall under A2 and B2. There is less consensus across scenarios with respect to changes in the dry and wet spell lengths. However, there is indication that a drying trend may be manifest over zone 5 (Trinidad and northern Guyana. Changes in the extreme temperature indices generally suggest a warmer Caribbean towards the end of century across both scenarios with the strongest changes over zone 4 (eastern Caribbean.

  12. National Status and Trends, Benthic Surveillance Project Chemistry Data, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NS&T) Benthic Surveillance Project Chemistry data file reports the trace concentrations of a suite of chemical contaminants in...

  13. National Status and Trends, Benthic Surveillance Project Chemistry Data, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NSandT) Benthic Surveillance Project Chemistry data file reports the trace concentrations of a suite of chemical contaminants in...

  14. Modelling impacts of temperature, and acidifying and eutrophying deposition on DOC trends

    Science.gov (United States)

    Sawicka, Kasia; Rowe, Ed; Evans, Chris; Monteith, Don; Vanguelova, Elena; Wade, Andrew; Clark, Joanna

    2017-04-01

    Surface water dissolved organic carbon (DOC) concentrations in large parts of the northern hemisphere have risen over the past three decades, raising concern about enhanced contributions of carbon to the atmosphere and seas and oceans. The effect of declining acid deposition has been identified as a key control on DOC trends in soil and surface waters, since pH and ionic strength affect sorption and desorption of DOC. However, since DOC is derived mainly from recently-fixed carbon, and organic matter decomposition rates are considered sensitive to temperature, uncertainty persists regarding the extent to the relative importance of different drivers that affect these upward trends. We ran the dynamic model MADOC (Model of Acidity and Soil Organic Carbon) for a range of UK soils (podzols, gleysols and peatland), for which the time-series were available, to consider the likely relative importance of decreased deposition of sulphate and chloride, accumulation of reactive N, and higher temperatures, on DOC production in different soils. Modelled patterns of DOC change generally agreed favourably with measurements collated over 10-20 years, but differed markedly between sites. While the acidifying effect of sulphur deposition appeared to be the predominant control on the observed soil water DOC trends in all the soils considered other than a blanket peat, the model suggested that over the long term, the effects of nitrogen deposition on N-limited soils may have been sufficient to elevate the DOC recovery trajectory significantly. The second most influential cause of rising DOC in the model simulations was N deposition in ecosystems that are N-limited and respond with stimulated plant growth. Although non-marine chloride deposition made some contribution to acidification and recovery, it was not amongst the main drivers of DOC change. Warming had almost no effect on modelled historic DOC trends, but may prove to be a significant driver of DOC in future via its influence

  15. The Role of the Mean State of Arctic Sea Ice on Near-Surface Temperature Trends

    NARCIS (Netherlands)

    Linden, van der E.C.; Bintanja, R.; Hazeleger, W.; Katsman, C.A.

    2014-01-01

    Century-scale global near-surface temperature trends in response to rising greenhouse gas concentrations in climate models vary by almost a factor of 2, with greatest intermodel spread in the Arctic region where sea ice is a key climate component. Three factors contribute to the intermodel spread:

  16. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mugerwa, Michael [Technip USA, Inc., Claremont, CA (United States)

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  17. Influence of changes in humidity on dry temperature in GPS RO climatologies

    Directory of Open Access Journals (Sweden)

    J. Danzer

    2014-09-01

    . As a consequence, we performed a model study, investigating the increase in height of the transition region between moist and dry air. We used data from the fifth phase of the Coupled Model Intercomparison Project (CMIP5, analyzing again monthly mean dry temperature to physical temperature differences, now from the years 2006 to 2050. We used the highest emission scenario RCP8.5 (representative concentration pathway, studying all available models of the CMIP5 project, analyzing one internal run per model, with the goal to identify the altitude region where trends in dry temperature can be safely regarded as reflecting trends in physical temperature. From all models we therefore choose a selection of models ("max 8" CMIP5 models, which showed the largest trend differences. As a result, our trend study suggests that the lower boundary of the region where dry temperature is essentially equal to physical temperature rises about 150 m decade−1.

  18. Measuring Skin Temperatures with the IASI Hyperspectral Mission

    Science.gov (United States)

    Safieddine, S.; George, M.; Clarisse, L.; Clerbaux, C.

    2017-12-01

    Although the role of satellites in observing the variability of the Earth system has increased in recent decades, remote-sensing observations are still underexploited to accurately assess climate change fingerprints, in particular temperature variations. The IASI - Flux and Temperature (IASI-FT) project aims at providing new benchmarks for temperature observations using the calibrated radiances measured twice a day at any location by the IASI thermal infrared instrument on the suite of MetOp satellites (2006-2025). The main challenge is to achieve the accuracy and stability needed for climate studies, particularly that required for climate trends. Time series for land and sea skin surface temperatures are derived and compared with in situ measurements and atmospheric reanalysis. The observed trends are analyzed at seasonal and regional scales in order to disentangle natural (weather/dynamical) variability and human-induced climate forcings.

  19. Solar variations and their influence on trends in upper stratospheric ozone and temperature

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Kinnison, D.E.; Lean, J.L.

    1990-10-01

    Over the past decade, knowledge of the magnitude and temporal structure of the variations in the sun's ultraviolet irradiance has increased steadily. A number of theoretical modeling studies have shown that changes in the solar ultraviolet flux during the 11-year solar cycle can have a significant effect on stratospheric ozone concentrations. With the exception of Brasseur et al., who examined a very broad range of solar flux variations, all of these studies assumed much larger changes in the ultraviolet flux than measurements now indicate. These studies either calculated the steady-state effect at solar maximum and solar minimum or assumed sinusoidal variations in the solar flux changes with time. It is now possible to narrow the uncertainty range of the expected effects on upper stratospheric ozone and temperature resulting from the 11-year solar cycle. A more accurate representation of the solar flux changes with time is used in this analysis, as compared to previous published studies. This study also evaluates the relative roles of solar flux variations and increasing concentrations of long-lived trace gases in determining the observed trends in upper stratospheric ozone and temperature. The LLNL two-dimensional chemical-radiative-transport model of the global atmosphere is used to evaluate the combined effects on the stratosphere from changes in solar ultraviolet irradiances and trace gas concentrations over the last several decades. Derived trends in upper stratospheric ozone concentrations and temperature are then compared with available analyses of ground-based and satellite measurements over this time period

  20. Contributions of Greenhouse Gas Forcing and the Southern Annular Mode to Historical Southern Ocean Surface Temperature Trends

    Science.gov (United States)

    Kostov, Yavor; Ferreira, David; Armour, Kyle C.; Marshall, John

    2018-01-01

    We examine the 1979-2014 Southern Ocean (SO) sea surface temperature (SST) trends simulated in an ensemble of coupled general circulation models and evaluate possible causes of the models' inability to reproduce the observed 1979-2014 SO cooling. For each model we estimate the response of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions, we skillfully reconstruct the models' 1979-2014 SO SST trends. Consistent with the seasonal signature of the Antarctic ozone hole and the seasonality of SO stratification, the summer and fall SAM exert a large impact on the simulated SO SST trends. We further identify conditions that favor multidecadal SO cooling: (1) a weak SO warming response to GHG forcing, (2) a strong multidecadal SO cooling response to a positive SAM trend, and (3) a historical SAM trend as strong as in observations.

  1. The impact of Mediterranean oscillations on periodicity and trend of temperature in the valley of the Nisava River: A fourier and wavelet approach

    Directory of Open Access Journals (Sweden)

    Martić-Bursać Nataša M.

    2017-01-01

    Full Text Available Periodicity of temperature on three stations in the Nisava River valley in period 1949-2014, has been analyzed by means of Fourier and wavelet transforms. Combined periodogram based on fast Fourier transform shows considerable similarity among individual series and identifies significant periods on 2.2, 2.7, 3.3, 5, 6-7, and 8.2 years in all datasets. Wavelet coherence analysis connects strongest 6-7 years spectral component to Mediterranean oscillation, starting in 1980s. Combined periodogram of Mediterranean oscillation index reveals 6-7 years spectral component as a dominant mode in period 1949-2014. Wavelet power spectra and partial combined periodograms show absence of 6-7 years component before 1975, after which this component becomes dominant in the spectrum. Consistency between alternation in temperature trend in the Nisava River valley and change in periodicity of Mediterranean oscillation was found. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. OI176008

  2. Projection after variation in the finite-temperature Hartree-Fock-Bogoliubov approximation

    Science.gov (United States)

    Fanto, P.

    2017-11-01

    The finite-temperature Hartree-Fock-Bogoliubov (HFB) approximation often breaks symmetries of the underlying many-body Hamiltonian. Restricting the calculation of the HFB partition function to a subspace with good quantum numbers through projection after variation restores some of the correlations lost in breaking these symmetries, although effects of the broken symmetries such as sharp kinks at phase transitions remain. However, the most general projection after variation formula in the finite-temperature HFB approximation is limited by a sign ambiguity. Here, I extend the Pfaffian formula for the many-body traces of HFB density operators introduced by Robledo [L. M. Robledo, Phys. Rev. C. 79, 021302(R) (2009), 10.1103/PhysRevC.79.021302] to eliminate this sign ambiguity and evaluate the more complicated many-body traces required in projection after variation in the most general HFB case. The method is validated through a proof-of-principle calculation of the particle-number-projected HFB thermal energy in a simple model.

  3. D and D projects trends

    International Nuclear Information System (INIS)

    Gay, Arnaud

    2012-01-01

    This series of slides presents: 1 - the Various types of needs and types of operations in any D and D project, 2 - the strong variety of nuclear units to dismantle, 3 - the D and D dependence on nuclear operators' strategy (Immediate/Deferred dismantling), 4 - the demand for D and D services with respect to the ageing of the nuclear fleet, 5 - the impacts to come on the D and D environment due to the Fukushima accident, 6 - the geographical dependence of D and D demands, 7 - the different D and D choices from nuclear operators in the supply chain management, 8 - the key levers in a D and D project performance, 9 - Some key competencies in D and D, 10 - Risk management for both clients and suppliers in a D and D project, 11 - AREVA involvement in Fukushima project as a key demonstration of a critical D and D project management

  4. A comparison of metrics for assessing state-of-the-art climate models and implications for probabilistic projections of climate change

    Science.gov (United States)

    Ring, Christoph; Pollinger, Felix; Kaspar-Ott, Irena; Hertig, Elke; Jacobeit, Jucundus; Paeth, Heiko

    2018-03-01

    A major task of climate science are reliable projections of climate change for the future. To enable more solid statements and to decrease the range of uncertainty, global general circulation models and regional climate models are evaluated based on a 2 × 2 contingency table approach to generate model weights. These weights are compared among different methodologies and their impact on probabilistic projections of temperature and precipitation changes is investigated. Simulated seasonal precipitation and temperature for both 50-year trends and climatological means are assessed at two spatial scales: in seven study regions around the globe and in eight sub-regions of the Mediterranean area. Overall, 24 models of phase 3 and 38 models of phase 5 of the Coupled Model Intercomparison Project altogether 159 transient simulations of precipitation and 119 of temperature from four emissions scenarios are evaluated against the ERA-20C reanalysis over the 20th century. The results show high conformity with previous model evaluation studies. The metrics reveal that mean of precipitation and both temperature mean and trend agree well with the reference dataset and indicate improvement for the more recent ensemble mean, especially for temperature. The method is highly transferrable to a variety of further applications in climate science. Overall, there are regional differences of simulation quality, however, these are less pronounced than those between the results for 50-year mean and trend. The trend results are suitable for assigning weighting factors to climate models. Yet, the implications for probabilistic climate projections is strictly dependent on the region and season.

  5. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Ghent, D.; Rayner, N. A.

    2017-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-2018, https://www.eustaceproject.eu) we have developed an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. This includes developing new "Big Data" analysis methods as the data volumes involved are considerable. We will present recent progress along this road in the EUSTACE project, i.e.: • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  6. SY-101 Rapid Transfer Project Low Temperature Operations Review and Recommendations to Support Lower Temperature Limits

    International Nuclear Information System (INIS)

    HICKMAN, G.L.

    2000-01-01

    The lower temperature limit for the 241 SY-101 RAPID transfer project is currently set at 20 F Based on the analysis and recommendations in this document this limit can be lowered to 0 F. Analysis of all structures systems and components (SSCs) indicate that a reduction in operating temperature may be achieved with minor modifications to field-installed equipment. Following implementation of these changes it is recommended that the system requirements be amended to specify a temperature range for transfer or back dilute evolutions of 0 F to 100 F

  7. GLOBAL CHANGES IN THE SEA ICE COVER AND ASSOCIATED SURFACE TEMPERATURE CHANGES

    Directory of Open Access Journals (Sweden)

    J. C. Comiso

    2016-06-01

    Full Text Available The trends in the sea ice cover in the two hemispheres have been observed to be asymmetric with the rate of change in the Arctic being negative at −3.8 % per decade while that of the Antarctic is positive at 1.7 % per decade. These observations are confirmed in this study through analyses of a more robust data set that has been enhanced for better consistency and updated for improved statistics. With reports of anthropogenic global warming such phenomenon appears physically counter intuitive but trend studies of surface temperature over the same time period show the occurrence of a similar asymmetry. Satellite surface temperature data show that while global warming is strong and dominant in the Arctic, it is relatively minor in the Antarctic with the trends in sea ice covered areas and surrounding ice free regions observed to be even negative. A strong correlation of ice extent with surface temperature is observed, especially during the growth season, and the observed trends in the sea ice cover are coherent with the trends in surface temperature. The trend of global averages of the ice cover is negative but modest and is consistent and compatible with the positive but modest trend in global surface temperature. A continuation of the trend would mean the disappearance of summer ice by the end of the century but modelling projections indicate that the summer ice could be salvaged if anthropogenic greenhouse gases in the atmosphere are kept constant at the current level.

  8. Time trends in minimum mortality temperatures in Castile-La Mancha (Central Spain): 1975-2003

    Science.gov (United States)

    Miron, Isidro J.; Criado-Alvarez, Juan José; Diaz, Julio; Linares, Cristina; Mayoral, Sheila; Montero, Juan Carlos

    2008-03-01

    The relationship between air temperature and human mortality is described as non-linear, with mortality tending to rise in response to increasingly hot or cold ambient temperatures from a given minimum mortality or optimal comfort temperature, which varies from some areas to others according to their climatic and socio-demographic characteristics. Changes in these characteristics within any specific region could modify this relationship. This study sought to examine the time trend in the maximum temperature of minimum organic-cause mortality in Castile-La Mancha, from 1975 to 2003. The analysis was performed by using daily series of maximum temperatures and organic-cause mortality rates grouped into three decades (1975-1984, 1985-1994, 1995-2003) to compare confidence intervals ( p ARIMA models (Box-Jenkins) and cross-correlation functions (CCF) at seven lags. We observed a significant decrease in comfort temperature (from 34.2°C to 27.8°C) between the first two decades in the Province of Toledo, along with a growing number of significant lags in the summer CFF (1, 3 and 5, respectively). The fall in comfort temperature is attributable to the increase in the effects of heat on mortality, due, in all likelihood, to the percentage increase in the elderly population.

  9. Observed Trends in Indices of Daily Precipitation and Temperature Extremes in Rio de Janeiro State (brazil)

    Science.gov (United States)

    Silva, W. L.; Dereczynski, C. P.; Cavalcanti, I. F.

    2013-05-01

    One of the main concerns of contemporary society regarding prevailing climate change is related to possible changes in the frequency and intensity of extreme events. Strong heat and cold waves, droughts, severe floods, and other climatic extremes have been of great interest to researchers because of its huge impact on the environment and population, causing high monetary damages and, in some cases, loss of life. The frequency and intensity of extreme events associated with precipitation and air temperature have been increased in several regions of the planet in recent years. These changes produce serious impacts on human activities such as agriculture, health, urban planning and development and management of water resources. In this paper, we analyze the trends in indices of climatic extremes related to daily precipitation and maximum and minimum temperatures at 22 meteorological stations of the National Institute of Meteorology (INMET) in Rio de Janeiro State (Brazil) in the last 50 years. The present trends are evaluated using the software RClimdex (Canadian Meteorological Service) and are also subjected to statistical tests. Preliminary results indicate that periods of drought are getting longer in Rio de Janeiro State, except in the North/Northwest area. In "Vale do Paraíba", "Região Serrana" and "Região dos Lagos" the increase of consecutive dry days is statistically significant. However, we also detected an increase in the total annual rainfall all over the State (taxes varying from +2 to +8 mm/year), which are statistically significant at "Região Serrana". Moreover, the intensity of heavy rainfall is also growing in most of Rio de Janeiro, except in "Costa Verde". The trends of heavy rainfall indices show significant increase in the "Metropolitan Region" and in "Região Serrana", factor that increases the vulnerability to natural disasters in these areas. With respect to temperature, it is found that the frequency of hot (cold) days and nights is

  10. The INNOHYP-CA Project: producing Hydrogen by innovative high-temperature processes

    International Nuclear Information System (INIS)

    Giaconia, A.; Giorgiantoni, G.; Liberatore, R.; Tarquini, P.; Vignolini, M.

    2008-01-01

    The Project, financed under the 6. Framework Programme, has selected a member of innovative high-temperature processes that seem promising for large-scale production of Hydrogen. ENEA has contributed to the analysis of the status of national and regional projects in the European countries and to the definition of guidelines for the future development of these technologies [it

  11. Review of US ESCO industry market trends: an empirical analysis of project data

    International Nuclear Information System (INIS)

    Goldman, Charles A.; Hopper, Nicole C.; Osborn, Julie G.

    2005-01-01

    This comprehensive empirical analysis of US energy service company (ESCO) industry trends and performance employs two parallel analytical approaches: a survey of firms to estimate total industry size, and a database of ∼1500 ESCO projects, from which we report target markets and typical project characteristics, energy savings and customer economics. We estimate that industry investment for energy-efficiency related services reached US$2 billion in 2000 following a decade of strong growth. ESCO activity is concentrated in states with high economic activity and strong policy support. Typical projects save 150-200 MJ/m 2 /year and are cost-effective with median benefit/cost ratios of 1.6 and 2.1 for institutional and private sector projects. The median simple payback time (SPT) is 7 years among institutional customers; 3 years is typical in the private sector. Reliance on DSM incentives has decreased since 1995. Preliminary evidence suggests that state enabling policies have boosted the industry in medium-sized states. ESCOs have proven resilient in the face of restructuring and will probably shift toward selling 'energy solutions', with energy efficiency part of a package. We conclude that appropriate policy support - both financial and non-financial - can 'jump-start' a viable private-sector energy-efficiency services industry that targets large institutional and commercial/industrial customers

  12. Review of US ESCO industry market trends: an empirical analysis of project data

    International Nuclear Information System (INIS)

    Goldman, C.A.; Hopper, N.C.; Osborn, J.G.

    2005-01-01

    This comprehensive empirical analysis of US energy service company (ESCO) industry trends and performance employs two parallel analytical approaches: a survey of firms to estimate total industry size, and a database of ∼1500 ESCO projects, from which we report target markets and typical project characteristics, energy savings and customer economics. We estimate that industry investment for energy-efficiency related services reached US$2 billion in 2000 following a decade of strong growth. ESCO activity is concentrated in states with high economic activity and strong policy support. Typical projects save 150-200 MJ/m 2 /year and are cost-effective with median benefit/cost ratios of 1.6 and 2.1 for institutional and private sector projects. The median simple payback time (SPT) is 7 years among institutional customers; 3 years is typical in the private sector. Reliance on DSM incentives has decreased since 1995. Preliminary evidence suggests that state enabling policies have boosted the industry in medium-sized states. ECSOs have proven resilient in the face of restructuring and will probably shift toward selling 'energy solutions', with energy efficiency part of a package. We conclude that appropriate policy support - both financial and non-financial - can 'jump-start' a viable private-sector energy-efficiency services industry that targets large institutional and commercial/industrial customers. (author)

  13. Impacts of precipitation and temperature trends on different time scales on the water cycle and water resource availability in mountainous Mediterranean catchments.

    Science.gov (United States)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2017-04-01

    Climatology trends, precipitation and temperature variations condition the hydrological evolution of the river flow response at basin and sub-basin scales. The link between both climate and flow trends is crucial in mountainous areas, where small variations in temperature can produce significant impacts on precipitation (occurrence as rainfall or snowfall), snowmelt and evaporation, and consequently very different flow signatures. This importance is greater in semiarid regions, where the high variability of the climatic annual and seasonal regimes usually amplifies this impact on river flow. The Sierra Nevada National Park (Southern Spain), with altitudes ranging from 2000 to 3500 m.a.s.l., is part of the global climate change observatories network and a clear example of snow regions in a semiarid environment. This mountain range is head of different catchments, being the Guadalfeo River Basin one of the most influenced by the snow regime. This study shows the observed 55-year (1961-2015) trends of annual precipitation and daily mean temperature, and the associated impacts on snowfall and snow persistence, and the resulting trend of the annual river flow in the Guadalfeo River Basin (Southern Spain), a semiarid abrupt mountainous area (up to 3450 m a.s.l.) facing the Mediterranean Sea where the Alpine and Mediterranean climates coexist in a domain highly influenced by the snow regime, and a significant seasonality in the flow regime. The annual precipitation and annual daily mean temperature experimented a decreasing trend of 2.05 mm/year and an increasing trend of 0.037 °C/year, respectively, during the study period, with a high variability on a decadal basis. However, the torrential precipitation events are more frequent in the last few years of the study period, with an apparently increasing associated dispersion. The estimated annual snowfall trend shows a decreasing trend of 0.24 mm/year, associated to the decrease of precipitation rather than to temperature

  14. Analysis of trend in temperature and rainfall time series of an Indian arid region: comparative evaluation of salient techniques

    Science.gov (United States)

    Machiwal, Deepesh; Gupta, Ankit; Jha, Madan Kumar; Kamble, Trupti

    2018-04-01

    This study investigated trends in 35 years (1979-2013) temperature (maximum, Tmax and minimum, Tmin) and rainfall at annual and seasonal (pre-monsoon, monsoon, post-monsoon, and winter) scales for 31 grid points in a coastal arid region of India. Box-whisker plots of annual temperature and rainfall time series depict systematic spatial gradients. Trends were examined by applying eight tests, such as Kendall rank correlation (KRC), Spearman rank order correlation (SROC), Mann-Kendall (MK), four modified MK tests, and innovative trend analysis (ITA). Trend magnitudes were quantified by Sen's slope estimator, and a new method was adopted to assess the significance of linear trends in MK-test statistics. It was found that the significant serial correlation is prominent in the annual and post-monsoon Tmax and Tmin, and pre-monsoon Tmin. The KRC and MK tests yielded similar results in close resemblance with the SROC test. The performance of two modified MK tests considering variance-correction approaches was found superior to the KRC, MK, modified MK with pre-whitening, and ITA tests. The performance of original MK test is poor due to the presence of serial correlation, whereas the ITA method is over-sensitive in identifying trends. Significantly increasing trends are more prominent in Tmin than Tmax. Further, both the annual and monsoon rainfall time series have a significantly increasing trend of 9 mm year-1. The sequential significance of linear trend in MK test-statistics is very strong (R 2 ≥ 0.90) in the annual and pre-monsoon Tmin (90% grid points), and strong (R 2 ≥ 0.75) in monsoon Tmax (68% grid points), monsoon, post-monsoon, and winter Tmin (respectively 65, 55, and 48% grid points), as well as in the annual and monsoon rainfalls (respectively 68 and 61% grid points). Finally, this study recommends use of variance-corrected MK test for the precise identification of trends. It is emphasized that the rising Tmax may hamper crop growth due to enhanced

  15. Socio-demographic, ecological factors and dengue infection trends in Australia.

    Science.gov (United States)

    Akter, Rokeya; Naish, Suchithra; Hu, Wenbiao; Tong, Shilu

    2017-01-01

    Dengue has been a major public health concern in Australia. This study has explored the spatio-temporal trends of dengue and potential socio- demographic and ecological determinants in Australia. Data on dengue cases, socio-demographic, climatic and land use types for the period January 1999 to December 2010 were collected from Australian National Notifiable Diseases Surveillance System, Australian Bureau of Statistics, Australian Bureau of Meteorology, and Australian Bureau of Agricultural and Resource Economics and Sciences, respectively. Descriptive and linear regression analyses were performed to observe the spatio-temporal trends of dengue, socio-demographic and ecological factors in Australia. A total of 5,853 dengue cases (both local and overseas acquired) were recorded across Australia between January 1999 and December 2010. Most the cases (53.0%) were reported from Queensland, followed by New South Wales (16.5%). Dengue outbreak was highest (54.2%) during 2008-2010. A highest percentage of overseas arrivals (29.9%), households having rainwater tanks (33.9%), Indigenous population (27.2%), separate houses (26.5%), terrace house types (26.9%) and economically advantage people (42.8%) were also observed during 2008-2010. Regression analyses demonstrate that there was an increasing trend of dengue incidence, potential socio-ecological factors such as overseas arrivals, number of households having rainwater tanks, housing types and land use types (e.g. intensive uses and production from dryland agriculture). Spatial variation of socio-demographic factors was also observed in this study. In near future, significant increase of temperature was also projected across Australia. The projected increased temperature as well as increased socio-ecological trend may pose a future threat to the local transmission of dengue in other parts of Australia if Aedes mosquitoes are being established. Therefore, upgraded mosquito and disease surveillance at different ports should

  16. Climate Trend Detection using Sea-Surface Temperature Data-sets from the (A)ATSR and AVHRR Space Sensors.

    Science.gov (United States)

    Llewellyn-Jones, D. T.; Corlett, G. K.; Remedios, J. J.; Noyes, E. J.; Good, S. A.

    2007-05-01

    Sea-Surface Temperature (SST) is an important indicator of global change, designated by GCOS as an essential Climate Variable (ECV). The detection of trends in Global SST requires rigorous measurements that are not only global, but also highly accurate and consistent. Space instruments can provide the means to achieve these required attributes in SST data. This paper presents an analysis of 15 years of SST data from two independent data sets, generated from the (A)ATSR and AVHRR series of sensors respectively. The analyses reveal trends of increasing global temperature between 0.13°C to 0.18 °C, per decade, closely matching that expected from some current predictions. A high level of consistency in the results from the two independent observing systems is seen, which gives increased confidence in data from both systems and also enables comparative analyses of the accuracy and stability of both data sets to be carried out. The conclusion is that these satellite SST data-sets provide important means to quantify and explore the processes of climate change. An analysis based upon singular value decomposition, allowing the removal of gross transitory disturbances, notably the El Niño, in order to examine regional areas of change other than the tropical Pacific, is also presented. Interestingly, although El Niño events clearly affect SST globally, they are found to have a non- significant (within error) effect on the calculated trends, which changed by only 0.01 K/decade when the pattern of El Niño and the associated variations was removed from the SST record. Although similar global trends were calculated for these two independent data sets, larger regional differences are noted. Evidence of decreased temperatures after the eruption of Mount Pinatubo in 1991 was also observed. The methodology demonstrated here can be applied to other data-sets, which cover long time-series observations of geophysical observations in order to characterise long-term change.

  17. The world trends of high temperature gas-cooled reactors and the mode of utilization

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Shimokawa, Jun-ichi

    1974-01-01

    After a long period of research and development, high temperature gas-cooled reactors are going to enter the practical stage. The combination of a HTGR with a closed cycle helium gas turbine is advantageous in thermal efficiency, reduction of environmental impact and economy. In recent years, the direct utilization of nuclear heat energy in industries has been attracting interest. The multi-purpose utilization of high temperature gas-cooled reactors is thus now the world trend. Reviewing the world developments in this field, the following matters are described: (1) development of HTGRs in the U.K., West Germany, France and the United States; (2) development of He gas turbine, etc. in West Germany; and (3) multi-purpose utilization of HTGRs in West Germany and Japan. (Mori, K.)

  18. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble

    Science.gov (United States)

    Lorenz, Ruth; Argueso, Daniel; Donat, Markus G.; Pitman, Andrew J.; van den Hurk, Bart; Berg, Alexis; Lawrence, David M.; Cheruy, Frederique; Ducharne, Agnes; Hagemann, Stefan; Meier, Arndt; Milly, Paul C.D.; Seneviratne, Sonia I

    2016-01-01

    We examine how soil moisture variability and trends affect the simulation of temperature and precipitation extremes in six global climate models using the experimental protocol of the Global Land-Atmosphere Coupling Experiment of the Coupled Model Intercomparison Project, Phase 5 (GLACE-CMIP5). This protocol enables separate examinations of the influences of soil moisture variability and trends on the intensity, frequency, and duration of climate extremes by the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) emission scenario. Removing soil moisture variability significantly reduces temperature extremes over most continental surfaces, while wet precipitation extremes are enhanced in the tropics. Projected drying trends in soil moisture lead to increases in intensity, frequency, and duration of temperature extremes by the end of the 21st century. Wet precipitation extremes are decreased in the tropics with soil moisture trends in the simulations, while dry extremes are enhanced in some regions, in particular the Mediterranean and Australia. However, the ensemble results mask considerable differences in the soil moisture trends simulated by the six climate models. We find that the large differences between the models in soil moisture trends, which are related to an unknown combination of differences in atmospheric forcing (precipitation, net radiation), flux partitioning at the land surface, and how soil moisture is parameterized, imply considerable uncertainty in future changes in climate extremes.

  19. ARCHER Project: Progress on Material and component activities for the Advanced High Temperature Reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D) integrated project is a four year project which was started in 2011 as part of the European Commission 7th Framework Programme (FP7) to perform High Temperature Reactor technology R&D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research & Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on ARCHER materials and component activities since the start of the project and underlines some of the main conclusions reached. (author)

  20. Comment on “Long-term trends in thermospheric neutral temperatures and density above Millstone Hill” by W. L. Oliver et al

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan

    2015-01-01

    Roč. 120, č. 3 (2015), s. 2347-2349 ISSN 2169-9380 R&D Projects: GA ČR GAP209/10/1792; GA ČR GA15-03909S Institutional support: RVO:68378289 Keywords : ionosphere * thermosphere * long-term trends * drivers of trends Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.318, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020864/abstract

  1. Regional climate projections for the MENA-CORDEX domain: analysis of projected temperature and precipitation changes

    Science.gov (United States)

    Hänsler, Andreas; Weber, Torsten; Eggert, Bastian; Saeed, Fahad; Jacob, Daniela

    2014-05-01

    Within the CORDEX initiative a multi-model suite of regionalized climate change information will be made available for several regions of the world. The German Climate Service Center (CSC) is taking part in this initiative by applying the regional climate model REMO to downscale global climate projections of different coupled general circulation models (GCMs) for several CORDEX domains. Also for the MENA-CORDEX domain, a set of regional climate change projections has been established at the CSC by downscaling CMIP5 projections of the Max-Planck-Institute Earth System Model (MPI-ESM) for the scenarios RCP4.5 and RCP8.5 with the regional model REMO for the time period from 1950 to 2100 to a horizontal resolution of 0.44 degree. In this study we investigate projected changes in future climate conditions over the domain towards the end of the 21st century. Focus in the analysis is given to projected changes in the temperature and rainfall characteristics and their differences for the two scenarios will be highlighted.

  2. Evolution of Project Management in Integration Development Trends of Today’s Russia

    Directory of Open Access Journals (Sweden)

    Lukmanova Inessa

    2017-01-01

    Full Text Available Today’s development trends are affected by many external and internal factors, stepping up globalization processes, faster innovation cycles, negative effects of various bans, import and export sanctions slapped on some categories of goods, technologies, capital, etc. Tit-for-tat responses of the economic systems seek sustainable development of countries taking part in the integration processes. A radical-yet-constructive strategy that deepens integration can tackle the problem. Its focus is determined by the need to upgrade the economies of the former Soviet Union; while a mutual interest in the rollout of the synergistic integration potential channels common efforts on transcontinental megaprojects. A new type of integration projects creates comprehensive methods of project management. They feature the need for information transparency and controlled alignment of innovation, investment, construction and resource capacities of member countries. With streamlined resource flows, the Eurasian transit will help facilitate and cut costs of commodity exchange among countries, provided they take synchronized efforts in not just technical and technological, but also organizational, economic, legal and IT innovations.

  3. Trend analysis by a piecewise linear regression model applied to surface air temperatures in Southeastern Spain (1973–2014)

    OpenAIRE

    Campra, Pablo; Morales, Maria

    2016-01-01

    The magnitude of the trends of environmental and climatic changes is mostly derived from the slopes of the linear trends using ordinary least-square fitting. An alternative flexible fitting model, piecewise regression, has been applied here to surface air temperature records in southeastern Spain for the recent warming period (1973–2014) to gain accuracy in the description of the inner structure of change, dividing the time series into linear segments with different slopes. Breakpoint y...

  4. Trends in diabetes incidence from 1992 to 2015 and projections for 2024: A Portuguese General Practitioner's Network study.

    Science.gov (United States)

    de Sousa-Uva, Mafalda; Antunes, L; Nunes, B; Rodrigues, A P; Simões, J A; Ribeiro, R T; Boavida, J M; Matias-Dias, C

    2016-10-01

    Diabetes is known as a major cause of morbidity and mortality worldwide. Portugal is known as the European country with the highest prevalence of this disease. While diabetes prevalence data is updated annually in Portugal, the General Practitioner's (GP) Sentinel Network represents the only data source on diabetes incidence. This study describes the trends in Diabetes incidence, between 1992 and 2015, and estimate projections for the future incidence rates in Portugal until 2024. An ecological time-series study was conducted using data from GP Sentinel Network between 1992 and 2015. Family doctors reported all new cases of Diabetes in their patients' lists. Annual trends were estimated through Poisson regression models as well as the future incidence rates (until 2024), sex and age group stratified. Incidence rate projections were adjusted to the distribution of the resident Portuguese population given Statistics Portugal projections. The average increase in Diabetes incidence rate was in total 4.29% (CI95% 3.80-4.80) per year under study. Until 1998-2000, the annual incidence rate was higher in women, and from 1998-2000 to 2013-2015 turn out to be higher in men. The incidence rate projected for 2022-2024 was 972.77/10(5) inhabitants in total, and 846.74/10(5) and 1114.42/10(5), respectively, in women and men. This is the first study in Portugal to estimate diabetes incidence rate projections. The disturbing reported projections seem realistic if things continue as in the past. Actually, effective public health policies will need to be undertaken to minimize this alarming future scenario. Copyright © 2016 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  5. Review of US ESCO industry market trends: an empirical analysis of project data

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, C.A.; Hopper, N.C.; Osborn, J.G. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Energy Analysis

    2005-02-01

    This comprehensive empirical analysis of US energy service company (ESCO) industry trends and performance employs two parallel analytical approaches: a survey of firms to estimate total industry size, and a database of {approx}1500 ESCO projects, from which we report target markets and typical project characteristics, energy savings and customer economics. We estimate that industry investment for energy-efficiency related services reached US$2 billion in 2000 following a decade of strong growth. ESCO activity is concentrated in states with high economic activity and strong policy support. Typical projects save 150-200 MJ/m{sup 2}/year and are cost-effective with median benefit/cost ratios of 1.6 and 2.1 for institutional and private sector projects. The median simple payback time (SPT) is 7 years among institutional customers; 3 years is typical in the private sector. Reliance on DSM incentives has decreased since 1995. Preliminary evidence suggests that state enabling policies have boosted the industry in medium-sized states. ECSOs have proven resilient in the face of restructuring and will probably shift toward selling 'energy solutions', with energy efficiency part of a package. We conclude that appropriate policy support - both financial and non-financial - can 'jump-start' a viable private-sector energy-efficiency services industry that targets large institutional and commercial/industrial customers. (author)

  6. Projecting future temperature-related mortality in three largest Australian cities

    International Nuclear Information System (INIS)

    Guo, Yuming; Li, Shanshan; Liu, De Li; Chen, Dong; Williams, Gail; Tong, Shilu

    2016-01-01

    We estimated net annual temperature-related mortality in Brisbane, Sydney and Melbourne in Australia using 62 global climate model projections under three IPPC SRES CO_2 emission scenarios (A2, A1B and B1). In all cities, all scenarios resulted in increases in summer temperature-related deaths for future decades, and decreases in winter temperature-related deaths. However, Brisbane and Sydney will increase the net annual temperature-related deaths in the future, while a slight decrease will happen in Melbourne. Additionally, temperature-related mortality will largely increase beyond the summer (including January, February, March, November and December) in Brisbane and Sydney, while temperature-related mortality will largely decrease beyond the winter in Melbourne. In conclusion, temperature increases for Australia are expected to result in a decreased burden of cold-related mortality and an increased burden of heat-related mortality, but the balance of these differences varied by city. In particular, the seasonal patterns in temperature-related deaths will be shifted. - Temperature increases result in a decreased burden of cold-related mortality and an increased burden of heat-related mortality, but the balance of these differences varied by city in Australia.

  7. Influence trend of temperature distribution in skin tissue generated by different exposure dose pulse laser

    Science.gov (United States)

    Shan, Ning; Wang, Zhijing; Liu, Xia

    2014-11-01

    Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.

  8. The upper end of climate model temperature projections is inconsistent with past warming

    International Nuclear Information System (INIS)

    Stott, Peter; Good, Peter; Jones, Gareth; Gillett, Nathan; Hawkins, Ed

    2013-01-01

    Climate models predict a large range of possible future temperatures for a particular scenario of future emissions of greenhouse gases and other anthropogenic forcings of climate. Given that further warming in coming decades could threaten increasing risks of climatic disruption, it is important to determine whether model projections are consistent with temperature changes already observed. This can be achieved by quantifying the extent to which increases in well mixed greenhouse gases and changes in other anthropogenic and natural forcings have already altered temperature patterns around the globe. Here, for the first time, we combine multiple climate models into a single synthesized estimate of future warming rates consistent with past temperature changes. We show that the observed evolution of near-surface temperatures appears to indicate lower ranges (5–95%) for warming (0.35–0.82 K and 0.45–0.93 K by the 2020s (2020–9) relative to 1986–2005 under the RCP4.5 and 8.5 scenarios respectively) than the equivalent ranges projected by the CMIP5 climate models (0.48–1.00 K and 0.51–1.16 K respectively). Our results indicate that for each RCP the upper end of the range of CMIP5 climate model projections is inconsistent with past warming. (letter)

  9. Melting of major Glaciers in the western Himalayas: evidence of climatic changes from long term MSU derived tropospheric temperature trend (1979–2008

    Directory of Open Access Journals (Sweden)

    A. K. Prasad

    2009-12-01

    Full Text Available Global warming or the increase of the surface and atmospheric temperatures of the Earth, is increasingly discernible in the polar, sub-polar and major land glacial areas. The Himalayan and Tibetan Plateau Glaciers, which are the largest glaciers outside of the Polar Regions, are showing a large-scale decrease of snow cover and an extensive glacial retreat. These glaciers such as Siachen and Gangotri are a major water resource for Asia as they feed major rivers such as the Indus, Ganga and Brahmaputra. Due to scarcity of ground measuring stations, the long-term observations of atmospheric temperatures acquired from the Microwave Sounding Unit (MSU since 1979–2008 is highly useful. The lower and middle tropospheric temperature trend based on 30 years of MSU data shows warming of the Northern Hemisphere's mid-latitude regions. The mean month-to-month warming (up to 0.048±0.026°K/year or 1.44°K over 30 years of the mid troposphere (near surface over the high altitude Himalayas and Tibetan Plateau is prominent and statistically significant at a 95% confidence interval. Though the mean annual warming trend over the Himalayas (0.016±0.005°K/year, and Tibetan Plateau (0.008±0.006°K/year is positive, the month to month warming trend is higher (by 2–3 times, positive and significant only over a period of six months (December to May. The factors responsible for the reversal of this trend from June to November are discussed here. The inequality in the magnitude of the warming trends of the troposphere between the western and eastern Himalayas and the IG (Indo-Gangetic plains is attributed to the differences in increased aerosol loading (due to dust storms over these regions. The monthly mean lower-tropospheric MSU-derived temperature trend over the IG plains (dust sink region; up to 0.032±0.027°K/year and dust source regions (Sahara desert, Middle East, Arabian region, Afghanistan-Iran-Pakistan and Thar Desert regions; up to 0.068±0.033

  10. Recent temperature trends at mountain stations on the southern ...

    Indian Academy of Sciences (India)

    in quantifying the magnitude of climatic trends in mountainous regions such as Nepal. .... Note: The topography is classified by using the SRTM3 digital elevation model (DEM), which ...... trends and flooding risk in the west of Scotland; Nordic.

  11. Regional acidification trends in Florida shellfish estuaries: A 20+ year look at pH, oxygen, temperature, and salinity

    Science.gov (United States)

    Robbins, Lisa L.; Lisle, John T.

    2018-01-01

    Increasing global CO2 and local land use changes coupled with increased nutrient pollution are threatening estuaries worldwide. Local changes of estuarine chemistry have been documented, but regional associations and trends comparing multiple estuaries latitudinally have not been evaluated. Rapid climate change has impacted the annual and decadal chemical trends in estuaries, with local ecosystem processes enhancing or mitigating the responses. Here, we compare pH, dissolved oxygen, temperature, and salinity data from 10 Florida shellfish estuaries and hundreds of shellfish bed stations. Over 80,000 measurements, spanning from 1980 to 2008, taken on Atlantic Ocean and West Florida coast showed significant regional trends of consistent pH decreases in 8 out of the 10 estuaries, with an average rate of decrease on the Gulf of Mexico side estuaries of Florida of 7.3 × 10−4 pH units year−1, and average decrease on the Atlantic Coast estuaries of 5.0 × 10−4 pH units year−1. The rates are approximately 2–3.4 times slower than observed in pH decreases associated with ocean acidification in the Atlantic and Pacific. Other significant trends observed include decreasing dissolved oxygen in 9 out of the 10 estuaries, increasing salinity in 6 out of the 10, and temperature increases in 3 out of the 10 estuaries. The data provide a synoptic regional view of Florida estuary trends which reflect the complexity of changing climate and coastal ocean acidification superimposed on local conditions. These data provide context for understanding, and interpreting the past and predicting future of regional water quality health of shellfish and other organisms of commercial and ecological significance along Florida’s coasts.

  12. Regional acidification trends in Florida shellfish estuaries: A 20+ year look at pH, oxygen, temperature and salinity

    Science.gov (United States)

    Robbins, Lisa L.; Lisle, John T.

    2018-01-01

    Increasing global CO2 and local land use changes coupled with increased nutrient pollution are threatening estuaries worldwide. Local changes of estuarine chemistry have been documented, but regional associations and trends comparing multiple estuaries latitudinally have not been evaluated. Rapid climate change has impacted the annual and decadal chemical trends in estuaries, with local ecosystem processes enhancing or mitigating the responses. Here, we compare pH, dissolved oxygen, temperature, and salinity data from 10 Florida shellfish estuaries and hundreds of shellfish bed stations. Over 80,000 measurements, spanning from 1980 to 2008, taken on Atlantic Ocean and West Florida coast showed significant regional trends of consistent pH decreases in 8 out of the 10 estuaries, with an average rate of decrease on the Gulf of Mexico side estuaries of Florida of 7.3 × 10−4 pH units year−1, and average decrease on the Atlantic Coast estuaries of 5.0 × 10−4 pH units year−1. The rates are approximately 2–3.4 times slower than observed in pH decreases associated with ocean acidification in the Atlantic and Pacific. Other significant trends observed include decreasing dissolved oxygen in 9 out of the 10 estuaries, increasing salinity in 6 out of the 10, and temperature increases in 3 out of the 10 estuaries. The data provide a synoptic regional view of Florida estuary trends which reflect the complexity of changing climate and coastal ocean acidification superimposed on local conditions. These data provide context for understanding, and interpreting the past and predicting future of regional water quality health of shellfish and other organisms of commercial and ecological significance along Florida’s coasts.

  13. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    Science.gov (United States)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2017-12-01

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary conditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045-2054 and 2085-2094) are compared with a historical decade (1995-2004). Probability density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5-10 times per year in most CONUS and ≥95°F days will increase by 1-2 months by the end of the century.

  14. The ADAM and EVE project: Heat transfer at ambient temperature

    International Nuclear Information System (INIS)

    Boltendahl, U.; Harth, R.

    1980-01-01

    In the nuclear research plant at Juelich a new heating system is at present being developed as part of the Nuclear Long-distance Heating Project. Helium is heated up in a high-temperature reactor. The heat chemically converts a gas mixture in a reformer plant (EVE). The gases 'charged' with energy can be transported through tubes over any distance required at ambient temperatures. In a methanisation plant (ADAM) the gases react with one another, releasing the energy in the form of heat which can be used for heating air or water. (orig.) [de

  15. Global fertility and population trends.

    Science.gov (United States)

    Bongaarts, John

    2015-01-01

    Over the past several decades, the world and most countries have undergone unprecedented demographic change. The most obvious example of this change is the rise in human numbers, and there are also important trends in fertility, family structure, mortality, migration, urbanization, and population aging. This paper summarizes past trends and projections in fertility and population. After reaching 2.5 billion in 1950, the world population grew rapidly to 7.2 billion in 2013 and the projections expect this total to be 10.9 billion by 2100. World regions differ widely in their demographic trends, with rapid population growth and high fertility continuing in the poorest countries, particularly in sub-Saharan Africa, while population decline, population aging, and very low fertility are now a key concern in many developed countries. These trends have important implications for human welfare and are of interest to policy makers. The conclusion comments briefly on policy options to address these adverse trends. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Snow in Castile-León: trends and variability

    Science.gov (United States)

    Merino, A.; Campos, L.; López, L.; García-Ortega, E.; Sánchez, J. L.; Marcos, J. L.; Guerrero-Higueras, A. M.

