WorldWideScience

Sample records for projected dose probability

  1. Converting dose distributions into tumour control probability

    International Nuclear Information System (INIS)

    Nahum, A.E.

    1996-01-01

    The endpoints in radiotherapy that are truly of relevance are not dose distributions but the probability of local control, sometimes known as the Tumour Control Probability (TCP) and the Probability of Normal Tissue Complications (NTCP). A model for the estimation of TCP based on simple radiobiological considerations is described. It is shown that incorporation of inter-patient heterogeneity into the radiosensitivity parameter a through s a can result in a clinically realistic slope for the dose-response curve. The model is applied to inhomogeneous target dose distributions in order to demonstrate the relationship between dose uniformity and s a . The consequences of varying clonogenic density are also explored. Finally the model is applied to the target-volume DVHs for patients in a clinical trial of conformal pelvic radiotherapy; the effect of dose inhomogeneities on distributions of TCP are shown as well as the potential benefits of customizing the target dose according to normal-tissue DVHs. (author). 37 refs, 9 figs

  2. Converting dose distributions into tumour control probability

    Energy Technology Data Exchange (ETDEWEB)

    Nahum, A E [The Royal Marsden Hospital, London (United Kingdom). Joint Dept. of Physics

    1996-08-01

    The endpoints in radiotherapy that are truly of relevance are not dose distributions but the probability of local control, sometimes known as the Tumour Control Probability (TCP) and the Probability of Normal Tissue Complications (NTCP). A model for the estimation of TCP based on simple radiobiological considerations is described. It is shown that incorporation of inter-patient heterogeneity into the radiosensitivity parameter a through s{sub a} can result in a clinically realistic slope for the dose-response curve. The model is applied to inhomogeneous target dose distributions in order to demonstrate the relationship between dose uniformity and s{sub a}. The consequences of varying clonogenic density are also explored. Finally the model is applied to the target-volume DVHs for patients in a clinical trial of conformal pelvic radiotherapy; the effect of dose inhomogeneities on distributions of TCP are shown as well as the potential benefits of customizing the target dose according to normal-tissue DVHs. (author). 37 refs, 9 figs.

  3. Failure-probability driven dose painting

    International Nuclear Information System (INIS)

    Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.; Aznar, Marianne C.; Kristensen, Claus A.; Rasmussen, Jacob; Specht, Lena; Berthelsen, Anne K.; Bentzen, Søren M.

    2013-01-01

    Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). The total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%.Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity

  4. Influence of dose distribution homogeneity on the tumor control probability in heavy-ion radiotherapy

    International Nuclear Information System (INIS)

    Wen Xiaoqiong; Li Qiang; Zhou Guangming; Li Wenjian; Wei Zengquan

    2001-01-01

    In order to estimate the influence of the un-uniform dose distribution on the clinical treatment result, the Influence of dose distribution homogeneity on the tumor control probability was investigated. Basing on the formula deduced previously for survival fraction of cells irradiated by the un-uniform heavy-ion irradiation field and the theory of tumor control probability, the tumor control probability was calculated for a tumor mode exposed to different dose distribution homogeneity. The results show that the tumor control probability responding to the same total dose will decrease if the dose distribution homogeneity gets worse. In clinical treatment, the dose distribution homogeneity should be better than 95%

  5. A Comprehensive Probability Project for the Upper Division One-Semester Probability Course Using Yahtzee

    Science.gov (United States)

    Wilson, Jason; Lawman, Joshua; Murphy, Rachael; Nelson, Marissa

    2011-01-01

    This article describes a probability project used in an upper division, one-semester probability course with third-semester calculus and linear algebra prerequisites. The student learning outcome focused on developing the skills necessary for approaching project-sized math/stat application problems. These skills include appropriately defining…

  6. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1991-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from released to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and, environmental pathways and dose estimates

  7. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates

  8. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates

  9. Method for assessing the probability of accumulated doses from an intermittent source using the convolution technique

    International Nuclear Information System (INIS)

    Coleman, J.H.

    1980-10-01

    A technique is discussed for computing the probability distribution of the accumulated dose received by an arbitrary receptor resulting from several single releases from an intermittent source. The probability density of the accumulated dose is the convolution of the probability densities of doses from the intermittent releases. Emissions are not assumed to be constant over the brief release period. The fast fourier transform is used in the calculation of the convolution

  10. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed

  11. Smoothing and projecting age-specific probabilities of death by TOPALS

    Directory of Open Access Journals (Sweden)

    Joop de Beer

    2012-10-01

    Full Text Available BACKGROUND TOPALS is a new relational model for smoothing and projecting age schedules. The model is operationally simple, flexible, and transparent. OBJECTIVE This article demonstrates how TOPALS can be used for both smoothing and projecting age-specific mortality for 26 European countries and compares the results of TOPALS with those of other smoothing and projection methods. METHODS TOPALS uses a linear spline to describe the ratios between the age-specific death probabilities of a given country and a standard age schedule. For smoothing purposes I use the average of death probabilities over 15 Western European countries as standard, whereas for projection purposes I use an age schedule of 'best practice' mortality. A partial adjustment model projects how quickly the death probabilities move in the direction of the best-practice level of mortality. RESULTS On average, TOPALS performs better than the Heligman-Pollard model and the Brass relational method in smoothing mortality age schedules. TOPALS can produce projections that are similar to those of the Lee-Carter method, but can easily be used to produce alternative scenarios as well. This article presents three projections of life expectancy at birth for the year 2060 for 26 European countries. The Baseline scenario assumes a continuation of the past trend in each country, the Convergence scenario assumes that there is a common trend across European countries, and the Acceleration scenario assumes that the future decline of death probabilities will exceed that in the past. The Baseline scenario projects that average European life expectancy at birth will increase to 80 years for men and 87 years for women in 2060, whereas the Acceleration scenario projects an increase to 90 and 93 years respectively. CONCLUSIONS TOPALS is a useful new tool for demographers for both smoothing age schedules and making scenarios.

  12. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    Finch, S.M.

    1990-12-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have been have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 3 tabs

  13. Spent Nuclear Fuel Project dose management plan

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts

  14. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    Finch, S.M.

    1991-10-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doeses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates

  15. The Hanford Environmental Dose Reconstruction Project: Overview

    International Nuclear Information System (INIS)

    Haerer, H.A.; Freshley, M.D.; Gilbert, R.O.; Morgan, L.G.; Napier, B.A.; Rhoads, R.E.; Woodruff, R.K.

    1990-01-01

    In 1988, researchers began a multiyear effort to estimate radiation doses that people could have received since 1944 at the U.S. Department of Energy's Hanford Site. The study was prompted by increasing concern about potential health effects to the public from more than 40 yr of nuclear activities. We will provide an overview of the Hanford Environmental Dose Reconstruction Project and its technical approach. The work has required development of new methods and tools for dealing with unique technical and communication challenges. Scientists are using a probabilistic, rather than the more typical deterministic, approach to generate dose distributions rather than single-point estimates. Uncertainties in input parameters are reflected in dose results. Sensitivity analyses are used to optimize project resources and define the project's scope. An independent technical steering panel directs and approves the work in a public forum. Dose estimates are based on review and analysis of historical data related to operations, effluents, and monitoring; determination of important radionuclides; and reconstruction of source terms, environmental conditions that affected transport, concentrations in environmental media, and human elements, such as population distribution, agricultural practices, food consumption patterns, and lifestyles. A companion paper in this volume, The Hanford Environmental Dose Reconstruction Project: Technical Approach, describes the computational framework for the work

  16. A simple method to calculate the influence of dose inhomogeneity and fractionation in normal tissue complication probability evaluation

    International Nuclear Information System (INIS)

    Begnozzi, L.; Gentile, F.P.; Di Nallo, A.M.; Chiatti, L.; Zicari, C.; Consorti, R.; Benassi, M.

    1994-01-01

    Since volumetric dose distributions are available with 3-dimensional radiotherapy treatment planning they can be used in statistical evaluation of response to radiation. This report presents a method to calculate the influence of dose inhomogeneity and fractionation in normal tissue complication probability evaluation. The mathematical expression for the calculation of normal tissue complication probability has been derived combining the Lyman model with the histogram reduction method of Kutcher et al. and using the normalized total dose (NTD) instead of the total dose. The fitting of published tolerance data, in case of homogeneous or partial brain irradiation, has been considered. For the same total or partial volume homogeneous irradiation of the brain, curves of normal tissue complication probability have been calculated with fraction size of 1.5 Gy and of 3 Gy instead of 2 Gy, to show the influence of fraction size. The influence of dose distribution inhomogeneity and α/β value has also been simulated: Considering α/β=1.6 Gy or α/β=4.1 Gy for kidney clinical nephritis, the calculated curves of normal tissue complication probability are shown. Combining NTD calculations and histogram reduction techniques, normal tissue complication probability can be estimated taking into account the most relevant contributing factors, including the volume effect. (orig.) [de

  17. Overview of the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Shipler, D.B.; Napier, B.A.; Ikenberry, T.A.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that specific and representative individuals and populations may have received as a result of releases of radioactive materials from historical operations at the Hanford Site. These dose estimates would account for the uncertainties of information regarding facilities operations, environmental monitoring, demography, food consumption and lifestyles, and the variability of natural phenomena. Other objectives of the HEDR Project include: supporting the Hanford Thyroid Disease Study (HTDS), declassifying Hanford-generated information and making it available to the public, performing high-quality, credible science, and conducting the project in an open, public forum. The project is briefly described

  18. A multiscale filter for noise reduction of low-dose cone beam projections.

    Science.gov (United States)

    Yao, Weiguang; Farr, Jonathan B

    2015-08-21

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, exp(-x2/2σ(2)(f)) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of σ(f), which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ(2)(f)) is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels.

  19. Dose prescription complexity versus tumor control probability in biologically conformal radiotherapy

    International Nuclear Information System (INIS)

    South, C. P.; Evans, P. M.; Partridge, M.

    2009-01-01

    The technical feasibility and potential benefits of voxel-based nonuniform dose prescriptions for biologically heterogeneous tumors have been widely demonstrated. In some cases, an ''ideal'' dose prescription has been generated by individualizing the dose to every voxel within the target, but often this voxel-based prescription has been discretized into a small number of compartments. The number of dose levels utilized and the methods used for prescribing doses and assigning tumor voxels to different dose compartments have varied significantly. The authors present an investigation into the relationship between the complexity of the dose prescription and the tumor control probability (TCP) for a number of these methods. The linear quadratic model of cell killing was used in conjunction with a number of modeled tumors heterogeneous in clonogen density, oxygenation, or proliferation. Models based on simple mathematical functions, published biological data, and biological image data were investigated. Target voxels were assigned to dose compartments using (i) simple rules based on the initial biological distribution, (ii) iterative methods designed to maximize the achievable TCP, or (iii) methods based on an ideal dose prescription. The relative performance of the simple rules was found to depend on the form of heterogeneity of the tumor, while the iterative and ideal dose methods performed comparably for all models investigated. In all cases the maximum achievable TCP was approached within the first few (typically two to five) compartments. Results suggest that irrespective of the pattern of heterogeneity, the optimal dose prescription can be well approximated using only a few dose levels but only if both the compartment boundaries and prescribed dose levels are well chosen.

  20. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates

  1. Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element architecture

    International Nuclear Information System (INIS)

    Niemierko, Andrzej; Goitein, Michael

    1991-01-01

    The authors investigate a model of normal tissue complication probability for tissues that may be represented by a critical element architecture. They derive formulas for complication probability that apply to both a partial volume irradiation and to an arbitrary inhomogeneous dose distribution. The dose-volume isoeffect relationship which is a consequence of a critical element architecture is discussed and compared to the empirical power law relationship. A dose-volume histogram reduction scheme for a 'pure' critical element model is derived. In addition, a point-based algorithm which does not require precomputation of a dose-volume histogram is derived. The existing published dose-volume histogram reduction algorithms are analyzed. The authors show that the existing algorithms, developed empirically without an explicit biophysical model, have a close relationship to the critical element model at low levels of complication probability. However, it is also showed that they have aspects which are not compatible with a critical element model and the authors propose a modification to one of them to circumvent its restriction to low complication probabilities. (author). 26 refs.; 7 figs

  2. Hanford Environmental Dose Reconstruction Project monthly report, August 1992

    International Nuclear Information System (INIS)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography; food consumption; and agriculture; and environmental pathway and dose estimates

  3. Work plan for the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that populations could have received from nuclear operations at the Hanford Site since 1944, with descriptions of uncertainties inherent in such estimates. The secondary objective is to make project records--information that HEDR staff members used to estimate radiation doses--available to the public. Preliminary dose estimates for a limited geographic area and time period, certain radionuclides, and certain populations are planned to be available in 1990; complete results are planned to be reported in 1993. Project reports and references used in the reports are available to the public in the DOE Public Reading Room in Richland, Washington. Project progress is documented in monthly reports, which are also available to the public in the DOE Public Reading Room.

  4. FY 1991 project plan for the Hanford Environmental Dose Reconstruction Project, Phase 2

    International Nuclear Information System (INIS)

    1991-02-01

    Phase 1 of the Hanford Environmental Dose Reconstruction Project was designed to develop and demonstrate a method for estimating radiation doses people may have received from Hanford Site operations since 1944. The method researchers developed relied on a variety of measured and reconstructed data as input to a modular computer model that generates dose estimates and their uncertainties. As part of Phase 1, researchers used the reconstructed data and computer model to calculate preliminary dose estimates for populations in a limited geographical area and time period. Phase 2, now under way, is designed to evaluate the Phase 1 data and model and improve them to calculate more accurate and precise dose estimates. Phase 2 will also be used to obtain preliminary estimates of two categories of doses: for Native American tribes and for individuals included in the pilot phase of the Hanford Thyroid Disease Study (HTDS). TSP Directive 90-1 required HEDR staff to develop Phase 2 task plans for TSP approval. Draft task plans for Phase 2 were submitted to the TSP at the October 11--12, 1990 public meeting, and, after discussions of each activity and associated budget needs, the TSP directed HEDR staff to proceed with a slate of specific project activities for FY 1991 of Phase 2. This project plan contains detailed information about those activities. Phase 2 is expected to last 15--18 months. In mid-FY 1991, project activities and budget will be reevaluated to determine whether technical needs or priorities have changed. Separate from, but related to, this project plan, will be an integrated plan for the remainder of the project. HEDR staff will work with the TSP to map out a strategy that clearly describes ''end products'' for the project and the work necessary to complete them. This level of planning will provide a framework within which project decisions in Phases 2, 3, and 4 can be made

  5. Failure-probability driven dose painting

    DEFF Research Database (Denmark)

    Vogelius, Ivan R; Håkansson, Katrin; Due, Anne K

    2013-01-01

    To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study...

  6. Optimization of radiation therapy, III: a method of assessing complication probabilities from dose-volume histograms

    International Nuclear Information System (INIS)

    Lyman, J.T.; Wolbarst, A.B.

    1987-01-01

    To predict the likelihood of success of a therapeutic strategy, one must be able to assess the effects of the treatment upon both diseased and healthy tissues. This paper proposes a method for determining the probability that a healthy organ that receives a non-uniform distribution of X-irradiation, heat, chemotherapy, or other agent will escape complications. Starting with any given dose distribution, a dose-cumulative-volume histogram for the organ is generated. This is then reduced by an interpolation scheme (involving the volume-weighting of complication probabilities) to a slightly different histogram that corresponds to the same overall likelihood of complications, but which contains one less step. The procedure is repeated, one step at a time, until there remains a final, single-step histogram, for which the complication probability can be determined. The formalism makes use of a complication response function C(D, V) which, for the given treatment schedule, represents the probability of complications arising when the fraction V of the organ receives dose D and the rest of the organ gets none. Although the data required to generate this function are sparse at present, it should be possible to obtain the necessary information from in vivo and clinical studies. Volume effects are taken explicitly into account in two ways: the precise shape of the patient's histogram is employed in the calculation, and the complication response function is a function of the volume

  7. Population dose from nuclear medicine studies (DOMNES). Contribution of Project DOMNES to Dose Datemed2

    International Nuclear Information System (INIS)

    Ramirez, M. L.; Ruiz, A.; Ferrer, N.; Alonso Farto, J. C.; Alvarez, C.; Rodriguez, M.

    2013-01-01

    The DOMNES Project is created in 2001 to carry out a survey on nuclear medicine procedures used in the Spanish health centers, their frequency and the doses given to patients. In addition, it reports information to Dose Data Project Med 2, focusing on radiology exams. (Author)

  8. Phase 1 of the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    1991-08-01

    The work described in this report was prompted by the public's concern about potential effect from the radioactive materials released from the Hanford Site. The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation dose the public might have received from the Hanford Site since 1944, when facilities began operating. Phase 1 of the HEDR Project is a ''pilot'' or ''demonstration'' phase. The objectives of this initial phase were to determine whether enough historical information could be found or reconstructed to be used for dose estimation and develop and test conceptual and computational models for calculating credible dose estimates. Preliminary estimates of radiation doses were produced in Phase 1 because they are needed to achieve these objectives. The reader is cautioned that the dose estimates provided in this and other Phase 1 HEDR reports are preliminary. As the HEDR Project continues, the dose estimates will change for at least three reasons: more complete input information for models will be developed; the models themselves will be refined; and the size and shape of the geographic study area will change. This is one of three draft reports that summarize the first phase of the four-phased HEDR Project. This, the Summary Report, is directed to readers who want a general understanding of the Phase 1 work and preliminary dose estimates. The two other reports -- the Air Pathway Report and the Columbia River Pathway Report -- are for readers who understand the radiation dose assessment process and want to see more technical detail. Detailed descriptions of the dose reconstruction process are available in more than 20 supporting reports listed in Appendix A. 32 refs., 46 figs

  9. Relationship between the generalized equivalent uniform dose formulation and the Poisson statistics-based tumor control probability model

    International Nuclear Information System (INIS)

    Zhou Sumin; Das, Shiva; Wang Zhiheng; Marks, Lawrence B.

    2004-01-01

    The generalized equivalent uniform dose (GEUD) model uses a power-law formalism, where the outcome is related to the dose via a power law. We herein investigate the mathematical compatibility between this GEUD model and the Poisson statistics based tumor control probability (TCP) model. The GEUD and TCP formulations are combined and subjected to a compatibility constraint equation. This compatibility constraint equates tumor control probability from the original heterogeneous target dose distribution to that from the homogeneous dose from the GEUD formalism. It is shown that this constraint equation possesses a unique, analytical closed-form solution which relates radiation dose to the tumor cell survival fraction. It is further demonstrated that, when there is no positive threshold or finite critical dose in the tumor response to radiation, this relationship is not bounded within the realistic cell survival limits of 0%-100%. Thus, the GEUD and TCP formalisms are, in general, mathematically inconsistent. However, when a threshold dose or finite critical dose exists in the tumor response to radiation, there is a unique mathematical solution for the tumor cell survival fraction that allows the GEUD and TCP formalisms to coexist, provided that all portions of the tumor are confined within certain specific dose ranges

  10. Success probability orientated optimization model for resource allocation of the technological innovation multi-project system

    Institute of Scientific and Technical Information of China (English)

    Weixu Dai; Weiwei Wu; Bo Yu; Yunhao Zhu

    2016-01-01

    A success probability orientated optimization model for resource al ocation of the technological innovation multi-project system is studied. Based on the definition of the technological in-novation multi-project system, the leveling optimization of cost and success probability is set as the objective of resource al ocation. The cost function and the probability function of the optimization model are constructed. Then the objective function of the model is constructed and the solving process is explained. The model is applied to the resource al ocation of an enterprise’s technological innovation multi-project system. The results show that the pro-posed model is more effective in rational resource al ocation, and is more applicable in maximizing the utility of the technological innovation multi-project system.

  11. Hanford Environmental Dose Reconstruction Project, Quarterly report, September--November 1993

    International Nuclear Information System (INIS)

    Cannon, S.D.; Finch, S.M.

    1993-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates); Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates

  12. WE-EF-207-08: Improve Cone Beam CT Using a Synchronized Moving Grid, An Inter-Projection Sensor Fusion and a Probability Total Variation Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H; Kong, V; Jin, J [Georgia Regents University Cancer Center, Augusta, GA (Georgia); Ren, L; Zhang, Y; Giles, W [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To present a cone beam computed tomography (CBCT) system, which uses a synchronized moving grid (SMOG) to reduce and correct scatter, an inter-projection sensor fusion (IPSF) algorithm to estimate the missing information blocked by the grid, and a probability total variation (pTV) algorithm to reconstruct the CBCT image. Methods: A prototype SMOG-equipped CBCT system was developed, and was used to acquire gridded projections with complimentary grid patterns in two neighboring projections. Scatter was reduced by the grid, and the remaining scatter was corrected by measuring it under the grid. An IPSF algorithm was used to estimate the missing information in a projection from data in its 2 neighboring projections. Feldkamp-Davis-Kress (FDK) algorithm was used to reconstruct the initial CBCT image using projections after IPSF processing for pTV. A probability map was generated depending on the confidence of estimation in IPSF for the regions of missing data and penumbra. pTV was finally used to reconstruct the CBCT image for a Catphan, and was compared to conventional CBCT image without using SMOG, images without using IPSF (SMOG + FDK and SMOG + mask-TV), and image without using pTV (SMOG + IPSF + FDK). Results: The conventional CBCT without using SMOG shows apparent scatter-induced cup artifacts. The approaches with SMOG but without IPSF show severe (SMOG + FDK) or additional (SMOG + TV) artifacts, possibly due to using projections of missing data. The 2 approaches with SMOG + IPSF removes the cup artifacts, and the pTV approach is superior than the FDK by substantially reducing the noise. Using the SMOG also reduces half of the imaging dose. Conclusion: The proposed technique is promising in improving CBCT image quality while reducing imaging dose.

  13. WE-EF-207-08: Improve Cone Beam CT Using a Synchronized Moving Grid, An Inter-Projection Sensor Fusion and a Probability Total Variation Reconstruction

    International Nuclear Information System (INIS)

    Zhang, H; Kong, V; Jin, J; Ren, L; Zhang, Y; Giles, W

    2015-01-01

    Purpose: To present a cone beam computed tomography (CBCT) system, which uses a synchronized moving grid (SMOG) to reduce and correct scatter, an inter-projection sensor fusion (IPSF) algorithm to estimate the missing information blocked by the grid, and a probability total variation (pTV) algorithm to reconstruct the CBCT image. Methods: A prototype SMOG-equipped CBCT system was developed, and was used to acquire gridded projections with complimentary grid patterns in two neighboring projections. Scatter was reduced by the grid, and the remaining scatter was corrected by measuring it under the grid. An IPSF algorithm was used to estimate the missing information in a projection from data in its 2 neighboring projections. Feldkamp-Davis-Kress (FDK) algorithm was used to reconstruct the initial CBCT image using projections after IPSF processing for pTV. A probability map was generated depending on the confidence of estimation in IPSF for the regions of missing data and penumbra. pTV was finally used to reconstruct the CBCT image for a Catphan, and was compared to conventional CBCT image without using SMOG, images without using IPSF (SMOG + FDK and SMOG + mask-TV), and image without using pTV (SMOG + IPSF + FDK). Results: The conventional CBCT without using SMOG shows apparent scatter-induced cup artifacts. The approaches with SMOG but without IPSF show severe (SMOG + FDK) or additional (SMOG + TV) artifacts, possibly due to using projections of missing data. The 2 approaches with SMOG + IPSF removes the cup artifacts, and the pTV approach is superior than the FDK by substantially reducing the noise. Using the SMOG also reduces half of the imaging dose. Conclusion: The proposed technique is promising in improving CBCT image quality while reducing imaging dose

  14. Normal tissue complication probabilities: dependence on choice of biological model and dose-volume histogram reduction scheme

    International Nuclear Information System (INIS)

    Moiseenko, Vitali; Battista, Jerry; Van Dyk, Jake

    2000-01-01

    Purpose: To evaluate the impact of dose-volume histogram (DVH) reduction schemes and models of normal tissue complication probability (NTCP) on ranking of radiation treatment plans. Methods and Materials: Data for liver complications in humans and for spinal cord in rats were used to derive input parameters of four different NTCP models. DVH reduction was performed using two schemes: 'effective volume' and 'preferred Lyman'. DVHs for competing treatment plans were derived from a sample DVH by varying dose uniformity in a high dose region so that the obtained cumulative DVHs intersected. Treatment plans were ranked according to the calculated NTCP values. Results: Whenever the preferred Lyman scheme was used to reduce the DVH, competing plans were indistinguishable as long as the mean dose was constant. The effective volume DVH reduction scheme did allow us to distinguish between these competing treatment plans. However, plan ranking depended on the radiobiological model used and its input parameters. Conclusions: Dose escalation will be a significant part of radiation treatment planning using new technologies, such as 3-D conformal radiotherapy and tomotherapy. Such dose escalation will depend on how the dose distributions in organs at risk are interpreted in terms of expected complication probabilities. The present study indicates considerable variability in predicted NTCP values because of the methods used for DVH reduction and radiobiological models and their input parameters. Animal studies and collection of standardized clinical data are needed to ascertain the effects of non-uniform dose distributions and to test the validity of the models currently in use

  15. Communication tools for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Blazek, Mary Lou; Power, Max S.

    1992-01-01

    From 1944 to 1989, the U.S. Department of Energy produced plutonium at the Hanford Site in southeast Washington State. In the early days of operation, large amounts of radioactive materials were released to the environment. Documents about the releases were made public in 1986. The Hanford Environmental Dose Reconstruction Project began in 1987. The Project will determine how much radioactive material was released, how that material may have exposed people, and what radiation doses people may have received. The Project will be complete in 1995. The federal government pays for the work. The scientific work on the study is done by Battelle's Pacific Northwest Laboratory. Public credibility and valid science are equally important to those directing the dose reconstruction work. A number of tools are used to inform the public and encourage public participation. These tools are examined in this paper. (author)

  16. FY 1992 revised task plans for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1992-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The primary objectives of work to be performed in FY 1992 is to determine the appropriate scope (space, time, and radionuclides, pathways and individuals/population groups) and accuracy (level of uncertainty in dose estimates) for the project. Another objective is to use a refined computer model to estimate Native American tribal doses and individual doses for the Hanford Thyroid Disease Study (HTDS). Project scope and accuracy requirements defined in FY 1992 can translated into model and data requirements that must be satisfied during FY 1993

  17. The PA projection of the clavicle: a dose-reducing technique.

    LENUS (Irish Health Repository)

    Mc Entee, Mark F

    2010-06-01

    This study compares dose and image quality during PA and AP radiography of the clavicle. The methodology involved a cadaver-based dose and image quality study. Results demonstrate a statistically significant 56.1 % (p dose with employment of PA and PA15 caudal projections. Reductions of 28.5 % (p doses to the eye were demonstrated for the PA. Differences in entrance-surface and exit doses were deemed non-significant. A 5.9 % (p dose reductions to the thyroid and breast when PA projection is chosen over the AP projection. The authors recommend the implementation of PA positioning for clavicle radiography.

  18. Population doses in Spain. Contribution of the project dopoes a dose Datamed 2

    International Nuclear Information System (INIS)

    Ruiz Cruces, R.; Canete Hidalgo, S.; Perez Martinez, M.; Pola, A.; Moreno, S.; Rodriguez, M.; Alvarez, C.; Gil, M.

    2013-01-01

    Frequency and effective dose values are of the order of the reported in the publication Radiation Protection 154 by neighbouring countries. Spain participated actively in the project DDM2 by sending all the required information and this has served test to ensure the correct development of the DOPOES project, which is ongoing. (Author)

  19. Developing a Mathematical Model for Scheduling and Determining Success Probability of Research Projects Considering Complex-Fuzzy Networks

    Directory of Open Access Journals (Sweden)

    Gholamreza Norouzi

    2015-01-01

    Full Text Available In project management context, time management is one of the most important factors affecting project success. This paper proposes a new method to solve research project scheduling problems (RPSP containing Fuzzy Graphical Evaluation and Review Technique (FGERT networks. Through the deliverables of this method, a proper estimation of project completion time (PCT and success probability can be achieved. So algorithms were developed to cover all features of the problem based on three main parameters “duration, occurrence probability, and success probability.” These developed algorithms were known as PR-FGERT (Parallel and Reversible-Fuzzy GERT networks. The main provided framework includes simplifying the network of project and taking regular steps to determine PCT and success probability. Simplifications include (1 equivalent making of parallel and series branches in fuzzy network considering the concepts of probabilistic nodes, (2 equivalent making of delay or reversible-to-itself branches and impact of changing the parameters of time and probability based on removing related branches, (3 equivalent making of simple and complex loops, and (4 an algorithm that was provided to resolve no-loop fuzzy network, after equivalent making. Finally, the performance of models was compared with existing methods. The results showed proper and real performance of models in comparison with existing methods.

  20. FY 1991 Task plans for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    1991-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The objectives of work in Fiscal Year (FY) 1991 are to analyze data and models used in Phase 1 and restructure the models to increase accuracy and reduce uncertainty in dose estimation capability. Databases will be expanded and efforts will begin to determine the appropriate scope (space, time, radionuclides, pathways and individuals/population groups) and accuracy (level of uncertainty in dose estimates) for the project. Project scope and accuracy requirements, once defined, can be translated into additional model and data requirements later in the project. Task plans for FY 1991 have been prepared based on activities approved by the Technical Steering Panel (TSP) in October 1990 and mid-year revisions discussed at the TSP planning/budget workshop in February 1991. The activities can be divided into two broad categories: (1) model and data development and evaluation, (2) project, technical and communication support. 3 figs., 1 tab

  1. Mathematical models of tumor growth: translating absorbed dose to tumor control probability

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    cell loss due to irradiation, the log-kill model, therefore, predicts that incomplete treatment of a kinetically heterogeneous tumor will yield a more proliferative tumor. The probability of tumor control in such a simulation may be obtained from the nadir in tumor cell number. If the nadir is not sufficiently low to yield a high probability of tumor control, then the tumor will re-grow. Since tumors in each sub-population are assumed lost at the same rate, cells comprising the sub-population with the shortest potential doubling time will re-grow the fastest, yielding a recurrent tumor that is more proliferative. A number of assumptions and simplifications are both implicitly and explicitly made in converting absorbed dose to tumor control probability. The modeling analyses described above must, therefore, be viewed in terms of understanding and evaluating different treatment approaches with the goal of treatment optimization rather than outcome prediction

  2. The NIOSH Radiation Dose Reconstruction Project: managing technical challenges.

    Science.gov (United States)

    Moeller, Matthew P; Townsend, Ronald D; Dooley, David A

    2008-07-01

    Approximately two years after promulgation of the Energy Employees Occupational Illness Compensation Program Act, the National Institute for Occupational Safety and Health Office of Compensation and Analysis Support selected a contractor team to perform many aspects of the radiation dose reconstruction process. The project scope and schedule necessitated the development of an organization involving a comparatively large number of health physicists. From the initial stages, there were many technical and managerial challenges that required continuous planning, integration, and conflict resolution. This paper identifies those challenges and describes the resolutions and lessons learned. These insights are hopefully useful to managers of similar scientific projects, especially those requiring significant data, technical methods, and calculations. The most complex challenge has been to complete defensible, individualized dose reconstructions that support timely compensation decisions at an acceptable production level. Adherence to applying claimant-favorable and transparent science consistent with the requirements of the Act has been the key to establishing credibility, which is essential to this large and complex project involving tens of thousands of individual stakeholders. The initial challenges included garnering sufficient and capable scientific staff, developing an effective infrastructure, establishing necessary methods and procedures, and integrating activities to ensure consistent, quality products. The continuing challenges include maintaining the project focus on recommending a compensation determination (rather than generating an accurate dose reconstruction), managing the associated very large data and information management challenges, and ensuring quality control and assurance in the presence of an evolving infrastructure. The lessons learned concern project credibility, claimant favorability, project priorities, quality and consistency, and critical

  3. Integration of models for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Napier, B.A.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals could have received as a result of emissions from nuclear operations at Hanford since 1944. The objective of phase 1 of the project was to demonstrate through calculations that adequate models and support data exist or could be developed to allow realistic estimations of doses to individuals from releases of radionuclides to the environment that occurred as long as 45 years ago. Much of the data used in phase 1 was preliminary; therefore, the doses calculated must be considered preliminary approximations. This paper describes the integration of various models that was implemented for initial computer calculations. Models were required for estimating the quantity of radioactive material released, for evaluating its transport through the environment, for estimating human exposure, and for evaluating resultant doses

  4. Hanford environmental dose reconstruction project - an overview

    International Nuclear Information System (INIS)

    Shipler, D.B.; Napier, B.A.; Farris, W.T.

    1996-01-01

    The Hanford Environmental Dose Reconstruction Project was initiated because of public interest in the historical releases of radioactive materials from the Hanford Site, located in southcentral Washington State. By 1986, over 38,000 pages of environmental monitoring documentation from the early years of Hanford operations had been released. Special committees reviewing the documents recommended initiation of the Hanford Environmental Dose Reconstruction Project, which began in October 1987, and is conducted by Battelle, Pacific Northwest Laboratories. The technical approach taken was to reconstruct releases of radioactive materials based on facility operating information; develop and/or adapt transport, pathway, and dose models and computer codes; reconstruct environmental, meterological, and hydrological monitoring information; reconstruct demographic, agricultural, and lifestyle characteristics; apply statistical methods to all forms of uncertainty in the information, parameters, and models; and perform scientific investigation that were technically defensible. The geographic area for the study includes ∼2 x 10 5 km 2 (75,000 mi 2 ) in eastern Washington, western Idaho, and northeastern Oregon (essentially the Mid-columbia Basin of the Pacific Northwest). Three exposure pathways were considered: the atmosphere, the Columbia River, and ground water

  5. Correlation between scatter radiation dose at height of operator's eye and dose to patient for different angiographic projections

    International Nuclear Information System (INIS)

    Leyton, Fernando; Nogueira, Maria S.; Gubolino, Luiz A.; Pivetta, Makyson R.; Ubeda, Carlos

    2016-01-01

    Studies have reported cases of radiation-induced cataract among cardiology professionals. In view of the evidence of epidemiological studies, the ICRP recommends a new threshold for opacities and a new radiation dose to eye lens limit of 20 mSv per year for occupational exposure. The aim of this paper is to report scattered radiation doses at the height of the operator's eye in an interventional cardiology facility without considering radiation protection devices and to correlate these values with different angiographic projections and operational modes. Measurements were taken in a cardiac laboratory with an angiography X-ray system equipped with flat-panel detector. PMMA plates of 30×30×5 cm were used with a thickness of 20 cm. Measurements were taken in two fluoroscopy modes (low and normal, 15 pulses/s) and in cine mode (15 frames/s). Four angiographic projections were used: anterior posterior; lateral; left anterior oblique caudal (spider); and left anterior oblique cranial, with a cardiac protocol for patients weighing between 70 and 90 kg. Measurements of phantom entrance dose rate and scatter dose rate were performed with two Unfors Xi plus detectors. The detector measuring scatter radiation was positioned at the usual distance of the cardiologist's eyes during working conditions. There is a good linear correlation between the kerma area product and scatter dose at the lens. Experimental correlation factors of 2.3, 12.0, 12.2 and 17.6 μSv/Gy cm2 were found for different projections. PMMA entrance dose rates for low and medium fluoroscopy and cine modes were 13, 39 and 282 mGy/min, respectively, for AP projection. - Highlights: • A method is presented to estimate the scatter radiation dose at operator eye height. • The method allows estimating scatter radiation dose measuring ambient dose equivalent. • Operator could exceed threshold for lens opacities if protection tools are not used. • There is a good linear correlation between kerma

  6. Calculation of complication probability of pion treatment at PSI using dose-volume histograms

    International Nuclear Information System (INIS)

    Nakagawa, Keiichi; Akanuma, Atsuo; Aoki, Yukimasa

    1991-01-01

    In the conformation technique a target volume is irradiated uniformly as in conventional radiations, whereas surrounding tissue and organs are nonuniformly irradiated. Clinical data on radiation injuries that accumulate with conventional radiation are not applicable without appropriate compensation. Recently a putative solution of this problem was proposed by Lyman using dose-volume histograms. This histogram reduction method reduces a given dose-volume histogram of an organ to a single step which corresponds to the equivalent complication probability by interpolation. As a result it converts nonuniform radiation into a unique dose to the whole organ which has the equivalent likelihood of radiation injury. This method is based on low LET radiation with conventional fractionation schedules. When it is applied to high LET radiation such as negative pion treatment, a high LET dose should be converted to an equivalent photon dose using an appropriate value of RBE. In the present study the histogram reduction method was applied to actual patients treated by the negative pion conformation technique at the Paul Scherrer Institute. Out of evaluable 90 cases of pelvic tumors, 16 developed grade III-IV bladder injury, and 7 developed grade III-IV rectal injury. The 90 cases were divided into roughly equal groups according to the equivalent doses to the entire bladder and rectum. Complication rates and equivalent doses to the full organs in these groups could be represented by a sigmoid dose-effect relation. When RBE from a pion dose to a photon dose is assumed to be 2.1 for bladder injury, the rates of bladder complications fit best to the theoretical complication curve. When the RBE value was 2.3, the rates of rectal injury fit the theoretical curve best. These values are close to the conversion factor of 2.0 that is used in clinical practice at PSI. This agreement suggests the clinical feasibility of the histogram reduction method in conformation radiotherapy. (author)

  7. Acute Radiation Risk and BRYNTRN Organ Dose Projection Graphical User Interface

    Science.gov (United States)

    Cucinotta, Francis A.; Hu, Shaowen; Nounu, Hateni N.; Kim, Myung-Hee

    2011-01-01

    The integration of human space applications risk projection models of organ dose and acute radiation risk has been a key problem. NASA has developed an organ dose projection model using the BRYNTRN with SUM DOSE computer codes, and a probabilistic model of Acute Radiation Risk (ARR). The codes BRYNTRN and SUM DOSE are a Baryon transport code and an output data processing code, respectively. The risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, the response models can be connected easily and correctly to BRYNTRN. A GUI for the ARR and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations, which are required for operations of the ARRBOD modules. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. BRYNTRN code operation requires extensive input preparation. Only a graphical user interface (GUI) can handle input and output for BRYNTRN to the response models easily and correctly. The purpose of the GUI development for ARRBOD is to provide seamless integration of input and output manipulations for the operations of projection modules (BRYNTRN, SLMDOSE, and the ARR probabilistic response model) in assessing the acute risk and the organ doses of significant Solar Particle Events (SPEs). The assessment of astronauts radiation risk from SPE is in support of mission design and operational planning to manage radiation risks in future space missions. The ARRBOD GUI can identify the proper shielding solutions using the gender-specific organ dose assessments in order to avoid ARR symptoms, and to stay within the current NASA short-term dose limits. The quantified evaluation of ARR severities based on any given shielding configuration and a specified EVA or other mission

  8. The effects of radiotherapy treatment uncertainties on the delivered dose distribution and tumour control probability

    International Nuclear Information System (INIS)

    Booth, J.T.; Zavgorodni, S.F.; Royal Adelaide Hospital, SA

    2001-01-01

    Uncertainty in the precise quantity of radiation dose delivered to tumours in external beam radiotherapy is present due to many factors, and can result in either spatially uniform (Gaussian) or spatially non-uniform dose errors. These dose errors are incorporated into the calculation of tumour control probability (TCP) and produce a distribution of possible TCP values over a population. We also study the effect of inter-patient cell sensitivity heterogeneity on the population distribution of patient TCPs. This study aims to investigate the relative importance of these three uncertainties (spatially uniform dose uncertainty, spatially non-uniform dose uncertainty, and inter-patient cell sensitivity heterogeneity) on the delivered dose and TCP distribution following a typical course of fractionated external beam radiotherapy. The dose distributions used for patient treatments are modelled in one dimension. Geometric positioning uncertainties during and before treatment are considered as shifts of a pre-calculated dose distribution. Following the simulation of a population of patients, distributions of dose across the patient population are used to calculate mean treatment dose, standard deviation in mean treatment dose, mean TCP, standard deviation in TCP, and TCP mode. These parameters are calculated with each of the three uncertainties included separately. The calculations show that the dose errors in the tumour volume are dominated by the spatially uniform component of dose uncertainty. This could be related to machine specific parameters, such as linear accelerator calibration. TCP calculation is affected dramatically by inter-patient variation in the cell sensitivity and to a lesser extent by the spatially uniform dose errors. The positioning errors with the 1.5 cm margins used cause dose uncertainty outside the tumour volume and have a small effect on mean treatment dose (in the tumour volume) and tumour control. Copyright (2001) Australasian College of

  9. Probability-of-success studies for geothermal projects: from subsurface data to geological risk analysis

    Science.gov (United States)

    Schumacher, Sandra; Pierau, Roberto; Wirth, Wolfgang

    2017-04-01

    In recent years, the development of geothermal plants in Germany has increased significantly due to a favorable political setting and resulting financial incentives. However, most projects are developed by local communities or private investors, which cannot afford a project to fail. To cover the risk of total loss if the geothermal well should not provide the energy output necessary for an economically viable project, investors try to procure insurances for this worst case scenario. In order to issue such insurances, the insurance companies insist on so called probability-of-success studies (POS studies), in which the geological risk for not achieving the necessary temperatures and/or flow rates for an economically successful project is quantified. Quantifying the probability of reaching a minimum temperature, which has to be defined by the project investors, is relatively straight forward as subsurface temperatures in Germany are comparatively well known due tens of thousands of hydrocarbon wells. Moreover, for the German Molasse Basin a method to characterize the hydraulic potential of a site based on pump test analysis has been developed and refined in recent years. However, to quantify the probability of reaching a given flow rate with a given drawdown is much more challenging in areas where pump test data are generally not available (e.g. the North German Basin). Therefore, a new method based on log and core derived porosity and permeability data was developed to quantify the geological risk of reaching a determined flow rate in such areas. We present both methods for POS studies and show how subsurface data such as pump tests or log and core measurements can be used to predict the chances of a potential geothermal project from a geological point of view.

  10. Probability distribution of dose rates in the body tissue as a function of the rhytm of Sr90 administration and the age of animals

    International Nuclear Information System (INIS)

    Rasin, I.M.; Sarapul'tsev, I.A.

    1975-01-01

    The probability distribution of tissue radiation doses in the skeleton were studied in experiments on swines and dogs. When introducing Sr-90 into the organism from the day of birth till 90 days dose rate probability distribution is characterized by one, or, for adult animals, by two independent aggregates. Each of these aggregates correspond to the normal distribution law

  11. Decision management for the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Roberds, W.J.; Haerer, H.A. [Golder Associates, Inc., Redmond, WA (United States); Winterfeldt, D.V. [Decision Insights, Laguna Beach, CA (United States)

    1992-04-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is in the process of developing estimates for the radiation doses that individuals and population groups may have received as a result of past activities at the Hanford Reservation in Eastern Washington. A formal decision-aiding methodology has been developed to assist the HEDR Project in making significant and defensible decisions regarding how this study will be conducted. These decisions relate primarily to policy (e.g., the appropriate level of public participation in the study) and specific technical aspects (e.g., the appropriate domain and depth of the study), and may have significant consequences with respect to technical results, costs, and public acceptability.

  12. Decision management for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Roberds, W.J.; Haerer, H.A.; Winterfeldt, D.V.

    1992-04-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is in the process of developing estimates for the radiation doses that individuals and population groups may have received as a result of past activities at the Hanford Reservation in Eastern Washington. A formal decision-aiding methodology has been developed to assist the HEDR Project in making significant and defensible decisions regarding how this study will be conducted. These decisions relate primarily to policy (e.g., the appropriate level of public participation in the study) and specific technical aspects (e.g., the appropriate domain and depth of the study), and may have significant consequences with respect to technical results, costs, and public acceptability

  13. Handbook of selected organ doses for projections common in pediatric radiology

    International Nuclear Information System (INIS)

    Rosenstein, M.; Beck, T.J.; Warner, G.G.

    1979-05-01

    This handbook contains data from which absorbed dose (mrad) to selected organs can be estimated for common projections in pediatric radiology. The organ doses are for three reference patients: a newborn (0 to 6 months), a 1-year old child, and a 5-year old child. One intent of the handbook is to permit the user to evaluate the effect on organ dose to these reference pediatric patients as a function of certain changes in technical parameters used in or among facilities. A second intent is to permit a comparison to be made of organ doses as a function of age. This comparison can be extended to a reference adult by referring to the previous Handbook of Selected Organ Doses fo Projections Common in Diagnostic Radiology, FDA 76-8031. Assignment of organ doses to individual pediatric patients using the Handbook data is not recommended unless the physical characteristics of the patient closely correlate with one of the three reference pediatric patients given in Appendix A

  14. Columbia River pathway report: phase I of the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab.

  15. Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models

    International Nuclear Information System (INIS)

    Soehn, Matthias; Yan Di; Liang Jian; Meldolesi, Elisa; Vargas, Carlos; Alber, Markus

    2007-01-01

    Purpose: Accurate modeling of rectal complications based on dose-volume histogram (DVH) data are necessary to allow safe dose escalation in radiotherapy of prostate cancer. We applied different equivalent uniform dose (EUD)-based and dose-volume-based normal tissue complication probability (NTCP) models to rectal wall DVHs and follow-up data for 319 prostate cancer patients to identify the dosimetric factors most predictive for Grade ≥ 2 rectal bleeding. Methods and Materials: Data for 319 patients treated at the William Beaumont Hospital with three-dimensional conformal radiotherapy (3D-CRT) under an adaptive radiotherapy protocol were used for this study. The following models were considered: (1) Lyman model and (2) logit-formula with DVH reduced to generalized EUD (3) serial reconstruction unit (RU) model (4) Poisson-EUD model, and (5) mean dose- and (6) cutoff dose-logistic regression model. The parameters and their confidence intervals were determined using maximum likelihood estimation. Results: Of the patients, 51 (16.0%) showed Grade 2 or higher bleeding. As assessed qualitatively and quantitatively, the Lyman- and Logit-EUD, serial RU, and Poisson-EUD model fitted the data very well. Rectal wall mean dose did not correlate to Grade 2 or higher bleeding. For the cutoff dose model, the volume receiving > 73.7 Gy showed most significant correlation to bleeding. However, this model fitted the data more poorly than the EUD-based models. Conclusions: Our study clearly confirms a volume effect for late rectal bleeding. This can be described very well by the EUD-like models, of which the serial RU- and Poisson-EUD model can describe the data with only two parameters. Dose-volume-based cutoff-dose models performed worse

  16. Male gonadal dose of ionizing radiation delivered during X-ray examinations and monthly probability of pregnancy: a population-based retrospective study

    Directory of Open Access Journals (Sweden)

    Slama Remy

    2006-03-01

    Full Text Available Abstract Background Male gonadal exposure to ionizing radiation may disrupt spermatogenesis, but its influence on the fecundity of couples has been rarely studied. We aimed to characterize the influence of male gonadal dose of ionizing radiation delivered during radiodiagnostic on the monthly probability of pregnancy. Methods We recruited a random sample of women who retrospectively described 1110 periods of unprotected intercourse beginning between 1985 and 1999 and leading either to a live birth or to no pregnancy; their duration was censored after 13 months. The male partner answered a telephone questionnaire on radiodiagnostic examinations. We assigned a mean gonadal dose to each type of radiodiagnostic examination. We defined male dose for each period of unprotected intercourse as the sum of the gonadal doses of the X-ray examinations experienced between 18 years of age and the date of discontinuation of contraception. Time to pregnancy was analysed using a discrete Cox model with random effect allowing to estimate hazard ratios of pregnancy. Results After adjustment for female factors likely to influence fecundity, there was no evidence of an association between male dose and the probability of pregnancy (test of homogeneity, p = 0.55. When compared to couples with a male gonadal dose between 0.01 and 0.20 milligrays (n = 321 periods of unprotected intercourse, couples with a gonadal dose above 10 milligrays had a hazard ratio of pregnancy of 1.44 (95% confidence interval, 0.73–2.86, n = 31. Conclusion Our study provides no evidence of a long-term detrimental effect of male gonadal dose of ionizing radiation delivered during radiodiagnostic on the monthly probability of pregnancy during the year following discontinuation of contraceptive use. Classification errors due to the retrospective assessment of male gonadal exposure may have limited the statistical power of our study.

  17. Projected Second Tumor Risk and Dose to Neurocognitive Structures After Proton Versus Photon Radiotherapy for Benign Meningioma

    Energy Technology Data Exchange (ETDEWEB)

    Arvold, Nils D. [Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA (United States); Niemierko, Andrzej; Broussard, George P.; Adams, Judith; Fullerton, Barbara; Loeffler, Jay S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Shih, Helen A., E-mail: hshih@partners.org [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2012-07-15

    Purpose: To calculated projected second tumor rates and dose to organs at risk (OAR) in patients with benign intracranial meningioma (BM), according to dosimetric comparisons between proton radiotherapy (PRT) and photon radiotherapy (XRT) treatment plans. Methods and Materials: Ten patients with BM treated at Massachusetts General Hospital during 2006-2010 with PRT were replanned with XRT (intensity-modulated or three-dimensional conformal radiotherapy), optimizing dose to the tumor while sparing OAR. Total dose was 54 Gy in 1.8 Gy per fraction for all plans. We calculated equivalent uniform doses, normal tissue complication probabilities, and whole brain-based estimates of excess risk of radiation-associated intracranial second tumors. Results: Excess risk of second tumors was significantly lower among PRT compared with XRT plans (1.3 vs. 2.8 per 10,000 patients per year, p < 0.002). Mean equivalent uniform doses were lower among PRT plans for the whole brain (19.0 vs. 22.8 Gy, p < 0.0001), brainstem (23.8 vs. 35.2 Gy, p = 0.004), hippocampi (left, 13.5 vs. 25.6 Gy, p < 0.0001; right, 7.6 vs. 21.8 Gy, p = 0.001), temporal lobes (left, 25.8 vs. 34.6 Gy, p = 0.007; right, 25.8 vs. 32.9 Gy, p = 0.008), pituitary gland (29.2 vs. 37.0 Gy, p = 0.047), optic nerves (left, 28.5 vs. 33.8 Gy, p = 0.04; right, 25.1 vs. 31.1 Gy, p = 0.07), and cochleas (left, 12.2 vs. 15.8 Gy, p = 0.39; right,1.5 vs. 8.8 Gy, p = 0.01). Mean normal tissue complication probability was <1% for all structures and not significantly different between PRT and XRT plans. Conclusions: Compared with XRT, PRT for BM decreases the risk of RT-associated second tumors by half and delivers significantly lower doses to neurocognitive and critical structures of vision and hearing.

  18. Projected Second Tumor Risk and Dose to Neurocognitive Structures After Proton Versus Photon Radiotherapy for Benign Meningioma

    International Nuclear Information System (INIS)

    Arvold, Nils D.; Niemierko, Andrzej; Broussard, George P.; Adams, Judith; Fullerton, Barbara; Loeffler, Jay S.; Shih, Helen A.