    2012-04-01

    The location of Castile and León, inside the Iberian Peninsula, in the Northwestern quadrant, determines, in large measure, the climatic conditions of its territory, granting it very characteristic traits, mostly in the mountainous areas. It is important to note that during a large part of the year, the region is under the influence of Jet Stream, and thus, gives way to very diverse dynamic situations, which turn into different and heterogeneous types of weather. So, in many areas of the region, especially in the most elevated areas, these synoptic and mesoscale situations generate snow precipitation. We should point out that snowfall is one of the principal meteorological risks of Castile and León. Thus, on average, in some mountainous areas there are more than 40 events of snowfall registered annually, with the month of January being the month in which the highest frequency of snowfall appears. The social repercussions of this snowfall are represented in the isolation of places, essentially mountainous, highways being blocked, increase in traffic accidents, etc. As proof of this, it is this type of episode that receives ample coverage by the media, which has a linear relationship with the social perception of risk. As such, the objective of the current work is to analyze the annual trend of days with snow in the different meteorological stations pertaining to AEMET placed in the Community. The period of study is from 1960-2010. Additionally, we have also evaluated trends in annual days of freezing temperature and annual absolute minimum temperature, with the objective of facilitating a meteorological interpretation of the trends obtained on days with snowfall. Finally, the results show that in the majority of stations, a significant negative trend in days with snowfall and annual days with freezing temperatures, and a positive trend in annual absolute minimum temperatures. However, we observed variability in the different regions in the area of study

  17. Surface-temperature trends and variability in the low-latitude North Atlantic since 1552

    KAUST Repository

    Saenger, Casey

    2009-06-21

    Sea surface temperature variability in the North Atlantic Ocean recorded since about 1850 has been ascribed to a natural multidecadal oscillation superimposed on a background warming trend1-6. It has been suggested that the multidecadal variability may be a persistent feature6-8, raising the possibility that the associated climate impacts may be predictable7,8. owever, our understanding of the multidecadal ocean variability before the instrumental record is based on interpretations of high-latitude terrestrial proxy records. Here we present an absolutely dated and annually resolved record of sea surface temperature from the Bahamas, based on a 440-year time series of coral growth rates. The reconstruction indicates that temperatures were as warm as today from about 1552 to 1570, then cooled by about 1° C from 1650 to 1730 before warming until the present. Our estimates of background variability suggest that much of the warming since 1900 was driven by anthropogenic forcing. Interdecadal variability with a period of 15-25 years is superimposed on most of the record, but multidecadal variability becomes significant only after 1730. We conclude that the multidecadal variability in sea surface temperatures in the low-latitude western Atlantic Ocean may not be persistent, potentially making accurate decadal climate forecasts more difficult to achieve. © 2009 Macmillan Publishers Limited. All rights reserved.

  18. Surface-temperature trends and variability in the low-latitude North Atlantic since 1552

    KAUST Repository

    Saenger, Casey; Cohen, Anne L.; Oppo, Delia W.; Halley, Robert B.; Carilli, Jessica E.

    2009-01-01

    Sea surface temperature variability in the North Atlantic Ocean recorded since about 1850 has been ascribed to a natural multidecadal oscillation superimposed on a background warming trend1-6. It has been suggested that the multidecadal variability may be a persistent feature6-8, raising the possibility that the associated climate impacts may be predictable7,8. owever, our understanding of the multidecadal ocean variability before the instrumental record is based on interpretations of high-latitude terrestrial proxy records. Here we present an absolutely dated and annually resolved record of sea surface temperature from the Bahamas, based on a 440-year time series of coral growth rates. The reconstruction indicates that temperatures were as warm as today from about 1552 to 1570, then cooled by about 1° C from 1650 to 1730 before warming until the present. Our estimates of background variability suggest that much of the warming since 1900 was driven by anthropogenic forcing. Interdecadal variability with a period of 15-25 years is superimposed on most of the record, but multidecadal variability becomes significant only after 1730. We conclude that the multidecadal variability in sea surface temperatures in the low-latitude western Atlantic Ocean may not be persistent, potentially making accurate decadal climate forecasts more difficult to achieve. © 2009 Macmillan Publishers Limited. All rights reserved.

  19. Design of project management system for 10 MW high temperature gas-cooled test reactor

    International Nuclear Information System (INIS)

    Zhu Yan; Xu Yuanhui

    1998-01-01

    A framework of project management information system (MIS) for 10 MW high temperature gas-cooled test reactor is introduced. Based on it, the design of nuclear project management information system and project monitoring system (PMS) are given. Additionally, a new method of developing MIS and Decision Support System (DSS) has been tried

  20. Trends of Sustainable Residential Architecture

    OpenAIRE

    Narvydas, A

    2014-01-01

    The article is based on Master’s research conducted during Scottish Housing Expo 2010. The aim of the research was to determine the prevailing trends in sustainable residential architecture. Each trend can be described by features detected during visual and technical observation of project data. Based on that architects may predict possible problems related to a specific trend.

  1. Effect of Recent Sea Surface Temperature Trends on the Arctic Stratospheric Vortex

    Science.gov (United States)

    Garfinkel, Chaim I.; Oman, Luke; Hurwitz, Margaret

    2015-01-01

    The springtime Arctic polar vortex has cooled significantly over the satellite era, with consequences for ozone concentrations in the springtime transition season. The causes of this cooling trend are deduced by using comprehensive chemistry-climate model experiments. Approximately half of the satellite era early springtime cooling trend in the Arctic lower stratosphere was caused by changing sea surface temperatures (SSTs). An ensemble of experiments forced only by changing SSTs is compared to an ensemble of experiments in which both the observed SSTs and chemically- and radiatively-active trace species are changing. By comparing the two ensembles, it is shown that warming of Indian Ocean, North Pacific, and North Atlantic SSTs, and cooling of the tropical Pacific, have strongly contributed to recent polar stratospheric cooling in late winter and early spring, and to a weak polar stratospheric warming in early winter. When concentrations of ozone-depleting substances and greenhouse gases are fixed, polar ozone concentrations show a small but robust decline due to changing SSTs. Ozone changes are magnified in the presence of changing gas concentrations. The stratospheric changes can be understood by examining the tropospheric height and heat flux anomalies generated by the anomalous SSTs. Finally, recent SST changes have contributed to a decrease in the frequency of late winter stratospheric sudden warmings.

  2. Assessment of short- and long-term memory in trends of major climatic variables over Iran: 1966-2015

    Science.gov (United States)

    Mianabadi, Ameneh; Shirazi, Pooya; Ghahraman, Bijan; Coenders-Gerrits, A. M. J.; Alizadeh, Amin; Davary, Kamran

    2018-02-01

    In arid and semi-arid regions, water scarcity is the crucial issue for crop production. Identifying the spatial and temporal trends in aridity, especially during the crop-growing season, is important for farmers to manage their agricultural practices. This will become especially relevant when considering climate change projections. To reliably determine the actual trends, the influence of short- and long-term memory should be removed from the trend analysis. The objective of this study is to investigate the effect of short- and long-term memory on estimates of trends in two aridity indicators—the inverted De Martonne (ϕ IDM ) and Budyko (ϕ B ) indices. The analysis is done using precipitation and temperature data over Iran for a 50-year period (1966-2015) at three temporal scales: annual, wheat-growing season (October-June), and maize-growing season (May-November). For this purpose, the original and the modified Mann-Kendall tests (i.e., modified by three methods of trend free pre-whitening (TFPT), effective sample size (ESS), and long-term persistence (LTP)) are used to investigate the temporal trends in aridity indices, precipitation, and temperature by taking into account the effect of short- and long-term memory. Precipitation and temperature data were provided by the Islamic Republic of Iran Meteorological Organization (IRIMO). The temporal trend analysis showed that aridity increased from 1966 to 2015 at the annual and wheat-growing season scales, which is due to a decreasing trend in precipitation and an increasing trend in mean temperature at these two timescales. The trend in aridity indices was decreasing in the maize-growing season, since precipitation has an increasing trend for most parts of Iran in that season. The increasing trend in aridity indices is significant in Western Iran, which can be related to the significantly more negative trend in precipitation in the West. This increasing trend in aridity could result in an increasing crop water

  3. Seasonal latitudinal and secular variations in temperature trend - evidence for influence of anthropogenic sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, D E; Schwartz, S E; Wagener, R; Benkovitz, C M [University of California at San Diego, La Jolla, CA (United States). Scripps Institute of Oceanography

    1993-11-19

    Tropospheric aerosols increase the shortwave reflectivity of the Earth-atmosphere system both by scattering light directly, in the absence of clouds, and by enhancing cloud reflectivity. The radiative forcing of climate exerted by anthropogenic sulfate aerosols, derived mainly from SO[sub 2] emitted from fossil fuel combustion, is opposite that due to anthropogenic greenhouse gases and is estimated to be of comparable average magnitude in Northern Hemisphere midlatitudes. However, persuasive evidence of climate response to this forcing has thus far been lacking. Here we examine patterns of seasonal and latitudinal variations in temperature anomaly trend for evidence of such a response. Pronounced minima in the rate of temperature increase in summer months in Northern Hemisphere midlatitudes are consistent with the latitudinal distribution of anthropogenic sulfate and changes in the rate of SO[sub 2] emissions over the industrial era.

  4. Tropical Indian Ocean warming contributions to China winter climate trends since 1960

    Science.gov (United States)

    Wu, Qigang; Yao, Yonghong; Liu, Shizuo; Cao, DanDan; Cheng, Luyao; Hu, Haibo; Sun, Leng; Yao, Ying; Yang, Zhiqi; Gao, Xuxu; Schroeder, Steven R.

    2018-01-01

    This study investigates observed and modeled contributions of global sea surface temperature (SST) to China winter climate trends in 1960-2014, including increased precipitation, warming through about 1997, and cooling since then. Observations and Atmospheric Model Intercomparison Project (AMIP) simulations with prescribed historical SST and sea ice show that tropical Indian Ocean (TIO) warming and increasing rainfall causes diabatic heating that generates a tropospheric wave train with anticyclonic 500-hPa height anomaly centers in the TIO or equatorial western Pacific (TIWP) and northeastern Eurasia (EA) and a cyclonic anomaly over China, referred to as the TIWP-EA wave train. The cyclonic anomaly causes Indochina moisture convergence and southwesterly moist flow that enhances South China precipitation, while the northern anticyclone enhances cold surges, sometimes causing severe ice storms. AMIP simulations show a 1960-1997 China cooling trend by simulating increasing instead of decreasing Arctic 500-hPa heights that move the northern anticyclone into Siberia, but enlarge the cyclonic anomaly so it still simulates realistic China precipitation trend patterns. A separate idealized TIO SST warming simulation simulates the TIWP-EA feature more realistically with correct precipitation patterns and supports the TIWP-EA teleconnection as the primary mechanism for long-term increasing precipitation in South China since 1960. Coupled Model Intercomparison Project (CMIP) experiments simulate a reduced TIO SST warming trend and weak precipitation trends, so the TIWP-EA feature is absent and strong drying is simulated in South China for 1960-1997. These simulations highlight the need for accurately modeled SST to correctly attribute regional climate trends.

  5. A quality improvement project to improve admission temperatures in very low birth weight infants.

    Science.gov (United States)

    Lee, H C; Ho, Q T; Rhine, W D

    2008-11-01

    To review the results of a quality improvement (QI) project to improve admission temperatures of very low birth weight inborn infants. The neonatal intensive care unit at Lucile Packard Children's Hospital underwent a QI project to address hypothermic preterm newborns by staff education and implementing processes such as polyethylene wraps and chemical warming mattresses. We performed retrospective chart review of all inborn infants with birth weight project. The improvement was consistent and persisted over a 15-month period. After risk adjustment, the strongest predictor of hypothermia was being born in the period before implementation of the QI project (odds ratio 8.12, 95% confidence interval 4.63, 14.22). Although cesarean delivery was a strong risk factor for hypothermia prior to the project, it was no longer significant after the project. There was no significant difference in death or intraventricular hemorrhage detected between periods. There was a significant improvement in admission temperatures after a QI project, which persisted beyond the initial implementation period. Although there was no difference in mortality or intraventricular hemorrhage rates, we did not have sufficient power to detect small differences in these outcomes.

  6. A Global Look at Future Trends in the Renewable Energy Resource

    Science.gov (United States)

    Chen, S.; Freedman, J. M.; Kirk-Davidoff, D. B.; Brower, M.

    2017-12-01

    With the aggressive deployment of utility-scale and distributed generation of wind and solar energy systems, an accurate estimate of the uncertainty associated with future resource trends and plant performance is crucial in maintaining financial integrity in the renewable energy markets. With continuing concerns regarding climate change, the move towards energy resiliency, and the cost-competitiveness of renewables, a rapidly expanding fleet of utility-scale wind and solar power facilities and distributed generation of both resources is now being incorporated into the electric distribution grid. Although solar and wind account for about 3% of global power production, renewable energy is now and will continue to be the world's fastest-growing energy source. With deeper penetration of renewables, confidence in future power production output on a spectrum of temporal and spatial scales is crucial to grid stability for long-term planning and achieving national and international targets in the reduction of greenhouse gas emissions. Here, we use output from a diverse subset of Earth System Models (Climate Model Inter-comparison Project-Phase 5 members) to produce projected trends and uncertainties in regional and global seasonal and inter-annual wind and solar power production and respective capacity factors through the end of the 21st century. Our trends and uncertainty analysis focuses on the Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios. For wind and solar energy production estimates, we extract surface layer wind (extrapolated to hub height), irradiance, cloud fraction, and temperature (air temperature affects density [hence wind power production] and the efficiency of photovoltaic [PV] systems), output from the CMIP5 ensemble mean fields for the period 2020 - 2099 and an historical baseline for POR of 1986 - 2005 (compared with long-term observations and the ERA-Interim Reanalysis). Results include representative statistics such as the

  7. Labor Market Trends for Health Physicists through 2005

    International Nuclear Information System (INIS)

    1997-10-01

    This report reviews past, current, and projected future labor market trends for health physicists through 2005. Information is provided on degrees granted, available supply of new graduates, employment, job openings for new graduates, and salaries. Job openings for new graduates are compared to the available supply of new graduates to assess relative job opportunities in the health physics labor market. The report is divided into three sections: trends during 1983-1993, trends during the mid-1990s, and projected trends for 1997 through 2005

  8. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA Great Plains: Part I. Spatial trends

    Science.gov (United States)

    Kukal, M.; Irmak, S.

    2016-11-01

    Due to their substantial spatio-temporal behavior, long-term quantification and analyses of important hydrological variables are essential for practical applications in water resources planning, evaluating the water use of agricultural crop production and quantifying crop evapotranspiration patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference evapotranspiration (ETo) and aridity index (AI) at monthly, growing season and annual time steps. Air temperatures had a strong north to south increasing trend, with annual average varying from -1 to 24 °C, and growing season average temperature varying from 8 to 30 °C. DTR gradually decreased from western to eastern parts of the region, with a regional annual and growing season averages of 14.25 °C and 14.79 °C, respectively. Precipitation had a gradual shift towards higher magnitudes from west to east, with the average annual and growing season (May-September) precipitation ranging from 163 to 1486 mm and from 98 to 746 mm, respectively. ETo had a southwest-northeast decreasing trend, with regional annual and growing season averages of 1297 mm and 823 mm, respectively. AI increased from west to east, indicating higher humidity (less arid) towards the east, with regional annual and growing season averages of 0.49 and 0.44, respectively. The spatial datasets and maps for these important climate variables can serve as valuable background for climate change and hydrologic studies in the Great Plains region. Through identification of priority areas from the developed maps, efforts of the concerned personnel and agencies and resources can be diverted towards development

  9. Streamflow timing of mountain rivers in Spain: Recent changes and future projections

    Science.gov (United States)

    Morán-Tejeda, Enrique; Lorenzo-Lacruz, Jorge; López-Moreno, Juan Ignacio; Rahman, Kazi; Beniston, Martin

    2014-09-01

    Changes in streamflow timing are studied in 27 mountain rivers in Spain, in the context of climate warming. The studied rivers are characterized by a highflows period in spring due to snowmelt, although differences in the role of snow and consequently in the timing of flows are observed amongst cases. We calculated for every year of the studied period (1976-2008) various hydrological indices that enable locating the timing of spring flows within the annual hydrologic regime, including the day of 75% of mass, and the day of spring maximum. The evolution of these indices was compared with that of seasonal precipitation and temperature, and trends in time were calculated. Results show a general negative trend in the studied indices which indicates that spring peaks due to snowmelt are shifting earlier within the hydrological year. Spring temperatures, which show a significant increasing trend, are the main co-variable responsible for the observed changes in the streamflow timing. In a second set of analyses we performed hydrological simulations with the SWAT model, in order to estimate changes in streamflow timing under projected warming temperatures. Projections show further shifting of spring peak flows along with a more pronounced low water level period in the summer. The simulations also allowed quantifying the role of snowfall-snowmelt on the observed changes in streamflow.

  10. Development of the RGB LEDs color mixing mechanism for stability the color temperature at different projection distances.

    Science.gov (United States)

    Hung, Chih-Ching

    2015-01-01

    In lighting application, the color mixing of the RGB LEDs can provide more color selection in correlated color temperature and color rendering. Therefore, the purpose of this study is to propose a RGB color mixing mechanism by applying the mechanism design. Three sets of lamp-type RGB LEDs are individually installed on three four-bar linkages. A crank is used to drive three groups of RGB LEDs lamp-type to project lights onto a single plane in order to mix the lights. And, simulations of the illuminance and associated color temperatures are conducted by changing the distance to the projection plane, under the assumption that the stability of the color temperature of the projected light does not change according to the projecting height. Thus, the effect of change in the color temperature on color determination by the humans' eyes was avoided. The success of the proposed method will allow medical personnel to choose suitable wavelengths and color temperatures according to the particular requirements of their medical-examination environments.

  11. Trend curve data development and testing

    International Nuclear Information System (INIS)

    McElroy, W.N.; Gold, R.; Simons, R.L.; Roberts, J.H.

    1986-01-01

    Existing trend curves do not account for previous and more recently observed test and power reactor flux-level, thermal neutron and γ-ray field-induced effects. Any agreement between measured data and trend curve predictions that does not adequately represent the important neutron environmental and temperature effects as well as the microstructural damage processes, therefore, could be fortuitous. Empirically derived end-of-life (EOL) and life-extension-range (LER) trend curves are presented and discussed in this paper for high temperature [∼288 0 C (550 0 F)] irradiation of two weld, two plate, and two forging pressure vessel (PV) steels and low-temperature [∼60 0 C (140 0 F)] irradiation of one support structure-type steel

  12. Spatial and Temporal Inter-Relationship between Anomalies and Trends of Temperature, Moisture, Cloud Cover and OLR as Observed by AIRS/AMSU on Aqua

    Science.gov (United States)

    Susskind, Joel; Molnar, Gyula

    2009-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiled; atmospheric humidity profiles, fractional cloud clover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extra-tropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to evaluate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year time period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  13. Review of U.S. ESCO industry market trends: An empirical analysis of project data

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles A.; Hopper, Nicole C.; Osborn, Julie G.; Singer, Terry E.

    2003-03-01

    This article summarizes a comprehensive empirical analysis of U.S. Energy Service Company (ESCO) industry trends and performance. We employ two parallel analytical approaches: a comprehensive survey of firms to estimate total industry size and a database of {approx}1500 ESCO projects, from which we report target markets and typical project characteristics, energy savings and customer economics. We estimate that industry investment for energy-efficiency related services reached US $2 billion in 2000 following a decade of strong growth. ESCO activity is concentrated in states with high economic activity and strong policy support. Typical projects save 150-200 MJ/m2/year and are cost-effective with median benefit/cost ratios of 1.6 and 2.1 for institutional and private sector projects. The median simple payback time is 7 years among institutional customers; 3 years is typical in the private sector. Reliance on DSM incentives has decreased since 1995. Preliminary evidence suggests that state enabling policies have boosted the industry in medium-sized states. ESCOs have proven resilient in the face of restructuring and will probably shift toward selling ''energy solutions,'' with energy efficiency part of a package. We conclude that a private sector energy-efficiency services industry that targets large commercial and industrial customers is viable and self-sustaining with appropriate policy support both financial and non-financial.

  14. What Climate Sensitivity Index Is Most Useful for Projections?

    Science.gov (United States)

    Grose, Michael R.; Gregory, Jonathan; Colman, Robert; Andrews, Timothy

    2018-02-01

    Transient climate response (TCR), transient response at 140 years (T140), and equilibrium climate sensitivity (ECS) indices are intended as benchmarks for comparing the magnitude of climate response projected by climate models. It is generally assumed that TCR or T140 would explain more variability between models than ECS for temperature change over the 21st century, since this timescale is the realm of transient climate change. Here we find that TCR explains more variability across Coupled Model Intercomparison Project phase 5 than ECS for global temperature change since preindustrial, for 50 or 100 year global trends up to the present, and for projected change under representative concentration pathways in regions of delayed warming such as the Southern Ocean. However, unexpectedly, we find that ECS correlates higher than TCR for projected change from the present in the global mean and in most regions. This higher correlation does not relate to aerosol forcing, and the physical cause requires further investigation.

  15. Refining multi-model projections of temperature extremes by evaluation against land-atmosphere coupling diagnostics

    Science.gov (United States)

    Sippel, Sebastian; Zscheischler, Jakob; Mahecha, Miguel D.; Orth, Rene; Reichstein, Markus; Vogel, Martha; Seneviratne, Sonia I.

    2017-05-01

    The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land-atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land-atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T) and evapotranspiration (ET) benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land-atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5) archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET) are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T-ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T-ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand, the differences between projected

  16. Long-Term Trends, Variability and Extremes of In Situ Sea Surface Temperature Measured Along the Eastern Adriatic Coast and its Relationship to Hemispheric Processes

    Science.gov (United States)

    Grbec, Branka; Matić, Frano; Beg Paklar, Gordana; Morović, Mira; Popović, Ružica; Vilibić, Ivica

    2018-02-01

    This paper examines long-term series of in situ sea surface temperature (SST) data measured at nine coastal and one open sea stations along the eastern Adriatic Sea for the period 1959-2015. Monthly and yearly averages were used to document SST trends and variability, while clustering and connections to hemispheric indices were achieved by applying the Principal Component Analysis (PCA) and Self-Organizing Maps (SOM) method. Both PCA and SOM revealed the dominance of temporal changes with respect to the effects of spatial differences in SST anomalies, indicating the prevalence of hemispheric processes over local dynamics, such as bora wind spatial inhomogeneity. SST extremes were connected with blocking atmospheric patterns. A substantial warming between 1979 and 2015, in total exceeding 1 °C, was preceded by a period with a negative SST trend, implying strong multidecadal variability in the Adriatic. The strongest connection was found between yearly SST and the East Atlantic (EA) pattern, while North Atlantic Oscillation (NAO) and East Atlantic/West Russia (EAWR) patterns were found to also affect February SST values. Quantification of the Adriatic SST and their connection to hemispheric indices allow for more precise projections of future SST, considered to be rather important for Adriatic thermohaline circulation, biogeochemistry and fisheries, and sensitive to ongoing climate change.

  17. Trend analysis of watershed-scale precipitation over Northern California by means of dynamically-downscaled CMIP5 future climate projections.

    Science.gov (United States)

    Ishida, K; Gorguner, M; Ercan, A; Trinh, T; Kavvas, M L

    2017-08-15

    The impacts of climate change on watershed-scale precipitation through the 21st century were investigated over eight study watersheds in Northern California based on dynamically downscaled CMIP5 future climate projections from three GCMs (CCSM4, HadGEM2-ES, and MIROC5) under the RCP4.5 and RCP8.5 future climate scenarios. After evaluating the modeling capability of the WRF model, the six future climate projections were dynamically downscaled by means of the WRF model over Northern California at 9km grid resolution and hourly temporal resolution during a 94-year period (2006-2100). The biases in the model simulations were corrected, and basin-average precipitation over the eight study watersheds was calculated from the dynamically downscaled precipitation data. Based on the dynamically downscaled basin-average precipitation, trends in annual depth and annual peaks of basin-average precipitation during the 21st century were analyzed over the eight study watersheds. The analyses in this study indicate that there may be differences between trends of annual depths and annual peaks of watershed-scale precipitation during the 21st century. Furthermore, trends in watershed-scale precipitation under future climate conditions may be different for different watersheds depending on their location and topography even if they are in the same region. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Regional climate change projections of streamflow characteristics in the Northeast and Midwest U.S.

    Directory of Open Access Journals (Sweden)

    Eleonora M.C. Demaria

    2016-03-01

    Full Text Available Study region: Northeast and Midwest, United States. Study focus: Assessing the climate change impacts on the basin scale is important for water and natural resource managers. Here, the presence of monotonic trends and changes in climate-driven simulated 3-day peak flows, 7-day low flows, and mean base flows are evaluated in the Northeast and Midwest U.S. during the 20th and the 21st centuries using climate projections from sixteen climate models. Proven statistical methods are used to spatially and temporally disaggregate precipitation and temperature fields to a finer resolution before being used as drivers for a hydrological model. New hydrological insights for the region: Changes in the annual cycle of precipitation are likely to occur during the 21st century as winter precipitation increases and warmer temperatures reduce snow coverage across the entire domain especially in the northern basins. Maximum precipitation intensities are projected to become more intense across the region by mid-century especially along the coast. Positive trends in 3-day peak flows are also projected in the region as a result of the more intense precipitation, whereas the magnitude of 7-day low flows and mean base flows are projected to decrease. The length of the low flows season will likely extend by mid-century despite the increased precipitation as the atmospheric demand increases. Keywords: Streamflow peaks, Low flows, Trend analysis, Intense precipitation, Base flows

  19. IRPhE-DRAGON-DPR, OECD High Temperature Reactor Dragon Project, Primary Documents

    International Nuclear Information System (INIS)

    2004-01-01

    Description: The DRAGON Reactor Experiment (DRE): The first demonstration High temperature gas reactor (HTGR) was built in the 1960's. Thirteen OECD countries began a project in 1959 to build an experimental reactor known as Dragon at Winfrith in the UK. The reactor - which operated successfully between 1966 and 1975 - had a thermal output of 20 MW and achieved a gas outlet temperature of 750 deg. C. The High Temperature Reactor concept, if it justified its expectations, was seen as having its place as an advanced thermal reactor between the current thermal reactor types such as the PWR, BWR, and AGR and the sodium cooled fast breeder reactor. It was expected that the HTR would offer better thermal efficiency, better uranium utilisation, either with low enriched uranium fuel or high enriched uranium thorium fuel, better inherent safety and lower unit power costs. In the event all these potential advantages were demonstrated to be in principle achievable. This view is still shared today. In fact Very High Temperature Reactors is one of the concepts retained for Generation IV. Projects on constructing Modular Pebble Bed Reactors are under way. Here all available Dragon Project Reports (DPR) - approximately 1000 - are collected in electronic form. An index points to the reports (PDF format); each table in the report is accessible in EXCEL format with the aim of facilitating access to the data. These reports describe the design, experiments and modelling carried out over a period of 17 years. 2 - Related or auxiliary information: IRPHE-HTR-ARCH-01, Archive of HTR Primary Documents NEA-1728/01. 3 - Software requirements: Acrobat Reader, Microsoft Word, HTML Browser required

  20. A model–data comparison of the Holocene global sea surface temperature evolution

    Directory of Open Access Journals (Sweden)

    G. Lohmann

    2013-08-01

    Full Text Available We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. We use transient simulations from a coupled atmosphere–ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate Modelling Intercomparison Project. The general pattern of sea surface temperature (SST in the models shows a high-latitude cooling and a low-latitude warming. The proxy dataset comprises a global compilation of marine alkenone- and Mg/Ca-derived SST estimates. Independently of the choice of the climate model, we observe significant mismatches between modelled and estimated SST amplitudes in the trends for the last 6000 yr. Alkenone-based SST records show a similar pattern as the simulated annual mean SSTs, but the simulated SST trends underestimate the alkenone-based SST trends by a factor of two to five. For Mg/Ca, no significant relationship between model simulations and proxy reconstructions can be detected. We test if such discrepancies can be caused by too simplistic interpretations of the proxy data. We explore whether consideration of different growing seasons and depth habitats of the planktonic organisms used for temperature reconstruction could lead to a better agreement of model results with proxy data on a regional scale. The extent to which temporal shifts in growing season or vertical shifts in depth habitat can reduce model–data misfits is determined. We find that invoking shifts in the living season and habitat depth can remove some of the model–data discrepancies in SST trends. Regardless whether such adjustments in the environmental parameters during the Holocene are realistic, they indicate that when modelled temperature trends are set up to allow drastic shifts in the ecological behaviour of planktonic organisms, they do not capture the full range of reconstructed SST trends. Results indicate that modelled and reconstructed

  1. Changes in record-breaking temperature events in China and projections for the future

    Science.gov (United States)

    Deng, Hanqing; Liu, Chun; Lu, Yanyu; He, Dongyan; Tian, Hong

    2017-06-01

    As global warming intensifies, more record-breaking (RB) temperature events are reported in many places around the world where temperatures are higher than ever before http://cn.bing.com/dict/search?q=.&FORM=BDVSP6&mkt=zh-cn. The RB temperatures have caused severe impacts on ecosystems and human society. Here, we address changes in RB temperature events occurring over China in the past (1961-2014) as well as future projections (2006-2100) using observational data and the newly available simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The number of RB events has a significant multi-decadal variability in China, and the intensity expresses a strong decrease from 1961 to 2014. However, more frequent RB events occurred in mid-eastern and northeastern China over last 30 years (1981-2010). Comparisons with observational data indicate multi-model ensemble (MME) simulations from the CMIP5 model perform well in simulating RB events for the historical run period (1961-2005). CMIP5 MME shows a relatively larger uncertainty for the change in intensity. From 2051 to 2100, fewer RB events are projected to occur in most parts of China according to RCP 2.6 scenarios. Over the longer period from 2006 to 2100, a remarkable increase is expected for the entire country according to RCP 8.5 scenarios and the maximum numbers of RB events increase by approximately 600 per year at end of twenty-first century.

  2. Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project

    NARCIS (Netherlands)

    Potts, S.G.; Biesmeijer, J.C.; Bommarco, R.; Felicioli, A.; Fischer, M.; Jokinen, P.; Kleijn, D.; Klein, A.M.; Kunin, W.E.; Neumann, P.; Penev, L.D.; Petanidou, T.; Rasmont, P.; Roberts, S.P.M.; Smith, H.G.; Sorensen, P.B.; Steffan-Dewenter, I.; Vaissiere, B.E.; Vila, M.; Vujic, A.; Woyciechowski, M.; Zobel, M.; Settele, J.; Schweiger, O.

    2011-01-01

    Pollinating insects form a key component of European biodiversity, and provide a vital ecosystem service to crops and wild plants. There is growing evidence of declines in both wild and domesticated pollinators, and parallel declines in plants relying upon them. The STEP project (Status and Trends

  3. Long-term trend in ground-based air temperature and its responses to atmospheric circulation and anthropogenic activity in the Yangtze River Delta, China

    Science.gov (United States)

    Peng, Xia; She, Qiannan; Long, Lingbo; Liu, Min; Xu, Qian; Zhang, Jiaxin; Xiang, Weining

    2017-10-01

    The Yangtze River Delta (YRD), including Shanghai City, Jiangsu and Zhejiang Provinces, is the largest metropolitan region in China. In the past decades, the region has experienced massive urbanization and detrimentally affected the environment in the region. Identifying the spatio-temporal variations of climate change and its influencing mechanism in the YRD is an important task for assessing their impacts on the local society and ecosystem. Based on long-term (1958-2014) observation data of meteorological stations, three temperature indices, i.e. extreme maximum temperature (TXx), extreme minimum temperature (TNn), and mean temperature (TMm), were selected and spatialized with climatological calculations and spatial techniques. Evolution and spatial heterogeneity of three temperature indices over YRD as well as their links to atmospheric circulation and anthropogenic activity were investigated. In the whole YRD, a statistically significant overall uptrend could be detected in three temperature indices with the Mann-Kendall (M-K) trend test method. The linear increasing trend for TMm was 0.31 °C/10 a, which was higher than the global average (0.12 °C/10 a during 1951-2012). For TXx and TNn, the increasing rates were 0.41 °C/10 a and 0.52 °C/10 a. Partial correlation analysis indicated that TMm was more related with TXx (rp = 0.68, p < 0.001) than TNn (rp = 0.48, p < 0.001). Furthermore, it was detected with M-K analysis at pixel scale that 62.17%, 96.75% and 97.05% of the areas in the YRD showed significant increasing trends for TXx, TNn and TMm, respectively. The increasing trend was more obvious in the southern mountainous areas than the northern plains areas. Further analysis indicated that the variation of TXx over YRD was mainly influenced by anthropogenic activities (e.g. economic development), while TNn was more affected by atmospheric circulations (e.g., the Eurasian zonal circulation index (EAZ) and the cold air activity index (CA)). For TMm, it was a

  4. Enriched-uranium feed costs for the High-Temperature Gas-Cooled reactor: trends and comparison with other reactor concepts

    International Nuclear Information System (INIS)

    Thomas, W.E.

    1976-04-01

    This report discusses each of the components that affect the unit cost for enriched uranium; that is, ore costs, U 3 O 8 to UF 6 conversion cost, costs for enriching services, and changes in transaction tails assay. Historical trends and announced changes are included. Unit costs for highly enriched uranium (93.15 percent 235 U) and for low-enrichment uranium (3.0, 3.2, and 3.5 percent 235 U) are displayed as a function of changes in the above components and compared. It is demonstrated that the trends in these cost components will probably result in significantly less cost increase for highly enriched uranium than for low-enrichment uranium--hence favoring the High-Temperature Gas-Cooled Reactor

  5. Chances of short-term cooling trends over Canada for the next decades

    Science.gov (United States)

    Grenier, Patrick; de Elia, Ramon; Chaumont, Diane

    2014-05-01

    As climate services continue to develop in Quebec, Canada, an increasing number of requests are made for providing information relevant for the near term. As a response, one approach has been to consider short-term cooling trends as a basis for climate products. This project comprises different aspects: technical steps, knowledge transfer, and societal use. Each step does represent a different challenge. The technical part, i.e. producing probabilistic distributions of short-term temperature trends, involves relatively complex scenario construction methods including bias-related post-processing, and access to wide simulation and observation databases. Calculations are performed on 60 CMIP5-based scenarios on a grid covering Canada during the period 2006-2035, and for 5, 10, 15, 20 and 25-year trend durations. Knowledge transfer implies overcoming misinterpretation, given that probabilistic projections based on simulation ensembles are not perfectly related to real-Earth possible outcomes. Finally, societal use of this information remains the biggest challenge. On the one hand, users clearly state their interest in near-term relevant information, and intuitively it seems clear that short-term cooling trends embedded within the long-term warming path should be considered in adaptation plans, for avoiding over-adaptation. On the other hand, the exact way of incorporating such information within a decision-making process has proven not to be obvious. Irrespective of that, the study and communication of short-term cooling chances is necessary for preventing decision-makers to infer from the eventual occurrence of such a trend that global warming isn't happening. The presentation will discuss the three aspects aforementioned.

  6. Projection display industry market and technology trends

    Science.gov (United States)

    Castellano, Joseph A.; Mentley, David E.

    1995-04-01

    The projection display industry is diverse, embracing a variety of technologies and applications. In recent years, there has been a high level of interest in projection displays, particularly those using LCD panels or light valves because of the difficulty in making large screen, direct view displays. Many developers feel that projection displays will be the wave of the future for large screen HDTV (high-definition television), penetrating the huge existing market for direct view CRT-based televisions. Projection displays can have the images projected onto a screen either from the rear or the front; the main characteristic is their ability to be viewed by more than one person. In addition to large screen home television receivers, there are numerous other uses for projection displays including conference room presentations, video conferences, closed circuit programming, computer-aided design, and military command/control. For any given application, the user can usually choose from several alternative technologies. These include CRT front or rear projectors, LCD front or rear projectors, LCD overhead projector plate monitors, various liquid or solid-state light valve projectors, or laser-addressed systems. The overall worldwide market for projection information displays of all types and for all applications, including home television, will top DOL4.6 billion in 1995 and DOL6.45 billion in 2001.

  7. The warming trend of ground surface temperature in the Choshui Alluvial Fan, western central Taiwan

    Science.gov (United States)

    Chen, W.; Chang, M.; Chen, J.; Lu, W.; Huang, C. C.; Wang, Y.

    2013-12-01

    Heat storage in subsurface of the continents forms a fundamental component of the global energy budget and plays an important role in the climate system. Several researches revealed that subsurface temperatures were being increased to 1.8-2.8°C higher in mean ground surface temperature (GST) for some Asian cities where are experiencing a rapid growth of population. Taiwan is a subtropic-tropic island with densely populated in the coastal plains surrounding its mountains. We investigate the subsurface temperature distribution and the borehole temperature-depth profiles by using groundwater monitoring wells in years 2000 and 2010. Our data show that the western central Taiwan plain also has been experiencing a warming trend but with a higher temperatures approximately 3-4 °C of GST during the last 250 yrs. We suggest that the warming were mostly due to the land change to urbanization and agriculture. The current GSTs from our wells are approximately 25.51-26.79 °C which are higher than the current surface air temperature (SAT) of 23.65 °C. Data from Taiwan's weather stations also show 1-1.5 °C higher for the GST than the SAT at neighboring stations. The earth surface heat balance data indicate that GST higher than SAT is reasonable. More researches are needed to evaluate the interaction of GST and SAT, and how a warming GST's impact to the SAT and the climate system of the Earth.

  8. Annual and seasonal analysis of temperature and precipitation in Andorra (Pyrenees) from 1934 to 2008: quality check, homogenization and trends

    Science.gov (United States)

    Esteban, Pere; Prohom, Marc; Aguilar, Enric; Mestre, Olivier

    2010-05-01

    The analysis of temperature and precipitation change and variability in high elevations is a difficult issue due to the lack of long term climatic series in those environments. Nonetheless, it is important to evaluate how much high elevations follow the same climate evolution than low lying sites. In this work, using daily data from three Andorran weather stations (maintained by the power company Forces Elèctriques d'Andorra, FEDA), climate trends of annual and seasonal temperature and precipitation were obtained for the period 1934-2008. The series are complete (99.9%) and are located in a mountainous area ranging from 1110 m to 1600 m asl. As a previous step to the analysis, data rescue, quality control and homogeneity tests were applied to the daily data. For quality control, several procedures were applied to identify and flag suspicious or erroneous data: duplicated days, outliers, excessive differences between consecutive days, flat line checking, days with maximum temperature lower that minimum temperature, and rounding analysis. All the station sites were visited to gather the available metadata. Concerning homogeneity, a homogeneous climate time series is defined as one where variations are caused only by variations in climate and not to non-climatic factors (i.e., changes in site location, instruments, station environment…). As a result, homogeneity of the series was inspected from several methodologies that have been used in a complementary and independent way in order to attain solid results: C3-SNHT (with software developed under the Spanish Government Grant CGL2007-65546-C03-02), and Caussinus-Mestre (C-M) approaches. In both cases, tests were applied to mean annual temperature and precipitation series, using Catalan and French series as references (provided respectively by the Meteorological Service of Catalonia and Météo-France, in the framework of the Action COST-ES0601: Advances in homogenisation methods of climate series: an integrated

  9. Does the projected pathway to global warming targets matter?

    Science.gov (United States)

    Bärring, Lars; Strandberg, Gustav

    2018-02-01

    Since the ‘Paris agreement’ in 2015 there has been much focus on what a +1.5 °C or +2 °C warmer world would look like. Since the focus lies on policy relevant global warming targets, or specific warming levels (SWLs), rather than a specific point in time, projections are pooled together to form SWL ensembles based on the target temperature rather than emission scenario. This study uses an ensemble of CMIP5 global model projections to analyse how well SWL ensembles represent the stabilized climate of global warming targets. The results show that the SWL ensembles exhibit significant trends that reflect the transient nature of the RCP scenarios. These trends have clear effect on the timing and clustering of monthly cold and hot extremes, even though the effect on the temperature of the extreme months is less visible. In many regions there is a link between choice of RCP scenario used in the SWL ensemble and climate change signal in the highest monthly temperatures. In other regions there is no such clear-cut link. From this we conclude that comprehensive analyses of what prospects the different global warming targets bring about will require stabilization scenarios. Awaiting such targeted scenarios we suggest that prudent use of SWL scenarios, taking their characteristics and limitations into account, may serve as reasonable proxies in many situations.

  10. Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics

    Directory of Open Access Journals (Sweden)

    S. Sippel

    2017-05-01

    Full Text Available The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land–atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land–atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T and evapotranspiration (ET benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land–atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5 archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T–ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T–ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand

  11. Record dry summer in 2015 challenges precipitation projections in Central Europe

    Science.gov (United States)

    Orth, René; Zscheischler, Jakob; Seneviratne, Sonia I.

    2016-06-01

    Central Europe was characterized by a humid-temperate climate in the 20th century. Climate change projections suggest that climate in this area will shift towards warmer temperatures by the end of the 21st century, while projected precipitation changes are highly uncertain. Here we show that the 2015 summer rainfall was the lowest on record since 1901 in Central Europe, and that climate models that perform best in the three driest years of the historical time period 1901-2015 project stronger drying trends in the 21st century than models that perform best in the remaining years. Analyses of precipitation and derived soil moisture reveal that the 2015 event was drier than both the recent 2003 or 2010 extreme summers in Central Europe. Additionally there are large anomalies in satellite-derived vegetation greenness. In terms of precipitation and temperature anomalies, the 2015 summer in Central Europe is found to lie between historical climate in the region and that characteristic of the Mediterranean area. Even though the models best capturing past droughts are not necessarily generally more reliable in the future, the 2015 drought event illustrates that potential future drying trends have severe implications and could be stronger than commonly assumed from the entire IPCC AR5 model ensemble.

  12. Projections of Temperature-Attributable Premature Deaths in 209 U.S. Cities Using a Cluster-Based Poisson Approach

    Science.gov (United States)

    Schwartz, Joel D.; Lee, Mihye; Kinney, Patrick L.; Yang, Suijia; Mills, David; Sarofim, Marcus C.; Jones, Russell; Streeter, Richard; St. Juliana, Alexis; Peers, Jennifer; hide

    2015-01-01

    Background: A warming climate will affect future temperature-attributable premature deaths. This analysis is the first to project these deaths at a near national scale for the United States using city and month-specific temperature-mortality relationships. Methods: We used Poisson regressions to model temperature-attributable premature mortality as a function of daily average temperature in 209 U.S. cities by month. We used climate data to group cities into clusters and applied an Empirical Bayes adjustment to improve model stability and calculate cluster-based month-specific temperature-mortality functions. Using data from two climate models, we calculated future daily average temperatures in each city under Representative Concentration Pathway 6.0. Holding population constant at 2010 levels, we combined the temperature data and cluster-based temperature-mortality functions to project city-specific temperature-attributable premature deaths for multiple future years which correspond to a single reporting year. Results within the reporting periods are then averaged to account for potential climate variability and reported as a change from a 1990 baseline in the future reporting years of 2030, 2050 and 2100. Results: We found temperature-mortality relationships that vary by location and time of year. In general, the largest mortality response during hotter months (April - September) was in July in cities with cooler average conditions. The largest mortality response during colder months (October-March) was at the beginning (October) and end (March) of the period. Using data from two global climate models, we projected a net increase in premature deaths, aggregated across all 209 cities, in all future periods compared to 1990. However, the magnitude and sign of the change varied by cluster and city. Conclusions: We found increasing future premature deaths across the 209 modeled U.S. cities using two climate model projections, based on constant temperature

  13. Long-term trends in US gas supply and prices: 1993 edition of the GRI baseline projection of US energy supply and demand to 2010

    International Nuclear Information System (INIS)

    Woods, T.J.

    1993-03-01

    A Summary of the gas supply outlook in the 1993 Edition of the GRI Baseline Projection of U.S. Energy Supply and Demand, adopted as a major input to the planning cycle of the 1994 research and development program, is presented. Significant changes were made in developing the gas supply and price trends for the 1993 edition of the projection. The GRI Hydrocarbon Model was expanded to include the Canadian hydrocarbon resource base. Thus, Canadian and lower-48 gas production and prices were developed on a fully integrated basis in the 1993 projection. The lower-48 hydrocarbon resource estimate was increased, reflecting the results of the recent National Petroleum Council gas study and ongoing GRI resource work. The effects of new technology and practice on drilling costs and exploration efficiency were included for the first time. Appendices include comparisons of supply and price trends

  14. Use and Limitations of a Climate-Quality Data Record to Study Temperature Trends on the Greenland Ice Sheet

    Science.gov (United States)

    Hall, Dorothy K.; Comiso, Josefino C.; Shuman, Christopher A.; Koenig, Lora S.; DiGirolamo, Nicolo E.