    2012-01-01

    Purpose: To calculated projected second tumor rates and dose to organs at risk (OAR) in patients with benign intracranial meningioma (BM), according to dosimetric comparisons between proton radiotherapy (PRT) and photon radiotherapy (XRT) treatment plans. Methods and Materials: Ten patients with BM treated at Massachusetts General Hospital during 2006–2010 with PRT were replanned with XRT (intensity-modulated or three-dimensional conformal radiotherapy), optimizing dose to the tumor while sparing OAR. Total dose was 54 Gy in 1.8 Gy per fraction for all plans. We calculated equivalent uniform doses, normal tissue complication probabilities, and whole brain–based estimates of excess risk of radiation-associated intracranial second tumors. Results: Excess risk of second tumors was significantly lower among PRT compared with XRT plans (1.3 vs. 2.8 per 10,000 patients per year, p < 0.002). Mean equivalent uniform doses were lower among PRT plans for the whole brain (19.0 vs. 22.8 Gy, p < 0.0001), brainstem (23.8 vs. 35.2 Gy, p = 0.004), hippocampi (left, 13.5 vs. 25.6 Gy, p < 0.0001; right, 7.6 vs. 21.8 Gy, p = 0.001), temporal lobes (left, 25.8 vs. 34.6 Gy, p = 0.007; right, 25.8 vs. 32.9 Gy, p = 0.008), pituitary gland (29.2 vs. 37.0 Gy, p = 0.047), optic nerves (left, 28.5 vs. 33.8 Gy, p = 0.04; right, 25.1 vs. 31.1 Gy, p = 0.07), and cochleas (left, 12.2 vs. 15.8 Gy, p = 0.39; right,1.5 vs. 8.8 Gy, p = 0.01). Mean normal tissue complication probability was <1% for all structures and not significantly different between PRT and XRT plans. Conclusions: Compared with XRT, PRT for BM decreases the risk of RT-associated second tumors by half and delivers significantly lower doses to neurocognitive and critical structures of vision and hearing.

  19. Dose-projection considerations for emergency conditions at nuclear power plants

    International Nuclear Information System (INIS)

    Stoetzel, G.A.; Ramsdell, J.V.; Poeton, R.W.; Powell, D.C.; Desrosiers, A.E.

    1983-05-01

    The purpose of this report is to review the problems and issues associated with making environmental radiation-dose projections during emergencies at nuclear power plants. The review is divided into three areas: source-term development, characterization of atmospheric dispersion and selection of appropriate dispersion models, and development of dosimetry calculations for determining thyroid dose and whole-body dose for ground-level and elevated releases. A discussion of uncertainties associated with these areas is also provided

  20. Dose-projection considerations for emergency conditions at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stoetzel, G.A.; Ramsdell, J.V.; Poeton, R.W.; Powell, D.C.; Desrosiers, A.E.

    1983-05-01

    The purpose of this report is to review the problems and issues associated with making environmental radiation-dose projections during emergencies at nuclear power plants. The review is divided into three areas: source-term development, characterization of atmospheric dispersion and selection of appropriate dispersion models, and development of dosimetry calculations for determining thyroid dose and whole-body dose for ground-level and elevated releases. A discussion of uncertainties associated with these areas is also provided.

  1. The Hanford Environmental Dose Reconstruction (HEDR) Project: Technical approach

    International Nuclear Information System (INIS)

    Napier, B.A.; Freshley, M.D.; Gilbert, R.O.; Haerer, H.A.; Morgan, L.G.; Rhoads, R.E.; Woodruff, R.K.

    1990-01-01

    Historical measurements and current assessment techniques are being combined to estimate potential radiation doses to people from radioactive releases to the air, the Columbia River, soils, and ground water at the Hanford Site since 1944. Environmental contamination from these releases has been monitored, at varying levels of detail, for 45 yr. Phase I of the Hanford Environmental Reconstruction Project will estimate the magnitude of potential doses, their areal extends, and their associated uncertainties. The Phase I study area comprises 10 counties in eastern Washington and northern Oregon, within a 100-mi radius of the site, including a stretch of the Columbia River that was most significantly affected. These counties contain a range of projected and measured contaminant levels, environmental exposure pathways, and population groups. Phase I dose estimates are being developed for the periods 1944 through 1947 for air pathways and 1964 through 1966 for river pathways. Important radionuclide/pathway combinations include fission products, such as 131 I, in milk for early atmospheric releases and activation products, such as 32 P and 65 Zn, in fish for releases to the river. Potential doses range over several orders of magnitude within the study area. We will expand the time periods and study are in three successive phases, as warranted by results of Phase I

  2. Developing milk industry estimates for dose reconstruction projects

    International Nuclear Information System (INIS)

    Beck, D.M.; Darwin, R.F.

    1991-01-01

    One of the most important contributors to radiation doses from hanford during the 1944-1947 period was radioactive iodine. Consumption of milk from cows that ate vegetation contaminated with iodine is likely the dominant pathway of human exposure. To estimate the doses people could have received from this pathway, it is necessary to reconstruct the amount of milk consumed by people living near Hanford, the source of the milk, and the type of feed that the milk cows ate. This task is challenging because the dairy industry has undergone radical changes since the end of World War 2, and records that document the impact of these changes on the study area are scarce. Similar problems are faced by researchers on most dose reconstruction efforts. The purpose of this work is to document and evaluate the methods used on the Hanford Environmental Dose Reconstruction (HEDR) Project to reconstruct the milk industry and to present preliminary results

  3. Oak Ridge Dose Reconstruction Project Summary Report; Reports of the Oak Ridge Dose Reconstruction, Vol. 7

    International Nuclear Information System (INIS)

    Widner, Thomas E.; email = twidner@jajoneses.com

    1999-01-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel of individuals appointed by Tennessee's Commissioner of Health. The panel requested that the principal investigator for the project prepare the following report, ''Oak Ridge Dose Reconstruction Project Summary Report,'' to serve the following purposes: (1) summarize in a single, less technical report, the methods and results of the various investigations that comprised the Phase II of the dose reconstruction; (2) describe the systematic searching of classified and unclassified historical records that was a vital component of the project; and (3) summarize the less detailed, screening-level assessments that were performed to evaluate the potential health significance of a number of materials, such a uranium, whose priority did not require a complete dose reconstruction effort. This report describes each major step of the dose reconstruction study: (1) the review of thousands of historical records to obtain information relating to past operations at each facility; (2) estimation of the quantity and timing of releases of radioiodines from X-10, of mercury from Y-12, of PCB's from all facilities, and of cesium-137 and other radionuclides from White Oak Creek; (3) evaluation of the routes taken by these contaminants through the environment to nearby populations; and (4) estimation of doses and health risks to exposed groups. Calculations found the highest excess cancer risks for a female born in 1952 who drank goat milk; the highest non-cancer health risk was for children in a farm family exposed to PCBs in and near East Fork Poplar Creek. More detailed

  4. Hanford Environmental Dose Reconstruction Project independent direction and oversight

    International Nuclear Information System (INIS)

    Blazek, M.L.; Power, M.

    1991-01-01

    Hanford was selected in 1942 as one of the sites for the Manhattan Project. It produced plutonium for one of the world's first nuclear weapons. The US Department of Energy (DOE) and its predecessors continued to make plutonium for nuclear weapons at Hanford for more than four decades. In the early days of Hanford operations, radioactive materials routinely were released to the environment by many processes. The DOE disclosed documents about these releases in 1986. In 1987, Washington, Oregon, and regional Indian tribes gathered an independent panel of experts. This group recommended dose reconstruction and health effects feasibility studies. Later that year, DOE hired Battelle Pacific Northwest Laboratory (PNL) to reconstruct potential public radiation doses from Hanford's past releases of radioactive material. The DOE agreed with the states and tribes that project direction would come from an independent technical steering panel (TSP). This approach was critical to gain public credibility for the project and the science. The TSP directs the project and makes policy. That is now clear - but, it was hard-earned. Conducting science in an open public process is new, challenging, and clearly worthwhile. The panel's product is good science that is believed and accepted by the public - our client

  5. Data base on dose reduction research projects for nuclear power plants

    International Nuclear Information System (INIS)

    Khan, T.A.; Yu, C.K.; Roecklein, A.K.

    1994-05-01

    This is the fifth volume in a series of reports that provide information on dose reduction research and health physics technology or nuclear power plants. The information is taken from two of several databases maintained by Brookhaven National Laboratory's ALARA Center for the Nuclear Regulatory Commission. The research section of the report covers dose reduction projects that are in the experimental or developmental phase. It includes topics such as steam generator degradation, decontamination, robotics, improvements in reactor materials, and inspection techniques. The section on health physics technology discusses dose reduction efforts that are in place or in the process of being implemented at nuclear power plants. A total of 105 new or updated projects are described. All project abstracts from this report are available to nuclear industry professionals with access to a fax machine through the ACEFAX system or a computer with a modem and the proper communications software through the ACE system. Detailed descriptions of how to access all the databases electronically are in the appendices of the report

  6. Final design review report for K basin dose reduction project

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1996-01-01

    The strategy for reducing radiation dose originating from radionuclides absorbed in the K East Basin concrete is to raise the pool water level to provide additional shielding. This report documents a final design review for cleaning/coating basin walls and modifying other basin components where appropriate. The conclusion of this review was that the documents developed constitute an acceptable design for the Dose Reduction Project

  7. Integrated Task Plans for the Hanford Environmental Dose Reconstruction Project, FY 1992 through May 1994

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1992-09-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The primary objective of work to be performed through May 1994 is to (1) determine the project's appropriate scope (space, time, radionuclides, pathways and individuals/population groups), (2) determine the project's appropriate level of accuracy (level of uncertainty in dose estimates) for the project, (3) complete model and data development, and (4) estimate doses for the Hanford Thyroid Disease Study (HTDS), representative individuals, and special populations as described herein. The plan for FY 1992 through May 1994 has been prepared based on activities and budgets approved by the Technical Steering Panel (TSP) at its meetings on August 19--20, 1991, and April 23--25, 1992. The activities can be divided into four broad categories: (1) model and data evaluation activities, (2)additional dose estimates, (3) model and data development activities, and (4)technical and communication support

  8. Integrated task plans for the Hanford Environmental Dose Reconstruction Project, June 1992 through May 1994

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1993-09-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to representative individuals. The primary objective of work to be performed through May 1994 is to determine the project's appropriate scope: space, time, radionuclides, pathways and representative individuals; determine the project's appropriate level of accuracy/level of uncertainty in dose estimates; complete model and data development; and estimate doses for the Hanford Thyroid Disease Study and representative individuals. A major objective of the HEDR Project is to estimate doses to the thyroid of individuals who were exposed to iodine-131. A principal pathway for many of these individuals was milk from cows that ate vegetation contaminated by iodine-131 released into the air from Hanford facilities. The plan for June 1992 through May 1994 has been prepared based on activities and budgets approved by the Technical Steering Panel (TSP) at its meetings on January 7--9, 1993 and February 25--26, 1993. The activities can be divided into three broad categories: (1) computer code and data development activities, (2) calculation of doses, and (3) technical and communication support to the TSP and the TSP Native American Working Group (NAWG). The following activities will be conducted to accomplish project objectives through May 1994

  9. Probability Distribution and Projected Trends of Daily Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    CAO; Li-Ge; ZHONG; Jun; SU; Bu-Da; ZHAI; Jian-Qing; Macro; GEMMER

    2013-01-01

    Based on observed daily precipitation data of 540 stations and 3,839 gridded data from the high-resolution regional climate model COSMO-Climate Limited-area Modeling(CCLM)for 1961–2000,the simulation ability of CCLM on daily precipitation in China is examined,and the variation of daily precipitation distribution pattern is revealed.By applying the probability distribution and extreme value theory to the projected daily precipitation(2011–2050)under SRES A1B scenario with CCLM,trends of daily precipitation series and daily precipitation extremes are analyzed.Results show that except for the western Qinghai-Tibetan Plateau and South China,distribution patterns of the kurtosis and skewness calculated from the simulated and observed series are consistent with each other;their spatial correlation coefcients are above 0.75.The CCLM can well capture the distribution characteristics of daily precipitation over China.It is projected that in some parts of the Jianghuai region,central-eastern Northeast China and Inner Mongolia,the kurtosis and skewness will increase significantly,and precipitation extremes will increase during 2011–2050.The projected increase of maximum daily rainfall and longest non-precipitation period during flood season in the aforementioned regions,also show increasing trends of droughts and floods in the next 40 years.

  10. The D1 method: career dose estimation from a combination of historical monitoring data and a single year's dose data

    International Nuclear Information System (INIS)

    Sont, W.N.

    1995-01-01

    A method is introduced to estimate career doses from a combination of historical monitoring data and a single year's dose data. This method, called D1 eliminates the bias arising from incorporating historical dose data from times when occupational doses were generally much higher than they are today. Doses calculated by this method are still conditional on the preservation of the status quo in the effectiveness of radiation protection. The method takes into account the variation of the annual dose, and of the probability of being monitored, with the time elapsed since the start of a career. It also allows for the calculation of a standard error of the projected career dose. Results from recent Canadian dose data are presented. (author)

  11. Summary of literature review of risk communication: Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Byram, S.J.

    1991-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project will estimate radiation exposures people may have received from radioactive materials released during past operations at the Department of Energy's Hanford Site near Richland, Washington. The project is being conducted by Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The Centers for Disease Control (CDC) will use HEDR dose estimates in studies to investigate a potential link between thyroid disease and historical Hanford emissions. The HEDR Project was initiated to address public concerns about the possible health impacts from past releases of radioactive materials from Hanford. The TSP recognized early in the project that special mechanisms would be required to communicate effectively to the many different concerned audiences. To identify and develop these mechanisms, the TSP issued Directive 89-7 to PNL in May 1989. The TSP directed PNL to examine methods to communicate the causes and effects of uncertainties in the dose estimates. A literature review was conducted as the first activity in response to the TSP's directive. This report presents the results of the literature review. The objective of the literature review was to identify ''key principles'' that could be applied to develop communications strategies for the project. 26 refs., 6 figs

  12. Oak Ridge Dose Reconstruction Project Summary Report; Reports of the Oak Ridge Dose Reconstruction, Vol. 7

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Widner; et. al.

    1999-07-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel of individuals appointed by Tennessee's Commissioner of Health. The panel requested that the principal investigator for the project prepare the following report, ''Oak Ridge Dose Reconstruction Project Summary Report,'' to serve the following purposes: (1) summarize in a single, less technical report, the methods and results of the various investigations that comprised the Phase II of the dose reconstruction; (2) describe the systematic searching of classified and unclassified historical records that was a vital component of the project; and (3) summarize the less detailed, screening-level assessments that were performed to evaluate the potential health significance of a number of materials, such a uranium, whose priority did not require a complete dose reconstruction effort. This report describes each major step of the dose reconstruction study: (1) the review of thousands of historical records to obtain information relating to past operations at each facility; (2) estimation of the quantity and timing of releases of radioiodines from X-10, of mercury from Y-12, of PCB's from all facilities, and of cesium-137 and other radionuclides from White Oak Creek; (3) evaluation of the routes taken by these contaminants through the environment to nearby populations; and (4) estimation of doses and health risks to exposed groups. Calculations found the highest excess cancer risks for a female born in 1952 who drank goat milk; the highest non-cancer health risk was for children in a farm family exposed to PCBs in and near

  13. A spatially encoded dose difference maximal intensity projection map for patient dose evaluation: A new first line patient quality assurance tool

    Energy Technology Data Exchange (ETDEWEB)

    Hu Weigang; Graff, Pierre; Boettger, Thomas; Pouliot, Jean [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California 94143 (United States); and others

    2011-04-15

    Purpose: To develop a spatially encoded dose difference maximal intensity projection (DD-MIP) as an online patient dose evaluation tool for visualizing the dose differences between the planning dose and dose on the treatment day. Methods: Megavoltage cone-beam CT (MVCBCT) images acquired on the treatment day are used for generating the dose difference index. Each index is represented by different colors for underdose, acceptable, and overdose regions. A maximal intensity projection (MIP) algorithm is developed to compress all the information of an arbitrary 3D dose difference index into a 2D DD-MIP image. In such an algorithm, a distance transformation is generated based on the planning CT. Then, two new volumes representing the overdose and underdose regions of the dose difference index are encoded with the distance transformation map. The distance-encoded indices of each volume are normalized using the skin distance obtained on the planning CT. After that, two MIPs are generated based on the underdose and overdose volumes with green-to-blue and green-to-red lookup tables, respectively. Finally, the two MIPs are merged with an appropriate transparency level and rendered in planning CT images. Results: The spatially encoded DD-MIP was implemented in a dose-guided radiotherapy prototype and tested on 33 MVCBCT images from six patients. The user can easily establish the threshold for the overdose and underdose. A 3% difference between the treatment and planning dose was used as the threshold in the study; hence, the DD-MIP shows red or blue color for the dose difference >3% or {<=}3%, respectively. With such a method, the overdose and underdose regions can be visualized and distinguished without being overshadowed by superficial dose differences. Conclusions: A DD-MIP algorithm was developed that compresses information from 3D into a single or two orthogonal projections while hinting the user whether the dose difference is on the skin surface or deeper.

  14. A spatially encoded dose difference maximal intensity projection map for patient dose evaluation: a new first line patient quality assurance tool.

    Science.gov (United States)

    Hu, Weigang; Graff, Pierre; Boettger, Thomas; Pouliot, Jean

    2011-04-01

    To develop a spatially encoded dose difference maximal intensity projection (DD-MIP) as an online patient dose evaluation tool for visualizing the dose differences between the planning dose and dose on the treatment day. Megavoltage cone-beam CT (MVCBCT) images acquired on the treatment day are used for generating the dose difference index. Each index is represented by different colors for underdose, acceptable, and overdose regions. A maximal intensity projection (MIP) algorithm is developed to compress all the information of an arbitrary 3D dose difference index into a 2D DD-MIP image. In such an algorithm, a distance transformation is generated based on the planning CT. Then, two new volumes representing the overdose and underdose regions of the dose difference index are encoded with the distance transformation map. The distance-encoded indices of each volume are normalized using the skin distance obtained on the planning CT. After that, two MIPs are generated based on the underdose and overdose volumes with green-to-blue and green-to-red lookup tables, respectively. Finally, the two MIPs are merged with an appropriate transparency level and rendered in planning CT images. The spatially encoded DD-MIP was implemented in a dose-guided radiotherapy prototype and tested on 33 MVCBCT images from six patients. The user can easily establish the threshold for the overdose and underdose. A 3% difference between the treatment and planning dose was used as the threshold in the study; hence, the DD-MIP shows red or blue color for the dose difference > 3% or < or = 3%, respectively. With such a method, the overdose and underdose regions can be visualized and distinguished without being overshadowed by superficial dose differences. A DD-MIP algorithm was developed that compresses information from 3D into a single or two orthogonal projections while hinting the user whether the dose difference is on the skin surface or deeper.

  15. A real-time stack radioactivity monitoring system and dose projection program

    Energy Technology Data Exchange (ETDEWEB)

    Hull, A.P.; Michael, P.A. [Brookhaven National Laboratory, Upton, NY (United States); Bernstein, H.J. [Bernstein & Sons, Bellport, NY (United States)

    1995-02-01

    At Brookhaven National Laboratory, a commercial Low- and High-Range Air Effluent Monitor has become operational at the 60 Mw (t) High Flux Beam Reactor. Its output data is combined with that from ground-level and elevated meteorological sensors to provide a real-time projection of the down-wind dose rates from noble gases and radioiodines released from the HFBR`s 100 m stack. The output of the monitor, and the meteorological sensors and the dose projections can be viewed at emergency response terminals located in the Reactor Control Room, its Technical Support Center and at the laboratory`s separately located Meteorological Station and Monitoring and Assessment Center.

  16. Dose and risk assessment approach for the Fernald CERCLA D ampersand D Project

    International Nuclear Information System (INIS)

    Throckmorton, J.D.; Clark, T.R.; Waligora, S.J. Jr.; Haaker, R.F.

    1994-01-01

    At the Fernald Environmental Management Project (FEMP) the uranium processing facilities used from the 1952 through 1989 are near or beyond their intended design life. These current conditions present an increasing probability for future releases of hazardous substances to the environment. To support a decision by the U.S. Department of Energy (DOE) and the Environmental Protection Agency (EPA) to remediate the buildings, a dose and risk assessment was performed to determine the extent of exposure that would be associated with the controlled decontamination and dismantlement (D ampersand D) of the Fernald facilities. A conceptual risk assessment model was developed, with exposure mechanisms and associated pathways for each potential receptor. The three receptor groups were defined as: the remediation workers, other on-site workers (those not performing D ampersand D), and off-site residents. For use in the conceptual model, an airborne source term was developed through process knowledge, other historical information and data, and air sample data from within the facilities. Individual and collective doses and risks were developed for each receptor and for each population group. The risk assessment demonstrated that all exposures resulting from the action would be within the acceptable DOE administrative control level of 2.0 rem per year for occupational workers and the acceptable EPA risk range from 10 -6 to 10 -4 for the general public

  17. EcoDoses. Improving radiological assessment of doses to man from terrestrial ecosystems. A status report for the NKS-B project 2004

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Sven P.; Isaksson, M.; Nilsson, Elisabeth (and others)

    2005-07-01

    The NKS B-programme EcoDoses project started in 2003 as a collaboration between all the Nordic countries. The aim of the project is to improve the radiological assessments of doses to man from terrestrial ecosystems. The present report sums up the work performed in the second phase of the project. The main topics in 2004 have been: (i) A continuation of previous work with a better approach for estimating global fallout on a regional or national scale, based on a correlation between precipitation and deposition rates. (ii) Fur-ther extension of the EcoDoses milk database. Estimation of effective ecological half lives of {sup 137}Cs in cows milk focussing on suitable post-Chernobyl time-series. Modelling integrated transfer of {sup 13}7{sup C}s to cow's milk from Nordic countries. (iii) Determination of effective ecological half lives for fresh water fish from Nordic lakes. (iv) Investigate ra-dioecological sensitivity for Nordic populations. (v) Food-chain modelling using the Eco-sys-model, which is the underlying food- and dose-module in several computerised deci-sion-making systems. (au)

  18. EcoDoses. Improving radiological assessment of doses to man from terrestrial ecosystems. A status report for the NKS-B project 2004

    International Nuclear Information System (INIS)

    Nielsen, Sven P.; Isaksson, M.; Nilsson, Elisabeth

    2005-07-01

    The NKS B-programme EcoDoses project started in 2003 as a collaboration between all the Nordic countries. The aim of the project is to improve the radiological assessments of doses to man from terrestrial ecosystems. The present report sums up the work performed in the second phase of the project. The main topics in 2004 have been: (i) A continuation of previous work with a better approach for estimating global fallout on a regional or national scale, based on a correlation between precipitation and deposition rates. (ii) Fur-ther extension of the EcoDoses milk database. Estimation of effective ecological half lives of 137 Cs in cows milk focussing on suitable post-Chernobyl time-series. Modelling integrated transfer of 13 7 C s to cow's milk from Nordic countries. (iii) Determination of effective ecological half lives for fresh water fish from Nordic lakes. (iv) Investigate ra-dioecological sensitivity for Nordic populations. (v) Food-chain modelling using the Eco-sys-model, which is the underlying food- and dose-module in several computerised deci-sion-making systems. (au)

  19. European project for developing general guidelines for harmonising internal dose assessment procedures (IDEAS)

    International Nuclear Information System (INIS)

    Andrasi, A.; Bailey, M.; Puncher, M.; Berkovski, V.; Eric Blanchardon, E.; Jourdain, J.-R.; Carlo-Maria Castellani, C.-M.; Doerfel, H.; Christian Hurtgen, Ch.; Le Guen, B.

    2003-01-01

    Several international intercomparison exercises on intake and internal dose assessments from monitoring data led to the conclusion that the results calculated by different participants varied significantly mainly because of the wide variety of methods and assumptions applied in the assessment procedure. Based on these experiences the need for harmonisation of the procedures has been formulated as an EU research project under the 5 th Framework Programme (2001-2005), with the aim of developing general guidelines for standardising assessments of intakes and internal doses. In the IDEAS project eight institutions from seven European countries are participating using inputs also from internal dosimetry professionals from across Europe to ensure broad consensus in the outcome of the project. The IDEAS project is explained

  20. Projected global health impacts from severe nuclear accidents: Conversion of projected doses to risks on a global scale: Experience from Chernobyl releases

    International Nuclear Information System (INIS)

    Catlin, R.J.; Goldman, M.; Anspaugh, L.R.

    1988-01-01

    Estimates of projected collective dose and average individual dose commitments from Chernobyl releases were made for various regions. Consideration was given to the possible effectiveness of protective actions taken by various countries to reduce projected doses to their populations. Although some preliminary data indicate possible mean reductions of about 25% in total collective doses over the first year, and of about 55% in collective dose to the thyroid, no corrections were made to these dose estimates because of the variable nature of the data. A new combined set of dose-effect models recently published by the United States Nuclear Regulatory Commission was then applied to estimate the ranges of possible future additional health effects due to the Chernobyl accident. In this method possible health effects are estimated on an individual site basis and the results are then summed. Both absolute and relative risk projection models are used. By use of these methods, ''best'' estimates of possible additional health effects were projected for the Northern Hemisphere as follows: 1) over the next 50 years, up to 28 thousand radiation-induced fatal cancers, compared to an expected 600 million cancer deaths from natural or spontaneous causes; 2) over the next year, up to 700 additional cases of severe mental retardation, compared to a normal expectation of 340 thousand cases; and 3) in the first generation, up to 1.9 thousand radiation-induced genetic disorders, compared to 180 million naturally-occurring cases. The possibility of zero health effects at very low doses and dose rates cannot be excluded. Owing to the very large numbers of naturally-occurring health effects, it is unlikely that any additional health effects will be demonstrable except, perhaps, for the more highly exposed population in the immediate vicinity of Chernobyl. 13 refs, 4 figs, 6 tabs

  1. Data base on dose reduction research projects for nuclear power plants: Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Baum, J.W.

    1989-05-01

    This is the third volume in a series of reports that provide information on dose-reduction research and health physics technology for nuclear power plants. The information is taken from data base maintained by Brookhaven National Laboratory's ALARA Center for the Nuclear Regulatory Commission. This report presents information on 80 new projects, covering a wide area of activities. Projects on steam generator degradation, decontamination, robotics, improvement in reactor materials, and inspection techniques, among others, are described in the research section. The section on health physics technology includes some simple and very cost-effective projects to reduce radiation exposures. Collective dose data from the United States and other countries are also presented. In the conclusion, we suggest that although new advanced reactor design technology will eventually reduce radiation exposures at nuclear power plants to levels below serious concern, in the interim an aggressive approach to dose reduction remains necessary. 20 refs.

  2. Monte Carlo calculations of patient doses from dental radiography

    International Nuclear Information System (INIS)

    Gibbs, S.J.; Pujol, A.; Chen, T.S.; Malcolm, A.W.

    1984-01-01

    A Monte Carlo computer program has been developed to calculate patient dose from diagnostic radiologic procedures. Input data include patient anatomy as serial CT scans at 1-cm intervals from a typical cadaver, beam spectrum, and projection geometry. The program tracks single photons, accounting for photoelectric effect, coherent (using atomic form factors) and incoherent (using scatter functions) scatter. Inhomogeneities (bone, teeth, muscle, fat, lung, air cavities, etc.) are accounted for as they are encountered. Dose is accumulated in a three-dimensional array of voxels, corresponding to the CT input. Output consists of isodose curves, doses to specific organs, and effective dose equivalent, H/sub E/, as defined by ICRP. Initial results, from dental bite-wing projections using 90-kVp, half-wave rectified dental spectra, have produced H/sub E/ values ranging from 3 to 17 microsieverts (0.3-1.7 mrem) per image, depending on image receptor and projection geometry. The probability of stochastic effect is estimated by ICRP as 10/sup -2//Sv, or about 10/sup -7/ to 10/sup -8/ per image

  3. Guidance on internal dose assessments from monitoring data (Project IDEAS)

    International Nuclear Information System (INIS)

    Doerfel, H.; Andrasi, A.; Bailey, M.; Berkovski, V.; Castellani, M.; Hurtgen, C.; Jourdain, R.; Le Guen, B.

    2003-01-01

    Several international intercomparison exercises on intake and internal dose assessments from monitoring data led to the conclusion that the results calculated by different participants varied significantly mainly to the broad variety of methods and assumptions applied in the assessment procedure. Based on these experiences the need of harmonisation of the procedures has been formulated as an EU research project under the 5th Framework Programme, with the aim of developing general guidelines for standardising assessments of intakes and internal doses. In the IDEAS project, eight institutions from seven European countries are participating, also using inputs from internal dosimetry professionals from across Europe to ensure broad consensus in the outcome of the project. To ensure that the guidelines are applicable to a wide range of practical situations, the first step will be to compile a database on well documented cases of internal contamination. In parallel, an improved version of existing software will be developed and distributed to the partners for further use. Many cases from the database will be evaluated independently by more partners using the same software and the results will be discussed and the draft guidelines prepared. The guidelines will then be revised and refined on the basis of the experiences and discussions of two workshops, and an inter-comparison exercise organised in the frame of the project which will be open to all internal dosimetry professionals. (author)

  4. Therapeutic treatment plan optimization with probability density-based dose prescription

    International Nuclear Information System (INIS)

    Lian Jun; Cotrutz, Cristian; Xing Lei

    2003-01-01

    The dose optimization in inverse planning is realized under the guidance of an objective function. The prescription doses in a conventional approach are usually rigid values, defining in most instances an ill-conditioned optimization problem. In this work, we propose a more general dose optimization scheme based on a statistical formalism [Xing et al., Med. Phys. 21, 2348-2358 (1999)]. Instead of a rigid dose, the prescription to a structure is specified by a preference function, which describes the user's preference over other doses in case the most desired dose is not attainable. The variation range of the prescription dose and the shape of the preference function are predesigned by the user based on prior clinical experience. Consequently, during the iterative optimization process, the prescription dose is allowed to deviate, with a certain preference level, from the most desired dose. By not restricting the prescription dose to a fixed value, the optimization problem becomes less ill-defined. The conventional inverse planning algorithm represents a special case of the new formalism. An iterative dose optimization algorithm is used to optimize the system. The performance of the proposed technique is systematically studied using a hypothetical C-shaped tumor with an abutting circular critical structure and a prostate case. It is shown that the final dose distribution can be manipulated flexibly by tuning the shape of the preference function and that using a preference function can lead to optimized dose distributions in accordance with the planner's specification. The proposed framework offers an effective mechanism to formalize the planner's priorities over different possible clinical scenarios and incorporate them into dose optimization. The enhanced control over the final plan may greatly facilitate the IMRT treatment planning process

  5. Revue of some dosimetry and dose assessment European projects

    International Nuclear Information System (INIS)

    Bolognese-Milsztajn, T.; Frank, D.; Lacoste, V.; Pihet, P.

    2006-01-01

    Full text of publication follows: Within the 5. Framework Programme of the European Commission several project dealing with dosimetry and dose assessment for internal and external exposure have been supported. A revue of the results of some of them is presented in this paper. The EURADOS network which involved 50 dosimetry institutes in EUROPE has coordinated the project DOSIMETRY NETWORK: the main results achieved within this action are the following: - The release on the World Wide Web of the EURADOS Database of Dosimetry Research Facilities; - The realisation of the report 'Harmonization of Individual Monitoring (IM) in Europe'; - The continuation of the intercomparisons programme of environmental radiation monitoring systems; - The realisation of the report Cosmic radiation exposure of aircraft crew. The EVIDOS project aimed at evaluating state of the art dosimetry techniques in representative workplaces of the nuclear industry with complex mixed neutron-photon radiation fields. This paper summarises the main findings from a practical point of view. Conclusions and recommendations will be given concerning characterisation of radiation fields, methods to derive radiation protection quantities and dosimeters results. The IDEA project aimed to improve the assessment of incorporated radionuclides through developments of advanced in-vivo and bioassay monitoring techniques and making use of such enhancements for improvements in routine monitoring. The primary goal was to categorize those new developments regarding their potential and eligibility for the routine monitoring community. The costs of monitoring for internal exposures in the workplace are usually significantly greater than the equivalent costs for external exposures. There is therefore a need to ensure that resources are employed with maximum effectiveness. The EC-funded OMINEX (Optimisation of Monitoring for Internal Exposure) project has developed methods for optimising the design and implementation of

  6. Data base on nuclear power plant dose reduction research projects

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Dionne, B.J.; Baum, J.W.

    1985-12-01

    This report contains project information on the research and development activities of the nuclear power industry in the area of dose reduction. It is based on a data base of information set up at the ALARA Center of Brookhaven National Laboratory. One purpose of this report is to draw attention to work in progress and to enable researchers and subscribers to obtain further information from the investigators and project managers. Information is provided on 180 projects, divided according to whether they are oriented to Engineering Research or to Health Physics Technology. The report contains indices on main category, project manager, principal investigator, sponsoring organization, contracting organization, and subject. This is an initial report. It is intended that periodic updates be issued whenever sufficient material has been accumulated.

  7. Data base on nuclear power plant dose reduction research projects

    International Nuclear Information System (INIS)

    Khan, T.A.; Dionne, B.J.; Baum, J.W.

    1985-12-01

    This report contains project information on the research and development activities of the nuclear power industry in the area of dose reduction. It is based on a data base of information set up at the ALARA Center of Brookhaven National Laboratory. One purpose of this report is to draw attention to work in progress and to enable researchers and subscribers to obtain further information from the investigators and project managers. Information is provided on 180 projects, divided according to whether they are oriented to Engineering Research or to Health Physics Technology. The report contains indices on main category, project manager, principal investigator, sponsoring organization, contracting organization, and subject. This is an initial report. It is intended that periodic updates be issued whenever sufficient material has been accumulated

  8. Correlation between scatter radiation dose at the height of the operators eye and dose to patient for different angiographies projections

    Energy Technology Data Exchange (ETDEWEB)

    Leyton, F.; Nogueira, M. S.; Da Silva, T. A. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Post-graduation in Sciences and Technology of Radiations, Minerals and Materials, Pte. Antonio Carlos No. 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Gubolino, L.; Pivetta, M. R. [Hospital dos Fornecedores de Cana de Piracicaba, Av. Barao de Valenca 616, 13405-233 Piracicaba (Brazil); Ubeda, C., E-mail: leyton.fernando@gmail.com [Tarapaca University, Health Sciences Faculty, Radiological Sciences Center, Av. Gral. Velasquez 1775, 1000007 Arica, Arica and Parinacota (Chile)

    2015-10-15

    Cases of radiation induced cataract among cardiology professionals have been reported in studies. In view of evidence of radiation injuries, the ICRP recommends limiting the radiation dose to the lens to 20 mSv per year for occupational exposure. The aim of this works was to report scattered radiation doses at the height of the operators eye in an interventional cardiology facility from procedures performed without use of radiation protection devices, correlated with different angiographic projections and operational modes. Measurements were made in a cardiac laboratory with an angiography X-ray system GE equipped with flat-panel detector. PMMA plates of 30 x 30 x 5 cm were used to simulate a patient with a thickness of 20 cm. Two fluoroscopy modes (low and normal, 15 frame/s), cine mode 15 frame/s. Four angiographic projections anterior posterior (Ap), lateral (Lat), left anterior oblique caudal (spider) and left anterior oblique cranial (Lao-45/cra-30) and a cardiac protocol for patient between 70 to 90 kg was used. Measurements of phantom entrance doses rate and scatter doses rate were performed with two Unfors Xi plus. The detector measuring scatter radiation was positioned at the usual distance of the cardiologists eyes during working conditions (1 m from the isocenter and 1.7 m from the floor). There is a good linear correlation between the kerma-area product and scatter dose at the lens. An experimental correlation factor of 2.3; 12.0; 12.2 and 17.6 μSv/Gy cm{sup 2} were found for the Ap, Lao/cra, spider and Lat projections, respectively. The entrance dose of PMMA for fluoroscopy low, medium and cine was 13, 39 and 282 mGy/min, respectively to Ap. (Author)

  9. Correlation between scatter radiation dose at the height of the operators eye and dose to patient for different angiographies projections

    International Nuclear Information System (INIS)

    Leyton, F.; Nogueira, M. S.; Da Silva, T. A.; Gubolino, L.; Pivetta, M. R.; Ubeda, C.

    2015-10-01

    Cases of radiation induced cataract among cardiology professionals have been reported in studies. In view of evidence of radiation injuries, the ICRP recommends limiting the radiation dose to the lens to 20 mSv per year for occupational exposure. The aim of this works was to report scattered radiation doses at the height of the operators eye in an interventional cardiology facility from procedures performed without use of radiation protection devices, correlated with different angiographic projections and operational modes. Measurements were made in a cardiac laboratory with an angiography X-ray system GE equipped with flat-panel detector. PMMA plates of 30 x 30 x 5 cm were used to simulate a patient with a thickness of 20 cm. Two fluoroscopy modes (low and normal, 15 frame/s), cine mode 15 frame/s. Four angiographic projections anterior posterior (Ap), lateral (Lat), left anterior oblique caudal (spider) and left anterior oblique cranial (Lao-45/cra-30) and a cardiac protocol for patient between 70 to 90 kg was used. Measurements of phantom entrance doses rate and scatter doses rate were performed with two Unfors Xi plus. The detector measuring scatter radiation was positioned at the usual distance of the cardiologists eyes during working conditions (1 m from the isocenter and 1.7 m from the floor). There is a good linear correlation between the kerma-area product and scatter dose at the lens. An experimental correlation factor of 2.3; 12.0; 12.2 and 17.6 μSv/Gy cm 2 were found for the Ap, Lao/cra, spider and Lat projections, respectively. The entrance dose of PMMA for fluoroscopy low, medium and cine was 13, 39 and 282 mGy/min, respectively to Ap. (Author)

  10. A simple method to back-project isocenter dose of radiotherapy treatments using EPID transit dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, T.B.; Cerbaro, B.Q.; Rosa, L.A.R. da, E-mail: thiago.fisimed@gmail.com, E-mail: tbsilveira@inca.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro - RJ (Brazil)

    2017-07-01

    The aim of this work was to implement a simple algorithm to evaluate isocenter dose in a phantom using the back-projected transmitted dose acquired using an Electronic Portal Imaging Device (EPID) available in a Varian Trilogy accelerator with two nominal 6 and 10 MV photon beams. This algorithm was developed in MATLAB language, to calibrate EPID measured dose in absolute dose, using a deconvolution process, and to incorporate all scattering and attenuation contributions due to photon interactions with phantom. Modeling process was simplified by using empirical curve adjustments to describe the contribution of scattering and attenuation effects. The implemented algorithm and method were validated employing 19 patient treatment plans with 104 clinical irradiation fields projected on the phantom used. Results for EPID absolute dose calibration by deconvolution have showed percent deviations lower than 1%. Final method validation presented average percent deviations between isocenter doses calculated by back-projection and isocenter doses determined with ionization chamber of 1,86% (SD of 1,00%) and -0,94% (SD of 0,61%) for 6 and 10 MV, respectively. Normalized field by field analysis showed deviations smaller than 2% for 89% of all data for 6 MV beams and 94% for 10 MV beams. It was concluded that the proposed algorithm possesses sufficient accuracy to be used for in vivo dosimetry, being sensitive to detect dose delivery errors bigger than 3-4% for conformal and intensity modulated radiation therapy techniques. (author)

  11. Effect of Localizer Radiography Projection on Organ Dose at Chest CT with Automatic Tube Current Modulation.

    Science.gov (United States)

    Saltybaeva, Natalia; Krauss, Andreas; Alkadhi, Hatem

    2017-03-01

    Purpose To calculate the effect of localizer radiography projections to the total radiation dose, including both the dose from localizer radiography and that from subsequent chest computed tomography (CT) with tube current modulation (TCM). Materials and Methods An anthropomorphic phantom was scanned with 192-section CT without and with differently sized breast attachments. Chest CT with TCM was performed after one localizer radiographic examination with anteroposterior (AP) or posteroanterior (PA) projections. Dose distributions were obtained by means of Monte Carlo simulations based on acquired CT data. For Monte Carlo simulations of localizer radiography, the tube position was fixed at 0° and 180°; for chest CT, a spiral trajectory with TCM was used. The effect of tube start angles on dose distribution was investigated with Monte Carlo simulations by using TCM curves with fixed start angles (0°, 90°, and 180°). Total doses for lungs, heart, and breast were calculated as the sum of the dose from localizer radiography and CT. Image noise was defined as the standard deviation of attenuation measured in 14 circular regions of interest. The Wilcoxon signed rank test, paired t test, and Friedman analysis of variance were conducted to evaluate differences in noise, TCM curves, and organ doses, respectively. Results Organ doses from localizer radiography were lower when using a PA instead of an AP projection (P = .005). The use of a PA projection resulted in higher TCM values for chest CT (P chest CT. © RSNA, 2016 Online supplemental material is available for this article.

  12. Review on Population Projection Methodology for Radiological Dose Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jang, M. S.; Kang, H. S.; Kim, S. R. [NESS, Daejeon (Korea, Republic of); Hwang, W. T. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yang, Y. H. [KHNP, Daejeon (Korea, Republic of)

    2015-05-15

    Radiation environment report (RER), one of the essential documents in plant operating license or continuous operation license, includes population projection. Population estimates are utilized in determining the collective dose at the operation or restart time of nuclear power plant. Many population projection models are suggested and also under development. We carried out the sensitivity analysis on various population projection models to Daejeon city as a target. Daejeon city showed the increase or decrease in the cross-sectional population, because of the development of Sejong city, Doan new town and etc. We analyzed the population of Daejeon city using statistical ARIMA model and various simple population projection models. It is important to determine the population limit in Modified exponential model but it is not easy. Therefore, the various properties of the area such as the decrease and increase of population, new town development plan, social and natural environment change and etc., should be carefully reviewed to estimate the future population of any area.

  13. Review on Population Projection Methodology for Radiological Dose Assessment

    International Nuclear Information System (INIS)

    Jang, M. S.; Kang, H. S.; Kim, S. R.; Hwang, W. T.; Yang, Y. H.

    2015-01-01

    Radiation environment report (RER), one of the essential documents in plant operating license or continuous operation license, includes population projection. Population estimates are utilized in determining the collective dose at the operation or restart time of nuclear power plant. Many population projection models are suggested and also under development. We carried out the sensitivity analysis on various population projection models to Daejeon city as a target. Daejeon city showed the increase or decrease in the cross-sectional population, because of the development of Sejong city, Doan new town and etc. We analyzed the population of Daejeon city using statistical ARIMA model and various simple population projection models. It is important to determine the population limit in Modified exponential model but it is not easy. Therefore, the various properties of the area such as the decrease and increase of population, new town development plan, social and natural environment change and etc., should be carefully reviewed to estimate the future population of any area

  14. Data base on dose reduction research projects for nuclear power plants. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Yu, C.K.; Roecklein, A.K. [Brookhaven National Lab., Upton, NY (United States)

    1994-05-01

    This is the fifth volume in a series of reports that provide information on dose reduction research and health physics technology or nuclear power plants. The information is taken from two of several databases maintained by Brookhaven National Laboratory`s ALARA Center for the Nuclear Regulatory Commission. The research section of the report covers dose reduction projects that are in the experimental or developmental phase. It includes topics such as steam generator degradation, decontamination, robotics, improvements in reactor materials, and inspection techniques. The section on health physics technology discusses dose reduction efforts that are in place or in the process of being implemented at nuclear power plants. A total of 105 new or updated projects are described. All project abstracts from this report are available to nuclear industry professionals with access to a fax machine through the ACEFAX system or a computer with a modem and the proper communications software through the ACE system. Detailed descriptions of how to access all the databases electronically are in the appendices of the report.

  15. Draft Air Pathway Report: Phase 1 of the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-20

    This report summarizes the air pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project, conducted by Battelle staff at the Pacific Northwest Laboratory under the direction of an independent Technical Steering Panel. The HEDR Project is estimating historical radiation doses that could have been received by populations near the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the air-pathway dose reconstruction sought to determine whether dose estimates could be calculated for populations in the 10 counties nearest the Hanford Site from atmospheric releases of iodine-131 from the site from 1944--1947. Phase 1 demonstrated the following: HEDR-calculated source-term estimates of iodine-131 releases to the atmosphere were within 20% of previously published estimates; calculated vegetation concentrations of iodine-131 agree well with previously published measurements; the highest of the Phase 1 preliminary dose estimates to the thyroid are consistent with independent, previously published estimates of doses to maximally exposed individuals; and relatively crude, previously published measurements of thyroid burdens for Hanford workers are in the range of average burdens that the HEDR model estimated for similar reference individuals'' for the period 1944--1947. 4 refs., 10 figs., 9 tabs.

  16. FY 1992 task plans for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    1991-10-01

    Phase 1 of the HEDR Project was designed to develop and demonstrate a method for estimating radiation doses people may have received from Hanford Site operations since 1944. The method researchers developed relied on a variety of measured and reconstructed data as input to a modular computer model that generates dose estimates and their uncertainties. As part of Phase 1, researchers used the reconstructed data and computer model to calculate preliminary dose estimates for populations from limited radionuclides, in a limited geographical area and time period. Phase 1 ended in FY 1990. In February 1991, the TSP decided to shift the project planning approach away from phases--which were centered around completion of major portions of technical activities--to individual fiscal years (FYs), which span October of one year through September of the next. Therefore, activities that were previously designated to occur in phases are now designated in an integrated schedule to occur in one or more of the next fiscal years into FY 1995. Task plans are updated every 6 months. In FY 1992, scientists will continue to improve Phase 1 data and models to calculate more accurate and precise dose estimates. The plan for FY 1992 has been prepared based on activities and budgets approved by the Technical Steering Panel (TSP) at its meeting on August 19--20, 1991. The activities can be divided into four categories: (1) model and data evaluation activities, (2) additional dose estimates, (3) model and data development activities, and (4) technical and communication support. 3 figs., 2 tabs

  17. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD).

    Science.gov (United States)

    Luxton, Gary; Keall, Paul J; King, Christopher R

    2008-01-07

    To facilitate the use of biological outcome modeling for treatment planning, an exponential function is introduced as a simpler equivalent to the Lyman formula for calculating normal tissue complication probability (NTCP). The single parameter of the exponential function is chosen to reproduce the Lyman calculation to within approximately 0.3%, and thus enable easy conversion of data contained in empirical fits of Lyman parameters for organs at risk (OARs). Organ parameters for the new formula are given in terms of Lyman model m and TD(50), and conversely m and TD(50) are expressed in terms of the parameters of the new equation. The role of the Lyman volume-effect parameter n is unchanged from its role in the Lyman model. For a non-homogeneously irradiated OAR, an equation relates d(ref), n, v(eff) and the Niemierko equivalent uniform dose (EUD), where d(ref) and v(eff) are the reference dose and effective fractional volume of the Kutcher-Burman reduction algorithm (i.e. the LKB model). It follows in the LKB model that uniform EUD irradiation of an OAR results in the same NTCP as the original non-homogeneous distribution. The NTCP equation is therefore represented as a function of EUD. The inverse equation expresses EUD as a function of NTCP and is used to generate a table of EUD versus normal tissue complication probability for the Emami-Burman parameter fits as well as for OAR parameter sets from more recent data.

  18. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD)

    International Nuclear Information System (INIS)

    Luxton, Gary; Keall, Paul J; King, Christopher R

    2008-01-01

    To facilitate the use of biological outcome modeling for treatment planning, an exponential function is introduced as a simpler equivalent to the Lyman formula for calculating normal tissue complication probability (NTCP). The single parameter of the exponential function is chosen to reproduce the Lyman calculation to within ∼0.3%, and thus enable easy conversion of data contained in empirical fits of Lyman parameters for organs at risk (OARs). Organ parameters for the new formula are given in terms of Lyman model m and TD 50 , and conversely m and TD 50 are expressed in terms of the parameters of the new equation. The role of the Lyman volume-effect parameter n is unchanged from its role in the Lyman model. For a non-homogeneously irradiated OAR, an equation relates d ref , n, v eff and the Niemierko equivalent uniform dose (EUD), where d ref and v eff are the reference dose and effective fractional volume of the Kutcher-Burman reduction algorithm (i.e. the LKB model). It follows in the LKB model that uniform EUD irradiation of an OAR results in the same NTCP as the original non-homogeneous distribution. The NTCP equation is therefore represented as a function of EUD. The inverse equation expresses EUD as a function of NTCP and is used to generate a table of EUD versus normal tissue complication probability for the Emami-Burman parameter fits as well as for OAR parameter sets from more recent data

  19. Selection of dominant radionuclides for Phase 1 of the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.

    1991-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions from nuclear operations at Hanford since their inception in 1944. A vital step in the estimation of radiation doses is the determination of the source term,'' that is, the quantities of radionuclides that were released to the environment from the various Hanford operations. Hanford operations have at various times involved hundreds of different radionuclides, some in relatively large quantities. Those radionuclides present in the largest quantities, although significant from an operational handling point of view, may not necessarily have been those of greatest concern for offsite radiation dose. This report documents the selection of the dominant radionuclides (those that may have resulted in the largest portion of the received doses) in the source term for Phase 1 of the HEDR Project, that is, for atmospheric releases from 1944 through 1947 and for surface water releases from 1964 through 1966. 15 refs., 3 figs., 10 tabs.

  20. Overview of Graphical User Interface for ARRBOD (Acute Radiation Risk and BRYNTRN Organ Dose Projection)

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.

    2010-01-01

    Solar particle events (SPEs) pose the risk of acute radiation sickness (ARS) to astronauts, because organ doses from large SPEs may reach critical levels during extra vehicular activities (EVAs) or lightly shielded spacecraft. NASA has developed an organ dose projection model of Baryon transport code (BRYNTRN) with an output data processing module of SUMDOSE, and a probabilistic model of acute radiation risk (ARR). BRYNTRN code operation requires extensive input preparation, and the risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, these response models can be connected easily and correctly to BRYNTRN in a user friendly way. The GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. Assessment of astronauts organ doses and ARS from the exposure to historically large SPEs is in support of mission design and operation planning to avoid ARS and stay within the current NASA short-term dose limits. The ARRBOD GUI will serve as a proof-of-concept for future integration of other risk projection models for human space applications. We present an overview of the ARRBOD GUI product, which is a new self-contained product, for the major components of the overall system, subsystem interconnections, and external interfaces.

  1. Final report for project "Effects of Low-Dose Irradiation on NFkB Signaling Networks and Mitochondria"

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, Gayle E [Northwestern Univ., Evanston, IL (United States); Grdina, David [Univ. of Chicago, IL (United States); Li, Jian-Jian [Univ. of California, Davis, CA (United States)

    2017-06-12

    Low dose ionizing radiation effects are difficult to study in human population because of the numerous confounding factors such as genetic and lifestyle differences. Research in mammalian model systems and in vitro is generally used in order to overcome this difficulty. In this program project three projects have joined together to investigate effects of low doses of ionizing radiation. These are doses at and below 10 cGy of low linear energy transfer ionizing radiation such as X-ray and gamma rays. This project was focused on cellular signaling associated with nuclear factor kappa B (NFkB) and mitochondria - subcellular organelles critical for cell aging and aging-like changes induced by ionizing radiation. In addition to cells in culture this project utilized animal tissues accumulated in a radiation biology tissue archive housed at Northwestern University (http://janus.northwestern.edu/janus2/index.php). Major trust of Project 1 was to gather all of the DoE sponsored irradiated animal (mouse, rat and dog) data and tissues under one roof and investigate mitochondrial DNA changes and micro RNA changes in these samples. Through comparison of different samples we were trying to delineate mitochondrial DNA quantity alterations and micro RNA expression differences associated with different doses and dose rates of radiation. Historic animal irradiation experiments sponsored by DoE were done in several national laboratories and universities between 1950’s and 1990’s; while these experiments were closed data and tissues were released to Project 1. Project 2 used cells in culture to investigate effects that low doses or radiation have on NFκB and its target genes manganese superoxide dismutase (MnSOD) and genes involved in cell cycle: Cyclins (B1 and D1) and cyclin dependent kinases (CDKs). Project 3 used cells in culture such as “normal” human cells (breast epithelial cell line MCF10A cells and skin keratinocyte cells HK18) and mouse embryo fibroblast (mef

  2. Radionuclide releases to the atmosphere from Hanford Operations, 1944--1972. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Heeb, C.M.

    1994-05-01

    The purpose of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. The first step in determining dose is to estimate the amount and timing of radionuclide releases to air and water. This report provides the air release information.

  3. Parameters used in the environmental pathways (DESCARTES) and radiological dose (CIDER) modules of the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC) for the air pathway. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S.F.; Farris, W.T.; Napier, B.A.; Ikenberry, T.A.; Gilbert, R.O.

    1992-09-01

    This letter report is a description of work performed for the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project was established to estimate the radiation doses to individuals resulting from releases of radionuclides from the Hanford Site since 1944. This work is being done by staff at Battelle, Pacific Northwest Laboratories (Battelle) under a contract with the Centers for Disease Control (CDC) with technical direction provided by an independent Technical Steering Panel (TSP). The objective of this report is to-document the environmental accumulation and dose-assessment parameters that will be used to estimate the impacts of past Hanford Site airborne releases. During 1993, dose estimates made by staff at Battelle will be used by the Fred Hutchinson Cancer Research Center as part of the Hanford Thyroid Disease Study (HTDS). This document contains information on parameters that are specific to the airborne release of the radionuclide iodine-131. Future versions of this document will include parameter information pertinent to other pathways and radionuclides.

  4. Proposal for Modified Damage Probability Distribution Functions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Hansen, Peter Friis

    1996-01-01

    Immidiately following the Estonia disaster, the Nordic countries establishe a project entitled "Safety of Passenger/RoRo Vessels" As part of this project the present proposal for modified damage stability probability distribution functions has been developed. and submitted to "Sub-committee on st......Immidiately following the Estonia disaster, the Nordic countries establishe a project entitled "Safety of Passenger/RoRo Vessels" As part of this project the present proposal for modified damage stability probability distribution functions has been developed. and submitted to "Sub...

  5. A work bibliography on native food consumption, demography and lifestyle. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Murray, C.E.; Lee, W.J.

    1992-12-01

    The purpose of this report is to provide a bibliography for the Native American tribe participants in the Hanford Environmental Dose Reconstruction (HEDR) Project to use. The HEDR Project`s primary objective is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s Hanford Site near Richland, Washington. Eight Native American tribes are responsible for estimating daily and seasonal consumption of traditional foods, demography, and other lifestyle factors that could have affected the radiation dose received by tribal members. This report provides a bibliography of recorded accounts that tribal researchers may use to verify their estimates. The bibliographic citations include references to information on the specific tribes, Columbia River plateau ethnobotany, infant feeding practices and milk consumption, nutritional studies and radiation, tribal economic and demographic characteristics (1940--1970), research methods, primary sources from the National Archives, regional archives, libraries, and museums.

  6. Monte Carlo dose calculations and radiobiological modelling: analysis of the effect of the statistical noise of the dose distribution on the probability of tumour control

    International Nuclear Information System (INIS)

    Buffa, Francesca M.

    2000-01-01

    The aim of this work is to investigate the influence of the statistical fluctuations of Monte Carlo (MC) dose distributions on the dose volume histograms (DVHs) and radiobiological models, in particular the Poisson model for tumour control probability (tcp). The MC matrix is characterized by a mean dose in each scoring voxel, d, and a statistical error on the mean dose, σ d ; whilst the quantities d and σ d depend on many statistical and physical parameters, here we consider only their dependence on the phantom voxel size and the number of histories from the radiation source. Dose distributions from high-energy photon beams have been analysed. It has been found that the DVH broadens when increasing the statistical noise of the dose distribution, and the tcp calculation systematically underestimates the real tumour control value, defined here as the value of tumour control when the statistical error of the dose distribution tends to zero. When increasing the number of energy deposition events, either by increasing the voxel dimensions or increasing the number of histories from the source, the DVH broadening decreases and tcp converges to the 'correct' value. It is shown that the underestimation of the tcp due to the noise in the dose distribution depends on the degree of heterogeneity of the radiobiological parameters over the population; in particular this error decreases with increasing the biological heterogeneity, whereas it becomes significant in the hypothesis of a radiosensitivity assay for single patients, or for subgroups of patients. It has been found, for example, that when the voxel dimension is changed from a cube with sides of 0.5 cm to a cube with sides of 0.25 cm (with a fixed number of histories of 10 8 from the source), the systematic error in the tcp calculation is about 75% in the homogeneous hypothesis, and it decreases to a minimum value of about 15% in a case of high radiobiological heterogeneity. The possibility of using the error on the

  7. Data base on nuclear power plant dose reduction research projects

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Baum, J.W.

    1986-10-01

    Staff at the ALARA Center of Brookhaven National Laboratory have established a data base of information about current research that is likely to result in lower radiation doses to workers. The data base, concerned primarily with nuclear power generation, is part of a project that the ALARA Center is carrying out for the Nuclear Regulatory Commission. This report describes its current status. A substantial amount of research on reducing occupational exposure is being done in the US and abroad. This research is beginning to have an impact on the collective dose expenditures at nuclear power plants. The collective radiation doses in Europe, Japan, and North America all show downward trends. A large part of the research in the US is either sponsored by the nuclear industry through joint industry organizations such as EPRI and ESEERCO or is done by individual corporations. There is also significant participation by smaller companies. The main emphasis of the research on dose reduction is on engineering approaches aimed at reducing radiation fields or keeping people out of high-exposure areas by using robotics. Effective ALARA programs are also underway at a large number of nuclear plants. Additional attention should be given to non-engineering approaches to dose reduction, which are potentially very useful and cost effective but require quantitative study and analysis based on data from nuclear power plants. 9 refs., 1 fig.

  8. Initial communication survey results for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Beck, D.M.

    1991-03-01

    To support the public communication efforts of the Technical Steering Panel of the Hanford Environmental Dose Reconstruction (HEDR) Project, a public survey was conducted. The survey was intended to provide information about the public's knowledge and interest in the project and the best ways to communicate project results. Questions about the project were included as part of an omnibus survey conducted by Washington State University. The survey was conducted by phone to Washington State residents in the spring of 1990. This report gives the HEDR-related questions and summary data of responses. Questions associated with the HEDR Project were grouped into four categories: knowledge of the HEDR Project; interest in the project; preferred ways of receiving information about the project (including public information meetings, a newsletter mailed to homes, presentations to civic groups in the respondent's community, a computer bulletin board respondent could access with a modem, information displays at public buildings and shopping malls, and an information video sent to respondent); and level of concern over past exposure from Hanford operations. Questions abut whom state residents are most likely to trust about radiation issues were also part of the omnibus survey, and responses are included in this report

  9. Dose comparison of different scan projections of Implagraphy cone beam computed tomography for dental maxillofacial use

    International Nuclear Information System (INIS)

    Fang Dong; Yuan Xianshun; Zhang Dongsheng

    2012-01-01

    Objective: To evaluate the subject's absorbed dose,equivalent dose and effective dose. Methods: The CBCT unit was Implagraphy and three scan projections were selected such as mandible, maxilla and temporomandibular joint (TMJ). Thermoluminescent dosimeter tubes were used to record the absorbed dose at special positions in the head and neck region of an adult skull and tissue-equivalent phantom. 16 interested organs included pituitary, lens, parotid glands, submandibular glands, sublingual glands, diploe, spongy bone of the chin and cervical vertebra, skins of cheeks and nuchal region, thyroid and esophagus. The absorbed dose was measured in these organs, and then the effective dose (E 1990 , E 2007 ) were calculated according to different ICRP tissue weighting factors. Results: The absorbed dose of mandible,maxilla and TMJ scan varied from (0.99 ±0.09) to (12.85 ±0.09)mGy, (0.93 ±0.01) to (13.07 ±0.02) mGy and (0.68 ±0.01) to (10.18 ± 0.04)mGy. There was significant difference among the three scan projections (F=19.61-30992.27, P<0.05). The equivalent doses of lens and skin were (1.11± 0.07)-(5.76 ± 0.06) mSv and (6.96 ± 0.06)-(10.64 ± 0.07) mSv. There was significant difference among the three scan projections (F=4473.02, 9385.50, P<0.05). The effective dose (E 1990 , E 2007 ) was [(191.35±1.53), (325.17 ±2.58) μSv] for mandible scan, [(106.62 ±2.17), (226.28 ±2.81) μSv] for maxilla scan, [(104.21 ± 1.02), (142.36 ± 1.90) μSv]for TMJ scan, respectively. Conclusions: The valid measurement should be taken to reduce the subject's dose such as a careful history and clinical examination before the performance of CBCT, the latest risk/benefit assessment,precise scan position, the shielding of thyroid as well as brain and the smaller volume size as well. (authors)

  10. EcoDoses improving radiological assessment of doses to man from terrestrial ecosystems. A status report for the NKS-B project 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bergan, T. [Lavrans Skuterud, Haevard Thoerring (Norway); Liland, A. [Norwegian Radiation Protection Authority (NRPA) (Denmark)] (eds.)

    2004-05-01

    The NKS B-programme EcoDoses project started in 2003 as a collaboration between all the Nordic countries. The aim of the project is to improve the radiological assessments of doses to man from terrestrial ecosystems. The first part, conducted in 2003, has focussed on an extensive collation and review of both published and unpublished data from all the Nordic countries for the nuclear weapons fallout period and the post-Chemobyl period. This included data on radionuclides in air filters, precipitation, soil samples, milk and reindeer. Based on this, an improved model for estimating radioactive fallout based on precipitation data during the nuclear weapons fallout period has been developed. Effective ecological half- lives for 137Cs and 90Sr in milk have been calculated for the nuclear weapons fallout period. For reindeer the ecological half- lives for 137Cs have been calculated for both the nuclear weapons fallout period and the post-Chemobyl period. The data were also used to compare modelling results with observed concentrations. This was done at a workshop where the radioecological food-and-dose module in the ARGOS decision support system was used to predict transfer of deposited radionuclides to foodstuffs and subsequent radiation doses to man. The work conducted the first year is presented in this report and gives interesting, new results relevant for terrestrial radioecology. (au)

  11. Anticipated Radiological Dose to Worker for Plutonium Stabilization and Handling at PFP - Project W-460

    International Nuclear Information System (INIS)

    WEISS, E.V.

    2000-01-01

    This report provides estimates of the expected whole body and extremity radiological dose, expressed as dose equivalent (DE), to workers conducting planned plutonium (Pu) stabilization processes at the Hanford Site Plutonium Finishing Plant (PFP). The report is based on a time and motion dose study commissioned for Project W-460, Plutonium Stabilization and Handling, to provide personnel exposure estimates for construction work in the PFP storage vault area plus operation of stabilization and packaging equipment at PFP

  12. Anticipated Radiological Dose to Worker for Plutonium Stabilization and Handling at PFP - Project W-460

    CERN Document Server

    Weiss, E V

    2000-01-01

    This report provides estimates of the expected whole body and extremity radiological dose, expressed as dose equivalent (DE), to workers conducting planned plutonium (Pu) stabilization processes at the Hanford Site Plutonium Finishing Plant (PFP). The report is based on a time and motion dose study commissioned for Project W-460, Plutonium Stabilization and Handling, to provide personnel exposure estimates for construction work in the PFP storage vault area plus operation of stabilization and packaging equipment at PFP.

  13. Probability theory and mathematical statistics for engineers

    CERN Document Server

    Pugachev, V S

    1984-01-01

    Probability Theory and Mathematical Statistics for Engineers focuses on the concepts of probability theory and mathematical statistics for finite-dimensional random variables.The publication first underscores the probabilities of events, random variables, and numerical characteristics of random variables. Discussions focus on canonical expansions of random vectors, second-order moments of random vectors, generalization of the density concept, entropy of a distribution, direct evaluation of probabilities, and conditional probabilities. The text then examines projections of random vector

  14. Memorandum concerning the European project of dose passport (dosimetry booklet)

    International Nuclear Information System (INIS)

    2013-01-01

    In fact the European project represents the implementation in European law of the 90/641 EURATOM directive that proposed a common European system for the follow-up of the occupational irradiation of workers. The EURATOM directive recommends a computer system while the European project proposes to write down information in a simple booklet. Some experts highlight the fact that it would be easier and more reliable to upgrade a computer file than a booklet and that the information must be available in different European languages. The experts recommend that the European countries must agree on what information would be compulsory, and on an accurate definition of the radiation dose we have to report and on how to measure it in order to have a consistent system throughout Europe. (A.C.)

  15. Impact of the probability of causation on the radiation protection program

    International Nuclear Information System (INIS)

    Meinhold, C.B.

    1988-01-01

    Although the probability of causation approach is the only scientific basis on which a given cancer can be judged to be causally related to a given exposure, the impact of this concept on the radiation safety program could be counter-productive. As health physicists, the practices and the concepts we employ have been developed to protect the worker. Effective dose equivalent and committed dose equivalent are protective concepts but useless for probability of causation analysis. Perhaps extensive records will be the only way that good radiation protection and probability of causation analysis can coexist

  16. General guidelines for the Assessment of Internal Dose from Monitoring Data (Project IDEAS)

    International Nuclear Information System (INIS)

    Doerfel, H.; Andrasi, A.; Bailey, M.; Blanchardon, E.; Berkovski, V.; Castellani, C. M.; Hurtgen, C.; Jourdain, J. R.; LeGuen, B.; Puncher, M.

    2004-01-01

    In recent major international intercomparison exercises on intake and internal dose assessments from monitoring data the results calculated by different participants varied significantly. This was mainly due to the broad variety of methods and assumptions applied in the assessment procedure. Based on these experiences the need for harmonisation of the procedures has been formulated within an EU research project under the 5th Framework Programme. The aim of the project, IDEAS, is to develop general guidelines for standardising assessments of intakes and internal doses. The IDEAS project started in October 2001 and will end in March 2005. Eight institutions from seven European countries are participating. Inputs from internal dosimetry professionals from across Europe are also being used to ensure a broad consensus in the outcome of the project. The IDEAS project is closely related to some goals of the work of Committee 2 of the ICRP and since 2003 there has been close cooperation between the two groups. To ensure that the guidelines are applicable to a wide range of practical situations, the first step has been to compile a database of well-documented cases of internal contamination. In parallel, an improved version of an existing software package has been developed and distributed to the partners for further use. A large number of cases from the database have been evaluated independently by partners in the project using the same software and the results have been reviewed. Based on these evaluations guidelines are being drafted and will be discussed with dosimetry professionals from around the world by means of a virtual workshop on the Internet early in 2004. The guidelines will be revised and refined on the basis of the experiences and discussions of this virtual workshop and the outcome of an intercomparison exercise organised as part of the project. This will be open to all internal dosimetry professionals. (Author) 10 refs

  17. Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report

    International Nuclear Information System (INIS)

    Morris, R.

    1996-05-01

    Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. The DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2

  18. Atmospheric transport and dispersion modeling for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1991-07-01

    Radiation doses that may have resulted from operations at the Hanford Site are being estimated in the Hanford Environmental Dose Reconstruction (HEDR) Project. One of the project subtasks, atmospheric transport, is responsible for estimating the transport, diffusion and deposition of radionuclides released to the atmosphere. This report discusses modeling transport and diffusion in the atmospheric pathway. It is divided into three major sections. The first section of the report presents the atmospheric modeling approach selected following discussion with the Technical Steering Panel that directs the HEDR Project. In addition, the section discusses the selection of the MESOI/MESORAD suite of atmospheric dispersion models that form the basis for initial calculations and future model development. The second section of the report describes alternative modeling approaches that were considered. Emphasis is placed on the family of plume and puff models that are based on Gaussian solution to the diffusion equations. The final portion of the section describes the performance of various models. The third section of the report discusses factors that bear on the selection of an atmospheric transport modeling approach for HEDR. These factors, which include the physical setting of the Hanford Site and the available meteorological data, serve as constraints on model selection. Five appendices are included in the report. 39 refs., 4 figs., 2 tabs

  19. A preliminary examination of audience-related communications issues for the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, C.W.

    1991-04-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project will estimate radiation doses people may have received from exposure to radioactive materials released during past operations at the US Department of Energy's (DOE) Hanford Site near Richland, Washington. The HEDR Project was initiated in response to public concerns about possible health impacts from past releases of radioactive materials from Hanford. The TSP recognized early in the project that special mechanisms would be required to effectively communicate to the many different concerned audiences. Accordingly, the TSP directed PNL to examine methods for communicating causes and effects of uncertainties in the dose estimates. After considering the directive and discussing it with the Communications Subcommittee of the TSP, PNL undertook a broad investigation of communications methods to consider for inclusion in the TSP's current communications program. As part of this investigation, a literature review was conducted regarding risk communications. A key finding was that, in order to successfully communicate risk-related information, a thorough understanding of the knowledge level, concerns and information needs of the intended recipients (i.e., the audience) is necessary. Hence, a preliminary audience analysis was conducted as part of the present research. This report summarizes the results of this analysis. 1 ref., 9 tabs.

  20. A comprehensive study on decreasing the kilovoltage cone-beam CT dose by reducing the projection number.

    Science.gov (United States)

    Lu, Bo; Lu, Haibin; Palta, Jatinder

    2010-05-12

    The objective of this study was to evaluate the effect of kilovoltage cone-beam computed tomography (CBCT) on registration accuracy and image qualities with a reduced number of planar projections used in volumetric imaging reconstruction. The ultimate goal is to evaluate the possibility of reducing the patient dose while maintaining registration accuracy under different projection-number schemes for various clinical sites. An Elekta Synergy Linear accelerator with an onboard CBCT system was used in this study. The quality of the Elekta XVI cone-beam three-dimensional volumetric images reconstructed with a decreasing number of projections was quantitatively evaluated by a Catphan phantom. Subsequently, we tested the registration accuracy of imaging data sets on three rigid anthropomorphic phantoms and three real patient sites under the reduced projection-number (as low as 1/6th) reconstruction of CBCT data with different rectilinear shifts and rota-tions. CBCT scan results of the Catphan phantom indicated the CBCT images got noisier when the number of projections was reduced, but their spatial resolution and uniformity were hardly affected. The maximum registration errors under the small amount transformation of the reference CT images were found to be within 0.7 mm translation and 0.3 masculine rotation. However, when the projection number was lower than one-fourth of the full set with a large amount of transformation of reference CT images, the registration could easily be trapped into local minima solutions for a nonrigid anatomy. We concluded, by using projection-number reduction strategy under conscientious care, imaging-guided localization procedure could achieve a lower patient dose without losing the registration accuracy for various clinical sites and situations. A faster scanning time is the main advantage compared to the mA decrease-based, dose-reduction method.

  1. Some open problems in noncommutative probability

    International Nuclear Information System (INIS)

    Kruszynski, P.

    1981-01-01

    A generalization of probability measures to non-Boolean structures is discussed. The starting point of the theory is the Gleason theorem about the form of measures on closed subspaces of a Hilbert space. The problems are formulated in terms of probability on lattices of projections in arbitrary von Neumann algebras. (Auth.)

  2. SU-F-T-191: 4D Dose Reconstruction of Intensity Modulated Proton Therapy (IMPT) Based On Breathing Probability Density Function (PDF) From 4D Cone Beam Projection Images: A Study for Lung Treatment

    International Nuclear Information System (INIS)

    Zhou, J; Ding, X; Liang, J; Zhang, J; Wang, Y; Yan, D

    2016-01-01

    Purpose: With energy repainting in lung IMPT, the dose delivered is approximate to the convolution of dose in each phase with corresponding breathing PDF. This study is to compute breathing PDF weighted 4D dose in lung IMPT treatment and compare to its initial robust plan. Methods: Six lung patients were evaluated in this study. Amsterdam shroud image were generated from pre-treatment 4D cone-beam projections. Diaphragm motion curve was extract from the shroud image and the breathing PDF was generated. Each patient was planned to 60 Gy (12GyX5). In initial plans, ITV density on average CT was overridden with its maximum value for planning, using two IMPT beams with robust optimization (5mm uncertainty in patient position and 3.5% range uncertainty). The plan was applied to all 4D CT phases. The dose in each phase was deformed to a reference phase. 4D dose is reconstructed by summing all these doses based on corresponding weighting from the PDF. Plan parameters, including maximum dose (Dmax), ITV V100, homogeneity index (HI=D2/D98), R50 (50%IDL/ITV), and the lung-GTV’s V12.5 and V5 were compared between the reconstructed 4D dose to initial plans. Results: The Dmax is significantly less dose in the reconstructed 4D dose, 68.12±3.5Gy, vs. 70.1±4.3Gy in the initial plans (p=0.015). No significant difference is found for the ITV V100, HI, and R50, 92.2%±15.4% vs. 96.3%±2.5% (p=0.565), 1.033±0.016 vs. 1.038±0.017 (p=0.548), 19.2±12.1 vs. 18.1±11.6 (p=0.265), for the 4D dose and initial plans, respectively. The lung-GTV V12.5 and V5 are significantly high in the 4D dose, 13.9%±4.8% vs. 13.0%±4.6% (p=0.021) and 17.6%±5.4% vs. 16.9%±5.2% (p=0.011), respectively. Conclusion: 4D dose reconstruction based on phase PDF can be used to evaluate the dose received by the patient. A robust optimization based on the phase PDF may even further improve patient care.

  3. Measurements of eye lens doses in interventional radiology and cardiology: Final results of the ORAMED project

    International Nuclear Information System (INIS)

    Vanhavere, F.; Carinou, E.; Domienik, J.; Donadille, L.; Ginjaume, M.; Gualdrini, G.; Koukorava, C.; Krim, S.; Nikodemova, D.; Ruiz-Lopez, N.; Sans-Merce, M.; Struelens, L.

    2011-01-01

    Within the ORAMED project (Optimization of Radiation Protection of Medical Staff) a coordinated measurement program for occupationally exposed medical staff was performed in different hospitals in Europe ( (www.oramed-fp7.eu)). The main objective was to obtain a set of standardized data on extremity and eye lens doses for staff involved in interventional radiology and cardiology and to optimize radiation protection. Special attention was given to the measurement of the doses to the eye lenses. In this paper an overview will be given of the measured eye lens doses and the main influence factors for these doses. The measured eye lens doses are extrapolated to annual doses. The extrapolations showed that monitoring of the eye lens should be performed on routine basis.

  4. FY 1993 task plans for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1991-10-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to individuals and populations. The primary objective of work to be performed in FY 1993 is to complete the source term estimates and dose estimates for key radionuclides for the air and river pathways. At the end of FY 1993, the capability will be in place to estimate doses for individuals in the extended (32-county) study area, 1944--1991. Native American research will continue to provide input for tribal dose estimates. In FY 1993, the Technical Steering Panel (TSP) will decide whether demographic and river pathways data collection should be extended beyond FY 1993 levels. The FY 1993 work scopes and milestones in this document are based on the work plan discussed at the TSP Budget/Fiscal Subcommittee meeting on August 19--20, 1991. Table 1 shows the FY 1993 milestones; Table 2 shows estimated costs. The subsequent work scope descriptions are based on the milestones. This document and the FY 1992 task plans will form the basis for a contract with Battelle and the Centers for Disease Control (CDC). The 2-year dose reconstruction contract is expected to begin in February 1992. This contract will replace the current arrangement, whereby the US Department of Energy directly funds the Pacific Northwest Laboratory to conduct dose reconstruction work. In late FY 1992, the FY 1993 task plans will be more fully developed with detailed technical approaches, data quality objectives, and budgeted labor hours. The task plans will be updated again in July 1993 to reflect any scope, milestone, or cost changes directed during the year by the TSP. 2 tabs

  5. Commercial milk distribution profiles and production locations. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Deonigi, D.E.; Anderson, D.M.; Wilfert, G.L.

    1994-04-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk (Napier 1992). Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanford facilities in a calendar year (Heeb 1993); therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed.

  6. Future southcentral US wildfire probability due to climate change

    Science.gov (United States)

    Stambaugh, Michael C.; Guyette, Richard P.; Stroh, Esther D.; Struckhoff, Matthew A.; Whittier, Joanna B.

    2018-01-01

    Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. In this paper, we present projections of future fire probability for the southcentral USA using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM). Future fire probability is projected to both increase and decrease across the study region of Oklahoma, New Mexico, and Texas. Among all end-of-century projections, change in fire probabilities (CFPs) range from − 51 to + 240%. Greatest absolute increases in fire probability are shown for areas within the range of approximately 75 to 160 cm mean annual precipitation (MAP), regardless of climate model. Although fire is likely to become more frequent across the southcentral USA, spatial patterns may remain similar unless significant increases in precipitation occur, whereby more extensive areas with increased fire probability are predicted. Perhaps one of the most important results is illumination of climate changes where fire probability response (+, −) may deviate (i.e., tipping points). Fire regimes of southcentral US ecosystems occur in a geographic transition zone from reactant- to reaction-limited conditions, potentially making them uniquely responsive to different scenarios of temperature and precipitation changes. Identification and description of these conditions may help anticipate fire regime changes that will affect human health, agriculture, species conservation, and nutrient and water cycling.

  7. Bayesian maximum posterior probability method for interpreting plutonium urinalysis data

    International Nuclear Information System (INIS)

    Miller, G.; Inkret, W.C.

    1996-01-01

    A new internal dosimetry code for interpreting urinalysis data in terms of radionuclide intakes is described for the case of plutonium. The mathematical method is to maximise the Bayesian posterior probability using an entropy function as the prior probability distribution. A software package (MEMSYS) developed for image reconstruction is used. Some advantages of the new code are that it ensures positive calculated dose, it smooths out fluctuating data, and it provides an estimate of the propagated uncertainty in the calculated doses. (author)

  8. On the probability of cure for heavy-ion radiotherapy

    International Nuclear Information System (INIS)

    Hanin, Leonid; Zaider, Marco

    2014-01-01

    The probability of a cure in radiation therapy (RT)—viewed as the probability of eventual extinction of all cancer cells—is unobservable, and the only way to compute it is through modeling the dynamics of cancer cell population during and post-treatment. The conundrum at the heart of biophysical models aimed at such prospective calculations is the absence of information on the initial size of the subpopulation of clonogenic cancer cells (also called stem-like cancer cells), that largely determines the outcome of RT, both in an individual and population settings. Other relevant parameters (e.g. potential doubling time, cell loss factor and survival probability as a function of dose) are, at least in principle, amenable to empirical determination. In this article we demonstrate that, for heavy-ion RT, microdosimetric considerations (justifiably ignored in conventional RT) combined with an expression for the clone extinction probability obtained from a mechanistic model of radiation cell survival lead to useful upper bounds on the size of the pre-treatment population of clonogenic cancer cells as well as upper and lower bounds on the cure probability. The main practical impact of these limiting values is the ability to make predictions about the probability of a cure for a given population of patients treated to newer, still unexplored treatment modalities from the empirically determined probability of a cure for the same or similar population resulting from conventional low linear energy transfer (typically photon/electron) RT. We also propose that the current trend to deliver a lower total dose in a smaller number of fractions with larger-than-conventional doses per fraction has physical limits that must be understood before embarking on a particular treatment schedule. (paper)

  9. Patient dose measurement and dose reduction in chest radiography

    Directory of Open Access Journals (Sweden)

    Milatović Aleksandra A.

    2014-01-01

    Full Text Available Investigations presented in this paper represent the first estimation of patient doses in chest radiography in Montenegro. In the initial stage of our study, we measured the entrance surface air kerma and kerma area product for chest radiography in five major health institutions in the country. A total of 214 patients were observed. We reported the mean value, minimum and third quartile values, as well as maximum values of surface air kerma and kerma area product of patient doses. In the second stage, the possibilities for dose reduction were investigated. Mean kerma area product values were 0.8 ± 0.5 Gycm2 for the posterior-anterior projection and 1.6 ± 0.9 Gycm2 for the lateral projection. The max/min ratio for the entrance surface air kerma was found to be 53 for the posterior-anterior projection and 88 for the lateral projection. Comparing the results obtained in Montenegro with results from other countries, we concluded that patient doses in our medical centres are significantly higher. Changes in exposure parameters and increased filtration contributed to a dose reduction of up to 36% for posterior-anterior chest examinations. The variability of the estimated dose values points to a significant space for dose reduction throughout the process of radiological practice optimisation.

  10. Assessment of fragment projection hazard: probability distributions for the initial direction of fragments.

    Science.gov (United States)

    Tugnoli, Alessandro; Gubinelli, Gianfilippo; Landucci, Gabriele; Cozzani, Valerio

    2014-08-30

    The evaluation of the initial direction and velocity of the fragments generated in the fragmentation of a vessel due to internal pressure is an important information in the assessment of damage caused by fragments, in particular within the quantitative risk assessment (QRA) of chemical and process plants. In the present study an approach is proposed to the identification and validation of probability density functions (pdfs) for the initial direction of the fragments. A detailed review of a large number of past accidents provided the background information for the validation procedure. A specific method was developed for the validation of the proposed pdfs. Validated pdfs were obtained for both the vertical and horizontal angles of projection and for the initial velocity of the fragments. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Computational model design specification for Phase 1 of the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.

    1991-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emission from nuclear operations at Hanford since their inception in 1944. The purpose of this report is to outline the basic algorithm and necessary computer calculations to be used to calculate radiation doses specific and hypothetical individuals in the vicinity of Hanford. The system design requirements, those things that must be accomplished, are defined. The system design specifications, the techniques by which those requirements are met, are outlined. Included are the basic equations, logic diagrams, and preliminary definition of the nature of each input distribution. 4 refs., 10 figs., 9 tabs.

  12. Computational model design specification for Phase 1 of the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Napier, B.A.

    1991-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emission from nuclear operations at Hanford since their inception in 1944. The purpose of this report is to outline the basic algorithm and necessary computer calculations to be used to calculate radiation doses specific and hypothetical individuals in the vicinity of Hanford. The system design requirements, those things that must be accomplished, are defined. The system design specifications, the techniques by which those requirements are met, are outlined. Included are the basic equations, logic diagrams, and preliminary definition of the nature of each input distribution. 4 refs., 10 figs., 9 tabs

  13. SU-F-18C-15: Model-Based Multiscale Noise Reduction On Low Dose Cone Beam Projection

    International Nuclear Information System (INIS)

    Yao, W; Farr, J

    2014-01-01

    Purpose: To improve image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low dose cone beam CT (CBCT) imaging systems, Poisson process governs the randomness of photon fluence at x-ray source and the detector because of the independent binomial process of photon absorption in medium. On a CBCT projection, the variance of fluence consists of the variance of noiseless imaging structure and that of Poisson noise, which is proportional to the mean (noiseless) of the fluence at the detector. This requires multiscale filters to smoothen noise while keeping the structure information of the imaged object. We used a mathematical model of Poisson process to design multiscale filters and established the balance of noise correction and structure blurring. The algorithm was checked with low dose kilo-voltage CBCT projections acquired from a Varian OBI system. Results: From the investigation of low dose CBCT of a Catphan phantom and patients, it showed that our model-based multiscale technique could efficiently reduce noise and meanwhile keep the fine structure of the imaged object. After the image processing, the number of visible line pairs in Catphan phantom scanned with 4 ms pulse time was similar to that scanned with 32 ms, and soft tissue structure from simulated 4 ms patient head-and-neck images was also comparable with scanned 20 ms ones. Compared with fixed-scale technique, the image quality from multiscale one was improved. Conclusion: Use of projection-specific multiscale filters can reach better balance on noise reduction and structure information loss. The image quality of low dose CBCT can be improved by using multiscale filters

  14. Interdisciplinary perspectives on dose limits in radioactive waste management : A research paper developed within the ENTRIA project

    NARCIS (Netherlands)

    Kalmbach, K.; Röhlig, K.-J.

    2016-01-01

    Within the ENTRIA project, an interdisciplinary group of scientists developed a research paper aiming at a synthesis of the technical, sociology of knowledge, legal, societal, and political aspects of dose limits within the field of radioactive waste management. In this paper, the ENTRIA project is

  15. Data base on dose reduction research projects for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Vulin, D.S.; Liang, H.; Baum, J.W. (Brookhaven National Lab., Upton, NY (United States))

    1992-08-01

    This is the fourth volume in a series of reports that provide information on dose reduction research and health physics technology for nuclear power plants. The information is taken from a data base maintained by Brookhaven National Laboratory's ALARA Center for the Nuclear Regulatory Commission. This report presents information on 118 new or updated projects, covering a wide range of activities. Projects including steam generator degradation, decontamination, robotics, improvement in reactor materials, and inspection techniques, among others, are described in the research section of the report. The section on health physics technology includes some simple and very cost-effective projects to reduce radiation exposures. Included in this volume is a detailed description of how to access the BNL data bases which store this information. All project abstracts from this report, as well as many other useful documents, can be accessed, with permission, through our on-line system, ACE. A computer equipped with a modem, or a fax machine is all that is required to connect to ACE. Many features of ACE, including software, hardware, and communications specifics, are explained in this report.

  16. Development of Graphical User Interface for ARRBOD (Acute Radiation Risk and BRYNTRN Organ Dose Projection)

    Science.gov (United States)

    Kim, Myung-Hee; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.

    2010-01-01

    The space radiation environment, particularly solar particle events (SPEs), poses the risk of acute radiation sickness (ARS) to humans; and organ doses from SPE exposure may reach critical levels during extra vehicular activities (EVAs) or within lightly shielded spacecraft. NASA has developed an organ dose projection model using the BRYNTRN with SUMDOSE computer codes, and a probabilistic model of Acute Radiation Risk (ARR). The codes BRYNTRN and SUMDOSE, written in FORTRAN, are a Baryon transport code and an output data processing code, respectively. The ARR code is written in C. The risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. BRYNTRN code operation requires extensive input preparation. With a graphical user interface (GUI) to handle input and output for BRYNTRN, the response models can be connected easily and correctly to BRYNTRN in friendly way. A GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations, which are required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. The ARRBOD GUI will serve as a proof-of-concept example for future integration of other human space applications risk projection models. The current version of the ARRBOD GUI is a new self-contained product and will have follow-on versions, as options are added: 1) human geometries of MAX/FAX in addition to CAM/CAF; 2) shielding distributions for spacecraft, Mars surface and atmosphere; 3) various space environmental and biophysical models; and 4) other response models to be connected to the BRYNTRN. The major components of the overall system, the subsystem interconnections, and external interfaces are described in this

  17. Are low radiation doses Dangerous?

    International Nuclear Information System (INIS)

    Garcia Lima, O.; Cornejo, N.

    1996-01-01

    In the last few years the answers to this questions has been affirmative as well as negative from a radiation protection point of view low doses of ionizing radiation potentially constitute an agent causing stochasting effects. A lineal relation without threshold is assumed between dose and probability of occurrence of these effects . Arguments against the danger of probability of occurrence of these effects. Arguments again the danger of low dose radiation are reflected in concepts such as Hormesis and adaptive response, which are phenomena that being studied at present

  18. Image quality and radiation dose of low dose coronary CT angiography in obese patients: Sinogram affirmed iterative reconstruction versus filtered back projection

    International Nuclear Information System (INIS)

    Wang, Rui; Schoepf, U. Joseph; Wu, Runze; Reddy, Ryan P.; Zhang, Chuanchen; Yu, Wei; Liu, Yi; Zhang, Zhaoqi

    2012-01-01

    Purpose: To investigate the image quality and radiation dose of low radiation dose CT coronary angiography (CTCA) using sinogram affirmed iterative reconstruction (SAFIRE) compared with standard dose CTCA using filtered back-projection (FBP) in obese patients. Materials and methods: Seventy-eight consecutive obese patients were randomized into two groups and scanned using a prospectively ECG-triggered step-and-shot (SAS) CTCA protocol on a dual-source CT scanner. Thirty-nine patients (protocol A) were examined using a routine radiation dose protocol at 120 kV and images were reconstructed with FBP (protocol A). Thirty-nine patients (protocol B) were examined using a low dose protocol at 100 kV and images were reconstructed with SAFIRE. Two blinded observers independently assessed the image quality of each coronary segment using a 4-point scale (1 = non-diagnostic, 4 = excellent) and measured the objective parameters image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Radiation dose was calculated. Results: The coronary artery image quality scores, image noise, SNR and CNR were not significantly different between protocols A and B (all p > 0.05), with image quality scores of 3.51 ± 0.70 versus 3.55 ± 0.47, respectively. The effective radiation dose was significantly lower in protocol B (4.41 ± 0.83 mSv) than that in protocol A (8.83 ± 1.74 mSv, p < 0.01). Conclusion: Compared with standard dose CTCA using FBP, low dose CTCA using SAFIRE can maintain diagnostic image quality with 50% reduction of radiation dose.

  19. Application of biological dose concept in dose optimization for conformal radiotherapy of prostate carcinoma

    International Nuclear Information System (INIS)

    Li Yunhai; Liao Yuan; Zhou Lijun; Pan Ziqiang; Feng Yan

    2003-01-01

    Objective: On basis of physical dose optimization, LQ model was used to investigate the difference between the curves of biological effective dose and physical isodose. The influence of applying the biological dose concept on three dimensional conformal radiotherapy of prostate carcinoma was discussed. Methods: Four treatment plannings were designed for physical dose optimization: three fields, four-box fields, five fields and six fields. Target dose uniformity and protection of the critical tissue-rectum were used as the principal standard for designing the treatment planning. Biological effective dose (BED) was calculated by LQ model. The difference between the BED curve drawn in the central layer and the physical isodose curve was studied. The difference between the adjusted physical dose (APD) and the physical dose was also studied. Results: Five field planning was the best in target dose uniformity and protection of the critical tissue-rectum. The physical dose was uniform in the target, but the biological effective doses revealed great discrepancy in the biological model. Adjusted physical dose distribution also displayed larger discrepancy than the physical dose unadjusted. Conclusions: Intensified Modulated Radiotherapy (IMRT) technique with inversion planning using biological dose concept may be much more advantageous to reach a high tumor control probability and low normal tissue complication probability

  20. Rescue dose orders as an alternative to range orders: an evidence-based practice project.

    Science.gov (United States)

    Yi, Cassia

    2015-06-01

    Relief of pain is a fundamental aspect of optimal patient care. However, pain management in the inpatient setting is often constrained by concerns related to regulatory oversight, particularly with regard to the use of opioid dose range orders. These concerns can inadvertently result in the development of policies and practices that can negatively impact the health care team's ability to deliver optimal and individualized pain management. An evidence-based practice project was undertaken to address concerns about regulatory oversight of pain management processes by changing the way pain was managed in a large academic hospital setting. A novel pain management approach using rescue dose medications was established as an alternative to opioid dose range orders. The use of the rescue dose protocol was successfully implemented. Outcomes included an overall reduction in the administration of inappropriate intravenous opioids and opioid-acetaminophen combination medications, with a subsequent increase in single-entity first-line opioid analgesics. Rescue dose protocols may offer an alternative to opioid dose range orders as a means of effectively managing pain. Copyright © 2015 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  1. Increase in tumor control and normal tissue complication probabilities in advanced head-and-neck cancer for dose-escalated intensity-modulated photon and proton therapy

    Directory of Open Access Journals (Sweden)

    Annika eJakobi

    2015-11-01

    Full Text Available Introduction:Presently used radio-chemotherapy regimens result in moderate local control rates for patients with advanced head and neck squamous cell carcinoma (HNSCC. Dose escalation (DE may be an option to improve patient outcome, but may also increase the risk of toxicities in healthy tissue. The presented treatment planning study evaluated the feasibility of two DE levels for advanced HNSCC patients, planned with either intensity-modulated photon therapy (IMXT or proton therapy (IMPT.Materials and Methods:For 45 HNSCC patients, IMXT and IMPT treatment plans were created including DE via a simultaneous integrated boost (SIB in the high-risk volume, while maintaining standard fractionation with 2 Gy per fraction in the remaining target volume. Two DE levels for the SIB were compared: 2.3 Gy and 2.6 Gy. Treatment plan evaluation included assessment of tumor control probabilities (TCP and normal tissue complication probabilities (NTCP.Results:An increase of approximately 10% in TCP was estimated between the DE levels. A pronounced high-dose rim surrounding the SIB volume was identified in IMXT treatment. Compared to IMPT, this extra dose slightly increased the TCP values and to a larger extent the NTCP values. For both modalities, the higher DE level led only to a small increase in NTCP values (mean differences < 2% in all models, except for the risk of aspiration, which increased on average by 8% and 6% with IMXT and IMPT, respectively, but showed a considerable patient dependence. Conclusions:Both DE levels appear applicable to patients with IMXT and IMPT since all calculated NTCP values, except for one, increased only little for the higher DE level. The estimated TCP increase is of relevant magnitude. The higher DE schedule needs to be investigated carefully in the setting of a prospective clinical trial, especially regarding toxicities caused by high local doses that lack a sound dose response description, e.g., ulcers.

  2. On probability-possibility transformations

    Science.gov (United States)

    Klir, George J.; Parviz, Behzad

    1992-01-01

    Several probability-possibility transformations are compared in terms of the closeness of preserving second-order properties. The comparison is based on experimental results obtained by computer simulation. Two second-order properties are involved in this study: noninteraction of two distributions and projections of a joint distribution.

  3. Dose reduction in chest CT: Comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yoshitake, E-mail: yamada@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Jinzaki, Masahiro, E-mail: jinzaki@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hosokawa, Takahiro, E-mail: hosokawa@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Tanami, Yutaka, E-mail: tanami@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Sugiura, Hiroaki, E-mail: hsugiura@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Abe, Takayuki, E-mail: tabe@z5.keio.jp [Center for Clinical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kuribayashi, Sachio, E-mail: skuribay@a5.keio.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2012-12-15

    Objectives: To assess the effectiveness of adaptive iterative dose reduction (AIDR) and AIDR 3D in improving the image quality in low-dose chest CT (LDCT). Materials and methods: Fifty patients underwent standard-dose chest CT (SDCT) and LDCT simultaneously, performed under automatic exposure control with noise index of 19 and 38 (for a 2-mm slice thickness), respectively. The SDCT images were reconstructed with filtered back projection (SDCT-FBP images), and the LDCT images with FBP, AIDR and AIDR 3D (LDCT-FBP, LDCT-AIDR and LDCT-AIDR 3D images, respectively). On all the 200 lung and 200 mediastinal image series, objective image noise and signal-to-noise ratio (SNR) were measured in several regions, and two blinded radiologists independently assessed the subjective image quality. Wilcoxon's signed rank sum test with Bonferroni's correction was used for the statistical analyses. Results: The mean dose reduction in LDCT was 64.2% as compared with the dose in SDCT. LDCT-AIDR 3D images showed significantly reduced objective noise and significantly increased SNR in all regions as compared to the SDCT-FBP, LDCT-FBP and LDCT-AIDR images (all, P ≤ 0.003). In all assessments of the image quality, LDCT-AIDR 3D images were superior to LDCT-AIDR and LDCT-FBP images. The overall diagnostic acceptability of both the lung and mediastinal LDCT-AIDR 3D images was comparable to that of the lung and mediastinal SDCT-FBP images. Conclusions: AIDR 3D is superior to AIDR. Intra-individual comparisons between SDCT and LDCT suggest that AIDR 3D allows a 64.2% reduction of the radiation dose as compared to SDCT, by substantially reducing the objective image noise and increasing the SNR, while maintaining the overall diagnostic acceptability.

  4. General guidelines for the assessment of internal dose from monitoring data: Progress of the IDEAS project

    International Nuclear Information System (INIS)

    Doerfel, H.; Andrasi, A.; Bailey, M.; Blanchardon, E.; Cruz-Suarez, R.; Berkovski, V.; Castellani, C. M.; Hurtgenv, C.; Leguen, B.; Malatova, I.; Marsh, J.; Stather, J.; Zeger, J.

    2007-01-01

    In recent major international intercomparison exercises on intake and internal dose assessments from monitoring data, the results calculated by different participants varied significantly. Based on this experience the need for harmonisation of the procedures has been formulated within an EU 5. Framework Programme research project. The aim of the project, IDEAS, is to develop general guidelines for standardising assessments of intakes and internal doses. The IDEAS project started in October 2001 and ended in June 2005. The project is closely related to some goals of the work of Committee 2 of the ICRP and since 2003 there has been close cooperation between the two groups. To ensure that the guidelines are applicable to a wide range of practical situations, the first step was to compile a database of well-documented cases of internal contamination. In parallel, an improved version of an existing software package was developed and distributed to the partners for further use. A large number of cases from the database was evaluated independently by the partners and the results reviewed. Based on these evaluations, guidelines were drafted and discussed with dosimetry professionals from around the world by means of a virtual workshop on the Internet early in 2004. The guidelines have been revised and refined on the basis of the experiences and discussions in this virtual workshop. The general philosophy of the Guidelines is presented here, focusing on the principles of harmonisation, optimisation and proportionality. Finally, the proposed Levels of Task to structure the approach of internal dose evaluation are reported. (authors)

  5. Tumor control probability after a radiation of animal tumors

    International Nuclear Information System (INIS)

    Urano, Muneyasu; Ando, Koichi; Koike, Sachiko; Nesumi, Naofumi

    1975-01-01

    Tumor control and regrowth probability of animal tumors irradiated with a single x-ray dose were determined, using a spontaneous C3H mouse mammary carcinoma. Cellular radiation sensitivity of tumor cells and tumor control probability of the tumor were examined by the TD 50 and TCD 50 assays respectively. Tumor growth kinetics were measured by counting the percentage of labelled mitosis and by measuring the growth curve. A mathematical analysis of tumor control probability was made from these results. A formula proposed, accounted for cell population kinetics or division probability model, cell sensitivity to radiation and number of tumor cells. (auth.)

  6. Methods for Reducing Normal Tissue Complication Probabilities in Oropharyngeal Cancer: Dose Reduction or Planning Target Volume Elimination

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, Stuart E.; Eisbruch, Avraham; Vineberg, Karen; Lee, Jae; Lee, Choonik; Matuszak, Martha M.; Ten Haken, Randall K.; Brock, Kristy K., E-mail: kbrock@med.umich.edu

    2016-11-01

    Purpose: Strategies to reduce the toxicities of head and neck radiation (ie, dysphagia [difficulty swallowing] and xerostomia [dry mouth]) are currently underway. However, the predicted benefit of dose and planning target volume (PTV) reduction strategies is unknown. The purpose of the present study was to compare the normal tissue complication probabilities (NTCP) for swallowing and salivary structures in standard plans (70 Gy [P70]), dose-reduced plans (60 Gy [P60]), and plans eliminating the PTV margin. Methods and Materials: A total of 38 oropharyngeal cancer (OPC) plans were analyzed. Standard organ-sparing volumetric modulated arc therapy plans (P70) were created and then modified by eliminating the PTVs and treating the clinical tumor volumes (CTVs) only (C70) or maintaining the PTV but reducing the dose to 60 Gy (P60). NTCP dose models for the pharyngeal constrictors, glottis/supraglottic larynx, parotid glands (PGs), and submandibular glands (SMGs) were analyzed. The minimal clinically important benefit was defined as a mean change in NTCP of >5%. The P70 NTCP thresholds and overlap percentages of the organs at risk with the PTVs (56-59 Gy, vPTV{sub 56}) were evaluated to identify the predictors for NTCP improvement. Results: With the P60 plans, only the ipsilateral PG (iPG) benefited (23.9% vs 16.2%; P<.01). With the C70 plans, only the iPG (23.9% vs 17.5%; P<.01) and contralateral SMG (cSMG) (NTCP 32.1% vs 22.9%; P<.01) benefited. An iPG NTCP threshold of 20% and 30% predicted NTCP benefits for the P60 and C70 plans, respectively (P<.001). A cSMG NTCP threshold of 30% predicted for an NTCP benefit with the C70 plans (P<.001). Furthermore, for the iPG, a vPTV{sub 56} >13% predicted benefit with P60 (P<.001) and C70 (P=.002). For the cSMG, a vPTV{sub 56} >22% predicted benefit with C70 (P<.01). Conclusions: PTV elimination and dose-reduction lowered the NTCP of the iPG, and PTV elimination lowered the NTCP of the cSMG. NTCP thresholds and the

  7. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Grusell, Erik

    2015-01-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  8. Normal tissue dose-effect models in biological dose optimisation

    International Nuclear Information System (INIS)

    Alber, M.

    2008-01-01

    Sophisticated radiotherapy techniques like intensity modulated radiotherapy with photons and protons rely on numerical dose optimisation. The evaluation of normal tissue dose distributions that deviate significantly from the common clinical routine and also the mathematical expression of desirable properties of a dose distribution is difficult. In essence, a dose evaluation model for normal tissues has to express the tissue specific volume effect. A formalism of local dose effect measures is presented, which can be applied to serial and parallel responding tissues as well as target volumes and physical dose penalties. These models allow a transparent description of the volume effect and an efficient control over the optimum dose distribution. They can be linked to normal tissue complication probability models and the equivalent uniform dose concept. In clinical applications, they provide a means to standardize normal tissue doses in the face of inevitable anatomical differences between patients and a vastly increased freedom to shape the dose, without being overly limiting like sets of dose-volume constraints. (orig.)

  9. Sequential Probability Ratio Testing with Power Projective Base Method Improves Decision-Making for BCI

    Science.gov (United States)

    Liu, Rong

    2017-01-01

    Obtaining a fast and reliable decision is an important issue in brain-computer interfaces (BCI), particularly in practical real-time applications such as wheelchair or neuroprosthetic control. In this study, the EEG signals were firstly analyzed with a power projective base method. Then we were applied a decision-making model, the sequential probability ratio testing (SPRT), for single-trial classification of motor imagery movement events. The unique strength of this proposed classification method lies in its accumulative process, which increases the discriminative power as more and more evidence is observed over time. The properties of the method were illustrated on thirteen subjects' recordings from three datasets. Results showed that our proposed power projective method outperformed two benchmark methods for every subject. Moreover, with sequential classifier, the accuracies across subjects were significantly higher than that with nonsequential ones. The average maximum accuracy of the SPRT method was 84.1%, as compared with 82.3% accuracy for the sequential Bayesian (SB) method. The proposed SPRT method provides an explicit relationship between stopping time, thresholds, and error, which is important for balancing the time-accuracy trade-off. These results suggest SPRT would be useful in speeding up decision-making while trading off errors in BCI. PMID:29348781

  10. Dose-response relationship with radiotherapy: an evidence?

    International Nuclear Information System (INIS)

    Chauvet, B.; Rauglaudre, G. de; Mineur, L.; Alfonsi, M.; Reboul, F.