    2011-01-01

    Enhanced melting of the Greenland Ice Sheet has been documented in recent literature along with surface-temperature increases measured using infrared satellite data since 1981. Using a recently-developed climate-quality data record, 11- and 12-year trends in the clear-sky ice-surface temperature (IST) of the Greenland Ice Sheet have been studied using the Moderate-Resolution Imaging Spectroradiometer (MODIS) IST product. Daily and monthly MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 are now available at 6.25-km spatial resolution on a polar stereographic grid as described in Hall et al. (submitted). This record will be elevated in status to a climate-data record (CDR) when more years of data become available either from the MODIS on the Terra or Aqua satellites, or from the Visible Infrared Imager Radiometer Suite (VIIRS) to be launched in October 2011. Maps showing the maximum extent of melt for the entire ice sheet and for the six major drainage basins have been developed from the MODIS IST dataset. Twelve-year trends of the duration of the melt season on the ice sheet vary in different drainage basins with some basins melting progressively earlier over the course of the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. IST 12-year trends are compared with in-situ data, and climate data from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) Reanalysis.

  15. Statistical analysis of global surface temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmidt, Torben; Johansen, Søren; Thejll, Peter

    2012-01-01

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to the lack of representation of ice-sheet dynamics in present-day physically-based climate models being unable to simulate observed sea level trends......, semi-empirical models have been applied as an alternative for projecting of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and land-ocean surface air...... temperature, capable of handling such peculiarities. We find a relationship between sea level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s...

  16. Latitudinal and interhemispheric variation of stratospheric effects on mesospheric ice layer trends

    Science.gov (United States)

    Lübken, F.-J.; Berger, U.

    2011-02-01

    Latitudinal and interhemispheric differences of model results on trends in mesospheric ice layers and background conditions are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. Water vapor increases at noctilucent cloud (NLC) heights and decreases above due to increased freeze drying caused by temperature trends. There is no tendency for ice clouds in the Northern Hemisphere for extending farther southward with time. Trends of NLC albedo are similar to satellite measurements, but only if a time period longer than observations is considered. Ice cloud trends get smaller if albedo thresholds relevant to satellite instruments are applied, in particular at high polar latitudes. This implies that weak and moderate NLC is favored when background conditions improve for NLC formation, whereas strong NLC benefits less. Trends of ice cloud parameters are generally smaller in the Southern Hemisphere (SH) compared to the Northern Hemisphere (NH), consistent with observations. Trends in background conditions have counteracting effects on NLC: temperature trends would suggest stronger ice increase in the SH, and water vapor trends would suggest a weaker increase. Larger trends in NLC brightness or occurrence rates are not necessarily associated with larger (more negative) temperature trends. They can also be caused by larger trends of water vapor caused by larger freeze drying, which in turn can be caused by generally lower temperatures and/or more background water. Trends of NLC brightness and occurrence rates decrease with decreasing latitude in both hemispheres. The latitudinal variation of these trends is primarily determined by induced water vapor trends. Trends in NLC altitudes are generally small. Stratospheric temperature trends vary

  17. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    International Nuclear Information System (INIS)

    Maguire, J.F.; Yuan, J.

    2009-01-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  18. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.F., E-mail: jmaguire@amsc.co [American Superconductor Co., 64 Jackson Road, Devens, MA 01434 (United States); Yuan, J. [American Superconductor Co., 64 Jackson Road, Devens, MA 01434 (United States)

    2009-10-15

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  19. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    Science.gov (United States)

    Maguire, J. F.; Yuan, J.

    2009-10-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  20. A century of climate and ecosystem change in Western Montana: What do temperature trends portend?

    Science.gov (United States)

    Pederson, G.T.; Graumlich, L.J.; Fagre, D.B.; Kipfer, T.; Muhlfeld, C.C.

    2010-01-01

    The physical science linking human-induced increases in greenhouse gasses to the warming of the global climate system is well established, but the implications of this warming for ecosystem processes and services at regional scales is still poorly understood. Thus, the objectives of this work were to: (1) describe rates of change in temperature averages and extremes for western Montana, a region containing sensitive resources and ecosystems, (2) investigate associations between Montana temperature change to hemispheric and global temperature change, (3) provide climate analysis tools for land and resource managers responsible for researching and maintaining renewable resources, habitat, and threatened/endangered species and (4) integrate our findings into a more general assessment of climate impacts on ecosystem processes and services over the past century. Over 100 years of daily and monthly temperature data collected in western Montana, USA are analyzed for long-term changes in seasonal averages and daily extremes. In particular, variability and trends in temperature above or below ecologically and socially meaningful thresholds within this region (e.g., -17.8??C (0??F), 0??C (32??F), and 32.2??C (90??F)) are assessed. The daily temperature time series reveal extremely cold days (??? -17.8??C) terminate on average 20 days earlier and decline in number, whereas extremely hot days (???32??C) show a three-fold increase in number and a 24-day increase in seasonal window during which they occur. Results show that regionally important thresholds have been exceeded, the most recent of which include the timing and number of the 0??C freeze/thaw temperatures during spring and fall. Finally, we close with a discussion on the implications for Montana's ecosystems. Special attention is given to critical processes that respond non-linearly as temperatures exceed critical thresholds, and have positive feedbacks that amplify the changes. ?? Springer Science + Business Media B

  1. Cloud microphysical characteristics versus temperature for three Canadian field projects

    Directory of Open Access Journals (Sweden)

    I. Gultepe

    2002-11-01

    Full Text Available The purpose of this study is to better understand how cloud microphysical characteristics such as liquid water content (LWC and droplet number concentration (Nd change with temperature (T. The in situ observations were collected during three research projects including: the Radiation, Aerosol, and Cloud Experiment (RACE which took place over the Bay of Fundy and Central Ontario during August 1995, the First International Regional Arctic Cloud Experiment (FIRE.ACE which took place in the Arctic Ocean during April 1998, and the Alliance Icing Research Study (AIRS which took place in the Ontario region during the winter of 1999–2000. The RACE, FIRE.ACE, and AIRS projects represent summer mid-latitude clouds, Arctic clouds, and mid-latitude winter clouds, respectively. A LWC threshold of 0.005 g m-3 was used for this study. Similar to other studies, LWC was observed to decrease with decreasing T. The LWC-T relationship was similar for all projects, although the range of T conditions for each project was substantially different, and the variability of LWC within each project was considerable. Nd also decreased with decreasing T, and a parameterization for Nd versus T is suggested that may be useful for modeling studies.Key words. Atmospheric composition and structure (cloud physics and chemistry – Meteorology and atmospheric dynamics (climatology; general circulation

  2. High Temperature Gas-Cooled Reactor Projected Markets and Preliminary Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2011-08-01

    This paper summarizes the potential market for process heat produced by a high temperature gas-cooled reactor (HTGR), the environmental benefits reduced CO2 emissions will have on these markets, and the typical economics of projects using these applications. It gives examples of HTGR technological applications to industrial processes in the typical co-generation supply of process heat and electricity, the conversion of coal to transportation fuels and chemical process feedstock, and the production of ammonia as a feedstock for the production of ammonia derivatives, including fertilizer. It also demonstrates how uncertainties in capital costs and financial factors affect the economics of HTGR technology by analyzing the use of HTGR technology in the application of HTGR and high temperature steam electrolysis processes to produce hydrogen.

  3. Trends in Middle East climate extreme indices from 1950 to 2003

    Science.gov (United States)

    Zhang, Xuebin; Aguilar, Enric; Sensoy, Serhat; Melkonyan, Hamlet; Tagiyeva, Umayra; Ahmed, Nader; Kutaladze, Nato; Rahimzadeh, Fatemeh; Taghipour, Afsaneh; Hantosh, T. H.; Albert, Pinhas; Semawi, Mohammed; Karam Ali, Mohammad; Said Al-Shabibi, Mansoor Halal; Al-Oulan, Zaid; Zatari, Taha; Al Dean Khelet, Imad; Hamoud, Saleh; Sagir, Ramazan; Demircan, Mesut; Eken, Mehmet; Adiguzel, Mustafa; Alexander, Lisa; Peterson, Thomas C.; Wallis, Trevor

    2005-11-01

    A climate change workshop for the Middle East brought together scientists and data for the region to produce the first area-wide analysis of climate extremes for the region. This paper reports trends in extreme precipitation and temperature indices that were computed during the workshop and additional indices data that became available after the workshop. Trends in these indices were examined for 1950-2003 at 52 stations covering 15 countries, including Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, and Turkey. Results indicate that there have been statistically significant, spatially coherent trends in temperature indices that are related to temperature increases in the region. Significant, increasing trends have been found in the annual maximum of daily maximum and minimum temperature, the annual minimum of daily maximum and minimum temperature, the number of summer nights, and the number of days where daily temperature has exceeded its 90th percentile. Significant negative trends have been found in the number of days when daily temperature is below its 10th percentile and daily temperature range. Trends in precipitation indices, including the number of days with precipitation, the average precipitation intensity, and maximum daily precipitation events, are weak in general and do not show spatial coherence. The workshop attendees have generously made the indices data available for the international research community.

  4. Future Population Trends in China: 2005-2050

    OpenAIRE

    Chen Wei; Liu Jinju

    2009-01-01

    Using China's 2000 census data, this paper conducts population projection under different fertility scenarios to gauge the likely trends in China's future population change. The range of fertility assumptions captures the uncertainty of current fertility estimates as well as the likely trends under the family planning policy and economic development. Only one mortality scenario is applied and net international migration is assumed to be null in the population projection. Future life tables ar...

  5. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    Science.gov (United States)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  6. Preliminary engineering cost trends for highway projects.

    Science.gov (United States)

    2011-10-21

    Preliminary engineering (PE) for a highway project encompasses two efforts: planning to minimize the physical, social, and human environmental impacts of projects and engineering design to deliver the best alternative. PE efforts begin years in advan...

  7. Soil response to long-term projections of extreme temperature and precipitation in the southern La Plata Basin

    Science.gov (United States)

    Pántano, Vanesa C.; Penalba, Olga C.

    2017-12-01

    Projected changes were estimated considering the main variables which take part in soil-atmosphere interaction. The analysis was focused on the potential impact of these changes on soil hydric condition under extreme precipitation and evapotranspiration, using the combination of Global Climate Models (GCMs) and observational data. The region of study is the southern La Plata Basin that covers part of Argentine territory, where rainfed agriculture production is one of the most important economic activities. Monthly precipitation and maximum and minimum temperatures were used from high quality-controlled observed data from 46 meteorological stations and the ensemble of seven CMIP5 GCMs in two periods: 1970-2005 and 2065-2100. Projected changes in monthly effective temperature and precipitation were analysed. These changes were combined with observed series for each probabilistic interval. The result was used as input variables for the water balance model in order to obtain consequent soil hydric condition (deficit or excess). Effective temperature and precipitation are expected to increase according to the projections of GCMs, with few exceptions. The analysis revealed increase (decrease) in the prevalence of evapotranspiration over precipitation, during spring (winter). Projections for autumn months show precipitation higher than potential evapotranspiration more frequently. Under dry extremes, the analysis revealed higher projected deficit conditions, impacting on crop development. On the other hand, under wet extremes, excess would reach higher values only in particular months. During December, projected increase in temperatures reduces the impact of extreme high precipitation but favours deficit conditions, affecting flower-fructification stage of summer crops.

  8. Regional Trends in Electromobility - Regional Study North America

    OpenAIRE

    Turrentine, Tom; Garas, Dhalia

    2015-01-01

    The subproject “Regional Trends in Electro mobility” aims at identifying and analyzing major trends in the field of electro mobility. The trend analysis will monitor research effort and upcoming technologies, policies, products and market developments in different focus regions around the world continuously to enable a systematic analysis of global trends. The regional trend analysis for electro mobility is a major keystone for the project success and therefore cooperation with...

  9. Future changes over the Himalayas: Mean temperature

    Science.gov (United States)

    Dimri, A. P.; Kumar, D.; Choudhary, A.; Maharana, P.

    2018-03-01

    An assessment of the projection of near surface air temperature over the Himalayan region from the COordinated Regional Climate Downscaling EXperiment- South Asia (hereafter, CORDEX-SA) regional climate model (RCM) experiments have been carried out for different Representative Concentration Pathway (RCP) scenarios. The purpose of this study is to assess the probable future changes in the mean temperature climatology and its long term trend for different seasons under greenhouse gas forcing scenarios for different seasons till the end of 21st century. A number of statistical measures such as changes in mean climatology, long term trend and probability distribution function have been used in order to detect the signals of changes in climate. Moreover, the associated uncertainties among different model experiments and their ensemble in space, time and different seasons in particular have been quantified. Despite of strong cold bias in the model experiments over Himalayan region (Nengker et al., 2017), statistically significant strong rate of warming (0.03-0.09 °C/year) across all the seasons and RCPs have been projected by all the models and their ensemble. Season specific response towards the warming is indicated by ensemble under future climate while ON season shows comparable magnitude of warming than DJF. Such warming intensifies with the increase in the radiative forcing under a range of greenhouse gas scenarios from RCP2.6 to RCP8.5. In addition to this, a wide range of spatial variability and disagreements in the trend magnitude between different models describes the uncertainty associated with the model projections and scenarios. A substantial seasonal response to warming with respect to elevation was also found, as DJF season followed by ON portrays highest rate of warming, specifically at higher elevation sites such as western Himalayas and northern part of central Himalayas. The different elevation classes respond differently to the projected future

  10. Observed changes in seasonal heat waves and warm temperature extremes in the Romanian Carpathians

    Science.gov (United States)

    Micu, Dana; Birsan, Marius-Victor; Dumitrescu, Alexandru; Cheval, Sorin

    2015-04-01

    Extreme high temperature have a large impact on environment and human activities, especially in high elevation areas particularly sensitive to the recent climate warming. The climate of the Romanian Carpathians became warmer particularly in winter, spring and summer, exibiting a significant increasing frequency of warm extremes. The paper investigates the seasonal changes in the frequency, duration and intensity of heat waves in relation to the shifts in the daily distribution of maximum temperatures over a 50-year period of meteorological observations (1961-2010). The paper uses the heat wave definition recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) and exploits the gridded daily dataset of maximum temperature at 0.1° resolution (~10 km) developed in the framework of the CarpatClim project (www.carpatclim.eu). The seasonal changes in heat waves behavior were identified using the Mann-Kendall non-parametric trend test. The results suggest an increase in heat wave frequency and a lengthening of intervals affected by warm temperature extremes all over the study region, which are explained by the shifts in the upper (extreme) tail of the daily maximum temperature distribution in most seasons. The trends are consistent across the region and are well correlated to the positive phases of the East Atlantic Oscillation. Our results are in good agreement with the previous temperature-related studies concerning the Carpathian region. This study was realized within the framework of the project GENCLIM, financed by UEFISCDI, code PN-II 151/2014.

  11. The Dependence of Cloud Property Trend Detection on Absolute Calibration Accuracy of Passive Satellite Sensors

    Science.gov (United States)

    Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.

    2016-12-01

    Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection

  12. Projecting future summer mortality due to ambient ozone concentration and temperature changes

    Science.gov (United States)

    Lee, Jae Young; Lee, Soo Hyun; Hong, Sung-Chul; Kim, Ho

    2017-05-01

    Climate change is known to affect the human health both directly by increased heat stress and indirectly by altering environments, particularly by altering the rate of ambient ozone formation in the atmosphere. Thus, the risks of climate change may be underestimated if the effects of both future temperature and ambient ozone concentrations are not considered. This study presents a projection of future summer non-accidental mortality in seven major cities of South Korea during the 2020s (2016-2025) and 2050s (2046-2055) considering changes in temperature and ozone concentration, which were predicted by using the HadGEM3-RA model and Integrated Climate and Air Quality Modeling System, respectively. Four Representative Concentration Pathway (RCP) scenarios (RCP 2.6, 4.5, 6.0, and 8.5) were considered. The result shows that non-accidental summer mortality will increase by 0.5%, 0.0%, 0.4%, and 0.4% in the 2020s, 1.9%, 1.5%, 1.2%, and 4.4% in the 2050s due to temperature change compared to the baseline mortality during 2001-2010, under RCP 2.6, 4.5, 6.0, and 8.5, respectively, whereas the mortality will increase by 0.0%, 0.5%, 0.0%, and 0.5% in the 2020s, and 0.2%, 0.2%, 0.4%, and 0.6% in the 2050s due to ozone concentration change. The projection result shows that the future summer morality in South Korea is increased due to changes in both temperature and ozone, and the magnitude of ozone-related increase is much smaller than that of temperature-related increase, especially in the 2050s.

  13. Identifying Changes in the Probability of High Temperature, High Humidity Heat Wave Events

    Science.gov (United States)

    Ballard, T.; Diffenbaugh, N. S.

    2016-12-01

    Understanding how heat waves will respond to climate change is critical for adequate planning and adaptation. While temperature is the primary determinant of heat wave severity, humidity has been shown to play a key role in heat wave intensity with direct links to human health and safety. Here we investigate the individual contributions of temperature and specific humidity to extreme heat wave conditions in recent decades. Using global NCEP-DOE Reanalysis II daily data, we identify regional variability in the joint probability distribution of humidity and temperature. We also identify a statistically significant positive trend in humidity over the eastern U.S. during heat wave events, leading to an increased probability of high humidity, high temperature events. The extent to which we can expect this trend to continue under climate change is complicated due to variability between CMIP5 models, in particular among projections of humidity. However, our results support the notion that heat wave dynamics are characterized by more than high temperatures alone, and understanding and quantifying the various components of the heat wave system is crucial for forecasting future impacts.

  14. FP7 Project LONGLIFE: Overview of results and implications

    International Nuclear Information System (INIS)

    Altstadt, Eberhard; Keim, Elisabeth; Hein, Hieronymus; Serrano, Marta; Bergner, Frank; Viehrig, Hans-Werner; Ballesteros, Antonio; Chaouadi, Rachid; Wilford, Keith

    2014-01-01

    Highlights: • Radiation effects in reactor pressure vessel steels under long term operation. • Indications of late blooming effects were found in some cases. • Significant flux effect on the size of defect clusters in high-Cu weld materials. • Guideline for monitoring radiation embrittlement during life extension. - Abstract: LONGLIFE (“Treatment of long term irradiation embrittlement effects in RPV safety assessment”) was a collaborative project of the 7th Framework Programme of EURATOM under the umbrella of NULIFE/NUGENIA, aiming at an improved understanding of irradiation effects in reactor pressure vessel steels under conditions representative of long term operation. The LONGLIFE project was completed by the end of January 2014. The paper gives an overview of the main project results and their implications for future research, as discussed at the final project workshop. The microstructural database for neutron-irradiated RPV steels was extended considerably and existing gaps on mechanical property data were closed. Indications of late blooming effects (LBE) were found in some cases, but clear criteria for the occurrence/exclusion in terms of irradiation conditions and chemical composition have still to be developed. The commonly accepted trend, that low flux and low irradiation temperature promotes LBE, is supported. A significant flux effect on the size of defect clusters was observed in two high Cu weld materials, while the changes of mechanical properties are not affected by the neutron flux. The database requires completion in particular for low-Cu RPV steels. The shift of reference temperature T 0 over the thickness location of a VVER-440 welding seam does not follow the prediction Russian code, because of the strong variation of the intrinsic weld bead structure. Therefore, the effect of the initial microstructure and of the heterogeneity on the radiation behaviour has to be addressed in future works. Existing embrittlement trend curves models

  15. Recent Trends in the Ebro River Basin: Is It All "Just" Climate Change?

    Science.gov (United States)

    Lutz, Stefanie; Merz, Ralf

    2016-04-01

    Water resources are under pressure from a variety of stressors such as industry, agriculture, water abstraction or pollution. Changing climate can potentially enhance the impact of these stressors, especially under water scarcity conditions. The aim of the GLOBAQUA project ("Managing the effects of multiple stressors on aquatic ecosystems under water scarcity") is, therefore, to analyze the combined effect of multiple stressors in the context of increasing water scarcity. As part of the GLOBAQUA project, this study examines recent trends in climate, water quantity and quality parameters in the Ebro River Basin in Northern Spain to identify stressors and determine their joint impact on water resources. Mann-Kendall trend analyses of temperature, precipitation, streamflow, groundwater level, streamwater and groundwater quality data (spanning between 15 and 40 years) were performed. Moreover, anthropogenic pressures such as land use and alteration of natural flow by reservoirs were considered. Climate data indicate increasing temperatures in the Ebro River Basin especially in summer and autumn, and decreasing precipitation particularly in summer. In contrast, precipitation mostly shows upwards trends in autumn, but these are counterbalanced by greater evapotranspiration due to higher temperatures. Overall, this results in annual and seasonal streamflow decreases at the majority of gauging stations. Declining trends in streamflow are most pronounced during summer and are also observed in subbasins without reservoirs. Diminishing water resources become also apparent in generally decreasing groundwater levels in the Ebro River Basin. This decrease is most pronounced in areas where groundwater serves as main origin for irrigation water, which demonstrates how land use acts as a local rather than regional driver of change. Increasing air temperatures correlate with increasing water temperatures over the past 30 years, which indicates the effect of changing climate on water

  16. Statistical analysis of global surface air temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmith, Torben; Johansen, Søren; Thejll, Peter

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to physically-based models being unable to simulate observed sea level trends, semi-empirical models have been applied as an alternative for projecting...... of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and surface air temperature, capable of handling such peculiarities. We find a relationship between sea...... level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s is exceptional in the sense that sea level and warming deviates from the expected...

  17. Spatio-temporal trend analysis of projected precipitation data over Rwanda

    Science.gov (United States)

    Muhire, I.; Tesfamichael, S. G.; Ahmed, F.; Minani, E.

    2018-01-01

    This study applied a number of statistical techniques aimed at quantifying the magnitude of projected mean rainfall and number of rainy days over Rwanda on monthly, seasonal, and annual timescales for the period 2015-2050. The datasets for this period were generated by BCM2.0 for the SRES emission scenario SRB1, CO2 concentration for the baseline scenario (2011-2030) using the stochastic weather generator (LARS-WG). It was observed that on average, there will be a steady decline in mean rainfall. Save for the short rainy season, a positive trend in mean rainfall is expected over the south-west, the north-east region, and the northern highlands. The other regions (central, south-east, and western regions) are likely to experience a decline in mean rainfall. The number of rainy days is expected to decrease in the central plateau and the south-eastern lowlands, while the south-west, the north-west, and north-east regions are expected to have a pattern of increased number of rainy days. This decline in mean rainfall and rainy days over a large part of Rwanda is an indicator of just how much the country is bound to experience reduced water supply for various uses (e.g., agriculture, domestic activities, and industrial activities).

  18. Assessing atmospheric temperature data sets for climate studies

    Directory of Open Access Journals (Sweden)

    Magnus Cederlöf

    2016-07-01

    Full Text Available Observed near-surface temperature trends during the period 1979–2014 show large differences between land and ocean, with positive values over land (0.25–0.27 °C/decade that are significantly larger than over the ocean (0.06–0.12 °C/decade. Temperature trends in the mid-troposphere of 0.08-0.11 °C/decade, on the other hand, are similar for both land and ocean and agree closely with the ocean surface temperature trend. The lapse rate is consequently systematically larger over land than over the ocean and also shows a positive trend in most land areas. This is puzzling as a response to external warming, such as from increasing greenhouse gases, is broadly the same throughout the troposphere. The reduced tropospheric warming trend over land suggests a weaker vertical temperature coupling indicating that some of the processes in the planetary boundary layer such as inversions have a limited influence on the temperature of the free atmosphere. Alternatively, the temperature of the free atmosphere is influenced by advection of colder tropospheric air from the oceans. It is therefore suggested to use either the more robust tropospheric temperature or ocean surface temperature in studies of climate sensitivity. We also conclude that the European Centre for Medium-Range Weather Forecasts Reanalysis Interim can be used to obtain consistent temperature trends through the depth of the atmosphere, as they are consistent both with near-surface temperature trends and atmospheric temperature trends obtained from microwave sounding sensors.

  19. Contributions of greenhouse gas forcing and the Southern Annular Mode to historical Southern Ocean surface temperature trends

    OpenAIRE

    Kostov, Yavor; Ferreira, David; Marshall, John; Armour, Kyle

    2018-01-01

    We examine the 1979-2014 Southern Ocean (SO) sea surface temperature (SST) trends simulated in an ensemble of coupled general circulation models and evaluate possible causes of the models’ inability to reproduce the observed 1979-2014 SO cooling. For each model we estimate the response of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions, we skillfully reconstruct the models’ 1979-2014 SO ...

  20. Temperature Stabilization of the NIFFTE Time Projection Chamber

    Science.gov (United States)

    Hicks, Caleb

    2017-09-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) is a collaboration measuring nuclear fission cross sections for use in advanced nuclear reactors. A neutron beam incident on targets of Uranium-235, Uranium-238, and Plutonium-239 is used to measure the neutron induced fission cross sections for these isotopes. A Time Projection Chamber (TPC) is used to record these reactions. Significant heat is generated by the readout cards mounted on the TPC, which are cooled by fans. One proposed measurement of the experiment is to compare the cross sections of the target to a proton target of gaseous hydrogen. A constant temperature inside the TPC's pressure vessel is desirable to maintain a constant number of hydrogen target atoms. In addition, a constant temperature minimizes the strain and wrinkles on an amplifying mesh inside the TPC. This poster describes the successful work to develop, build, and install a fan controller using a Raspberry Pi, an Arduino, and a custom circuit board to implement an algorithm called Proportional-Integral-Derivative control. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  1. TMACS Test Procedure TP002: Trending

    International Nuclear Information System (INIS)

    Scanlan, P.K.

    1994-01-01

    The TMACS Software Project Test Procedures translate the project's acceptance criteria into test steps. Software releases are certified when the affected Test Procedures are successfully performed and the customers authorize installation of these changes. This Test Procedure tests the TMACS Trending functions

  2. Plastic surgery: quo vadis? Current trends and future projections of aesthetic plastic surgical procedures in the United States.

    Science.gov (United States)

    Broer, P Niclas; Levine, Steven M; Juran, Sabrina

    2014-03-01

    The objective of this article was to evaluate past and current trends regarding aesthetic operations in the United States and to project future changes regarding such procedures. Cosmetic surgery statistics from the American Society for Aesthetic Plastic Surgery from 1997 to 2012 were analyzed by sex, age, and ethnic group. Then, using population projections from the U.S. Census Bureau based on the 2010 census, two projection scenarios of the expected number of aesthetic plastic surgery procedures were generated. The scenarios included the presumed occurrence and nonoccurrence of a recession like that which occurred in 2007. Aesthetic procedures are expected to grow from 1,688,694 in 2012 to 3,847,929 by 2030, representing an average annual growth rate of 7.1 percent. Should another recession of similar degree to the one in 2007 occur, procedures would increase to only 2,086,994, displaying an average annual growth percentage rate of 1.3 percent. Because the age distribution of the patient population will change, preferences for specific procedures according to age influence-and thus are reflected in-future demand for those procedures. Furthermore, the ethnic profile of patients will change significantly, with 32 percent of all procedures being performed on patients other than Caucasians by 2030. Demand for aesthetic plastic surgical procedures is expected to continue to grow, while depending on the economic performance at the macro level and changing demographic dynamics of the U.S. population. Considering all investigated factors and trends among all patients, the most commonly requested procedures by 2030 are likely to be (1) breast augmentations, (2) lipoplasties, and (3) blepharoplasties.

  3. A Reanalysis for the Seasonal and Longer-Period Cycles and the Trends in Middle Atmosphere Temperature from the HALOE

    Science.gov (United States)

    Remsberg, Ellis E.

    2007-01-01

    Previously published analyses for the seasonal and longer-period cycles in middle atmosphere temperature versus pressure (or T(p)) from the Halogen Occultation Experiment (HALOE) are extended to just over 14 years and updated to properly account for the effects of autocorrelation in its time series of zonally-averaged data. The updated seasonal terms and annual averages are provided, and they can be used to generate temperature distributions that are representative of the period 1991-2005. QBO-like terms have also been resolved and are provided, and they exhibit good consistency across the range of latitudes and pressure-altitudes. Further, exploratory analyses of the residuals from each of the 221 time series have yielded significant 11-yr solar cycle (or SC-like) and linear trend terms at a number of latitudes and levels. The amplitudes of the SC-like terms for the upper mesosphere agree reasonably with calculations of the direct solar radiative effects for T(p). Those SC amplitudes increase by about a factor of 2 from the lower to the upper mesosphere and are also larger at the middle than at the low latitudes. The diagnosed cooling trends for the subtropical latitudes are in the range, -0.5 to -1.0 K/decade, which is in good agreement with the findings from models of the radiative effects on pressure surfaces due to known increases in atmospheric CO2. The diagnosed trends are somewhat larger than predicted with models for the upper mesosphere of the northern hemisphere middle latitudes.

  4. Projecting temperature-related years of life lost under different climate change scenarios in one temperate megacity, China.

    Science.gov (United States)

    Li, Yixue; Li, Guoxing; Zeng, Qiang; Liang, Fengchao; Pan, Xiaochuan

    2018-02-01

    Temperature has been associated with population health, but few studies have projected the future temperature-related years of life lost attributable to climate change. To project future temperature-related disease burden in Tianjin, we selected years of life lost (YLL) as the dependent variable to explore YLL attributable to climate change. A generalized linear model (GLM) and distributed lag non-linear model were combined to assess the non-linear and delayed effects of temperature on the YLL of non-accidental mortality. Then, we calculated the YLL changes attributable to future climate scenarios in 2055 and 2090. The relationships of daily mean temperature with the YLL of non-accident mortality were basically U-shaped. Both the daily mean temperature increase on high-temperature days and its drop on low-temperature days caused an increase of YLL and non-accidental deaths. The temperature-related YLL will worsen if future climate change exceeds 2 °C. In addition, the adverse effects of extreme temperature on YLL occurred more quickly than that of the overall temperature. The impact of low temperature was greater than that of high temperature. Men were vulnerable to high temperature compared with women. This analysis highlights that the government should formulate environmental policies to reach the Paris Agreement goal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Coping with climate variability and long-term climate trends for Nicaraguan maize-bean farmers (Invited)

    Science.gov (United States)

    Gourdji, S.; Zelaya Martinez, C.; Martinez Valle, A.; Mejia, O.; Laderach, P.; Lobell, D. B.

    2013-12-01

    Climate variability and change impact farmers at different timescales, but both are of concern for livelihoods and long-term viability of small farms in tropical, rain-fed agricultural systems. This study uses a historical dataset to analyze the impact of 40-year climate trends in Nicaragua on bean production, a staple crop that is an important source of calories and protein in the local diet, particularly in rural areas and in lower income classes. Bean yields are sensitive to rising temperatures, but also frequently limited by seasonal drought and low soil fertility. We use an empirical model to relate department-level yields to spatial variation and inter-annual fluctuations in historical precipitation, temperature and extreme rain events. We then use this model to quantify the impact on yields of long-term observed warming in day and night temperatures, increases in rainfall intensity, longer gaps between rain events, a shorter rainy season and overall drying in certain regions of the country. Preliminary results confirm the negative impacts of warming night temperatures, higher vapor pressure deficits, and longer gaps between rain events on bean yields, although some drying at harvest time has helped to reduce rotting. Across all bean-growing areas, these climate trends have led to a ~10% yield decline per decade relative to a stationary climate and production system, with this decline reaching up to ~20% in the dry northern highlands. In regions that have been particularly impacted by these trends, we look for evidence of farm abandonment, increases in off-farm employment, or on-farm adaptation solutions through crop diversification, use of drought or heat-tolerant seed, and adoption of rainwater harvesting. We will also repeat the modeling exercise for maize, another staple crop providing ~25% of daily calories at the national scale, but which is projected to be more resilient to climate trends.

  6. Simulated trends of extreme climate indices for the Carpathian basin using outputs of different regional climate models

    Science.gov (United States)

    Pongracz, R.; Bartholy, J.; Szabo, P.; Pieczka, I.; Torma, C. S.

    2009-04-01

    Regional climatological effects of global warming may be recognized not only in shifts of mean temperature and precipitation, but in the frequency or intensity changes of different climate extremes. Several climate extreme indices are analyzed and compared for the Carpathian basin (located in Central/Eastern Europe) following the guidelines suggested by the joint WMO-CCl/CLIVAR Working Group on climate change detection. Our statistical trend analysis includes the evaluation of several extreme temperature and precipitation indices, e.g., the numbers of severe cold days, winter days, frost days, cold days, warm days, summer days, hot days, extremely hot days, cold nights, warm nights, the intra-annual extreme temperature range, the heat wave duration, the growing season length, the number of wet days (using several threshold values defining extremes), the maximum number of consecutive dry days, the highest 1-day precipitation amount, the greatest 5-day rainfall total, the annual fraction due to extreme precipitation events, etc. In order to evaluate the future trends (2071-2100) in the Carpathian basin, daily values of meteorological variables are obtained from the outputs of various regional climate model (RCM) experiments accomplished in the frame of the completed EU-project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). Horizontal resolution of the applied RCMs is 50 km. Both scenarios A2 and B2 are used to compare past and future trends of the extreme climate indices for the Carpathian basin. Furthermore, fine-resolution climate experiments of two additional RCMs adapted and run at the Department of Meteorology, Eotvos Lorand University are used to extend the trend analysis of climate extremes for the Carpathian basin. (1) Model PRECIS (run at 25 km horizontal resolution) was developed at the UK Met Office, Hadley Centre, and it uses the boundary conditions from the HadCM3 GCM. (2) Model Reg

  7. Monitoring and optimization of thermal recovery wells at Nexen's Long Lake project

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, S.; Howe, A.; Wozney, G.; Zaffar, S. [Nexen Inc. (Canada); Nelson, A. [Matrikon Inc. (Canada)

    2011-07-01

    The Long Lake project, operated by Nexen and situated in the Athabasca Oil Sands area in Alberta, Canada is a steam assisted gravity drainage scheme. In such thermal recovery processes, access to real time information is crucial. Nexen used specific tools to optimize monitoring in its Long Lake project and the aim of this paper is to present those customized well and facilities dashboards and reservoir trends. Real time and historical data on pressure, temperature injection and production rates are used in a Honeywell PHD Historian connected to a Delta-V DCS system to optimize recovery from the deposit. Results showed that these enhanced monitoring capabilities provided Nexen the ability to react rapidly to abnormal conditions, which resulted in significant financial benefits. The implementation of dashboard and reservoir trends in its Long Lake project helped Nexen to better monitor the reservoir and thus to optimize bitumen recovery.

  8. Spatial and temporal variation in the association between temperature and salmonellosis in NZ.

    Science.gov (United States)

    Lal, Aparna; Hales, Simon; Kirk, Martyn; Baker, Michael G; French, Nigel P

    2016-04-01

    Modelling the relationship between weather, climate and infectious diseases can help identify high-risk periods and provide understanding of the determinants of longer-term trends. We provide a detailed examination of the non-linear and delayed association between temperature and salmonellosis in three New Zealand cities (Auckland, Wellington and Christchurch). Salmonella notifications were geocoded to the city of residence for the reported case. City-specific associations between weekly maximum temperature and the onset date for reported salmonella infections (1997-2007) were modelled using non-linear distributed lag models, while controlling for season and long-term trends. Relatively high temperatures were positively associated with infection risk in Auckland (n=3,073) and Christchurch (n=880), although the former showed evidence of a more immediate relationship with exposure to high temperatures. There was no significant association between temperature and salmonellosis risk in Wellington. Projected increases in temperature with climate change may have localised health impacts, suggesting that preventative measures will need to be region-specific. This evidence contributes to the increasing concern over the public health impacts of climate change. © 2015 Public Health Association of Australia.

  9. Regional climate projections for Northeast India: an appraisal from CORDEX South Asia experiment

    Science.gov (United States)

    Kumar, D.; Dimri, A. P.

    2017-11-01

    An appraisal of the recent changes in the present climate (1970-2005) followed by the possible future (2006-2100) changes in the climate has been carried out in the current study using the observations and regional climate model (REMO) over the Northeast Indian region. The regional climate model simulation has been used from the COordinated Regional climate Downscaling EXperiment (CORDEX) South Asia framework. A consistent warming for the winter (December, January, and February (DJF)) and post-monsoon (October and November (ON)) has been observed for the present climate especially in the northern and eastern parts of the region. The changes in the near future (2020-2049) and far future (2070-2099) temperature climatology suggest a rise in temperature by 3-8 °C across different representative concentration pathways (RCPs). The rate of long-term (1970-2099) increase in temperature has been found ranging between 0.01 and 0.07 °C/year across the region in the least emission (RCP2.6) to strongest emission (RCP8.5) scenarios. The daily mean precipitation statistics suggests an overall increasing trends of precipitation during the pre-monsoon (March, April, and May (MAM)) for the present across the region with a mixed trend in other seasons. A change in daily mean precipitation ranging from - 60% (during winter) to + 40% during post-monsoon has been projected by the model across different RCPs. RCP4.5 and RCP8.5 show a strong deficit in precipitation in the warmer climate across the region as compared to RCP2.6. This fact is also confirmed from the long-term trend of precipitation where a consistent decreasing trend dominates in the RCP4.5- and RCP8.5-simulated precipitations by the end of the twenty-first century. A large model bias in temperature and precipitation along with high amount of uncertainty is associated with the model simulations; thus, in order to use the projections, a more careful approach to improve the utility of downscaled product should be adopted.

  10. The hELENa project - II. Abundance distribution trends of early-type galaxies: from dwarfs to giants

    Science.gov (United States)

    Sybilska, A.; Kuntschner, H.; van de Ven, G.; Vazdekis, A.; Falcón-Barroso, J.; Peletier, R. F.; Lisker, T.

    2018-06-01

    In this second paper of The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) series we study [Mg/Fe] abundance distribution trends of early-type galaxies (ETGs) observed with the Spectrographic Areal Unit for Research on Optical Nebulae integral field unit, spanning a wide range in mass and local environment densities: 20 low-mass early types (dEs) of Sybilska et al. and 258 massive early types (ETGs) of the ATLAS3D project, all homogeneously reduced and analysed. We show that the [Mg/Fe] ratios scale with velocity dispersion (σ) at fixed [Fe/H] and that they evolve with [Fe/H] along similar paths for all early types, grouped in bins of increasing local and global σ, as well as the second velocity moment Vrms, indicating a common inside-out formation pattern. We then place our dEs on the [Mg/Fe] versus [Fe/H] diagram of Local Group galaxies and show that dEs occupy the same region and show a similar trend line slope in the diagram as the high-metallicity stars of the Milky Way and the Large Magellanic Cloud. This finding extends the similar trend found for dwarf spheroidal versus dwarf irregular galaxies and supports the notion that dEs have evolved from late-type galaxies that have lost their gas at a point of their evolution, which likely coincided with them entering denser environments.

  11. Project HEAT: Temperature as an Organizing Theme for Inquiry-Based Learning in the Environmental Sciences

    Science.gov (United States)

    Albright, T. P.; Howard, K. L.; Ewing-Taylor, J.

    2014-12-01

    Professionals in science, technology, engineering, and mathematics (STEM) fields do not reflect the diversity of the US population. Among the most effective ways to attract and retain underrepresented students in STEM disciplines is to provide opportunities for participation in the scientific process and interaction with practicing scientists. Project HEAT (Hot Environments, Animals, & Temperature) is "boot-camp"-style workshop aimed at increasing interest in STEM topics among underrepresented, first-generation, college-bound middle school students. Linking to our NASA-funded research project "Desert Birds in a Warming World", we focused on how surprisingly variable temperature is in space and time, why temperature is important to plants, animals, and people, and how we measure temperature in the field and from space. Perhaps more importantly, this theme was a vehicle for students to experience science as a process: field observations, brainstorming questions and hypotheses, designing experiments to test them, and analyzing and reporting their data. The centerpiece was a set of experiments with small temperature sensors and radiation shields that teams of students designed, executed at a local park, analyzed, and reported. Two years of pre and post assessments revealed that Project HEAT participants increased understanding in content areas and showed slight increases in STEM interest. Year two results were markedly stronger than year one in both assessments as well as our perception. We attribute this to earlier summer timing of the workshop, a change from two half-day weeks to one full-day week, and a more age-homogeneous selection of students. In comments, participants expressed their special enjoyment of the hands-on nature of the program and the outdoor learning. Though providing such opportunities can be challenging, our experience here suggests that it can be worth while. Project HEAT also benefited our cadre of graduate student mentors by providing exposure

  12. Estimation of weld nugget temperature by thermography method in resistance projection welding process

    International Nuclear Information System (INIS)

    Setty, D.S.; Rameswara Roa, A.; Hemantha Rao, G.V.S.; Jaya Raj, R.N.

    2008-01-01

    In the Pressurized Heavy Water Reactor (PHWR) fuel manufacturing, zirconium alloy appendages like spacer and bearing pads are welded to the thin wall zirconium alloy fuel tubes by using resistance projection welding process. Out of many joining processes available, resistance-welding process is reliable, environment friendly and best suitable for mass production applications. In the fuel assembly, spacer pads are used to get the required inter-element spacing and Bearing pads are used to get the required load-bearing surface for the fuel assembly. Performance of the fuel assembly in the reactor is greatly influenced by these weld joint's quality. Phase transformation from α to β phase is not acceptable while welding these tiny appendages. At present only destructive metallography test is available for this purpose. This can also be achieved by measuring weld nugget temperature where in the phase transformation temperature for zirconium alloy material is 853 o C. The temperature distribution during resistance welding of tiny parts cannot be measured by conventional methods due to very small space and short weld times involved in the process. Shear strength, dimensional accuracy and weld microstructures are some of the key parameters used to measure the quality of appendage weld joints. Weld parameters were optimized with the help of industrial experimentation methodology. Individual projection welding by split electrode concept, and during welding on empty tube firm support is achieved on inner side of the tube by using expandable pneumatic mandrel. In the present paper, an attempt was made to measure the weld nugget temperature by thermography technique and is correlated with standard microstructures of zirconium alloy material. The temperature profiles in the welding process are presented for different welding conditions. This technique has helped in measuring the weld nugget temperature more accurately. It was observed that in the present appendage welding

  13. Trends and variability in climate parameters of peshawar district

    International Nuclear Information System (INIS)

    Shah, S.A.A.; Nisa, S.; Khan, A.; Rahman, Z.U.

    2012-01-01

    Rain fall pattern, daily minimum and maximum temperatures and humidity are the main factors that constitute the climate of an area. In Pakistan, consecutive positive anomalies have been observed in minimum, maximum and mean temperatures and rainfall since mid 1970s. The objective of the current study was to investigate the recent trends and variability of annual minimum, maximum and mean temperatures, relative humidity and rainfall of Peshawar. Annual meteorological parameters for 30-years (1981-2010) of Peshawar observatory have been analysed to determine indications of variations from long-term averages. Different statistical methods were used to analyse the data. For this purpose, Mann-Kendall test was applied to Meteorological data of Peshawar (1981-2010) to study any trend, which were revealed to be in a mixture. The final results show that rainfall is decreasing, minimum temperature, mean temperature and relative humidity are increasing and maximum temperature has no change. Various factors could be responsible for the contemporary trends in climate like rise in number of vehicles and industries from reviewing available literature, keeping in mind the nature of the study. Trends found may have negative implications for agriculture, health and socioeconomic conditions of the region that require the attention from relevant stakeholders. (author)

  14. The Low Temperature Microgravity Physics Experiments Project

    Science.gov (United States)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; hide

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard

  15. Toward 2000. Trends Report II: Elementary-Secondary Projections.

    Science.gov (United States)

    Press, Harold L.

    Comprehensive, systematic planning provides the overall direction for education through the development of policies and objectives. An understanding of demographic, social, and economic trends is necessary for educators to make decisions for the future. The 1986 demographic forecasts for the province of Newfoundland are updated in this report,…

  16. Identifying trends in climate: an application to the cenozoic

    Science.gov (United States)

    Richards, Gordon R.

    1998-05-01

    The recent literature on trending in climate has raised several issues, whether trends should be modeled as deterministic or stochastic, whether trends are nonlinear, and the relative merits of statistical models versus models based on physics. This article models trending since the late Cretaceous. This 68 million-year interval is selected because the reliability of tests for trending is critically dependent on the length of time spanned by the data. Two main hypotheses are tested, that the trend has been caused primarily by CO2 forcing, and that it reflects a variety of forcing factors which can be approximated by statistical methods. The CO2 data is obtained from model simulations. Several widely-used statistical models are found to be inadequate. ARIMA methods parameterize too much of the short-term variation, and do not identify low frequency movements. Further, the unit root in the ARIMA process does not predict the long-term path of temperature. Spectral methods also have little ability to predict temperature at long horizons. Instead, the statistical trend is estimated using a nonlinear smoothing filter. Both of these paradigms make it possible to model climate as a cointegrated process, in which temperature can wander quite far from the trend path in the intermediate term, but converges back over longer horizons. Comparing the forecasting properties of the two trend models demonstrates that the optimal forecasting model includes CO2 forcing and a parametric representation of the nonlinear variability in climate.