    2003-01-01

    The dose-response relationship is a fundamental basis of radiobiology. Despite many clinical data, difficulties remain to demonstrate a relation between dose and local control: relative role of treatment associated with radiation therapy (surgery, chemotherapy, hormonal therapy), tumor heterogeneity, few prospective randomized studies, uncertainty of local control assessment. Three different situations are discussed: tumors with high local control probabilities for which dose effect is demonstrated by randomized studies (breast cancer) or sound retrospective data (soft tissues sarcomas), tumors with intermediate local control probabilities for which dose effect seems to be important according to retrospective studies and ongoing or published phase III trials (prostate cancer), tumors with low local control probabilities for which dose effect appears to be modest beyond standard doses, and inferior to the benefit of concurrent chemotherapy (lung and oesophageal cancer). For head and neck tumors, the dose-response relationship has been explored through hyperfractionation and accelerated radiation therapy and a dose effect has been demonstrated but must be compared to the benefit of concurrent chemotherapy. Last but not least, the development of conformal radiotherapy allow the exploration of the dose response relationship for tumors such as hepatocellular carcinomas traditionally excluded from the field of conventional radiation therapy. In conclusion, the dose-response relationship remains a sound basis of radiation therapy for many tumors and is a parameter to take into account for further randomized studies. (author)

  11. Benefits of sinogram-affirmed iterative reconstruction in 0.4 mSv ultra-low-dose CT of the upper abdomen following transarterial chemoembolisation: comparison to low-dose and standard-dose CT and filtered back projection technique

    International Nuclear Information System (INIS)

    Bodelle, B.; Isler, S.; Scholtz, J.-E.; Frellesen, C.; Luboldt, W.; Vogl, T.J.; Beeres, M.

    2016-01-01

    Aim: To evaluate the advantage of sinogram-affirmed iterative reconstruction (SIR) compared to filtered back projection (FBP) in upper abdomen computed tomography (CT) after transarterial chemoembolisation (TACE) at different tube currents. Materials and methods: The study was approved by the institutional review board. Written informed consent was obtained from all patients. Post-TACE CT was performed with different tube currents successively varied in four steps (180, 90, 45 and 23 mAs) with 40 patients per group (mean age: 60±12 years, range: 23–85 years, sex: 70 female, 90 male). The data were reconstructed with standard FBP and five different SIR strengths. Image quality was independently rated by two readers on a five-point scale. High (Lipiodol-to-liver) as well as low (liver-to-fat) contrast-to-noise ratios (CNRs) were intra-individually compared within one dose to determine the optimal strength (S1–S5) and inter-individually between different doses to determine the possibility of dose reduction using the Kruskal–Wallis test. Results: Subjective image quality and objective CNR analysis were concordant: intra-individually, SIR was significantly (p<0.001) superior to FBP. Inter-individually, regarding different doses (180 versus 23 ref mAs), there was no significant (p=1.00) difference when using S5 SIR at 23 mAs instead of FBP. Conclusion: SIR allows for an 88% dose reduction from 3.43 to 0.4 mSv in unenhanced CT of the liver following TACE without subjective or objective loss in image quality. - Highlights: • Diagnostic image quality and radiation dose of ultra-low-dose CT of the upper abdomen using sinogram affirmed iterative reconstruction following transarterial chemoembolization in comparison to low-dose and standard dose CT and filtered back projection technique. • Ultra-low dose CT of the upper abdomen using sinogram affirmed iterative reconstruction allows for significant dose reduction by 88%. • Ultra-low dose CT of the upper abdomen

  12. Analysis of biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer using dose-distribution variables and tumor control probability models

    International Nuclear Information System (INIS)

    Levegruen, Sabine; Jackson, Andrew; Zelefsky, Michael J.; Venkatraman, Ennapadam S.; Skwarchuk, Mark W.; Schlegel, Wolfgang; Fuks, Zvi; Leibel, Steven A.; Ling, C. Clifton

    2000-01-01

    Purpose: To investigate tumor control following three-dimensional conformal radiation therapy (3D-CRT) of prostate cancer and to identify dose-distribution variables that correlate with local control assessed through posttreatment prostate biopsies. Methods and Material: Data from 132 patients, treated at Memorial Sloan-Kettering Cancer Center (MSKCC), who had a prostate biopsy 2.5 years or more after 3D-CRT for T1c-T3 prostate cancer with prescription doses of 64.8-81 Gy were analyzed. Variables derived from the dose distribution in the PTV included: minimum dose (Dmin), maximum dose (Dmax), mean dose (Dmean), dose to n% of the PTV (Dn), where n = 1%, ..., 99%. The concept of the equivalent uniform dose (EUD) was evaluated for different values of the surviving fraction at 2 Gy (SF 2 ). Four tumor control probability (TCP) models (one phenomenologic model using a logistic function and three Poisson cell kill models) were investigated using two sets of input parameters, one for low and one for high T-stage tumors. Application of both sets to all patients was also investigated. In addition, several tumor-related prognostic variables were examined (including T-stage, Gleason score). Univariate and multivariate logistic regression analyses were performed. The ability of the logistic regression models (univariate and multivariate) to predict the biopsy result correctly was tested by performing cross-validation analyses and evaluating the results in terms of receiver operating characteristic (ROC) curves. Results: In univariate analysis, prescription dose (Dprescr), Dmax, Dmean, dose to n% of the PTV with n of 70% or less correlate with outcome (p 2 : EUD correlates significantly with outcome for SF 2 of 0.4 or more, but not for lower SF 2 values. Using either of the two input parameters sets, all TCP models correlate with outcome (p 2 , is limited because the low dose region may not coincide with the tumor location. Instead, for MSKCC prostate cancer patients with their

  13. Neutrosophic Probability, Set, And Logic (first version)

    OpenAIRE

    Smarandache, Florentin

    2000-01-01

    This project is a part of a National Science Foundation interdisciplinary project proposal. Starting from a new viewpoint in philosophy, the neutrosophy, one extends the classical "probability theory", "fuzzy set" and "fuzzy logic" to , and respectively. They are useful in artificial intelligence, neural networks, evolutionary programming, neutrosophic dynamic systems, and quantum mechanics.

  14. Data base on dose reduction research projects for nuclear power plants. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Vulin, D.S.; Liang, H.; Baum, J.W. [Brookhaven National Lab., Upton, NY (United States)

    1992-08-01

    This is the fourth volume in a series of reports that provide information on dose reduction research and health physics technology for nuclear power plants. The information is taken from a data base maintained by Brookhaven National Laboratory`s ALARA Center for the Nuclear Regulatory Commission. This report presents information on 118 new or updated projects, covering a wide range of activities. Projects including steam generator degradation, decontamination, robotics, improvement in reactor materials, and inspection techniques, among others, are described in the research section of the report. The section on health physics technology includes some simple and very cost-effective projects to reduce radiation exposures. Included in this volume is a detailed description of how to access the BNL data bases which store this information. All project abstracts from this report, as well as many other useful documents, can be accessed, with permission, through our on-line system, ACE. A computer equipped with a modem, or a fax machine is all that is required to connect to ACE. Many features of ACE, including software, hardware, and communications specifics, are explained in this report.

  15. Radioactivity in foodstuffs and doses to the Norwegian population from the Chernobyl fall-out

    International Nuclear Information System (INIS)

    Strand, T.; Strand, P.; Baarli, J.

    1987-01-01

    The doses to the Norwegian population from foodstuffs after the fall-out from the Chernobyl accident are discussed. Based on the results of a 'food basket' project and supplementary data from the approx. 30,000 measurements on food samples during the first year after the accident, the total annual effective dose equivalent from foodstuffs to an average Norwegian consumer during the first year after the accident was estimated to be 0.15 ± 0.02 mSv at the 95% confidence level. The contribution from 131 I was estimated to be less than 3% of the total effective dose equivalent in the first year. The individual doses, however, depend very much on dietary habits. The southern Lapps are probably the population receiving the highest doses. Individual reindeer-breeding Lapps, neglecting some of the dietary guidelines from the health authorities, may have received an effective dose equivalent of 20-30 mSv in the first year after the accident. (author)

  16. Conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation, 1945--1947. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Mart, E.I.; Denham, D.H.; Thiede, M.E.

    1993-12-01

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project whose goal is to estimate the radiation dose that individuals could have received from emissions since 1944 at the U.S. Department of Energy`s (DOE) Hanford Site near Richland, Washington. The HEDR Project is conducted by Battelle, Pacific Northwest Laboratories (BNW). One of the radionuclides emitted that would affect the radiation dose was iodine-131. This report describes in detail the reconstructed conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation which was collected from the beginning of October 1945 through the end of December 1947.

  17. Problems following hippocampal irradiation in interventional radiologists - doses and potential effect:a Monte Carlo simulation

    International Nuclear Information System (INIS)

    Cumak, V.; Morgun, A.; Bakhanova, O.; Loganovs'kij, K.; Loganovs'ka, T.; Marazziti, D.

    2015-01-01

    This study aimed at investigating radiation exposure of hippocampus in interventional medical professionals irradiated in the operating room, and to compare doses in the hippocampus with the effective dose (protection quantity), as well as with the doses measured by individual dosimeter, in order to estimate probability of reaching levels of radiation induced cognitive and other neuropsychiatric alterations during their working career, through a Monte Carlo simulation. The results showed that cranial irradiation was very heterogeneous and depended on the projection: doses of left and right hippocampi may be different up to a factor of 2.5; under certain conditions, the dose of the left hippocampus may be twice the effective dose, estimated by conventional double dosimetry algorithm. The professional span doses of the irradiated hippocampus may overcome the threshold able to provoke possible cognitive and emotional-behavioral impairment. Therefore, in-depth studies of the effects of brain irradiation in occupationally exposed interventional medical personnel appear urgently needed and crucial

  18. Dose assessments for SFR 1

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Avila, Rodolfo; Ekstroem, Per-Anders; Cruz, Idalmis de la

    2008-05-01

    Following a review by the Swedish regulatory authorities of the safety analysis of the SFR 1 disposal facility for low and intermediate level waste, SKB has prepared an updated safety analysis, SAR-08. This report presents estimations of annual doses to the most exposed groups from potential radionuclide releases from the SFR 1 repository for a number of calculation cases, selected using a systematic approach for identifying relevant scenarios for the safety analysis. The dose estimates can be used for demonstrating that the long term safety of the repository is in compliance with the regulatory requirements. In particular, the mean values of the annual doses can be used to estimate the expected risks to the most exposed individuals, which can then be compared with the regulatory risk criteria for human health. The conversion from doses to risks is performed in the main report. For one scenario however, where the effects of an earthquake taking place close to the repository are analysed, risk calculations are presented in this report. In addition, prediction of concentrations of radionuclides in environmental media, such as water and soil, are compared with concentration limits suggested by the Erica-project as a base for estimating potential effects on the environment. The assessment of the impact on non-human biota showed that the potential impact is negligible. Committed collective dose for an integration period of 10,000 years for releases occurring during the first thousand years after closure are also calculated. The collective dose commitment was estimated to be 8 manSv. The dose calculations were carried out for a period of 100,000 years, which was sufficient to observe peak doses in all scenarios considered. Releases to the landscape and to a well were considered. The peaks of the mean annual doses from releases to the landscape are associated with C-14 releases to a future lake around year 5,000 AD. In the case of releases to a well, the peak annual doses

  19. Dose assessments for SFR 1

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Avila, Rodolfo; Ekstroem, Per-Anders; Cruz, Idalmis de la (Facilia AB, Bromma (Sweden))

    2008-06-15

    Following a review by the Swedish regulatory authorities of the safety analysis of the SFR 1 disposal facility for low and intermediate level waste, SKB has prepared an updated safety analysis, SAR-08. This report presents estimations of annual doses to the most exposed groups from potential radionuclide releases from the SFR 1 repository for a number of calculation cases, selected using a systematic approach for identifying relevant scenarios for the safety analysis. The dose estimates can be used for demonstrating that the long term safety of the repository is in compliance with the regulatory requirements. In particular, the mean values of the annual doses can be used to estimate the expected risks to the most exposed individuals, which can then be compared with the regulatory risk criteria for human health. The conversion from doses to risks is performed in the main report. For one scenario however, where the effects of an earthquake taking place close to the repository are analysed, risk calculations are presented in this report. In addition, prediction of concentrations of radionuclides in environmental media, such as water and soil, are compared with concentration limits suggested by the Erica-project as a base for estimating potential effects on the environment. The assessment of the impact on non-human biota showed that the potential impact is negligible. Committed collective dose for an integration period of 10,000 years for releases occurring during the first thousand years after closure are also calculated. The collective dose commitment was estimated to be 8 manSv. The dose calculations were carried out for a period of 100,000 years, which was sufficient to observe peak doses in all scenarios considered. Releases to the landscape and to a well were considered. The peaks of the mean annual doses from releases to the landscape are associated with C-14 releases to a future lake around year 5,000 AD. In the case of releases to a well, the peak annual doses

  20. Low dose radiation effects: an integrative european approach (Risc-Rad Project) coordinated by the Cea

    International Nuclear Information System (INIS)

    Sabatier, L.

    2006-01-01

    RISC-RAD (Radiosensitivity of Individuals and Susceptibility to Cancer induced by ionizing Radiations) is an Integrated Project funded by the European Commission under 6. Framework Programme / EURATOM. RISC-RAD started on 1. January 2004 for a duration of four years. Coordinated by Cea (Dr Laure Sabatier), it involves 11 European countries (Austria, Denmark, Finland, France, Germany, Ireland, Italy, the Netherlands, Spain, Sweden and the United Kingdom) and 29 research institutions. Objectives: Exposures to low and protracted doses of ionizing radiation are very frequent in normal living environment, at work places, in industry and in medicine. Effects of these exposures on human health cannot be reliably assessed by epidemiological methods, nor is thoroughly understood by biologists. RISC-RAD project proposes to help bridging the gap of scientific knowledge about these effects. To achieve this goal, a necessary key step is to understand the basic mechanisms by which radiation induces cancer. Studying this multistage process in an integrated way, the project offers a new biological approach characterised by and clear-cut and objective-driven scientific policy: the project is focused on the effects of low doses (less than 100 mSv) and protracted doses of radiation. It aims at identifying new parameters that take into account the differences in radiation responses between individuals. A group of modelers works closely with the experimental teams in order to better quantify the risks associated with low and protracted doses. Research work is divided into five work packages interacting closely with each other. WP1 is dedicated to DNA damage. Ionizing Radiation (IR) produce a broad spectrum of base modifications and DNA strand breaks of different kinds, among which double-strand breaks and 'clustered damage' which is thought to be a major feature in biological effectiveness of IR. The aim of Work Package 1 is to improve understanding of the initial DNA damage induced by

  1. Conditional probability on MV-algebras

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Tomáš

    2005-01-01

    Roč. 149, č. 2 (2005), s. 369-381 ISSN 0165-0114 R&D Projects: GA AV ČR IAA2075302 Institutional research plan: CEZ:AV0Z10750506 Keywords : conditional probability * tribe * MV-algebra Subject RIV: BA - General Mathematics Impact factor: 1.039, year: 2005

  2. A quality improvement project to reduce the intraoperative use of single-dose fentanyl vials across multiple patients in a pediatric institution.

    Science.gov (United States)

    Buck, David; Subramanyam, Rajeev; Varughese, Anna

    2016-01-01

    The use of a single-dose vial across multiple patients presents a risk to sterility and is against CDC guidelines. We initiated a quality improvement (QI) project to reduce the intraoperative use of single-dose vials of fentanyl across multiple patients at Cincinnati Children's Hospital Medical Center (CCHMC). The initial step of the improvement project was the development of a Key Driver Diagram. The diagram has the SMART aim of the project, key drivers inherent to the process we are trying to improve, and specific interventions targeting the key drivers. The number of patients each week receiving an IV dose of fentanyl, from a vial previously accessed for another patient was tracked in a high turnover operating room (OR). The improvement model used was based on the concept of building Plan-Do-Study-Act (PDSA) cycles. Tests of change included provider education, provision of an increased number of fentanyl vials, alternate wasting processes, and provision of single-use fentanyl syringes by the pharmacy. Prior to initiation of this project, it was common for a single fentanyl vial to be accessed for multiple patients. Our data showed an average percentage of failures of just over 50%. During the end of the project, after 7 months, the mean percentage failures had dropped to 5%. Preparation of 20 mcg single-use fentanyl syringes by pharmacy, combined with education of providers on appropriate use, was successful in reducing failures to below our goal of 25%. Appropriately sized fentanyl syringes prepared by pharmacy, education on correct use of single-dose vials, and reminders in the OR, reduced the percentage of patients receiving a dose of fentanyl from a vial previously accessed for another patient in a high-volume otolaryngology room. © 2015 John Wiley & Sons Ltd.

  3. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    International Nuclear Information System (INIS)

    Damkaer, D.M.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm -2 sub([DNA]) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm -2 sub([DNA]). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation. (orig.)

  4. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Damkaer, D.M.; Dey, D.B.; Heron, G.A.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm/sup -2/sub((DNA)) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm/sup -2/sub((DNA)). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation.

  5. Proposal of a probabilistic dose-response model

    International Nuclear Information System (INIS)

    Barrachina, M.

    1997-01-01

    A biologically updated dose-response model is presented as an alternative to the linear-quadratic model currently in use for cancer risk assessment. The new model is based on the probability functions for misrepair and/or unrepair of DNA lesions, in terms of the radiation damage production rate in the cell (supposedly, a stem cell) and its repair-rate constant. The model makes use, interpreting it on the basis of misrepair probabilities, of the ''dose and dose-rate effectiveness factor'' of ICRP, and provides the way for a continuous extrapolation between the high and low dose-rate regions, ratifying the ''linear non-threshold hypothesis'' as the main option. Anyhow, the model throws some doubts about the additive property of the dose. (author)

  6. Incidents in nuclear research reactor examined by deterministic probability and probabilistic safety analysis

    International Nuclear Information System (INIS)

    Lopes, Valdir Maciel

    2010-01-01

    This study aims to evaluate the potential risks submitted by the incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency, IAEA, were used, the Incident Report System for Research Reactor and Research Reactor Data Base. For this type of assessment was used the Probabilistic Safety Analysis (PSA), within a confidence level of 90% and the Deterministic Probability Analysis (DPA). To obtain the results of calculations of probabilities for PSA, were used the theory and equations in the paper IAEA TECDOC - 636. The development of the calculations of probabilities for PSA was used the program Scilab version 5.1.1, free access, executable on Windows and Linux platforms. A specific program to get the results of probability was developed within the main program Scilab 5.1.1., for two distributions Fischer and Chi-square, both with the confidence level of 90%. Using the Sordi equations and Origin 6.0 program, were obtained the maximum admissible doses related to satisfy the risk limits established by the International Commission on Radiological Protection, ICRP, and were also obtained these maximum doses graphically (figure 1) resulting from the calculations of probabilities x maximum admissible doses. It was found that the reliability of the results of probability is related to the operational experience (reactor x year and fractions) and that the larger it is, greater the confidence in the outcome. Finally, a suggested list of future work to complement this paper was gathered. (author)

  7. High-order noise analysis for low dose iterative image reconstruction methods: ASIR, IRIS, and MBAI

    Science.gov (United States)

    Do, Synho; Singh, Sarabjeet; Kalra, Mannudeep K.; Karl, W. Clem; Brady, Thomas J.; Pien, Homer

    2011-03-01

    Iterative reconstruction techniques (IRTs) has been shown to suppress noise significantly in low dose CT imaging. However, medical doctors hesitate to accept this new technology because visual impression of IRT images are different from full-dose filtered back-projection (FBP) images. Most common noise measurements such as the mean and standard deviation of homogeneous region in the image that do not provide sufficient characterization of noise statistics when probability density function becomes non-Gaussian. In this study, we measure L-moments of intensity values of images acquired at 10% of normal dose and reconstructed by IRT methods of two state-of-art clinical scanners (i.e., GE HDCT and Siemens DSCT flash) by keeping dosage level identical to each other. The high- and low-dose scans (i.e., 10% of high dose) were acquired from each scanner and L-moments of noise patches were calculated for the comparison.

  8. Fisher classifier and its probability of error estimation

    Science.gov (United States)

    Chittineni, C. B.

    1979-01-01

    Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.

  9. Probability mapping of contaminants

    International Nuclear Information System (INIS)

    Rautman, C.A.; Kaplan, P.G.; McGraw, M.A.; Istok, J.D.; Sigda, J.M.

    1994-01-01

    Exhaustive characterization of a contaminated site is a physical and practical impossibility. Descriptions of the nature, extent, and level of contamination, as well as decisions regarding proposed remediation activities, must be made in a state of uncertainty based upon limited physical sampling. The probability mapping approach illustrated in this paper appears to offer site operators a reasonable, quantitative methodology for many environmental remediation decisions and allows evaluation of the risk associated with those decisions. For example, output from this approach can be used in quantitative, cost-based decision models for evaluating possible site characterization and/or remediation plans, resulting in selection of the risk-adjusted, least-cost alternative. The methodology is completely general, and the techniques are applicable to a wide variety of environmental restoration projects. The probability-mapping approach is illustrated by application to a contaminated site at the former DOE Feed Materials Production Center near Fernald, Ohio. Soil geochemical data, collected as part of the Uranium-in-Soils Integrated Demonstration Project, have been used to construct a number of geostatistical simulations of potential contamination for parcels approximately the size of a selective remediation unit (the 3-m width of a bulldozer blade). Each such simulation accurately reflects the actual measured sample values, and reproduces the univariate statistics and spatial character of the extant data. Post-processing of a large number of these equally likely statistically similar images produces maps directly showing the probability of exceeding specified levels of contamination (potential clean-up or personnel-hazard thresholds)

  10. Probability mapping of contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, C.A.; Kaplan, P.G. [Sandia National Labs., Albuquerque, NM (United States); McGraw, M.A. [Univ. of California, Berkeley, CA (United States); Istok, J.D. [Oregon State Univ., Corvallis, OR (United States); Sigda, J.M. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    1994-04-01

    Exhaustive characterization of a contaminated site is a physical and practical impossibility. Descriptions of the nature, extent, and level of contamination, as well as decisions regarding proposed remediation activities, must be made in a state of uncertainty based upon limited physical sampling. The probability mapping approach illustrated in this paper appears to offer site operators a reasonable, quantitative methodology for many environmental remediation decisions and allows evaluation of the risk associated with those decisions. For example, output from this approach can be used in quantitative, cost-based decision models for evaluating possible site characterization and/or remediation plans, resulting in selection of the risk-adjusted, least-cost alternative. The methodology is completely general, and the techniques are applicable to a wide variety of environmental restoration projects. The probability-mapping approach is illustrated by application to a contaminated site at the former DOE Feed Materials Production Center near Fernald, Ohio. Soil geochemical data, collected as part of the Uranium-in-Soils Integrated Demonstration Project, have been used to construct a number of geostatistical simulations of potential contamination for parcels approximately the size of a selective remediation unit (the 3-m width of a bulldozer blade). Each such simulation accurately reflects the actual measured sample values, and reproduces the univariate statistics and spatial character of the extant data. Post-processing of a large number of these equally likely statistically similar images produces maps directly showing the probability of exceeding specified levels of contamination (potential clean-up or personnel-hazard thresholds).

  11. Breast compression and radiation dose in two different mammographic oblique projections: 45 and 60 deg

    International Nuclear Information System (INIS)

    Brnic, Zoran; Hebrang, Andrija

    2001-01-01

    Introduction: Standard mammography includes two views, craniocaudal and medio-lateral oblique. Depending on patient's body constitution, central beam angle in mediolateral oblique projection may vary, with 45 deg. being suitable for the majority of patients in routine daily practice. With continuous improvement in X-ray technology and radiographers' training, the risk of radiation induced cancerogenesis is considerably reduced and acceptable when compared to benefit. However, the risk still exists, being cumulative and directly related to absorbed glandular dose. There is no minimal dose of radiation which is absolutely harmless, and every effort to reduce the dose is welcome. In this retrospective study two different angles (45 vs. 60 deg.) of mediolateral oblique view were compared according to radiation dose and efficacy of breast compression. Patients and methods: In 52 women, additional 60 deg. oblique films were done after craniocaudal and mediolateral oblique 45 deg.-films, with the same kVp and positioning technique. Breast thickness, time-current products (mA s) and absorbed doses were compared between 45 deg. - and 60 deg.-films. Subgroups of women with large, small, prominent and pendulous breasts were analyzed separately, following the same methodology as for the whole group. Results: mA s were 11.5% lower and compression 7% better with an angle of 60 deg. than with 45 deg. In the subgroup of women with small breasts, mA s values were 13% lower and compression 9% better with 60 deg. than with 45 deg., while in the subgroup with large breasts, mA s were 9% lower and compression 5% better. In the subgroup of patients with pendulous breasts, mA s values were 12% lower and compression 10% better with 60 deg. than with 45 deg., while in the subgroup with prominent breasts, mA s values were 4% lower and compression 3% better. Absorbed glandular dose was estimated to be approximately 20% lower when an oblique mammogram was done with 60 deg. instead of 45 deg

  12. Calculation of the uncertainty in complication probability for various dose-response models, applied to the parotid gland

    International Nuclear Information System (INIS)

    Schilstra, C.; Meertens, H.

    2001-01-01

    Purpose: Usually, models that predict normal tissue complication probability (NTCP) are fitted to clinical data with the maximum likelihood (ML) method. This method inevitably causes a loss of information contained in the data. In this study, an alternative method is investigated that calculates the parameter probability distribution (PD), and, thus, conserves all information. The PD method also allows the calculation of the uncertainty in the NTCP, which is an (often-neglected) prerequisite for the intercomparison of both treatment plans and NTCP models. The PD and ML methods are applied to parotid gland data, and the results are compared. Methods and Materials: The drop in salivary flow due to radiotherapy was measured in 25 parotid glands of 15 patients. Together with the parotid gland dose-volume histograms (DVH), this enabled the calculation of the parameter PDs for three different NTCP models (Lyman, relative seriality, and critical volume). From these PDs, the NTCP and its uncertainty could be calculated for arbitrary parotid gland DVHs. ML parameters and resulting NTCP values were calculated also. Results: All models fitted equally well. The parameter PDs turned out to have nonnormal shapes and long tails. The NTCP predictions of the ML and PD method usually differed considerably, depending on the NTCP model and the nature of irradiation. NTCP curves and ML parameters suggested a highly parallel organization of the parotid gland. Conclusions: Considering the substantial differences between the NTCP predictions of the ML and PD method, the use of the PD method is preferred, because this is the only method that takes all information contained in the clinical data into account. Furthermore, PD method gives a true measure of the uncertainty in the NTCP

  13. Research advances in probability of causation calculation of radiogenic neoplasms

    International Nuclear Information System (INIS)

    Ning Jing; Yuan Yong; Xie Xiangdong; Yang Guoshan

    2009-01-01

    Probability of causation (PC) was used to facilitate the adjudication of compensation claims for cancers diagnosed following exposure to ionizing radiation. In this article, the excess cancer risk assessment models used for PC calculation are reviewed. Cancer risk transfer models between different populations, dependence of cancer risk on dose and dose rate, modification by epidemiological risk factors and application of PC are also discussed in brief. (authors)

  14. On possible risks of low-dose irradiation

    International Nuclear Information System (INIS)

    Hug, O.; Gesellschaft fuer Strahlen- und Umweltforschung m.b.H., Neuherberg/Muenchen

    1974-01-01

    The survey on more recent experimental and epidemiological data and newer concepts for a realistic estimation of the radiation risk leads to the conclusion that for radiation late damages and possibly also for genetic damages with a chronical radiation exposure in the order of magnitude of the natural radiation exposure and probably also in the order of magnitude of the maximum permissible radiation dose, the risk is very probably lower than is to be expected based on the findings after relatively high doses and dose rates. A few less direct comparative studies have detected a time factor of 3 to 5. Considering the analysis of the RBW demely ionizing radiation which at high doses is not greater than 3, increases with decreasing dose and according to biophysical considerations, can possibly reach a value of 30, an effectiveness reduced by a factor of 10 of small doses and dose rates of loosely ionizing radiation would be even to be expected. All radiobiological knowledge on the effect of ionizing radiation allows one to expect that even smallest radiation doses can cause cellular damages due to the linear irreversable components of the radiation effect and probably that these damages can even be the starting point of a malignant tumour. Regarding this cancer-initiating effect however, the effectiveness of loosely ionizing radiation per rad in the region of natural radiation exposure lie considerably below that existing at high doses and dose rates. Whether however this initial carcinogenic effect of very small doses is at all noticeable during the average life duration in an increase of the spontaneous age-specific tumour rate is questionable if the assumption is confirmed that with decreasing dose, the time manifestation of the radiation induced tumours is delayed. (orig./LH) [de

  15. Some radioactivity concentrations and ingestion dose projections arising from consumption of food containing Chernobyl contamination

    International Nuclear Information System (INIS)

    Paz, L.R. de la; Palattao, M.V.; Estacio, J.F.L.; Anden, A.

    1987-04-01

    Doses arising from the ingestion of radioactive contamination coming from Chernobyl accident are calculated using various radioactivity limits adopted by different organizations after the accident. These are compared with that allowed in the Philippines. Projected concentrations of Cs-137 and Cs-134 in various food items in the affected countries, one month and one year after the accident are calculated using a model proposed by Boone, Ng and Palms. Except for food produced in one or two hot spots, the projected concentrations after one year are expected to return to within the range of pre-Chernobyl values. (Auth.) 12 refs.; 13 tabs.; 6 figs

  16. SureTrak Probability of Impact Display

    Science.gov (United States)

    Elliott, John

    2012-01-01

    The SureTrak Probability of Impact Display software was developed for use during rocket launch operations. The software displays probability of impact information for each ship near the hazardous area during the time immediately preceding the launch of an unguided vehicle. Wallops range safety officers need to be sure that the risk to humans is below a certain threshold during each use of the Wallops Flight Facility Launch Range. Under the variable conditions that can exist at launch time, the decision to launch must be made in a timely manner to ensure a successful mission while not exceeding those risk criteria. Range safety officers need a tool that can give them the needed probability of impact information quickly, and in a format that is clearly understandable. This application is meant to fill that need. The software is a reuse of part of software developed for an earlier project: Ship Surveillance Software System (S4). The S4 project was written in C++ using Microsoft Visual Studio 6. The data structures and dialog templates from it were copied into a new application that calls the implementation of the algorithms from S4 and displays the results as needed. In the S4 software, the list of ships in the area was received from one local radar interface and from operators who entered the ship information manually. The SureTrak Probability of Impact Display application receives ship data from two local radars as well as the SureTrak system, eliminating the need for manual data entry.

  17. Radiation risk of tissue late effects, a net consequence of probabilities of various cellular responses

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    1991-01-01

    Late effects from the exposure to low doses of ionizing radiation are hardly or not at all observed in man mainly due to the low values of risk coefficients that preclude statistical analyses of data from populations that are exposed to doses less than 0.2 Gy. In order to arrive at an assessment of potential risk from radiation exposure in the low dose range, the microdosimetry approach is essential. In the low dose range, ionizing radiation generates particle tracks, mainly electrons, which are distributed rather heterogeneously within the exposed tissue. Taking the individual cell as the elemental unit of life, observations and calculations of cellular responses to being hit by energy depositions events from low LET type are analysed. It emerges that besides the probability of a hit cell to sustain a detrimental effect with the consequense of malignant transformation there are probabilities of various adaptive responses that equipp the hit cell with a benefit. On the one hand, an improvement of cellular radical detoxification was observed in mouse bone marrow cells; another adaptive response pertaining to improved DNA repair, was reported for human lymphocytes. The improved radical detoxification in mouse bone marrow cells lasts for a period of 5-10 hours and improved DNA repair in human lymphocytes was seen for some 60 hours following acute irradiation. It is speculated that improved radical detoxification and improved DNA repair may reduce the probability of spontaneous carcinogenesis. Thus it is proposed to weigh the probability of detriment for a hit cell within a multicellular system against the probability of benefit through adaptive responses in other hit cells in the same system per radiation exposure. In doing this, the net effect of low doses of low LET radiation in tissue with individual cells being hit by energy deposition events could be zero or even beneficial. (orig./MG)

  18. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-11-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

  19. Virtual patient 3D dose reconstruction using in air EPID measurements and a back-projection algorithm for IMRT and VMAT treatments.

    Science.gov (United States)

    Olaciregui-Ruiz, Igor; Rozendaal, Roel; van Oers, René F M; Mijnheer, Ben; Mans, Anton

    2017-05-01

    At our institute, a transit back-projection algorithm is used clinically to reconstruct in vivo patient and in phantom 3D dose distributions using EPID measurements behind a patient or a polystyrene slab phantom, respectively. In this study, an extension to this algorithm is presented whereby in air EPID measurements are used in combination with CT data to reconstruct 'virtual' 3D dose distributions. By combining virtual and in vivo patient verification data for the same treatment, patient-related errors can be separated from machine, planning and model errors. The virtual back-projection algorithm is described and verified against the transit algorithm with measurements made behind a slab phantom, against dose measurements made with an ionization chamber and with the OCTAVIUS 4D system, as well as against TPS patient data. Virtual and in vivo patient dose verification results are also compared. Virtual dose reconstructions agree within 1% with ionization chamber measurements. The average γ-pass rate values (3% global dose/3mm) in the 3D dose comparison with the OCTAVIUS 4D system and the TPS patient data are 98.5±1.9%(1SD) and 97.1±2.9%(1SD), respectively. For virtual patient dose reconstructions, the differences with the TPS in median dose to the PTV remain within 4%. Virtual patient dose reconstruction makes pre-treatment verification based on deviations of DVH parameters feasible and eliminates the need for phantom positioning and re-planning. Virtual patient dose reconstructions have additional value in the inspection of in vivo deviations, particularly in situations where CBCT data is not available (or not conclusive). Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Repair and dose-response at low doses

    International Nuclear Information System (INIS)

    Totter, J.R.; Weinberg, A.M.

    1977-04-01

    The DNA of each individual is subject to formation of some 2-4 x 10 14 ion pairs during the first 30 years of life from background radiation. If a single hit is sufficient to cause cancer, as is implicit in the linear, no-threshold theories, it is unclear why all individuals do not succumb to cancer, unless repair mechanisms operate to remove the damage. We describe a simple model in which the exposed population displays a distribution of repair thresholds. The dose-response at low dose is shown to depend on the shape of the threshold distribution at low thresholds. If the probability of zero threshold is zero, the response at low dose is quadratic. The model is used to resolve a longstanding discrepancy between observed incidence of leukemia at Nagasaki and the predictions of the usual linear hypothesis

  1. Parameter calculation tool for the application of radiological dose projection codes

    International Nuclear Information System (INIS)

    Galindo G, I. F.; Vergara del C, J. A.; Galvan A, S. J.; Tijerina S, F.

    2016-09-01

    The use of specialized codes to estimate the radiation dose projection to an emergency postulated event at a nuclear power plant requires that certain plant data be available according to the event being simulated. The calculation of the possible radiological release is the critical activity to carry out the emergency actions. However, not all of the plant data required are obtained directly from the plant but need to be calculated. In this paper we present a computational tool that calculates the plant data required to use the radiological dose estimation codes. The tool provides the required information when there is a gas emergency venting event in the primary containment atmosphere, whether well or dry well and also calculates the time in which the spent fuel pool would be discovered in the event of a leak of water on some of the walls or floor of the pool. The tool developed has mathematical models for the processes involved such as: compressible flow in pipes considering area change and for constant area, taking into account the effects of friction and for the case of the spent fuel pool hydraulic models to calculate the time in which a container is emptied. The models implemented in the tool are validated with data from the literature for simulated cases. The results with the tool are very similar to those of reference. This tool will also be very supportive so that in postulated emergency cases can use the radiological dose estimation codes to adequately and efficiently determine the actions to be taken in a way that affects as little as possible. (Author)

  2. Modification of damage following low doses

    International Nuclear Information System (INIS)

    Braby, L.A.; Nelson, J.M.; Metting, N.F.

    1988-01-01

    At very low doses the damage-interaction mechanism is responsible for very little lethal or potentially lethal damage, and repair of the latter should essentially disappear. An alternative model suggests that potentially lethal damage is either repaired with a constant half time or misrepaired at a rate which is proportional to the square of the damage concentration. In this case, as the dose decreases, the probability of misrepair decreases faster than the probability of repair, and repair becomes a more pronounced feature of the cell response. Since the consequence of unrepaired damage is an important question in determining the effects of low doses of radiation delivered at low dose rates, we have attempted to determine which of these two types of models is consistent with the response of plateau-phase CHO cells. In the earlier experiments, there was no indication of repair after a 50-rad exposure with a 24-hour split dose or plating delay; in fact, immediate plating resulted in survival slightly above control and delayed plating in survival slightly below the control value

  3. Dose Escalated Liver Stereotactic Body Radiation Therapy at the Mean Respiratory Position

    International Nuclear Information System (INIS)

    Velec, Michael; Moseley, Joanne L.; Dawson, Laura A.; Brock, Kristy K.

    2014-01-01

    Purpose: The dosimetric impact of dose probability based planning target volume (PTV) margins for liver cancer patients receiving stereotactic body radiation therapy (SBRT) was compared with standard PTV based on the internal target volume (ITV). Plan robustness was evaluated by accumulating the treatment dose to ensure delivery of the intended plan. Methods and Materials: Twenty patients planned on exhale CT for 27 to 50 Gy in 6 fractions using an ITV-based PTV and treated free-breathing were retrospectively evaluated. Isotoxic, dose escalated plans were created on midposition computed tomography (CT), representing the mean breathing position, using a dose probability PTV. The delivered doses were accumulated using biomechanical deformable registration of the daily cone beam CT based on liver targeting at the exhale or mean breathing position, for the exhale and midposition CT plans, respectively. Results: The dose probability PTVs were on average 38% smaller than the ITV-based PTV, enabling an average ± standard deviation increase in the planned dose to 95% of the PTV of 4.0 ± 2.8 Gy (9 ± 5%) on the midposition CT (P<.01). For both plans, the delivered minimum gross tumor volume (GTV) doses were greater than the planned nominal prescribed dose in all 20 patients and greater than the planned dose to 95% of the PTV in 18 (90%) patients. Nine patients (45%) had 1 or more GTVs with a delivered minimum dose more than 5 Gy higher with the midposition CT plan using dose probability PTV, compared with the delivered dose with the exhale CT plan using ITV-based PTV. Conclusions: For isotoxic liver SBRT planned and delivered at the mean respiratory, reduced dose probability PTV enables a mean escalation of 4 Gy (9%) in 6 fractions over ITV-based PTV. This may potentially improve local control without increasing the risk of tumor underdosing

  4. Robust EM Continual Reassessment Method in Oncology Dose Finding

    Science.gov (United States)

    Yuan, Ying; Yin, Guosheng

    2012-01-01

    The continual reassessment method (CRM) is a commonly used dose-finding design for phase I clinical trials. Practical applications of this method have been restricted by two limitations: (1) the requirement that the toxicity outcome needs to be observed shortly after the initiation of the treatment; and (2) the potential sensitivity to the prespecified toxicity probability at each dose. To overcome these limitations, we naturally treat the unobserved toxicity outcomes as missing data, and use the expectation-maximization (EM) algorithm to estimate the dose toxicity probabilities based on the incomplete data to direct dose assignment. To enhance the robustness of the design, we propose prespecifying multiple sets of toxicity probabilities, each set corresponding to an individual CRM model. We carry out these multiple CRMs in parallel, across which model selection and model averaging procedures are used to make more robust inference. We evaluate the operating characteristics of the proposed robust EM-CRM designs through simulation studies and show that the proposed methods satisfactorily resolve both limitations of the CRM. Besides improving the MTD selection percentage, the new designs dramatically shorten the duration of the trial, and are robust to the prespecification of the toxicity probabilities. PMID:22375092

  5. In search of the relevant lung dose

    International Nuclear Information System (INIS)

    Fisher, D.R.

    1982-12-01

    Researchers have traditionally been inconsistent in their methods of determining and reporting dose to the lung from inhaled radionuclides - a situation which has led to difficulties in later comparing results and deriving dose-response relationships. The dose quantities which at present are most generally assumed to be related to risk of stochastic radiation effects (such as lung cancer) are (1) mean dose equivalent to the bronchial epithelium basal cell layer for radon daughters, and (2) mean dose equivalent to the whole lung (including tracheobronchial lymph nodes) for all other radionuclides. The average radiation dose is calculated by assuming that the energy is homogeneously impared to the entire tissue mass. However, the actual dose received by a cell which becomes transformed or tumorigenic is likely to be very much different than the smear dose to the entire organ. This realization has led to further study of stochastic energy deposition processes in single cells or cell nuclei from internal emitters. The end product of the stochastic approach to dosimetry, sometimes called microdosimetry, is a probability density in specific energy. For alpha-emitting radionuclides in the lung, a concept that may be more important than dose is the probability that a cell is hit by an alpha particle

  6. Effects of NMDA receptor antagonists on probability discounting depend on the order of probability presentation.

    Science.gov (United States)

    Yates, Justin R; Breitenstein, Kerry A; Gunkel, Benjamin T; Hughes, Mallory N; Johnson, Anthony B; Rogers, Katherine K; Shape, Sara M

    Risky decision making can be measured using a probability-discounting procedure, in which animals choose between a small, certain reinforcer and a large, uncertain reinforcer. Recent evidence has identified glutamate as a mediator of risky decision making, as blocking the N-methyl-d-aspartate (NMDA) receptor with MK-801 increases preference for a large, uncertain reinforcer. Because the order in which probabilities associated with the large reinforcer can modulate the effects of drugs on choice, the current study determined if NMDA receptor ligands alter probability discounting using ascending and descending schedules. Sixteen rats were trained in a probability-discounting procedure in which the odds against obtaining the large reinforcer increased (n=8) or decreased (n=8) across blocks of trials. Following behavioral training, rats received treatments of the NMDA receptor ligands MK-801 (uncompetitive antagonist; 0, 0.003, 0.01, or 0.03mg/kg), ketamine (uncompetitive antagonist; 0, 1.0, 5.0, or 10.0mg/kg), and ifenprodil (NR2B-selective non-competitive antagonist; 0, 1.0, 3.0, or 10.0mg/kg). Results showed discounting was steeper (indicating increased risk aversion) for rats on an ascending schedule relative to rats on the descending schedule. Furthermore, the effects of MK-801, ketamine, and ifenprodil on discounting were dependent on the schedule used. Specifically, the highest dose of each drug decreased risk taking in rats in the descending schedule, but only MK-801 (0.03mg/kg) increased risk taking in rats on an ascending schedule. These results show that probability presentation order modulates the effects of NMDA receptor ligands on risky decision making. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Clinical implementation of coverage probability planning for nodal boosting in locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Ramlov, Anne; Assenholt, Marianne S; Jensen, Maria F

    2017-01-01

    PURPOSE: To implement coverage probability (CovP) for dose planning of simultaneous integrated boost (SIB) of pathologic lymph nodes in locally advanced cervical cancer (LACC). MATERIAL AND METHODS: CovP constraints for SIB of the pathological nodal target (PTV-N) with a central dose peak...

  8. Projected global health impacts from severe nuclear accidents: Conversion of projected doses to risks on a global scale: Experience from Chernobyl releases

    International Nuclear Information System (INIS)

    Catlin, R.J.; Goldman, M.; Anspaugh, L.R.

    1987-01-01

    Best estimates of possible additional health effects were projected for the Northern Hemisphere: (1) over the next 50 years, up to 28 thousand radiation-induced fatal cancers, compared to an expected 600 million cancer deaths from natural or spontaneous causes; (2) over the next year, up to 700 additional cases of severe mental retardation, compared to a normal expectation of 340 thousand cases; and (3) in the first generation, up to 1.9 thousand radiation-induced genetic disorders, compared to 180 million naturally-occurring cases. The possibility of zero health effects at very low doses and dose rates cannot be excluded. Due to the very large numbers of naturally-occurring health effects, it is unlikely that any additional health effects will be demonstrable except, perhaps, for the more highly exposed population in the immediate vicinity of Chernobyl. 13 refs., 4 figs., 6 tabs

  9. Population dose assessment from radiodiagnosis in Portugal

    International Nuclear Information System (INIS)

    Serro, R.; Carreiro, J.V.; Galvao, J.P.; Reis, R.

    1992-01-01

    A survey of radiodiagnostic installations was carried out in Portugal covering 75 premises including public hospitals, local and regional public health centres. A total of 175 X ray tubes was surveyed using the new NEXT methodology covering data on premises, tube and operator, and projection. Average value of voltage, current-time product, HVL, ratio of beam area to film area and source to film distance for the eleven most frequent projections are reported as well as the skin entrance exposure and the doses to some organs. The weighted average dose values per projection and for the different organs allowed an estimate of the whole-body dose per caput. From the gonadal doses the genetic significant dose was also estimated

  10. Generalized Probability-Probability Plots

    NARCIS (Netherlands)

    Mushkudiani, N.A.; Einmahl, J.H.J.

    2004-01-01

    We introduce generalized Probability-Probability (P-P) plots in order to study the one-sample goodness-of-fit problem and the two-sample problem, for real valued data.These plots, that are constructed by indexing with the class of closed intervals, globally preserve the properties of classical P-P

  11. Quantum Probabilities as Behavioral Probabilities

    Directory of Open Access Journals (Sweden)

    Vyacheslav I. Yukalov

    2017-03-01

    Full Text Available We demonstrate that behavioral probabilities of human decision makers share many common features with quantum probabilities. This does not imply that humans are some quantum objects, but just shows that the mathematics of quantum theory is applicable to the description of human decision making. The applicability of quantum rules for describing decision making is connected with the nontrivial process of making decisions in the case of composite prospects under uncertainty. Such a process involves deliberations of a decision maker when making a choice. In addition to the evaluation of the utilities of considered prospects, real decision makers also appreciate their respective attractiveness. Therefore, human choice is not based solely on the utility of prospects, but includes the necessity of resolving the utility-attraction duality. In order to justify that human consciousness really functions similarly to the rules of quantum theory, we develop an approach defining human behavioral probabilities as the probabilities determined by quantum rules. We show that quantum behavioral probabilities of humans do not merely explain qualitatively how human decisions are made, but they predict quantitative values of the behavioral probabilities. Analyzing a large set of empirical data, we find good quantitative agreement between theoretical predictions and observed experimental data.

  12. Influence of the rate of conversion of HT and HTO on projected radiation doses from release of molecular tritium

    International Nuclear Information System (INIS)

    Jacobs, D.G.; Easterly, C.E.; Phillips, J.E.

    1979-01-01

    Releases of tritium in the past have been largely in the form of tritiated water, and the projected radiation doses could be estimated by assuming tritium behaviour to parallel that of water. There is increasing interest in potential releases of tritium in the form of HT because of significant recent advances in fusion reactor research. Several recent studies have shown that bacteria containing the enzyme hydrogenase can catalyse the conversion of HT to HTO at rates several orders of magnitude faster than the rates measured in atmospheric systems. Rates of conversion in the soil have been combined with estimates of rates of permeation of HT into the soil and with global and local models depicting tritium transport and cycling. The results suggest that for the expected conversion rates, the impact on projected radiation doses should be relatively minor. (author)

  13. Probability Aggregates in Probability Answer Set Programming

    OpenAIRE

    Saad, Emad

    2013-01-01

    Probability answer set programming is a declarative programming that has been shown effective for representing and reasoning about a variety of probability reasoning tasks. However, the lack of probability aggregates, e.g. {\\em expected values}, in the language of disjunctive hybrid probability logic programs (DHPP) disallows the natural and concise representation of many interesting problems. In this paper, we extend DHPP to allow arbitrary probability aggregates. We introduce two types of p...

  14. Measures, Probability and Holography in Cosmology

    Science.gov (United States)

    Phillips, Daniel

    This dissertation compiles four research projects on predicting values for cosmological parameters and models of the universe on the broadest scale. The first examines the Causal Entropic Principle (CEP) in inhomogeneous cosmologies. The CEP aims to predict the unexpectedly small value of the cosmological constant Lambda using a weighting by entropy increase on causal diamonds. The original work assumed a purely isotropic and homogeneous cosmology. But even the level of inhomogeneity observed in our universe forces reconsideration of certain arguments about entropy production. In particular, we must consider an ensemble of causal diamonds associated with each background cosmology and we can no longer immediately discard entropy production in the far future of the universe. Depending on our choices for a probability measure and our treatment of black hole evaporation, the prediction for Lambda may be left intact or dramatically altered. The second related project extends the CEP to universes with curvature. We have found that curvature values larger than rho k = 40rhom are disfavored by more than $99.99% and a peak value at rhoLambda = 7.9 x 10-123 and rhok =4.3rho m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work. The third project examines how cosmologists should formulate basic questions of probability. We argue using simple models that all successful practical uses of probabilities originate in quantum fluctuations in the microscopic physical world around us, often propagated to macroscopic scales. Thus we claim there is no physically verified fully classical theory of probability. We

  15. Projected global health impacts from severe nuclear accidents: Conversion of projected doses to risks on a global scale: Experience from Chernobyl releases

    International Nuclear Information System (INIS)

    Catlin, R.J.; Goldman, M.; Anspaugh, L.R.

    1987-01-01

    Best estimates of possible additional health effects were projected for the Northern Hemisphere: (1) over the next 50 years, up to 28 thousand radiation-induced fatal cancers, compared to an expected 600 million cancer deaths FR-om natural or spontaneous causes; (2) over the next year, up to 700 additional cases of severe mental retardation, compared to a normal expectation of 340 thousand cases; and (3) in the first generation, up to 1.9 thousand radiation-induced genetic disorders, compared to 180 million naturally-occurring cases. The possibility of zero health effects at very low doses and dose rates cannot be excluded. Due to the very large numbers of naturally-occurring health effects, it is unlikely that any additional health effects will be demonstrable except, perhaps, for the more highly exposed population in the immediate vicinity of Chernobyl. 13 refs., 4 figs., 6 tabs

  16. Doses to the Norwegian population from naturally occuring radiation and from the Chernobyl fallout

    International Nuclear Information System (INIS)

    Strand, T.

    1987-01-01

    The doses to the Norwegian population from naturally occuring radiation are extensively reviewed. The annual population weighted average dose equivalent to the Norwegian population from 222 Rn and its daughters is estimated to be between 3.5 and 4.5 mSv. The average concentration of 220 Rn daughters in Norwegian dwellings is most probably between 1.0 and 1.5 Bq m -3 . The corresponding effective dose equivalent for 220 Rn and its daughters is estimated to be between 0.4 and 0.6 mSv. The total annual collective dose equivalent from naturally occuring radiation in Norway is found to be between 21000 and 27000 man Sv. The doses to the Norwegian population from the Chernobyl fallout are briefly discussed. Based on the results of a ''food basket'' project and supplementary data from about 30000 measurements on food samples the first year after the reactor accident, the total annual effective dose equivalent from foodstuffs to an average Norwegian consumer during this first year is estimated to be 0.15 +-0.002 m Sv at the 95% confidence level. The per caput effective dose equivalent from external fallout gamma radiation in the first year after the Chernobyl accident, is approximately 82 μSv in Norway

  17. Probability Estimates of Solar Particle Event Doses During a Period of Low Sunspot Number for Thinly-Shielded Spacecraft and Short Duration Missions

    Science.gov (United States)

    Atwell, William; Tylka, Allan J.; Dietrich, William; Rojdev, Kristina; Matzkind, Courtney

    2016-01-01

    In an earlier paper (Atwell, et al., 2015), we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the sunspot number (SSN) was less than 30. These SPEs contain Ground Level Events (GLE), sub-GLEs, and sub-sub-GLEs (Tylka and Dietrich, 2009, Tylka and Dietrich, 2008, and Atwell, et al., 2008). GLEs are extremely energetic solar particle events having proton energies extending into the several GeV range and producing secondary particles in the atmosphere, mostly neutrons, observed with ground station neutron monitors. Sub-GLE events are less energetic, extending into the several hundred MeV range, but do not produce secondary atmospheric particles. Sub-sub GLEs are even less energetic with an observable increase in protons at energies greater than 30 MeV, but no observable proton flux above 300 MeV. In this paper, we consider those SPEs that occurred during 1973-2010 when the SSN was greater than 30 but less than 50. In addition, we provide probability estimates of absorbed dose based on mission duration with a 95% confidence level (CL). We also discuss the implications of these data and provide some recommendations that may be useful to spacecraft designers of these smaller spacecraft.

  18. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning

    International Nuclear Information System (INIS)

    Thieke, Christian; Bortfeld, Thomas; Niemierko, Andrzej; Nill, Simeon

    2003-01-01

    Optimization algorithms in inverse radiotherapy planning need information about the desired dose distribution. Usually the planner defines physical dose constraints for each structure of the treatment plan, either in form of minimum and maximum doses or as dose-volume constraints. The concept of equivalent uniform dose (EUD) was designed to describe dose distributions with a higher clinical relevance. In this paper, we present a method to consider the EUD as an optimization constraint by using the method of projections onto convex sets (POCS). In each iteration of the optimization loop, for the actual dose distribution of an organ that violates an EUD constraint a new dose distribution is calculated that satisfies the EUD constraint, leading to voxel-based physical dose constraints. The new dose distribution is found by projecting the current one onto the convex set of all dose distributions fulfilling the EUD constraint. The algorithm is easy to integrate into existing inverse planning systems, and it allows the planner to choose between physical and EUD constraints separately for each structure. A clinical case of a head and neck tumor is optimized using three different sets of constraints: physical constraints for all structures, physical constraints for the target and EUD constraints for the organs at risk, and EUD constraints for all structures. The results show that the POCS method converges stable and given EUD constraints are reached closely

  19. Large LOCA-earthquake combination probability assessment - Load combination program. Project 1 summary report

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S; Streit, R D; Chou, C K

    1980-01-01

    This report summarizes work performed for the U.S. Nuclear Regulatory Commission (NRC) by the Load Combination Program at the Lawrence Livermore National Laboratory to establish a technical basis for the NRC to use in reassessing its requirement that earthquake and large loss-of-coolant accident (LOCA) loads be combined in the design of nuclear power plants. A systematic probabilistic approach is used to treat the random nature of earthquake and transient loading to estimate the probability of large LOCAs that are directly and indirectly induced by earthquakes. A large LOCA is defined in this report as a double-ended guillotine break of the primary reactor coolant loop piping (the hot leg, cold leg, and crossover) of a pressurized water reactor (PWR). Unit 1 of the Zion Nuclear Power Plant, a four-loop PWR-1, is used for this study. To estimate the probability of a large LOCA directly induced by earthquakes, only fatigue crack growth resulting from the combined effects of thermal, pressure, seismic, and other cyclic loads is considered. Fatigue crack growth is simulated with a deterministic fracture mechanics model that incorporates stochastic inputs of initial crack size distribution, material properties, stress histories, and leak detection probability. Results of the simulation indicate that the probability of a double-ended guillotine break, either with or without an earthquake, is very small (on the order of 10{sup -12}). The probability of a leak was found to be several orders of magnitude greater than that of a complete pipe rupture. A limited investigation involving engineering judgment of a double-ended guillotine break indirectly induced by an earthquake is also reported. (author)

  20. Large LOCA-earthquake combination probability assessment - Load combination program. Project 1 summary report

    International Nuclear Information System (INIS)

    Lu, S.; Streit, R.D.; Chou, C.K.

    1980-01-01

    This report summarizes work performed for the U.S. Nuclear Regulatory Commission (NRC) by the Load Combination Program at the Lawrence Livermore National Laboratory to establish a technical basis for the NRC to use in reassessing its requirement that earthquake and large loss-of-coolant accident (LOCA) loads be combined in the design of nuclear power plants. A systematic probabilistic approach is used to treat the random nature of earthquake and transient loading to estimate the probability of large LOCAs that are directly and indirectly induced by earthquakes. A large LOCA is defined in this report as a double-ended guillotine break of the primary reactor coolant loop piping (the hot leg, cold leg, and crossover) of a pressurized water reactor (PWR). Unit 1 of the Zion Nuclear Power Plant, a four-loop PWR-1, is used for this study. To estimate the probability of a large LOCA directly induced by earthquakes, only fatigue crack growth resulting from the combined effects of thermal, pressure, seismic, and other cyclic loads is considered. Fatigue crack growth is simulated with a deterministic fracture mechanics model that incorporates stochastic inputs of initial crack size distribution, material properties, stress histories, and leak detection probability. Results of the simulation indicate that the probability of a double-ended guillotine break, either with or without an earthquake, is very small (on the order of 10 -12 ). The probability of a leak was found to be several orders of magnitude greater than that of a complete pipe rupture. A limited investigation involving engineering judgment of a double-ended guillotine break indirectly induced by an earthquake is also reported. (author)

  1. Acceptance test procedure for K basins dose reduction project clean and coat equipment

    International Nuclear Information System (INIS)

    Creed, R.F.

    1996-01-01

    This document is the Acceptance Test Procedure (ATP) for the clean and coat equipment designed by Oceaneering Hanford, Inc. under purchase order MDK-XVC-406988 for use in the 105 K East Basin. The ATP provides the guidelines and criteria to test the equipment's ability to clean and coat the concrete perimeter, divider walls, and dummy elevator pit above the existing water level. This equipment was designed and built in support of the Spent Nuclear Fuel, Dose Reduction Project. The ATP will be performed at the 305 test facility in the 300 Area at Hanford. The test results will be documented in WHC-SD-SNF-ATR-020

  2. Negative probability in the framework of combined probability

    OpenAIRE

    Burgin, Mark

    2013-01-01

    Negative probability has found diverse applications in theoretical physics. Thus, construction of sound and rigorous mathematical foundations for negative probability is important for physics. There are different axiomatizations of conventional probability. So, it is natural that negative probability also has different axiomatic frameworks. In the previous publications (Burgin, 2009; 2010), negative probability was mathematically formalized and rigorously interpreted in the context of extende...

  3. Introduction to probability and measure theories

    International Nuclear Information System (INIS)

    Partasarati, K.

    1983-01-01

    Chapters of probability and measured theories are presented. The Borele images of spaces with the measure into each other and in separate metric spaces are studied. The Kolmogorov theorem on the continuation of probabilies is drawn from the theorem on the measure continuation to the projective limits of spaces with measure. The integration theory is plotted, measures on multiplications of spaces are studied. The theory of conventional mathematical expectations by projections in Hilbert space is presented. In conclusion, the theory of weak convergence of measures of elements of the theory of characteristic functions and the theory of invariant and quasi-invariant measures on groups and homogeneous spaces is given

  4. SU-D-12A-01: An Inter-Projection Interpolation (IPI) Approach for the Synchronized Moving Grid (SMOG) to Reduce Dose in Cone Beam CT

    International Nuclear Information System (INIS)

    Zhang, H; Kong, V; Jin, J; Ren, L

    2014-01-01

    Purpose: Synchronized moving grid is a promising technique to reduce scatter and ghost artifacts in cone beam computed tomography (CBCT). However, it requires 2 projections in the same gantry angle to obtain full information due to signal blockage by the grid. We proposed an inter-projection interpolation (IPI) method to estimate blocked signals, which may reduce the scan time and the dose. This study aims to provide a framework to achieve a balance between speed, dose and image quality. Methods: The IPI method is based on the hypothesis that an abrupt signal in a projection can be well predicted by the information in the two immediate neighboring projections if the gantry angle step is small. The study was performed on a Catphan and a head phantom. The SMOG was simulated by erasing the information (filling with “0”) of the areas in each projection corresponding to the grid. An IPI algorithm was applied on each projection to recover the erased information. FDK algorithm was used to reconstruct CBCT images for the IPI-processed projections, and compared with the original image in term of signal to noise ratio (SNR) measured in the whole reconstruction image range. The effect of gantry angle step was investigated by comparing the CBCT images from projection sets of various gantry intervals, with IPI-predicted projections to fill the missing projection in the interval. Results: The IPI procession time was 1.79s±0.53s for each projection. SNR after IPI was 29.0db and 28.1db for the Catphan and head phantom, respectively, comparing to 15.3db and 22.7db for an inpainting based interpolation technique. SNR was 28.3, 28.3, 21.8, 19.3 and 17.3 db for gantry angle intervals of 1, 1.5, 2, 2.5 and 3 degrees, respectively. Conclusion: IPI is feasible to estimate the missing information, and achieve an reasonable CBCT image quality with reduced dose and scan time. This study is supported by NIH/NCI grant 1R01CA166948-01

  5. PA positioning significantly reduces testicular dose during sacroiliac joint radiography

    Energy Technology Data Exchange (ETDEWEB)

    Mekis, Nejc [Faculty of Health Sciences, University of Ljubljana (Slovenia); Mc Entee, Mark F., E-mail: mark.mcentee@ucd.i [School of Medicine and Medical Science, University College Dublin 4 (Ireland); Stegnar, Peter [Jozef Stefan International Postgraduate School, Ljubljana (Slovenia)

    2010-11-15

    Radiation dose to the testes in the antero-posterior (AP) and postero-anterior (PA) projection of the sacroiliac joint (SIJ) was measured with and without a scrotal shield. Entrance surface dose, the dose received by the testicles and the dose area product (DAP) was used. DAP measurements revealed the dose received by the phantom in the PA position is 12.6% lower than the AP (p {<=} 0.009) with no statistically significant reduction in image quality (p {<=} 0.483). The dose received by the testes in the PA projection in SIJ imaging is 93.1% lower than the AP projection when not using protection (p {<=} 0.020) and 94.9% lower with protection (p {<=} 0.019). The dose received by the testicles was not changed by the use of a scrotal shield in the AP position (p {<=} 0.559); but was lowered by its use in the PA (p {<=} 0.058). Use of the PA projection in SIJ imaging significantly lowers, the dose received by the testes compared to the AP projection without significant loss of image quality.

  6. Jump probabilities in the non-Markovian quantum jump method

    International Nuclear Information System (INIS)

    Haerkoenen, Kari

    2010-01-01

    The dynamics of a non-Markovian open quantum system described by a general time-local master equation is studied. The propagation of the density operator is constructed in terms of two processes: (i) deterministic evolution and (ii) evolution of a probability density functional in the projective Hilbert space. The analysis provides a derivation for the jump probabilities used in the recently developed non-Markovian quantum jump (NMQJ) method (Piilo et al 2008 Phys. Rev. Lett. 100 180402).

  7. Heart sounds analysis using probability assessment

    Czech Academy of Sciences Publication Activity Database

    Plešinger, Filip; Viščor, Ivo; Halámek, Josef; Jurčo, Juraj; Jurák, Pavel

    2017-01-01

    Roč. 38, č. 8 (2017), s. 1685-1700 ISSN 0967-3334 R&D Projects: GA ČR GAP102/12/2034; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : heart sounds * FFT * machine learning * signal averaging * probability assessment Subject RIV: FS - Medical Facilities ; Equipment OBOR OECD: Medical engineering Impact factor: 2.058, year: 2016

  8. Dose rate analysis for Tank 101 AZ (Project W151)

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Hillesland, K.E.; Carter, L.L.

    1994-11-01

    This document describes the expected dose rates for modification to tank 101 AZ including modifications to the steam coil, mixer pump, and temperature probes. The thrust of the effort is to determine dose rates from: modification of a steam coil and caisson; the installation of mixer pumps; the installation of temperature probes; and estimates of dose rates that will be encountered while making these changes. Because the dose rates for all of these configurations depend upon the photon source within the supernate and sludge, comparisons were also made between measured dose rates within a drywell and the corresponding calculated dose rates. The calculational tool used is a Monte Carlo (MCNP 2 ) code since complicated three dimensional geometries are involved. A summary of the most important results of the entire study is given in Section 2. The basic calculational geometry model of the tank is discussed in Section 3, along with a tabulation of the photon sources that were used within the supernate and the sludge, and a discussion of uncertainties. The calculated dose rates around the steam coil and caisson before and after modification are discussed in Section 4. The configuration for the installation of the mixer pumps and the resulting dose rates are given in Section 5. The predicted changes in dose rates due to a possible dilution of the supernate source are given in Section 6. The calculational configuration used to model the installation of temperature probes and the resulting predicted dose rates are discussed in Section 7. Finally, comparisons of measured to calculated dose rates within a drywell are summarized in Section 8. Extended discussions of calculational models and Monte Carlo optimization techniques used are included in Appendix A

  9. The irradiation tolerance dose of the proximal vagina

    International Nuclear Information System (INIS)

    Au, Samuel P.; Grigsby, Perry W.

    2003-01-01

    Purpose: The purpose of this investigation was to determine the irradiation tolerance level and complication rates of the proximal vagina to combined external irradiation and low dose rate (LDR) brachytherapy. Also, the mucosal tolerance for fractionated high dose rate (HDR) brachytherapy is further projected based on the biological equivalent dose (BED) of LDR for an acceptable complication rate. Materials and methods: Two hundred seventy-four patients with stages I-IV cervical carcinoma treated with irradiation therapy alone from 1987 to 1997 were retrospectively reviewed for radiation-associated late sequelae of the proximal vagina. All patients received LDR brachytherapy and 95% also received external pelvic irradiation. Follow-up ranged from 15 to 126 months (median, 43 months). The proximal vagina mucosa dose from a single ovoid (single source) or from both ovoids plus the tandem (all sources), together with the external irradiation dose, were used to derive the probability of a complication using the maximum likelihood logistic regression technique. The BED based on the linear-quadratic model was used to compute the corresponding tolerance levels for LDR or HDR brachytherapy. Results: Grades 1 and 2 complications occurred in 10.6% of patients and Grade 3 complications occurred in 3.6%. There were no Grade 4 complications. Complications occurred from 3 to 71 months (median, 7 months) after completion of irradiation, with over 60% occurring in the first year. By logistic regression analysis, both the mucosal dose from a single ovoid or that from all sources, combined with the external irradiation dose, demonstrate a statistically significant fit to the dose response complication curves (both with P=0.016). The single source dose was highly correlated with the all source dose with a cross-correlation coefficient 0.93. The all source dose was approximately 1.4 times the single source dose. Over the LDR brachytherapy dose rate range, the complication rate was

  10. Dose De-escalation of Intrapleural Tissue Plasminogen Activator Therapy for Pleural Infection. The Alteplase Dose Assessment for Pleural Infection Therapy Project.

    Science.gov (United States)

    Popowicz, Natalia; Bintcliffe, Oliver; De Fonseka, Duneesha; Blyth, Kevin G; Smith, Nicola A; Piccolo, Francesco; Martin, Geoffrey; Wong, Donny; Edey, Anthony; Maskell, Nick; Lee, Y C Gary

    2017-06-01

    Intrapleural therapy with a combination of tissue plasminogen activator (tPA) 10 mg and DNase 5 mg administered twice daily has been shown in randomized and open-label studies to successfully manage over 90% of patients with pleural infection without surgery. Potential bleeding risks associated with intrapleural tPA and its costs remain important concerns. The aim of the ongoing Alteplase Dose Assessment for Pleural infection Therapy (ADAPT) project is to investigate the efficacy and safety of dose de-escalation for intrapleural tPA. The first of several planned studies is presented here. To evaluate the efficacy and safety of a reduced starting dose regimen of 5 mg of tPA with 5 mg of DNase administered intrapleurally for pleural infection. Consecutive patients with pleural infection at four participating centers in Australia, the United Kingdom, and New Zealand were included in this observational, open-label study. Treatment was initiated with tPA 5 mg and DNase 5 mg twice daily. Subsequent dose escalation was permitted at the discretion of the attending physician. Data relating to treatment success, radiological and systemic inflammatory changes (blood C-reactive protein), volume of fluid drained, length of hospital stay, and treatment complications were extracted retrospectively from the medical records. We evaluated 61 patients (41 males; age, 57 ± 16 yr). Most patients (n = 58 [93.4%]) were successfully treated without requiring surgery for pleural infection. Treatment success was corroborated by clearance of pleural opacities visualized by chest radiography (from 42% [interquartile range, 22-58] to 16% [8-31] of hemithorax; P < 0.001), increase in pleural fluid drainage (from 175 ml in the 24 h preceding treatment to 2,025 ml [interquartile range, 1,247-2,984] over 72 h of therapy; P <  0.05) and a reduction in blood C-reactive protein (P < 0.05). Seven patients (11.5%) had dose escalation of tPA to 10 mg. Three patients underwent

  11. Occupational radiation exposure to low doses of ionizing radiation and female breast cancer

    International Nuclear Information System (INIS)

    Adelina, P.; Bliznakov, V.; Bairacova, A.

    2003-01-01

    The aim of this study is to examine the relationship between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed and registered breast cancer [probability of causation - PC] among Bulgarian women who have used different ionizing radiation sources during their working experience. The National Institute of Health (NIH) in US has developed a method for estimating the probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed cancer. We have used this method. A group of 27 women with diagnosed breast cancer has been studied. 11 of them are former workers in NPP - 'Kozloduy', and 16 are from other sites using different sources of ionizing radiation. Analysis was performed for 14 women, for whom full personal data were available. The individual radiation dose for each of them is below 1/10 of the annual dose limit, and the highest cumulative dose for a period of 14 years of occupational exposure is 50,21 mSv. The probability of causation (PC) values in all analyzed cases are below 1%, which confirms the extremely low probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and occurring cases of breast cancer. (orig.)

  12. Mammography with and without radiolucent positioning sheets : Comparison of projected breast area, pain experience, radiation dose and technical image quality

    NARCIS (Netherlands)

    Timmers, Janine; ten Voorde, Marloes; van Engen, Ruben E.; van Landsveld-Verhoeven, Cary; Pijnappel, Ruud; Droogh-de Greve, Kitty; den Heeten, Gerard J.; Broeders, Mireille J. M.

    2015-01-01

    Purpose: To compare projected breast area, image quality, pain experience and radiation dose between mammography performed with and without radiolucent positioning sheets. Methods: 184 women screened in the Dutch breast screening programme (May-June 2012) provided written informed consent to have

  13. On the Inclusion of Short-distance Bystander Effects into a Logistic Tumor Control Probability Model.

    Science.gov (United States)

    Tempel, David G; Brodin, N Patrik; Tomé, Wolfgang A

    2018-01-01

    Currently, interactions between voxels are neglected in the tumor control probability (TCP) models used in biologically-driven intensity-modulated radiotherapy treatment planning. However, experimental data suggests that this may not always be justified when bystander effects are important. We propose a model inspired by the Ising model, a short-range interaction model, to investigate if and when it is important to include voxel to voxel interactions in biologically-driven treatment planning. This Ising-like model for TCP is derived by first showing that the logistic model of tumor control is mathematically equivalent to a non-interacting Ising model. Using this correspondence, the parameters of the logistic model are mapped to the parameters of an Ising-like model and bystander interactions are introduced as a short-range interaction as is the case for the Ising model. As an example, we apply the model to study the effect of bystander interactions in the case of radiation therapy for prostate cancer. The model shows that it is adequate to neglect bystander interactions for dose distributions that completely cover the treatment target and yield TCP estimates that lie in the shoulder of the dose response curve. However, for dose distributions that yield TCP estimates that lie on the steep part of the dose response curve or for inhomogeneous dose distributions having significant hot and/or cold regions, bystander effects may be important. Furthermore, the proposed model highlights a previously unexplored and potentially fruitful connection between the fields of statistical mechanics and tumor control probability/normal tissue complication probability modeling.

  14. Quantum Zeno and anti-Zeno effects measured by transition probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenxian, E-mail: wxzhang@whu.edu.cn [School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072 (China); Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); CEMS, RIKEN, Saitama 351-0198 (Japan); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China); Kofman, A.G. [CEMS, RIKEN, Saitama 351-0198 (Japan); Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1040 (United States); Zhuang, Jun [Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); You, J.Q. [Beijing Computational Science Research Center, Beijing 10084 (China); Department of Physics, Fudan University, Shanghai 200433 (China); CEMS, RIKEN, Saitama 351-0198 (Japan); Nori, Franco [CEMS, RIKEN, Saitama 351-0198 (Japan); Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2013-10-30

    Using numerical calculations, we compare the transition probabilities of many spins in random magnetic fields, subject to either frequent projective measurements, frequent phase modulations, or a mix of modulations and measurements. For various distribution functions, we find the transition probability under frequent modulations is suppressed most if the pulse delay is short and the evolution time is larger than a critical value. Furthermore, decay freezing occurs only under frequent modulations as the pulse delay approaches zero. In the large pulse-delay region, however, the transition probabilities under frequent modulations are highest among the three control methods.

  15. Identification of dose-reduction techniques for BWR and PWR repetitive high-dose jobs

    International Nuclear Information System (INIS)

    Dionne, B.J.; Baum, J.W.

    1984-01-01

    As a result of concern about the apparent increase in collective radiation dose to workers at nuclear power plants, this project will provide information to industry in preplanning for radiation protection during maintenance operations. This study identifies Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) repetitive jobs, and respective collective dose trends and dose reduction techniques. 3 references, 2 tables

  16. Bayesian estimation of dose rate effectiveness

    International Nuclear Information System (INIS)

    Arnish, J.J.; Groer, P.G.

    2000-01-01

    A Bayesian statistical method was used to quantify the effectiveness of high dose rate 137 Cs gamma radiation at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice. The Bayesian approach considers both the temporal and dose dependence of radiation carcinogenesis and total mortality. This paper provides the first direct estimation of dose rate effectiveness using Bayesian statistics. This statistical approach provides a quantitative description of the uncertainty of the factor characterising the dose rate in terms of a probability density function. The results show that a fixed dose from 137 Cs gamma radiation delivered at a high dose rate is more effective at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice than the same dose delivered at a low dose rate. (author)

  17. Mammography with and without radiolucent positioning sheets: Comparison of projected breast area, pain experience, radiation dose and technical image quality

    NARCIS (Netherlands)

    Timmers, Janine; ten Voorde, Marloes; van Engen, Ruben E.; van Landsveld-Verhoeven, Cary; Pijnappel, Ruud; Droogh-de Greve, Kitty; den Heeten, Gerard J.; Broeders, Mireille J. M.

    2015-01-01

    To compare projected breast area, image quality, pain experience and radiation dose between mammography performed with and without radiolucent positioning sheets. 184 women screened in the Dutch breast screening programme (May-June 2012) provided written informed consent to have one additional image

  18. Adaptive statistical iterative reconstruction versus filtered back projection in the same patient: 64 channel liver CT image quality and patient radiation dose

    International Nuclear Information System (INIS)

    Mitsumori, Lee M.; Shuman, William P.; Busey, Janet M.; Kolokythas, Orpheus; Koprowicz, Kent M.

    2012-01-01

    To compare routine dose liver CT reconstructed with filtered back projection (FBP) versus low dose images reconstructed with FBP and adaptive statistical iterative reconstruction (ASIR). In this retrospective study, patients had a routine dose protocol reconstructed with FBP, and again within 17 months (median 6.1 months), had a low dose protocol reconstructed twice, with FBP and ASIR. These reconstructions were compared for noise, image quality, and radiation dose. Nineteen patients were included. (12 male, mean age 58). Noise was significantly lower in low dose images reconstructed with ASIR compared to routine dose images reconstructed with FBP (liver: p <.05, aorta: p < 0.001). Low dose FBP images were scored significantly lower for subjective image quality than low dose ASIR (2.1 ± 0.5, 3.2 ± 0.8, p < 0.001). There was no difference in subjective image quality scores between routine dose FBP images and low dose ASIR images (3.6 ± 0.5, 3.2 ± 0.8, NS).Radiation dose was 41% less for the low dose protocol (4.4 ± 2.4 mSv versus 7.5 ± 5.5 mSv, p < 0.05). Our initial results suggest low dose CT images reconstructed with ASIR may have lower measured noise, similar image quality, yet significantly less radiation dose compared with higher dose images reconstructed with FBP. (orig.)

  19. Adaptive statistical iterative reconstruction versus filtered back projection in the same patient: 64 channel liver CT image quality and patient radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumori, Lee M.; Shuman, William P.; Busey, Janet M.; Kolokythas, Orpheus; Koprowicz, Kent M. [University of Washington School of Medicine, Department of Radiology, Seattle, WA (United States)

    2012-01-15

    To compare routine dose liver CT reconstructed with filtered back projection (FBP) versus low dose images reconstructed with FBP and adaptive statistical iterative reconstruction (ASIR). In this retrospective study, patients had a routine dose protocol reconstructed with FBP, and again within 17 months (median 6.1 months), had a low dose protocol reconstructed twice, with FBP and ASIR. These reconstructions were compared for noise, image quality, and radiation dose. Nineteen patients were included. (12 male, mean age 58). Noise was significantly lower in low dose images reconstructed with ASIR compared to routine dose images reconstructed with FBP (liver: p <.05, aorta: p < 0.001). Low dose FBP images were scored significantly lower for subjective image quality than low dose ASIR (2.1 {+-} 0.5, 3.2 {+-} 0.8, p < 0.001). There was no difference in subjective image quality scores between routine dose FBP images and low dose ASIR images (3.6 {+-} 0.5, 3.2 {+-} 0.8, NS).Radiation dose was 41% less for the low dose protocol (4.4 {+-} 2.4 mSv versus 7.5 {+-} 5.5 mSv, p < 0.05). Our initial results suggest low dose CT images reconstructed with ASIR may have lower measured noise, similar image quality, yet significantly less radiation dose compared with higher dose images reconstructed with FBP. (orig.)

  20. Clinical implications of alternative TCP models for nonuniform dose distributions

    International Nuclear Information System (INIS)

    Deasy, J. O.

    1995-01-01

    Several tumor control probability (TCP) models for nonuniform dose distributions were compared, including: (a) a logistic/inter-patient-heterogeneity model, (b) a probit/inter-patient-heterogeneity model, (c) a Poisson/radioresistant-strain/identical-patients model, (d) a Poisson/inter-patient-heterogeneity model and (e) a Poisson/intra-tumor- and inter-patient-heterogeneity model. The models were analyzed in terms of the probability of controlling a single tumor voxel (the voxel control probability, or VCP), as a function of voxel volume and dose. Alternatively, the VCP surface can be thought of as the effect of a small cold spot. The models based on the Poisson equation which include inter-patient heterogeneity ((d) and (e)) have VCP surfaces (VCP as a function of dose and volume) which have a threshold 'waterfall' shape: below the waterfall (in dose), VCP is nearly zero. The threshold dose decreases with decreasing voxel volume. However, models (a), (b), and (c) all show a high probability of controlling a voxel (VCP>50%) with very low dose (e.g., 1 Gy) if the voxel is small (smaller than about 10 -3 of the tumor volume). Model (c) does not have the waterfall shape at low volumes due to the assumption of patient uniformity and a neglect of the effect of the clonogens which are more radiosensitive (and more numerous). Models (a) and (b) deviate from the waterfall shape at low volumes due to numerical differences between the functions used and the Poisson function. Hence, the Possion models which include inter-patient heterogeneities ((d) and (e)) are more sensitive to the effects of small cold spots than the other models considered

  1. PA positioning significantly reduces testicular dose during sacroiliac joint radiography

    International Nuclear Information System (INIS)

    Mekis, Nejc; Mc Entee, Mark F.; Stegnar, Peter

    2010-01-01

    Radiation dose to the testes in the antero-posterior (AP) and postero-anterior (PA) projection of the sacroiliac joint (SIJ) was measured with and without a scrotal shield. Entrance surface dose, the dose received by the testicles and the dose area product (DAP) was used. DAP measurements revealed the dose received by the phantom in the PA position is 12.6% lower than the AP (p ≤ 0.009) with no statistically significant reduction in image quality (p ≤ 0.483). The dose received by the testes in the PA projection in SIJ imaging is 93.1% lower than the AP projection when not using protection (p ≤ 0.020) and 94.9% lower with protection (p ≤ 0.019). The dose received by the testicles was not changed by the use of a scrotal shield in the AP position (p ≤ 0.559); but was lowered by its use in the PA (p ≤ 0.058). Use of the PA projection in SIJ imaging significantly lowers, the dose received by the testes compared to the AP projection without significant loss of image quality.

  2. Delay or probability discounting in a model of impulsive behavior: effect of alcohol.

    Science.gov (United States)

    Richards, J B; Zhang, L; Mitchell, S H; de Wit, H

    1999-01-01

    Little is known about the acute effects of drugs of abuse on impulsivity and self-control. In this study, impulsivity was assessed in humans using a computer task that measured delay and probability discounting. Discounting describes how much the value of a reward (or punisher) is decreased when its occurrence is either delayed or uncertain. Twenty-four healthy adult volunteers ingested a moderate dose of ethanol (0.5 or 0.8 g/kg ethanol: n = 12 at each dose) or placebo before completing the discounting task. In the task the participants were given a series of choices between a small, immediate, certain amount of money and $10 that was either delayed (0, 2, 30, 180, or 365 days) or probabilistic (i.e., certainty of receipt was 1.0, .9, .75, .5, or .25). The point at which each individual was indifferent between the smaller immediate or certain reward and the $10 delayed or probabilistic reward was identified using an adjusting-amount procedure. The results indicated that (a) delay and probability discounting were well described by a hyperbolic function; (b) delay and probability discounting were positively correlated within subjects; (c) delay and probability discounting were moderately correlated with personality measures of impulsivity; and (d) alcohol had no effect on discounting. PMID:10220927

  3. Electron-trapping probability in natural dosemeters as a function of irradiation temperature

    DEFF Research Database (Denmark)

    Wallinga, J.; Murray, A.S.; Wintle, A.G.

    2002-01-01

    The electron-trapping probability in OSL traps as a function of irradiation temperature is investigated for sedimentary quartz and feldspar. A dependency was found for both minerals; this phenomenon could give rise to errors in dose estimation when the irradiation temperature used in laboratory...... procedures is different from that in the natural environment. No evidence was found for the existence of shallow trap saturation effects that Could give rise to a dose-rate dependency of electron trapping....

  4. Dose-response relationships and risk estimates for the induction of cancer due to low doses of low-LET radiation

    International Nuclear Information System (INIS)

    Elaguppillai, V.

    1981-01-01

    Risk estimates for radiation-induced cancer at low doses can be obtained only by extrapolation from the known effects at high doses and high dose rates, using a suitable dose-response model. The applicability of three different models, linear, sublinear and supralinear, are discussed in this paper. Several experimental studies tend to favour a sublinear dose-response model (linear-quadratic model) for low-LET radiation. However, human epidemiological studies do not exclude any of the dose-response relationships. The risk estimates based on linear and linear quadratic dose-response models are compared and it is concluded that, for low-LET radiation, the linear dose-response model would probably over-estimate the actual risk of cancer by a factor of two or more. (author)

  5. Probability

    CERN Document Server

    Shiryaev, A N

    1996-01-01

    This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, ergodic theory, weak convergence of probability measures, stationary stochastic processes, and the Kalman-Bucy filter Many examples are discussed in detail, and there are a large number of exercises The book is accessible to advanced undergraduates and can be used as a text for self-study This new edition contains substantial revisions and updated references The reader will find a deeper study of topics such as the distance between probability measures, metrization of weak convergence, and contiguity of probability measures Proofs for a number of some important results which were merely stated in the first edition have been added The author included new material on the probability of large deviations, and on the central limit theorem for sums of dependent random variables

  6. Assessment of prospective foodchain doses from radioactive discharges from BNFL Sellafield

    International Nuclear Information System (INIS)

    Ould-Dada, Z.; Tucker, S.; Webbe-Wood, D.; Mondon, K.; Hunt, J.

    2002-01-01

    This paper presents the method used by the UK Food Standards Agency (FSA) to assess the potential impact of proposed radioactive discharges from the Sellafield nuclear site on food and determine their acceptability. It explains aspects of a cautious method that has been adopted to reflect the UK government policy and uncertainties related to people's habits with regard to food production and consumption. Two types of ingestion doses are considered in this method: 'possible' and 'probable' doses. The method is specifically applied to Sellafield discharge limits and calculated possible and probable ingestion doses are presented and discussed. Estimated critical group ingestion doses are below the dose limit and constraint set for members of the public. The method may be subject to future amendments to take account of changes in government policy and the outcome of a recent Consultative Exercise on Dose Assessments carried out by FSA. Uncertainties inherent in dose assessments are discussed and quantified wherever possible

  7. Guidelines for Use of the Approximate Beta-Poisson Dose-Response Model.

    Science.gov (United States)

    Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie

    2017-07-01

    For dose-response analysis in quantitative microbial risk assessment (QMRA), the exact beta-Poisson model is a two-parameter mechanistic dose-response model with parameters α>0 and β>0, which involves the Kummer confluent hypergeometric function. Evaluation of a hypergeometric function is a computational challenge. Denoting PI(d) as the probability of infection at a given mean dose d, the widely used dose-response model PI(d)=1-(1+dβ)-α is an approximate formula for the exact beta-Poisson model. Notwithstanding the required conditions α1, issues related to the validity and approximation accuracy of this approximate formula have remained largely ignored in practice, partly because these conditions are too general to provide clear guidance. Consequently, this study proposes a probability measure Pr(0 (22α̂)0.50 for 0.020.99) . This validity measure and rule of thumb were validated by application to all the completed beta-Poisson models (related to 85 data sets) from the QMRA community portal (QMRA Wiki). The results showed that the higher the probability Pr(0 Poisson model dose-response curve. © 2016 Society for Risk Analysis.

  8. Incorporating organ movements in inverse planning: assessing dose uncertainties by Bayesian inference

    International Nuclear Information System (INIS)

    Unkelbach, J; Oelfke, U

    2005-01-01

    We present a method to calculate dose uncertainties due to inter-fraction organ movements in fractionated radiotherapy, i.e. in addition to the expectation value of the dose distribution a variance distribution is calculated. To calculate the expectation value of the dose distribution in the presence of organ movements, one estimates a probability distribution of possible patient geometries. The respective variance of the expected dose distribution arises for two reasons: first, the patient is irradiated with a finite number of fractions only and second, the probability distribution of patient geometries has to be estimated from a small number of images and is therefore not exactly known. To quantify the total dose variance, we propose a method that is based on the principle of Bayesian inference. The method is of particular interest when organ motion is incorporated in inverse IMRT planning by means of inverse planning performed on a probability distribution of patient geometries. In order to make this a robust approach, it turns out that the dose variance should be considered (and minimized) in the optimization process. As an application of the presented concept of Bayesian inference, we compare three approaches to inverse planning based on probability distributions that account for an increasing degree of uncertainty. The Bayes theorem further provides a concept to interpolate between patient specific data and population-based knowledge on organ motion which is relevant since the number of CT images of a patient is typically small

  9. Pointwise probability reinforcements for robust statistical inference.

    Science.gov (United States)

    Frénay, Benoît; Verleysen, Michel

    2014-02-01

    Statistical inference using machine learning techniques may be difficult with small datasets because of abnormally frequent data (AFDs). AFDs are observations that are much more frequent in the training sample that they should be, with respect to their theoretical probability, and include e.g. outliers. Estimates of parameters tend to be biased towards models which support such data. This paper proposes to introduce pointwise probability reinforcements (PPRs): the probability of each observation is reinforced by a PPR and a regularisation allows controlling the amount of reinforcement which compensates for AFDs. The proposed solution is very generic, since it can be used to robustify any statistical inference method which can be formulated as a likelihood maximisation. Experiments show that PPRs can be easily used to tackle regression, classification and projection: models are freed from the influence of outliers. Moreover, outliers can be filtered manually since an abnormality degree is obtained for each observation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The continual reassessment method: comparison of Bayesian stopping rules for dose-ranging studies.

    Science.gov (United States)

    Zohar, S; Chevret, S

    2001-10-15

    The continual reassessment method (CRM) provides a Bayesian estimation of the maximum tolerated dose (MTD) in phase I clinical trials and is also used to estimate the minimal efficacy dose (MED) in phase II clinical trials. In this paper we propose Bayesian stopping rules for the CRM, based on either posterior or predictive probability distributions that can be applied sequentially during the trial. These rules aim at early detection of either the mis-choice of dose range or a prefixed gain in the point estimate or accuracy of estimated probability of response associated with the MTD (or MED). They were compared through a simulation study under six situations that could represent the underlying unknown dose-response (either toxicity or failure) relationship, in terms of sample size, probability of correct selection and bias of the response probability associated to the MTD (or MED). Our results show that the stopping rules act correctly, with early stopping by using the two first rules based on the posterior distribution when the actual underlying dose-response relationship is far from that initially supposed, while the rules based on predictive gain functions provide a discontinuation of inclusions whatever the actual dose-response curve after 20 patients on average, that is, depending mostly on the accumulated data. The stopping rules were then applied to a data set from a dose-ranging phase II clinical trial aiming at estimating the MED dose of midazolam in the sedation of infants during cardiac catheterization. All these findings suggest the early use of the two first rules to detect a mis-choice of dose range, while they confirm the requirement of including at least 20 patients at the same dose to reach an accurate estimate of MTD (MED). A two-stage design is under study. Copyright 2001 John Wiley & Sons, Ltd.

  11. Effective dose to patients from thoracic spine examinations with tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Baath, Magnus; Soederman, Christina

    2016-01-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm -2 was obtained. (authors)

  12. Numerical modelling of local deposition patients, activity distributions and cellular hit probabilities of inhaled radon progenies in human airways

    International Nuclear Information System (INIS)

    Farkas, A.; Balashazy, I.; Szoeke, I.

    2003-01-01

    The general objective of our research is modelling the biophysical processes of the effects of inhaled radon progenies. This effort is related to the rejection or support of the linear no threshold (LNT) dose-effect hypothesis, which seems to be one of the most challenging tasks of current radiation protection. Our approximation and results may also serve as a useful tool for lung cancer models. In this study, deposition patterns, activity distributions and alpha-hit probabilities of inhaled radon progenies in the large airways of the human tracheobronchial tree are computed. The airflow fields and related particle deposition patterns strongly depend on the shape of airway geometry and breathing pattern. Computed deposition patterns of attached an unattached radon progenies are strongly inhomogeneous creating hot spots at the carinal regions and downstream of the inner sides of the daughter airways. The results suggest that in the vicinity of the carinal regions the multiple hit probabilities are quite high even at low average doses and increase exponentially in the low-dose range. Thus, even the so-called low doses may present high doses for large clusters of cells. The cell transformation probabilities are much higher in these regions and this phenomenon cannot be modeled with average burdens. (authors)

  13. Skull base chordomas: analysis of dose-response characteristics

    International Nuclear Information System (INIS)

    Niemierko, Andrzej; Terahara, Atsuro; Goitein, Michael

    1997-01-01

    Objective: To extract dose-response characteristics from dose-volume histograms and corresponding actuarial survival statistics for 115 patients with skull base chordomas. Materials and Methods: We analyzed data for 115 patients with skull base chordoma treated with combined photon and proton conformal radiotherapy to doses in the range 66.6Gy - 79.2Gy. Data set for each patient included gender, histology, age, tumor volume, prescribed dose, overall treatment time, time to recurrence or time to last observation, target dose-volume histogram, and several dosimetric parameters (minimum/mean/median/maximum target dose, percent of the target volume receiving the prescribed dose, dose to 90% of the target volume, and the Equivalent Uniform Dose (EUD). Data were analyzed using the Kaplan-Meier survivor function estimate, the proportional hazards (Cox) model, and parametric modeling of the actuarial probability of recurrence. Parameters of dose-response characteristics were obtained using the maximum likelihood method. Results: Local failure developed in 42 (36%) of patients, with actuarial local control rates at 5 years of 59.2%. The proportional hazards model revealed significant dependence of gender on the probability of recurrence, with female patients having significantly poorer prognosis (hazard ratio of 2.3 with the p value of 0.008). The Wilcoxon and the log-rank tests of the corresponding Kaplan-Meier recurrence-free survival curves confirmed statistical significance of this effect. The Cox model with stratification by gender showed significance of tumor volume (p=0.01), the minimum target dose (p=0.02), and the EUD (p=0.02). Other parameters were not significant at the α level of significance of 0.05, including the prescribed dose (p=0.21). Parametric analysis using a combined model of tumor control probability (to account for non-uniformity of target dose distribution) and the Weibull failure time model (to account for censoring) allowed us to estimate

  14. Uncertainties on lung doses from inhaled plutonium.

    Science.gov (United States)

    Puncher, Matthew; Birchall, Alan; Bull, Richard K

    2011-10-01

    In a recent epidemiological study, Bayesian uncertainties on lung doses have been calculated to determine lung cancer risk from occupational exposures to plutonium. These calculations used a revised version of the Human Respiratory Tract Model (HRTM) published by the ICRP. In addition to the Bayesian analyses, which give probability distributions of doses, point estimates of doses (single estimates without uncertainty) were also provided for that study using the existing HRTM as it is described in ICRP Publication 66; these are to be used in a preliminary analysis of risk. To infer the differences between the point estimates and Bayesian uncertainty analyses, this paper applies the methodology to former workers of the United Kingdom Atomic Energy Authority (UKAEA), who constituted a subset of the study cohort. The resulting probability distributions of lung doses are compared with the point estimates obtained for each worker. It is shown that mean posterior lung doses are around two- to fourfold higher than point estimates and that uncertainties on doses vary over a wide range, greater than two orders of magnitude for some lung tissues. In addition, we demonstrate that uncertainties on the parameter values, rather than the model structure, are largely responsible for these effects. Of these it appears to be the parameters describing absorption from the lungs to blood that have the greatest impact on estimates of lung doses from urine bioassay. Therefore, accurate determination of the chemical form of inhaled plutonium and the absorption parameter values for these materials is important for obtaining reliable estimates of lung doses and hence risk from occupational exposures to plutonium.

  15. Patient radiation dose during mammography procedures

    International Nuclear Information System (INIS)

    Mohamed, Swsan Awd Elkriem

    2015-11-01

    The objectives of this study were to estimate the patient dose in term of mean glandular dose and assist in optimization of radiation protection in mammographic procedures in Sudan. A total number of 107 patients were included. Four mammographic units were participated. Only one center was using automatic exposure control (AEC). The mean doses in (mGy) for the CC projection were 3.13, 1.24, 2.45 and 0.98 and for the MLO projection was 2.13, 1.26, 1.99 and 1.02 for centers A, B, C, and D, respectively. The total mean dose per breast from both projections was 5.26, 2.50, 4.44 and 1.99 mGy for centers A, B, C and D, respectively. The minimum mean glandular dose was found between the digital system which was operated under AEC and one of the manual selected exposure factors systems, this highlight possible optimization of radiation protection in the other manual selected systems. The kilo volt and the tube current time products should be selected correctly according to the breast thickness in both centers A and C. (author)

  16. Scaling Qualitative Probability

    OpenAIRE

    Burgin, Mark

    2017-01-01

    There are different approaches to qualitative probability, which includes subjective probability. We developed a representation of qualitative probability based on relational systems, which allows modeling uncertainty by probability structures and is more coherent than existing approaches. This setting makes it possible proving that any comparative probability is induced by some probability structure (Theorem 2.1), that classical probability is a probability structure (Theorem 2.2) and that i...

  17. Radiation dose from solar flares at ground level

    International Nuclear Information System (INIS)

    O'Brien, K.

    1979-01-01

    Wdowczyk and Wolfendale (Nature, 268, 510, 1977) concluded that a very large solar flare producing exposure of 10 4 rad at ground level (lethal to almost any organism) has a possible frequency of once per 10 5 -10 8 yr. In the work reported similar results were obtained using a more elaborate model. Flares occuring from February 1956 to August 1972 were analyzed. The flare size distribution above the earth's atmosphere, and neutron flux, dose and dose equivalent at ground level at the latitude of Deep River, Canada, were calculated. The probable frequency of flares delivering various doses are given. Doses larger than 100 rad which have significant somatic effects on man and other animals may be delivered once in 10 6 years. The probability of 10 4 rad was found to be 10 -8 /yr. These calculations apply only to high geomagnetic latitudes. Field reversals during which the geomagnetic field is much weaker than current values total about 10% of the past 4 million years. This suggests that a very large flare delivering a large dose worldwide at ground level cannot be ruled out. (author)

  18. Some remarks on the significance of low doses

    International Nuclear Information System (INIS)

    Cigna, A.A.

    1989-12-01

    The criteria of the present system of individual dose limitation are considered as well as the evolution of the limiting values. The assumption of the linearity of the dose-effect relationship without any threshold is probably the best approach to adopt for recommendations in radiation protection and for accounting the doses acquired by exposure to ionizing radiation. On the other hand the present evaluation of the natural background could imply a different dose-effect relationship in the low doses region and perhaps the existence of a threshold. Therefore the extrapolations which are usually made after exposures of different groups of people to low doses cannot be considered as scientifically sound. (author)

  19. Mining of high utility-probability sequential patterns from uncertain databases.

    Directory of Open Access Journals (Sweden)

    Binbin Zhang

    Full Text Available High-utility sequential pattern mining (HUSPM has become an important issue in the field of data mining. Several HUSPM algorithms have been designed to mine high-utility sequential patterns (HUPSPs. They have been applied in several real-life situations such as for consumer behavior analysis and event detection in sensor networks. Nonetheless, most studies on HUSPM have focused on mining HUPSPs in precise data. But in real-life, uncertainty is an important factor as data is collected using various types of sensors that are more or less accurate. Hence, data collected in a real-life database can be annotated with existing probabilities. This paper presents a novel pattern mining framework called high utility-probability sequential pattern mining (HUPSPM for mining high utility-probability sequential patterns (HUPSPs in uncertain sequence databases. A baseline algorithm with three optional pruning strategies is presented to mine HUPSPs. Moroever, to speed up the mining process, a projection mechanism is designed to create a database projection for each processed sequence, which is smaller than the original database. Thus, the number of unpromising candidates can be greatly reduced, as well as the execution time for mining HUPSPs. Substantial experiments both on real-life and synthetic datasets show that the designed algorithm performs well in terms of runtime, number of candidates, memory usage, and scalability for different minimum utility and minimum probability thresholds.

  20. Research and assessment of national population dose

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1984-01-01

    This article describes the necessity and probability of making researches on assessment of national population dose, and discusses some problems which might be noticeable in the research work. (author)

  1. Salivary gland doses from dental radiographic exposures

    International Nuclear Information System (INIS)

    Hoshi, Masaharu; Kato, Kazuo; Wada, Takuro; Antoku, Shigetoshi; Russell, W.J.

    1989-01-01

    Salivary gland doses incurred during dental radiography were measured by phantom dosimetry, and these dose data and data obtained during a two-week survey of Hiroshima and Nagasaki dental hospitals and clinics were used to estimate the respective doses to members of the populations of the two cities. The results obtained were used to supplement previously determined doses to the thyroid gland, lens, and pituitary gland from dental radiography. No significant differences in doses were observed by age, sex or city. Doses to the salivary glands during dental radiography are probably not sufficiently large to cause bias in assessments of atomic bomb survivors for late radiation effects. However, the steadily increasing use of dental radiography underscores the need for continued monitoring of dental radiography doses in the interests of these assessments. (author)

  2. Biological effective doses in the intracavitary high dose rate brachytherapy of cervical cancer

    Directory of Open Access Journals (Sweden)

    Y. Sobita Devi

    2011-12-01

    Full Text Available Purpose: The aim of this study is to evaluate the decrease of biological equivalent dose and its correlation withlocal/loco-regional control of tumour in the treatment of cervical cancer when the strength of the Ir-192 high dose rate(HDR brachytherapy (BT source is reduced to single, double and triple half life in relation to original strength of10 Ci (~ 4.081 cGy x m2 x h–1. Material and methods: A retrospective study was carried out on 52 cervical cancer patients with stage II and IIItreated with fractionated HDR-BT following external beam radiation therapy (EBRT. International Commission onRadiation Units and Measurement (ICRU points were defined according to ICRU Report 38, using two orthogonal radiographimages taken by Simulator (Simulix HQ. Biologically effective dose (BED was calculated at point A for diffe -rent Ir-192 source strength and its possible correlation with local/loco-regional tumour control was discussed. Result: The increase of treatment time per fraction of dose due to the fall of dose rate especially in HDR-BT of cervicalcancer results in reduction in BED of 2.59%, 7.02% and 13.68% with single, double and triple half life reduction ofsource strength, respectively. The probabilities of disease recurrence (local/loco-regional within 26 months are expectedas 0.12, 0.12, 0.16, 0.39 and 0.80 for source strength of 4.081, 2.041, 1.020, 0.510 and 0.347 cGy x m2 x h–1, respectively.The percentages of dose increase required to maintain the same BED with respect to initial BED were estimated as1.71, 5.00, 11.00 and 15.86 for the dose rate of 24.7, 12.4, 6.2 and 4.2 Gy/hr at point A, respectively. Conclusions: This retrospective study of cervical cancer patients treated with HDR-BT at different Ir-192 sourcestrength shows reduction in disease free survival according to the increase in treatment time duration per fraction.The probable result could be associated with the decrease of biological equivalent dose to point A. Clinical

  3. Tumour control probability derived from dose distribution in homogeneous and heterogeneous models: assuming similar pharmacokinetics, 125Sn–177Lu is superior to 90Y–177Lu in peptide receptor radiotherapy

    International Nuclear Information System (INIS)

    Walrand, Stephan; Hanin, François-Xavier; Pauwels, Stanislas; Jamar, François

    2012-01-01

    Clinical trials on 177 Lu– 90 Y therapy used empirical activity ratios. Radionuclides (RN) with larger beta maximal range could favourably replace 90 Y. Our aim is to provide RN dose-deposition kernels and to compare the tumour control probability (TCP) of RN combinations. Dose kernels were derived by integration of the mono-energetic beta-ray dose distributions (computed using Monte Carlo) weighted by their respective beta spectrum. Nine homogeneous spherical tumours (1–25 mm in diameter) and four spherical tumours including a lattice of cold, but alive, spheres (1, 3, 5, 7 mm in diameter) were modelled. The TCP for 93 Y, 90 Y and 125 Sn in combination with 177 Lu in variable proportions (that kept constant the renal cortex biological effective dose) were derived by 3D dose kernel convolution. For a mean tumour-absorbed dose of 180 Gy, 2 mm homogeneous tumours and tumours including 3 mm diameter cold alive spheres were both well controlled (TCP > 0.9) using a 75–25% combination of 177 Lu and 90 Y activity. However, 125 Sn– 177 Lu achieved a significantly better result by controlling 1 mm-homogeneous tumour simultaneously with tumours including 5 mm diameter cold alive spheres. Clinical trials using RN combinations should use RN proportions tuned to the patient dosimetry. 125 Sn production and its coupling to somatostatin analogue appear feasible. Assuming similar pharmacokinetics 125 Sn is the best RN for combination with 177 Lu in peptide receptor radiotherapy justifying pharmacokinetics studies in rodent of 125 Sn-labelled somatostatin analogues. (paper)

  4. EFFECTIVE DOSE TO PATIENTS FROM THORACIC SPINE EXAMINATIONS WITH TOMOSYNTHESIS.

    Science.gov (United States)

    Svalkvist, Angelica; Söderman, Christina; Båth, Magnus

    2016-06-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm(-2) was obtained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Linear dose response curves in fungi and tradescantia

    International Nuclear Information System (INIS)

    Unrau, P.