  17. Energy Smart Guide to Campus Cost Savings: Today's Trends in Project Finance, Clean Fuel Fleets, Combined Heat& Power, Emissions Markets

    Energy Technology Data Exchange (ETDEWEB)

    2003-07-01

    The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.

  18. The role of land-climate interactions for the regional amplification of temperature extremes in climate projections

    Science.gov (United States)

    Seneviratne, S. I.; Vogel, M.; Zscheischler, J.; Schwingshackl, C.; Davin, E.; Gudmundsson, L.; Guillod, B.; Hauser, M.; Hirsch, A.; Hirschi, M.; Humphrey, V.; Thiery, W.

    2017-12-01

    Regional hot extremes are projected to increase more strongly than the global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level (Seneviratne et al. 2016). This presentation will highlight the processes underlying this behavior, which is strongly related to land-climate feedbacks (Vogel et al. 2017). The identified feedbacks are also affecting the occurrence probability of compound drought and heat events (Zscheischler and Seneviratne 2017), with high relevance for impacts on forest fire and agriculture production. Moreover, the responsible land processes strongly contribute to the inter-model spread in the projections, and can thus be used to derive observations-based constraints to reduce the uncertainty of projected changes in climate extremes. Finally, we will also discuss the role of soil moisture effects on carbon uptake and their relevance for projections, as well as the role of land use changes in affecting the identified feedbacks and projected changes in climate extremes. References: Seneviratne, S.I., M. Donat, A.J. Pitman, R. Knutti, and R.L. Wilby, 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529, 477-483, doi:10.1038/nature16542. Vogel, M.M., R. Orth, F. Cheruy, S. Hagemann, R. Lorenz, B.J.J.M. Hurk, and S.I. Seneviratne, 2017: Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, 44(3), 1511-1519, doi:10.1002/2016GL071235. Zscheischler, J., and S.I. Seneviratne, 2017: Dependence of drivers affects risks associated with compound events. Science Advances, 3(6), doi: 10.1126/sciadv.1700263

  19. Trends in energy efficiency in countries of the Mediterranean Rim

    International Nuclear Information System (INIS)

    2014-04-01

    This report describes trends in energy efficiency in four countries of the southern side of the Mediterranean Sea (Algeria, Lebanon, Morocco and Tunisia) and five Mediterranean European countries (France, Spain, Italy, Greece and Portugal). This study is based on energy efficiency indicators per sector of energy consumption as they are developed within the frame of the MEDENER project for the four southern countries and of the ODYSSEE-MURE project for the European countries. The report presents the context of energy efficiency (challenges and objectives, trends in energy consumption, primary and final intensities), discusses trends of energy efficiency in the transformation sector, in the housing sector, in the transport sector (trends in consumption, road and air transport), in the industry (sector intensities), in the tertiary sector (global trends, sector indicators), and in agriculture and fishing (global trends and sector indicators)

  20. Atmospheric Dynamics Leading to West European Summer Hot Temperatures Since 1851

    Directory of Open Access Journals (Sweden)

    M. Carmen Alvarez-Castro

    2018-01-01

    Full Text Available Summer hot temperatures have many impacts on health, economy (agriculture, energy, and transports, and ecosystems. In Western Europe, the recent summers of 2003 and 2015 were exceptionally warm. Many studies have shown that the genesis of the major heat events of the last decades was linked to anticyclonic atmospheric circulation and to spring precipitation deficit in Southern Europe. Such results were obtained for the second part of the 20th century and projections into the 21st century. In this paper, we challenge this vision by investigating the earlier part of the 20th century from an ensemble of 20CR reanalyses. We propose an innovative description of Western-European heat events applying the dynamical system theory. We argue that the atmospheric circulation patterns leading to the most intense heat events have changed during the last century. We also show that the increasing temperature trend during major heatwaves is encountered during episodes of Scandinavian Blocking, while other circulation patterns do not yield temperature trends during extremes.

  1. Historical effects of temperature and precipitation on California crop yields

    Energy Technology Data Exchange (ETDEWEB)

    Lobell, D.B. [Energy and Environment Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Cahill, K.N. [Interdisciplinary Graduate Program in Environment and Resources, Stanford University, Stanford, CA 94305 (United States); Field, C.B. [Department of Global Ecology, Carnegie Institution, Stanford, CA 94305 (United States)

    2007-03-15

    For the 1980-2003 period, we analyzed the relationship between crop yield and three climatic variables (minimum temperature, maximum temperature, and precipitation) for 12 major Californian crops: wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios. The months and climatic variables of greatest importance to each crop were used to develop regressions relating yield to climatic conditions. For most crops, fairly simple equations using only 2-3 variables explained more than two-thirds of observed yield variance. The types of variables and months identified suggest that relatively poorly understood processes such as crop infection, pollination, and dormancy may be important mechanisms by which climate influences crop yield. Recent climatic trends have had mixed effects on crop yields, with orange and walnut yields aided, avocado yields hurt, and most crops little affected by recent climatic trends. Yield-climate relationships can provide a foundation for forecasting crop production within a year and for projecting the impact of future climate changes.

  2. Comments on "Long-Term Variations of Exospheric Temperature Inferred From foF1 Observations: A Comparison to ISR Ti Trend Estimates" by Perrone and Mikhailov

    Science.gov (United States)

    Zhang, Shun-Rong; Holt, John M.; Erickson, Philip J.; Goncharenko, Larisa P.

    2018-05-01

    Perrone and Mikhailov (2017, https://doi.org/10.1002/2017JA024193) and Mikhailov et al. (2017, https://doi.org/10.1002/2017JA023909) have recently examined thermospheric and ionospheric long-term trends using a data set of four thermospheric parameters (Tex, [O], [N2], and [O2]) and solar EUV flux. These data were derived from one single ionospheric parameter, foF1, using a nonlinear fitting procedure involving a photochemical model for the F1 peak. The F1 peak is assumed at the transition height ht with the linear recombination for atomic oxygen ions being equal to the quadratic recombination for molecular ions. This procedure has a number of obvious problems that are not addressed or not sufficiently justified. The potentially large ambiguities and biases in derived parameters make them unsuitable for precise quantitative ionospheric and thermospheric long-term trend studies. Furthermore, we assert that Perrone and Mikhailov (2017, https://doi.org/10.1002/2017JA024193) conclusions regarding incoherent scatter radar (ISR) ion temperature analysis for long-term trend studies are incorrect and in particular are based on a misunderstanding of the nature of the incoherent scatter radar measurement process. Large ISR data sets remain a consistent and statistically robust method for determining long term secular plasma temperature trends.

  3. Projected near-future levels of temperature and pCO2 reduce coral fertilization success.

    Directory of Open Access Journals (Sweden)

    Rebecca Albright

    Full Text Available Increases in atmospheric carbon dioxide (pCO2 are projected to contribute to a 1.1-6.4°C rise in global average surface temperatures and a 0.14-0.35 reduction in the average pH of the global surface ocean by 2100. If realized, these changes are expected to have negative consequences for reef-building corals including increased frequency and severity of coral bleaching and reduced rates of calcification and reef accretion. Much less is known regarding the independent and combined effects of temperature and pCO2 on critical early life history processes such as fertilization. Here we show that increases in temperature (+3°C and pCO2 (+400 µatm projected for this century negatively impact fertilization success of a common Indo-Pacific coral species, Acropora tenuis. While maximum fertilization did not differ among treatments, the sperm concentration required to obtain 50% of maximum fertilization increased 6- to 8- fold with the addition of a single factor (temperature or CO2 and nearly 50- fold when both factors interact. Our results indicate that near-future changes in temperature and pCO2 narrow the range of sperm concentrations that are capable of yielding high fertilization success in A. tenuis. Increased sperm limitation, in conjunction with adult population decline, may have severe consequences for coral reproductive success. Impaired sexual reproduction will further challenge corals by inhibiting population recovery and adaptation potential.

  4. High temperature gasification and gas cleaning – phase II of the HotVegas project

    OpenAIRE

    Meysel, P.; Halama, S.; Botteghi, F.; Steibel, M.; Nakonz, M.; Rück, R.; Kurowski, P.; Buttler, A.; Spliethoff, H.

    2016-01-01

    The primary objective of the research project HotVeGas is to lay the necessary foundations for the long-term development of future, highly efficient high-temperature gasification processes. This includes integrated hot gas cleaning and optional CO2 capture and storage for next generation IGCC power plants and processes for the development of synthetic fuels. The joint research project is funded by the German Federal Ministry of Economics and Technology and five industry partners. It is coordi...

  5. How many people will need palliative care in 2040? Past trends, future projections and implications for services.

    Science.gov (United States)

    Etkind, S N; Bone, A E; Gomes, B; Lovell, N; Evans, C J; Higginson, I J; Murtagh, F E M

    2017-05-18

    Current estimates suggest that approximately 75% of people approaching the end-of-life may benefit from palliative care. The growing numbers of older people and increasing prevalence of chronic illness in many countries mean that more people may benefit from palliative care in the future, but this has not been quantified. The present study aims to estimate future population palliative care need in two high-income countries. We used mortality statistics for England and Wales from 2006 to 2014. Building on previous diagnosis-based approaches, we calculated age- and sex-specific proportions of deaths from defined chronic progressive illnesses to estimate the prevalence of palliative care need in the population. We calculated annual change over the 9-year period. Using explicit assumptions about change in disease prevalence over time, and official mortality forecasts, we modelled palliative care need up to 2040. We also undertook separate projections for dementia, cancer and organ failure. By 2040, annual deaths in England and Wales are projected to rise by 25.4% (from 501,424 in 2014 to 628,659). If age- and sex-specific proportions with palliative care needs remain the same as in 2014, the number of people requiring palliative care will grow by 25.0% (from 375,398 to 469,305 people/year). However, if the upward trend observed from 2006 to 2014 continues, the increase will be of 42.4% (161,842 more people/year, total 537,240). In addition, disease-specific projections show that dementia (increase from 59,199 to 219,409 deaths/year by 2040) and cancer (increase from 143,638 to 208,636 deaths by 2040) will be the main drivers of increased need. If recent mortality trends continue, 160,000 more people in England and Wales will need palliative care by 2040. Healthcare systems must now start to adapt to the age-related growth in deaths from chronic illness, by focusing on integration and boosting of palliative care across health and social care disciplines. Countries with

  6. BODIES OF KNOWLEDGE IN PROJECT MANAGEMENT AND PROJECT QUALITY MANAGEMENT

    OpenAIRE

    Tamara Gvozdenovic; Mirjana Miljanovic; Aleksandar Jegdic; Zeljko Crnogorcic

    2008-01-01

    One of the main trends is standardization of project management. Some of the most important bodies of knowledge in project management, which were created by professional associations for project management are given in this paper. The main of the project management, apart from minimization of time, resources and costs, is to finish the project in the required quality, i.e. it is very important during the whole process of project management to provide realizing the project without any deviatio...

  7. An examination of fuel consumption trends in construction projects

    International Nuclear Information System (INIS)

    Peters, Valerie A.; Manley, Dawn K.

    2012-01-01

    Recent estimates of fuel consumption in construction projects are highly variable. Lack of standards for reporting at both the equipment and project levels make it difficult to quantify the magnitude of fuel consumption and the associated opportunities for efficiency improvements in construction projects. In this study, we examined clusters of Environmental Impact Reports for seemingly similar construction projects in California. We observed that construction projects are not characterized consistently by task or equipment. We found wide variations in estimates for fuel use in terms of tasks, equipment, and overall projects, which may be attributed in part to inconsistencies in methodology and parameter ranges. Our analysis suggests that standardizing fuel consumption reporting and estimation methodologies for construction projects would enable quantification of opportunities for efficiency improvements at both the equipment and project levels. With increasing emphasis on reducing fossil fuel consumption, it will be important to quantify opportunities to increase fuel efficiency, including across the construction sector. - Highlights: ► An analysis of construction projects reveals inconsistencies in fuel use estimates. ► Fuel consumption estimates for similar construction equipment can vary greatly. ► Standards would help to quantify efficiency opportunities in construction.

  8. Impacts of Climate Trends and Variability on Livestock Production in Brazil

    Science.gov (United States)

    Cohn, A.; Munger, J.; Gibbs, H.

    2015-12-01

    Cattle systems of Brazil are of major economic and environmental importance. They occupy ¼ of the land surface of the country, account for over 15 billion USD of annual revenue through the sale of beef, leather, and milk, are closely associated with deforestation, and have been projected to substantially grow in the coming decades. Sustainable intensification of production in the sector could help to limit environmental harm from increased production, but productivity growth could be inhibited by climate change. Gauging the potential future impacts of climate change on the Brazilian livestock sector can be aided by examining past evidence of the link between climate and cattle production and productivity. We use statistical techniques to investigate the contribution of climate variability and climate change to variability in cattle system output in Brazil's municipalities over the period 1974 to 2013. We find significant impacts of both temperature and precipitation variability and temperature trends on municipality-level exports and the production of both milk and beef. Pasture productivity, represented by a vegetation index, also varies significantly with climate shocks. In some regions, losses from exposure to climate trends were of comparable magnitude to technology and/or market-driven productivity gains over the study period.

  9. Prevailing trends of climatic extremes across Indus-Delta of Sindh-Pakistan

    Science.gov (United States)

    Abbas, Farhat; Rehman, Iqra; Adrees, Muhammad; Ibrahim, Muhammad; Saleem, Farhan; Ali, Shafaqat; Rizwan, Muhammad; Salik, Muhammad Raza

    2018-02-01

    This study examines the variability and change in the patterns of climatic extremes experienced in Indus-Delta of Sindh province of Pakistan, comprising regions of Karachi, Badin, Mohenjodaro, and Rohri. The homogenized daily minimum and maximum temperature and precipitation data for a 36-year period were used to calculate 13 and 11 indices of temperature and precipitation extremes with the help of RClimDex, a program written in the statistical software package R. A non-parametric Mann-Kendall test and Sen's slope estimates were used to determine the statistical significance and magnitude of the calculated trend. Temperatures of summer days and tropical nights increased in the region with overall significant warming trends for monthly maximum temperature as well as for warm days and nights reflecting dry conditions in the study area. The warm extremes and nighttime temperature indices showed greater trends than cold extremes and daytime indices depicting an overall warming trends in the Delta. Historic decrease in the acreage of major crops and over 33% decrease in agriculture credit for Sindh are the indicators of adverse impacts of warmer and drier weather on Sindh agriculture. Trends reported for Karachi and Badin are expected to decrease rice cultivation, hatching of fisheries, and mangroves forest surrounding these cities. Increase in the prevailing temperature trends will lead to increasingly hotter and drier summers resulting to constraints on cotton, wheat, and rice yield in Rohri and Mohenjodaro areas due to increased crop water requirements that may be met with additional groundwater pumping; nonetheless, the depleted groundwater resources would have a direct impact on the region's economy.

  10. Effects of Helicobacter pylori infection and smoking on gastric cancer incidence in China: a population-level analysis of trends and projections

    Science.gov (United States)

    Goldie, Sue J.; Kuntz, Karen M.; Ezzati, Majid

    2010-01-01

    Objective Although gastric cancer incidence is declining in China, trends may differ from historical patterns in developed countries. Our aim was to (1) retrospectively estimate the effects of Helicobacter pylori (H. pylori) and smoking on past gastric cancer incidence and (2) project how interventions on these two risk factors can reduce future incidence. Methods We used a population-based model of intestinal-type gastric cancer to estimate gastric cancer incidence between 1985 and 2050. Disease and risk factor data in the model were from community-based epidemiological studies and national prevalence surveys. Results Between 1985 and 2005, age-standardized gastric cancer incidence among Chinese men declined from 30.8 to 27.2 per 100,000 (12%); trends in H. pylori and smoking prevalences accounted for >30% of overall decline. If past risk factor trends continue, gastric cancer incidence will decline an additional 30% by 2050. Yet, annual cases will increase from 116,000 to 201,000 due to population growth and aging. Assuming that H. pylori prevention/treatment and tobacco control are implemented in 2010, the decline in gastric cancer incidence is projected to increase to 33% with universal H. pylori treatment for 20-year-olds, 42% for a hypothetical childhood H. pylori vaccine, and 34% for aggressive tobacco control. Conclusions The decline in gastric cancer incidence has been slower than in developed countries and will be offset by population growth and aging. Public health interventions should be implemented to reduce the total number of cases. PMID:19642005

  11. Southwestern Region climate change trends and forest planning: A guide for addressing climate change in forest plan revision on southwestern National Forests and Grasslands

    Science.gov (United States)

    Richard Periman; Christine Dawe; Bryce Rickel; Amy Unthank; Champe Green; Roy Jemison; Kurt Nelson; Brian Kent

    2009-01-01

    Climate scientists agree that the earth is undergoing a warming trend, and that human-caused elevations in atmospheric concentrations of carbon dioxide (CO2) and other greenhouse gases (GHGs) are among the causes of global temperature increases. The observed concentrations of these greenhouse gases are projected to increase. Climate change may intensify the risk of...

  12. Intelligent trend analysis for a solar thermal energy collector field

    Science.gov (United States)

    Juuso, E. K.

    2018-03-01

    Solar thermal power plants collect available solar energy in a usable form at a temperature range which is adapted to the irradiation levels and seasonal variations. Solar energy can be collected only when the irradiation is high enough to produce the required temperatures. During the operation, a trade-off of the temperature and the flow is needed to achieve a good level for the collected power. The scaling approach brings temporal analysis to all measurements and features: trend indices are calculated by comparing the averages in the long and short time windows, a weighted sum of the trend index and its derivative detects the trend episodes and severity of the trend is estimated by including also the variable level in the sum. The trend index, trend episodes and especially, the deviation index reveal early evolving changes in the operating conditions, including cloudiness and load disturbances. The solution is highly compact: all variables, features and indices are transformed to the range [-2, 2] and represented in natural language which is important in integrating data-driven solutions with domain expertise. The special situations detected during the test campaigns are explained well.

  13. Industry trends

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This section discusses the US energy supply and demand situation including projections for energy use, the clean coal industry (constraints of regulation on investment in new technologies, technology trends, and current pollution control efficiency), opportunities in clean coal technology (Phase 2 requirements of Title 4 of the Clean Air Act, scrubber demand for lime and limestone, and demand for low sulfur coal), and the international market of clean coal technologies

  14. Satellite Global and Hemispheric Lower Tropospheric Temperature Annual Temperature Cycle

    Directory of Open Access Journals (Sweden)

    Michael A. Brunke

    2010-11-01

    Full Text Available Previous analyses of the Earth’s annual cycle and its trends have utilized surface temperature data sets. Here we introduce a new analysis of the global and hemispheric annual cycle using a satellite remote sensing derived data set during the period 1979–2009, as determined from the lower tropospheric (LT channel of the MSU satellite. While the surface annual cycle is tied directly to the heating and cooling of the land areas, the tropospheric annual cycle involves additionally the gain or loss of heat between the surface and atmosphere. The peak in the global tropospheric temperature in the 30 year period occurs on 10 July and the minimum on 9 February in response to the larger land mass in the Northern Hemisphere. The actual dates of the hemispheric maxima and minima are a complex function of many variables which can change from year to year thereby altering these dates.Here we examine the time of occurrence of the global and hemispheric maxima and minima lower tropospheric temperatures, the values of the annual maxima and minima, and the slopes and significance of the changes in these metrics.  The statistically significant trends are all relatively small. The values of the global annual maximum and minimum showed a small, but significant trend. Northern and Southern Hemisphere maxima and minima show a slight trend toward occurring later in the year. Most recent analyses of trends in the global annual cycle using observed surface data have indicated a trend toward earlier maxima and minima.

  15. Microsoft project

    OpenAIRE

    Markić, Lucija; Mandušić, Dubravka; Grbavac, Vitomir

    2005-01-01

    Microsoft Project je alat čije su prednosti u svakodnevnom radu nezamjenjive. Pomoću Microsoft Projecta omogućeno je upravljanje resursima, stvaranje izvještaja o projektima u vremenu, te analize različitih scenarija. Pojavljuje u tri verzije: Microsoft Project Professional, Microsoft Project Server i Microsoft Project Server Client Access Licenses. Upravo je trend da suvremeni poslovni ljudi zadatke povjeravaju Microsoft Projectu jer on znatno povećava produktivnost rada. Te prednos...

  16. Trends in temperature and dew point at the summit of Mount Washington, New Hampshire, 1935-2004.

    Science.gov (United States)

    Grant, A. N.; Pszenny, A. A.; Fischer, E. V.

    2005-05-01

    Dry and wet bulb temperatures from sling psychrometer measurements taken every six hours from 1935 to 2004 at the summit of Mount Washington, located at 44 °16'N, 71 °18'W, 1914 m ASL have recently been digitized. Annual temperature has increased by 0.3°C, and annual dew point has decreased by 0.4°C over this 70-year period. Synoptic temperature has increased most in spring and winter, changing by 1.0°C and 0.5°C, respectively, while it has decreased slightly in summer and fall. Dew point has decreased in fall, summer, and winter, 0.9°C, 0.5°C, and 0.4°C respectively, and increased by 0.1°C in spring. Preliminary analysis suggests that some of the larger trends in winter and spring may be statistically significant; results of Monte Carlo simulations will be reported. Changes in dew point may be attributed to two factors. Decreasing dew points are expected if the temperature increases but the amount of water vapor present stays the same. Alternatively, lower dew points could be indicative of the presence of drier air. Other dew point climatologies of the continental United States for the second half of the century have shown mixed results, with increased dew points evident at some stations, decreased dew points at others, and no clear regional patterns.

  17. Oxygen-isotope trends and seawater temperature changes across the Late Cambrian Steptoean positive carbon-isotope excursion (SPICE event)

    Science.gov (United States)

    Elrick, M.; Rieboldt, S.; Saltzman, M.; McKay, R.M.

    2011-01-01

    The globally recognized Late Cambrian Steptoean positive C-isotope excursion (SPICE) is characterized by a 3???-5??? positive ??13C shift spanning SPICE represents a widespread ocean anoxic event leading to enhanced burial/preservation of organic matter (Corg) and pyrite. We analyzed ??18O values of apatitic inarticulate brachiopods from three Upper Cambrian successions across Laurentia to evaluate paleotemperatures during the SPICE. ??18O values range from ~12.5??? to 16.5???. Estimated seawater temperatures associated with the SPICE are unreasonably warm, suggesting that the brachiopod ??18O values were altered during early diagenesis. Despite this, all three localities show similar trends with respect to the SPICE ??13C curve, suggesting that the brachiopod apatite preserves a record of relative ??18O and temperature changes. The trends include relatively high ??18O values at the onset of the SPICE, decreasing and lowest values during the main event, and an increase in values at the end of the event. The higher ??18O values during the global extinction at the onset of the SPICE suggests seawater cooling and supports earlier hypotheses of upwelling of cool waters onto the shallow shelf. Decreasing and low ??18O values coincident with the rising limb of the SPICE support the hypothesis that seawater warming and associated reduced thermohaline circulation rates contributed to decreased dissolved O2 concentrations, which enhanced the preservation/burial of Corg causing the positive ??13C shift. ?? 2011 Geological Society of America.

  18. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century

    Science.gov (United States)

    Coffel, Ethan D.; Horton, Radley M.; de Sherbinin, Alex

    2018-01-01

    As a result of global increases in both temperature and specific humidity, heat stress is projected to intensify throughout the 21st century. Some of the regions most susceptible to dangerous heat and humidity combinations are also among the most densely populated. Consequently, there is the potential for widespread exposure to wet bulb temperatures that approach and in some cases exceed postulated theoretical limits of human tolerance by mid- to late-century. We project that by 2080 the relative frequency of present-day extreme wet bulb temperature events could rise by a factor of 100-250 (approximately double the frequency change projected for temperature alone) in the tropics and parts of the mid-latitudes, areas which are projected to contain approximately half the world’s population. In addition, population exposure to wet bulb temperatures that exceed recent deadly heat waves may increase by a factor of five to ten, with 150-750 million person-days of exposure to wet bulb temperatures above those seen in today’s most severe heat waves by 2070-2080. Under RCP 8.5, exposure to wet bulb temperatures above 35 °C—the theoretical limit for human tolerance—could exceed a million person-days per year by 2080. Limiting emissions to follow RCP 4.5 entirely eliminates exposure to that extreme threshold. Some of the most affected regions, especially Northeast India and coastal West Africa, currently have scarce cooling infrastructure, relatively low adaptive capacity, and rapidly growing populations. In the coming decades heat stress may prove to be one of the most widely experienced and directly dangerous aspects of climate change, posing a severe threat to human health, energy infrastructure, and outdoor activities ranging from agricultural production to military training.

  19. SWATS: Diurnal Trends in the Soil Temperature Report

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David [Argonne National Lab. (ANL), Argonne, IL (United States); Theisen, Adam [Univ. of Oklahoma, Norman, OK (United States)

    2017-06-30

    During the processing of data for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARMBE2D Value-Added Product (VAP), the developers noticed that the SWATS soil temperatures did not show a decreased temporal variability with increased depth with the new E30+ Extended Facilities (EFs), unlike the older EFs at ARM’s Southern Great Plains (SGP) site. The instrument mentor analyzed the data and reported that all SWATS locations have shown this behavior but that the magnitude of the problem was greatest at EFs E31-E38. The data were analyzed to verify the initial assessments of: 1. 5 cm SWATS data were valid for all EFs and 15 cm soil temperature measurements were valid at all EFs other than E31-E38, 2. Use only nighttime SWATS soil temperature measurements to calculate daily average soil temperatures, 3. Since it seems likely that the soil temperature measurements below 15cm were affected by the solar heating of the enclosure at all but E31-38, and at all depths below 5cm at E31-38, individual measurements of soil temperature at these depths during daylight hours, and daily averages of the same, can ot be trusted on most (particularly sunny) days.

  20. Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD

    DEFF Research Database (Denmark)

    Grinsted, Aslak; Moore, John; Jevrejeva, Svetlana

    2010-01-01

    -proxy reconstructions assuming that the established relationship between temperature and sea level holds from 200 to 2100 ad. Over the last 2,000 years minimum sea level (-19 to -26 cm) occurred around 1730 ad, maximum sea level (12–21 cm) around 1150 AD. Sea level 2090–2099 is projected to be 0.9 to 1.3 m for the A1B...

  1. Projecting changes in regional temperature and precipitation extremes in the United States

    OpenAIRE

    Justin T. Schoof; Scott M. Robeson

    2016-01-01

    Regional and local climate extremes, and their impacts, result from the multifaceted interplay between large-scale climate forcing, local environmental factors (physiography), and societal vulnerability. In this paper, we review historical and projected changes in temperature and precipitation extremes in the United States, with a focus on strengths and weaknesses of (1) commonly used definitions for extremes such as thresholds and percentiles, (2) statistical approaches to quantifying change...

  2. Projected Changes in Seasonal Mean Temperature and Rainfall (2011-2040) in Cagayan Valley, Philippines

    Science.gov (United States)

    Basconcillo, J. Q.; Lucero, A. J. R.; Solis, A. S.; Kanamaru, H.; Sandoval, R. S.; Bautista, E. U.

    2014-12-01

    Among Filipinos, a meal is most often considered incomplete without rice. There is a high regard for rice in the entire archipelago that in 2012, the country's rice production was accounted to more than 18 million tons with an equivalent harvested area of 4.7 million hectares. This means that from the 5.4 million hectares of arable land in the Philippines, 11 percent are found and being utilized for rice production in Cagayan Valley (CV). In the same year, more than 13 percent of the country's total annual rice production was produced in CV. Rice production also provides employment to 844,000 persons (out of 1.4 million persons) which suggest that occupation and livelihood in Cagayan Valley are strongly anchored in rice production. These figures outline the imaginable vulnerability of rice production in CV amidst varying issues such as land conversion, urbanization, increase in population, retention of farming households, and climate change. While all these issues are of equal importance, this paper is directed towards the understanding the projected changes in seasonal rainfall and mean temperature (2011-2040). It is envisioned by this study that a successful climate change adaptation starts with the provision of climate projections hence this paper's objective to investigate on the changes in climate patterns and extreme events. Projected changes are zonally limited to the Provinces of Cagayan, Isabela, Nueva Vizcaya, and Quirino based on the statistical downscaling of three global climate models (BCM2, CNCM3, and MPEH5) and two emission scenarios (A1B and A2). With the idea that rainfall and temperature varies with topography, the AURELHY technique was utilized in interpolating climate projections. Results obtained from the statistical downscaling showed that there will be significant climate changes from 2011-2040 in terms of rainfall and mean temperature. There are also indications of increasing frequency of extreme 24-hour rainfall and number of dry days

  3. Trends of climatic changes considering over years 1894-1993 and 1894-2003 for Sarajevo

    International Nuclear Information System (INIS)

    Majstorovic, Zeljko; Toromanovic, Aida; Halilovic, Senada

    2004-01-01

    Linear trends of changes in climatic parameters have been observed for Sarajevo and we considered correlation with world's trends and mutual correlation of years .1894-1993 and 1894-2003, both for the same meteorological station Sarajevo. In purpose of ascertaining correlation with global climate's changes, Sarajevo's records have been studied over the primary climatic parameters: average annual temperatures, absolute annual maximum and minimum temperatures, annual sum of rainfalls and drought index. We used method of adding of linear trends. Correlation with global tendency of climate has be shown as follow: - We notice increase of average temperature about 0.7 o C in past 100 years - We notice a rapid increase of absolute minimum temperature in compare with values of absolute maximum temperatures. - Annual sum of rainfalls doesn't show drastic changes. - We notice asymmetry trend for some actual seasons. - We notice increase of drought. During correlation of trends for years 1894-1993 and 1894-2003 has been noticed rapid increase of temperature and drought-index, while considering rainfalls there has not been drastic changes. (Author)

  4. Trends in evaporation of a large subtropical lake

    Science.gov (United States)

    Hu, Cheng; Wang, Yongwei; Wang, Wei; Liu, Shoudong; Piao, Meihua; Xiao, Wei; Lee, Xuhui

    2017-07-01

    How rising temperature and changing solar radiation affect evaporation of natural water bodies remains poor understood. In this study, evaporation from Lake Taihu, a large (area 2400 km2) freshwater lake in the Yangtze River Delta, China, was simulated by the CLM4-LISSS offline lake model and estimated with pan evaporation data. Both methods were calibrated against lake evaporation measured directly with eddy covariance in 2012. Results show a significant increasing trend of annual lake evaporation from 1979 to 2013, at a rate of 29.6 mm decade-1 according to the lake model and 25.4 mm decade-1 according to the pan method. The mean annual evaporation during this period shows good agreement between these two methods (977 mm according to the model and 1007 mm according to the pan method). A stepwise linear regression reveals that downward shortwave radiation was the most significant contributor to the modeled evaporation trend, while air temperature was the most significant contributor to the pan evaporation trend. Wind speed had little impact on the modeled lake evaporation but had a negative contribution to the pan evaporation trend offsetting some of the temperature effect. Reference evaporation was not a good proxy for the lake evaporation because it was on average 20.6 % too high and its increasing trend was too large (56.5 mm decade-1).

  5. A Trend Model for Alzheimer’s Mortality

    Directory of Open Access Journals (Sweden)

    Örjan Hallberg

    2015-09-01

    Full Text Available In Sweden, mortality rates from Alzheimer’s disease have increased since early 90’s.  In this study, we compared rates reported from 2006-2012 with projected trends determined previously and found a good fit.  The objective of this study was to investigate if increased mortality can be modeled as a single exponential function of time lived in a new environment, where the risk of dying from Alzheimer’s disease has been increased.  The results demonstrated that the exponential model can be used to predict future mortalities for different scenarios, and that it can also project age-specific trends.  We conclude that increasing mortality rates from Alzheimer’s disease seem caused by an environmental change introduced since the 1990’s.  Since similar trend breaks also have been reported for different cancers, responsible authorities should seriously address this problem to pinpoint causative factors.

  6. Observed Decrease of North American Winter Temperature Variability

    Science.gov (United States)

    Rhines, A. N.; Tingley, M.; McKinnon, K. A.; Huybers, P. J.

    2015-12-01

    There is considerable interest in determining whether temperature variability has changed in recent decades. Model ensembles project that extratropical land temperature variance will detectably decrease by 2070. We use quantile regression of station observations to show that decreasing variability is already robustly detectable for North American winter during 1979--2014. Pointwise trends from GHCND stations are mapped into a continuous spatial field using thin-plate spline regression, resolving small-scales while providing uncertainties accounting for spatial covariance and varying station density. We find that variability of daily temperatures, as measured by the difference between the 95th and 5th percentiles, has decreased markedly in winter for both daily minima and maxima. Composites indicate that the reduced spread of winter temperatures primarily results from Arctic amplification decreasing the meridional temperature gradient. Greater observed warming in the 5th relative to the 95th percentile stems from asymmetric effects of advection during cold versus warm days; cold air advection is generally from northerly regions that have experienced greater warming than western or southwestern regions that are generally sourced during warm days.

  7. Existing and projected neutron sources and low-temperature irradiation facilities in Germany

    International Nuclear Information System (INIS)

    Boening, K.

    1984-01-01

    In this paper, a contribution given at the Kyoto University Research Reactor Institute to the temporal meeting on the design of the facilities for high flux, low temperature irradiation is summarized. The following five subjects were discussed. The project of modernizing the swimming pool type research reactor FRM with 4 MW power at Munich is to achieve relatively high thermal neutron flux, and an extremely compact core is designed. The existing low temperature irradiation facility (LTIF) of the FRM is the most powerful in the world, and has been successfully operated more than 20 years. The fast and thermal neutron fluxes are 2.9 x 10 13 and 3.5 x 10 13 /cm 2 sec, respectively. The experimental techniques in the LTIF of the FRM, such as a measuring cryostat, the mounting of irradiated samples and so on, are described. The installation of new LTIFs in connection with the projects of advanced neutron sources in Germany is likely to be made in the modernized FRM at Garching, in the spallation neutron source SNQ at KFA Juelich and so on. The interesting problems in fundamental and applied researches with LTIFs, and the unusual application of LTIFs are shown. (Kako, I.)

  8. Market trends in the projection display industry

    Science.gov (United States)

    Dash, Sweta

    2000-04-01

    The projection display industry represents a multibillion- dollar market that includes four distinct technologies. High-volume consumer products and high-value business products drive the market, with different technologies being used in different application markets. The consumer market is dominated by rear CRT technology, especially in the projection television segment. But rear LCD (liquid crystal display) and rear reflective (DLP, or Digital Light ProcessingTM) televisions are slowly emerging as future competitors to rear CRT projectors. Front CRT projectors are still popular in the high-end home theater market. Front LCD technology and front DLP technology dominate the business market. Traditional light valve technology was the only solution for applications requiring high light outputs, but new three-chip DLP projectors meet the higher light output requirements at a lower price. In the last few years the strongest growth has been in the business market for multimedia presentation applications. This growth was due to the continued increase in display pixel formats, the continued reduction in projector weight, and the improved price/performance ratio. The projection display market will grow at a significant rate during the next five years, driven by the growth in ultraportable (market to digital and HDTV products.

  9. Future temperature changes over the critical Belt and Road region based on CMIP5 models

    Directory of Open Access Journals (Sweden)

    Tian-Yun Dong

    2018-03-01

    Full Text Available Based on data of 22 models from the Coupled Model Inter-comparison Project Phase 5 (CMIP5, the performance of climate simulation is assessed and future changes under RCP2.6, RCP4.5 and RCP8.5 are projected over critical Belt and Road region. Compared with observations, the CMIP5 models simulate the linear trend and spatial distribution of the annual mean surface air temperature (SAT better in the north (NBR and south (SBR of the Belt and Road region. The trend of the 22-model ensemble mean (CMIP5 MME is 0.70/0.50 °C per 100 years from 1901 to 2005, and the observed trend is 1.11/0.77 °C per 100 years in the NBR/SBR region. After 1971, the relative error between CMIP5 MME and observations is 22%/15% in the NBR/SBR region. Seven/nine models are selected in the NBR/SBR to project future SAT changes under three RCP scenarios. For 2081–2100, warming in the NBR/SBR is projected to be (1.16 ± 0.29/(0.72 ± 0.32 °C, (2.41 ± 0.54/(1.55 ± 0.44 °C, and (5.23 ± 1.02/(3.33 ± 0.65 °C for RCP2.6, RCP4.5, and RCP8.5, respectively. Under the RCP scenarios, the NBR region shows greater warming than the SBR region. The most significant warming is expected in Kazakhstan and the northern part of the SBR. The associated uncertainty generally increases with time under the three RCP scenarios. Furthermore, increases in warming over the Belt and Road region are more remarkable under higher-emission scenarios than lower-emission ones. Keywords: CMIP5 models, The Belt and Road region, Temperature projection, RCPs

  10. Applying Multimodel Ensemble from Regional Climate Models for Improving Runoff Projections on Semiarid Regions of Spain

    Science.gov (United States)

    Garcia Galiano, S. G.; Olmos, P.; Giraldo Osorio, J. D.

    2015-12-01

    In the Mediterranean area, significant changes on temperature and precipitation are expected throughout the century. These trends could exacerbate the existing conditions in regions already vulnerable to climatic variability, reducing the water availability. Improving knowledge about plausible impacts of climate change on water cycle processes at basin scale, is an important step for building adaptive capacity to the impacts in this region, where severe water shortages are expected for the next decades. RCMs ensemble in combination with distributed hydrological models with few parameters, constitutes a valid and robust methodology to increase the reliability of climate and hydrological projections. For reaching this objective, a novel methodology for building Regional Climate Models (RCMs) ensembles of meteorological variables (rainfall an temperatures), was applied. RCMs ensembles are justified for increasing the reliability of climate and hydrological projections. The evaluation of RCMs goodness-of-fit to build the ensemble is based on empirical probability density functions (PDF) extracted from both RCMs dataset and a highly resolution gridded observational dataset, for the time period 1961-1990. The applied method is considering the seasonal and annual variability of the rainfall and temperatures. The RCMs ensembles constitute the input to a distributed hydrological model at basin scale, for assessing the runoff projections. The selected hydrological model is presenting few parameters in order to reduce the uncertainties involved. The study basin corresponds to a head basin of Segura River Basin, located in the South East of Spain. The impacts on runoff and its trend from observational dataset and climate projections, were assessed. Considering the control period 1961-1990, plausible significant decreases in runoff for the time period 2021-2050, were identified.

  11. Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains

    Science.gov (United States)

    Shen, Yan-Jun; Shen, Yanjun; Fink, Manfred; Kralisch, Sven; Chen, Yaning; Brenning, Alexander

    2018-02-01

    Streamflow and snowmelt runoff timing of mountain rivers are susceptible to climate change. Trends and variability in streamflow and snowmelt runoff timing in four mountain basins in the southern Tianshan were analyzed in this study. Streamflow trends were detected by Mann-Kendall tests and changes in snowmelt runoff timing were analyzed based on the winter/spring snowmelt runoff center time (WSCT). Pearson's correlation coefficient was further calculated to analyze the relationships between climate variables, streamflow and WSCT. Annual streamflow increased significantly in past decades in the southern Tianshan, especially in spring and winter months. However, the relations between streamflow and temperature/precipitation depend on the different streamflow generation processes. Annual precipitation plays a vital role in controlling recharge in the Toxkon basin, while the Kaidu and Huangshuigou basins are governed by both precipitation and temperature. Seasonally, temperature has a strong effect on streamflow in autumn and winter, while summer streamflow appears more sensitive to changes in precipitation. However, temperature is the dominant factor for streamflow in the glacierized Kunmalik basin at annual and seasonal scales. An uptrend in streamflow begins in the 1990s at both annual and seasonal scales, which is generally consistent with temperature and precipitation fluctuations. Average WSCT dates in the Kaidu and Huangshuigou basins are earlier than in the Toxkon and Kunmalik basins, and shifted towards earlier dates since the mid-1980s in all the basins. It is plausible that WSCT dates are more sensitive to warmer temperature in spring period compared to precipitation, except for the Huangshuigou basin. Taken together, these findings are useful for applications in flood risk regulation, future hydropower projects and integrated water resources management.

  12. Trends in the design of front-end systems for room temperature solid state detectors

    International Nuclear Information System (INIS)

    Manfredi, Pier F.; Re, Valerio

    2003-01-01

    The paper discusses the present trends in the design of low-noise front-end systems for room temperature semiconductor detectors. The technological advancement provided by submicron CMOS and BiCMOS processes is examined from several points of view. The noise performances are a fundamental issue in most detector applications and suitable attention is devoted to them for the purpose of judging whether or not the present processes supersede the solutions featuring a field-effect transistor as a front-end element. However, other considerations are also important in judging how well a monolithic technology suits the front-end design. Among them, the way a technology lends itself to the realization of additional functions, for instance, the charge reset in a charge-sensitive loop or the time-variant filters featuring the special weighting functions that may be requested in some applications of CdTe or CZT detectors

  13. A stable boundary layer perspective on global temperature trends

    International Nuclear Information System (INIS)

    McNider, R T; Christy, J R; Biazar, A

    2010-01-01

    One of the most significant signals in the thermometer-observed temperature record since 1900 is the decrease in the diurnal temperature range over land, largely due to warming of the minimum temperatures. While some data sets have indicated this asymmetrical warming has been reduced since 1979, regional analyses (e.g. East Africa) indicate that the nocturnal warming continues at a pace greater than daytime temperatures. The cause for this night time warming in the observed temperatures has been attributed to a variety of causes. Climate models have in general not replicated the change in diurnal temperature range well. Here we would like to try to distinguish between warming in the nocturnal boundary layer due to a redistribution of heat and warming due to the accumulation of heat. The temperature at night at shelter height is a result of competition between thermal stability and mechanical shear. If stability wins then turbulence is suppressed and the cooling surface becomes cut-off from the warmer air aloft, which leads to sharp decay in surface air temperature. If shear wins, then turbulence is maintained and warmer air from aloft is continually mixed to the surface, which leads to significantly lower cooling rates and warmer temperatures. This warming occurs due to a redistribution of heat. As will be shown by techniques of nonlinear analysis the winner of the stability and shear contest can be very sensitive to changes in greenhouse gas forcing, surface roughness, cloudiness, and surface heat capacity (including soil moisture). Further, the minimum temperatures measured in the nocturnal boundary layer represent only a very shallow layer of the atmosphere which is usually only a few hundred meters thick. It is likely that the observed warming in minimum temperature, whether caused by additional greenhouse forcing or land use changes or other land surface dynamics, is reflecting a redistribution of heat by turbulence-not an accumulation of heat. Because minimum

  14. Utility-Scale Solar 2015: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Seel, Joachim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2016-08-17

    The utility-scale solar sector—defined here to include any ground-mounted photovoltaic (“PV”), concentrating photovoltaic (“CPV”), or concentrating solar power (“CSP”) project that is larger than 5 MWAC in capacity—has led the overall U.S. solar market in terms of installed capacity since 2012. It is expected to maintain its market-leading position for at least another five years, driven in part by December 2015’s three-year extension of the 30% federal investment tax credit (“ITC”) through 2019 (coupled with a favorable switch to a “start construction” rather than a “placed in service” eligibility requirement, and a gradual phase down of the credit to 10% by 2022). In fact, in 2016 alone, the utility-scale sector is projected to install more than twice as much new capacity as it ever has previously in a single year. This unprecedented boom makes it difficult, yet more important than ever, to stay abreast of the latest utility-scale market developments and trends. This report—the fourth edition in an ongoing annual series—is intended to help meet this need, by providing in-depth, annually updated, data-driven analysis of the utility-scale solar project fleet in the United States. Drawing on empirical project-level data from a wide range of sources, this report analyzes not just installed project costs or prices—i.e., the traditional realm of most solar economic analyses—but also operating costs, capacity factors, and power purchase agreement (“PPA”) prices from a large sample of utility-scale solar projects throughout the United States. Given its current dominance in the market, utility-scale PV also dominates much of this report, though data from CPV and CSP projects are also presented where appropriate.

  15. Projecting Future Sea Level Rise for Water Resources Planning in California

    Science.gov (United States)

    Anderson, J.; Kao, K.; Chung, F.

    2008-12-01

    Sea level rise is one of the major concerns for the management of California's water resources. Higher water levels and salinity intrusion into the Sacramento-San Joaquin Delta could affect water supplies, water quality, levee stability, and aquatic and terrestrial flora and fauna species and their habitat. Over the 20th century, sea levels near San Francisco Bay increased by over 0.6ft. Some tidal gauge and satellite data indicate that rates of sea level rise are accelerating. Sea levels are expected to continue to rise due to increasing air temperatures causing thermal expansion of the ocean and melting of land-based ice such as ice on Greenland and in southeastern Alaska. For water planners, two related questions are raised on the uncertainty of future sea levels. First, what is the expected sea level at a specific point in time in the future, e.g., what is the expected sea level in 2050? Second, what is the expected point of time in the future when sea levels will exceed a certain height, e.g., what is the expected range of time when the sea level rises by one foot? To address these two types of questions, two factors are considered: (1) long term sea level rise trend, and (2) local extreme sea level fluctuations. A two-step approach will be used to develop sea level rise projection guidelines for decision making that takes both of these factors into account. The first step is developing global sea level rise probability distributions for the long term trends. The second step will extend the approach to take into account the effects of local astronomical tides, changes in atmospheric pressure, wind stress, floods, and the El Niño/Southern Oscillation. In this paper, the development of the first step approach is presented. To project the long term sea level rise trend, one option is to extend the current rate of sea level rise into the future. However, since recent data indicate rates of sea level rise are accelerating, methods for estimating sea level rise

  16. Industrial heat pumps for high temperatures - a pilot project; Industrielle varmepumper for hoeje temperaturer - et forprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, M. [Dansk Energi Analyse A/S, Frederiksberg (Denmark); Weel, M.; Mikkelsen, J. [Weel and Sandvig, Kgs. Lyngby (Denmark)

    2012-03-15

    This project investigates the possibility of using mass produced and inexpensive turbo compressor technology for heat pumping in the industry. The compressors are designed for the compression of air and used by the automotive industry in connection with turbo-chargers. The heat pumps are primarily intended to use water as the working medium, which in addition to having no environmental loads, is suitable for the heat pumping at temperatures above about 60 deg. C and up to about 200 deg. C, a temperature level which is considerably higher than what has previously been observed covered with heat pumping. In this project, a Danish-produced high-speed gear (Rotrex) is used, which has just been developed to said compressor technology. In cooperation with Rotrex, the modifications relevant to a standard unit were analyzed and assessed. The project identified some areas of industry where heat pumping using this technology is considered to be attractive. A pilot plant operating with steam in a total of 12 hours is demonstrated. In more than 3 hours, the pilot plant was coupled so that it delivered useful heat supply to the evaporator. The plant has during the tests worked satisfactorily, and there is no evidence of problems with leaks in the compressor shaft sealings, neither in relation to the leakage of oil or steam, which was one of the central issues to clarify with the demonstration. In the limited testing period no problems were detected that could not be immediately resolved, i.e. the transmission in the form of a belt drive with high speed from the engine to the friction gear. In the determination of the performance of the compressor during the trial operation with steam as a working medium, it is shown that the conversion efficiency are within the expected range when taking into account the uncertainties in the measurements and the calculation method. In the experiment, no measurement of steam flow through the compressor was made, because of a greatly reduced

  17. EUROPAIRS: The European project on coupling of High Temperature Reactors with industrial processes

    International Nuclear Information System (INIS)

    Angulo, C.; Bogusch, E.; Bredimas, A.; Delannay, N.; Viala, C.; Ruer, J.; Muguerra, Ph.; Sibaud, E.; Chauvet, V.; Hittner, D.; Fütterer, M.A.; Groot, S. de; Lensa, W. von; Verfondern, K.; Moron, R.; Baudrand, O.; Griffay, G.; Baaten, A.; Segurado-Gimenez, J.

    2012-01-01

    Developers of High Temperature Reactors (HTR) worldwide acknowledge that the main asset for market breakthrough is its unique ability to address growing needs for industrial cogeneration of heat and power (CHP) owing to its high operating temperature and flexibility, adapted power level, modularity and robust safety features. A strong alliance between nuclear and process heat user industries is a necessity for developing such a nuclear system for the conventional process heat market, just as the electro-nuclear development required a close partnership with utilities. Initiating such an alliance is one of the objectives of the EUROPAIRS project ( (www.europairs.eu)) presently on-going in the frame of the Euratom 7th Framework Programme (FP7). Although small and of short duration (21 months), EUROPAIRS is of strategic importance: it generates the boundary conditions for rapid demonstration of collocating HTR with industrial processes as proposed by the European High Temperature Reactor Technology Network (HTR-TN). This paper presents the main goals, the organization and the working approach of EUROPAIRS. It also presents the status of the viability assessment studies for coupling HTR with industrial end-user systems as one of the main pillars of the project. The main goal of the viability assessment is to identify developments required to remove the last technological and licensing barriers for a viable coupling scheme. The study is expected to result in guidelines for directing the choice of an industrial scale prototype.

  18. EUROPAIRS: The European project on coupling of High Temperature Reactors with industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Angulo, C., E-mail: carmen.angulo@gdfsuez.com [Tractebel Engineering S.A. (GDF SUEZ), Avenue Ariane 7, 1200 Brussels (Belgium); Bogusch, E. [AREVA NP GmbH, Paul-Gossen-Strasse 100, 91052 Erlangen (Germany); Bredimas, A. [LGI Consulting, 37 rue de la Grange aux Belles, 75010 Paris (France); Delannay, N. [Tractebel Engineering S.A. (GDF SUEZ), Avenue Ariane 7, 1200 Brussels (Belgium); Viala, C. [AREVA NP SAS, 10 rue Juliette Recamier, 69456 Lyon Cedex 06 (France); Ruer, J.; Muguerra, Ph.; Sibaud, E. [SAIPEM S.A., 1/7 Avenue San Fernando, 78884 Saint Quentin en Yvelines Cedex (France); Chauvet, V. [LGI Consulting, 37 rue de la Grange aux Belles, 75010 Paris (France); Hittner, D. [AREVA NP Inc., 3315 Old Forest Road, Lynchburg, VA 24501 (United States); Fuetterer, M.A. [European Commission, Joint Research Centre, 1755ZG Petten (Netherlands); Groot, S. de [Nuclear Research and Consultancy Group, 1755ZG Petten (Netherlands); Lensa, W. von; Verfondern, K. [Forschungszentrum Juelich GmbH, Leo-Brandt-Strasse,52425 Juelich (Germany); Moron, R. [Solvay SA, rue du Prince Albert 33, 1050 Brussels (Belgium); Baudrand, O. [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP 17, 92262 Fontenay-aux-Roses cedex (France); Griffay, G. [Arcelor Mittal Maizieres Research SA, rue Luigi Cherubini 1A5, 39200 Saint Denis (France); Baaten, A. [USG/Baaten Energy Consulting, Burgermeester-Ceulen-Straat 78, 6212CT Maastricht (Netherlands); Segurado-Gimenez, J. [Tractebel Engineering S.A. (GDF SUEZ), Avenue Ariane 7, 1200 Brussels (Belgium)

    2012-10-15

    Developers of High Temperature Reactors (HTR) worldwide acknowledge that the main asset for market breakthrough is its unique ability to address growing needs for industrial cogeneration of heat and power (CHP) owing to its high operating temperature and flexibility, adapted power level, modularity and robust safety features. A strong alliance between nuclear and process heat user industries is a necessity for developing such a nuclear system for the conventional process heat market, just as the electro-nuclear development required a close partnership with utilities. Initiating such an alliance is one of the objectives of the EUROPAIRS project ( (www.europairs.eu)) presently on-going in the frame of the Euratom 7th Framework Programme (FP7). Although small and of short duration (21 months), EUROPAIRS is of strategic importance: it generates the boundary conditions for rapid demonstration of collocating HTR with industrial processes as proposed by the European High Temperature Reactor Technology Network (HTR-TN). This paper presents the main goals, the organization and the working approach of EUROPAIRS. It also presents the status of the viability assessment studies for coupling HTR with industrial end-user systems as one of the main pillars of the project. The main goal of the viability assessment is to identify developments required to remove the last technological and licensing barriers for a viable coupling scheme. The study is expected to result in guidelines for directing the choice of an industrial scale prototype.

  19. BODIES OF KNOWLEDGE IN PROJECT MANAGEMENT AND PROJECT QUALITY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Tamara Gvozdenovic

    2008-03-01

    Full Text Available One of the main trends is standardization of project management. Some of the most important bodies of knowledge in project management, which were created by professional associations for project management are given in this paper. The main of the project management, apart from minimization of time, resources and costs, is to finish the project in the required quality, i.e. it is very important during the whole process of project management to provide realizing the project without any deviations from the previously set quality standards. Basic processes of project quality management are: quality planning, quality assurance and quality control.

  20. The Jeff evaluated nuclear data project

    Energy Technology Data Exchange (ETDEWEB)

    Koning, A.J.; Duijvestijn, M.C.; Hogenbirk, A.; Van der Marck, S.C.; Avrigeanu, M.; Avrigeanu, V.; Batistoni, P.; Pillon, M.; Bauge, E.; Bersillon, O.; Dos-Santos-Uzarralde, P.; Lopez Jimenez, M.J.; Morillon, B.; Romain, P.; Be, M.M.; Duchemin, B.; Huynh, T.D.; Jouanne, C.; Mounier, C.; Bem, P.; Bernard, D.; Bouland, O.; Courcelle, A.; Dupont, E.; Jacqmin, R.; Litaize, O.; Noguere, G.; Saint Jean, C. de; Santamarina, A.; Serot, O.; Sublet, J.Ch.; Bidaud, A.; Dean, C.J.; Perry, R.J.; Duhamel, I.; Nouri, A.; Gunsing, F.; Ridikas, D.; Fischer, U.; Leichtle, D.; Pereslavtsev, P.; Simakov, S.; Forrest, R.A.; Haeck, W.; Henriksson, H.; Kodeli, I.; Nordborg, C.; Rugama, Y.; Sartori, E.; Keinert, J.; Mattes, M.; Kellett, M.A.; Nichols, A.L.; Kopecky, J.; Leeb, H.; Leppanen, J.; Menapace, E.; Pescarini, M.; Mills, R.W.; Perel, R.L.; Plompen, A.J.M.; Rullhusen, P.; Seidel, K.; Tagesen, S.; Vonach, H.; Trkov, A

    2008-07-01

    The status of the Joint Evaluated Fission and Fusion file (JEFF) is described. JEFF-3.1 comprises a significant update of actinide evaluations, materials evaluations that have emerged from various European nuclear data projects, the activation library JEFF-3.1/A, the decay data and fission yield sub-libraries, and fusion-related data files from the EFF project. The revisions were motivated by the availability of new measurements, modelling capabilities and trends from integral experiments. Validations have been performed, mainly for criticality, reactivity temperature coefficients, fuel inventory and shielding of thermal and fast systems. Compared with earlier releases, JEFF-3.1 provides improved performance with respect to a variety of scientific and industrial applications. Following on from the public release of JEFF-3.1, the French nuclear power industry has selected this suite of nuclear applications libraries for inclusion in their production codes. (authors)

  1. The Jeff evaluated nuclear data project

    International Nuclear Information System (INIS)

    Koning, A.J.; Duijvestijn, M.C.; Hogenbirk, A.; Van der Marck, S.C.; Avrigeanu, M.; Avrigeanu, V.; Batistoni, P.; Pillon, M.; Bauge, E.; Bersillon, O.; Dos-Santos-Uzarralde, P.; Lopez Jimenez, M.J.; Morillon, B.; Romain, P.; Be, M.M.; Duchemin, B.; Huynh, T.D.; Jouanne, C.; Mounier, C.; Bem, P.; Bernard, D.; Bouland, O.; Courcelle, A.; Dupont, E.; Jacqmin, R.; Litaize, O.; Noguere, G.; Saint Jean, C. de; Santamarina, A.; Serot, O.; Sublet, J.Ch.; Bidaud, A.; Dean, C.J.; Perry, R.J.; Duhamel, I.; Nouri, A.; Gunsing, F.; Ridikas, D.; Fischer, U.; Leichtle, D.; Pereslavtsev, P.; Simakov, S.; Forrest, R.A.; Haeck, W.; Henriksson, H.; Kodeli, I.; Nordborg, C.; Rugama, Y.; Sartori, E.; Keinert, J.; Mattes, M.; Kellett, M.A.; Nichols, A.L.; Kopecky, J.; Leeb, H.; Leppanen, J.; Menapace, E.; Pescarini, M.; Mills, R.W.; Perel, R.L.; Plompen, A.J.M.; Rullhusen, P.; Seidel, K.; Tagesen, S.; Vonach, H.; Trkov, A.

    2008-01-01

    The status of the Joint Evaluated Fission and Fusion file (JEFF) is described. JEFF-3.1 comprises a significant update of actinide evaluations, materials evaluations that have emerged from various European nuclear data projects, the activation library JEFF-3.1/A, the decay data and fission yield sub-libraries, and fusion-related data files from the EFF project. The revisions were motivated by the availability of new measurements, modelling capabilities and trends from integral experiments. Validations have been performed, mainly for criticality, reactivity temperature coefficients, fuel inventory and shielding of thermal and fast systems. Compared with earlier releases, JEFF-3.1 provides improved performance with respect to a variety of scientific and industrial applications. Following on from the public release of JEFF-3.1, the French nuclear power industry has selected this suite of nuclear applications libraries for inclusion in their production codes. (authors)

  2. Forecast models for urban extreme temperatures : Karachi region as a case study

    International Nuclear Information System (INIS)

    Hussain, M.A.; Abbas, A.; Ansari, M.R.K.

    2010-01-01

    The climatic signature of global warming is both local and global. The forcing by increasing greenhouse gases is global, so there is clearly a global component to the climatic signature. Moreover, the damaging impacts of global warming are manifesting themselves around the world in the form of extreme weather events like storms, tornadoes, floods and droughts, all of which have been escalating in frequency and intensity. Furthermore, it is a well-known fact that there is high degree of uncertainty surrounding projections of basic climate variables, such as temperature and precipitation. However, numerous authors have explored many of these effects individually and have begun exploring the interactions between climate change-induced impacts in different sectors of urban activities. Therefore, it is safe to say that an attempt to conduct a definitive, comprehensive analysis of all the potential impacts of climate change on the urban structure is premature at present. This communication attempts to examine the trends in maximum monthly urban temperature fluctuations. Analysis reveals increasing trends in urban temperature fluctuations showing effect of Karachi industrializations. Forecast models also suggest future scenario with respect to occurrence of extreme temperature. The analysis carried out in this work would be useful for urban planners for sustainable future development, economists and environmentalists etc. (author)

  3. THE INFLUENCE OF EUROPEAN CLIMATE VARIABILITY MECHANISM ON AIR TEMPERATURE IN ROMANIA

    Directory of Open Access Journals (Sweden)

    M. MATEI

    2013-03-01

    Full Text Available The main objective of the present paper is to analyze the temporal and spatial variability of air-temperature in Romania, by using mean air-temperature values provided by the ECA&D project (http://eca.knmi.nl/. These data sets will be filtered by means of the EOF (Empirical Orthogonal Function analysis, which describes various modes of space variability and time coefficient series (PC series. The EOF analysis will also be used to identify the main way of action of the European climate variability mechanism, by using multiple variables in grid points, provided by the National Centre of Atmospheric Research (NCAR, USA. The variables considered here are: sea level pressure (SLP, geopotential height at 500 mb (H500 and air temperature at 850 mb (T850, for the summer and winter seasons. The linear trends and shift points of considered variables are then assessed by means of the Mann-Kendall and Pettitt non-parametric tests. By interpreting the results, we can infer that there is causal relationship between the large-scale analyzed parameters and temperature variability in Romania. These results are consistent with those presented by Busuioc et al., 2010, where the main variation trends of the principal European variables are shown.

  4. Causes and consequences of past and projected Scandinavian summer temperatures, 500-2100 AD.

    Directory of Open Access Journals (Sweden)

    Ulf Büntgen

    Full Text Available Tree rings dominate millennium-long temperature reconstructions and many records originate from Scandinavia, an area for which the relative roles of external forcing and internal variation on climatic changes are, however, not yet fully understood. Here we compile 1,179 series of maximum latewood density measurements from 25 conifer sites in northern Scandinavia, establish a suite of 36 subset chronologies, and analyse their climate signal. A new reconstruction for the 1483-2006 period correlates at 0.80 with June-August temperatures back to 1860. Summer cooling during the early 17th century and peak warming in the 1930s translate into a decadal amplitude of 2.9°C, which agrees with existing Scandinavian tree-ring proxies. Climate model simulations reveal similar amounts of mid to low frequency variability, suggesting that internal ocean-atmosphere feedbacks likely influenced Scandinavian temperatures more than external forcing. Projected 21st century warming under the SRES A2 scenario would, however, exceed the reconstructed temperature envelope of the past 1,500 years.

  5. Integration of Building Information Modeling and Critical Path Method Schedules to Simulate the Impact of Temperature and Humidity at the Project Level

    Directory of Open Access Journals (Sweden)

    Yongwei Shan

    2014-07-01

    Full Text Available Steel construction activities are often undertaken in an environment with limited climate control. Both hot and cold temperatures can physically and psychologically affect construction workers, thus decreasing their productivity. Temperature and humidity are two factors that constantly exert forces on workers and influence their performance and efficiency. Previous studies have established a relationship between labor productivity and temperature and humidity. This research is built on the existing body of knowledge and develops a framework of integrating building information modeling (BIM with a lower level critical path method (CPM schedule to simulate the overall impact of temperature and humidity on a healthcare facility’s structural steel installation project in terms of total man hours required to build the project. This research effort utilized historical weather data of four cities across the U.S., with each city having workable seasons year-round and conducted a baseline assessment to test if various project starting dates and locations could significantly impact the project’s schedule performance. It was found that both varied project start dates and locations can significantly contribute to the difference in the man hours required to build the model project and that the project start date and location can have an interaction effect. This study contributes to the overall body of knowledge by providing a framework that can help practitioners better understand the overall impact of a productivity influencing factor at a project level, in order to facilitate better decision making.

  6. Sugar beet growth in a changing climate: past, present and future trends in southwest Germany

    Science.gov (United States)

    Kremer, Pascal; Fuchs, Hans-Joachim; Lang, Christian

    2017-04-01

    In the study, single factors and their impact on sugar beet cultivation against the background of past and projected climate change are being analyzed. The database consists of climate data by the German Weather Service and 1x1 km interpolated INTERMET raster data. Impact models were run to assess possible future trends using climate projection data of the REgional MOdel (REMO), emission scenario A1B, Run 1, data stream 2 for Germany, daily resolution, without bias correction, 10x10 km raster (n=150) (MPI on behalf of UBA 2006). Compared periods were: B:1971 2000; K:2021-2050; L:2071-2100. Agronomic data were collected from the field books of regional trials from 1974 2014 (n=448). Moreover, a business survey of regional farmers was carried out and evaluated. Impact models to predict timing for sowing, the date of field emergence and row closure, were derived from these data. The ontogenesis was simulated using a linear, temperature-based leaf-growth model. Sowing shifted forward by 7,3 days in regional field trials from 1974 2014. Progress-oriented, risk-tolerant farmers start sowing 10-14 days earlier compared to 1980. Recently, sowing is being conducted on average on 21 March in southwest Germany. For period K, 17 March, and for period L, 2 March is being projected as the average future sowing date while the same late frost risk applies compared to present climatic conditions. Shifting forward the sowing date with spring warming and, thus, exploiting the associated yield potential is the most promising agronomic adaptation strategy to the projected climate change on the farm level. In connection to earlier sowing, the field emergence tendentially shifted forward by 14 days in the field trials. Assuming sowing on 15 March, projection results show an advance of field emergence form 7 April in period B to 3 April in period L. Row closure in field trials in average shifted forward by 19,6 days. For period L, 29 May and thus, an earlier row closure of 9 days compared

  7. Historical Change of Equilibrium Water Temperature in Japan

    Science.gov (United States)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e

  8. Global contamination trends of persistent organic chemicals

    National Research Council Canada - National Science Library

    Loganathan, Bommanna G; Lam, Paul K. S

    2012-01-01

    "Composed by a diverse group of experts, this reference covers the history, present status, and projected future trends of environmental contamination from highly toxic synthetic chemical pollutants...

  9. Modelling impacts of atmospheric deposition and temperature on long-term DOC trends.

    Science.gov (United States)

    Sawicka, K; Rowe, E C; Evans, C D; Monteith, D T; E I Vanguelova; Wade, A J; J M Clark

    2017-02-01

    It is increasingly recognised that widespread and substantial increases in Dissolved organic carbon (DOC) concentrations in remote surface, and soil, waters in recent decades are linked to declining acid deposition. Effects of rising pH and declining ionic strength on DOC solubility have been proposed as potential dominant mechanisms. However, since DOC in these systems is derived mainly from recently-fixed carbon, and since organic matter decomposition rates are considered sensitive to temperature, uncertainty persists over the extent to which other drivers that could influence DOC production. Such potential drivers include fertilisation by nitrogen (N) and global warming. We therefore ran the dynamic soil chemistry model MADOC for a range of UK soils, for which time series data are available, to consider the likely relative importance of decreased deposition of sulphate and chloride, accumulation of reactive N, and higher temperatures, on soil DOC production in different soils. Modelled patterns of DOC change generally agreed favourably with measurements collated over 10-20years, but differed markedly between sites. While the acidifying effect of sulphur deposition appeared to be the predominant control on the observed soil water DOC trends in all the soils considered other than a blanket peat, the model suggested that over the long term, the effects of nitrogen deposition on N-limited soils may have been sufficient to raise the "acid recovery DOC baseline" significantly. In contrast, reductions in non-marine chloride deposition and effects of long term warming appeared to have been relatively unimportant. The suggestion that future DOC concentrations might exceed preindustrial levels as a consequence of nitrogen pollution has important implications for drinking water catchment management and the setting and pursuit of appropriate restoration targets, but findings still require validation from reliable centennial-scale proxy records, such as those being developed

  10. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Niedra, J.M.; Frasca, A.J.; Wieserman, W.R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare-earth permanent magnets

  11. Radiation and temperature effects on electronic components investigated under the CSTI High Capacity Power Project

    International Nuclear Information System (INIS)

    Shwarze, G.E.; Wieserman, W.R.

    1994-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare earth permanent magnets

  12. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature

    Science.gov (United States)

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quali...

  13. Statistical significance of trends in monthly heavy precipitation over the US

    KAUST Repository

    Mahajan, Salil

    2011-05-11

    Trends in monthly heavy precipitation, defined by a return period of one year, are assessed for statistical significance in observations and Global Climate Model (GCM) simulations over the contiguous United States using Monte Carlo non-parametric and parametric bootstrapping techniques. The results from the two Monte Carlo approaches are found to be similar to each other, and also to the traditional non-parametric Kendall\\'s τ test, implying the robustness of the approach. Two different observational data-sets are employed to test for trends in monthly heavy precipitation and are found to exhibit consistent results. Both data-sets demonstrate upward trends, one of which is found to be statistically significant at the 95% confidence level. Upward trends similar to observations are observed in some climate model simulations of the twentieth century, but their statistical significance is marginal. For projections of the twenty-first century, a statistically significant upwards trend is observed in most of the climate models analyzed. The change in the simulated precipitation variance appears to be more important in the twenty-first century projections than changes in the mean precipitation. Stochastic fluctuations of the climate-system are found to be dominate monthly heavy precipitation as some GCM simulations show a downwards trend even in the twenty-first century projections when the greenhouse gas forcings are strong. © 2011 Springer-Verlag.

  14. Recent climate trends and multisecular climate variability: temperature and precipitation during the cold season (October-March) in the Ebro Basin (NE of Spain) betrween 1500 and 2008

    Science.gov (United States)

    Saz-Sanchez, M.-A.; Cuadrat-Prats, J.-M.

    2009-09-01

    One of the goals of Paleoclimatology is to assess the importance and the exceptional nature of recent climate trends related to the anthropogenic climate change. Instrumental data enable the analysis of last century's climate, but do not give any information on previous periods' precipitation and temperature, during which there was no anthropic intervention on the climate system. Dendroclimatology is one of the paleoclimatic reconstruction sources giving best results when it comes to reconstructing the climate of the time before instruments could be used. This work presents the reconstructed series of precipitation and temperature of the cold season (October-March) In the central sector of the Ebro Valley (NE of Spain). The chronologies used for the reconstruction come on the one hand from the International Tree-Ring Data Bank (ITRDB) and on the other hand from the dendrochronological information bank created in the northern half of the Iberian Peninsula within the framework of the Spanish Interministerial Commission for Science and Technology (CICYT) CLI96-1862 project. The climate data used for chronology calibration and the reconstruction of the temperature and precipitation values are those of the instrumental observatory number 9910 (Pallaruelo) belonging to the Spanish State Meteorological Agency (Agencia Estatal de Meteorología or AEMET), located in the central sector of the Ebro Valley. The reconstruction obtained covers the 1500-1990 period. In order to extend the series up to 2008, instrumental information has been used. Thanks to data from a set of AEMET instrumental observatories close to the one used for chronology calibration, a regional series of temperatures as well as a precipitation one were generated. The series reconstructed through dendroclimatic methods and the regional series do not show statistically significant differences in their mean and variance values. R values between both series exceed 0.85. Taking these statistical characteristics

  15. Recent warming trend in the coastal region of Qatar

    Science.gov (United States)

    Cheng, Way Lee; Saleem, Ayman; Sadr, Reza

    2017-04-01

    The objective of this study was to analyze long-term temperature-related phenomena in the eastern portion of the Middle East, focusing on the coastal region of Qatar. Extreme temperature indices were examined, which were defined by the Expert Team on Climate Change Detection and Indices, for Doha, Qatar; these indices were then compared with those from neighboring countries. The trends were calculated for a 30-year period (1983-2012), using hourly data obtained from the National Climatic Data Center. The results showed spatially consistent warming trends throughout the region. For Doha, 11 of the 12 indices studied showed significant warming trends. In particular, the warming trends were represented by an increase in the number of warm days and nights and a decrease in the number of cool nights and days. The high-temperature extremes during the night have risen at more than twice the rate of their corresponding daytime extremes. The intensity and frequency of hot days have increased, and the minimum temperature indices exhibited a higher rate of warming. The climatic changes in Doha are consistent with the region-wide heat-up in recent decades across the Middle East. However, the rapid economic expansion, increase of population since the 1990s, and urban effects in the region are thought to have intensified the rapidly warming climate pattern observed in Doha since the turn of the century.

  16. Charging conditions research to increase the initial projected velocity at different initial charge temperatures

    Science.gov (United States)

    Ishchenko, Aleksandr; Burkin, Viktor; Kasimov, Vladimir; Samorokova, Nina; Zykova, Angelica; Diachkovskii, Alexei

    2017-11-01

    The problems of the defense industry occupy the most important place in the constantly developing modern world. The daily development of defense technology does not stop, nor do studies on internal ballistics. The scientists of the whole world are faced with the task of managing the main characteristics of a ballistic experiment. The main characteristics of the ballistic experiment are the maximum pressure in the combustion chamber Pmax and the projected velocity at the time of barrel leaving UM. During the work the combustion law of the new high-energy fuel was determined in a ballistic experiment for different initial temperatures. This combustion law was used for a parametric study of depending Pmax and UM from a powder charge mass and a traveling charge was carried out. The optimal conditions for loading were obtained for improving the initial velocity at pressures up to 600 MPa for different initial temperatures. In this paper, one of the most promising schemes of throwing is considered, as well as a method for increasing the muzzle velocity of a projected element to 3317 m/s.

  17. A climate trend analysis of Kenya-August 2010

    Science.gov (United States)

    Funk, Christopher C.

    2010-01-01

    Introduction This brief report draws from a multi-year effort by the United States Agency for International Development's Famine Early Warning System Network (FEWS NET) to monitor and map rainfall and temperature trends over the last 50 years (1960-2009) in Kenya. Observations from seventy rainfall gauges and seventeen air temperature stations were analyzed for the long rains period, corresponding to March through June (MAMJ). The data were quality controlled, converted into 1960-2009 trend estimates, and interpolated using a rigorous geo-statistical technique (kriging). Kriging produces standard error estimates, and these can be used to assess the relative spatial accuracy of the identified trends. Dividing the trends by the associated errors allows us to identify the relative certainty of our estimates (Funk and others, 2005; Verdin and others, 2005; Brown and Funk, 2008; Funk and Verdin, 2009). Assuming that the same observed trends persist, regardless of whether or not these changes are due to anthropogenic or natural cyclical causes, these results can be extended to 2025, providing critical, and heretofore missing information about the types and locations of adaptation efforts that may be required to improve food security.

  18. PREFERRED WATERFLOOD MANAGEMENT PRACTICES FOR THE SPRABERRY TREND AREA

    Energy Technology Data Exchange (ETDEWEB)

    David S. Schechter

    2004-08-31

    The naturally fractured Spraberry Trend Area is one of the largest reservoirs in the domestic U.S. and is the largest reservoir in area extent in the world. Production from Spraberry sands is found over a 2,500 sq. mile area and Spraberry reservoirs can be found in an eight county area in west Texas. Over 150 operators produce 65,000 barrels of oil per day (bopd) from the Spraberry Trend Area from more than 9,000 production wells. Recovery is poor, on the order of 7-10% due to the profoundly complicated nature of the reservoir, yet billions of barrels of hydrocarbons remain. We estimate over 15% of remaining reserves in domestic Class III reservoirs are in Spraberry Trend Area reservoirs. This tremendous domestic asset is a prime example of an endangered hydrocarbon resource in need of immediate technological advancements before thousands of wells are permanently abandoned. This report describes the final work of the project, ''Preferred Waterflood Management Practices for the Spraberry Trend Area.'' The objective of this project is to significantly increase field-wide production in the Spraberry Trend in a short time frame through the application of preferred practices for managing and optimizing water injection. Our goal is to dispel negative attitudes and lack of confidence in water injection and to document the methodology and results for public dissemination to motivate waterflood expansion in the Spraberry Trend. This objective has been accomplished through research in three areas: (1) detail historical review and extensive reservoir characterization, (2) production data management, and (3) field demonstration. This provides results of the final year of the three-year project for each of the three areas.

  19. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral.

    Science.gov (United States)

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming.

  20. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral

    Directory of Open Access Journals (Sweden)

    Erik eCaroselli

    2015-11-01

    Full Text Available Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13°C, 18°C, and 28°C, and two extreme temperatures expected for 2100 as a consequence of global warming (29°C and 32°C. The indicators of photosynthetic performance analyzed (maximum and effective quantum yield showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C. Photosynthetic efficiency decreased from 20.0°C to 13°C and even more strongly from 21.6°C to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18°C to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18°C to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming.

  1. A methodological critique on using temperature-conditioned resampling for climate projections as in the paper of Gerstengarbe et al. (2013) winter storm- and summer thunderstorm-related loss events in Theoretical and Applied Climatology (TAC)

    Science.gov (United States)

    Wechsung, Frank; Wechsung, Maximilian

    2016-11-01

    The STatistical Analogue Resampling Scheme (STARS) statistical approach was recently used to project changes of climate variables in Germany corresponding to a supposed degree of warming. We show by theoretical and empirical analysis that STARS simply transforms interannual gradients between warmer and cooler seasons into climate trends. According to STARS projections, summers in Germany will inevitably become dryer and winters wetter under global warming. Due to the dominance of negative interannual correlations between precipitation and temperature during the year, STARS has a tendency to generate a net annual decrease in precipitation under mean German conditions. Furthermore, according to STARS, the annual level of global radiation would increase in Germany. STARS can be still used, e.g., for generating scenarios in vulnerability and uncertainty studies. However, it is not suitable as a climate downscaling tool to access risks following from changing climate for a finer than general circulation model (GCM) spatial scale.

  2. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, Brian D. [Nevada Geothermal Power Company, Vancouver (Canada); Smith, Nicole [Nevada Geothermal Power Company, Vancouver (Canada)

    2015-06-10

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag

  3. Recent trends of severe head injury in Japan Neurotrauma Data Bank with special reference to road traffic accident. Comparison of clinical features and outcome between Project 1998 and Project 2004

    International Nuclear Information System (INIS)

    Ono, Junichi; Sakamoto, Tetsuya; Kawamata, Tatsuro; Tokutomi, Takashi; Ogawa, Takeki; Shigemori, Minoru; Yamaura, Akira; Nakamura, Norio

    2009-01-01

    This study was conducted to clarify the recent trends of severe head injury in the Japan Neurotrauma Data Bank (JNTDB) with special reference to traffic accident. In the JNTDB, the number of severely head-injured patients (Glasgow Coma Scale (GCS) score of 8 or less) were 832 in Project 1998 and 797 in Project 2004. Those were divided into 2 groups: traffic accident (TA) group, and non-TA (nTA) group. In addition, the former group was classified into 4 groups: 4 wheel vehicle (4WV) group, motorcycle (MC) group, bicycle (BC) group, and pedestrian (P) group. Analyzed here were cause of injury, age distribution, incidence of alcohol intake, means of transportation, clinical severity (GCS and injury severity score), initial CT findings (Traumatic Coma Data Bank), and outcome at discharge (Glasgow Outcome Scale). In the Project 2004; Traffic accident was less common as the cause of injury. The proportion of younger patients was lower in the TA group, especially in the 4WV and MC groups. Incidence of alcohol intake was lower in the TA group, particularly in the MC groups. Patient transfer by helicopter was more common in both the TA and nTA groups. The proportion of GCS of 3 to 5 was lower in the TA group, especially in the MC group. In the initial CT findings, type 3 of diffuse injury and evacuated mass were less frequent in both groups, and in the 4WV, BC, and P groups. Outcome at discharge: Mortality rate was lower in both groups, and in the 4WV, MC and P groups, but the percentage of good outcomes was unchanged. These results indicated the recent trends of severely head-injured patients who were injured by traffic accident. But there were some problems, such as study protocol and meaningless results, so that further verification is indispensable in the JNTDB study. (author)

  4. Projected continent-wide declines of the emperor penguin under climate change

    NARCIS (Netherlands)

    Jenouvrier, S.; Holland, M.; Stroeve, J.; Serreze, M.; Barbraud, C.; Weimerskirch, H.; Caswell, H.

    2014-01-01

    Climate change has been projected to affect species distribution1 and future trends of local populations2, 3, but projections of global population trends are rare. We analyse global population trends of the emperor penguin (Aptenodytes forsteri), an iconic Antarctic top predator, under the influence

  5. Contribution of Temperature to Chilean Droughts Using Ensemble Climate Projections

    Science.gov (United States)

    Zambrano-Bigiarini, M.; Alfieri, L.; Naumann, G.; Garreaud, R. D.

    2017-12-01

    Precipitation deficit is traditionally considered as the main driver of drought events, however the evolution of drought conditions is also influenced by other variables such as temperature, wind speed and evapotranspiration. In view of global warming, the effect of rising temperatures may lead to increased socio-economic drought impacts, particularly in vulnerable developing countries. In this work, we used two drought indices to analyze the impacts of precipitation and temperature on the frequency, severity and duration of Chilean droughts (25°S-56°S) during the XXI century, using multi-model climate projections consistent with the high-end RCP 8.5 scenario. An ensemble of seven global CMIP5 simulations were used to drive the Earth System Model EC-EARTH3-HR v3.1 over the 1976-2100 period, in order to increase the spatial resolution from the original grid to 0.35°. The Standardized Precipitation Index (SPI) was used to describe the impact of precipitation on drought conditions, while the Standardized Precipitation-Evapotranspiration Index (SPEI) was used to assess the effect of temperature -throughout changes in potential evapotranspiration- on drought characteristics at different time scales. Drought indices along with duration, severity and frequency of drought events were computed for a 30-year baseline period (1976-2005) and then compared to three 30-year periods representing short, medium and long-term scenarios (2011-2040, 2041-2070 and 2071-2100). Indices obtained from climate simulations during the baseline period were compared against the corresponding values derived from ground observations. Results obtained with SPI-12 reveal a progressive decrease in precipitation in Chile, which is consistent through all climate models, though each of them shows a different spatial pattern. Simulations based on SPEI-12 show that the expected increase in evaporative demand (driven by the temperature increase) for the region is likely to exacerbate the severity and

  6. Changes in diurnal temperature range and national cereal yields

    Energy Technology Data Exchange (ETDEWEB)

    Lobell, D

    2007-04-26

    Models of yield responses to temperature change have often considered only changes in average temperature (Tavg), with the implicit assumption that changes in the diurnal temperature range (DTR) can safely be ignored. The goal of this study was to evaluate this assumption using a combination of historical datasets and climate model projections. Data on national crop yields for 1961-2002 in the 10 leading producers of wheat, rice, and maize were combined with datasets on climate and crop locations to evaluate the empirical relationships between Tavg, DTR, and crop yields. In several rice and maize growing regions, including the two major nations for each crop, there was a clear negative response of yields to increased DTR. This finding reflects a nonlinear response of yields to temperature, which likely results from greater water and heat stress during hot days. In many other cases, the effects of DTR were not statistically significant, in part because correlations of DTR with other climate variables and the relatively short length of the time series resulted in wide confidence intervals for the estimates. To evaluate whether future changes in DTR are relevant to crop impact assessments, yield responses to projected changes in Tavg and DTR by 2046-2065 from 11 climate models were estimated. The mean climate model projections indicated an increase in DTR in most seasons and locations where wheat is grown, mixed projections for maize, and a general decrease in DTR for rice. These mean projections were associated with wide ranges that included zero in nearly all cases. The estimated impacts of DTR changes on yields were generally small (<5% change in yields) relative to the consistently negative impact of projected warming of Tavg. However, DTR changes did significantly affect yield responses in several cases, such as in reducing US maize yields and increasing India rice yields. Because DTR projections tend to be positively correlated with Tavg, estimates of yields

  7. Structural Uncertainty in Model-Simulated Trends of Global Gross Primary Production

    Directory of Open Access Journals (Sweden)

    Zaichun Zhu

    2013-03-01

    Full Text Available Projected changes in the frequency and severity of droughts as a result of increase in greenhouse gases have a significant impact on the role of vegetation in regulating the global carbon cycle. Drought effect on vegetation Gross Primary Production (GPP is usually modeled as a function of Vapor Pressure Deficit (VPD and/or soil moisture. Climate projections suggest a strong likelihood of increasing trend in VPD, while regional changes in precipitation are less certain. This difference in projections between VPD and precipitation can cause considerable discrepancies in the predictions of vegetation behavior depending on how ecosystem models represent the drought effect. In this study, we scrutinized the model responses to drought using the 30-year record of Global Inventory Modeling and Mapping Studies (GIMMS 3g Normalized Difference Vegetation Index (NDVI dataset. A diagnostic ecosystem model, Terrestrial Observation and Prediction System (TOPS, was used to estimate global GPP from 1982 to 2009 under nine different experimental simulations. The control run of global GPP increased until 2000, but stayed constant after 2000. Among the simulations with single climate constraint (temperature, VPD, rainfall and solar radiation, only the VPD-driven simulation showed a decrease in 2000s, while the other scenarios simulated an increase in GPP. The diverging responses in 2000s can be attributed to the difference in the representation of the impact of water stress on vegetation in models, i.e., using VPD and/or precipitation. Spatial map of trend in simulated GPP using GIMMS 3g data is consistent with the GPP driven by soil moisture than the GPP driven by VPD, confirming the need for a soil moisture constraint in modeling global GPP.

  8. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  9. Evolution of extreme temperature events in short term climate projection for Iberian Peninsula.

    Science.gov (United States)

    Rodriguez, Alfredo; Tarquis, Ana M.; Sanchez, Enrique; Dosio, Alessandro; Ruiz-Ramos, Margarita

    2014-05-01

    Extreme events of maximum and minimum temperatures are a main hazard for agricultural production in Iberian Peninsula. For this purpose, in this study we analyze projections of their evolution that could be valid for the next decade, represented in this study by the 30-year period 2004-2034 (target period). For this purpose two kinds of data were used in this study: 1) observations from the station network of AEMET (Spanish National Meteorological Agency) for five Spanish locations, and 2) simulated data at a resolution of 50 ×50 km horizontal grid derived from the outputs of twelve Regional Climate Models (RCMs) taken from project ENSEMBLES (van der Linden and Mitchell, 2009), with a bias correction (Dosio and Paruolo, 2011; Dosio et al., 2012) regarding the observational dataset Spain02 (Herrera et al., 2012). To validate the simulated climate, the available period of observations was compared to a baseline period (1964-1994) of simulated climate for all locations. Then, to analyze the changes for the present/very next future, probability of extreme temperature events for 2004-2034 were compared to that of the baseline period. Although only minor changes are expected, small variations in variability may have a significant impact in crop performance. The objective of the work is to evaluate the utility of these short term projections for potential users, as for instance insurance companies. References Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, VOL. 116,D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research,Volume 117, D17, doi: 0.1029/2012JD017968 Herrera et. al. (2012) Development and Analysis of a 50 year high

  10. Do climate model predictions agree with long-term precipitation trends in the arid southwestern United States?

    Science.gov (United States)

    Elias, E.; Rango, A.; James, D.; Maxwell, C.; Anderson, J.; Abatzoglou, J. T.

    2016-12-01

    Researchers evaluating climate projections across southwestern North America observed a decreasing precipitation trend. Aridification was most pronounced in the cold (non-monsoonal) season, whereas downward trends in precipitation were smaller in the warm (monsoonal) season. In this region, based upon a multimodel mean of 20 Coupled Model Intercomparison Project 5 models using a business-as-usual (Representative Concentration Pathway 8.5) trajectory, midcentury precipitation is projected to increase slightly during the monsoonal time period (July-September; 6%) and decrease slightly during the remainder of the year (October-June; -4%). We use observed long-term (1915-2015) monthly precipitation records from 16 weather stations to investigate how well measured trends corroborate climate model predictions during the monsoonal and non-monsoonal timeframe. Running trend analysis using the Mann-Kendall test for 15 to 101 year moving windows reveals that half the stations showed significant (p≤0.1), albeit small, increasing trends based on the longest term record. Trends based on shorter-term records reveal a period of significant precipitation decline at all stations representing the 1950s drought. Trends from 1930 to 2015 reveal significant annual, monsoonal and non-monsoonal increases in precipitation (Fig 1). The 1960 to 2015 time window shows no significant precipitation trends. The more recent time window (1980 to 2015) shows a slight, but not significant, increase in monsoonal precipitation and a larger, significant decline in non-monsoonal precipitation. GCM precipitation projections are consistent with more recent trends for the region. Running trends from the most recent time window (mid-1990s to 2015) at all stations show increasing monsoonal precipitation and decreasing Oct-Jun precipitation, with significant trends at 6 of 16 stations. Running trend analysis revealed that the long-term trends were not persistent throughout the series length, but depended

  11. Modelling the occurrence of heat waves in maximum and minimum temperatures over Spain and projections for the period 2031-60

    Science.gov (United States)

    Abaurrea, J.; Asín, J.; Cebrián, A. C.

    2018-02-01

    The occurrence of extreme heat events in maximum and minimum daily temperatures is modelled using a non-homogeneous common Poisson shock process. It is applied to five Spanish locations, representative of the most common climates over the Iberian Peninsula. The model is based on an excess over threshold approach and distinguishes three types of extreme events: only in maximum temperature, only in minimum temperature and in both of them (simultaneous events). It takes into account the dependence between the occurrence of extreme events in both temperatures and its parameters are expressed as functions of time and temperature related covariates. The fitted models allow us to characterize the occurrence of extreme heat events and to compare their evolution in the different climates during the observed period. This model is also a useful tool for obtaining local projections of the occurrence rate of extreme heat events under climate change conditions, using the future downscaled temperature trajectories generated by Earth System Models. The projections for 2031-60 under scenarios RCP4.5, RCP6.0 and RCP8.5 are obtained and analysed using the trajectories from four earth system models which have successfully passed a preliminary control analysis. Different graphical tools and summary measures of the projected daily intensities are used to quantify the climate change on a local scale. A high increase in the occurrence of extreme heat events, mainly in July and August, is projected in all the locations, all types of event and in the three scenarios, although in 2051-60 the increase is higher under RCP8.5. However, relevant differences are found between the evolution in the different climates and the types of event, with a specially high increase in the simultaneous ones.

  12. Three modes of interdecadal trends in sea surface temperature and sea surface height

    Science.gov (United States)

    Gnanadesikan, A.; Pradal, M.

    2013-12-01

    It might be thought that sea surface height and sea surface temperature would be tightly related. We show that this is not necessarily the case on a global scale. We analysed this relationship in a suite of coupled climate models run under 1860 forcing conditions. The models are low-resolution variants of the GFDL Earth System Model, reported in Galbraith et al. (J. Clim. 2011). 1. Correlated changes in global sea surface height and global sea surface temperature. This mode corresponds to opening and closing of convective chimneys in the Southern Ocean. As the Southern Ocean destratifies, sea ice formation is suppressed during the winter and more heat is taken up during the summer. This mode of variability is highly correlated with changes in the top of the atmosphere radiative budget and weakly correlated with changes in the deep ocean circulation. 2. Uncorrelated changes in global sea surface height and global sea surface temperature. This mode of variability is associated with interdecadal variabliity in tropical winds. Changes in the advective flux of heat to the surface ocean play a critical role in driving these changes, which also result in significant local changes in sea level. Changes sea ice over the Southern Ocean still result in changes in solar absorption, but these are now largely cancelled by changes in outgoing longwave radiation. 3. Anticorrelated changes in global sea surface height and global sea surface temperatures. By varying the lateral diffusion coefficient in the ocean model, we are able to enhance and suppress convection in the Southern and Northern Pacific Oceans. Increasing the lateral diffusion coefficients shifts the balance sources of deep water away from the warm salty deep water of the North Atlantic and towards cold fresh deep water from the other two regions. As a result, even though the planet as a whole warms, the deep ocean cools and sea level falls, with changes of order 30 cm over 500 years. The increase in solar absorption

  13. Comparison of the thermodynamic properties and high temperature chemical behavior of lanthanide and actinide oxides

    International Nuclear Information System (INIS)

    Ackermann, R.J.; Rauh, E.G.