    1999-07-01

    heterozygosity (LOH) events occur because Clone 02 repairs both DSB and LCD by recombination. Clone 02 has a linear dose response for high LET radiation. Starting from the same initial yieId frequency, wild-types have a sublinear response. The sublinear response reflects a smoothly decreasing probability that 'pinks' are generated as a function of increasing high LET dose for wild-type but not Clone 02. This smoothly decreasing response would be expected for LOH in 'wild-type' humans. It reflects an increasing proportion of DNA damage being repaired by non-recombinational pathways and/or an increasing probability of cell death with increasing dose. Clone 02 at low doses and low dose rates of low LET radiation has a linear dose response, reflecting a 1/16 probability of a lesion leading to LOH, relative to high LET lesions. This differential is held to reflect: microdosimetric differences in energy deposition and, therefore, DNA damage by low and high LET radiations; the effects of lesion clustering after high LET on the probability of generating the end wild-types. While no observations have been made at very low doses and dose rates in wild-types, there is no reason to suppose that the low LET linear non-threshold dose response of Clone 02 is abnormal. The importance of the LOH somatic genetic end-point is that it reflects cancer risk in humans. The linear non-threshold low dose low LET response curves reflects either the probability that recombinational Holliday junctions are occasionally cleaved in a rare orientation to generate LOH, or the probability that low LET lesions include a small proportion of clustered events similar to high LET ionization or both. Calculations of the Poisson probability that two or more low LET lesions will be induced in the same target suggest that dose rate effects depend upon the coincidence of DNA lesions in the same target, and that the probability of LOH depends upon lesion and repair factors. But the slope of LOH in Clone 02 and all other

  6. Linear dose response curves in fungi and tradescantia

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada)

    1999-07-15

    ;pink' loss of heterozygosity (LOH) events occur because Clone 02 repairs both DSB and LCD by recombination. Clone 02 has a linear dose response for high LET radiation. Starting from the same initial yieId frequency, wild-types have a sublinear response. The sublinear response reflects a smoothly decreasing probability that 'pinks' are generated as a function of increasing high LET dose for wild-type but not Clone 02. This smoothly decreasing response would be expected for LOH in 'wild-type' humans. It reflects an increasing proportion of DNA damage being repaired by non-recombinational pathways and/or an increasing probability of cell death with increasing dose. Clone 02 at low doses and low dose rates of low LET radiation has a linear dose response, reflecting a 1/16 probability of a lesion leading to LOH, relative to high LET lesions. This differential is held to reflect: microdosimetric differences in energy deposition and, therefore, DNA damage by low and high LET radiations; the effects of lesion clustering after high LET on the probability of generating the end wild-types. While no observations have been made at very low doses and dose rates in wild-types, there is no reason to suppose that the low LET linear non-threshold dose response of Clone 02 is abnormal. The importance of the LOH somatic genetic end-point is that it reflects cancer risk in humans. The linear non-threshold low dose low LET response curves reflects either the probability that recombinational Holliday junctions are occasionally cleaved in a rare orientation to generate LOH, or the probability that low LET lesions include a small proportion of clustered events similar to high LET ionization or both. Calculations of the Poisson probability that two or more low LET lesions will be induced in the same target suggest that dose rate effects depend upon the coincidence of DNA lesions in the same target, and that the probability of LOH depends upon lesion and repair factors. But the

  7. Use of electron paramagnetic resonance dosimetry with tooth enamel for retrospective dose assessment. Report of a co-ordinated research project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    Electron paramagnetic resonance (EPR) dosimetry is a physical method for the assessment of absorbed dose from ionising radiation. It is based on the measurement of stable radiation induced radicals in human calcified tissues (primarily in tooth enamel). EPR dosimetry with teeth is now firmly established in retrospective dosimetry. It is a powerful method for providing information on exposure to ionising radiation many years after the event, since the 'signal' is 'stored' in the tooth or the bone. This technique is of particular relevance to relatively low dose exposures or when the results of conventional dosimetry are not available (e.g. in accidental circumstances). The use of EPR dosimetry, as an essential tool for retrospective assessment of radiation exposure is an important part of radioepidemiological studies and also provides data to select appropriate countermeasures based on retrospective evaluation of individual doses. Despite well established regulations and protocols for maintaining radiation protection dose limits, the assurance that these limits will not be exceeded cannot be guaranteed, thus providing new challenges for development of accurate methods of individual dose assessment. To meet some of these challenges, in 1998 the IAEA initiated a co-ordinated research project (CRP) with the objective to review the available methods, current research and development in EPR biodosimetry technology, which may be of practical use. The major goal of this CRP was to investigate the use of EPR biodosimetry for reconstruction of absorbed dose in tooth enamel with the aim of providing Member States with up-to-date, and generally agreed upon advice regarding the most suitable procedures and the best focus for their research. The co-ordinated research project was conducted over four years and this publication presents the results and findings by a group of investigators from different countries. The available cytogenetic methods for radiation dose assessment were

  8. Use of electron paramagnetic resonance dosimetry with tooth enamel for retrospective dose assessment. Report of a co-ordinated research project

    International Nuclear Information System (INIS)

    2002-12-01

    Electron paramagnetic resonance (EPR) dosimetry is a physical method for the assessment of absorbed dose from ionising radiation. It is based on the measurement of stable radiation induced radicals in human calcified tissues (primarily in tooth enamel). EPR dosimetry with teeth is now firmly established in retrospective dosimetry. It is a powerful method for providing information on exposure to ionising radiation many years after the event, since the 'signal' is 'stored' in the tooth or the bone. This technique is of particular relevance to relatively low dose exposures or when the results of conventional dosimetry are not available (e.g. in accidental circumstances). The use of EPR dosimetry, as an essential tool for retrospective assessment of radiation exposure is an important part of radioepidemiological studies and also provides data to select appropriate countermeasures based on retrospective evaluation of individual doses. Despite well established regulations and protocols for maintaining radiation protection dose limits, the assurance that these limits will not be exceeded cannot be guaranteed, thus providing new challenges for development of accurate methods of individual dose assessment. To meet some of these challenges, in 1998 the IAEA initiated a co-ordinated research project (CRP) with the objective to review the available methods, current research and development in EPR biodosimetry technology, which may be of practical use. The major goal of this CRP was to investigate the use of EPR biodosimetry for reconstruction of absorbed dose in tooth enamel with the aim of providing Member States with up-to-date, and generally agreed upon advice regarding the most suitable procedures and the best focus for their research. The co-ordinated research project was conducted over four years and this publication presents the results and findings by a group of investigators from different countries. The available cytogenetic methods for radiation dose assessment were

  9. Effects of low doses of ionizing radiation; Effets des faibles doses de rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  10. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    Energy Technology Data Exchange (ETDEWEB)

    Youn, H; Jeon, H; Nam, J; Lee, J; Lee, J [Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do (Korea, Republic of); Kim, J; Kim, H [Pusan National University, Busan (Korea, Republic of); Cho, M; Yun, S [Samsung electronics Co., Suwon, Gyeonggi-do (Korea, Republic of); Park, D; Kim, W; Ki, Y; Kim, D [Pusan National University Hospital, Busan (Korea, Republic of)

    2016-06-15

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law. In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.

  11. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    International Nuclear Information System (INIS)

    Youn, H; Jeon, H; Nam, J; Lee, J; Lee, J; Kim, J; Kim, H; Cho, M; Yun, S; Park, D; Kim, W; Ki, Y; Kim, D

    2016-01-01

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law. In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.

  12. Addressing model uncertainty in dose-response: The case of chloroform

    International Nuclear Information System (INIS)

    Evans, J.S.

    1994-01-01

    This paper discusses the issues involved in addressing model uncertainty in the analysis of dose-response relationships. A method for addressing model uncertainty is described and applied to characterize the uncertainty in estimates of the carcinogenic potency of chloroform. The approach, which is rooted in Bayesian concepts of subjective probability, uses probability trees and formally-elicited expert judgments to address model uncertainty. It is argued that a similar approach could be used to improve the characterization of model uncertainty in the dose-response relationships for health effects from ionizing radiation

  13. Reducing radiation doses to the breast, thyroid and gonads during diagnostic radiography

    International Nuclear Information System (INIS)

    Weatherburn, G.C.

    1983-01-01

    The measurement of doses to the gonads during radiography of the pelvis is discussed. Phantom measurements to estimate doses to the ovaries in antero-posterior (AP) and postero-anterior (PA) projections of the pelvis showed that the dose is 15% of the skin entry dose in the AP projection and 9% in the PA projection. The air gap technique and its applications in reducing radiation doses to the gonads, breast and thyroid is described. A summary of dose reduction factors for these radiosensitive organs achieved by modified radiographic techniques in radiography of the chest, pelvis, spine and skull is given. (U.K.)

  14. Normal tissue complication probability for salivary glands

    International Nuclear Information System (INIS)

    Rana, B.S.

    2008-01-01

    The purpose of radiotherapy is to make a profitable balance between the morbidity (due to side effects of radiation) and cure of malignancy. To achieve this, one needs to know the relation between NTCP (normal tissue complication probability) and various treatment variables of a schedule viz. daily dose, duration of treatment, total dose and fractionation along with tissue conditions. Prospective studies require that a large number of patients be treated with varied schedule parameters and a statistically acceptable number of patients develop complications so that a true relation between NTCP and a particular variable is established. In this study Salivary Glands Complications have been considered. The cases treated in 60 Co teletherapy machine during the period 1994 to 2002 were analyzed and the clinicians judgement in ascertaining the end points was the only means of observations. The only end points were early and late xerestomia which were considered for NTCP evaluations for a period of 5 years

  15. Effective dose as an irritating influence during fractionated γ-irradiation

    International Nuclear Information System (INIS)

    Karpov, V.N.; Ushakov, I.B.; Davydov, B.I.

    1990-01-01

    The study of early neurological disturbances (END) in rats after fractionated γ-irradiation with doses of 37.5-225 Gy at dose rate of 30.11 Gy/min has demonstrated that the initial response of animals to pulse ionizing radiation is a function of the electric charge induced by ionizing radiation. A change in the probability of occurrence of each of the END symptoms, with the increased intervals between exposures, is merely an indirect indication of the eliminating mechanisms and is intricately connected with the irritating charge value. The proposed empiric relationships permit to correlate the probability of END symptom occurrence with the continuous quantitative parameter of fractionated irradiation, that is, with an effective dose as an analogue of the irritating effect

  16. Dose and dose rate monitor

    International Nuclear Information System (INIS)

    Novakova, O.; Ryba, J.; Slezak, V.; Svobodova, B.; Viererbl, L.

    1984-10-01

    The methods are discussea of measuring dose rate or dose using a scintillation counte. A plastic scintillator based on polystyrene with PBD and POPOP activators and coated with ZnS(Ag) was chosen for the projected monitor. The scintillators were cylindrical and spherical in shape and of different sizes; black polypropylene tubes were chosen as the best case for the probs. For the counter with different plastic scintillators, the statistical error 2σ for natural background was determined. For determining the suitable thickness of the ZnS(Ag) layer the energy dependence of the counter was measured. Radioisotopes 137 Cs, 241 Am and 109 Cd were chosen as radiation sources. The best suited ZnS(Ag) thickness was found to be 0.5 μm. Experiments were carried out to determine the directional dependence of the detector response and the signal to noise ratio. The temperature dependence of the detector response and its compensation were studied, as were the time stability and fatigue manifestations of the photomultiplier. The design of a laboratory prototype of a dose rate and dose monitor is described. Block diagrams are given of the various functional parts of the instrument. The designed instrument is easiiy portable, battery powered, measures dose rates from natural background in the range of five orders, i.e., 10 -2 to 10 3 nGy/s, and allows to determine a dose of up to 10 mGy. Accouracy of measurement in the energy range of 50 keV to 1 MeV is better than +-20%. (E.S.)

  17. Ultra low-dose chest CT using filtered back projection: Comparison of 80-, 100- and 120 kVp protocols in a prospective randomized study

    Energy Technology Data Exchange (ETDEWEB)

    Khawaja, Ranish Deedar Ali, E-mail: rkhawaja@mgh.harvard.edu [Division of Thoracic Radiology, MGH Imaging, Massachusetts General Hospital and Harvard Medical School, Boston (United States); Singh, Sarabjeet [Division of Thoracic Radiology, MGH Imaging, Massachusetts General Hospital and Harvard Medical School, Boston (United States); Madan, Rachna [Division of Thoracic Radiology, Brigham and Women' s Hospital and Harvard Medical School, Boston (United States); Sharma, Amita; Padole, Atul; Pourjabbar, Sarvenaz; Digumarthy, Subba; Shepard, Jo-Anne; Kalra, Mannudeep K. [Division of Thoracic Radiology, MGH Imaging, Massachusetts General Hospital and Harvard Medical School, Boston (United States)

    2014-10-15

    Highlights: • Filtered back projection technique enables acceptable image quality for chest CT examinations at 0.9 mGy (estimated effective dose of 0.5 mSv) for selected sizes of patients. • Lesion detection (such as solid non-calcified lung nodules) in lung parenchyma is optimal at 0.9 mGy, with limited visualization of thyroid nodules in FBP images. • Further dose reduction down to 0.4 mGy is possible for most patients undergoing follow-up chest CT for evaluation of larger lung nodules and GGOs. • Our results may help set the reference ALARA dose for chest CT examinations reconstructed with filtered back projection technique using the minimum possible radiation dose with acceptable image quality and lesion detection. - Abstract: Purpose: To assess lesion detection and diagnostic image quality of filtered back projection (FBP) reconstruction technique in ultra low-dose chest CT examinations. Methods and materials: In this IRB-approved ongoing prospective clinical study, 116 CT-image-series at four different radiation-doses were performed for 29 patients (age, 57–87 years; F:M – 15:12; BMI 16–32 kg/m{sup 2}). All patients provided written-informed-consent for the acquisitions of additional ultra low-dose (ULD) series on a 256-slice MDCT (iCT, Philips Healthcare). In-addition to their clinical standard-dose chest CT (SD, 120 kV mean CTDI{sub vol}, 6 ± 1 mGy), ULD-CT was subsequently performed at three-dose-levels (0.9 mGy [120 kV]; 0.5 mGy [100 kV] and 0.2 mGy [80 kV]). Images were reconstructed with FBP (2.5 mm * 1.25 mm) resulting into four-stacks: SD-FBP (reference-standard), FBP{sub 0.9}, FBP{sub 0.5}, and FBP{sub 0.2}. Four thoracic-radiologists from two-teaching-hospitals independently-evaluated data for lesion-detection and visibility-of-small-structures. Friedman's-non-parametric-test with post hoc Dunn's-test was used for data-analysis. Results: Interobserver-agreement was substantial between radiologists (k = 0.6–0.8). With

  18. Toward a generalized probability theory: conditional probabilities

    International Nuclear Information System (INIS)

    Cassinelli, G.

    1979-01-01

    The main mathematical object of interest in the quantum logic approach to the foundations of quantum mechanics is the orthomodular lattice and a set of probability measures, or states, defined by the lattice. This mathematical structure is studied per se, independently from the intuitive or physical motivation of its definition, as a generalized probability theory. It is thought that the building-up of such a probability theory could eventually throw light on the mathematical structure of Hilbert-space quantum mechanics as a particular concrete model of the generalized theory. (Auth.)

  19. Patient dose assessment in various Interventional radiology and cardiology procedures in Algeria (IAEA regional project results)

    International Nuclear Information System (INIS)

    Khelassi-Toutaoui, Nadia; Merad, Ahmed; Toutaoui, A.E.K.; Bairi, Souad

    2008-01-01

    Full text: Purpose: To evaluate patient doses in Interventional Radiology (IR) and Cardiology (IC) procedures in Algeria, within the framework of an International Atomic Energy Agency (IAEA) regional project on radiation protection of patients and medical exposure control (RAF 9033). Materials and Methods: Three public hospitals (CHU Bab el Oued, CHU Parnet and CHU Mustapha) and one specialised Cardiology Service (Clinique Maouche) were chosen for the study. For Maximum Skin Dose (MSD) evaluation, gafchromic films XR type R were used, placed on patient's back before the procedure. The Dose Area Product (DAP) and MSD were measured in 57 IR and IC procedures, either diagnostic or therapeutic. Results: The results revealed large variations in MSD (0.06-3.3 Gy) and DAP (5.5-332 mGycm 2 ). Mean MSD was 0.227 Gy in cerebral angiography, 0.202 Gy in coronary angiography, 1.162 Gy in Percutaneus Transluminal Coronary Angioplasty (PTCA) and 0.128 in abdominal angiography. The correlation of DAP and MSD was significant (r = 0.7). The correlation was DAP and fluoroscopy time was also significant (r = 0.8). Conclusion: The highest MSD values were found in PTCA which is a therapeutic procedure. Two PTCAs out of the 57 procedures measured in total had MSD over the threshold of 2 Gy for deterministic effects (MSD 1 = 3.0 Gy and MSD 2 3.3 Gy). The large variations in MSD reveal the need to continuously monitor patient doses in IR and IC procedures with special emphasis in PTCA procedure. (author)

  20. Antibiotic Dosing in Continuous Renal Replacement Therapy.

    Science.gov (United States)

    Shaw, Alexander R; Mueller, Bruce A

    2017-07-01

    Appropriate antibiotic dosing is critical to improve outcomes in critically ill patients with sepsis. The addition of continuous renal replacement therapy makes achieving appropriate antibiotic dosing more difficult. The lack of continuous renal replacement therapy standardization results in treatment variability between patients and may influence whether appropriate antibiotic exposure is achieved. The aim of this study was to determine if continuous renal replacement therapy effluent flow rate impacts attaining appropriate antibiotic concentrations when conventional continuous renal replacement therapy antibiotic doses were used. This study used Monte Carlo simulations to evaluate the effect of effluent flow rate variance on pharmacodynamic target attainment for cefepime, ceftazidime, levofloxacin, meropenem, piperacillin, and tazobactam. Published demographic and pharmacokinetic parameters for each antibiotic were used to develop a pharmacokinetic model. Monte Carlo simulations of 5000 patients were evaluated for each antibiotic dosing regimen at the extremes of Kidney Disease: Improving Global Outcomes guidelines recommended effluent flow rates (20 and 35 mL/kg/h). The probability of target attainment was calculated using antibiotic-specific pharmacodynamic targets assessed over the first 72 hours of therapy. Most conventional published antibiotic dosing recommendations, except for levofloxacin, reach acceptable probability of target attainment rates when effluent rates of 20 or 35 mL/kg/h are used. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  1. Probability estimation of potential harm to human health and life caused by a hypothetical nuclear accident at the nuclear power plant

    International Nuclear Information System (INIS)

    Soloviov, Vladyslav; Pysmenniy, Yevgen

    2015-01-01

    This paper describes some general methodological aspects of the assessment of the damage to human life and health caused by a hypothetical nuclear accident at the nuclear power plant (NPP). Probability estimation of death (due to cancer and non-cancer effects of radiation injury), disability and incapacity of individuals were made by taking into account the regulations of Ukraine. According to the assessment, the probability of death due to cancer and non-cancer effects of radiation damage to individuals who received radiation dose of 1 Sv is equal to 0.09. Probability of disability of 1, 2 or 3 group regardless of the radiation dose is 0.009, 0.0054, 0.027, respectively. Probability of temporary disability of the individual who received dose equal to 33 mSv (the level of potential exposure in a hypothetical nuclear accident at the NPP) is equal 0.16. This probability estimation of potential harm to human health and life caused by a hypothetical nuclear accident can be used for NPP in different countries using requirements of regulations in these countries. And also to estimate the amount of insurance payments due to the nuclear damage in the event of a nuclear accident at the NPP or other nuclear industry enterprise. (author)

  2. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Suzuki, Osamu; Seo, Yuji [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Isohashi, Fumiaki [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan)

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  3. Dose measurements using thermoluminescent dosimeters and DoseCal software at two paediatric hospitals in Rio de Janeiro

    International Nuclear Information System (INIS)

    Mohamadain, K.E.M.; Azevedo, A.C.P.; Rosa, L.A.R. da; Guebel, M.R.N.; Boechat, M.C.B.

    2003-01-01

    A dosimetric survey in paediatric radiology is currently being carried out at the paediatric units of two large hospitals in Rio de Janeiro city: IPPMG (Instituto de Pediatria e Puericultura Martagao Gesteira, University Hospital of Federal University of Rio de Janeiro) and IFF (Instituto Fernandes Figueira, FIOCRUZ). Chest X-ray examination doses for AP, PA and LAT projections of paediatric patients have been obtained with thermoluminescent dosimeters (TLDs) and with use of a software package DoseCal. In IPPMG and IFF 100 patients have been evaluated with the use of the TLDs and another group of 100 patients with the DoseCal software. The aim of this work was to estimate the entrance skin dose (ESD) for frontal, back and lateral chest X-rays exposure of paediatric patients. For ESD evaluation, three different TL dosimeters have been used, namely LIF:Mg, Ti (TLD100), CaSO 4 :Dy and LiF:Mg, Cu, P (TLD100H). The age intervals considered were 0-1, 1-5, 5-10 and 10-15 years. The results obtained with all dosimeters are similar, and it is in good agreement with the DoseCal software, especially for AP and PA projections. However, some larger discrepancies are presented for the LAT projection

  4. Factors Affecting Detection Probability of Acoustic Tags in Coral Reefs

    KAUST Repository

    Bermudez, Edgar F.

    2012-01-01

    of the transmitter detection range and the detection probability. A one-month range test of a coded telemetric system was conducted prior to a large-scale tagging project investigating the movement of approximately 400 fishes from 30 species on offshore coral reefs

  5. Equivalent dose, effective dose and risk assessment from cephalometric radiography to critical organs

    International Nuclear Information System (INIS)

    Kang, Seong Sook; Cho, Bon Hae; Kim, Hyun Ja

    1995-01-01

    In head and neck region, the critical organ and tissue doses were determined, and the risks were estimated from lateral, posteroanterial and basilar cephalometric radiography. For each cephalometric radiography, 31 TLDs were placed in selected sites (18 internal and 13 external sites) in a tissue-equivalent phantom and exposed, then read-out in the TLD reader. The following results were obtained; 1. From lateral cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland (3.6 μSv) and the next highest dose was that received by the bone marrow (3 μSv). 2. From posteroanterial cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland (2 μSv) and the next highest dose was that received by the bone marrow (1.8 μSv). 3. From basilar cephalometric radiography, the highest effective dose recorded was that delivered to the thyroid gland (31.4 μSv) and the next highest dose was that received by the salivary gland (13.3 μSv). 4. The probabilities of stochastic effect from lateral, posteroanterial and basilar cephalometric radiography were 0.72 X 10 -6 , 0.49 X 10 -6 and 3.51 X 10 -6 , respectively.

  6. Patient doses in digital cardiac imaging

    International Nuclear Information System (INIS)

    Huda, W.; Ogden, K.M.; Roskopf, M.L.; Phadke, K.

    2001-01-01

    In this pilot study, we obtained estimates of entrance skin doses and the corresponding effective doses to patients undergoing digital cardiac imaging procedures on a GE Advantx LC/LP Plus system. Data were obtained for six patients undergoing diagnostic examinations and six patients who had interventional procedures. For each patient examination, radiographic techniques for fluoroscopic and digital cine imaging were recorded, together with the irradiation geometry. The projection with the highest exposure resulted in an average skin dose of 0.64 ± 0.41 Gy (maximum of 1.6 Gy). The average patient skin doses taking into account overlapping projections was 1.1 ± 0.8 Gy (maximum of 3.0 Gy). The exposure area product (EAP) incident on the patient was converted into the energy imparted to the patient and the corresponding effective dose. The average patient effective dose was 28 ± 14 mSv (maximum 62 mSv), with the resultant average fatal cancer risk estimated to be of the order of 8x10 -3 . Average doses for interventional procedures in cardiac imaging are higher than those associated with diagnostic examinations by approximately 50%. (author)

  7. Quantum probability measures and tomographic probability densities

    NARCIS (Netherlands)

    Amosov, GG; Man'ko, [No Value

    2004-01-01

    Using a simple relation of the Dirac delta-function to generalized the theta-function, the relationship between the tomographic probability approach and the quantum probability measure approach with the description of quantum states is discussed. The quantum state tomogram expressed in terms of the

  8. Predictive probability methods for interim monitoring in clinical trials with longitudinal outcomes.

    Science.gov (United States)

    Zhou, Ming; Tang, Qi; Lang, Lixin; Xing, Jun; Tatsuoka, Kay

    2018-04-17

    In clinical research and development, interim monitoring is critical for better decision-making and minimizing the risk of exposing patients to possible ineffective therapies. For interim futility or efficacy monitoring, predictive probability methods are widely adopted in practice. Those methods have been well studied for univariate variables. However, for longitudinal studies, predictive probability methods using univariate information from only completers may not be most efficient, and data from on-going subjects can be utilized to improve efficiency. On the other hand, leveraging information from on-going subjects could allow an interim analysis to be potentially conducted once a sufficient number of subjects reach an earlier time point. For longitudinal outcomes, we derive closed-form formulas for predictive probabilities, including Bayesian predictive probability, predictive power, and conditional power and also give closed-form solutions for predictive probability of success in a future trial and the predictive probability of success of the best dose. When predictive probabilities are used for interim monitoring, we study their distributions and discuss their analytical cutoff values or stopping boundaries that have desired operating characteristics. We show that predictive probabilities utilizing all longitudinal information are more efficient for interim monitoring than that using information from completers only. To illustrate their practical application for longitudinal data, we analyze 2 real data examples from clinical trials. Copyright © 2018 John Wiley & Sons, Ltd.

  9. What is the probability that radiation caused a particular cancer

    International Nuclear Information System (INIS)

    Voelz, G.L.

    1983-01-01

    Courts, lawyers, health physicists, physicians, and others are searching for a credible answer to the question posed in the title of this paper. The cases in which the question arises frequently stem from an individual that has cancer and they, or their next-of-kin, are convinced that a past radiation exposure - usually small - is responsible for causing it. An arithmetic expression of this problem is simple: the probability of causation by the radiation dose in question is equal to the risk of cancer from the radiation dose divided by the risk of cancer from all causes. The application of risk factors to this equation is not so simple. It must involve careful evaluation of the reliability of and variations in risk coefficients for development of cancer due to radiation exposure, other carcinogenic agents, and natural causes for the particular individual. Examination of our knowledge of these various factors indicates that a large range in the answers can result due to the variability and imprecision of the data. Nevertheless, the attempts to calculate and the probability that radiation caused the cancer is extremely useful to provide a gross perspective on the probability of causation. It will likely rule in or out a significant number of cases despite the limitations in our understandings of the etiology of cancer and the risks from various factors. For the remaining cases, a thoughtful and educated judgment based on selected data and circumstances of the case will also be needed before the expert can develop and support his opinion

  10. The dose dependency of the over-dispersion of quartz OSL single grain dose distributions

    DEFF Research Database (Denmark)

    Thomsen, Kristina Jørkov; Murray, Andrew S.; Jain, Mayank

    2012-01-01

    The use of single grain quartz OSL dating has become widespread over the past decade, particularly with application to samples likely to have been incompletely bleached before burial. By reducing the aliquot size to a single grain the probability of identifying the grain population most likely...... to have been well-bleached at deposition is maximised and thus the accuracy with which the equivalent dose can be determined is – at least in principle – improved. However, analysis of single grain dose distributions requires knowledge of the dispersion of the well-bleached part of the dose distribution....... This can be estimated by measurement of a suitable analogue, e.g. a well-bleached aeolian sample, but this requires such an analogue to be available, and in addition the assumptions that the sample is in fact a) well-bleached, and b) has a similar dose rate heterogeneity to the fossil deposit. Finally...

  11. Probability of obliteration and management risk following gamma knife surgery for cerebral AVM

    International Nuclear Information System (INIS)

    Karlsson, B.; Lax, I.

    1998-01-01

    In order to define the optimal treatment for an AVM patient, the probability of cure and the management risk following the treatment must be estimated before the treatment. Here, Gamma Knife surgery has an advantage over microsurgery and embolization with it's reproducibility within the variability of the individual radiation sensitivity. Based on more than 2000 treatments, we have developed models to predict the probability for obliteration, the risk for radioinduced complications and the probability for a post treatment hemorrhage within the first two years following a Gamma Knife treatment. The factors determining the overall outcome are the absorbed dose in the target and the brain, the AVM volume and location and the age and clinical history of the patient. The probability for obliteration equals 35,69 * ln(D min )-39,66 and is AVM volume independent. The risk for radioinduced complications relates to the average dose in the 20 cm 3 tissue receiving the most radiation, and it is also related to the clinical history of the patient and the AVM location. Finally, the risk for post treatment hemorrhage increases with the age of the patient, and is higher for larger AVM. It decreases with increasing amount of radiation given, and it is independent of the clinical history of the patient. For retreatments, the model for prediction of obliteration is valid, but the risk for radioinduced complications is higher and the risk for post treatment hemorrhage lower as compared to following the first treatment. (author)

  12. Real time source term and dose assessment

    International Nuclear Information System (INIS)

    Breznik, B.; Kovac, A.; Mlakar, P.

    2001-01-01

    The Dose Projection Programme is a tool for decision making in case of nuclear emergency. The essential input data for quick emergency evaluation in the case of hypothetical pressurised water reactor accident are following: source term, core damage assessment, fission product radioactivity, release source term and critical exposure pathways for an early phase of the release. A reduced number of radio-nuclides and simplified calculations can be used in dose calculation algorithm. Simple expert system personal computer programme has been developed for the Krsko Nuclear Power Plant for dose projection within the radius of few kilometers from the pressurised water reactor in early phase of an accident. The input data are instantaneous data of core activity, core damage indicators, release fractions, reduction factor of the release pathways, spray operation, release timing, and dispersion coefficient. Main dose projection steps are: accurate in-core radioactivity determination using reactor power input; core damage and in-containment source term assessment based on quick indications of instrumentation or on activity analysis data; user defines release pathway for typical PWR accident scenarius; dose calculation is performed only for exposure pathway critical for decision about evacuation or sheltering in early phase of an accident.(author)

  13. Required doses for projection methods in X-ray diagnosis

    International Nuclear Information System (INIS)

    Hagemann, G.

    1992-01-01

    The ideal dose requirement has been stated by Cohen et al. (1981) by a formula basing on parallel beam, maximum quantum yield and Bucky grid effect depending on the signal to noise ratio and object contrast. This was checked by means of contrast detail diagrams measured at the hole phantom, and was additionally compared with measurement results obtained with acrylic glass phantoms. The optimal dose requirement is obtained by the maximum technically possible approach to the ideal requirement level. Examples are given, besides for x-ray equipment with Gd 2 O 2 S screen film systems for grid screen mammography, and new thoracic examination systems for mass screenings. Finally, a few values concerning the dose requirement or the analogous time required for fluorscent screening in angiography and interventional radiology, are stated, as well as for dentistry and paediatric x-ray diagnostics. (orig./HP) [de

  14. Biologically-equivalent dose and long-term survival time in radiation treatments

    International Nuclear Information System (INIS)

    Zaider, Marco; Hanin, Leonid

    2007-01-01

    Within the linear-quadratic model the biologically-effective dose (BED)-taken to represent treatments with an equal tumor control probability (TCP)-is commonly (and plausibly) calculated according to BED(D) = -log[S(D)]/α. We ask whether in the presence of cellular proliferation this claim is justified and examine, as a related question, the extent to which BED approximates an isoeffective dose (IED) defined, more sensibly, in terms of an equal long-term survival probability, rather than TCP. We derive, under the assumption that cellular birth and death rates are time homogeneous, exact equations for the isoeffective dose, IED. As well, we give a rigorous definition of effective long-term survival time, T eff . By using several sets of radiobiological parameters, we illustrate potential differences between BED and IED on the one hand and, on the other, between T eff calculated as suggested here or by an earlier recipe. In summary: (a) the equations currently in use for calculating the effective treatment time may underestimate the isoeffective dose and should be avoided. The same is the case for the tumor control probability (TCP), only more so; (b) for permanent implants BED may be a poor substitute for IED; (c) for a fractionated treatment schedule, interpreting the observed probability of cure in terms of a TCP formalism that refers to the end of the treatment (rather than T eff ) may result in a miscalculation (underestimation) of the initial number of clonogens

  15. COVAL, Compound Probability Distribution for Function of Probability Distribution

    International Nuclear Information System (INIS)

    Astolfi, M.; Elbaz, J.

    1979-01-01

    1 - Nature of the physical problem solved: Computation of the probability distribution of a function of variables, given the probability distribution of the variables themselves. 'COVAL' has been applied to reliability analysis of a structure subject to random loads. 2 - Method of solution: Numerical transformation of probability distributions

  16. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  17. On Probability Leakage

    OpenAIRE

    Briggs, William M.

    2012-01-01

    The probability leakage of model M with respect to evidence E is defined. Probability leakage is a kind of model error. It occurs when M implies that events $y$, which are impossible given E, have positive probability. Leakage does not imply model falsification. Models with probability leakage cannot be calibrated empirically. Regression models, which are ubiquitous in statistical practice, often evince probability leakage.

  18. Study on the evaluation of radiation doses in dental radiography. Doses and risks due to dental full mouth examination

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, K [Kanagawa Dental Coll., Yokosuka (Japan)

    1980-09-01

    Radiation doses and possible biological risks due to dental full mouth examination (adult: 10-film technique, child: 6-film technique) were evaluated based on preliminary experiments and statistical surveillance of patients' records. Dosimetrical studies were performed by using head and neck phantoms and a dental x-ray tube. Radiation doses were measured by x-ray films and thermoluminescence dosimeters. For the obtained doses of skin, eyes, thyroid gland and bone marrow, the biological risk of leukemia and thyroid cancer was discussed on the statistical basis of patients at Kanagawa Dental College Hospital. The major findings were as follows: The total number of patients who recieved full mouth x-ray examination at Kanagawa Dental College Hospital in 1978 was 1,099. The number of male patients was 382 (3,804 films) and that of female patients was 717 (7,138 films). In both sexes, the number of patients was the greatest in the group of 8 - 14 years of age. The collective doses of bone marrow due to full mouth 10-film examination performed at Kanagawa Dental College Hospital in 1978 were approximately 6.0 rad, which could induce leukemia with a probability of 1/8,000. The collective doses of thyroid gland were approximately 13 rad, which could induce lethal thyroid cancer with a probability of 1/15,000. The radiation dose due to the dental radiography for examination at Kanagawa Dental College Hospital was proved to be apparently below the level that could actually induce radiation injuries. But the collective radiation doses due to dental examination in Japan as a whole were approximately 8,000 times greater than that in Kanagawa Dental College Hospital.

  19. Polonium-210 activity concentration, transfer and dose to certain invertebrates found in the vicinity of the Kudankulam Nuclear Power Project, Tamil Nadu, India

    International Nuclear Information System (INIS)

    Benjamin, J.; Wesley, S.G.; Rajan, M.P.

    2013-01-01

    Invertebrates are significant reference organisms, and some of them tend to accumulate certain radionuclides in increased levels. It is imperative that the levels of radionuclides are measured in certain organism in the vicinity of any major nuclear power project before its commissioning; hence, this study was carried out in the surroundings of the Kudankulam Nuclear Power Project site. The natural radionuclide polonium-210 having affinity to the organic matter in the soil and to the protein content of the animals, is very significant as it delivers a high internal dose to the organisms. The activity concentration of this radionuclide, its transfer and dose were assessed in two terrestrial (earthworm, Pheretima posthuma and land snail, Trachea vittata) and two aquatic (apple snail, Pila globosa and bivalve mollusc, Lamellidens marginalis) invertebrates. The activity concentration of 210 Po was found to be the highest in the earthworm and the lowest in the land snail. The per-animal dose due to 210 Po was the highest for the apple snail and the lowest for the earthworm. The results indicate that 210 Po does not constitute a significant radiological threat to the organisms. (author)

  20. Building credibility in public studies: Lessons learned from the Hanford environmental Dose Reconstruction project may apply to all public studies

    International Nuclear Information System (INIS)

    Till, J.E.

    1995-01-01

    This article describes the process by which the author came to recognize the importance of openness to the public in environmental studies, during the Hanford Environmental Dose Reconstruction Project. Using the Dose reconstruction public involvement, the article goes on to describe a general guide to the construction of a new, positive framework for conducting future public studies. The steps include the following: putting the public in the study; building credibility into a public study (1 -search for proof in historical records; 2-define the domain and the exposed population; 3-characterize the material released; 4-identify key materials, pathways and receptors; 5-encouraging public participation; 6 -explaining the meaning of the results) and reconciling scientific and public issues

  1. Building credibility in public studies: Lessons learned from the Hanford environmental Dose Reconstruction project may apply to all public studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, J.E. [Radiological Assessment Corp., Neeses, SC (United States)

    1995-09-01

    This article describes the process by which the author came to recognize the importance of openness to the public in environmental studies, during the Hanford Environmental Dose Reconstruction Project. Using the Dose reconstruction public involvement, the article goes on to describe a general guide to the construction of a new, positive framework for conducting future public studies. The steps include the following: putting the public in the study; building credibility into a public study (1 -search for proof in historical records; 2-define the domain and the exposed population; 3-characterize the material released; 4-identify key materials, pathways and receptors; 5-encouraging public participation; 6 -explaining the meaning of the results) and reconciling scientific and public issues.

  2. Pediatric CT dose reduction for suspected appendicitis: a practice quality improvement project using artificial Gaussian noise--part 1, computer simulations.

    Science.gov (United States)

    Callahan, Michael J; Kleinman, Patricia L; Strauss, Keith J; Bandos, Andriy; Taylor, George A; Tsai, Andy; Kleinman, Paul K

    2015-01-01

    The purpose of this study was to develop a departmental practice quality improvement project to systematically reduce CT doses for the evaluation of suspected pediatric appendicitis by introducing computer-generated gaussian noise. Two hundred MDCT abdominopelvic examinations of patients younger than 20 years performed with girth-based scanning parameters for suspected appendicitis were reviewed. Two judges selected 45 examinations in which the diagnosis of appendicitis was excluded (14, appendix not visualized; 31, normal appendix visualized). Gaussian noise was introduced into axial image series, creating five additional series acquired at 25-76% of the original dose. Two readers reviewed 270 image series for appendix visualization (4-point Likert scale and arrow localization). Volume CT dose index (CTDIvol) and size-specific dose estimate (SSDE) were calculated by use of patient girth. Confidence ratings and localization accuracy were analyzed with mixed models and nonparametric bootstrap analysis at a 0.05 significance level. The mean baseline SSDE for the 45 patients was 16 mGy (95% CI, 12-20 mGy), and the corresponding CTDIvol was 10 mGy (95% CI, 4-16 mGy). Changes in correct appendix localization frequencies were minor. There was no substantial trend with decreasing simulated dose level (p = 0.46). Confidence ratings decreased with increasing dose reduction (p = 0.007). The average decreases were -0.27 for the 25% simulated dose (p = 0.01), -0.17 for 33% (p = 0.03), and -0.03 for 43% (p = 0.65). Pediatric abdominal MDCT can be performed with 43% of the original dose (SSDE, 7 mGy; CTDIvol, 4.3 mGy) without substantially affecting visualization of a normal appendix.

  3. RPERT: Repetitive-Projects Evaluation and Review Technique

    Directory of Open Access Journals (Sweden)

    Remon Fayek Aziz

    2014-03-01

    Full Text Available Estimating expected completion probability of any repetitive construction project with a specified/certain duration including repetitive identical activities by using program evaluation and review technique is the most essential part in construction areas since the activities were had optimistic, most likely and pessimistic durations. This paper focuses on the calculation of expected completion probability of any repetitive construction project within a specified/certain duration (contract duration by using Line Of Balance technique (LOB in case of single or multiple number of crews integrated with Program Evaluation and Review Technique (PERT. Repetitive-Projects Evaluation and Review Technique (RPERT, which is a simplified software, will generate the expected project completion probability of a specified/certain duration (contract duration. RPERT software is designed by java programming code system to provide a number of new and unique capabilities, including: (1 Viewing the expected project completion probability according to a set of specified durations per each identical activity (optimistic time, most likely time, and pessimistic time in the analyzed project; (2 Providing seamless integration with available project time calculations. In order to provide the aforementioned capabilities of RPERT, the system is implemented and developed in four main modules: (1 A user interface module; (2 A database module; (3 A running module; and (4 A processing module. At the end, an illustrative example will be presented to demonstrate and verify the applications of proposed software (RPERT, by using probabilistic calculations for repetitive construction projects.

  4. Quantum probabilities as Dempster-Shafer probabilities in the lattice of subspaces

    International Nuclear Information System (INIS)

    Vourdas, A.

    2014-01-01

    The orthocomplemented modular lattice of subspaces L[H(d)], of a quantum system with d-dimensional Hilbert space H(d), is considered. A generalized additivity relation which holds for Kolmogorov probabilities is violated by quantum probabilities in the full lattice L[H(d)] (it is only valid within the Boolean subalgebras of L[H(d)]). This suggests the use of more general (than Kolmogorov) probability theories, and here the Dempster-Shafer probability theory is adopted. An operator D(H 1 ,H 2 ), which quantifies deviations from Kolmogorov probability theory is introduced, and it is shown to be intimately related to the commutator of the projectors P(H 1 ),P(H 2 ), to the subspaces H 1 , H 2 . As an application, it is shown that the proof of the inequalities of Clauser, Horne, Shimony, and Holt for a system of two spin 1/2 particles is valid for Kolmogorov probabilities, but it is not valid for Dempster-Shafer probabilities. The violation of these inequalities in experiments supports the interpretation of quantum probabilities as Dempster-Shafer probabilities

  5. Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices

    International Nuclear Information System (INIS)

    Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas

    2002-01-01

    In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan

  6. Assessment of medical staff radiation doses received in some interventional examination

    International Nuclear Information System (INIS)

    Oenal, E.

    2006-03-01

    The aim of this work is to suggest a simple method for the estimation of cardiologist extremity doses. The extremity and effective doses The extremity and effective doses of nine cardiologists working at five different angiographic units were measured for 157 interventional examinations. Simultaneous measurement of patient doses were also carried out using a DAP meter separately for each projection. Fluoroscopy time (T f l), number of radiographic frames (N) were recorded on-line during these measurements. A Rando phantom was exposed at similar projections with patient studies and one minute of fluoroscopic exposure (D 1 50 n T f l n ) and one frame of radiographic exposure (D 1 50 n N n ) were determined for each projection. Scatter radiations from these exposures were also measured at 50, 100 and 150 cm above the floor level at the cardiologist positions for the estimation of legs, wrists and thyroid (or eye) doses. Weighting of projections were determined for the patient group of each cardiologist using the recorded values of T f l and N r f. Extremity doses, D x were calculated with the following formula: D 1 50=Σ n D 1 50 n T f l n (T f l n )+Σ n D 1 50 n N n (N n ), n=4, 5, 6, 7, 10. n gives the projection numbert and x is the distance from the floor level. Measured and calculated extremity doses for each cardiologist were in good agreement. The calculated doses for 50cm and 100cm were found within the measured values of left and right legs and wrists. The use of dominant projection data alone still provided comparable results

  7. PROBABILITY SURVEYS , CONDITIONAL PROBABILITIES AND ECOLOGICAL RISK ASSESSMENT

    Science.gov (United States)

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  8. Computed tomography of the cervical spine: comparison of image quality between a standard-dose and a low-dose protocol using filtered back-projection and iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Becce, Fabio [University of Lausanne, Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland); Universite Catholique Louvain, Department of Radiology, Cliniques Universitaires Saint-Luc, Brussels (Belgium); Ben Salah, Yosr; Berg, Bruno C. vande; Lecouvet, Frederic E.; Omoumi, Patrick [Universite Catholique Louvain, Department of Radiology, Cliniques Universitaires Saint-Luc, Brussels (Belgium); Verdun, Francis R. [University of Lausanne, Institute of Radiation Physics, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland); Meuli, Reto [University of Lausanne, Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland)

    2013-07-15

    To compare image quality of a standard-dose (SD) and a low-dose (LD) cervical spine CT protocol using filtered back-projection (FBP) and iterative reconstruction (IR). Forty patients investigated by cervical spine CT were prospectively randomised into two groups: SD (120 kVp, 275 mAs) and LD (120 kVp, 150 mAs), both applying automatic tube current modulation. Data were reconstructed using both FBP and sinogram-affirmed IR. Image noise, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured. Two radiologists independently and blindly assessed the following anatomical structures at C3-C4 and C6-C7 levels, using a four-point scale: intervertebral disc, content of neural foramina and dural sac, ligaments, soft tissues and vertebrae. They subsequently rated overall image quality using a ten-point scale. For both protocols and at each disc level, IR significantly decreased image noise and increased SNR and CNR, compared with FBP. SNR and CNR were statistically equivalent in LD-IR and SD-FBP protocols. Regardless of the dose and disc level, the qualitative scores with IR compared with FBP, and with LD-IR compared with SD-FBP, were significantly higher or not statistically different for intervertebral discs, neural foramina and ligaments, while significantly lower or not statistically different for soft tissues and vertebrae. The overall image quality scores were significantly higher with IR compared with FBP, and with LD-IR compared with SD-FBP. LD-IR cervical spine CT provides better image quality for intervertebral discs, neural foramina and ligaments, and worse image quality for soft tissues and vertebrae, compared with SD-FBP, while reducing radiation dose by approximately 40 %. (orig.)

  9. Computed tomography of the cervical spine: comparison of image quality between a standard-dose and a low-dose protocol using filtered back-projection and iterative reconstruction

    International Nuclear Information System (INIS)

    Becce, Fabio; Ben Salah, Yosr; Berg, Bruno C. vande; Lecouvet, Frederic E.; Omoumi, Patrick; Verdun, Francis R.; Meuli, Reto

    2013-01-01

    To compare image quality of a standard-dose (SD) and a low-dose (LD) cervical spine CT protocol using filtered back-projection (FBP) and iterative reconstruction (IR). Forty patients investigated by cervical spine CT were prospectively randomised into two groups: SD (120 kVp, 275 mAs) and LD (120 kVp, 150 mAs), both applying automatic tube current modulation. Data were reconstructed using both FBP and sinogram-affirmed IR. Image noise, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured. Two radiologists independently and blindly assessed the following anatomical structures at C3-C4 and C6-C7 levels, using a four-point scale: intervertebral disc, content of neural foramina and dural sac, ligaments, soft tissues and vertebrae. They subsequently rated overall image quality using a ten-point scale. For both protocols and at each disc level, IR significantly decreased image noise and increased SNR and CNR, compared with FBP. SNR and CNR were statistically equivalent in LD-IR and SD-FBP protocols. Regardless of the dose and disc level, the qualitative scores with IR compared with FBP, and with LD-IR compared with SD-FBP, were significantly higher or not statistically different for intervertebral discs, neural foramina and ligaments, while significantly lower or not statistically different for soft tissues and vertebrae. The overall image quality scores were significantly higher with IR compared with FBP, and with LD-IR compared with SD-FBP. LD-IR cervical spine CT provides better image quality for intervertebral discs, neural foramina and ligaments, and worse image quality for soft tissues and vertebrae, compared with SD-FBP, while reducing radiation dose by approximately 40 %. (orig.)

  10. Geometric and Dosimetric Approach to Determine Probability of Late Cardiac Mortality in Left Tangential Breast Irradiation: Comparison Between Wedged Beams and Field-in-Field Technique

    International Nuclear Information System (INIS)

    Pili, Giorgio; Grimaldi, Luca; Fidanza, Christian; Florio, Elena T.; Petruzzelli, Maria F.; D'Errico, Maria P.; De Tommaso, Cristina; Tramacere, Francesco; Musaio, Francesca; Castagna, Roberta; Francavilla, Maria C.; Gianicolo, Emilio A.L.; Portaluri, Maurizio

    2011-01-01

    Purpose: To evaluate the probability of late cardiac mortality resulting from left breast irradiation planned with tangential fields and to compare this probability between the wedged beam and field-in-field (FIF) techniques and to investigate whether some geometric/dosimetric indicators can be determined to estimate the cardiac mortality probability before treatment begins. Methods and Materials: For 30 patients, differential dose-volume histograms were calculated for the wedged beam and FIF plans, and the corresponding cardiac mortality probabilities were determined using the relative seriality model. As a comparative index of the dose distribution uniformity, the planning target volume (PTV) percentages involved in 97-103% of prescribed dose were determined for the two techniques. Three geometric parameters were measured for each patient: the maximal length, indicates how much the heart contours were displaced toward the PTV, the angle subtended at the center of the computed tomography slice by the PTV contour, and the thorax width/thickness ratio. Results: Evaluating the differential dose-volume histograms showed that the gain in uniformity between the two techniques was about 1.5. With the FIF technique, the mean dose sparing for the heart, the left anterior descending coronary artery, and the lung was 15% (2.5 Gy vs. 2.2 Gy), 21% (11.3 Gy vs. 9.0 Gy), and 42% (8.0 Gy vs. 4.6 Gy) respectively, compared with the wedged beam technique. Also, the cardiac mortality probability decreased by 40% (from 0.9% to 0.5%). Three geometric parameters, the maximal length, angle subtended at the center of the computed tomography slice by the PTV contour, and thorax width/thickness ratio, were the determining factors (p = .06 for FIF, and p = .10 for wedged beam) for evaluating the cardiac mortality probability. Conclusion: The FIF technique seemed to yield a lower cardiac mortality probability than the conventional wedged beam technique. However, although our study

  11. Project Portfolio Risk Identification and Analysis, Considering Project Risk Interactions and Using Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Foroogh Ghasemi

    2018-05-01

    Full Text Available An organization’s strategic objectives are accomplished through portfolios. However, the materialization of portfolio risks may affect a portfolio’s sustainable success and the achievement of those objectives. Moreover, project interdependencies and cause–effect relationships between risks create complexity for portfolio risk analysis. This paper presents a model using Bayesian network (BN methodology for modeling and analyzing portfolio risks. To develop this model, first, portfolio-level risks and risks caused by project interdependencies are identified. Then, based on their cause–effect relationships all portfolio risks are organized in a BN. Conditional probability distributions for this network are specified and the Bayesian networks method is used to estimate the probability of portfolio risk. This model was applied to a portfolio of a construction company located in Iran and proved effective in analyzing portfolio risk probability. Furthermore, the model provided valuable information for selecting a portfolio’s projects and making strategic decisions.

  12. Maximum likelihood estimation of dose-response parameters for therapeutic operating characteristic (TOC) analysis of carcinoma of the nasopharynx

    International Nuclear Information System (INIS)

    Metz, C.E.; Tokars, R.P.; Kronman, H.B.; Griem, M.L.

    1982-01-01

    A Therapeutic Operating Characteristic (TOC) curve for radiation therapy plots, for all possible treatment doses, the probability of tumor ablation as a function of the probability of radiation-induced complication. Application of this analysis to actual therapeutic situation requires that dose-response curves for ablation and for complication be estimated from clinical data. We describe an approach in which ''maximum likelihood estimates'' of these dose-response curves are made, and we apply this approach to data collected on responses to radiotherapy for carcinoma of the nasopharynx. TOC curves constructed from the estimated dose-response curves are subject to moderately large uncertainties because of the limitations of available data.These TOC curves suggest, however, that treatment doses greater than 1800 rem may substantially increase the probability of tumor ablation with little increase in the risk of radiation-induced cervical myelopathy, especially for T1 and T2 tumors

  13. Radiation Dose Assesment And Risk Estimation During Extracorporeal Shock Wave Lithotripsy

    International Nuclear Information System (INIS)

    Sulieman, A.; Ibrahim, A.A.; Osman, H.; Yousef, M.

    2011-01-01

    Extracorporeal shockwave lithotripsy (ESWL) is considered the gold standard for calculi fragmentation. The aims of this study are to measure the entrance surface dose (ESD) using thermo-luminescence dosimeter (TLDs) and to estimate the probability of carcinogenesis during ESWL procedure. The study was carried out at two centers (Group A, 50 patients) and (Group B, 25 patients). The mean ESD and effective doses were 36 mGy and 34 mSv. The results show that the probability of carcinogenesis is a tiny value 100 per million patients) but the main biological effect is occurring due to the accumulative impact of radiation.

  14. Neutron spectrometry and determination of neutron ambient dose equivalents in different LINAC radiotherapy rooms

    International Nuclear Information System (INIS)

    Domingo, C.; Garcia-Fuste, M.J.; Morales, E.; Amgarou, K.; Terron, J.A.; Rosello, J.; Brualla, L.; Nunez, L.; Colmenares, R.; Gomez, F.; Hartmann, G.H.; Sanchez-Doblado, F.; Fernandez, F.

    2010-01-01

    A project has been set up to study the effect on a radiotherapy patient of the neutrons produced around the LINAC accelerator head by photonuclear reactions induced by photons above ∼8 MeV. These neutrons may reach directly the patient, or they may interact with the surrounding materials until they become thermalised, scattering all over the treatment room and affecting the patient as well, contributing to peripheral dose. Spectrometry was performed with a calibrated and validated set of Bonner spheres at a point located at 50 cm from the isocenter, as well as at the place where a digital device for measuring neutrons, based on the upset of SRAM memories induced by thermal neutrons, is located inside the treatment room. Exposures have taken place in six LINAC accelerators with different energies (from 15 to 23 MV) with the aim of relating the spectrometer measurements with the readings of the digital device under various exposure and room geometry conditions. The final purpose of the project is to be able to relate, under any given treatment condition and room geometry, the readings of this digital device to patient neutron effective dose and peripheral dose in organs of interest. This would allow inferring the probability of developing second malignancies as a consequence of the treatment. Results indicate that unit neutron fluence spectra at 50 cm from the isocenter do not depend on accelerator characteristics, while spectra at the place of the digital device are strongly influenced by the treatment room geometry.

  15. Gonad dose in cineurethrocystography

    International Nuclear Information System (INIS)

    Ardran, G.M.; Dixon-Brown, A.; Fursdon, P.S.

    1978-01-01

    The technical factors used for cineurethrocystography for the true lateral projection in females are given. The mid-line radiation dose has been measured with LiF TLD inserted into the vagina in 19 examinations. The average dose recorded was 148 mrad, the range being 50 to 306 mrad, the average number of cine frames exposed was 96. Data obtained using a Rando phantom indicated that the average ovary dose would be 30% greater than the mid-line dose since the near ovary receives a higher dose than the more distant one. The technique used for men is also given, the average gonad dose in six men being 123 mrad, range 56 to 243 mrad when simple lead foil gonad protection was used; the average number of cine frames was 107. The dose in one man without gonad protection was 1575 mrad for 112 cine frames. The results for both sexes compare favourably with those of others reported in the literature and with gonad doses recorded in typical IVP examinations. (author)

  16. A method to combine three dimensional dose distributions for external beam and brachytherapy radiation treatments for gynecological neoplasms

    International Nuclear Information System (INIS)

    Narayana, V.; Sahijdak, W.M.; Orton, C.G.

    1997-01-01

    Purpose: Radiation treatment of gynecological neoplasms, such as cervical carcinoma, usually combines external radiation therapy with one or more intracavitary brachytherapy applications. Although the dose from external beam radiation therapy and brachytherapy can be calculated and displayed in 3D individually, the dose distributions are not combined. At most, combined point doses are calculated for select points using various time-dose models. In this study, we present a methodology to combine external beam and brachytherapy treatments for gynecological neoplasms. Material and Methods: Three dimensional bio-effect treatment planning to obtain complication probability has been outlined. CT scans of the patient's pelvis with the gynecological applicator in place are used to outline normal tissue and tumor volumes. 3D external beam and brachytherapy treatment plans are developed separately and an external beam dose matrix and a brachytherapy dose matrix was calculated. The dose in each voxel was assumed to be homogeneous. The physical dose in each voxel of the dose matrix was then converted into extrapolated response dose (ERD) based on the linear quadratic model that accounts for the dose per fraction, number of fractions, dose rate, and complete or incomplete repair of sublethal damage (time between fractions). The net biological dose delivered was obtained by summing the ERD grids from external beam and brachytherapy since there was complete repair of sublethal damage between external beam and brachytherapy treatments. The normal tissue complication probability and tumor control probability were obtained using the biological dose matrix based on the critical element model. Results: The outlined method of combining external beam and brachytherapy treatments was implemented on gynecological treatments using an applicator for brachytherapy treatments. Conclusion: Implementation of the biological dose calculation that combine different modalities is extremely useful

  17. Probability an introduction

    CERN Document Server

    Goldberg, Samuel

    1960-01-01

    Excellent basic text covers set theory, probability theory for finite sample spaces, binomial theorem, probability distributions, means, standard deviations, probability function of binomial distribution, more. Includes 360 problems with answers for half.

  18. 42 CFR 82.19 - How will NIOSH address uncertainty about dose levels?

    Science.gov (United States)

    2010-10-01

    ... characterized with a probability distribution that accounts for the uncertainty of the estimate. This information will be used by DOL in the calculation of probability of causation, under HHS guidelines for... THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Dose Reconstruction Process...

  19. Clinical radiation doses for spinal cord: the 1988 international questionnaire

    International Nuclear Information System (INIS)

    Fowler, J.F.; Bogaert, W. vanden; Scheuren, E. van der; Bentzen, S.M.; Bond, S.J.; Ang, K.K.; Kogel, A.J. van der

    2000-01-01

    Emmanuel van der Schueren gave a keynote lecture at the 1988 ASTRO annual conference pointing out that the spinal cord 'tolerance doses' then prescribed were probably unnecessarily cautious, resulting in probable underdosing of some tumours. This lecture was supported both by an international questionnaire which he and two of the present authors had conducted, and by animal experimental data. In 1997 he initiated a 10-year follow-up questionnaire, the results of which are summarised here. The present report analyses the chance in prescriptions from 1988 to 1998 and the variation in prescriptions among various regions of the World. The main conclusion is that prescribed dose levels have increased significantly in this period. Large geographical variations still exist. Among responders who use a formula to correct for changed dose per fraction, 90% are now using the linear-quadratic model vs. 33% in 1988. The current status of clinically acceptable doses to spinal cord in 2-Gy fractions is discussed briefly. Further details from the responses to the 1998 questionnaire will be presented in another publication. (author)

  20. Simulation of dose reduction in tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Baath, Magnus

    2010-01-01

    Purpose: Methods for simulating dose reduction are valuable tools in the work of optimizing radiographic examinations. Using such methods, clinical images can be simulated to have been collected at other, lower, dose levels without the need of additional patient exposure. A recent technology introduced to healthcare that needs optimization is tomosynthesis, where a number of low-dose projection images collected at different angles is used to reconstruct section images of an imaged object. The aim of the present work was to develop a method of simulating dose reduction for digital radiographic systems, suitable for tomosynthesis. Methods: The developed method uses information about the noise power spectrum (NPS) at the original dose level and the simulated dose level to create a noise image that is added to the original image to produce an image that has the same noise properties as an image actually collected at the simulated dose level. As the detective quantum efficiency (DQE) of digital detectors operating at the low dose levels used for tomosynthesis may show a strong dependency on the dose level, it is important that a method for simulating dose reduction for tomosynthesis takes this dependency into account. By applying an experimentally determined relationship between pixel mean and pixel variance, variations in both dose and DQE in relevant dose ranges are taken into account. Results: The developed method was tested on a chest tomosynthesis system and was shown to produce NPS of simulated dose-reduced projection images that agreed well with the NPS of images actually collected at the simulated dose level. The simulated dose reduction method was also applied to tomosynthesis examinations of an anthropomorphic chest phantom, and the obtained noise in the reconstructed section images was very similar to that of an examination actually performed at the simulated dose level. Conclusions: In conclusion, the present article describes a method for simulating dose

  1. Probability 1/e

    Science.gov (United States)

    Koo, Reginald; Jones, Martin L.

    2011-01-01

    Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.

  2. FURTHER STUDIES ON UNCERTAINTY, CONFOUNDING, AND VALIDATION OF THE DOSES IN THE TECHA RIVER DOSIMETRY SYSTEM: Concluding Progress Report on the Second Phase of Project 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2009-10-23

    This is the concluding Progress Report for Project 1.1 of the U.S./Russia Joint Coordinating Committee on Radiation Effects Research (JCCRER). An overwhelming majority of our work this period has been to complete our primary obligation of providing a new version of the Techa River Dosimetry System (TRDS), which we call TRDS-2009D; the D denotes deterministic. This system provides estimates of individual doses to members of the Extended Techa River Cohort (ETRC) and post-natal doses to members of the Techa River Offspring Cohort (TROC). The latter doses were calculated with use of the TRDS-2009D. The doses for the members of the ETRC have been made available to the American and Russian epidemiologists in September for their studies in deriving radiogenic risk factors. Doses for members of the TROC are being provided to European and Russian epidemiologists, as partial input for studies of risk in this population. Two of our original goals for the completion of this nine-year phase of Project 1.1 were not completed. These are completion of TRDS-2009MC, which was to be a Monte Carlo version of TRDS-2009 that could be used for more explicit analysis of the impact of uncertainty in doses on uncertainty in radiogenic risk factors. The second incomplete goal was to be the provision of household specific external doses (rather than village average). This task was far along, but had to be delayed due to the lead investigator’s work on consideration of a revised source term.

  3. Radiation dose and cancer risk to children undergoing skull radiography

    International Nuclear Information System (INIS)

    Mazonakis, Michael; Damilakis, John; Raissaki, Maria; Gourtsoyiannis, Nicholas

    2004-01-01

    Background: Limited data exist in the literature concerning the patient-effective dose from paediatric skull radiography. No information has been provided regarding organ doses, patient dose during PA skull projection, risk of cancer induction and dose to comforters, i.e. individuals supporting children during exposure. Objective: To estimate patient-effective dose, organ doses, lifetime cancer mortality risk to children and radiation dose to comforters associated with skull radiography. Materials and methods: Data were collected from 136 paediatric examinations, including AP, PA and lateral skull radiographs. Entrance-surface dose (ESD) and dose to comforters were measured using thermoluminescent dosimeters. Patients were divided into the following age groups: 0.5-2, 3-7, 8-12 and 13-18 years. The patient-effective dose and corresponding organ doses were calculated using data from the NRPB and Monte Carlo techniques. The risk for fatal cancer induction was assessed using appropriate risk coefficients. Results: For AP, PA and lateral skull radiography, effective dose ranges were 8.8-25.4, 8.2-27.3 and 8.4-22.7 μSv respectively, depending upon the age of the child. For each skull projection, the organs receiving doses above 10 μGy are presented. The number of fatal cancers was found to be less than or equal to 2 per 1 million children undergoing a skull radiograph. The mean radiation dose absorbed by the hands of comforters was 13.4 μGy. Conclusions: The current study provides detailed tabular and graphical data on ESD, effective dose, organ doses and lifetime cancer mortality risk to children associated with AP, PA and lateral skull projections at all patient ages. (orig.)

  4. A mathematical model for predicting the probability of acute mortality in a human population exposed to accidentally released airborne radionuclides. Final report for Phase I of the project: early effects of inhaled radionuclides

    International Nuclear Information System (INIS)

    Filipy, R.E.; Borst, F.J.; Cross, F.T.; Park, J.F.; Moss, O.R.

    1980-06-01

    The report presents a mathematical model for the purpose of predicting the fraction of human population which would die within 1 year of an accidental exposure to airborne radionuclides. The model is based on data from laboratory experiments with rats, dogs and baboons, and from human epidemiological data. Doses from external, whole-body irradiation and from inhaled, alpha- and beta-emitting radionuclides are calculated for several organs. The probabilities of death from radiation pneumonitis and from bone marrow irradiation are predicted from doses accumulated within 30 days of exposure to the radioactive aerosol. The model is compared with existing similar models under hypothetical exposure conditions. Suggestions for further experiments with inhaled radionuclides are included

  5. Differential subsidence and its effect on subsurface infrastructure: predicting probability of pipeline failure (STOOP project)

    Science.gov (United States)

    de Bruijn, Renée; Dabekaussen, Willem; Hijma, Marc; Wiersma, Ane; Abspoel-Bukman, Linda; Boeije, Remco; Courage, Wim; van der Geest, Johan; Hamburg, Marc; Harmsma, Edwin; Helmholt, Kristian; van den Heuvel, Frank; Kruse, Henk; Langius, Erik; Lazovik, Elena

    2017-04-01

    Due to heterogeneity of the subsurface in the delta environment of the Netherlands, differential subsidence over short distances results in tension and subsequent wear of subsurface infrastructure, such as water and gas pipelines. Due to uncertainties in the build-up of the subsurface, however, it is unknown where this problem is the most prominent. This is a problem for asset managers deciding when a pipeline needs replacement: damaged pipelines endanger security of supply and pose a significant threat to safety, yet premature replacement raises needless expenses. In both cases, costs - financial or other - are high. Therefore, an interdisciplinary research team of geotechnicians, geologists and Big Data engineers from research institutes TNO, Deltares and SkyGeo developed a stochastic model to predict differential subsidence and the probability of consequent pipeline failure on a (sub-)street level. In this project pipeline data from company databases is combined with a stochastic geological model and information on (historical) groundwater levels and overburden material. Probability of pipeline failure is modelled by a coupling with a subsidence model and two separate models on pipeline behaviour under stress, using a probabilistic approach. The total length of pipelines (approx. 200.000 km operational in the Netherlands) and the complexity of the model chain that is needed to calculate a chance of failure, results in large computational challenges, as it requires massive evaluation of possible scenarios to reach the required level of confidence. To cope with this, a scalable computational infrastructure has been developed, composing a model workflow in which components have a heterogeneous technological basis. Three pilot areas covering an urban, a rural and a mixed environment, characterised by different groundwater-management strategies and different overburden histories, are used to evaluate the differences in subsidence and uncertainties that come with

  6. Effects of internal hydrogen on the vacancy loop formation probability in Al

    International Nuclear Information System (INIS)

    Bui, T.X.; Sirois, E.; Robertson, I.M.

    1990-04-01

    The effect of internal hydrogen on the formation of vacancy dislocation loops from heavy-ion generated displacement cascades in Al has been investigated. Samples of high-purity aluminum and aluminum containing 900 and 1300 appM of hydrogen were irradiated at room temperature with 50 keV Kr+ ions. The ion dose rate was typically 2 x 10 10 ions cm -2 sec -1 and the ion dose was between 10 11 and 10 13 ion cm -2 . Under these irradiation conditions, dislocation loops were observed in all compositions, although the formation probability was relatively low (less than 10 percent of the displacement cascades produced a vacancy loop). The loop formation probability was further reduced by the presence of hydrogen. No difference in the geometry or the size of the loops created in the hydrogen free and hydrogen charged samples was found. These results are difficult to interpret, and the explanation may lie in the distribution and form of the hydrogen. To account for the large hydrogen concentrations and from calculations of the energy associated with hydrogen entry into aluminum, it has been suggested that the hydrogen enters the aluminum lattice with an accompanying vacancy. This will create hydrogen-vacancy complexes in the material; two dimensional complexes have been detected in the hydrogen-charged, but unirradiated, samples by the small-angle x-ray scattering technique. The possibility of these complexes trapping the vacancies produced by the cascade process exists thus lowering the formation probability. However, such a mechanism must occur within the lifetime of the cascade. Alternatively, if a displacement cascade overlaps with the hydrogen-vacancy complexes, the lower atomic density of the region will result in an increase in the cascade volume (decrease in the local vacancy concentration) which will also reduce the loop formation probability

  7. Probabilistic approach to external cloud dose calculations using onsite meteorological data

    International Nuclear Information System (INIS)

    Strenge, D.L.; Watson, E.C.; Bander, T.J.; Kennedy, W.E.

    1976-01-01

    A method is described for calculation of external total body and skin doses from accidental atmospheric releases of radionuclides based on hourly onsite meteorological data. The method involves calculation of dose values from a finite size cloud for each hourly observation for a given radionuclide inventory. These values are then used to determine the probability of occurrence of dose levels for specified release times ranging from one hour to 30 days

  8. Technical report. The application of probability-generating functions to linear-quadratic radiation survival curves.

    Science.gov (United States)

    Kendal, W S

    2000-04-01

    To illustrate how probability-generating functions (PGFs) can be employed to derive a simple probabilistic model for clonogenic survival after exposure to ionizing irradiation. Both repairable and irreparable radiation damage to DNA were assumed to occur by independent (Poisson) processes, at intensities proportional to the irradiation dose. Also, repairable damage was assumed to be either repaired or further (lethally) injured according to a third (Bernoulli) process, with the probability of lethal conversion being directly proportional to dose. Using the algebra of PGFs, these three processes were combined to yield a composite PGF that described the distribution of lethal DNA lesions in irradiated cells. The composite PGF characterized a Poisson distribution with mean, chiD+betaD2, where D was dose and alpha and beta were radiobiological constants. This distribution yielded the conventional linear-quadratic survival equation. To test the composite model, the derived distribution was used to predict the frequencies of multiple chromosomal aberrations in irradiated human lymphocytes. The predictions agreed well with observation. This probabilistic model was consistent with single-hit mechanisms, but it was not consistent with binary misrepair mechanisms. A stochastic model for radiation survival has been constructed from elementary PGFs that exactly yields the linear-quadratic relationship. This approach can be used to investigate other simple probabilistic survival models.

  9. Dose reconstruction for workers of Mayak and for the Techa riverside residents

    International Nuclear Information System (INIS)

    Wieser, A.; Aragno, D.; Baiankine, S.

    2000-01-01

    The main objectives of the project were: (a) to contribute to the improvement of the dose assessment for individuals of the cohorts of workers of Mayak and Techa riverside residents which are currently burdened by large uncertainties, (b) to test the capabilities of several methods of dose reconstruction by their applying to the same members of the two cohorts for which independent dose assessments existed and (c) to further develop the methods of dose reconstruction according to the experience gained during the exercise. The applied methods were retrospective dosimetry based on electron paramagnetic resonance (EPR) of teeth, chromosome painting (FISH) in lymphocytes and luminescence techniques applied to building materials. The independent dose estimates were based on film dosimetry for the workers of Mayak and for the Techa riverside residents on measurements of the contamination in the environment, of the external β radiation of teeth and of the Strontium whole body contents. The work in the project was carried out in close collaboration with the project 'Dose Reconstruction' in the nuclear fission safety (NFS) programme (contract FI4PCT950011d). The measurements and evaluations were tasks for which the work was shared by both projects. Most of the method development and FISH analysis was more located in the NFS project and has been described in the final report of that project. (orig.)

  10. Investigation of the impact of dose fluctuations on tumour control

    International Nuclear Information System (INIS)

    Zavgorodni, S.F.; Royal Adelaide Hospital,; Booth, J.; Adelaide University,; Rosenfeld, A.

    2001-01-01

    Full text: The importance of spatial uniformity of the dose across the Planning Target Volume (PTV) has been investigated previously with the conclusion stated in 'uniform dose theorem' concluding that the uniform dose results in the highest Tumour Control Probability (TCP). The dose fluctuations, which appear in fractionated treatments as a result of setup errors, organ motion, treatment machine calibration and other reasons can be seen as temporal dose non-uniformity. The intuitive expectation, that the temporal dose non-uniformity would also reduce TCP, has been tested. The impact of temporal dose non-uniformity has been investigated considering intra and inter-treatment dose fluctuations. The dose was considered to be spatially uniform. The convolution technique was used and analytical expression of TCP accounting for the dose fluctuation has also been derived. Both techniques used Probability Density Function (PDF) to account for the dose fluctuations. The dose fluctuations with PDF symmetrical around its mean value (Gaussian) as well as non-symmetrical PDFs were both investigated. The symmetrical PDFs represented the fluctuations, which appear in the whole PTV as a result of day to day variation in treatment machine output. Non-symmetrical PDFs represented the dose fluctuations at the edges of PTV as a result of setup errors and organ motion. The effect of the dose fluctuations has been expressed in terms of an extra dose δ (positive or negative) which should be added to the value of temporally uniform dose in order to provide the same TCP as the one resulting from temporally non-uniform (fluctuating) dose. Intra-treatment dose fluctuations resulted in an increased TCP, though the effect is relatively small (δ<1 Gy for the treatment dose of 60 Gy). However, inter-treatment fluctuations of the dose reduced TCP for a patient population. The size of effect increases with the standard deviation of the PDF. Random ultra-treatment dose fluctuations resulted in

  11. Calculated radiation doses from radionuclides brought to the surface if future drilling intercepts the WIPP repository and pressurized brine

    International Nuclear Information System (INIS)

    Channell, J.K.

    1982-01-01

    This report describes a scenario in which an exploratory borehole connects an underlying brine reservoir with the repository and results in saturation of the waste storage area. A subsequent borehole brings portions of this radionuclide contaminated brine to the surface. Radiation odses are calculated for time periods of 125, 400, and 1000 years after repository closing for the following: (1) external radiation doses for workers at the borehole location; (2) inhalation doses for workers at the borehole location; (3) external and inhalation doses for a resident located 360 meters downwind; (4) ingestion doses for the downwind resident from locally grown produce, milk, and meat; and (5) population doses from inhalation within a 50-mile radius. The probability of the various calculated doses occurring was estimated. Probability was included in the report because of a belief that probability considerations are useful in evaluating the acceptability of unlikely events and to encourage others to provide a more detailed evaluation using more sophisticated methodology. Since the probabilities presented in this report were calculated using a simple methodology, with some parameter values chosen arbitrarily, they should be considered as approximate examples, not accurate numbers. The reasonableness of the scenario and the significance of the results are also discussed

  12. Risk of low-doses in radiodiagnosis; Risque des faibles doses en radiodiagnostic. Mythes, reglementation et rationalite

    Energy Technology Data Exchange (ETDEWEB)

    Cordoliani, Y.S.; Sarrazin, J.L.; Le Frian, G.; Soulie, D.; Leveque, C. [Hopital d`Instruction des Armees du Val-de-Grace, 75 - Paris (France)

    1997-12-31

    The effect of low doses of X-rays is inferred from the indubitable effects of high doses in human carcinogenesis, Genetic and teratogenic effects are mainly inferred from animal experimentation because clinical surveys of irradiated pregnant women have failed to demonstrate such consequences in the children, except for mental retardation after Japanese atomic bombing. Since no evidence of carcinogenic effect has been produced by epidemiological studies for doses lower than 500 mSv. the estimation of the risk due to low doses has been extrapolated from the linear relation between dose and cancers at high doses. Such an extrapolation gives a maximal risk which is falsely used as a probability of cancer. The actual risk lies between zero and this maximal number, and many epidemiologic surveys in people receiving doses much higher than the mean level of background irradiation failed to demonstrate higher rate of cancer. The explanation of this fact, which is supported by the most recent biological data, is the efficacy of the DNA repair system at low level of exposure to ionizing radiations. We expose the principles of regulation of radioprotection for workers, and give estimations of the doses delivered to the patients and the personnel by diagnostic investigations, by comparing these doses with those of natural irradiation. Practical aspect for conventional and computed radiology are exposed for patients and workers. (authors)

  13. Radiation absorbed doses at radiographic examination of third molars.

    Science.gov (United States)

    Rehnmark-Larsson, S; Stenström, B; Julin, P; Richter, S

    1982-01-01

    The radiation absorbed doses to critical organs, i.e. the thyroid and salivary glands and the gonadal region, were measured at radiographic examination of third molars. A tissue equivalent phantom was used together with ionization chamber detectors and TLDs. In the maxilla three, and in the mandible four different projections were used; also an extraoral lateral view. The greatest thyroid dose, 35 muGy, came from a mandibular disto-oblique projection with the circular tube collimator and Ultra-Speed film. the thyroid dose from an extraoral lateral view with high sensitivity screens was 3.7 muGy. The doses in different parts of the parotid gland from the disto-oblique mandibular projection with Ultra-Speed film ranged between 2.65 and 0.052 mGy. The corresponding doses in the submandibular gland were 1.74 mGy beneath the mandible and 0.458 mGy in the fovea. A rectangular tube collimator reduced the doses by approximately 50%. the Ekta-Speed film required approximately 40% lower exposure than the Ultra-Speed film. Without shielding the gonadal doses from a complete examination of four third molars were of the same order of magnitude as from a full survey with intraoral films, i.e. 3-7 muGy. A horizontal radiation shield reduced the thyroid doses by between 12 and 46% and the gonadal doses by between 50 and 95%. The reduction effect from the shield was relatively greater when using the larger aperture of the tube collimator. Combinations of leaded aprons and soft leaded collars reduced the thyroid doses by between 15 and 42% and the gonadal doses by two orders of magnitude.

  14. Foundations of probability

    International Nuclear Information System (INIS)

    Fraassen, B.C. van

    1979-01-01

    The interpretation of probabilities in physical theories are considered, whether quantum or classical. The following points are discussed 1) the functions P(μ, Q) in terms of which states and propositions can be represented, are classical (Kolmogoroff) probabilities, formally speaking, 2) these probabilities are generally interpreted as themselves conditional, and the conditions are mutually incompatible where the observables are maximal and 3) testing of the theory typically takes the form of confronting the expectation values of observable Q calculated with probability measures P(μ, Q) for states μ; hence, of comparing the probabilities P(μ, Q)(E) with the frequencies of occurrence of the corresponding events. It seems that even the interpretation of quantum mechanics, in so far as it concerns what the theory says about the empirical (i.e. actual, observable) phenomena, deals with the confrontation of classical probability measures with observable frequencies. This confrontation is studied. (Auth./C.F.)

  15. Efficient Probability of Failure Calculations for QMU using Computational Geometry LDRD 13-0144 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ebeida, Mohamed Salah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rushdi, Ahmad A. [Univ. of Texas, Austin, TX (United States); Abdelkader, Ahmad [Univ. of Maryland, College Park, MD (United States)

    2015-09-01

    This SAND report summarizes our work on the Sandia National Laboratory LDRD project titled "Efficient Probability of Failure Calculations for QMU using Computational Geometry" which was project #165617 and proposal #13-0144. This report merely summarizes our work. Those interested in the technical details are encouraged to read the full published results, and contact the report authors for the status of the software and follow-on projects.

  16. Normal tissue complication probability modeling of radiation-induced hypothyroidism after head-and-neck radiation therapy.

    Science.gov (United States)

    Bakhshandeh, Mohsen; Hashemi, Bijan; Mahdavi, Seied Rabi Mehdi; Nikoofar, Alireza; Vasheghani, Maryam; Kazemnejad, Anoshirvan

    2013-02-01

    To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with α/β = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D(50) estimated from the models was approximately 44 Gy. The implemented normal tissue complication probability models showed a parallel architecture for the

  17. Normal Tissue Complication Probability Modeling of Radiation-Induced Hypothyroidism After Head-and-Neck Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshandeh, Mohsen [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Hashemi, Bijan, E-mail: bhashemi@modares.ac.ir [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mahdavi, Seied Rabi Mehdi [Department of Medical Physics, Faculty of Medical Sciences, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nikoofar, Alireza; Vasheghani, Maryam [Department of Radiation Oncology, Hafte-Tir Hospital, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Kazemnejad, Anoshirvan [Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2013-02-01

    Purpose: To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Methods and Materials: Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with {alpha}/{beta} = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Results: Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D{sub 50} estimated from the models was approximately 44 Gy. Conclusions: The implemented

  18. Potency probability following conformal megavoltage radiotherapy using conventional doses for localized prostate cancer

    International Nuclear Information System (INIS)

    Mantz, C.A.; Song, P.; Farhangi, E.; Nautiyal, J.; Awan, A.; Ignacio, L.; Weichselbaum, R.; Vijayakumar, S.

    1997-01-01

    Purpose: Impotence is a familiar sequela of definitive external beam radiation therapy (EBRT) for localized prostate cancer; however, nerve-sparing radical prostatectomy (NSRP) has offered potency rates as high as 70% for selected for patients in several large series. To the authors' knowledge, age and stage-matched comparisons between the effects of EBRT and NSRP upon the normal age trend of impotence have not been performed. Herein, we report the change in potency over time in an EBRT-treated population, determine the significantly predisposing health factors affecting potency in this population, and compare age and stage-matched potency rates with those of normal males and prostatectomy patients. Methods and Materials: Our results are obtained from a retrospective study of 114 patients ranging in age from 52 to 85 (mean, 68) who were diagnosed with clinical stages A-C C (T1-T4N0M0) prostate cancer and then treated conformally with megavoltage x-rays to 6500-7000 cGy (180-200 cGy per fraction) using the four-field box technique. Information concerning pre-RT potency, medical and surgical history, and medications was documented for each patient as was time of post-RT change in potency during regular follow-up. The median follow-up time was 18.5 months. Results: The actuarial probability of potency for all patients gradually decreased throughout post-RT follow-up. At months 1, 12, 24, and 36, potency rates were 98, 92, 75, and 66%, respectively. For those patients who became impotent, the median time to impotence was 14 months. Factors identified from logistic regression analysis as significant predictors of post-EBRT impotence include pre-EBRT partial potency (p < 0.001), vascular disease (p < 0.001), and diabetes (p = 0.003). Next, an actuarial plot of potency probability to patient age for the EBRT-treated population was compared to that obtained from the Massachusetts Male Aging Study of normal males. The two curves were not significantly different (logrank

  19. Non-Archimedean Probability

    NARCIS (Netherlands)

    Benci, Vieri; Horsten, Leon; Wenmackers, Sylvia

    We propose an alternative approach to probability theory closely related to the framework of numerosity theory: non-Archimedean probability (NAP). In our approach, unlike in classical probability theory, all subsets of an infinite sample space are measurable and only the empty set gets assigned

  20. Dose estimation in embryo or fetus in external fields

    International Nuclear Information System (INIS)

    Gregori, Beatriz N.

    2001-01-01

    The embryo or the fetus can be irradiated as result of radiological procedures of diagnosis of therapy in where the beam effects directly on the same one or in tissues or peripherical organs. Some authors have suggested that in the first stages of the pregnancy the dose in ovaries can be the good estimated of the dose in embryo or fetus. In advanced conditions of the development, probably also in the early stage, is more appropriated to specify the dose in the embryo or fetus equal of the uterus. The dose in the uterus is a good estimated so much for external irradiation as for radionuclides incorporation

  1. Gonadal dose reduction in lumbar spine radiography

    International Nuclear Information System (INIS)

    Moilanen, A.; Kokko, M.L.; Pitkaenen, M.

    1983-01-01

    Different ways to minimize the gonadal dose in lumbar spine radiography have been studied. Two hundred and fifty lumbar spine radiographs were reviewed to assess the clinical need for lateral L5/S1 projection. Modern film/screen combinations and gonadal shielding of externally scattered radiation play a major role in the reduction of the genetic dose. The number of exposures should be minimized. Our results show that two projections, anteroposterior (AP) and lateral, appear to be sufficient in routine radiography of the lumbar spine. (orig.)

  2. Importance of the Computed Tomography Dose Index (CTDI) and Dose Length Product (DLP)

    International Nuclear Information System (INIS)

    Rasolomboahanginjatovo, L.M.

    2014-01-01

    This work is under the auspice of the International Atomic Energy Agency (IAEA) projects (RAF/9/053) untitled S trengthening of the technical capacity for the protection patients and worker . The goal of this work is to highlight the importance of the Computed Tomography Dose Index (CTDI) and the Dose Length product (DLP). Measures were done at Polyclinic of Ilafy and CRDT Anosivavaka, Antananarivo, Madagascar. Doses were evaluated by use of pencil ionization chamber model 6000-10 connected with an electrometer RAD-CHECK model 06-256. Knowledge of dose indicator and Diagnostic Reference Level (DRL) allow the monitoring of scanner within the appropriate average dosimeter. It also insures the progressive determination for the most adapted dose requirements by choice of parameters available on scanner device. Measurements confirmed that doses from scanner devices of the two centers were under DRL requirements proposed by the IAEA, the European Commission (EC) and the National Radiological Protection Board (NRPB). The present results confirm that the patient delivered doses for the two centers are optimized. [fr

  3. Local organ dose conversion coefficients for angiographic examinations of coronary arteries

    International Nuclear Information System (INIS)

    Schlattl, H; Zankl, M; Hausleiter, J; Hoeschen, C

    2007-01-01

    New organ dose conversion coefficients for coronary angiographic interventions are presented, as well as dose distributions and resulting maximal local dose conversion coefficients in the relevant organs. For the Monte Carlo based simulations, voxel models of the human anatomy were employed which represent the average Caucasian adult man and woman as defined by the International Commission on Radiological Protection. In the 21 investigated projections, the mean organ dose conversion coefficients vary from a few 0.01 to 2 mGy(Gy cm 2 ) -1 , depending on the projections. However, especially in portions of the lungs and the active bone marrow, the conversion coefficients can locally amount up to 10 mGy(Gy cm 2 ) -1 , which is half the average conversion coefficient of the skin at the field entrance. In addition to the dose conversion coefficients, the dependence of the patient dose on the projection has been estimated. It could be shown that the patient doses are highest for left anterior oblique views with strong caudal or cranial orientation. Nevertheless, for a large range of image-intensifier positions no significant dose differences could be found

  4. Screening Doses for Induction of Cancers Calculated with the Interactive RadioEpidemiological Program (IREP)

    National Research Council Canada - National Science Library

    Kocher, David C; Apostoaei, Julian A

    2007-01-01

    This report presents tabulations of equivalent doses of ionizing radiation, referred to as screening doses, that correspond to an estimated probablity of causation of specific cancers of approximately 50% at the upper 99% credibility limit...

  5. Handbook of probability

    CERN Document Server

    Florescu, Ionut

    2013-01-01

    THE COMPLETE COLLECTION NECESSARY FOR A CONCRETE UNDERSTANDING OF PROBABILITY Written in a clear, accessible, and comprehensive manner, the Handbook of Probability presents the fundamentals of probability with an emphasis on the balance of theory, application, and methodology. Utilizing basic examples throughout, the handbook expertly transitions between concepts and practice to allow readers an inclusive introduction to the field of probability. The book provides a useful format with self-contained chapters, allowing the reader easy and quick reference. Each chapter includes an introductio

  6. Probability-1

    CERN Document Server

    Shiryaev, Albert N

    2016-01-01

    This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, the measure-theoretic foundations of probability theory, weak convergence of probability measures, and the central limit theorem. Many examples are discussed in detail, and there are a large number of exercises. The book is accessible to advanced undergraduates and can be used as a text for independent study. To accommodate the greatly expanded material in the third edition of Probability, the book is now divided into two volumes. This first volume contains updated references and substantial revisions of the first three chapters of the second edition. In particular, new material has been added on generating functions, the inclusion-exclusion principle, theorems on monotonic classes (relying on a detailed treatment of “π-λ” systems), and the fundamental theorems of mathematical statistics.

  7. Probability Machines: Consistent Probability Estimation Using Nonparametric Learning Machines

    Science.gov (United States)

    Malley, J. D.; Kruppa, J.; Dasgupta, A.; Malley, K. G.; Ziegler, A.

    2011-01-01

    Summary Background Most machine learning approaches only provide a classification for binary responses. However, probabilities are required for risk estimation using individual patient characteristics. It has been shown recently that every statistical learning machine known to be consistent for a nonparametric regression problem is a probability machine that is provably consistent for this estimation problem. Objectives The aim of this paper is to show how random forests and nearest neighbors can be used for consistent estimation of individual probabilities. Methods Two random forest algorithms and two nearest neighbor algorithms are described in detail for estimation of individual probabilities. We discuss the consistency of random forests, nearest neighbors and other learning machines in detail. We conduct a simulation study to illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians. Results Simulations demonstrate the validity of the method. With the real data application, we show the accuracy and practicality of this approach. We provide sample code from R packages in which the probability estimation is already available. This means that all calculations can be performed using existing software. Conclusions Random forest algorithms as well as nearest neighbor approaches are valid machine learning methods for estimating individual probabilities for binary responses. Freely available implementations are available in R and may be used for applications. PMID:21915433

  8. Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications

    International Nuclear Information System (INIS)

    Rosu, Mihaela; Chetty, Indrin J.; Balter, James M.; Kessler, Marc L.; McShan, Daniel L.; Ten Haken, Randall K.

    2005-01-01

    In this study we investigated the accumulation of dose to a deforming anatomy (such as lung) based on voxel tracking and by using time weighting factors derived from a breathing probability distribution function (p.d.f.). A mutual information registration scheme (using thin-plate spline warping) provided a transformation that allows the tracking of points between exhale and inhale treatment planning datasets (and/or intermediate state scans). The dose distributions were computed at the same resolution on each dataset using the Dose Planning Method (DPM) Monte Carlo code. Two accumulation/interpolation approaches were assessed. The first maps exhale dose grid points onto the inhale scan, estimates the doses at the 'tracked' locations by trilinear interpolation and scores the accumulated doses (via the p.d.f.) on the original exhale data set. In the second approach, the 'volume' associated with each exhale dose grid point (exhale dose voxel) is first subdivided into octants, the center of each octant is mapped to locations on the inhale dose grid and doses are estimated by trilinear interpolation. The octant doses are then averaged to form the inhale voxel dose and scored at the original exhale dose grid point location. Differences between the interpolation schemes are voxel size and tissue density dependent, but in general appear primarily only in regions with steep dose gradients (e.g., penumbra). Their magnitude (small regions of few percent differences) is less than the alterations in dose due to positional and shape changes from breathing in the first place. Thus, for sufficiently small dose grid point spacing, and relative to organ motion and deformation, differences due solely to the interpolation are unlikely to result in clinically significant differences to volume-based evaluation metrics such as mean lung dose (MLD) and tumor equivalent uniform dose (gEUD). The overall effects of deformation vary among patients. They depend on the tumor location, field

  9. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    1993-07-01

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. The report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.

  10. Parotid gland mean dose as a xerostomia predictor in low-dose domains.

    Science.gov (United States)

    Gabryś, Hubert Szymon; Buettner, Florian; Sterzing, Florian; Hauswald, Henrik; Bangert, Mark

    2017-09-01

    Xerostomia is a common side effect of radiotherapy resulting from excessive irradiation of salivary glands. Typically, xerostomia is modeled by the mean dose-response characteristic of parotid glands and prevented by mean dose constraints to either contralateral or both parotid glands. The aim of this study was to investigate whether normal tissue complication probability (NTCP) models based on the mean radiation dose to parotid glands are suitable for the prediction of xerostomia in a highly conformal low-dose regime of modern intensity-modulated radiotherapy (IMRT) techniques. We present a retrospective analysis of 153 head and neck cancer patients treated with radiotherapy. The Lyman Kutcher Burman (LKB) model was used to evaluate predictive power of the parotid gland mean dose with respect to xerostomia at 6 and 12 months after the treatment. The predictive performance of the model was evaluated by receiver operating characteristic (ROC) curves and precision-recall (PR) curves. Average mean doses to ipsilateral and contralateral parotid glands were 25.4 Gy and 18.7 Gy, respectively. QUANTEC constraints were met in 74% of patients. Mild to severe (G1+) xerostomia prevalence at both 6 and 12 months was 67%. Moderate to severe (G2+) xerostomia prevalence at 6 and 12 months was 20% and 15%, respectively. G1 + xerostomia was predicted reasonably well with area under the ROC curve ranging from 0.69 to 0.76. The LKB model failed to provide reliable G2 + xerostomia predictions at both time points. Reduction of the mean dose to parotid glands below QUANTEC guidelines resulted in low G2 + xerostomia rates. In this dose domain, the mean dose models predicted G1 + xerostomia fairly well, however, failed to recognize patients at risk of G2 + xerostomia. There is a need for the development of more flexible models able to capture complexity of dose response in this dose regime.

  11. Acceptance Probability (P a) Analysis for Process Validation Lifecycle Stages.

    Science.gov (United States)

    Alsmeyer, Daniel; Pazhayattil, Ajay; Chen, Shu; Munaretto, Francesco; Hye, Maksuda; Sanghvi, Pradeep

    2016-04-01

    This paper introduces an innovative statistical approach towards understanding how variation impacts the acceptance criteria of quality attributes. Because of more complex stage-wise acceptance criteria, traditional process capability measures are inadequate for general application in the pharmaceutical industry. The probability of acceptance concept provides a clear measure, derived from specific acceptance criteria for each quality attribute. In line with the 2011 FDA Guidance, this approach systematically evaluates data and scientifically establishes evidence that a process is capable of consistently delivering quality product. The probability of acceptance provides a direct and readily understandable indication of product risk. As with traditional capability indices, the acceptance probability approach assumes that underlying data distributions are normal. The computational solutions for dosage uniformity and dissolution acceptance criteria are readily applicable. For dosage uniformity, the expected AV range may be determined using the s lo and s hi values along with the worst case estimates of the mean. This approach permits a risk-based assessment of future batch performance of the critical quality attributes. The concept is also readily applicable to sterile/non sterile liquid dose products. Quality attributes such as deliverable volume and assay per spray have stage-wise acceptance that can be converted into an acceptance probability. Accepted statistical guidelines indicate processes with C pk > 1.33 as performing well within statistical control and those with C pk  1.33 is associated with a centered process that will statistically produce less than 63 defective units per million. This is equivalent to an acceptance probability of >99.99%.

  12. ProZES. A tool for assessment of assigned share of radiation in probability of cancer development (Pt. 2)

    Energy Technology Data Exchange (ETDEWEB)

    Ulanowski, Alexander; Eidemueller, Markus; Guethlin, Denise; Kaiser, Jan Christian; Shemiakina, Elena; Jacob, Peter [Helmholtz Zentrum Muenchen - Deutsches Forschungszentrum fuer Gesundheit und Umwelt, Muenchen (Germany). Inst fuer Strahlenschutz

    2016-11-15

    Methodology and a corresponding computer program ProZES were developed to estimate the probability that a previous radiation exposure for a specific person and a given exposure situation has resulted in cancer (probability of causation or relationship between the exposure and the disease, Z). ProZES can provide the scientific basis to support making decisions on compensation claims due to cancer following occupational exposure to radiation. Starting from the results achieved in the first version of ProZES, when the general methodology and risk models for colon, stomach, lung, and female breast were implemented, the second stage of the ProZES development was focused on the development of risk models for all other cancer locations, including leukaemias and lymphomas as well as risk models for lung cancer after exposure to radon. The models for estimating the cancer risks and the associated probability Z are mostly based on the observed cancer incidence in the cohort of the atomic bomb survivors in Hiroshima and Nagasaki. Most of the models are newly developed for the project. For the frequent types of cancer, specific models of radiation risk have been developed, while for the less common diseases the risk models were developed for the groups of functionally similar diseases. Since various models built upon the basis of the same data can result in different predictions for ''dose-effect'' relationships, so the method of ''multi-model inference'' is used for some types of cancer to derive risk factors, which are less dependent on individual models and take model uncertainties into account. Risk estimates for the Japanese population must be transferred to the German population. An essential element is the estimation of the uncertainty of the associated probability. ProZES was developed as a user-friendly stand-alone program, which can assess and present the individualised estimate of probability of relationship between radiation

  13. Analysis on the entrance surface dose and contrast medium dose at computed tomography and angiography in cardiovascular examination

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young Hyun [Dept. of Cardiovascular Center, Yeocheon Jeonnam Hospital, Yeosu (Korea, Republic of); Han, Jae Bok; Choi, Nam Gil; Song, Jong Nam [Dept. of Radiological Science, Dongshin University, Naju (Korea, Republic of)

    2016-12-15

    This study aimed to identify dose reduction measures by retrospectively analyzing the entrance surface dose at computed tomography and angiography in cardiovascular examination and to contribute the patients with renal impairmend and a high probability of side effects to determine the inspection's direction by measuring the contrast usages actually to active actions for the dose by actually measuring the contrast medium dose. The CTDIvol value and air kerma value, which are the entrance surface doses of the two examinations, and the contrast medium dose depending on the number of slides were compared and analyzed. This study was conducted in 21 subjects (11 males; 10 females) who underwent Cardiac Computed Tomographic Angiography (CCTA) and Coronary Angiography (CAG) in this hospital during the period from May 2014 to May 2016. The subject's age was 48-85 years old (mean 65±10 years old), and the weight was 37.6~83.3 kg (mean 63±6 kg). Dose reduction could be expected in the cardiovascular examination using CCTA rather than in the examination using CAG. In terms of contrast medium dose, CAG used a smaller dose than CCTA. In particular, as the number of slides increases at CAG, the contrast medium dose increases. Therefore, in order to reduce the contrast medium dose, the number of slides suitable for the scan range must be selected.

  14. Computation of the glandular radiation dose in digital tomosynthesis of the breast

    International Nuclear Information System (INIS)

    Sechopoulos, Ioannis; Suryanarayanan, Sankararaman; Vedantham, Srinivasan; D'Orsi, Carl; Karellas, Andrew

    2007-01-01

    Tomosynthesis of the breast is currently a topic of intense interest as a logical next step in the evolution of digital mammography. This study reports on the computation of glandular radiation dose in digital tomosynthesis of the breast. Previously, glandular dose estimations in tomosynthesis have been performed using data from studies of radiation dose in conventional planar mammography. This study evaluates, using Monte Carlo methods, the normalized glandular dose (D g N) to the breast during a tomosynthesis study, and characterizes its dependence on breast size, tissue composition, and x-ray spectrum. The conditions during digital tomosynthesis imaging of the breast were simulated using a computer program based on the Geant4 toolkit. With the use of simulated breasts of varying size, thickness and tissue composition, the D g N to the breast tissue was computed for varying x-ray spectra and tomosynthesis projection angle. Tomosynthesis projections centered about both the cranio-caudal (CC) and medio-lateral oblique (MLO) views were simulated. For each projection angle, the ratio of the glandular dose for that projection to the glandular dose for the zero degree projection was computed. This ratio was denoted the relative glandular dose (RGD) coefficient, and its variation under different imaging parameters was analyzed. Within mammographic energies, the RGD was found to have a weak dependence on glandular fraction and x-ray spectrum for both views. A substantial dependence on breast size and thickness was found for the MLO view, and to a lesser extent for the CC view. Although RGD values deviate substantially from unity as a function of projection angle, the RGD averaged over all projections in a complete tomosynthesis study varies from 0.91 to 1.01. The RGD results were fit to mathematical functions and the resulting equations are provided

  15. The use of normal tissue complication probability to predict radiation hepatitis

    International Nuclear Information System (INIS)

    Keum, Ki Chang; Seong, Jin Sil; Suh, Chang Ok; Lee, Sang Wook; Chung, Eun Ji; Shin, Hyun Soo; Kim, Gwi Eon

    2000-01-01

    Although it has been known that the tolerance of the liver to external beam irradiation depends on the irradiated volume and dose, few data exist which quantify this dependence. However, recently, with the development of three dimensional (3-D) treatment planning, have the tools to quantify the relationships between dose, volume, and normal tissue complications become available. The objective of this study is to investigate the relationships between normal tissue complication probability (NTCP) and the risk of radiation hepatitis for patients who received variant dose partial liver irradiation. From March 1992 to December 1994, 10 patients with hepatoma and 10 patients with bile duct cancer were included in this study. Eighteen patients had normal hepatic function, but 2 patients (prothrombin time 73%, 68%) had mild liver cirrhosis before irradiation. Radiation therapy was delivered with 10MV linear accelerator, 180-200 cGy fraction per day. The total dose ranged from 3,960 cGy to 6,000 cGy (median dose 5,040 cGy). The normal tissue complication probability was calculated by using Lyman's model. Radiation hepatitis was defined as the development of anicteric elevation of alkaline phosphatase of at least two fold and non-malignant ascites in the absence of documented progressive. The calculated NTCP ranged from 0.001 to 0.840 (median 0.05). Three of the 20 patients developed radiation hepatitis. The NTCP of the patients with radiation hepatitis were 0.390, 0.528, 0.844 (median: O.58±0.23), but that of the patients without radiation hepatitis ranged from 0.001 to 0.308 (median: 0.09±0.09). When the NTCP was calculated by using the volume factor of 0.32, a radiation hepatitis was observed only in patients with the NTCP value more than 0.39. By contrast, clinical results of evolving radiation hepatitis were not well correlated with NTCP value calculated when the volume factor of 0.69 was applied. On the basis of these observations, volume factor of 0.32 was more

  16. Microbeams, microdosimetry and specific dose

    International Nuclear Information System (INIS)

    Randers-Pehrson, H.

    2002-01-01

    Dose and its usefulness as a single parameter to describe the amount of radiation absorbed are well established for most situations. The conditions where the concept of dose starts to break down are well known, mostly from the study of microdosimetry. For low doses of high LET radiation it is noted that the process of taking the limiting value of the energy absorbed within a test volume divided by the mass within that volume yields either zero or a relatively large value. The problem is further exacerbated with microbeam irradiations where the uniformity of the energy deposition is experimentally manipulated on the spatial scale of cells being irradiated. Booz introduced a quantity to deal with these problems: the unfortunately named 'mean specific energy in affected volumes'. This quantity multiplied by the probability that a test volume has received an energy deposit is equal to dose (in situations where dose can be defined). I propose that Booz's quantity be renamed 'specific dose', that is the mean energy deposited divided by the mass within a specified volume. If we believe for instance that the nucleus of a cell is the critical volume for biological effects, we can refer to the nuclear specific dose. A microbeam experiment wherein 10 per cent of the cell nuclei were targeted with 10 alpha particles would be described as delivering a nuclear specific dose of 1.6 Gy to 10 per cent of the population. (author)

  17. Internal dose assessments: Uncertainty studies and update of ideas guidelines and databases within CONRAD project

    International Nuclear Information System (INIS)

    Marsh, J. W.; Castellani, C. M.; Hurtgen, C.; Lopez, M. A.; Andrasi, A.; Bailey, M. R.; Birchall, A.; Blanchardon, E.; Desai, A. D.; Dorrian, M. D.; Doerfel, H.; Koukouliou, V.; Luciani, A.; Malatova, I.; Molokanov, A.; Puncher, M.; Vrba, T.