    1977-01-01

    The thermodynamic properties of the lanthanide and actinide oxides are examined, compared, and associated with a variety of high temperature chemical behavior. Trends are cited resulting from a number of thermodynamic and spectroscopic correlations involving solid phases, species in aqueous solution, and molecules and ions in the vapor phase. Inadequacies in the data and alternative approaches are discussed. The characterization of nonstoichiometric phases stable only at high temperatures is related to a network of heterogeneous and homogeneous equilibria. A broad perspective of similarity and dissimilarity between the lanthanides and actinides emerges and forms the basis of the projected needs for further study

  14. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures

    Science.gov (United States)

    Steinman, Byron A.; Mann, Michael E.; Miller, Sonya K.

    2015-02-01

    The recent slowdown in global warming has brought into question the reliability of climate model projections of future temperature change and has led to a vigorous debate over whether this slowdown is the result of naturally occurring, internal variability or forcing external to Earth’s climate system. To address these issues, we applied a semi-empirical approach that combines climate observations and model simulations to estimate Atlantic- and Pacific-based internal multidecadal variability (termed “AMO” and “PMO,” respectively). Using this method, the AMO and PMO are found to explain a large proportion of internal variability in Northern Hemisphere mean temperatures. Competition between a modest positive peak in the AMO and a substantially negative-trending PMO are seen to produce a slowdown or “false pause” in warming of the past decade.

  15. CLIMATE CHANGE: LONG-TERM TRENDS AND SHORT-TERM OSCILLATIONS

    Institute of Scientific and Technical Information of China (English)

    GAO Xin-quan; ZHANG Xin; QIAN Wei-hong

    2006-01-01

    Identifying the Northern Hemisphere (NH) temperature reconstruction and instrumental data for the past 1000 years shows that climate change in the last millennium includes long-term trends and various oscillations. Two long-term trends and the quasi-70-year oscillation were detected in the global temperature series for the last 140 years and the NH millennium series. One important feature was emphasized that temperature decreases slowly but it increases rapidly based on the analysis of different series. Benefits can be obtained of climate change from understanding various long-term trends and oscillations. Millennial temperature proxies from the natural climate system and time series of nonlinear model system are used in understanding the natural climate change and recognizing potential benefits by using the method of wavelet transform analysis. The results from numerical modeling show that major oscillations contained in numerical solutions on the interdecadal timescale are consistent with that of natural proxies. It seems that these oscillations in the climate change are not directly linked with the solar radiation as an external forcing. This investigation may conclude that the climate variability at the interdecadal timescale strongly depends on the internal nonlinear effects in the climate system.

  16. Time Trends and Predictors of Abnormal Postoperative Body Temperature in Infants Transported to the Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Hedwig Schroeck

    2016-01-01

    Full Text Available Background. Despite increasing adoption of active warming methods over the recent years, little is known about the effectiveness of these interventions on the occurrence of abnormal postoperative temperatures in sick infants. Methods. Preoperative and postoperative temperature readings, patient characteristics, and procedural factors of critically ill infants at a single institution were retrieved retrospectively from June 2006 until May 2014. The primary endpoints were the incidence and trend of postoperative hypothermia and hyperthermia on arrival at the intensive care units. Univariate and adjusted analyses were performed to identify factors independently associated with abnormal postoperative temperatures. Results. 2,350 cases were included. 82% were normothermic postoperatively, while hypothermia and hyperthermia each occurred in 9% of cases. During the study period, hypothermia decreased from 24% to 2% (p<0.0001 while hyperthermia remained unchanged (13% in 2006, 8% in 2014, p=0.357. Factors independently associated with hypothermia were higher ASA status (p=0.02, lack of intraoperative convective warming (p<0.001 and procedure date before 2010 (p<0.001. Independent associations for postoperative hyperthermia included lower body weight (p=0.01 and procedure date before 2010 (p<0.001. Conclusions. We report an increase in postoperative normothermia rates in critically ill infants from 2006 until 2014. Careful monitoring to avoid overcorrection and hyperthermia is recommended.

  17. Climate Change Impacts on Projections of Excess Mortality at 2030 using Spatially-Varying Ozone-Temperature Risk Surfaces

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744

  18. Fiscal 1992 research report. Research trend survey of research and development of advanced materials for extreme environments (Carbon composite material); 1992 nendo chotaikankyosei senshin zairyo no kenkyu kaihatsu chosa hokokusho. Tansokei fukugo zairyo ni kakawaru kenkyu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    Trends of research on carbon based composite materials were surveyed through studying various reports and technical literature and evaluation of the project named above was conducted through holding interviews with researchers. In the survey of research trends for which technical literature perusal was the main tool, it was found that in most technical articles the important task was the enhancement of oxidation resistance, that SiC coating was in use for this purpose, that the technology would meet its limit at 1,600-1,700 degrees C, and that it would turn useless at temperatures beyond 1,800 degrees C. For the evaluation of the project, interviews were held with nine researchers not taking part in the project. The researchers favored the project as far as the popularity of the project and the main implementing body and system were concerned, but they negatively evaluated the project's goal of using such materials at 2,000 degrees C in the atmosphere. This research report comprises four chapters which cover (1) trends of research on C/C (carbon/carbon) composites, (2) a summarized research report on C/C composites, (3) survey of patents associated with C/C composites, and (4) opinions expressed toward the project and the results of evaluation conducted on the same. (NEDO)

  19. The ARCHER project (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D)

    Energy Technology Data Exchange (ETDEWEB)

    Knol, S., E-mail: knol@nrg.eu [Nuclear Research and consultancy Group (NRG), PO Box 25, NL-1755 ZG Petten (Netherlands); Fütterer, M.A. [Joint Research Centre, Institute for Energy, Petten (Netherlands); Roelofs, F. [Nuclear Research and consultancy Group (NRG), PO Box 25, NL-1755 ZG Petten (Netherlands); Kohtz, N. [TÜV Rheinland, Köln (Germany); Laurie, M. [Joint Research Centre, Institute for Transuranium elements, Karlsruhe (Germany); Buckthorpe, D. [UMAN, University of Manchester, Manchester (United Kingdom); Scheuermann, W. [IKE, Stuttgart University, Stuttgart (Germany)

    2016-09-15

    The European HTR R&D project ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D) builds on a solid HTR technology foundation in Europe, established through former national UK and German HTR programs and in European framework programs. ARCHER runs from 2011 to 2015 and targets selected HTR R&D subjects that would specifically support demonstration, with a focus on experimental effort. In line with the R&D and deployment strategy of the European Sustainable Nuclear Energy Technology Platform (SNETP) ARCHER contributes to maintaining, strengthening and expanding the HTR knowledge base in Europe to lay the foundations for demonstration of nuclear cogeneration with HTR systems. The project consortium encompasses conventional and nuclear industry, utilities, Technical Support Organizations, R&D organizations and academia. ARCHER shares results with international partners in the Generation IV International Forum and collaborates directly with related projects in the US, China, Japan, the Republic of Korea and South Africa. The ARCHER project has finished, and the paper comprises an overview of the achievements of the project.

  20. Technological trends in automobiles.

    Science.gov (United States)

    Horton, E J; Compton, W D

    1984-08-10

    Current technological trends in the automotive industry reflect many diverse disciplines. Electronics and microprocessors, new engine transmission concepts, composite and ceramic materials, and computer-aided design and manufacture will combine to make possible the creation of advanced automobiles offering outstanding quality, fuel economy, and performance. A projected "average" vehicle of the 1990's is described to illustrate the application of these new concepts.

  1. The impact of project marketing on the projects finality

    Directory of Open Access Journals (Sweden)

    Oxana SAVCIUC

    2015-06-01

    Full Text Available In the last years we assist at the level of the Republic of Moldova and also at international level at a trend to offer financial support with a special focus on project-based funding. Once with the appearance and development of the project concept, other related concepts are being developed such as project management or newly, we can also speak about the projects marketing. Until recently, the product marketing was intensely discussed; concepts such as services marketing appeared afterwards, but also the specific marketing for various branches, such as agromarketing, political marketing, etc. Given that fact that the projects are a product / service itself, at the moment, more and more often projects marketing is discussed.

  2. [Dust storms trend in the Capital Circle of China over the past 50 years and its correlation with temperature, precipitation and wind].

    Science.gov (United States)

    Chen, Yu-fu; Tang, Hai-ping

    2005-01-01

    The trends of number of dust storm days of the selected 11 meteorological stations from their established year to 2000 as well as their correlations with temperature, precipitation and wind are revealed. The number of dust storm days of the Capital Circle of China is distinctly variable in space and time. The numbers of dust storm days of the western area are far more than those of the eastern area. The interannual variability of number of dust storm days is remarkable. The number of dust storm days of the following 7 stations, Erlianhaote, Abaga, Xilinhaote, Fengning, Zhangjiakou, Huailai and Beijing, declined along the past decades, but those of the other four stations had no significant upward or downward trends. There is a marked seasonality of the number of dust storm days, and the maximum was in April. The correlation between number of dust storm days and number of days of mean wind velocity > 5 m/s, which is critical wind velocity to entrain sand into the air, was strongest among the three climatic factor. There were significant positive correlations between the number of dust storm days and number of days of mean wind velocity > 5 m/s in 6 stations. The second strongest climatic factor correlated with the number of dust storm days is temperature. There are significant negative correlations between the number of dust storm days and mean annual temperature, mean winter temperature, mean spring temperature in 3 or 4 stations. The correlation between the number of dust storm days and precipitation is weakest. Only one station, Zhurihe, showes significant negative correlation between the number of dust storm days and spring rainfall. There are 4 stations whose number of dust storm days don't significantly correlate with the climate. In the end, the spatial-temporal variability of dust storms and its relation with climate in the Capital Circle of China were discussed thoroughly.

  3. Sectoral trends in global energy use and greenhouse gas emissions

    International Nuclear Information System (INIS)

    de Ia Rue du Can, Stephane; Price, Lynn

    2008-01-01

    Integrated assessment models have been used to project both baseline and mitigation greenhouse gas emissions scenarios. Results of these scenarios are typically presented for a number of world regions and end-use sectors, such as industry, transport, and buildings. Analysts interested in particular technologies and policies, however, require more detailed information to understand specific mitigation options in relation to business-as-usual trends. This paper presents sectoral trend for two of the scenarios produced by the Intergovernmental Panel on Climate Change's Special Report on Emissions Scenarios. Global and regional historical trends in energy use and carbon dioxide emissions over the past 30 years are examined and contrasted with projections over the next 30 years. Macro-activity indicators are analyzed as well as trends in sectoral energy and carbon demand. This paper also describes a methodology to calculate primary energy and carbon dioxide emissions at the sector level, accounting for the full energy and emissions due to sectoral activities. (author)

  4. Mixed layer depth trends in the Bay of Biscay over the period 1975-2010.

    Directory of Open Access Journals (Sweden)

    Xurxo Costoya

    Full Text Available Wintertime trends in mixed layer depth (MLD were calculated in the Bay of Biscay over the period 1975-2010 using the Simple Ocean Data Assimilation (SODA package. The reliability of the SODA database was confirmed correlating its results with those obtained from the experimental Argo database over the period 2003-2010. An iso-thermal layer depth (TLD and an iso-pycnal layer depth (PLD were defined using the threshold difference method with ΔT = 0.5°C and Δσθ = 0.125 kg/m3. Wintertime trends of the MLD were calculated using winter extended (December-March anomalies and annual maxima. Trends calculated for the whole Bay of Biscay using both parameters (TLD and PLD showed to be dependent on the area. Thus, MLD became deeper in the southeastern corner and shallower in the rest of the area. Air temperature was shown to play a key role in regulating the different spatial behavior of the MLD. Negative air temperature trends localized in the southeastern corner coincide with MLD deepening in this area, while, positive air temperature trends are associated to MLD shoaling in the rest of the bay. Additionally, the temperature trend calculated along the first 700 m of the water column is in good agreement with the different spatial behavior revealed for the MLD trend.

  5. Hot trends in design : chic sustainability, unique driving factors and boutique green roofs

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, L.S. [American Society of Landscape Architects, Washington, DC (United States)]|[Greenroofs.com, Alpharetta, GA (United States); Kiers, K. [Greenroofs.com, Alpharetta, GA (United States)

    2007-07-01

    Green roofs are well known for their ecological benefits but less for their architectural usage. Green roofs offer more to the urban landscape than simply ecological, economic and aesthetic attributes of storm water management, temperature and energy reduction, and provision of additional green space. This paper focused on the top ten architectural trends in vegetated rooftop design. It addressed issues regarding client demands for green roofs and questioned if green roofs should be defined solely by their function as an ecological cover. The top ten trends revealed out-of-the ordinary applications, specialty designs and unusual projects on the boards. The paper looked beyond storm water and heat islands, and explored plans for innovative recreation, including a rooftop ski slope in Delft, the Netherlands, and a converted helipad turned into temporary grass tennis court in Dubai. The paper also presented less typical green roof market drivers, such as a doggie green space for a 10-year old, 9-pound Yorkie and a rooftop garden with plants from the Bible as a teaching laboratory for ministers. Other proposed projects that were discussed included plans for rice paddies on rooftop farms in China and the Vancouver Olympic Village with 50 per cent green roof coverage. The top ten list was organized under the following topics: boutique green roofs; sports and recreation; living roofs and living walls; eco resorts, hotels and therapeutic gardens; food on the roof; cutting edge applications; government and big box applications, cool green residences; mega green roofs; and, visionary proposed projects. 77 refs., 77 figs.

  6. Project development symposium

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Papers were presented on the following: project evaluation; case studies - minerals; finance; applied finance; legal; manpower/industrial relations; and new technologies. Those papers on the coal industry were: mine planning for coal project development; the planning and management of a lignite exploration contract in Thailand; development of the West Cliff extended project; Ulan: a resource development; Saxonvale mine development a case study in project planning and project management; the role of marketing in the development of a new coal project; technical support for coal marketing; infrastructure development for the Ulan project; underground mine project developments; the bucketwheel excavator at Goonyella - a case study; tax aspects of mining development projects; cost of capital mining development projects; and trends in development project finance. 16 papers were abstracted separately.

  7. Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal

    Science.gov (United States)

    Cardoso, Rita M.; Soares, Pedro M. M.; Lima, Daniela C. A.; Miranda, Pedro M. A.

    2018-02-01

    Large temperature spatio-temporal gradients are a common feature of Mediterranean climates. The Portuguese complex topography and coastlines enhances such features, and in a small region large temperature gradients with high interannual variability is detected. In this study, the EURO-CORDEX high-resolution regional climate simulations (0.11° and 0.44° resolutions) are used to investigate the maximum and minimum temperature projections across the twenty-first century according to RCP4.5 and RCP8.5. An additional WRF simulation with even higher resolution (9 km) for RCP8.5 scenario is also examined. All simulations for the historical period (1971-2000) are evaluated against the available station observations and the EURO-CORDEX model results are ranked in order to build multi-model ensembles. In present climate models are able to reproduce the main topography/coast related temperature gradients. Although there are discernible differences between models, most present a cold bias. The multi-model ensembles improve the overall representation of the temperature. The ensembles project a significant increase of the maximum and minimum temperatures in all seasons and scenarios. Maximum increments of 8 °C in summer and autumn and between 2 and 4 °C in winter and spring are projected in RCP8.5. The temperature distributions for all models show a significant increase in the upper tails of the PDFs. In RCP8.5 more than half of the extended summer (MJJAS) has maximum temperatures exceeding the historical 90th percentile and, on average, 60 tropical nights are projected for the end of the century, whilst there are only 7 tropical nights in the historical period. Conversely, the number of cold days almost disappears. The yearly average number of heat waves increases by seven to ninefold by 2100 and the most frequent length rises from 5 to 22 days throughout the twenty-first century. 5% of the longest events will last for more than one month. The amplitude is overwhelming

  8. North Atlantic-Fennoscandian Holocene climate trends and mechanisms

    NARCIS (Netherlands)

    Sejrup, H.P.; Seppä, H.; McKay, N.; Kaufman, D.S.; Geirsdottir, A.; de Vernal, A.; Renssen, H.; Husum, K.; Jennings, A.; Andrews, J.T.

    2016-01-01

    To investigate the mechanisms behind Holocene regional climate trends from north of 58°N in the North Atlantic-Fennoscandian region Principal Component Analysis (PCA) was performed and a temperature anomaly stack produced from 81 proxy derived summer temperature time series from 74 sites. The PC

  9. Precipitation and Evaporation Trends in Texas

    Science.gov (United States)

    Dixon, R. W.

    2009-05-01

    Texas is a large land area with at least three different climate types. As such it is expected that the results of climate change will not be homogenous. This paper presents results of a study of long trends in Texas precipitation and evaporation using data from the US Historical Climatology Network and the Texas Water Development Board. It shows that the long term trends of these variables is not homogenous and exhibits great variability in both spatial extent and magnitude. This variability must be considered in planning for future water supply or other mitigation projects.

  10. Special study for the statistical evaluation of groundwater data trends. Final report

    International Nuclear Information System (INIS)

    1993-05-01

    Analysis of trends over time in the concentrations of chemicals in groundwater at Uranium Mill Tailings Remedial Action (UMTRA) Project sites can provide valuable information for monitoring the performance of disposal cells and the effectiveness of groundwater restoration activities. Random variation in data may obscure real trends or may produce the illusion of a trend where none exists, so statistical methods are needed to reliably detect and estimate trends. Trend analysis includes both trend detection and estimation. Trend detection uses statistical hypothesis testing and provides a yes or no answer regarding the existence of a trend. Hypothesis tests try to reach a balance between false negative and false positive conclusions. To quantify the magnitude of a trend, estimation is required. This report presents the statistical concepts that are necessary for understanding trend analysis. The types of patterns most likely to occur in UMTRA data sets are emphasized. Two general approaches to analyzing data for trends are proposed and recommendations are given to assist UMTRA Project staff in selecting an appropriate method for their site data. Trend analysis is much more difficult when data contain values less than the reported laboratory detection limit. The complications that arise are explained. This report also discusses the impact of data collection procedures on statistical trend methods and offers recommendations to improve the efficiency of the methods and reduce sampling costs. Guidance for determining how many sampling rounds might be needed by statistical methods to detect trends of various magnitudes is presented. This information could be useful in planning site monitoring activities

  11. Secular trends in monthly heating and cooling demands in Croatia

    Science.gov (United States)

    Cvitan, Lidija; Sokol Jurković, Renata

    2016-08-01

    This paper analyzes long-term heating and cooling trends for five locations in Croatia from 1901 to 2008 to assist in the revision of Croatia's heating and cooling energy policy. Trends in monthly heating degree-days (HDD) and cooling degree-days (CDD) were determined for three related temperature threshold values each and analyzed to provide insight into the influence of desired thermal comfort on the extent of changes in energy consumption. Monthly trends in the corresponding number of heating days (HD) and cooling days (CD) were also analyzed. A basic investigation of HDD, HD, CDD, and CD trends proved to be essential to the development of a complete description of important climate-related conditions that impact energy demands associated with heating and cooling. In a few cases, the dependence of the trends on the implemented temperature thresholds was rather pronounced and was reflected in great spatial and temporal variations in monthly trends. The statistical significance of the detected monthly trends illustrated a diverse range of possible impacts of climate changes on heating and cooling energy consumption both across and within three main climate regions in Croatia (continental, mountainous, and maritime). It is confirmed that the applied monthly scale for analyses is suitable for assessing heating and cooling practices.

  12. Research on trend of warm-humid climate in Central Asia

    Science.gov (United States)

    Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng

    2017-07-01

    Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the core district, the warm-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of warm and humid conditions. Finally, using the model to analyzed the distribution of warm-dry trend, the warm-wet trend, the cold-dry trend and the cold-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were warm-humid and warm-dry trends, but only a small number of regions showed warm-dry and cold-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper

  13. Modern Trends in Inorganic Chemistry

    Indian Academy of Sciences (India)

    Administrator

    The series of symposia on 'Modern Trends in Inorganic Chemistry' (MTIC), which began in 1985 at the Indian Association for Cultivation of Science, Calcutta has evolved into a forum for the Inorganic Chemistry fraternity of the country to meet every two years and discuss the current status and future projections of research in.

  14. Long-term projections of temperature-related mortality risks for ischemic stroke, hemorrhagic stroke, and acute ischemic heart disease under changing climate in Beijing, China.

    Science.gov (United States)

    Li, Tiantian; Horton, Radley M; Bader, Daniel A; Liu, Fangchao; Sun, Qinghua; Kinney, Patrick L

    2018-03-01

    Changing climates have been causing variations in the number of global ischemic heart disease and stroke incidences, and will continue to affect disease occurrence in the future. To project temperature-related mortality for acute ischemic heart disease, and ischemic and hemorrhagic stroke with concomitant climate warming. We estimated the exposure-response relationship between daily cause-specific mortality and daily mean temperature in Beijing. We utilized outputs from 31 downscaled climate models and two representative concentration pathways (RCPs) for the 2020s, 2050s, and 2080s. This strategy was used to estimate future net temperature along with heat- and cold-related deaths. The results for predicted temperature-related deaths were subsequently contrasted with the baseline period. In the 2080s, using the RCP8.5 and no population variation scenarios, the net total number of annual temperature-related deaths exhibited a median value of 637 (with a range across models of 434-874) for ischemic stroke; this is an increase of approximately 100% compared with the 1980s. The median number of projected annual temperature-related deaths was 660 (with a range across models of 580-745) for hemorrhagic stroke (virtually no change compared with the 1980s), and 1683 (with a range across models of 1351-2002) for acute ischemic heart disease (a slight increase of approximately 20% compared with the 1980s). In the 2080s, the monthly death projection for hemorrhagic stroke and acute ischemic heart disease showed that the largest absolute changes occurred in summer and winter while the largest absolute changes for ischemic stroke occurred in summer. We projected that the temperature-related mortality associated with ischemic stroke will increase dramatically due to climate warming. However, projected temperature-related mortality pertaining to acute ischemic heart disease and hemorrhagic stroke should remain relatively stable over time. Copyright © 2017 Elsevier Ltd. All rights

  15. Inland Water Temperature: An Ideal Indicator for the National Climate Assessment

    Science.gov (United States)

    Hook, S. J.; Lenters, J. D.; O'Reilly, C.; Healey, N. C.

    2014-12-01

    NASA is a significant contributor to the U.S. National Climate Assessment (NCA), which is a central component of the 2012-2022 U.S. Global Change Research Program Strategic Plan. The NCA has identified the need for indicators that provide a clear, concise way of communicating to NCA audiences about not only the status and trends of physical drivers of the climate system, but also the ecological and socioeconomic impacts, vulnerabilities, and responses to those drivers. We are using thermal infrared satellite data in conjunction with in situ measurements to produce water temperatures for all the large inland water bodies in North America for potential use as an indicator for the NCA. Recent studies have revealed significant warming of inland waters throughout the world. The observed rate of warming is - in many cases - greater than that of the ambient air temperature. These rapid, unprecedented changes in inland water temperatures have profound implications for lake hydrodynamics, productivity, and biotic communities. Scientists are just beginning to understand the global extent, regional patterns, physical mechanisms, and ecological consequences of lake warming. As part of our earlier studies we have collected thermal infrared satellite data from those satellite sensors that provide long-term and frequent spaceborne thermal infrared measurements of inland waters including ATSR, AVHRR, and MODIS and used these to examine trends in water surface temperature for approximately 100 of the largest inland water bodies in the world. We are now extending this work to generate temperature time-series of all North American inland water bodies that are sufficiently large to be studied using 1km resolution satellite data for the last 3 decades. These data are then being related to changes in the surface air temperature and compared with regional trends in water surface temperature derived from CMIP5/IPCC model simulations/projections to better predict future temperature changes

  16. USE OF TREND IMPACT ANALYSIS AFFECTS PROJECTIONS OF EUCALYPTUS CULTIVATION IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Samir Lotfi

    2009-10-01

    Full Text Available Eucalyptus forestry is an important source of competitive advantage for Brazil and, since eucalyptus is a basic raw material for industrial segments that are undergoing great expansion, monitoring the growth rate of cultivated area is increasingly relevant.This study resorted to Trend Impact Analysis (TIA to forecast the planting of eucalyptus in Brazil’s reforested areas, adjusting the linear regression of historical data in the light of three events that were under way or that will probably influence the trend: timber funds, the world financial crisis and Biomass to Liquid (BTL technology.The results allow one to infer that, in the short term, eucalyptus cultivation will expand at a rate similar to that of the linear curve, adversely affected by the world crisis and positively affected by timber funds.By 2016, however, the expansion of eucalyptus plantations is expected, largely because of the commercial scale of BTL technology.Key words: Trend Impact Analysis. Eucalyptus. Future Studies.

  17. Integrated project management type contracts

    International Nuclear Information System (INIS)

    Heisler, S.I.

    1975-01-01

    The concept of integrated project management represents a single source to which the owner can turn for all project management functions excepting for those relating to outside parties such as site purchase, personnel selection etc. Other functions such as design, procurement, construction management, schedule and cost control, quality assurance/quality control are usually handled by the integrated project manager as the agent of the owner. The arrangement is flexible and the responsibilities can be varied to suit the size and experience of the owner. Past experience in the United States indicates an increase in the trend toward IPM work and it appears that overseas this trend is developing also. (orig./RW) [de

  18. Causes of spring vegetation growth trends in the northern mid–high latitudes from 1982 to 2004

    International Nuclear Information System (INIS)

    Mao Jiafu; Shi Xiaoying; Thornton, Peter E; Piao Shilong; Wang Xuhui

    2012-01-01

    The Community Land Model version 4 (CLM4) is applied to explore the spatial–temporal patterns of spring (April–May) vegetation growth trends over the northern mid–high latitudes (NMH) (>25°N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI–temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experience temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO 2 . Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity. (letter)

  19. Causes of spring vegetation greenness trends in the northern mid-high latitudes from 1982 to 2004

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jiafu [ORNL; Shi, Xiaoying [ORNL; Thornton, Peter E [ORNL; Shilong, Dr. Piao [Peking University; Xuhui, Dr. Wang [Peking University

    2012-01-01

    The Community Land Model version 4 (CLM4) is applied to explore the spatial temporal patterns of spring (April May) vegetation growth trends over the northern mid high latitudes (NMH) (>25 N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experience temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO2. Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity.

  20. Future Scenarios of Land Change Based on Empirical Data and Demographic Trends

    Science.gov (United States)

    Sleeter, Benjamin M.; Wilson, Tamara S.; Sharygin, Ethan; Sherba, Jason T.

    2017-11-01

    Changes in land use and land cover (LULC) have important and fundamental interactions with the global climate system. Top-down global scale projections of land use change have been an important component of climate change research; however, their utility at local to regional scales is often limited. The goal of this study was to develop an approach for projecting changes in LULC based on land use histories and demographic trends. We developed a set of stochastic, empirical-based projections of LULC change for the state of California, for the period 2001-2100. Land use histories and demographic trends were used to project a "business-as-usual" (BAU) scenario and three population growth scenarios. For the BAU scenario, we projected developed lands would more than double by 2100. When combined with cultivated areas, we projected a 28% increase in anthropogenic land use by 2100. As a result, natural lands were projected to decline at a rate of 139 km2 yr-1; grasslands experienced the largest net decline, followed by shrublands and forests. The amount of cultivated land was projected to decline by approximately 10%; however, the relatively modest change masked large shifts between annual and perennial crop types. Under the three population scenarios, developed lands were projected to increase 40-90% by 2100. Our results suggest that when compared to the BAU projection, scenarios based on demographic trends may underestimate future changes in LULC. Furthermore, regardless of scenario, the spatial pattern of LULC change was likely to have the greatest negative impacts on rangeland ecosystems.

  1. Future scenarios of land change based on empirical data and demographic trends

    Science.gov (United States)

    Sleeter, Benjamin M.; Wilson, Tamara; Sharygin, Ethan; Sherba, Jason

    2017-01-01

    Changes in land use and land cover (LULC) have important and fundamental interactions with the global climate system. Top-down global scale projections of land use change have been an important component of climate change research; however, their utility at local to regional scales is often limited. The goal of this study was to develop an approach for projecting changes in LULC based on land use histories and demographic trends. We developed a set of stochastic, empirical-based projections of LULC change for the state of California, for the period 2001–2100. Land use histories and demographic trends were used to project a “business-as-usual” (BAU) scenario and three population growth scenarios. For the BAU scenario, we projected developed lands would more than double by 2100. When combined with cultivated areas, we projected a 28% increase in anthropogenic land use by 2100. As a result, natural lands were projected to decline at a rate of 139 km2 yr−1; grasslands experienced the largest net decline, followed by shrublands and forests. The amount of cultivated land was projected to decline by approximately 10%; however, the relatively modest change masked large shifts between annual and perennial crop types. Under the three population scenarios, developed lands were projected to increase 40–90% by 2100. Our results suggest that when compared to the BAU projection, scenarios based on demographic trends may underestimate future changes in LULC. Furthermore, regardless of scenario, the spatial pattern of LULC change was likely to have the greatest negative impacts on rangeland ecosystems.

  2. Hydro-meteorological trends in the Gidabo catchment of the Rift Valley Lakes Basin of Ethiopia

    Science.gov (United States)

    Belihu, Mamuye; Abate, Brook; Tekleab, Sirak; Bewket, Woldeamlak

    2018-04-01

    The global and regional variability and changes of climate and stream flows are likely to have significant influence on water resource availability. The magnitude and impacts of climate variability and change differs spatially and temporally. This study examines the long term hydroclimatic changes, analyses of the hydro-climate variability and detect whether there exist significant trend or not in the Gidabo catchment, rift valley lakes basin of Ethiopia. Precipitation, temperature and stream flow time series data were used in monthly, seasonal and annual time scales. The precipitation and temperature data span is between 1982 and 2014 and that of stream flow is between 1976 and 2006. To detect trends the analysis were done by using Mann Kendal (MK), Sen's graphical method and to detect change point using the Pettit test. The comparison of trend analysis between MK trend test and Sen graphical method results depict mostly similar pattern. The annual rainfall trends exhibited a significant decrease by about 12 mm per year in the upstream, which is largely driven by the significant decrease in the peak season rainfall. The Pettit test revealed that the years 1997 and 2007 were the change points. It is noted that the rise of temperature over a catchment might have decreased the availability of soil moisture which resulted in less runoff. The temperature analyses also revealed that the catchment was getting warmer; particularly in the upstream. The minimum temperature trend showed a significant increase about 0.08°c per annum. There is generally a decreasing trend in stream flow. The monthly stream flow also exhibited a decreasing trend in February, March and September. The decline in annual and seasonal rainfall and the increase in temperature lead to more evaporation and directly affecting the stream flow negatively. This trend compounded with the growth of population and increasing demand for irrigation water exacerbates the competing demand for water resources. It

  3. Climate variability of heat wave and projection of warming scenario in Taiwan

    Science.gov (United States)

    Lin, C. Y.; Chien, Y. Y.; Su, C. J.

    2017-12-01

    This study examined the climate variability of heat wave (HW) according to air temperature and relative humidity to determine trends of variation and stress threshold in three major cities of Taiwan, Taipei (TP), Taichung (TC) and Kaohsiung (KH), during in the past four decades (1971-2010). According to data available, the wet-bulb globe temperature (WBGT) heat stress for the three studied cities was also calculated for the past (2003-2012) and simulated under the projected warming scenario for the end of this century (2075-2099) using ECHAM5/MPIOM-WRF (ECW) dynamic downscaling 5-km resolution Analysis showed that past decade (2001-2010) saw increase not only in number of HW days in all three cities but also the duration of each HW event in TP and KH. Simulation results revealed that ECW captures well the characteristics of data distribution in these three cities during 2003-2012. Under the A1B projection, ECW yielded higher WBGT in all three cities for 2075-2099. The WBGT in TP indicated that the heat stress for 50% of the days in July and August by 2075-2099 will be at danger level (WBGT ³ 31 °C). Even the median WBGT in TC and KH (30.91°C and 30.88°C, respectively), are close to 31°C. Hence, the heat stress in all three cities will either exceed or approach the danger level by the end of this century. Such projection under the global warming trend would necessitate adaptation and mitigation, and the huge impact of dangerous heat stress on public health merits urgent attention for Taiwan.

  4. Non-parametric trend analysis of the aridity index for three large arid and semi-arid basins in Iran

    Science.gov (United States)

    Ahani, Hossien; Kherad, Mehrzad; Kousari, Mohammad Reza; van Roosmalen, Lieke; Aryanfar, Ramin; Hosseini, Seyyed Mashaallah

    2013-05-01

    Currently, an important scientific challenge that researchers are facing is to gain a better understanding of climate change at the regional scale, which can be especially challenging in an area with low and highly variable precipitation amounts such as Iran. Trend analysis of the medium-term change using ground station observations of meteorological variables can enhance our knowledge of the dominant processes in an area and contribute to the analysis of future climate projections. Generally, studies focus on the long-term variability of temperature and precipitation and to a lesser extent on other important parameters such as moisture indices. In this study the recent 50-year trends (1955-2005) of precipitation (P), potential evapotranspiration (PET), and aridity index (AI) in monthly time scale were studied over 14 synoptic stations in three large Iran basins using the Mann-Kendall non-parametric test. Additionally, an analysis of the monthly, seasonal and annual trend of each parameter was performed. Results showed no significant trends in the monthly time series. However, PET showed significant, mostly decreasing trends, for the seasonal values, which resulted in a significant negative trend in annual PET at five stations. Significant negative trends in seasonal P values were only found at a number of stations in spring and summer and no station showed significant negative trends in annual P. Due to the varied positive and negative trends in annual P and to a lesser extent PET, almost as many stations with negative as positive trends in annual AI were found, indicating that both drying and wetting trends occurred in Iran. Overall, the northern part of the study area showed an increasing trend in annual AI which meant that the region became wetter, while the south showed decreasing trends in AI.

  5. Climate change projections for Tamil Nadu, India: deriving high-resolution climate data by a downscaling approach using PRECIS

    Science.gov (United States)

    Bal, Prasanta Kumar; Ramachandran, A.; Geetha, R.; Bhaskaran, B.; Thirumurugan, P.; Indumathi, J.; Jayanthi, N.

    2016-02-01

    In this paper, we present regional climate change projections for the Tamil Nadu state of India, simulated by the Met Office Hadley Centre regional climate model. The model is run at 25 km horizontal resolution driven by lateral boundary conditions generated by a perturbed physical ensemble of 17 simulations produced by a version of Hadley Centre coupled climate model, known as HadCM3Q under A1B scenario. The large scale features of these 17 simulations were evaluated for the target region to choose lateral boundary conditions from six members that represent a range of climate variations over the study region. The regional climate, known as PRECIS, was then run 130 years from 1970. The analyses primarily focus on maximum and minimum temperatures and rainfall over the region. For the Tamil Nadu as a whole, the projections of maximum temperature show an increase of 1.0, 2.2 and 3.1 °C for the periods 2020s (2005-2035), 2050s (2035-2065) and 2080s (2065-2095), respectively, with respect to baseline period (1970-2000). Similarly, the projections of minimum temperature show an increase of 1.1, 2.4 and 3.5 °C, respectively. This increasing trend is statistically significant (Mann-Kendall trend test). The annual rainfall projections for the same periods indicate a general decrease in rainfall of about 2-7, 1-4 and 4-9 %, respectively. However, significant exceptions are noticed over some pockets of western hilly areas and high rainfall areas where increases in rainfall are seen. There are also indications of increasing heavy rainfall events during the northeast monsoon season and a slight decrease during the southwest monsoon season. Such an approach of using climate models may maximize the utility of high-resolution climate change information for impact-adaptation-vulnerability assessments.

  6. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature risk surfaces.

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J; Nolte, Christopher G; Spero, Tanya L; Hubbell, Bryan; Rappold, Ana G

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results varied by region. Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1.6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.6 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels.

  7. Oklahoma Study of Educator Supply and Demand: Trends and Projections

    Science.gov (United States)

    Berg-Jacobson, Alex; Levin, Jesse

    2015-01-01

    In June 2014, the Oklahoma State Regents of Higher Education (OSRHE) commissioned American Institutes for Research (AIR) to conduct a study to better understand both historical and future predicted trends of educator supply and demand across Oklahoma. OSRHE commissioned the study in partnership with the Oklahoma Commission for Teacher Preparation…

  8. Regional Projections of Extreme Apparent Temperature Days in Africa and the Related Potential Risk to Human Health

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2015-10-01

    Full Text Available Regional climate modelling was used to produce high resolution climate projections for Africa, under a “business as usual scenario”, that were translated into potential health impacts utilizing a heat index that relates apparent temperature...

  9. Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study

    Science.gov (United States)

    Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek

    2018-04-01

    The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.

  10. A climatic deconstruction of recent drought trends in the United States

    International Nuclear Information System (INIS)

    Ficklin, Darren L; Maxwell, Justin T; Gholizadeh, Hamed; Letsinger, Sally L

    2015-01-01

    We present high spatial-resolution trends of the Palmer drought severity index (PDSI), potential evapotranspiration (PET), and selected climate variables from 1979–2013 for the contiguous United States in order to gain an understanding of recent drought trends and their climatic forcings. Based on a spatial grouping analysis, four regions of increasing (upper Midwest, Louisiana, southeastern United States (US), and western US) and decreasing (New England, Pacific Northwest, upper Great Plains, and Ohio River Valley) drought trends based on Mann–Kendall Z values were found. Within these regions, partial correlation and multiple regression for trends in climate variables and PDSI were performed to examine potential climatic controls on these droughts. As expected, there was a US-wide concurrence on drought forcing by precipitation. However, there was correspondence of recent PET trends with recent drought trends in many regions. For regions with an increase in recent droughts, average air temperature was generally the second most important variable after precipitation in determining recent drought trends. Across the regions where recent drought trends are decreasing, there was no clear ranking of climate-variable importance, where trends in average temperature, specific humidity and net radiation all played significant regional roles in determining recent drought trends. Deconstructing the trends in drought show that, while there are regions in the US showing positive and negative trends in drought conditions, the climate forcings for these drought trends are regionally specific. The results of this study allow for the interpretation of the role of the changing hydroclimatic cycle in recent drought trends, which also have implications for the current and impending results of climate change. (letter)

  11. Can Google Trends search queries contribute to risk diversification?

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2013-01-01

    Roč. 3, č. 2713 (2013), s. 1-5 ISSN 2045-2322 R&D Projects: GA ČR GA402/09/0965 Institutional support: RVO:67985556 Keywords : Google Trends * diversification * portfolio Subject RIV: AH - Economics Impact factor: 5.078, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kristoufek-can google trends search queries contribute to risk diversification.pdf

  12. Technical Basis - Spent Nuclear Fuels (SNF) Project Radiation and Contamination Trending Program

    International Nuclear Information System (INIS)

    ELGIN, J.C.

    2000-01-01

    This report documents the technical basis for the Spent Nuclear Fuel (SNF) Program radiation and contamination trending program. The program consists of standardized radiation and contamination surveys of the KE Basin, radiation surveys of the KW basin, radiation surveys of the Cold Vacuum Drying Facility (CVD), and radiation surveys of the Canister Storage Building (CSB) with the associated tracking. This report also discusses the remainder of radiological areas within the SNFP that do not have standardized trending programs and the basis for not having this program in those areas

  13. Projected rainfall and temperature changes over Malaysia at the end of the 21st century based on PRECIS modelling system

    Science.gov (United States)

    Loh, Jui Le; Tangang, Fredolin; Juneng, Liew; Hein, David; Lee, Dong-In

    2016-05-01

    This study investigates projected changes in rainfall and temperature over Malaysia by the end of the 21st century based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2, A1B and B2 emission scenarios using the Providing Regional Climates for Impacts Studies (PRECIS). The PRECIS regional climate model (HadRM3P) is configured in 0.22° × 0.22° horizontal grid resolution and is forced at the lateral boundaries by the UKMO-HadAM3P and UKMOHadCM3Q0 global models. The model performance in simulating the present-day climate was assessed by comparing the modelsimulated results to the Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) dataset. Generally, the HadAM3P/PRECIS and HadCM3Q0/PRECIS simulated the spatio-temporal variability structure of both temperature and rainfall reasonably well, albeit with the presence of cold biases. The cold biases appear to be associated with the systematic error in the HadRM3P. The future projection of temperature indicates widespread warming over the entire country by the end of the 21st century. The projected temperature increment ranges from 2.5 to 3.9°C, 2.7 to 4.2°C and 1.7 to 3.1°C for A2, A1B and B2 scenarios, respectively. However, the projection of rainfall at the end of the 21st century indicates substantial spatio-temporal variation with a tendency for drier condition in boreal winter and spring seasons while wetter condition in summer and fall seasons. During the months of December to May, ~20-40% decrease of rainfall is projected over Peninsular Malaysia and Borneo, particularly for the A2 and B2 emission scenarios. During the summer months, rainfall is projected to increase by ~20-40% across most regions in Malaysia, especially for A2 and A1B scenarios. The spatio-temporal variations in the projected rainfall can be related to the changes in the weakening monsoon circulations, which in turn alter the patterns of

  14. New Jersey's Segregated Schools: Trends and Paths Forward

    Science.gov (United States)

    Orfield, Gary; Ee, Jongyeon; Coughlan, Ryan

    2017-01-01

    This report updates earlier research published by the Civil Rights Project in 2013. That report detailed troubling racial and economic segregation trends and patterns from 1989-2010. The latest report includes new data from 2010-2015. The research updates public school enrollment trends and details segregation in the state's schools by race and…

  15. Global trends in significant wave height and marine wind speed from the ERA-20CM

    Science.gov (United States)

    Aarnes, Ole Johan; Breivik, Øyvind

    2016-04-01

    The ERA-20CM is one of the latest additions to the ERA-series produced at the European Center for Medium-Range Weather Forecasts (ECMWF). This 10 member ensemble is generated with a version of the Integrated Forecast System (IFS), a coupled atmosphere-wave model. The model integration is run as a AMIP (Atmospheric Model Intercomparison Project) constrained by CMIP5 recommended radiative forcing and different realizations of sea-surface temperature (SST) and sea-ice cover (SIC) prescribed by the HadISST2 (Met Office Hadley Center). While the ERA-20CM is unable to reproduce the actual synoptic conditions, it is designed to offer a realistic statistical representation of the past climate, spanning the period 1899-2010. In this study we investigate global trends in significant wave height and marine wind speed based on ERA-20CM, using monthly mean data, upper percentiles and monthly/annual maxima. The aim of the study is to assess the quality of the trends and how these estimates are affected by different SST and SIC. Global trends are compared against corresponding estimates obtained with ERA-Interim (1979-2009), but also crosschecked against ERA-20C - an ECMWF pilot reanalysis of the 20th-century, known to most trustworthy in the Northern Hemisphere extratropics. Over the period 1900-2009, the 10 member ensemble yields trends mainly within +/- 5% per century. However, significant trends of opposite signs are found locally. Certain areas, like the eastern equatorial Pacific, highly affected by the El Niño Southern Oscillation, show stronger trends. In general, trends based on statistical quantities further into the tail of the distribution are found less reliable.

  16. Trends of Ozone in Switzerland since 1992 (TROZOS)

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, C.; Mathis, H.; Furger, M.; Prevot, A.S.H

    2004-07-01

    This work reports on the trends of the daily afternoon (noon to midnight) maximum ozone concentrations at 15 of the 16 stations of the Swiss air quality monitoring network (NABEL) during the period 1992-2002. The use of numerous meteorological parameters and additional data allowed a detailed seasonal analysis of the influence of the weather on the ozone maxima at the different stations. An analysis of covariance (ANCOVA) was performed separately for each station and season in order to detect the parameters which best explain the variability of the daily ozone maximum concentrations. During the warm seasons (summer and spring) the most explanatory parameters are those related to the ozone production, in particular the afternoon temperature. In winter, the most explanatory variables are the ones influencing the vertical mixing and thus the ozone destruction by titration with NO and dry deposition, like the afternoon global radiation. The trends of both the measured and meteorologically corrected ozone maxima were calculated. The year-to-year variability in the ozone maxima was lowered by a factor of 3 by the meteorological correction. Significantly positive trends of corrected ozone maxima of 0.3 - 1.1 ppb/year were found at the low altitude stations in winter and autumn as well as at Lausanne - urban station - in all the seasons, mainly due to the lower loss of ozone by reaction with NO as a consequence of the decreased emissions of primary pollutants during the 90s. This could be partially confirmed by the lower trends of O{sub X} (sum O{sub 3} of and NO{sub 2}) maxima compared to the trends in ozone maxima. The absence of negative trends of the median or mean ozone maxima north of the Alps in summer suggests that the decrease in the emissions of ozone precursors did not have a strong impact on the afternoon maximum ozone concentrations during the last decade. In contrast to the project TOSS (Trends of Ozone in Southern Switzerland), no significantly negative

  17. Trends of Ozone in Switzerland since 1992 (TROZOS)

    International Nuclear Information System (INIS)

    Ordonez, C.; Mathis, H.; Furger, M.; Prevot, A.S.H.

    2004-07-01

    This work reports on the trends of the daily afternoon (noon to midnight) maximum ozone concentrations at 15 of the 16 stations of the Swiss air quality monitoring network (NABEL) during the period 1992-2002. The use of numerous meteorological parameters and additional data allowed a detailed seasonal analysis of the influence of the weather on the ozone maxima at the different stations. An analysis of covariance (ANCOVA) was performed separately for each station and season in order to detect the parameters which best explain the variability of the daily ozone maximum concentrations. During the warm seasons (summer and spring) the most explanatory parameters are those related to the ozone production, in particular the afternoon temperature. In winter, the most explanatory variables are the ones influencing the vertical mixing and thus the ozone destruction by titration with NO and dry deposition, like the afternoon global radiation. The trends of both the measured and meteorologically corrected ozone maxima were calculated. The year-to-year variability in the ozone maxima was lowered by a factor of 3 by the meteorological correction. Significantly positive trends of corrected ozone maxima of 0.3 - 1.1 ppb/year were found at the low altitude stations in winter and autumn as well as at Lausanne - urban station - in all the seasons, mainly due to the lower loss of ozone by reaction with NO as a consequence of the decreased emissions of primary pollutants during the 90s. This could be partially confirmed by the lower trends of O X (sum O 3 of and NO 2 ) maxima compared to the trends in ozone maxima. The absence of negative trends of the median or mean ozone maxima north of the Alps in summer suggests that the decrease in the emissions of ozone precursors did not have a strong impact on the afternoon maximum ozone concentrations during the last decade. In contrast to the project TOSS (Trends of Ozone in Southern Switzerland), no significantly negative trends of ozone

  18. On the mechanisms of late 20th century sea-surface temperature trends over the Antarctic Circumpolar Current

    Science.gov (United States)

    Kravtsov, Sergey; Kamenkovich, Igor; Hogg, Andrew M.; Peters, John M.

    2011-11-01

    The Antarctic Circumpolar Current (ACC), with its associated three-dimensional circulation, plays an important role in global climate. This study concentrates on surface signatures of recent climate change in the ACC region and on mechanisms that control this change. Examination of climate model simulations shows that they match the observed late 20th century sea-surface temperature (SST) trends averaged over this region quite well, despite underestimating the observed surface-wind increases. Such wind increases, however, are expected to lead to significant cooling of the region, contradicting the observed SST trends. Motivated by recent theories of the ACC response to variable wind and radiative forcing, the authors used two idealized models to assess contributions of various dynamical processes to the SST evolution in the region. In particular, a high-resolution channel model of the ACC responds to increasing winds by net surface ACC warming due to enhanced mesoscale turbulence and associated heat transports in the mixed layer. These fluxes, modeled, in a highly idealized fashion, via increased lateral surface mixing in a coarse-resolution hybrid climate model, substantially offset zonally non-uniform surface cooling due to air-sea flux and Ekman-transport anomalies. These results suggest that the combination of these opposing effects must be accounted for when estimating climate response to any external forcing in the ACC region.

  19. Automating Trend Analysis for Spacecraft Constellations

    Science.gov (United States)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    missions such as DRACO with the intent that mission operations costs be significantly reduced. The goal of the Constellation Spacecraft Trend Analysis Toolkit (CSTAT) project is to serve as the pathfinder for a fully automated trending system to support spacecraft constellations. The development approach to be taken is evolutionary. In the first year of the project, the intent is to significantly advance the state of the art in current trending systems through improved functionality and increased automation. In the second year, the intent is to add an expert system shell, likely through the adaptation of an existing commercial-off-the-shelf (COTS) or government-off-the-shelf (GOTS) tool to implement some level of the trending intelligence that humans currently provide in manual operations. In the third year, the intent is to infuse the resulting technology into a near-term constellation or formation-flying mission to test it and gain experience in automated trending. The lessons learned from the real missions operations experience will then be used to improve the system, and to ultimately incorporate it into a fully autonomous, closed-loop mission operations system that is truly capable of supporting large constellations. In this paper, the process of automating trend analysis for spacecraft constellations will be addressed. First, the results of a survey on automation in spacecraft mission operations in general, and in trending systems in particular will be presented to provide an overview of the current state of the art. Next, a rule-based model for implementing intelligent spacecraft subsystem trending will be then presented, followed by a survey of existing COTS/GOTS tools that could be adapted for implementing such a model. The baseline design and architecture of the CSTAT system will be presented. Finally, some results obtained from initial software tests and demonstrations will be presented.

  20. Analysis of Global Urban Temperature Trends and Urbanization Impacts

    Science.gov (United States)

    Lee, K. I.; Ryu, J.; Jeon, S. W.

    2018-04-01

    Due to urbanization, urban areas are shrinking green spaces and increasing concrete, asphalt pavement. So urban climates are different from non-urban areas. In addition, long-term macroscopic studies of urban climate change are becoming more important as global urbanization affects global warming. To do this, it is necessary to analyze the effect of urbanization on the temporal change in urban temperature with the same temperature data and standards for urban areas around the world. In this study, time series analysis was performed with the maximum, minimum, mean and standard values of surface temperature during the from 1980 to 2010 and analyzed the effect of urbanization through linear regression analysis with variables (population, night light, NDVI, urban area). As a result, the minimum value of the surface temperature of the urban area reflects an increase by a rate of 0.28K decade-1 over the past 31 years, the maximum value reflects an increase by a rate of 0.372K decade-1, the mean value reflects an increase by a rate of 0.208 decade-1, and the standard deviation reflects a decrease by rate of 0.023K decade-1. And the change of surface temperature in urban areas is affected by urbanization related to land cover such as decrease of greenery and increase of pavement area, but socioeconomic variables are less influential than NDVI in this study. This study are expected to provide an approach to future research and policy-planning for urban temperature change and urbanization impacts.

  1. Is climate change intensifying the drying-trend in the Caribbean?

    Science.gov (United States)

    Herrera, D. A.; Ault, T.; Fasullo, J.; Carrillo, C. M.

    2017-12-01

    Since 1950, the Caribbean (11ºN-25ºN; 85ºW-60ºW) has seen a significant drying trend characterized by several recent droughts, some of them contemporaneous with El Niño events. Moreover, the most recent drought from 2013 to 2016 was both the most severe and widespread event since at least 1950, and was associated with high temperatures, likely driven in part by climate change. This work examines the role of increased evaporative demand resulting from warmer temperatures on the drying trend observed in the Caribbean since 1950, using observations and model simulations. Large-scale dynamics associated with drought are also analyzed using sea surface temperature, geopotential height, wind, and precipitation anomalies, as well as radiative fluxes anomalies. Furthermore, land surface model soil moisture and high-resolution self-calibrated Palmer Drought Severity Index (scPDSI) datasets are used to quantify drought severity at local scales. The anthropogenic contribution to drought severity is estimated as the difference between the scPDSI calculated using linearly-detrended temperatures, and the scPDSI computed with the observed trend, with unadjusted precipitation, net radiation, and wind speed. Soil moisture anomalies driven by climate change are derived by comparing a large ensemble of forced simulations against a pre-industrial control. The resulting analysis indicates that anthropogenic forcing has intensified the drying trend in the Caribbean by -0.4 scPDSI-units over 60 years, and has increased the dry-land area by 10%. These findings are consistent with observed potential evapotranspiration (PET) anomalies, which are 30% higher than PET-anomalies estimated using detrended temperatures. These results suggest that climate change is already increasing the risk of drought in the Caribbean by enhancing the atmospheric demand of moisture through temperature, and provide insights into the role of climate change in future drought risk in the region.

  2. Downscaled Climate Change Projections for the Southern Colorado Plateau: Variability and Implications for Vegetation Changes

    Science.gov (United States)

    Garfin, G. M.; Eischeid, J. K.; Cole, K. L.; Ironside, K.; Cobb, N. S.

    2008-12-01

    most striking aspect of projections of future precipitation is steadily decreasing May-June precipitation during the twenty-first century. Though absolute precipitation during this season is small, declining moisture during the arid pre-monsoon will likely decrease soil moisture, and increase drought stress - consequently, increasing vegetation susceptibility the insect outbreaks and disease. Summer precipitation projections show considerable multi-decade variability, but no substantial trends. Winter precipitation shows little interannual variability and no strong trends. By 2090, annual precipitation is projected to decline by 1-5% across much of the region, with greater declines in the southern part of the domain and increases of 1-5% in the northwestern and northeastern parts of the domain. As part of a National Institute for Climate Change Research project, these projected changes will be input into a USDA-FS vegetation response model, in order to estimate species-specific responses to projected climate changes. We expect increasing temperatures, declining annual precipitation, and extreme declines in pre-monsoon season precipitation to generate significant redistribution of some plant species in the Southern Colorado Plateau.

  3. Technology-Enhanced Learning @ CELSTEC: Ausgangslage, Entwicklung und Trends

    NARCIS (Netherlands)

    Klemke, Roland

    2011-01-01

    Klemke, R. (2011). Technology-Enhanced Learning @ CELSTEC: Ausgangslage, Entwicklung und Trends. Presentation given to visitors from Currenta GmbH in the Learning Media Lab. February, 15, 2011, Heerlen, Netherlands. ICoper-project.

  4. Effects of diurnal temperature range and drought on wheat yield in Spain

    Science.gov (United States)

    Hernandez-Barrera, S.; Rodriguez-Puebla, C.; Challinor, A. J.

    2017-07-01

    This study aims to provide new insight on the wheat yield historical response to climate processes throughout Spain by using statistical methods. Our data includes observed wheat yield, pseudo-observations E-OBS for the period 1979 to 2014, and outputs of general circulation models in phase 5 of the Coupled Models Inter-comparison Project (CMIP5) for the period 1901 to 2099. In investigating the relationship between climate and wheat variability, we have applied the approach known as the partial least-square regression, which captures the relevant climate drivers accounting for variations in wheat yield. We found that drought occurring in autumn and spring and the diurnal range of temperature experienced during the winter are major processes to characterize the wheat yield variability in Spain. These observable climate processes are used for an empirical model that is utilized in assessing the wheat yield trends in Spain under different climate conditions. To isolate the trend within the wheat time series, we implemented the adaptive approach known as Ensemble Empirical Mode Decomposition. Wheat yields in the twenty-first century are experiencing a downward trend that we claim is a consequence of widespread drought over the Iberian Peninsula and an increase in the diurnal range of temperature. These results are important to inform about the wheat vulnerability in this region to coming changes and to develop adaptation strategies.

  5. High-temperature brazing, present situation and development trends - brazing alloys

    International Nuclear Information System (INIS)

    Lugscheider, E.

    1980-01-01

    The range of application of high-temperature brazing is described. The process is defined. High-temperature nickel-base brazing alloys (alloying constituents, types of products. properties of the brazing alloys) and high-temperature brazing alloys for special metals and ceramics are dealt with. (orig.) [de

  6. Comparative Longterm Mortality Trends in Cancer vs. Ischemic Heart Disease in Puerto Rico.

    Science.gov (United States)

    Torres, David; Pericchi, Luis R; Mattei, Hernando; Zevallos, Juan C

    2017-06-01

    Although contemporary mortality data are important for health assessment and planning purposes, their availability lag several years. Statistical projection techniques can be employed to obtain current estimates. This study aimed to assess annual trends of mortality in Puerto Rico due to cancer and Ischemic Heart Disease (IHD), and to predict shorterm and longterm cancer and IHD mortality figures. Age-adjusted mortality per 100,000 population projections with a 50% interval probability were calculated utilizing a Bayesian statistical approach of Age-Period-Cohort dynamic model. Multiple cause-of-death annual files for years 1994-2010 for Puerto Rico were used to calculate shortterm (2011-2012) predictions. Longterm (2013-2022) predictions were based on quinquennial data. We also calculated gender differences in rates (men-women) for each study period. Mortality rates for women were similar for cancer and IHD in the 1994-1998 period, but changed substantially in the projected 2018-2022 period. Cancer mortality rates declined gradually overtime, and the gender difference remained constant throughout the historical and projected trends. A consistent declining trend for IHD historical annual mortality rate was observed for both genders, with a substantial changepoint around 2004-2005 for men. The initial gender difference of 33% (80/100,00 vs. 60/100,000) in mortality rates observed between cancer and IHD in the 1994-1998 period increased to 300% (60/100,000 vs. 20/100,000) for the 2018-2022 period. The APC projection model accurately projects shortterm and longterm mortality trends for cancer and IHD in this population: The steady historical and projected cancer mortality rates contrasts with the substantial decline in IHD mortality rates, especially in men.

  7. Present and projected future mean radiant temperature for three European cities

    Science.gov (United States)

    Thorsson, Sofia; Rayner, David; Lindberg, Fredrik; Monteiro, Ana; Katzschner, Lutz; Lau, Kevin Ka-Lun; Campe, Sabrina; Katzschner, Antje; Konarska, Janina; Onomura, Shiho; Velho, Sara; Holmer, Björn

    2017-09-01

    Present-day and projected future changes in mean radiant temperature, T mrt in one northern, one mid-, and one southern European city (represented by Gothenburg, Frankfurt, and Porto), are presented, and the concept of hot spots is adopted. Air temperature, T a , increased in all cities by 2100, but changes in solar radiation due to changes in cloudiness counterbalanced or exacerbated the effects on T mrt. The number of days with high T mrt in Gothenburg was relatively unchanged at the end of the century (+1 day), whereas it more than doubled in Frankfurt and tripled in Porto. The use of street trees to reduce daytime radiant heat load was analyzed using hot spots to identify where trees could be most beneficial. Hot spots, although varying in intensity and frequency, were generally confined to near sunlit southeast-southwest facing walls, in northeast corner of courtyards, and in open spaces in all three cities. By adding trees in these spaces, the radiant heat load can be reduced, especially in spaces with no or few trees. A set of design principles for reducing the radiant heat load is outlined based on these findings and existing literature.

  8. Long-term trends in U.S. gas transportation: 1992 edition of the GRI baseline projection of U.S. energy supply and demand to 2010, June 1992. Gas Research Insights

    International Nuclear Information System (INIS)

    Lihn, M.L.; Woods, T.J.

    1992-06-01

    The paper summarizes the trends in lower-48 gas transportation in the 1992 Edition of the GRI Baseline Projection of U.S. Energy Supply and Demand to 2010, which has been adopted as a major input to the planning cycle leading to the development of the Gas Research Institute (GRI) 1993 research and development program. The 1992 projection presents an optimistic outlook for the U.S. gas industry in which increased gas supply can be obtained at competitive prices

  9. Disentangling sea-surface temperature and anthropogenic aerosol influences on recent trends in South Asian monsoon rainfall

    Science.gov (United States)

    Patil, Nitin; Venkataraman, Chandra; Muduchuru, Kaushik; Ghosh, Subimal; Mondal, Arpita

    2018-05-01

    Recent studies point to combined effects of changes in regional land-use, anthropogenic aerosol forcing and sea surface temperature (SST) gradient on declining trends in the South Asian monsoon (SAM). This study attempted disentangling the effects produced by changes in SST gradient from those by aerosol levels in an atmospheric general circulation model. Two pairs of transient ensemble simulations were made, for a 40-year period from 1971 to 2010, with evolving versus climatological SSTs and with anthropogenic aerosol emissions fixed at 1971 versus 2010, in each case with evolution of the other forcing element, as well as GHGs. Evolving SST was linked to a widespread feedback on increased surface temperature, reduced land-sea thermal contrast and a weakened Hadley circulation, with weakening of cross-equatorial transport of moisture transport towards South Asia. Increases in anthropogenic aerosol levels (1971 versus 2010), led to an intensification of drying in the peninsular Indian region, through several regional pathways. Aerosol forcing induced north-south asymmetries in temperature and sea-level pressure response, and a cyclonic circulation in the Bay of Bengal, leading to an easterly flow, which opposes the monsoon flow, suppressing moisture transport over peninsular India. Further, aerosol induced decreases in convection, vertically integrated moisture flux convergence, evaporation flux and cloud fraction, in the peninsular region, were spatially congruent with reduced convective and stratiform rainfall. Overall, evolution of SST acted through a weakening of cross-equatorial moisture flow, while increases in aerosol levels acted through suppression of Arabian Sea moisture transport, as well as, of convection and vertical moisture transport, to influence the suppression of SAM rainfall.

  10. Potential Impacts of Climate Change on Stream Water Temperatures Across the United States

    Science.gov (United States)

    Ehsani, N.; Knouft, J.; Ficklin, D. L.

    2017-12-01

    Analyses of long-term observation data have revealed significant changes in several components of climate and the hydrological cycle over the contiguous United States during the twentieth and early twenty-first century. Mean surface air temperatures have significantly increased in most areas of the country. In addition, water temperatures are increasing in many watersheds across the United States. While there are numerous studies assessing the impact of climate change on air temperatures at regional and global scales, fewer studies have investigated the impacts of climate change on stream water temperatures. Projecting increases in water temperature are particularly important to the conservation of freshwater ecosystems. To achieve better insights into attributes regulating population and community dynamics of aquatic biota at large spatial and temporal scales, we need to establish relationships between environmental heterogeneity and critical biological processes of stream ecosystems at these scales. Increases in stream temperatures caused by the doubling of atmospheric carbon dioxide may result in a significant loss of fish habitat in the United States. Utilization of physically based hydrological-water temperature models is computationally demanding and can be onerous to many researchers who specialize in other disciplines. Using statistical techniques to analyze observational data from 1760 USGS stream temperature gages, our goal is to develop a simple yet accurate method to quantify the impacts of climate warming on stream water temperatures in a way that is practical for aquatic biologists, water and environmental management purposes, and conservation practitioners and policy-makers. Using an ensemble of five global climate models (GCMs), we estimate the potential impacts of climate change on stream temperatures within the contiguous United States based on recent trends. Stream temperatures are projected to increase across the US, but the magnitude of the

  11. Climate, Tree Growth, Forest Drought Stress, and Tree Mortality in Forests of Western North America: Long-Term Patterns and Recent Trends

    Science.gov (United States)

    Allen, C. D.; Williams, P.

    2012-12-01

    , Pinus ponderosa, and Pseudotsuga menziesii) in this region. FDSI responds sensitively and nonlinearly to growing season daily maximum temperatures which increase vapor pressure deficit, resulting in greater tree physiological stress and reduced tree growth. Drought conditions and warming temperatures in the Southwest since ca. 1996 have caused FDSI values in particular years since 2000 to start to exceed the most extreme values reconstructed from tree-rings for the past 1000 years for this region. FDSI demonstrates strong correlations with the spatial extent of major forest disturbances in the Southwest, including high-severity wildfire and bark beetle infestations, which over the past 20 years also have affected historically unprecedented levels. Similar trends of increasing extent and severity of forest disturbances are apparent across large portions of western North America. For the Southwest US, given relatively robust projections of substantial further increases in warmer temperatures and drought stress in coming decades, by ~2050 projected levels of FDSI and associated disturbances would reach extreme values, suggesting that current forest ecosystems likely would be forced to reorganize through wholesale tree mortality and the establishment of new dominant species.

  12. Climate projections in the Hornsund area, Southern Spitsbergen

    Directory of Open Access Journals (Sweden)

    Osuch Marzena

    2016-09-01

    Full Text Available The aim of this study was to provide an estimation of climate variability in the Hornsund area in Southern Spitsbergen in the period 1976-2100. The climatic variables were obtained from the Polar-CORDEX initiative in the form of time series of daily air temperature and precipitation derived from four global circulation models (GCMs following representative concentration pathways (RCP RCP 4.5 and RCP 8.5 emission scenarios. In the first stage of the analysis, simulations for the reference period from 1979 to 2005 were compared with observations at the Polish Polar Station Hornsund from the same period of time. In the second step, climatic projections were derived and monthly and annual means/sums were analysed as climatic indices. Following the standard methods of trend analysis, the changes of these indices over three time periods - the reference period 1976-2005, the near-future period 2021-2050, and far-future period 2071-2100 - were examined. The projections of air temperature were consistent. All analysed climate models simulated an increase of air temperature with time. Analyses of changes at a monthly scale indicated that the largest increases were estimated for winter months (more than 11°C for the far future using the RCP 8.5 scenario. The analyses of monthly and annual sums of precipitation also indicated increasing tendencies for changes with time, with the differences between mean monthly sums of precipitation for the near future and the reference period similar for each months. In the case of changes between far future and reference periods, the highest increases were projected for the winter months.

  13. Trends and Projected Estimates of GHG Emissions from Indian Livestock in Comparisons with GHG Emissions from World and Developing Countries

    Directory of Open Access Journals (Sweden)

    Amlan Kumar Patra

    2014-04-01

    Full Text Available This study presents trends and projected estimates of methane and nitrous oxide emissions from livestock of India vis-à-vis world and developing countries over the period 1961 to 2010 estimated based on IPCC guidelines. World enteric methane emission (EME increased by 54.3% (61.5 to 94.9 ×109 kg annually from the year 1961 to 2010, and the highest annual growth rate (AGR was noted for goat (2.0%, followed by buffalo (1.57% and swine (1.53%. Global EME is projected to increase to 120×109 kg by 2050. The percentage increase in EME by Indian livestock was greater than world livestock (70.6% vs 54.3% between the years 1961 to 2010, and AGR was highest for goat (1.91%, followed by buffalo (1.55%, swine (1.28%, sheep (1.25% and cattle (0.70%. In India, total EME was projected to grow by 18.8×109 kg in 2050. Global methane emission from manure (MEM increased from 6.81 ×109 kg in 1961 to 11.4×109 kg in 2010 (an increase of 67.6%, and is projected to grow to 15×109 kg by 2050. In India, the annual MEM increased from 0.52×109 kg to 1.1×109 kg (with an AGR of 1.57% in this period, which could increase to 1.54×109 kg in 2050. Nitrous oxide emission from manure in India could be 21.4×106 kg in 2050 from 15.3×106 kg in 2010. The AGR of global GHG emissions changed a small extent (only 0.11% from developed countries, but increased drastically (1.23% for developing countries between the periods of 1961 to 2010. Major contributions to world GHG came from cattle (79.3%, swine (9.57% and sheep (7.40%, and for developing countries from cattle (68.3%, buffalo (13.7% and goat (5.4%. The increase of GHG emissions by Indian livestock was less (74% vs 82% over the period of 1961 to 2010 than the developing countries. With this trend, world GHG emissions could reach 3,520×109 kg CO2-eq by 2050 due to animal population growth driven by increased demands for meat and dairy products in the world.

  14. Marketing Industrial Project-Related Services

    DEFF Research Database (Denmark)

    Cova, Bernard; Skaates, Maria Anne

    2002-01-01

    Services are a growing part of projects in the context of the international trend toward solution buying and selling on B2B markets. Services are also often a key source of competitive advantage in project business. Therefore the aim of this paper is to critically scrutinise the intuitive...... hypothesis that the marketing of project-related services lies somewhere at the crossroads between services marketing and project marketing....

  15. High-temperature brazing, state and development trends

    International Nuclear Information System (INIS)

    Lugscheider, E.

    1980-01-01

    The advantages of higher-temperature brazing as compared to welding methods are to be increasingly found in the field of applications, not merely in highly specialized fabriaction branches but also in common fields. Problems on basic materials, brazing construction, brazing method and testing of the joints as well as examples of application are treated. (orig./IHOE) [de

  16. Impacts of Climate Change on Water Requirements of Dry Season Boro Rice: Recent Trends and Future Scenarios

    Science.gov (United States)

    Acharjee, T. K.; Ludwig, F.; Halsema, G. V.; Hellegers, P.; Supit, I.

    2017-12-01

    The North-West part of Bangladesh is vulnerable to the impacts of climate change, because of dry season water shortage and high water demand for rice cultivation. A study was carried out to understand the impacts of recent climate change (1980-2013) and future consequences (for 2050s and 2080s) on water requirements of Boro rice. The reference crop evapotranspiration (ETo), potential crop water requirement (∑ETC), effective rainfall (ER), potential irrigation requirement for crop evapotranspiration (∑ETC-ER) and net irrigation requirement of Boro rice were estimated in CropWat using observed daily climate data for recent trends and statistically downscaled and bias corrected GCM outputs (five models and two RCPs) for future scenarios. ETo showed a significant decreasing recent trends due to increasing relative humidity and decreasing wind speed and sun shine hours instead of an increase in temperature. However, the strong future increase in temperature will lead to an insignificant increase in ETo. ∑ETC showed a decreasing recent trend and will further decrease in the future because of shortened duration of Boro growth stages as crop's phenological response to increased temperature. The variations in trends of ∑ETC-ER found among different districts, are mainly linked to the variations in trends of changes in effective rainfall. During last three decades, the net irrigation requirement has decreased by 11% at an average rate of -4.4 mm/year, instead of a decreasing effective rainfall, mainly because of high rate of decrease of crop evapotranspiration (-5.9 mm/year). In future, although daily water requirement will increase, the total net irrigation requirement of Boro rice will decrease by 1.6% in 2050s and 7.4% in 2080s for RCP 8.5 scenario on an average for five models and four districts compared to the base period (1980-2013). High variations in projected changes in rainfall bring high uncertainty for future water requirements estimation. Therefore, a

  17. Stratospheric effects on trends of mesospheric ice clouds (Invited)

    Science.gov (United States)

    Luebken, F.; Baumgarten, G.; Berger, U.

    2009-12-01

    Ice layers in the summer mesosphere at middle and polar latitudes appear as `noctilucent clouds' (NLC) and `polar mesosphere clouds'(PMC) when observed by optical methods from the ground or from satellites, respectively. A newly developed model of the atmosphere called LIMA (Leibniz Institute Middle Atmosphere Model) nicely reproduces the mean conditions of the summer mesopause region and is used to study the ice layer morphology (LIMA/ice). LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and ice cloud morphology. Since ice layer formation is very sensitive to the thermal structure of the mesopause region the morphology of NLC and PMC is frequently discussed in terms of long term variations. Model runs of LIMA/ice are now available for 1961 until 2008. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. We present results regarding inter-annual variability of upper mesosphere temperatures, water vapor, and ice clouds, and also long term variations. We compare our model results with satellite borne and lidar observations including some record high NLC parameters measured in the summer season of 2009. The latitudinal dependence of trends and ice layer parameters is discussed, including a NH/SH comparison. We will present an explanation of the trends in the background atmosphere and ice layer parameters.

  18. Management of research and development project

    International Nuclear Information System (INIS)

    Go, Seok Hwa; Hong Jeong Yu; Hyun, Byeong Hwan

    2010-12-01

    This book introduces summary on management of research and development project, prepare of research and development with investigation and analysis of paper, patent and trend of technology, structure of project, management model, management of project, management of project range, management of project time, management of project cost, management of project goods, management of project manpower, management of communication, management of project risk, management of project supply, management of outcome of R and D, management of apply and enroll of patent and management of technology transfer.

  19. Evaluation and projection of daily temperature percentiles from statistical and dynamical downscaling methods

    Directory of Open Access Journals (Sweden)

    A. Casanueva

    2013-08-01

    Full Text Available The study of extreme events has become of great interest in recent years due to their direct impact on society. Extremes are usually evaluated by using extreme indicators, based on order statistics on the tail of the probability distribution function (typically percentiles. In this study, we focus on the tail of the distribution of daily maximum and minimum temperatures. For this purpose, we analyse high (95th and low (5th percentiles in daily maximum and minimum temperatures on the Iberian Peninsula, respectively, derived from different downscaling methods (statistical and dynamical. First, we analyse the performance of reanalysis-driven downscaling methods in present climate conditions. The comparison among the different methods is performed in terms of the bias of seasonal percentiles, considering as observations the public gridded data sets E-OBS and Spain02, and obtaining an estimation of both the mean and spatial percentile errors. Secondly, we analyse the increments of future percentile projections under the SRES A1B scenario and compare them with those corresponding to the mean temperature, showing that their relative importance depends on the method, and stressing the need to consider an ensemble of methodologies.

  20. Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data

    Science.gov (United States)

    Chen, H.; Zou, X.; Qin, Z.

    2018-03-01

    Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polarorbiting Operational Environmental Satellites (POES) have been extensively used for studying atmospheric temperature trends over the past several decades. Intersensor biases, orbital drifts and diurnal variations of atmospheric and surface temperatures must be considered before using a merged long-term time series of AMSU-A measurements from NOAA-15, -18, -19 and MetOp-A.We study the impacts of the orbital drift and orbital differences of local equator crossing times (LECTs) on temperature trends derivable from AMSU-A using near-nadir observations from NOAA-15, NOAA-18, NOAA-19, and MetOp-A during 1998-2014 over the Amazon rainforest. The double difference method is firstly applied to estimation of inter-sensor biases between any two satellites during their overlapping time period. The inter-calibrated observations are then used to generate a monthly mean diurnal cycle of brightness temperature for each AMSU-A channel. A diurnal correction is finally applied each channel to obtain AMSU-A data valid at the same local time. Impacts of the inter-sensor bias correction and diurnal correction on the AMSU-A derived long-term atmospheric temperature trends are separately quantified and compared with those derived from original data. It is shown that the orbital drift and differences of LECTamong different POESs induce a large uncertainty in AMSU-A derived long-term warming/cooling trends. After applying an inter-sensor bias correction and a diurnal correction, the warming trends at different local times, which are approximately the same, are smaller by half than the trends derived without applying these corrections.

  1. Future Arctic marine access: analysis and evaluation of observations, models, and projections of sea ice

    Directory of Open Access Journals (Sweden)

    T. S. Rogers

    2013-02-01

    Full Text Available There is an emerging need for regional applications of sea ice projections to provide more accuracy and greater detail to scientists, national, state and local planners, and other stakeholders. The present study offers a prototype for a comprehensive, interdisciplinary study to bridge observational data, climate model simulations, and user needs. The study's first component is an observationally based evaluation of Arctic sea ice trends during 1980–2008, with an emphasis on seasonal and regional differences relative to the overall pan-Arctic trend. Regional sea ice loss has varied, with a significantly larger decline of winter maximum (January–March extent in the Atlantic region than in other sectors. A lead–lag regression analysis of Atlantic sea ice extent and ocean temperatures indicates that reduced sea ice extent is associated with increased Atlantic Ocean temperatures. Correlations between the two variables are greater when ocean temperatures lag rather than lead sea ice. The performance of 13 global climate models is evaluated using three metrics to compare sea ice simulations with the observed record. We rank models over the pan-Arctic domain and regional quadrants and synthesize model performance across several different studies. The best performing models project reduced ice cover across key access routes in the Arctic through 2100, with a lengthening of seasons for marine operations by 1–3 months. This assessment suggests that the Northwest and Northeast Passages hold potential for enhanced marine access to the Arctic in the future, including shipping and resource development opportunities.

  2. The Vegetation Trends and Drivers in Beijing-Tianjing Region from 1982 TO 2013 Based on Time Series Gimms NDVI3g

    Science.gov (United States)

    Liu, S.; Tian, H.; Wang, X.; Li, H.; He, Y.

    2018-04-01

    Vegetation plays a leading role in ecosystems. Plant communities are the main components of ecosystems. Green plants in ecosystems are the primary producers, and they provide the living organic matter for the survival of other organisms. The dynamics of most landscapes are driven by both natural processes and human activities. In this study, the growing season GIMMS NDVI3g and climatic data were used to analyse the vegetation trends and drivers in Beijing-Tianjin-Hebei region from 1982 to 2013. Result shows that, the vegetation in Beijing-Tianjin-Hebei region shows overall restoration and partial degradation trend. The significant restoration region accounts for 61.5 % of Beijing-Tianjin-Hebei region, while the significant degradation region accounts for 2.1 %. The dominant climatic factor for time series NDVI were analyzed using the multi-linear regression model. Vegetation growth in 17.9 % of Beijing-Tianjin-Hebei region is dominated by temperature, 35.5 % is dominated by precipitation, and 11.68 % is dominated by solar radiance. Human activities play important role for vegetation restoration in Beijing-Tianjin-Hebei Region, where the large scale forest restoration programs are the main human activities, such as the three-north shelterbelt construction project, Beijing-Tianjin-Hebei sandstorm source control project and grain for green projects.

  3. Analyses of historical and projected climates to support climate adaptation in the northern Rocky Mountains: Chapter 4

    Science.gov (United States)

    Gross, John E.; Tercek, Michael; Guay, Kevin; Chang, Tony; Talbert, Marian; Rodman, Ann; Thoma, David; Jantz, Patrick; Morisette, Jeffrey T.

    2016-01-01

    Most of the western United States is experiencing the effects of rapid and directional climate change (Garfin et al. 2013). These effects, along with forecasts of profound changes in the future, provide strong motivation for resource managers to learn about and prepare for future changes. Climate adaptation plans are based on an understanding of historic climate variation and their effects on ecosystems and on forecasts of future climate trends. Frameworks for climate adaptation thus universally identify the importance of a summary of historical, current, and projected climates (Glick, Stein, and Edelson 2011; Cross et al. 2013; Stein et al. 2014). Trends in physical climate variables are usually the basis for evaluating the exposure component in vulnerability assessments. Thus, this chapter focuses on step 2 of the Climate-Smart Conservation framework (chap. 2): vulnerability assessment. We present analyses of historical and current observations of temperature, precipitation, and other key climate measurements to provide context and a baseline for interpreting the ecological impacts of projected climate changes.

  4. Trends in Sea Ice Cover, Sea Surface Temperature, and Chlorophyll Biomass Across a Marine Distributed Biological Observatory in the Pacific Arctic Region

    Science.gov (United States)

    Frey, K. E.; Grebmeier, J. M.; Cooper, L. W.; Wood, C.; Panday, P. K.

    2011-12-01

    The northern Bering and Chukchi Seas in the Pacific Arctic Region (PAR) are among the most productive marine ecosystems in the world and act as important carbon sinks, particularly during May and June when seasonal sea ice-associated phytoplankton blooms occur throughout the region. Recent dramatic shifts in seasonal sea ice cover across the PAR should have profound consequences for this seasonal phytoplankton production as well as the intimately linked higher trophic levels. In order to investigate ecosystem responses to these observed recent shifts in sea ice cover, the development of a prototype Distributed Biological Observatory (DBO) is now underway in the PAR. The DBO is being developed as an internationally-coordinated change detection array that allows for consistent sampling and monitoring at five spatially explicit biologically productive locations across a latitudinal gradient: (1) DBO-SLP (south of St. Lawrence Island (SLI)), (2) DBO-NBS (north of SLI), (3) DBO-SCS (southern Chukchi Sea), (4) DBO-CCS (central Chukchi Sea), and (5) DBO-BCA (Barrow Canyon Arc). Standardized measurements at many of the DBO sites were made by multiple research cruises during the 2010 and 2011 pilot years, and will be expanded with the development of the DBO in coming years. In order to provide longer-term context for the changes occurring across the PAR, we utilize multi-sensor satellite data to investigate recent trends in sea ice cover, chlorophyll biomass, and sea surface temperatures for each of the five DBO sites, as well as a sixth long-term observational site in the Bering Strait. Satellite observations show that over the past three decades, trends in sea ice cover in the PAR have been heterogeneous, with significant declines in the Chukchi Sea, slight declines in the Bering Strait region, but increases in the northern Bering Sea south of SLI. Declines in the persistence of seasonal sea ice cover in the Chukchi Sea and Bering Strait region are due to both earlier sea

  5. Narrowing the surface temperature range in CMIP5 simulations over the Arctic

    Science.gov (United States)

    Hao, Mingju; Huang, Jianbin; Luo, Yong; Chen, Xin; Lin, Yanluan; Zhao, Zongci; Xu, Ying

    2018-05-01

    Much uncertainty exists in reproducing Arctic temperature using different general circulation models (GCMs). Therefore, evaluating the performance of GCMs in reproducing Arctic temperature is critically important. In our study, 32 GCMs in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) during the period 1900-2005 are used, and several metrics, i.e., bias, correlation coefficient ( R), and root mean square error (RMSE), are applied. The Cowtan data set is adopted as the reference data. The results suggest that the GCMs used can reasonably reproduce the Arctic warming trend during the period 1900-2005, as observed in the observational data, whereas a large variation of inter-model differences exists in modeling the Arctic warming magnitude. With respect to the reference data, most GCMs have large cold biases, whereas others have weak warm biases. Additionally, based on statistical thresholds, the models MIROC-ESM, CSIRO-Mk3-6-0, HadGEM2-AO, and MIROC-ESM-CHEM (bias ≤ ±0.10 °C, R ≥ 0.50, and RMSE ≤ 0.60 °C) are identified as well-performing GCMs. The ensemble of the four best-performing GCMs (ES4), with bias, R, and RMSE values of -0.03 °C, 0.72, and 0.39 °C, respectively, performs better than the ensemble with all 32 members, with bias, R, and RMSE values of -0.04 °C, 0.64, and 0.43 °C, respectively. Finally, ES4 is used to produce projections for the next century under the scenarios of RCP2.6, RCP4.5, and RCP8.0. The uncertainty in the projected temperature is greater in the higher emissions scenarios. Additionally, the projected temperature in the cold half year has larger variations than that in the warm half year.

  6. Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures

    Science.gov (United States)

    Fernandes, Kátia; Verchot, Louis; Baethgen, Walter; Gutierrez-Velez, Victor; Pinedo-Vasquez, Miguel; Martius, Christopher

    2017-05-01

    In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation. This was the case of the events of 1997 and 2015 that resulted in months-long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated the impact of temperature on fires and found that when the July-October (JASO) period is anomalously dry, the sensitivity of fires to temperature is modest. In contrast, under normal-to-wet conditions, fire probability increases sharply when JASO is anomalously warm. This describes a regime in which an active fire season is not limited to drought years. Greater susceptibility to fires in response to a warmer environment finds support in the high evapotranspiration rates observed in normal-to-wet and warm conditions in Indonesia. We also find that fire probability in wet JASOs would be considerably less sensitive to temperature were not for the added effect of recent positive trends. Near-term regional climate projections reveal that, despite negligible changes in precipitation, a continuing warming trend will heighten fire probability over the next few decades especially in non-drought years. Mild fire seasons currently observed in association with wet conditions and cool temperatures will become rare events in Indonesia.

  7. Long-term trends in U.S. gas supply and prices: 1991 edition of the GRI baseline projection of U.S. energy supply and demand to 2010, April 1991. Gas research insights

    International Nuclear Information System (INIS)

    Woods, T.J.

    1991-04-01

    The report summarizes the gas supply and price outlook in the 1991 Edition of the GRI Baseline Projection of U.S. Energy Supply and Demand. Projected U.S. gas production, gas imports, and other sources of gas supply are discussed along with the sensitivity of the outlook to changes in price expectations. The critical uncertainties and issues affecting the gas supply and price outlook are discussed. Appendixes include a comparison of the 1991 and the 1989 projections of gas supply and price trends; and a description of the GRI Hydrocarbon Model

  8. Climate related trends and meteorological conditions in European Arctic region - Porsanger fjord, Norway

    Science.gov (United States)

    Cieszyńska, Agata; Stramska, Małgorzata

    2017-04-01

    air temperature difference between L and H is also strong and has an influence on winds. Estimates of land-originated water discharge (derived from the E-Hype model) show seasonal cycle with the maximum runoff in late spring/early summer. The main features of climate related trends and the effects of oceanic/continental interactions, presented in this study, shape the environment of the fjord and are possible to be analogous in other Norwegian fjords with comparable geographical location. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).

  9. A European project on high temperature metrology for industrial applications; Un proyecto europeo en metrologia de altas temperaturas para aplicaciones industriales

    Energy Technology Data Exchange (ETDEWEB)

    Campo, D. del; Machin, G.

    2013-09-01

    The measurement of temperatures above 1000 degree centigrade is both difficult and yet vital for the success of a wide range of industrial processes; glass and ceramic manufacturing (1100 degree centigrade to 2000 degree centigrade) or refractory metals production (2500+ degree centigrade) are clear examples. Many of these industries require improved process efficiency/control, because of growing environmental concerns (emissions zero waste) and competition from outside the EU. One of the keys to making advances to these drivers is improving process control by improved high temperature measurement. In the frame of the European Metrology Research Program (EMRP), a project named High temperature metrology for industrial applications (HiTeMS) with the overall objective of developing a suite of methods and techniques for improving the measurement of high temperatures in industry has been running since September 2011. This paper gives an overview of the main objectives of the project and the technical activities that are being performed. (Author)

  10. A project investigating music therapy referral trends within palliative care: an Australian perspective.

    Science.gov (United States)

    Horne-Thompson, Anne; Daveson, Barbara; Hogan, Bridgit

    2007-01-01

    The purpose of this project is to analyze music therapy (MT) referral trends from palliative care team members across nine Australian inpatient and community-based palliative care settings. For each referral 6 items were collected: referral source, reason and type; time from Palliative Care Program (PCP) admission to MT referral; time from MT referral to death/discharge; and profile of referred patient. Participants (196 female, 158 male) were referred ranging in age from 4-98 years and most were diagnosed with cancer (91%, n = 323). Nurses (47%, n = 167) referred most frequently to music therapy. The mean average time in days for all referrals from PCP admission to MT referral was 11.47 and then 5.19 days to time of death. Differences in length of time to referral ranged from 8.19 days (allied health staff) to 43.75 days (families). Forty-eight percent of referrals (48.5%, n = 172) were completed when the patient was rated at an Eastern Cooperative Oncology Group Performance (ECOG) of three. Sixty-nine percent (n = 244) were living with others at the time of referral and most were Australian born. Thirty-six percent (36.7%, n = 130) were referred for symptom-based reasons, and 24.5% (n = 87) for support and coping. Implications for service delivery of music therapy practice, interdisciplinary care and benchmarking of music therapy services shall be discussed.

  11. Characterizing uncertainties in recent trends of global terrestrial net primary production through ensemble modeling

    Science.gov (United States)

    Wang, W.; Hashimoto, H.; Ganguly, S.; Votava, P.; Nemani, R. R.; Myneni, R. B.

    2010-12-01

    Large uncertainties exist in our understanding of the trends and variability in global net primary production (NPP) and its controls. This study attempts to address this question through a multi-model ensemble experiment. In particular, we drive ecosystem models including CASA, LPJ, Biome-BGC, TOPS-BGC, and BEAMS with a long-term climate dataset (i.e., CRU-NCEP) to estimate global NPP from 1901 to 2009 at a spatial resolution of 0.5 x 0.5 degree. We calculate the trends of simulated NPP during different time periods and test their sensitivities to climate variables of solar radiation, air temperature, precipitation, vapor pressure deficit (VPD), and atmospheric CO2 levels. The results indicate a large diversity among the simulated NPP trends over the past 50 years, ranging from nearly no trend to an increasing trend of ~0.1 PgC/yr. Spatial patterns of the NPP generally show positive trends in boreal forests, induced mainly by increasing temperatures in these regions; they also show negative trends in the tropics, although the spatial patterns are more diverse. These diverse trends result from different climatic sensitivities of NPP among the tested models. Depending the ecological processes (e.g., photosynthesis or respiration) a model emphasizes, it can be more or less responsive to changes in solar radiation, temperatures, water, or atmospheric CO2 levels. Overall, these results highlight the limit of current ecosystem models in simulating NPP, which cannot be easily observed. They suggest that the traditional single-model approach is not ideal for characterizing trends and variability in global carbon cycling.

  12. Southern Hemisphere extratropical circulation: Recent trends and natural variability

    Science.gov (United States)

    Thomas, Jordan L.; Waugh, Darryn W.; Gnanadesikan, Anand

    2015-07-01

    Changes in the Southern Annular Mode (SAM), Southern Hemisphere (SH) westerly jet location, and magnitude are linked with changes in ocean circulation along with ocean heat and carbon uptake. Recent trends have been observed in these fields but not much is known about the natural variability. Here we aim to quantify the natural variability of the SH extratropical circulation by using Coupled Model Intercomparison Project Phase 5 (CMIP5) preindustrial control model runs and compare with the observed trends in SAM, jet magnitude, and jet location. We show that trends in SAM are due partly to external forcing but are not outside the natural variability as described by these models. Trends in jet location and magnitude, however, lie outside the unforced natural variability but can be explained by a combination of natural variability and the ensemble mean forced trend. These results indicate that trends in these three diagnostics cannot be used interchangeably.

  13. Trend curve data development and testing

    International Nuclear Information System (INIS)

    McElroy, W.N.; Gold, R.; Simons, R.L.; Roberts, J.H.

    1986-08-01

    Existing trend curves do not account for previous and more recently observed test and power reactor flux-level, thermal neutron and gamma-ray field-induced effects. Any agreement between measured data and trend curve predictions that does not adequately represent the important neutron environmental and temperature effects as well as the microstructural damage processes, therefore, could be fortuitous. Two principal questions asked concerning the metallurgical condition of the pressure vessel and its support structures are: What are the controlling variables; and What effects do they have on changing the metallurgical properties of the vessel and its support structures throughout their lifetimes

  14. Recent Development on the NOAA's Global Surface Temperature Dataset

    Science.gov (United States)

    Zhang, H. M.; Huang, B.; Boyer, T.; Lawrimore, J. H.; Menne, M. J.; Rennie, J.

    2016-12-01

    Global Surface Temperature (GST) is one of the most widely used indicators for climate trend and extreme analyses. A widely used GST dataset is the NOAA merged land-ocean surface temperature dataset known as NOAAGlobalTemp (formerly MLOST). The NOAAGlobalTemp had recently been updated from version 3.5.4 to version 4. The update includes a significant improvement in the ocean surface component (Extended Reconstructed Sea Surface Temperature or ERSST, from version 3b to version 4) which resulted in an increased temperature trends in recent decades. Since then, advancements in both the ocean component (ERSST) and land component (GHCN-Monthly) have been made, including the inclusion of Argo float SSTs and expanded EOT modes in ERSST, and the use of ISTI databank in GHCN-Monthly. In this presentation, we describe the impact of those improvements on the merged global temperature dataset, in terms of global trends and other aspects.

  15. Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures

    Science.gov (United States)

    Winslow, Luke; Read, Jordan S.; Hansen, Gretchen J. A.; Rose, Kevin C.; Robertson, Dale M.

    2017-01-01

    Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity in air temperature trends. Monthly surface-water temperature warming rates varied across the open-water season, ranging from 0.013 in August to 0.073°C yr−1 in September (standard deviation [SD]: 0.025°C yr−1). Deep-water trends during summer varied less among months (SD: 0.006°C yr−1), but varied broadly among lakes (–0.056°C yr−1 to 0.035°C yr−1, SD: 0.034°C yr−1). Trends in monthly surface-water temperatures were well correlated with air temperature trends, suggesting monthly air temperature trends, for which data exist at broad scales, may be a proxy for seasonal patterns in surface-water temperature trends during the open water season in lakes similar to those studied here. Seasonally variable warming has broad implications for how ecological processes respond to climate change, because phenological events such as fish spawning and phytoplankton succession respond to specific, seasonal temperature cues.

  16. Variations and Trends in Global and Regional Precipitation Based on the 22-year GPCP (Global Precipitation Climatology Project) and Three-year TRMM (Tropical Rainfall Measuring Mission) Data Sets

    Science.gov (United States)

    Adler, R.; Curtis, S.; Huffman, G.; Bolvin, D.; Nelkin, E.

    2001-05-01

    This paper gives an overview of the analysis of global precipitation over the last few decades and the impact of the new TRMM precipitation observations. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to study global and regional variations and trends and is compared to the much shorter TRMM(Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in global precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. The global trend analysis must be interpreted carefully, however, because the inhomogeneity of the data set makes detecting a small signal very difficult, especially over this relatively short period. The relation of global (and tropical) total precipitation and ENSO events is quantified with no significant signal when land and ocean are combined. Identifying regional trends in precipitation may be more practical. From 1979 to 2000 the tropics have pattern of regional rainfall trends that has an ENSO-like pattern with features of both the El Nino and La Nina. This feature is related to a possible trend in the frequency of ENSO events (either El Nino or La Nina) over the past 20 years. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The El Nino and La Nina mean anomalies are near mirror images of each other and when combined produce an ENSO signal with significant spatial continuity over large distances. A number of the features are shown to extend into high latitudes. Positive anomalies extend in the Southern Hemisphere (S.H.) from the Pacific southeastward across Chile and Argentina into the south Atlantic Ocean. In the Northern Hemisphere (N.H.) the counterpart feature extends across the southern U.S. and Atlantic Ocean into Europe

  17. Toward an Improved Representation of Middle Atmospheric Dynamics Thanks to the ARISE Project

    Czech Academy of Sciences Publication Activity Database

    Blanc, E.; Ceranna, L.; Hauchecorne, A.; Charlton-Perez, A.; Marchetti, E.; Evers, L.G.; Kvaerna, T.; Laštovička, Jan; Eliasson, L.; Crosby, N. B.; Blanc-Benon, P.; Le Pichon, A.; Brachet, N.; Pilger, C.; Keckhut, P.; Assink, J.D.; Smets, P. S. M.; Lee, C. F.; Kero, J.; Šindelářová, Tereza; Kämpfer, N.; Rüfenacht, R.; Farges, T.; Millet, C.; Näsholm, S. P.; Gibbons, S. J.; Espy, P. J.; Hibbins, R. E.; Heinrich, P.; Ripepe, M.; Khaykin, S.; Mze, N.; Chum, Jaroslav

    2018-01-01

    Roč. 39, č. 2 (2018), s. 171-225 ISSN 0169-3298 EU Projects: European Commission(XE) 284387 - ARISE; European Commission(XE) 653980 - ARISE2 Institutional support: RVO:68378289 Keywords : Atmospheric dynamics * Middle atmosphere * Infrasound * Gravity waves * Volcanoes * Atmospheric disturbances * Extreme events * stratospheric temperature trends * total solar eclipse * wave momentum flux * natural infrasound * acoustic-waves * polar-low * model simulations * sudden warmings * Doppler lidar Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 4.413, year: 2016 https://link.springer.com/article/10.1007/s10712-017-9444-0

  18. Trends in seasonal warm anomalies across the contiguous United States: Contributions from natural climate variability

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Warren E. Heilman; Xindi. Bian

    2018-01-01

    Many studies have shown the importance of anthropogenic greenhouse gas emissions in contributing to observed upward trends in the occurrences of temperature extremes over the U.S. However, few studies have investigated the contributions of internal variability in the climate system to these observed trends. Here we use daily maximum temperature time series from the...

  19. Conceptualizing Knowledge Communication for Project Management

    DEFF Research Database (Denmark)

    Kampf, Constance Elizabeth

    2015-01-01

    In the field of project management, the search for better ways to manage projects is ongoing. One of the more recent trends in the literature focuses on the integration of knowledge management in project management environments. Advantages of integrating knowledge management into projects can be ...... knowledge for project management, this paper focuses on extending Knowledge Management to include concepts related to communicating knowledge from the fields of rhetoric, knowledge communication, and corporate communication....

  20. Projected evolution of circulation types and their temperatures over Central Europe in climate models

    Czech Academy of Sciences Publication Activity Database

    Plavcová, Eva; Kyselý, Jan

    2013-01-01

    Roč. 114, 3-4 (2013), s. 625-634 ISSN 0177-798X R&D Project s: GA ČR GAP209/10/2265 Grant - others:ENSEMBLES: EU-FP6(XE) 505539 Program:FP6 Institutional support: RVO:68378289 Keywords : Regional climate models * Atmospheric circulation * Climate change scenarios * Surface air temperature * ENSEMBLES * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.742, year: 2013 http://link.springer.com/article/10.1007%2Fs00704-013-0874-4#page-1

  1. Operational waste volume projection

    International Nuclear Information System (INIS)

    Koreski, G.M.; Strode, J.N.

    1995-06-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the tri-party agreement. Assumptions are current as of June 1995

  2. Operational Waste Volume Projection

    Energy Technology Data Exchange (ETDEWEB)

    STRODE, J.N.

    2000-08-28

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  3. Operational Waste Volume Projection

    International Nuclear Information System (INIS)

    STRODE, J.N.

    2000-01-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000

  4. Quantitative assessment of industrial VOC emissions in China: Historical trend, spatial distribution, uncertainties, and projection

    Science.gov (United States)

    Zheng, Chenghang; Shen, Jiali; Zhang, Yongxin; Huang, Weiwei; Zhu, Xinbo; Wu, Xuecheng; Chen, Linghong; Gao, Xiang; Cen, Kefa

    2017-02-01

    The temporal trends of industrial volatile organic compound (VOC) emissions was comprehensively summarized for the 2011 to 2013 period, and the projections for 2020 to 2050 for China were set. The results demonstrate that industrial VOC emissions in China increased from 15.3 Tg in 2011 to 29.4 Tg in 2013 at an annual average growth rate of 38.3%. Guangdong (3.45 Tg), Shandong (2.85 Tg), and Jiangsu (2.62 Tg) were the three largest contributors collectively accounting for 30.4% of the national total emissions in 2013. The top three average industrial VOC emissions per square kilometer were Shanghai (247.2 ton/km2), Tianjin (62.8 ton/km2), and Beijing (38.4 ton/km2), which were 12-80 times of the average level in China. The data from the inventory indicate that the use of VOC-containing products, as well as the production and use of VOCs as raw materials, as well as for storage and transportation contributed 75.4%, 10.3%, 9.1%, and 5.2% of the total emissions, respectively. ArcGIS was used to display the remarkable spatial distribution variation by allocating the emission into 1 km × 1 km grid cells with a population as surrogate indexes. Combined with future economic development and population change, as well as implementation of policy and upgrade of control technologies, three scenarios (scenarios A, B, and C) were set to project industrial VOC emissions for the years 2020, 2030, and 2050, which present the industrial VOC emissions in different scenarios and the potential of reducing emissions. Finally, the result shows that the collaborative control policies considerably influenced industrial VOC emissions.

  5. Climate trends across South Africa since 1980

    African Journals Online (AJOL)

    2018-04-03

    Apr 3, 2018 ... ISSN 1816-7950 (Online) = Water SA Vol. ... South Atlantic and Indian Ocean sea surface temperatures ... Understanding trends in climate can assist resource management and determine possible economic impacts. ... Reanalysis systems that augment ... future climate under rising greenhouse gases.

  6. Neighborhood Residence and the Problems of School-Age Children. Data Trends #125

    Science.gov (United States)

    Research and Training Center on Family Support and Children's Mental Health, 2005

    2005-01-01

    "Data Trends" reports present summaries of research on mental health services for children and adolescents and their families. The article summarized in this "Data Trends" uses data from a multilevel longitudinal study, the Project on Human Development in Chicago Neighborhoods (PHDCN), to investigate possible effects of neighborhood residence on…

  7. Massachusetts Study of Teacher Supply and Demand: Trends and Projections

    Science.gov (United States)

    Levin, Jesse; Berg-Jacobson, Alex; Atchison, Drew; Lee, Katelyn; Vontsolos, Emily

    2015-01-01

    In April 2015, the Massachusetts Department of Elementary and Secondary Education (ESE) commissioned American Institutes for Research (AIR) to develop a comprehensive set of 10-year projections of teacher supply and demand in order to inform planning for future workforce needs. This included state-level projections both in the aggregate, as well…

  8. Towards More Comprehensive Projections of Urban Heat-Related Mortality: Estimates for New York City Under Multiple Population, Adaptation, and Climate Scenarios

    Science.gov (United States)

    Petkova, Elisaveta P.; Vink, Jan K.; Horton, Radley M.; Gasparrini, Antonio; Bader, Daniel A.; Francis, Joe D.; Kinney, Patrick L.

    2016-01-01

    High temperatures have substantial impacts on mortality and, with growing concerns about climate change, numerous studies have developed projections of future heat-related deaths around the world. Projections of temperature-related mortality are often limited by insufficient information necessary to formulate hypotheses about population sensitivity to high temperatures and future demographics. This study has derived projections of temperature-related mortality in New York City by taking into account future patterns of adaptation or demographic change, both of which can have profound influences on future health burdens. We adopt a novel approach to modeling heat adaptation by incorporating an analysis of the observed population response to heat in New York City over the course of eight decades. This approach projects heat-related mortality until the end of the 21st century based on observed trends in adaptation over a substantial portion of the 20th century. In addition, we incorporate a range of new scenarios for population change until the end of the 21st century. We then estimate future heat-related deaths in New York City by combining the changing temperature-mortality relationship and population scenarios with downscaled temperature projections from the 33 global climate models (GCMs) and two Representative Concentration Pathways (RCPs).The median number of projected annual heat-related deaths across the 33 GCMs varied greatly by RCP and adaptation and population change scenario, ranging from 167 to 3331 in the 2080s compared to 638 heat-related deaths annually between 2000 and 2006.These findings provide a more complete picture of the range of potential future heat-related mortality risks across the 21st century in New York, and highlight the importance of both demographic change and adaptation responses in modifying future risks.

  9. Spatial and temporal changes in leaf coloring date of Acer palmatum and Ginkgo biloba in response to temperature increases in South Korea.

    Science.gov (United States)

    Park, Chang-Kyun; Ho, Chang-Hoi; Jeong, Su-Jong; Lee, Eun Ju; Kim, Jinwon

    2017-01-01

    Understanding shifts in autumn phenology associated with climate changes is critical for preserving forest ecosystems. This study examines the changes in the leaf coloring date (LCD) of two temperate deciduous tree species, Acer palmatum (Acer) and Ginkgo biloba (Ginkgo), in response to surface air temperature (Ts) changes at 54 stations of South Korea for the period 1989-2007. The variations of Acer and Ginkgo in South Korea are very similar: they show the same mean LCD of 295th day of the year and delays of about 0.45 days year-1 during the observation period. The delaying trend is closely correlated (correlation coefficient > 0.77) with increases in Ts in mid-autumn by 2.8 days °C-1. It is noted that the LCD delaying and temperature sensitivity (days °C-1) for both tree species show negligible dependences on latitudes and elevations. Given the significant LCD-Ts relation, we project LCD changes for 2016-35 and 2046-65 using a process-based model forced by temperature from climate model simulation. The projections indicate that the mean LCD would be further delayed by 3.2 (3.7) days in 2016-35 (2046-65) due to mid-autumn Ts increases. This study suggests that the mid-autumn warming is largely responsible for the observed LCD changes in South Korea and will intensify the delaying trends in the future.

  10. Climate Trends and Impacts in China

    OpenAIRE

    Chris Sall

    2013-01-01

    This discussion paper summarizes observed and projected trends in extreme weather events, present-day climate variability, and future climate change and their impacts on China's different regions. Findings are presented from China's national assessment report on climate change (2007) and second national assessment report on climate change (2011) as well as other studies by Chinese and inte...

  11. Hydroxyl layer: trend of number density and intra-annual variability

    Science.gov (United States)

    Sonnemann, G. R.; Hartogh, P.; Berger, U.; Grygalashvyly, M.

    2015-06-01

    The layer of vibrationally excited hydroxyl (OH*) near the mesopause in Earth's atmosphere is widely used to derive the temperature at this height and to observe dynamical processes such as gravity waves. The concentration of OH* is controlled by the product of atomic hydrogen, with ozone creating a layer of enhanced concentration in the mesopause region. However, the basic influences on the OH* layer are atomic oxygen and temperature. The long-term monitoring of this layer provides information on a changing atmosphere. It is important to know which proportion of a trend results from anthropogenic impacts on the atmosphere and which proportion reflects natural variations. In a previous paper (Grygalashvyly et al., 2014), the trend of the height of the layer and the trend in temperature were investigated particularly in midlatitudes on the basis of our coupled dynamic and chemical transport model LIMA (Leibniz Institute Middle Atmosphere). In this paper we consider the trend for the number density between the years 1961 and 2009 and analyze the reason of the trends on a global scale. Further, we consider intra-annual variations. Temperature and wind have the strongest impacts on the trend. Surprisingly, the increase in greenhouse gases (GHGs) has no clear influence on the chemistry of OH*. The main reason for this lies in the fact that, in the production term of OH*, if atomic hydrogen increases due to increasing humidity of the middle atmosphere by methane oxidation, ozone decreases. The maximum of the OH* layer is found in the mesopause region and is very variable. The mesopause region is a very intricate domain marked by changeable dynamics and strong gradients of all chemically active minor constituents determining the OH* chemistry. The OH* concentration responds, in part, very sensitively to small changes in these parameters. The cause for this behavior is given by nonlinear reactions of the photochemical system being a nonlinear enforced chemical oscillator

  12. Hydroxyl layer: trend of number density and intra-annual variability

    Directory of Open Access Journals (Sweden)

    G. R. Sonnemann

    2015-06-01

    Full Text Available The layer of vibrationally excited hydroxyl (OH* near the mesopause in Earth's atmosphere is widely used to derive the temperature at this height and to observe dynamical processes such as gravity waves. The concentration of OH* is controlled by the product of atomic hydrogen, with ozone creating a layer of enhanced concentration in the mesopause region. However, the basic influences on the OH* layer are atomic oxygen and temperature. The long-term monitoring of this layer provides information on a changing atmosphere. It is important to know which proportion of a trend results from anthropogenic impacts on the atmosphere and which proportion reflects natural variations. In a previous paper (Grygalashvyly et al., 2014, the trend of the height of the layer and the trend in temperature were investigated particularly in midlatitudes on the basis of our coupled dynamic and chemical transport model LIMA (Leibniz Institute Middle Atmosphere. In this paper we consider the trend for the number density between the years 1961 and 2009 and analyze the reason of the trends on a global scale. Further, we consider intra-annual variations. Temperature and wind have the strongest impacts on the trend. Surprisingly, the increase in greenhouse gases (GHGs has no clear influence on the chemistry of OH*. The main reason for this lies in the fact that, in the production term of OH*, if atomic hydrogen increases due to increasing humidity of the middle atmosphere by methane oxidation, ozone decreases. The maximum of the OH* layer is found in the mesopause region and is very variable. The mesopause region is a very intricate domain marked by changeable dynamics and strong gradients of all chemically active minor constituents determining the OH* chemistry. The OH* concentration responds, in part, very sensitively to small changes in these parameters. The cause for this behavior is given by nonlinear reactions of the photochemical system being a nonlinear enforced

  13. Quantifying the Trends in Land Surface Temperature and Surface Urban Heat Island Intensity in Mediterranean Cities in View of Smart Urbanization

    Directory of Open Access Journals (Sweden)

    Anastasios Polydoros

    2018-02-01

    Full Text Available Land Surface Temperature (LST is a key parameter for the estimation of urban fluxes as well as for the assessment of the presence and strength of the surface urban heat island (SUHI. In an urban environment, LST depends on the way the city has been planned and developed over time. To this end, the estimation of LST needs adequate spatial and temporal data at the urban scale, especially with respect to land cover/land use. The present study is divided in two parts: at first, satellite data from MODIS-Terra 8-day product (MOD11A2 were used for the analysis of an eighteen-year time series (2001–2017 of the LST spatial and temporal distribution in five major cities of the Mediterranean during the summer months. LST trends were retrieved and assessed for their statistical significance. Secondly, LST values and trends for each city were examined in relation to land cover characteristics and patterns in order to define the contribution of urban development and planning on LST; this information is important for the drafting of smart urbanization policies and measures. Results revealed (a positive LST trends in the urban areas especially during nighttime ranging from +0.412 °K in Marseille to +0.923 °K in Cairo and (b the SUHI has intensified during the last eighteen years especially during daytime in European Mediterranean cities, such as Rome (+0.332 °K and Barcelona (+0.307 °K.

  14. Increasing persistent haze in Beijing: potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends

    Directory of Open Access Journals (Sweden)

    L. Pei

    2018-03-01

    Full Text Available Over the past decades, Beijing, the capital city of China, has encountered increasingly frequent persistent haze events (PHE. While the increased pollutant emissions are considered as the most important reason, changes in regional atmospheric circulations associated with large-scale climate warming also play a role. In this study, we find a significant positive trend of PHE in Beijing for the winters from 1980 to 2016 based on updated daily observations. This trend is closely related to an increasing frequency of extreme anomalous southerly episodes in North China, a weakened East Asian trough in the mid-troposphere and a northward shift of the East Asian jet stream in the upper troposphere. These conditions together depict a weakened East Asian winter monsoon (EAWM system, which is then found to be associated with an anomalous warm, high-pressure system in the middle–lower troposphere over the northwestern Pacific. A practical EAWM index is defined as the seasonal meridional wind anomaly at 850 hPa in winter over North China. Over the period 1900–2016, this EAWM index is positively correlated with the sea surface temperature anomalies over the northwestern Pacific, which indicates a wavy positive trend, with an enhanced positive phase since the mid-1980s. Our results suggest an observation-based mechanism linking the increase in PHE in Beijing with large-scale climatic warming through changes in the typical regional atmospheric circulation.

  15. Trends in laminae in ozone profiles in relation to trends in some other middle atmospheric parameters

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Križan, Peter

    2006-01-01

    Roč. 31, 1-3 (2006), s. 46-53 ISSN 1474-7065 R&D Projects: GA AV ČR IAA3042101 Grant - others:European Commission(XE) EVK2-CT-2001-00133 (CANDIDOS) Institutional research plan: CEZ:AV0Z30420517 Keywords : Long-term trends * Middle atmosphere * Ozone * Atmospheric dynamics Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.846, year: 2006

  16. The Low Temperature Microgravity Physics Facility Project

    Science.gov (United States)

    Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.; hide

    2000-01-01

    We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide a unique environment of low temperature and microgravity for the scientists to perform breakthrough investigations on board the International Space Station.

  17. Saudi Arabia: Petroleum and new economic trends

    International Nuclear Information System (INIS)

    Sarkis, N.

    1996-01-01

    The new economic trends of Saudi Arabia are detailed in this article. This country can take an important place on the world petroleum market in the future; he has the quarter of world petroleum reserves, and is determined to keep its place of first petroleum exporter. New developments projects are arising: electric power, telecommunications, civil aviation, seawater desalination. In terms of financing, as the state cannot finance all these new projects, new means are used: privatisation, BOT (build-operate-transfer) contracts, and offset programs. (N.C.)

  18. Health System Measurement Project

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Health System Measurement Project tracks government data on critical U.S. health system indicators. The website presents national trend data as well as detailed...

  19. Price trends and income inequalities: will Sub-Saharan-Africa reduce the gap?

    OpenAIRE

    Caracciolo, Francesco; Santeramo, Fabio Gaetano

    2012-01-01

    During the past decade, commodities prices have risen substantially and the trend is likely to persist as attested by recent OECD-FAO projections. The recent debate has not reached a clear consensus on the effects of this trend on poverty and income inequality in LDCs, thus complicating the policy planning process. Our paper aims at analyzing the likely welfare and income inequality impacts of food price trends in three Sub-Saharan countries, namely Tanzania, Ghana and Ethiopia. Moreover, we ...

  20. Tips and Trends to Start the New Year.

    Science.gov (United States)

    Bleich, Michael R

    2018-01-01

    With the New Year comes the opportunity to set goals and advance training and development opportunities for leaders. This article presents five tips and five trends that serve as prognosticators for the coming year, including tips to influence time management and leadership impact and trends, such as sexual harassment training and "soft" skills development, which are now core skills for team success. A shift from hierarchical structures to network- and relationship-centered webs for advanced problem solving is also projected. J Contin Educ Nurs. 2018;49(1):7-9. Copyright 2018, SLACK Incorporated.

  1. Vegetation Activity Trend and Its Relationship with Climate Change in the Three Gorges Area, China

    Directory of Open Access Journals (Sweden)

    Guifeng Han

    2013-01-01

    Full Text Available Based on SPOT/VGT NDVI time series images from 1999 to 2009 in the Three Gorges Area (TGA, we detected vegetation activity and trends using two methods, the Mann-Kendall and Slope tests. The relationships between vegetation activity trends and annual average temperature and annual total precipitation were analyzed using observational data in seven typical meteorological stations. Vegetation activity presents a distinctive uptrend during the study period, especially in Fengjie, Yunyang, Wushan, Wuxi, and Badong counties located in the midstream of the Three Gorges Reservoir. However, in the Chongqing major area (CMA and its surrounding areas and Fuling, Yichang, and part of Wanzhou, vegetation activity shows a decreasing trend as a result of urban expansion. The NDVI has two fluctuation troughs in 2004 and 2006. The annual mean temperature presents a slight overall upward trend, but the annual total precipitation does not present a significant trend. And they almost have no significant correlations with the NDVI. Therefore, temperature and precipitation are not major influences on vegetation activity change. Instead, increasing vegetation cover benefits from a number of environment protection policies and management, and ecological construction is a major factor resulting in the upward trend. In addition, resettlement schemes mitigate the impact of human activity on vegetation activity.

  2. Regional amplification of extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, M.; Orth, R.; Seneviratne, S. I.

    2016-12-01

    Land temperatures, and in particular hot extremes, will likely increase by more than 2° C in many regions, even in the case that the global temperature increase with respect to pre-industrial levels can be limited to 2°C. We investigate here the role of soil moisture-temperature feedbacks for projected changes of extreme temperatures by comparing experiments from the GLACE-CMIP5 (Global Land-Atmosphere Coupling Experiment - Coupled Model Intercomparison Project Phase 5) project. In particular, we consider fully coupled experiments with all 6 involved GCMs and corresponding experiments where soil moisture is fixed to the local present-day seasonal cycle until the end of the 21st century. We consider the yearly hottest days and apply a scaling approach whereby we relate changes of hottest days to global mean temperature increase. We find that soil moisture-temperature coupling significantly contributes to additional future warming of extreme temperatures in many regions: In particular, it can explain more than 70% of the warming amplification of hottest days compared to global mean temperature in Central Europe, Central North America and Northern Australia, and around 50% of this signal in the Amazonian Region and Southern Africa.

  3. Monitoring and trend mapping of sea surface temperature (SST) from MODIS data: a case study of Mumbai coast.

    Science.gov (United States)

    Azmi, Samee; Agarwadkar, Yogesh; Bhattacharya, Mohor; Apte, Mugdha; Inamdar, Arun B

    2015-04-01

    Sea surface temperature (SST) is one of the most important parameters in monitoring ecosystem health in the marine and coastal environment. Coastal ecosystem is largely dependent on ambient temperature and temperature fronts for marine/coastal habitat and its sustainability. Hence, thermal pollution is seen as a severe threat for ecological health of coastal waters across the world. Mumbai is one of the largest metropolises of the world and faces severe domestic and industrial effluent disposal problem, of which thermal pollution is a major issue with policy-makers and environmental stakeholders. This study attempts to understand the long-term SST variation in the coastal waters off Mumbai, on the western coast of India, and to identify thermal pollution zones. Analysis of SST trends in the near-coastal waters for the pre- and post-monsoon seasons from the year 2004 to the year 2010 has been carried out using Moderate Resolution Imaging Spectro-radiometer (MODIS) Thermal Infra-red (TIR) bands. SST is calculated with the help of bands 31 and 32 using split window method. Several statistical operations were then applied to find the seasonal averages in SST and the standard deviation of SST in the study area. Maximum variation in SST was found within a perpendicular distance of 5 km from the shoreline during the study period. Also, a warm water mass was found to form consistently off coast during the winter months. Several anthropogenic sources of thermal pollution could be identified which were found to impact various locations along the coast.

  4. Plutonium and minor actinides management in thermal high - temperature reactors - the EU FP6 project puma

    International Nuclear Information System (INIS)

    Kuijper, J. C.

    2007-01-01

    The High Temperature gas-cooled Reactor (HTR) can fulfil a very useful niche for the purposes of Pu and Minor Actinide (MA) incineration due to its unique and unsurpassed safety features, as well as to the attractive incentives offered by the nature of the coated particle (CP) fuel. No European reactor of this type is currently available, but there has been, and still is, considerable interest internationally. Decisions to construct such a reactor in China and in South Africa have already been made or are about to be made. Apart from the unique and unsurpassed safety features offered by this reactor type, the nature of the CP fuel offers a number of attractive characteristics. In particular, it can withstand burn-ups far beyond that in either LWR or FR systems. Demonstrations as high as 75% FIMA have been achieved. The coated particle itself offers significantly improved proliferation resistance, and finally with a correct choice of the kernel composition, it can be a very effective support for direct geological disposal of the fuel. The overall objective of the PUMA project, a Specific Targeted Research Project (STREP) within the European Union 6th Framework (EU FP6), is to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO 2 -free energy generation. A number of important issues concerning the use of Pu and MA in gas-cooled reactors have already been dealt with in other projects, or are being treated in ongoing projects, e.g. as part of EU FP6. However, further steps are required to demonstrate the potential of HTRs as Pu/MA transmuters based on realistic/feasible designs of CP Pu/MA fuel and the PUMA focuses on necessary

  5. Trends in airborne pollen and pollen-season-related features of anemophilous species in Jaen (south Spain): A 23-year perspective

    Science.gov (United States)

    Ruiz-Valenzuela, Luis; Aguilera, Fátima

    2018-05-01

    Over the last few decades, global warming is prompting phenological changes in numerous plant species across Europe, and a trend towards rising airborne pollen concentrations has been detected. This study, focused on the most frequent pollen types from arboreal and herbaceous species in the airborne spectrum of Jaen (southern Spain), revealed significant changes in airborne pollen intensity and duration of the pollen season over the 23-year study period. Here Cupressaceae, Olea, Pinus, Platanus, Quercus as arboreal taxa and Plantago as herbaceous taxa were the most important with notable changes of at least three pollen season characteristics. Airborne pollen trends from arboreal taxa with high to very high allergenic potential are rising in line with the local temperature increasing trend, and their pollen seasons tend to end later and last longer. However, both the pollen concentrations and the duration of the pollen season of some herbaceous taxa are declining. The climate conditions projected for south Europe under different greenhouse emissions scenarios could continue to prompt greater pollen release and longer pollen season in tree species, especially those that flowering in winter and early spring, but these warming trends might be adverse for the local development of some herbaceous species and favorable for others sharing the same ecological niche. If similar warming trends accompany long-term climate change, greater exposure times to seasonal allergens may occur with subsequent effects on health.

  6. What spatial scales are believable for climate model projections of sea surface temperature?

    Science.gov (United States)

    Kwiatkowski, Lester; Halloran, Paul R.; Mumby, Peter J.; Stephenson, David B.

    2014-09-01

    Earth system models (ESMs) provide high resolution simulations of variables such as sea surface temperature (SST) that are often used in off-line biological impact models. Coral reef modellers have used such model outputs extensively to project both regional and global changes to coral growth and bleaching frequency. We assess model skill at capturing sub-regional climatologies and patterns of historical warming. This study uses an established wavelet-based spatial comparison technique to assess the skill of the coupled model intercomparison project phase 5 models to capture spatial SST patterns in coral regions. We show that models typically have medium to high skill at capturing climatological spatial patterns of SSTs within key coral regions, with model skill typically improving at larger spatial scales (≥4°). However models have much lower skill at modelling historical warming patters and are shown to often perform no better than chance at regional scales (e.g. Southeast Asian) and worse than chance at finer scales (coral bleaching frequency and other marine processes linked to SST warming.

  7. Projecting future precipitation and temperature at sites with diverse climate through multiple statistical downscaling schemes

    Science.gov (United States)

    Vallam, P.; Qin, X. S.

    2017-10-01

    Anthropogenic-driven climate change would affect the global ecosystem and is becoming a world-wide concern. Numerous studies have been undertaken to determine the future trends of meteorological variables at different scales. Despite these studies, there remains significant uncertainty in the prediction of future climates. To examine the uncertainty arising from using different schemes to downscale the meteorological variables for the future horizons, projections from different statistical downscaling schemes were examined. These schemes included statistical downscaling method (SDSM), change factor incorporated with LARS-WG, and bias corrected disaggregation (BCD) method. Global circulation models (GCMs) based on CMIP3 (HadCM3) and CMIP5 (CanESM2) were utilized to perturb the changes in the future climate. Five study sites (i.e., Alice Springs, Edmonton, Frankfurt, Miami, and Singapore) with diverse climatic conditions were chosen for examining the spatial variability of applying various statistical downscaling schemes. The study results indicated that the regions experiencing heavy precipitation intensities were most likely to demonstrate the divergence between the predictions from various statistical downscaling methods. Also, the variance computed in projecting the weather extremes indicated the uncertainty derived from selection of downscaling tools and climate models. This study could help gain an improved understanding about the features of different downscaling approaches and the overall downscaling uncertainty.

  8. Trends and reduction scenarios for Rn 222 concentrations in dwellings

    International Nuclear Information System (INIS)

    Blaauboer, R.O.; Heling, R.

    1993-07-01

    In the title study the effects of possible measures on the average radon concentration in Dutch dwellings is evaluated. Attention is paid to the trends in building methods, the use of building materials and using the trends as a reference development (scenario 0). A total of seven scenarios has been evaluated. The model that was used was kept rather simple, because most of the parameter values are average values. The measures studied were selected on the basis of cost-effectiveness. All measures are based on reducing the infiltration of radon from the crawl space under the house to the living quarters and reducing the exhalation rates of building materials. The evaluation shows a rather good match with earlier measurements and projections as far as the average radon concentration is concerned. The trend, i.e. the development without taking measures directed at reducing the radon concentration, predicts a slow increase of about 15% until approximately the year 2025. The scenario that is directed at using concrete with low Ra-226 concentrations in new houses projects an end to this trend. Other scenarios reveal that taking measures solely in the existing housing stock would give a substantial decrease in radon concentrations in the near future. The spread sheet model that was developed to evaluate the consequences of the different scenarios projects a possible reduction of the average radon concentration in dwellings with 25% by the year 2025, compared to 1991, if measures, directed at Rn-reduction are applied. If in addition to that concrete with low Ra-226 concentrations is used in new buildings, a reduction of the average radon concentration is projected of about 30%. This would result in an average radon concentration in dwellings of about 23 Bq.m -3 in the future. These reduction percentages have to be handled with some care however, because the effect of the obviously occurring uncertainties in several parameters used, are not yet quite clear. Trends in and the

  9. Climate and hydrological changes in the northeastern United States : recent trends and implications for forested and aquatic ecosystems

    International Nuclear Information System (INIS)

    Huntington, T.G.; Richardson, A.D.; McGuire, K.J.

    2009-01-01

    This study reviewed previous and projected changes in climatic and hydrologic conditions in the northeastern United States. While climatic warming and increases in precipitation, snow, and hydrologic regimes have been observed over the last 100 years, the most pronounced changes have occurred since 1970. However, trends in climatic and hydrological variables have differed both spatially and temporally in different regions. Decadal-scale climatic variations have also altered long-term trends. Climate models predict continued increases in both temperature and precipitation over the next century. Increases in growing season length are expected to increase evapotranspiration and the frequency of droughts. An increase in the frequency of droughts is also expected to increase the risk of fires and other disturbances. Forest productivity and maple syrup production will be impacted, and the intensity of autumn foliage coloration will be diminished. It was concluded that climate and hydrological changes will have a profound impact on forest structure, composition and ecological functioning. 131 refs., 5 figs

  10. Trends in the mortality effects of hot spells in central Europe: adaptation to climate change?

    Science.gov (United States)

    Kysely, J.; Plavcova, E.

    2013-12-01

    Europe has recently been affected by several long-lasting and severe heat waves, particularly in July-August 2003 (western Europe), June-July 2006 (central Europe), July 2007 (southeastern Europe) and July 2010 (western Russia). The heat waves influenced many sectors of human activities, with enormous socio-economic and environmental impacts. With estimated death tolls exceeding 50,000, the 2003 and 2010 heat waves were the worst natural disasters in Europe over the last 50 years, yielding an example of how seriously may also high-income societies be affected by climate change. The present study examines temporal changes in mortality associated with spells of large positive temperature anomalies (hot spells) in the population of the Czech Republic (around 10 million inhabitants, central Europe). Declining trends in the mortality impacts since 1986 are found, in spite of rising temperature trends. The findings remain unchanged if possible confounding effects of within-season acclimatization to heat and the mortality displacement effect are taken into account, and they are similar for all-cause mortality and mortality due to cardiovascular diseases. Recent positive socio-economic development, following the collapse of communism in central and eastern Europe in 1989, and better public awareness of heat-related risks are likely the primary causes of the declining vulnerability in the examined population (Kyselý and Plavcová, 2012). The results are also consistent with those reported for other developed regions of the world (the US, western Europe, Australia) and suggest that climate change may have relatively little influence on heat-related deaths, since changes in other factors that affect vulnerability of the population are dominant instead of temperature trends. It is essential to better understand the observed non-stationarity of the temperature-mortality relationship and the role of adaptation and its limits, both physiological and technological, and to address

  11. The Impact of Future Demographic Trends in Europe, 2005-2050

    Directory of Open Access Journals (Sweden)

    Marek Kupiszewski

    2008-01-01

    Full Text Available The objective of the paper is to examine the future of populations within the Council of Europe member states, identify the main trends and discuss their policy implications. The analysis focuses on the impact that future demographic trends will have on the following social domains: education, the labour market, health care and care of the elderly and social protection. The study aims to be policy-oriented and to provide an overview of future demographic trends for 2005-2050 in the Council of Europe member states, as well as presenting an analysis related to selected policies and an interpretation of these trends. The analysis of population dynamics in the coming 45 years is based on the United Nations population projection of 2005.

  12. Hamburg's Family Literacy project (FLY) in the context of international trends and recent evaluation findings

    Science.gov (United States)

    Rabkin, Gabriele; Geffers, Stefanie; Hanemann, Ulrike; Heckt, Meike; Pietsch, Marcus

    2018-05-01

    The authors of this article begin with an introduction to the holistic concept of family literacy and learning and its implementation in various international contexts, paying special attention to the key role played by the notions of lifelong learning and intergenerational learning. The international trends and experiences they outline inspired and underpinned the concept of a prize-winning Family Literacy project called FLY, which was piloted in 2004 in Hamburg, Germany. FLY aims to build bridges between preschools, schools and families by actively involving parents and other family members in children's literacy education. Its three main pillars are: (1) parents' participation in their children's classes; (2) special sessions for parents (without their children); and (3) joint out-of-school activities for teachers, parents and children. These three pillars help families from migrant backgrounds, in particular, to develop a better understanding of German schools and to play a more active role in school life. To illustrate how the FLY concept is integrated into everyday school life, the authors showcase one participating Hamburg school before presenting their own recent study on the impact of FLY in a group of Hamburg primary schools with several years of FLY experience. The results of the evaluation clearly indicate that the project's main objectives have been achieved: (1) parents of children in FLY schools feel more involved in their children's learning and are offered more opportunities to take part in school activities; (2) the quality of teaching in these schools has improved, with instruction developing a more skills-based focus due to markedly better classroom management und a more supportive learning environment; and (3) children in FLY schools are more likely to have opportunities to accumulate experience in out-of-school contexts and to be exposed to environments that stimulate and enhance their literacy skills in a tangible way.

  13. The Past and Future Trends of Heat Stress Based On Wet Bulb Globe Temperature Index in Outdoor Environment of Tehran City, Iran.

    Science.gov (United States)

    Habibi Mohraz, Majid; Ghahri, Asghar; Karimi, Mehrdad; Golbabaei, Farideh

    2016-06-01

    The workers who are working in the open and warm environments are at risk of health effects of climate and heat changes. It is expected that the risk is increase with global warming. This study aimed to investigate the changes of Wet Bulb Globe Temperature (WBGT) index in the past and to predict their trend of future changes in Tehran, capital of Iran. The meteorological data recorded in Tehran, Iran during the statistical period between 1961 and 2009 were obtained from the Iran Meteorological Organization and based on them, WBGT index was calculated and processed using Man-Kendall correlation test. The results of Man-Kendall correlation test showed that the trend of changes of annual mean WBGT during the statistical period under study (1961-2009) has been significantly increasing. In addition, the result of proposed predictive model estimated that an increase of about 1.55 degree in WBGT index will be seen over 40 years from 2009 to 2050 in Tehran. Climate change in Tehran has had an effect on person's exposure to heat stresses consistent with global warming.

  14. A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data

    Science.gov (United States)

    Sang, Yan-Fang; Sun, Fubao; Singh, Vijay P.; Xie, Ping; Sun, Jian

    2018-01-01

    The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS) approach for identifying non-monotonic trends in hydroclimate time series and evaluating their statistical significance. After validating the DWS approach using two typical synthetic time series, we examined annual temperature and potential evaporation over China from 1961-2013 and found that the DWS approach detected both the warming and the warming hiatus in temperature, and the reversed changes in potential evaporation. Further, the identified non-monotonic trends showed stable significance when the time series was longer than 30 years or so (i.e. the widely defined climate timescale). The significance of trends in potential evaporation measured at 150 stations in China, with an obvious non-monotonic trend, was underestimated and was not detected by the Mann-Kendall test. Comparatively, the DWS approach overcame the problem and detected those significant non-monotonic trends at 380 stations, which helped understand and interpret the spatiotemporal variability in the hydroclimatic process. Our results suggest that non-monotonic trends of hydroclimate time series and their significance should be carefully identified, and the DWS approach proposed has the potential for wide use in the hydrological and climate sciences.

  15. Epidemiological and demographic HIV/AIDS projections: South Africa

    African Journals Online (AJOL)

    Epidemiological and demographic HIV/AIDS projections: South Africa. ... African Journal of AIDS Research ... Projections and the Spectrum model program developed by the Futures Group were used to model the South African HIV epidemic, project future trends in HIV/AIDS and estimate the demographic impact of AIDS.

  16. Extreme temperature indices analyses: A case study of five meteorological stations in Peninsular Malaysia

    Science.gov (United States)

    Hasan, Husna; Salleh, Nur Hanim Mohd

    2015-10-01

    Extreme temperature events affect many human and natural systems. Changes in extreme temperature events can be detected and monitored by developing the indices based on the extreme temperature data. As an effort to provide the understanding of these changes to the public, a study of extreme temperature indices is conducted at five meteorological stations in Peninsular Malaysia. In this study, changes in the means and extreme events of temperature are assessed and compared using the daily maximum and minimum temperature data for the period of 2004 to 2013. The absolute extreme temperature indices; TXx, TXn, TXn and TNn provided by Expert Team on Climate Change Detection and Indices (ETCCDI) are utilized and linear trends of each index are extracted using least square likelihood method. The results indicate that there exist significant decreasing trend in the TXx index for Kota Bharu station and increasing trend in TNn index for Chuping and Kota Kinabalu stations. The comparison between the trend in mean and extreme temperatures show the same significant tendency for Kota Bharu and Kuala Terengganu stations.

  17. Global change integrating factors: Tropical tropopause trends

    International Nuclear Information System (INIS)

    Reck, R.A.

    1994-01-01

    This research proposes new criteria, shifts in the height and temperature of the tropical tropopause, as measures of global climate change. The search for signs of global warming in the temperature signal near the earth's surface is extremely difficult, largely because numerous factors contribute to surface temperature forcing with only a small signal-to-noise ratio relative to long-term effects. In the long term, no part of the atmosphere can be considered individually because the evolution will be a function of all states of all portions. A large surface greenhouse signal might ultimately be expected, but the analysis of surface temperature may not be particularly useful for early detection. What is suggested here is not an analysis of trends in the surface temperature field or any of its spatial averages, but rather an integrating factor or integrator, a single measure of global change that could be considered a test of significant change for the entire global system. Preferably, this global change integrator would vary slowly and would take into account many of the causes of climate change, with a relatively large signal-to-noise ratio. Such an integrator could be monitored, and abrupt or accelerated changes could serve as an early warning signal for policy makers and the public. Earlier work has suggested that temperature has much less short-term and small-scale noise in the lower stratosphere, and thus the global warming signal at that level might be more easily deconvoluted, because the cooling rate near the 200-mb level is almost constant with latitude. A study of the temperature signal at this pressure level might show a clearer trend due to increased levels of greenhouse gases, but it would yield information about the troposphere only by inference

  18. The Trends In Temperature And Solar Irradiance For Zaria, North

    African Journals Online (AJOL)

    Dogara et al.

    ... when the temperature rises, the alcohol expands past the index, which stays in position; so that at the end of the day, the minimum temperature corresponds to the upper or right side of the index (Landis, 2009). Figure 2: A Typical Outdoor Minima-Maxima Thermometer. Principle of Operation. The ideal gas law states that.

  19. Brief Communication: Likelihood of societal preparedness for global change: trend detection

    Directory of Open Access Journals (Sweden)

    R. M. Vogel

    2013-07-01

    Full Text Available Anthropogenic influences on earth system processes are now pervasive, resulting in trends in river discharge, pollution levels, ocean levels, precipitation, temperature, wind, landslides, bird and plant populations and a myriad of other important natural hazards relating to earth system state variables. Thousands of trend detection studies have been published which report the statistical significance of observed trends. Unfortunately, such studies only concentrate on the null hypothesis of "no trend". Little or no attention is given to the power of such statistical trend tests, which would quantify the likelihood that we might ignore a trend if it really existed. The probability of missing the trend, if it exists, known as the type II error, informs us about the likelihood of whether or not society is prepared to accommodate and respond to such trends. We describe how the power or probability of detecting a trend if it exists, depends critically on our ability to develop improved multivariate deterministic and statistical methods for predicting future trends in earth system processes. Several other research and policy implications for improving our understanding of trend detection and our societal response to those trends are discussed.

  20. Analysis of surface air temperature variations and local urbanization effects on central Yunnan Plateau, SW China

    Science.gov (United States)

    He, Yunling; Wu, Zhijie; Liu, Xuelian; Deng, Fuying

    2018-01-01

    With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961-2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen's Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3-62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.