    2008-01-01

    The work of Task Group 5.1 (uncertainty studies and revision of IDEAS guidelines) and Task Group 5.5 (update of IDEAS databases) of the CONRAD project is described. Scattering factor (SF) values (i.e. measurement uncertainties) have been calculated for different radionuclides and types of monitoring data using real data contained in the IDEAS Internal Contamination Database. Based upon this work and other published values, default SF values are suggested. Uncertainty studies have been carried out using both a Bayesian approach as well as a frequentist (classical) approach. The IDEAS guidelines have been revised in areas relating to the evaluation of an effective AMAD, guidance is given on evaluating wound cases with the NCRP wound model and suggestions made on the number and type of measurements required for dose assessment. (authors)

  18. Estimation of individual doses from external exposures and dose-group classification of cohort members in high background radiation area in Yangjiang, China

    International Nuclear Information System (INIS)

    Yuan Yongling; Shen Hong; Sun Quanfu; Wei Luxin

    1999-01-01

    individual annual effective dose for the cohort members were based on hamlet average dose and occupancy factors for males and females of different age groups, there were uncertainties in the classification of dose groups. Thus the authors analyzed the probability of mis-classification of dose groups. The results of analysis showed that the probability of mis-classification would not influence significantly the function classification

  19. A Monte Carlo estimation of effective dose in chest tomosynthesis

    International Nuclear Information System (INIS)

    Sabol, John M.

    2009-01-01

    Purpose: The recent introduction of digital tomosynthesis imaging into routine clinical use has enabled the acquisition of volumetric patient data within a standard radiographic examination. Tomosynthesis requires the acquisition of multiple projection views, requiring additional dose compared to a standard projection examination. Knowledge of the effective dose is needed to make an appropriate decision between standard projection, tomosynthesis, and CT for thoracic x-ray examinations. In this article, the effective dose to the patient of chest tomosynthesis is calculated and compared to a standard radiographic examination and to values published for thoracic CT. Methods: Radiographic technique data for posterior-anterior (PA) and left lateral (LAT) radiographic chest examinations of medium-sized adults was obtained from clinical sites. From these data, the average incident air kerma for the standard views was determined. A commercially available tomosynthesis system was used to define the acquisition technique and geometry for each projection view. Using Monte Carlo techniques, the effective dose of the PA, LAT, and each tomosynthesis projection view was calculated. The effective dose for all projections of the tomosynthesis sweep was summed and compared to the calculated PA and LAT values and to the published values for thoracic CT. Results: The average incident air kerma for the PA and left lateral clinical radiographic examinations were found to be 0.10 and 0.40 mGy, respectively. The effective dose for the PA view of a patient of the size of an average adult male was determined to be 0.017 mSv (ICRP 60) [0.018 mSv (ICRP 103)]. For the left lateral view of the same sized patient, the effective dose was determined to be 0.039 mSv (ICRP 60) [0.050 mSv (ICRP 103)]. The cumulative mA s for a tomosynthesis examination is recommended to be ten times the mA s of the PA image. With this technique, the effective dose for an average tomosynthesis examination was

  20. Selection of skin dose calculation methodologies

    International Nuclear Information System (INIS)

    Farrell, W.E.

    1987-01-01

    This paper reports that good health physics practice dictates that a dose assessment be performed for any significant skin contamination incident. There are, however, several methodologies that could be used, and while there is probably o single methodology that is proper for all cases of skin contamination, some are clearly more appropriate than others. This can be demonstrated by examining two of the more distinctly different options available for estimating skin dose the calculational methods. The methods compiled by Healy require separate beta and gamma calculations. The beta calculational method is the derived by Loevinger, while the gamma dose is calculated from the equation for dose rate from an infinite plane source with an absorber between the source and the detector. Healy has provided these formulas in graphical form to facilitate rapid dose rate determinations at density thicknesses of 7 and 20 mg/cm 2 . These density thicknesses equate to the regulatory definition of the sensitive layer of the skin and a more arbitrary value to account of beta absorption in contaminated clothing

  1. Janus-faced probability

    CERN Document Server

    Rocchi, Paolo

    2014-01-01

    The problem of probability interpretation was long overlooked before exploding in the 20th century, when the frequentist and subjectivist schools formalized two conflicting conceptions of probability. Beyond the radical followers of the two schools, a circle of pluralist thinkers tends to reconcile the opposing concepts. The author uses two theorems in order to prove that the various interpretations of probability do not come into opposition and can be used in different contexts. The goal here is to clarify the multifold nature of probability by means of a purely mathematical approach and to show how philosophical arguments can only serve to deepen actual intellectual contrasts. The book can be considered as one of the most important contributions in the analysis of probability interpretation in the last 10-15 years.

  2. Probability Estimates of Solar Proton Doses During Periods of Low Sunspot Number for Short Duration Missions

    Science.gov (United States)

    Atwell, William; Tylka, Allan J.; Dietrich, William F.; Rojdev, Kristina; Matzkind, Courtney

    2016-01-01

    In an earlier paper presented at ICES in 2015, we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the monthly smoothed sunspot number (SSN) was less than 30. Although such months are generally considered "solar-quiet", SPEs observed during these months even include Ground Level Events, the most energetic type of SPE. In this paper, we add to previous study those SPEs that occurred in 1973-2015 when the SSN was greater than 30 but less than 50. Based on the observable energy range of the solar protons, we classify the event as GLEs, sub-GLEs, and sub-sub-GLEs, all of which are potential contributors to the radiation hazard. We use the spectra of these events to construct a probabilistic model of the absorbed dose due to solar protons when SSN < 50 at various confidence levels for various depths of shielding and for various mission durations. We provide plots and tables of solar proton-induced absorbed dose as functions of confidence level, shielding thickness, and mission-duration that will be useful to system designers.

  3. Probabilities for gravitational lensing by point masses in a locally inhomogeneous universe

    International Nuclear Information System (INIS)

    Isaacson, J.A.; Canizares, C.R.

    1989-01-01

    Probability functions for gravitational lensing by point masses that incorporate Poisson statistics and flux conservation are formulated in the Dyer-Roeder construction. Optical depths to lensing for distant sources are calculated using both the method of Press and Gunn (1973) which counts lenses in an otherwise empty cone, and the method of Ehlers and Schneider (1986) which projects lensing cross sections onto the source sphere. These are then used as parameters of the probability density for lensing in the case of a critical (q0 = 1/2) Friedmann universe. A comparison of the probability functions indicates that the effects of angle-averaging can be well approximated by adjusting the average magnification along a random line of sight so as to conserve flux. 17 references

  4. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Masse, R.

    2006-01-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  5. Calculation of cranial nerve complication probability for acoustic neuroma radiosurgery

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Buatti, John M.; Foote, Kelly D.; Friedman, William A.; Bova, Francis J.

    2000-01-01

    Purpose: Estimations of complications from stereotactic radiosurgery usually rely simply on dose-volume or dose-diameter isoeffect curves. Due to the sparse clinical data available, these curves have typically not considered the target location in the brain, target histology, or treatment plan conformality as parameters in the calculation. In this study, a predictive model was generated to estimate the probability of cranial neuropathies as a result of acoustic schwannoma radiosurgery. Methods and Materials: The dose-volume histogram reduction scheme was used to calculate the normal tissue complication probability (NTCP) from brainstem dose-volume histograms. The model's fitting parameters were optimized to provide the best fit to the observed complication data for acoustic neuroma patients treated with stereotactic radiosurgery at the University of Florida. The calculation was then applied to the remainder of the patients in the database. Results: The best fit to our clinical data was obtained using n = 0.04, m = 0.15, and no. alphano. /no. betano. = 2.1 Gy -1 . Although the fitting parameter m is relatively consistent with ranges found in the literature, both the volume parameter, n, and no. alphano. /no. betano. are much smaller than the values quoted in the literature. The fit to our clinical data indicates that brainstem, or possibly a specific portion of the brainstem, is more radiosensitive than the parameters in the literature indicate, and that there is very little volume effect; in other words, irradiation of a small fraction of the brainstem yields NTCPs that are nearly as high as those calculated for entire volume irradiation. These new fitting parameters are specific to acoustic neuroma radiosurgery, and the small volume effect that we observe may be an artifact of the fixed relationship of acoustic tumors to specific regions of the brainstem. Applying the model to our patient database, we calculate an average NTCP of 7.2% for patients who had no

  6. Ruin probabilities

    DEFF Research Database (Denmark)

    Asmussen, Søren; Albrecher, Hansjörg

    The book gives a comprehensive treatment of the classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramér-Lundberg approximation, exact solutions, other approximations (e.g., for heavy-tailed claim size distributions), finite horizon ruin probabilities......, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation, periodicity, change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas, like queueing theory. In this substantially...... updated and extended second version, new topics include stochastic control, fluctuation theory for Levy processes, Gerber–Shiu functions and dependence....

  7. Collective dose commitments from nuclear power programmes

    International Nuclear Information System (INIS)

    Beninson, D.

    1977-01-01

    The concepts of collective dose and collective dose commitment are discussed, particularly regarding their use to compare the relative importance of the exposure from several radiation sources and to predict future annual doses from a continuing practice. The collective dose commitment contributions from occupational exposure and population exposure due to the different components of the nuclear power fuel cycle are evaluated. A special discussion is devoted to exposures delivered over a very long time by released radionuclides of long half-lives and to the use of the incomplete collective dose commitment. The maximum future annual ''per caput'' doses from present and projected nuclear power programmes are estimated

  8. Iterative reconstruction technique vs filter back projection: utility for quantitative bronchial assessment on low-dose thin-section MDCT in patients with/without chronic obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Hisanobu; Seki, Shinichiro; Sugimura, Kazuro [Kobe University Graduate School of Medicine, Division of Radiology, Department of Radiology, Kobe, Hyogo (Japan); Ohno, Yoshiharu; Nishio, Mizuho; Matsumoto, Sumiaki; Yoshikawa, Takeshi [Kobe University Graduate School of Medicine, Advanced Biomedical Imaging Research Centre, Kobe (Japan); Kobe University Graduate School of Medicine, Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe (Japan); Sugihara, Naoki [Toshiba Medical Systems Corporation, Ohtawara, Tochigi (Japan)

    2014-08-15

    The aim of this study was to evaluate the utility of the iterative reconstruction (IR) technique for quantitative bronchial assessment during low-dose computed tomography (CT) as a substitute for standard-dose CT in patients with/without chronic obstructive pulmonary disease. Fifty patients (mean age, 69.2; mean % predicted FEV1, 79.4) underwent standard-dose CT (150mAs) and low-dose CT (25mAs). Except for tube current, the imaging parameters were identical for both protocols. Standard-dose CT was reconstructed using filtered back-projection (FBP), and low-dose CT was reconstructed using IR and FBP. For quantitative bronchial assessment, the wall area percentage (WA%) of the sub-segmental bronchi and the airway luminal volume percentage (LV%) from the main bronchus to the peripheral bronchi were acquired in each dataset. The correlation and agreement of WA% and LV% between standard-dose CT and both low-dose CTs were statistically evaluated. WA% and LV% between standard-dose CT and both low-dose CTs were significant correlated (r > 0.77, p < 0.00001); however, only the LV% agreement between SD-CT and low-dose CT reconstructed with IR was moderate (concordance correlation coefficient = 0.93); the other agreement was poor (concordance correlation coefficient <0.90). Quantitative bronchial assessment via low-dose CT has potential as a substitute for standard-dose CT by using IR and airway luminal volumetry techniques. circle Quantitative bronchial assessment of COPD using low-dose CT is possible. (orig.)

  9. Interpretations of probability

    CERN Document Server

    Khrennikov, Andrei

    2009-01-01

    This is the first fundamental book devoted to non-Kolmogorov probability models. It provides a mathematical theory of negative probabilities, with numerous applications to quantum physics, information theory, complexity, biology and psychology. The book also presents an interesting model of cognitive information reality with flows of information probabilities, describing the process of thinking, social, and psychological phenomena.

  10. Skin damage probabilities using fixation materials in high-energy photon beams

    International Nuclear Information System (INIS)

    Carl, J.; Vestergaard, A.

    2000-01-01

    Patient fixation, such as thermoplastic masks, carbon-fibre support plates and polystyrene bead vacuum cradles, is used to reproduce patient positioning in radiotherapy. Consequently low-density materials may be introduced in high-energy photon beams. The aim of the this study was to measure the increase in skin dose when low-density materials are present and calculate the radiobiological consequences in terms of probabilities of early and late skin damage. An experimental thin-windowed plane-parallel ion chamber was used. Skin doses were measured using various overlaying low-density fixation materials. A fixed geometry of a 10 x 10 cm field, a SSD = 100 cm and photon energies of 4, 6 and 10 MV on Varian Clinac 2100C accelerators were used for all measurements. Radiobiological consequences of introducing these materials into the high-energy photon beams were evaluated in terms of early and late damage of the skin based on the measured surface doses and the LQ-model. The experimental ion chamber save results consistent with other studies. A relationship between skin dose and material thickness in mg/cm 2 was established and used to calculate skin doses in scenarios assuming radiotherapy treatment with opposed fields. Conventional radiotherapy may apply mid-point doses up to 60-66 Gy in daily 2-Gy fractions opposed fields. Using thermoplastic fixation and high-energy photons as low as 4 MV do increase the dose to the skin considerably. However, using thermoplastic materials with thickness less than 100 mg/cm 2 skin doses are comparable with those produced by variation in source to skin distance, field size or blocking trays within clinical treatment set-ups. The use of polystyrene cradles and carbon-fibre materials with thickness less than 100 mg/cm 2 should be avoided at 4 MV at doses above 54-60 Gy. (author)

  11. Responses of some normal tissues to low doses of γ-radiation

    International Nuclear Information System (INIS)

    Withers, H.R.

    1975-01-01

    The response of four normal tissues to low doses of γ-radiation was measured in mice using three indirect methods. The survival curves for cells of the tissues studied (colon, jejunum, testis and haemoleucopoietic system) may be exponential over an uncertain dose range (from zero to between 100 to 230 rad), the slope being about one third of that in the high-dose region. Some of the uncertainties in the data probably reflect variations in age-density distribution. (author)

  12. Projection of Korean Probable Maximum Precipitation under Future Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Okjeong Lee

    2016-01-01

    Full Text Available According to the IPCC Fifth Assessment Report, air temperature and humidity of the future are expected to gradually increase over the current. In this study, future PMPs are estimated by using future dew point temperature projection data which are obtained from RCM data provided by the Korea Meteorological Administration. First, bias included in future dew point temperature projection data which is provided on a daily basis is corrected through a quantile-mapping method. Next, using a scale-invariance technique, 12-hour duration 100-year return period dew point temperatures which are essential input data for PMPs estimation are estimated from bias-corrected future dew point temperature data. After estimating future PMPs, it can be shown that PMPs in all future climate change scenarios (AR5 RCP2.6, RCP 4.5, RCP 6.0, and RCP 8.5 are very likely to increase.

  13. Dose-response relationship for breast cancer induction at radiotherapy dose

    Directory of Open Access Journals (Sweden)

    Gruber Günther

    2011-06-01

    Full Text Available Abstract Purpose Cancer induction after radiation therapy is known as a severe side effect. It is therefore of interest to predict the probability of second cancer appearance for the patient to be treated including breast cancer. Materials and methods In this work a dose-response relationship for breast cancer is derived based on (i the analysis of breast cancer induction after Hodgkin's disease, (ii a cancer risk model developed for high doses including fractionation based on the linear quadratic model, and (iii the reconstruction of treatment plans for Hodgkin's patients treated with radiotherapy, (iv the breast cancer induction of the A-bomb survivor data. Results The fitted model parameters for an α/β = 3 Gy were α = 0.067Gy-1 and R = 0.62. The risk for breast cancer is according to this model for small doses consistent with the finding of the A-bomb survivors, has a maximum at doses of around 20 Gy and drops off only slightly at larger doses. The predicted EAR for breast cancer after radiotherapy of Hodgkin's disease is 11.7/10000PY which can be compared to the findings of several epidemiological studies where EAR for breast cancer varies between 10.5 and 29.4/10000PY. The model was used to predict the impact of the reduction of radiation volume on breast cancer risk. It was estimated that mantle field irradiation is associated with a 3.2-fold increased risk compared with mediastinal irradiation alone, which is in agreement with a published value of 2.7. It was also shown that the modelled age dependency of breast cancer risk is in satisfying agreement with published data. Conclusions The dose-response relationship obtained in this report can be used for the prediction of radiation induced secondary breast cancer of radiotherapy patients.

  14. Gastrointestinal toxicity and its relation to dose distributions in the anorectal region of prostate cancer patients treated with radiotherapy

    International Nuclear Information System (INIS)

    Heemsbergen, Wilma D.; Hoogeman, Mischa S.; Hart, Guus A.M.; Lebesque, Joos V.; Koper, Peter C.M.

    2005-01-01

    Purpose: To study the correlations between the dose distributions in the anorectal region and late GI symptoms in patients treated for localized prostate carcinoma. Methods and materials: Data from a randomized study were analyzed. In this trial, patients were treated with either rectangular or conformal fields with a dose of 66 Gy. Data concerning GI symptoms were collected from questionnaires of 197 patients. The distributions of the anorectal region were projected on maps, and the dose parameters were calculated. The incidences of complaints were studied as a function of the dose-area parameters and clinical parameters, using a proportional hazard regression model. Finally, we tested a series of dose parameters originating from different parts of the anorectal region. Results: Analyzing the total region, only a statistically significant dose-area effect relation for bleeding was found (p < 0.01). Defining subareas, we found effect relations for bleeding, soiling, fecal incontinence, and mucus loss. For bleeding and mucus loss, the strongest correlation was found for the dose received by the upper 70-80% of the anorectal region (p < 0.01). For soiling and fecal incontinence, we found the strongest association with the dose to the lower 40-50% (p < 0.05). Conclusion: We found evidence that complaints originate from specific regions of the irradiated lower GI tract. Bleeding and mucus loss are probably related to irradiation of the upper part of the rectum. Soiling and fecal incontinence are more likely related to the dose to the anal canal and the lower part of the rectum

  15. Entrance and peripheral dose measurements during radiotherapy

    International Nuclear Information System (INIS)

    Sulieman, A.; Kappas, K.; Theodorou, K.

    2008-01-01

    In vivo dosimetry of entrance dose was performed using thermoluminescent dosimeters (TLD) in order to evaluate the clinical application of the build up caps in patient dose measurements and for different treatment techniques. Peripheral dose (thyroid and skin) was measured for patients during breast radiotherapy to evaluate the probability of secondary cancer induction. TLD-100 chips were used with different Copper build up caps (for 6 MV and 15 MV photon beams from two linear accelerators. Entrance doses were measured for patients during radiotherapy course for breast, head and neck, abdomen and pelvis malignancies. The measured entrance dose for the different patients for 6 MV beams is found to be within the ±2.6% compared to the dose derived from theoretical estimation (normalized dose at D max ). The same measurements for 15 MV beams are found to be ±3 %. The perturbation value can reach up to 20% of the D max , which acts as a limitation for entrance dose measurements. An average thyroid skin dose of 3.7% of the prescribed dose was measured per treatment session while the mean skin dose breast treatment session is estimated to be 42% of D max , for both internal and external fields. These results are comparable in those of the in vivo of reported in literature. The risk of fatality due to thyroid cancer per treatment course is 3x10 -3

  16. THE CALCULATION OF FAST-NEUTRON ATTENUATION PROBABILITIES THROUGH A NINE- INCH POLYETHYLENE SLAB AND COMPARISON WITH EXPERIMENTAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, L. G.

    1963-06-15

    Calculations of neutron penetration probabilities were performed to evaluate the Monte Carlo Multilayer Slab Penetration Procedure. A 9-in. polyethylene alab was chosen for the calculations and results were compared with experimental data. The calculated and measured dose rates agree within 20% for all exit polar angles. The calculations indicate that incident neutrons with energies less than 2.5 Mev do not contribute significantly to the transmitted dose rate. (auth)

  17. Probability density of wave function of excited photoelectron: understanding XANES features

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej

    2001-01-01

    Roč. 8, - (2001), s. 232-234 ISSN 0909-0495 R&D Projects: GA ČR GA202/99/0404 Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : XANES * PED - probability density of wave function Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.519, year: 2001

  18. An explanation for the multiplicative and the additive dose-effect relationship with the single-hit model

    International Nuclear Information System (INIS)

    Kottbauer, M.M.; Fleck, C.M.; Schoellnberger, H.

    1997-01-01

    For solid tumors and for leukemia the excess cancer rate after a single radiation dose D is different. The multiplicative model describes the excess solid tumor probability rate which is proportional to the background rate of cancer and dependent on dose D. The additive model describes the excess probability rate for leukaemia which is proportional to the dose D but unrelated to the spontaneous rate of cancer. A second great difference between the two models is the duration of the increased cancer probability rate. The multiplicative mode predicts that the additional cancer risk persist the whole lifetime after exposure and the additive model predicts excess risk over a period of time. With the Single-hit model (SHM) which is a multistage cancer model both dose-response relationships can be described. It will be shown that only small differences in the derivation will lead to the different relationships. We then analyze the incidence data of leukemia (1950-1987) and of all solid tumors (1958-1987) of the atomic bomb survivors. (author)

  19. Probability as a conceptual hurdle to understanding one-dimensional quantum scattering and tunnelling

    International Nuclear Information System (INIS)

    Domert, Daniel; Linder, Cedric; Ingerman, Ake

    2005-01-01

    This paper draws on part of a larger project looking at university students' learning difficulties associated with quantum mechanics. Here an unexpected and interesting aspect was brought to the fore while students were discussing a computer simulation of one-dimensional quantum scattering and tunnelling. In these explanations the most dominant conceptual hurdle that emerged in the students' explanations was centred around the notion of probability. To explore this further, categories of description of the variation in the understanding of probability were constituted. The analysis reported is done in terms of the various facets of probability encountered in the simulation and characterizes dynamics of this conceptual hurdle to appropriate understanding of the scattering and tunnelling process. Pedagogical implications are discussed

  20. Occupational doses and impact on fusion economics

    International Nuclear Information System (INIS)

    Mustoe, J.; Currie, I.D.; Frias, M. Pascual

    2001-01-01

    As part of the SEAFP-99 programme, water cooled and helium cooled fusion power plant design concepts were assessed with regard to occupational doses and related availability and operating costs. Different design and management measures to reduce occupational doses were considered. This task assessed the existing designs and proposed extensions or changes, where required. For each significant contributor, possible methods were specified which could reduce the operator dose and outage time. Where this was the case expected; costs or savings incurred by the improvement were estimated. Overall, the use of a system to remove particulate corrosion product activity from the primary coolant was considered essential for the water-cooled variant. In addition, application of the most up-to-date ALARA techniques could make the estimated dose for the water-cooled conceptual design appreciably lower than earlier estimated. It was concluded that the water cooled conceptual design could meet the project design target for occupational dose of 0.7 p-Sv per GW(e). A survey of occupational doses from the UK AGR plants was also carried out. From this, it is judged that the helium cooled fusion plant conceptual design could meet the project design target for occupational dose of 0.7 p-Sv per GW(e) without the need for additional plant to reduce primary coolant activity levels

  1. External dose measurements for patients receiving therapeutic I-131 for thyroid cancer

    International Nuclear Information System (INIS)

    Molfetas, M.; Kottou, S.

    2002-01-01

    Iodine-131 is a well established and effective treatment, supplementing surgery, in differentiated thyroid carcinoma. Iodine-131 except from its β-emission, that generates a cell-killing effect in a small area, has also a γ-emission irradiating distant tissues and even people who are close enough with the treated patient. The International Commission on Radiation Protection, ICRP has estimated the probability of a radiation-induced fatal cancer for the whole population at 5.0 % per sievert for low doses and at low dose rates and at 1.3 % for serious genetic diseases. For elderly people the probability seems to be 3 to 10 times lower, whereas for children up to the age of 10 years, 2-3 times higher. These findings led the ICRP to recommend new dose limits, lower than the previous ones. The European Union has endorsed the ICRP recommendations and the Council issued two directives, with which the Greek legislation complied recently. The current annual public dose limit is 1 mSv, while in the new Greek legislation the concept of dose constrains (0.5 m Sv in Greece) has also been proposed as a goal to reach whenever possible

  2. Dose-Response Calculator for ArcGIS

    Science.gov (United States)

    Hanser, Steven E.; Aldridge, Cameron L.; Leu, Matthias; Nielsen, Scott E.

    2011-01-01

    The Dose-Response Calculator for ArcGIS is a tool that extends the Environmental Systems Research Institute (ESRI) ArcGIS 10 Desktop application to aid with the visualization of relationships between two raster GIS datasets. A dose-response curve is a line graph commonly used in medical research to examine the effects of different dosage rates of a drug or chemical (for example, carcinogen) on an outcome of interest (for example, cell mutations) (Russell and others, 1982). Dose-response curves have recently been used in ecological studies to examine the influence of an explanatory dose variable (for example, percentage of habitat cover, distance to disturbance) on a predicted response (for example, survival, probability of occurrence, abundance) (Aldridge and others, 2008). These dose curves have been created by calculating the predicted response value from a statistical model at different levels of the explanatory dose variable while holding values of other explanatory variables constant. Curves (plots) developed using the Dose-Response Calculator overcome the need to hold variables constant by using values extracted from the predicted response surface of a spatially explicit statistical model fit in a GIS, which include the variation of all explanatory variables, to visualize the univariate response to the dose variable. Application of the Dose-Response Calculator can be extended beyond the assessment of statistical model predictions and may be used to visualize the relationship between any two raster GIS datasets (see example in tool instructions). This tool generates tabular data for use in further exploration of dose-response relationships and a graph of the dose-response curve.

  3. Estimation of Absorbed Dose in Occlusal Radiography

    International Nuclear Information System (INIS)

    Yoo, Young Ah; Choi, Karp Shick; Lee, Sang Han

    1990-01-01

    The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-210 Head and Neck Section R, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70 Kvp and 15 mA, 1/4 second (8 inch cone ) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In Mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  4. Calculating radiation exposure and dose

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    This paper discusses the methods and procedures used to calculate the radiation exposures and radiation doses to designated employees of the Olympic Dam Project. Each of the three major exposure pathways are examined. These are: gamma irradiation, radon daughter inhalation and radioactive dust inhalation. A further section presents ICRP methodology for combining individual pathway exposures to give a total dose figure. Computer programs used for calculations and data storage are also presented briefly

  5. Use of dose constraints for occupational exposure

    International Nuclear Information System (INIS)

    Kaijage, Tunu

    2015-02-01

    The use of dose constraints for occupational exposure was reviewed in this project. The role of dose constraints as used in optimization of protection of workers was described. Different issues to be considered in application of the concept and challenges associated with their implementation were also discussed. The situation where dose constraints could be misinterpreted to dose limits is also explained as the two are clearly differentiated by the International Commission of Radiological Protection (ICRP) Publication 103. Moreover, recommendations to all parties responsible for protection and safety of workers were discussed. (au)

  6. The international Chernobyl project

    International Nuclear Information System (INIS)

    1991-01-01

    This article summarizes the official report of the International Advisory Committee at the conference of the International Chernobyl Project held in Vienna, May 1991. More details will be found in the actual report, ''The International Chernobyl Project: An Overview'' (INI22:066284/5). Measurements and assessments carried out under the project provided general corroboration of the levels of surface cesium-137 contamination reported in the official maps. The project also concluded that the official procedures for estimating radiation doses to the population were scientifically sound, although they generally resulted in overestimates of two- to threefold. The project could find no marked increase in the incidence of leukemia or cancer, but reported absorbed thyroid doses in children might lead to a statistically detectable rise in the incidence of thyroid tumors. Significant non-radiation-related health disorders were found, and the accident had substantial psychological consequences in terms of anxiety and stress. The project concluded that the protective measures taken were too extreme, and that population relocation and foodstuff restrictions should have been less extensive

  7. Improving Ranking Using Quantum Probability

    OpenAIRE

    Melucci, Massimo

    2011-01-01

    The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of ...

  8. Assessment at the 66. day of projected external doses for populations living in the North-West fallout zone of the Fukushima nuclear accident. Impact of population evacuation measures

    International Nuclear Information System (INIS)

    2011-01-01

    This document reports a dose assessment study performed by the IRSN (the French Radioprotection and Safety Nuclear Institute) 66 days after the Fukushima nuclear accident. A new dose assessment was carried out by IRSN to estimate projected doses due to external exposure from radioactive deposits, for exposure durations of 3 months, 1 year and 4 years before evacuation. The purpose of this report is to provide insight on all radiological assessments performed to the knowledge of the IRSN (the French Radioprotection and Safety Nuclear Institute) to date and the impact of population evacuation measures to be taken to minimize the medium and long-term risks of developing leukaemia or other radiation-induced cancers. This report only considers the external doses already received as well as the doses that may be received in the future from fallout deposits, regardless of doses received previously from the radioactive plume

  9. Radiation absorbed doses at radiographic examination of third molars

    International Nuclear Information System (INIS)

    Rehnmark-Larsson, S.; Stenstroem, B.; Julin, P.; Richter, S.; Huddinge University Hospital

    1981-01-01

    The radiation absorbed doses to critical organs, i.e. the thyroid and salivary glands and the gonadal region, were measured at radiographic examination of third molars. A tissue equivalent phantom was used together with ionization chamber detectors and TLDs. The greatest thyroid dose, 35 μGy, came from a mandibular disto-oblique projection with the circular tube collimator and Ultra-Speed film. The doses in different parts of the parotid gland from the disto-oblique mandibular projection with Ultra-Speed film ranged between 2.65 and 0.052 mGy. the corresponding doses in the submandibular gland were 1.74 mGy beneath the mandible and 0.458 mGy in the fovea. A rectangular tube collimator reduced the doses by approximately 50 %. The Ekta-Speed film requirted approximately 40 % lower exposure than the Ultra-Speed film. A horizontal radiation shield reduced the thyroid doses by between 12 and 46 % and the gonadal doses by between 50 and 95 %. The reduction effect from the shield was relatively greater when using the larger aperture of the tube collimator. Combinations of leaded aprons and soft leaded collars reduced the thyroid doses between 15 and 42 % and the gonadal doses by two orders of magnitude. (Authors)

  10. A fluctuation relation for the probability of energy backscatter

    Science.gov (United States)

    Vela-Martin, Alberto; Jimenez, Javier

    2017-11-01

    We simulate the large scales of an inviscid turbulent flow in a triply periodic box using a dynamic Smagorinsky model for the sub-grid stresses. The flow, which is forced to constant kinetic energy, is fully reversible and can develop a sustained inverse energy cascade. However, due to the large number of degrees freedom, the probability of spontaneous mean inverse energy flux is negligible. In order to quantify the probability of inverse energy cascades, we test a local fluctuation relation of the form log P(A) = - c(V , t) A , where P(A) = p(| Cs|V,t = A) / p(| Cs|V , t = - A) , p is probability, and | Cs|V,t is the average of the least-squared dynamic model coefficient over volume V and time t. This is confirmed when Cs is averaged over sufficiently large domains and long times, and c is found to depend linearly on V and t. In the limit in which V 1 / 3 is of the order of the integral scale and t is of the order of the eddy-turnover time, we recover a global fluctuation relation that predicts a negligible probability of a sustained inverse energy cascade. For smaller V and t, the local fluctuation relation provides useful predictions on the occurrence of local energy backscatter. Funded by the ERC COTURB project.

  11. Inhomogeneous target-dose distributions: a dimension more for optimization?

    International Nuclear Information System (INIS)

    Gersem, Werner R.T. de; Derycke, Sylvie; Colle, Christophe O.; Wagter, Carlos de; Neve, Wilfried J. de

    1999-01-01

    Purpose: To evaluate if the use of inhomogeneous target-dose distributions, obtained by 3D conformal radiotherapy plans with or without beam intensity modulation, offers the possibility to decrease indices of toxicity to normal tissues and/or increase indices of tumor control stage III non-small cell lung cancer (NSCLC). Methods and Materials: Ten patients with stage III NSCLC were planned using a conventional 3D technique and a technique involving noncoplanar beam intensity modulation (BIM). Two planning target volumes (PTVs) were defined: PTV1 included macroscopic tumor volume and PTV2 included macroscopic and microscopic tumor volume. Virtual simulation defined the beam shapes and incidences as well as the wedge orientations (3D) and segment outlines (BIM). Weights of wedged beams, unwedged beams, and segments were determined by optimization using an objective function with a biological and a physical component. The biological component included tumor control probability (TCP) for PTV1 (TCP1), PTV2 (TCP2), and normal tissue complication probability (NTCP) for lung, spinal cord, and heart. The physical component included the maximum and minimum dose as well as the standard deviation of the dose at PTV1. The most inhomogeneous target-dose distributions were obtained by using only the biological component of the objective function (biological optimization). By enabling the physical component in addition to the biological component, PTV1 inhomogeneity was reduced (biophysical optimization). As indices for toxicity to normal tissues, NTCP-values as well as maximum doses or dose levels to relevant fractions of the organ's volume were used. As indices for tumor control, TCP-values as well as minimum doses to the PTVs were used. Results: When optimization was performed with the biophysical as compared to the biological objective function, the PTV1 inhomogeneity decreased from 13 (8-23)% to 4 (2-9)% for the 3D-(p = 0.00009) and from 44 (33-56)% to 20 (9-34)% for the BIM

  12. Analysis of Electronic Densities and Integrated Doses in Multiform Glioblastomas Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Baron-Aznar, C.; Moreno-Jimenez, S.; Celis, M. A.; Ballesteros-Zebadua, P.; Larraga-Gutierrez, J. M.

    2008-01-01

    Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScan(c) software, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed

  13. Calculating the Probability of Returning a Loan with Binary Probability Models

    Directory of Open Access Journals (Sweden)

    Julian Vasilev

    2014-12-01

    Full Text Available The purpose of this article is to give a new approach in calculating the probability of returning a loan. A lot of factors affect the value of the probability. In this article by using statistical and econometric models some influencing factors are proved. The main approach is concerned with applying probit and logit models in loan management institutions. A new aspect of the credit risk analysis is given. Calculating the probability of returning a loan is a difficult task. We assume that specific data fields concerning the contract (month of signing, year of signing, given sum and data fields concerning the borrower of the loan (month of birth, year of birth (age, gender, region, where he/she lives may be independent variables in a binary logistics model with a dependent variable “the probability of returning a loan”. It is proved that the month of signing a contract, the year of signing a contract, the gender and the age of the loan owner do not affect the probability of returning a loan. It is proved that the probability of returning a loan depends on the sum of contract, the remoteness of the loan owner and the month of birth. The probability of returning a loan increases with the increase of the given sum, decreases with the proximity of the customer, increases for people born in the beginning of the year and decreases for people born at the end of the year.

  14. Pulsed dose rate and fractionated high dose rate brachytherapy: choice of brachytherapy schedules to replace low dose rate treatments

    International Nuclear Information System (INIS)

    Visser, Andries G.; Aardweg, Gerard J.M.J. van den; Levendag, Peter C.

    1996-01-01

    Purpose: Pulsed dose rate (PDR) brachytherapy is a new type of afterloading brachytherapy (BT) in which a continuous low dose rate (LDR) treatment is simulated by a series of 'pulses,' i.e., fractions of short duration (less than 0.5 h) with intervals between fractions of 1 to a few hours. At the Dr. Daniel den Hoed Cancer Center, the term 'PDR brachytherapy' is used for treatment schedules with a large number of fractions (at least four per day), while the term 'fractionated high dose rate (HDR) brachytherapy' is used for treatment schedules with just one or two brachytherapy fractions per day. Both treatments can be applied as alternatives for LDR BT. This article deals with the choice between PDR and fractionated HDR schedules and proposes possible fractionation schedules. Methods and Materials: To calculate HDR and PDR fractionation schedules with the intention of being equivalent to LDR BT, the linear-quadratic (LQ) model has been used in an incomplete repair formulation as given by Brenner and Hall, and by Thames. In contrast to earlier applications of this model, both the total physical dose and the overall time were not kept identical for LDR and HDR/PDR schedules. A range of possible PDR treatment schedules is presented, both for booster applications (in combination with external radiotherapy (ERT) and for BT applications as a single treatment. Because the knowledge of both α/β values and the half time for repair of sublethal damage (T (1(2)) ), which are required for these calculations, is quite limited, calculations regarding the equivalence of LDR and PDR treatments have been performed for a wide range of values of α/β and T (1(2)) . The results are presented graphically as PDR/LDR dose ratios and as ratios of the PDR/LDR tumor control probabilities. Results: If the condition that total physical dose and overall time of a PDR treatment must be exactly identical to the values for the corresponding LDR treatment regimen is not applied, there appears

  15. WE-AB-207B-11: Optimizing Tumor Control Probability in Radiation Therapy Treatment - Application to HDR Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E [Georgia Institute of Technology, Atlanta, GA (Georgia); Yuan, F [Georgia Institute of Technology, Atlanta, GEORGIA (United States); Templeton, A [Rush University Medical Center, Chicago, IL (United States); Yao, R [Columbus Regional Healthcare, Columbus, GA (United States); Chu, J [Rush University Medical Center, Oak Brook, IL (United States)

    2016-06-15

    Purpose: The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor-control-probability(TCP) with an acceptable normal-tissue-complication probability(NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. We design treatment plans that optimize TCP directly and contrast them with the clinical dose-based plans. PET image is incorporated to evaluate gain in TCP for dose escalation. Methods: We build a nonlinear mixed integer programming optimization model that maximizes TCP directly while satisfying the dose requirements on the targeted organ and healthy tissues. The solution strategy first fits the TCP function with a piecewise-linear approximation, then solves the problem that maximizes the piecewise linear approximation of TCP, and finally performs a local neighborhood search to improve the TCP value. To gauge the feasibility, characteristics, and potential benefit of PET-image guided dose escalation, initial validation consists of fifteen cervical cancer HDR patient cases. These patients have all received prior 45Gy of external radiation dose. For both escalated strategies, we consider 35Gy PTV-dose, and two variations (37Gy-boost to BTV vs 40Gy-boost) to PET-image-pockets. Results: TCP for standard clinical plans range from 59.4% - 63.6%. TCP for dose-based PET-guided escalated-dose-plan ranges from 63.8%–98.6% for all patients; whereas TCP-optimized plans achieves over 91% for all patients. There is marginal difference in TCP among those with 37Gy-boosted vs 40Gy-boosted. There is no increase in rectum and bladder dose among all plans. Conclusion: Optimizing TCP directly results in highly conformed treatment plans. The TCP-optimized plan is individualized based on the biological PET-image of the patients. The TCP-optimization framework is generalizable and has been applied successfully to other

  16. WE-AB-207B-11: Optimizing Tumor Control Probability in Radiation Therapy Treatment - Application to HDR Cervical Cancer

    International Nuclear Information System (INIS)

    Lee, E; Yuan, F; Templeton, A; Yao, R; Chu, J

    2016-01-01

    Purpose: The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor-control-probability(TCP) with an acceptable normal-tissue-complication probability(NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. We design treatment plans that optimize TCP directly and contrast them with the clinical dose-based plans. PET image is incorporated to evaluate gain in TCP for dose escalation. Methods: We build a nonlinear mixed integer programming optimization model that maximizes TCP directly while satisfying the dose requirements on the targeted organ and healthy tissues. The solution strategy first fits the TCP function with a piecewise-linear approximation, then solves the problem that maximizes the piecewise linear approximation of TCP, and finally performs a local neighborhood search to improve the TCP value. To gauge the feasibility, characteristics, and potential benefit of PET-image guided dose escalation, initial validation consists of fifteen cervical cancer HDR patient cases. These patients have all received prior 45Gy of external radiation dose. For both escalated strategies, we consider 35Gy PTV-dose, and two variations (37Gy-boost to BTV vs 40Gy-boost) to PET-image-pockets. Results: TCP for standard clinical plans range from 59.4% - 63.6%. TCP for dose-based PET-guided escalated-dose-plan ranges from 63.8%–98.6% for all patients; whereas TCP-optimized plans achieves over 91% for all patients. There is marginal difference in TCP among those with 37Gy-boosted vs 40Gy-boosted. There is no increase in rectum and bladder dose among all plans. Conclusion: Optimizing TCP directly results in highly conformed treatment plans. The TCP-optimized plan is individualized based on the biological PET-image of the patients. The TCP-optimization framework is generalizable and has been applied successfully to other

  17. Probable reasons of thyroid gland diseases in people suffered from Chernobyl accident

    International Nuclear Information System (INIS)

    Poverennyj, A.M.; Ryabukhin, Yu.S.; Tsyb, A.F.

    1994-01-01

    Ideas about the thyroid gland diseases development in people suffered from the Chernobyl accident explaining the absence of straight dose dependence of pathologies raise from the irradiation were elaborated. It is supposed that the probable reason for a number of these pathologies can be the unadecvate and inopportune preventive iodine administration. A simple immunological method of autoimmune thyroiditis diagnostics was developed which informativity is comparable with the method of ultra-sound diagnosis

  18. On the Possibility of Assigning Probabilities to Singular Cases, or: Probability Is Subjective Too!

    Directory of Open Access Journals (Sweden)

    Mark R. Crovelli

    2009-06-01

    Full Text Available Both Ludwig von Mises and Richard von Mises claimed that numerical probability could not be legitimately applied to singular cases. This paper challenges this aspect of the von Mises brothers’ theory of probability. It is argued that their denial that numerical probability could be applied to singular cases was based solely upon Richard von Mises’ exceptionally restrictive definition of probability. This paper challenges Richard von Mises’ definition of probability by arguing that the definition of probability necessarily depends upon whether the world is governed by time-invariant causal laws. It is argued that if the world is governed by time-invariant causal laws, a subjective definition of probability must be adopted. It is further argued that both the nature of human action and the relative frequency method for calculating numerical probabilities both presuppose that the world is indeed governed by time-invariant causal laws. It is finally argued that the subjective definition of probability undercuts the von Mises claim that numerical probability cannot legitimately be applied to singular, non-replicable cases.

  19. A novel method for the evaluation of uncertainty in dose-volume histogram computation.

    Science.gov (United States)

    Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas

    2008-03-15

    Dose-volume histograms (DVHs) are a useful tool in state-of-the-art radiotherapy treatment planning, and it is essential to recognize their limitations. Even after a specific dose-calculation model is optimized, dose distributions computed by using treatment-planning systems are affected by several sources of uncertainty, such as algorithm limitations, measurement uncertainty in the data used to model the beam, and residual differences between measured and computed dose. This report presents a novel method to take them into account. To take into account the effect of associated uncertainties, a probabilistic approach using a new kind of histogram, a dose-expected volume histogram, is introduced. The expected value of the volume in the region of interest receiving an absorbed dose equal to or greater than a certain value is found by using the probability distribution of the dose at each point. A rectangular probability distribution is assumed for this point dose, and a formulation that accounts for uncertainties associated with point dose is presented for practical computations. This method is applied to a set of DVHs for different regions of interest, including 6 brain patients, 8 lung patients, 8 pelvis patients, and 6 prostate patients planned for intensity-modulated radiation therapy. Results show a greater effect on planning target volume coverage than in organs at risk. In cases of steep DVH gradients, such as planning target volumes, this new method shows the largest differences with the corresponding DVH; thus, the effect of the uncertainty is larger.

  20. Determination of tolerance dose uncertainties and optimal design of dose response experiments with small animal numbers

    International Nuclear Information System (INIS)

    Karger, C.P.; Hartmann, G.H.

    2001-01-01

    Background: Dose response experiments aim to determine the complication probability as a function of dose. Adjusting the parameters of the frequently used dose response model P(D)=1/[1+(D 50 /D) k ] to the experimental data, 2 intuitive quantities are obtained: The tolerance dose D 50 and the slope parameter k. For mathematical reasons, however, standard statistic software uses a different set of parameters. Therefore, the resulting fit parameters of the statistic software as well as their standard errors have to be transformed to obtain D 50 and k as well as their standard errors. Material and Methods: The influence of the number of dose levels on the uncertainty of the fit parameters is studied by a simulation for a fixed number of animals. For experiments with small animal numbers, statistical artifacts may prevent the determination of the standard errors of the fit parameters. Consequences on the design of dose response experiments are investigated. Results: Explicit formulas are presented, which allow to calculate the parameters D 50 and k as well as their standard errors from the output of standard statistic software. The simulation shows, that the standard errors of the resulting parameters are independent of the number of dose levels, as long as the total number of animals involved in the experiment, remains constant. Conclusion: Statistical artifacts in experiments containing small animal numbers may be prevented by an adequate design of the experiment. For this, it is suggested to select a higher number of dose levels, rather than using a higher number of animals per dose level. (orig.) [de

  1. The dose dependency of the over-dispersion of quartz OSL single grain dose distributions

    International Nuclear Information System (INIS)

    Thomsen, Kristina J.; Murray, Andrew; Jain, Mayank

    2012-01-01

    The use of single grain quartz OSL dating has become widespread over the past decade, particularly with application to samples likely to have been incompletely bleached before burial. By reducing the aliquot size to a single grain the probability of identifying the grain population most likely to have been well-bleached at deposition is maximised and thus the accuracy with which the equivalent dose can be determined is – at least in principle – improved. However, analysis of single grain dose distributions requires knowledge of the dispersion of the well-bleached part of the dose distribution. This can be estimated by measurement of a suitable analogue, e.g. a well-bleached aeolian sample, but this requires such an analogue to be available, and in addition the assumptions that the sample is in fact a) well-bleached, and b) has a similar dose rate heterogeneity to the fossil deposit. Finally, it is an implicit assumption in such analysis that any over-dispersion is not significantly dose dependent. In this study we have undertaken laboratory investigations of the dose dependency of over-dispersion using a well-bleached modern sample with an average measured dose of 36 ± 3 mGy. This sample was prepared as heated (750 °C for 1 h), bleached and untreated portions which were then given uniform gamma doses ranging from 100 mGy to 208 Gy. We show that for these samples the relative laboratory over-dispersion is not constant as a function of dose and that the over-dispersion is smaller in heated samples. We also show that the dim grains in the distributions have a greater over-dispersion than the bright grains, implying that insensitive samples will have greater values of over-dispersion than sensitive samples.

  2. High-dose irradiation of food

    International Nuclear Information System (INIS)

    Diehl, J.F.

    1999-01-01

    Studies performed on behalf of the International Project on Food Irradiation in the period from 1971 until 1980 resulted in the concluding statement that ''.the irradiation of any food commodity up to an overall average dose of 10 kGy presents no toxicological hazard; hence, toxicological testing of foods so treated is no longer required.'' Since then, licenses for food irradiation have been restricted to this maximum dose in any country applying this technology. Further testing programmes have been carried out investigating the wholesomeness or hazards of high-dose irradiation, but there has been little demand so far by the food industry for licensing of high-dose irradiation, as there is only a small range of products whose irradiation at higher doses offers advantages for given, intended use. These include eg. spices, dried herbs, meat products in flexible pouch packagings for astronauts, or patients with immune deficiencies. (orig./CB) [de

  3. Evaluation of skin entrance radiation dose in pediatric patients undergoing chest X-rays exams; Avaliacao da dose de entrada na pele em pacientes pediatricos submetidos a exames radiograficos do torax

    Energy Technology Data Exchange (ETDEWEB)

    Gabardo, Farly Piantini

    2016-07-01

    The aim of this work was to estimate the incident air kerma of lateral (LAT) and anterior-posterior (AP) together with posterior-anterior (PA) projection chest X-ray exams in one of the largest pediatric hospitals in Brazil. Dosimetric results are accompanied with the detailed analysis of patient characteristics and radiographer strategy. The exams of 225 (119 male and 106 female) patients were studied and 389 X-ray exams (200 AP/PA projections and 189 LAT projections) of pediatric patients were acquired. Patient thickness can be restored from age, height or weight with the uncertainty of ∼20-30%. Very slight correlation between the patient dose and thickness was observed with the difference in dose for patients of the same thickness reaching 4 times. By standardization of radiological protocols, it should be possible to keep dose within the intervals 50-100 μGy for LAT projection and 40-80 μGy for AP/PA projection. The dose values are lower than those recommended by major European guidelines to good practice. (author)

  4. Frequency, probability, and prediction: easy solutions to cognitive illusions?

    Science.gov (United States)

    Griffin, D; Buehler, R

    1999-02-01

    Many errors in probabilistic judgment have been attributed to people's inability to think in statistical terms when faced with information about a single case. Prior theoretical analyses and empirical results imply that the errors associated with case-specific reasoning may be reduced when people make frequentistic predictions about a set of cases. In studies of three previously identified cognitive biases, we find that frequency-based predictions are different from-but no better than-case-specific judgments of probability. First, in studies of the "planning fallacy, " we compare the accuracy of aggregate frequency and case-specific probability judgments in predictions of students' real-life projects. When aggregate and single-case predictions are collected from different respondents, there is little difference between the two: Both are overly optimistic and show little predictive validity. However, in within-subject comparisons, the aggregate judgments are significantly more conservative than the single-case predictions, though still optimistically biased. Results from studies of overconfidence in general knowledge and base rate neglect in categorical prediction underline a general conclusion. Frequentistic predictions made for sets of events are no more statistically sophisticated, nor more accurate, than predictions made for individual events using subjective probability. Copyright 1999 Academic Press.

  5. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    Science.gov (United States)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.

  6. Biological evidence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Mirsch, Johanna

    2017-01-01

    Throughout life, every person is constantly exposed to different types of ionising radiation, without even noticing the exposure. The mean radiation exposure for people living in Germany amounts to approximately 4 mSv per year and encompasses the exposure from natural and man-made sources. The risks associated with exposure to low doses of radiation are still the subject of intense and highly controversial discussions, emphasizing the social relevance of studies investigating the effects of low radiation doses. In this thesis, DNA double-strand breaks (DSBs) were analyzed within three projects covering different aspects. DSBs are among the most hazardous DNA lesions induced by ionizing radiation, because this type of damage can easily lead to the loss of genetic information. Consequently, the DSB presents a high risk for the genetic integrity of the cell. In the first project, extensive results uncovered the track structure of charged particles in a biological model tissue. This provided the first biological data that could be used for comparison with data that were measured or predicted using theoretical physical dosimetry methods and mathematical simulations. Charged particles contribute significantly to the natural radiation exposure and are used increasingly in cancer radiotherapy because they are more efficient in tumor cell killing than X- or γ-rays. The difference in the biological effects of high energy charged particles compared with X- or γ-rays is largely determined by the spatial distribution of their energy deposition and the track structure inducing a three-dimensional damage pattern in living cells. This damage pattern consists of cells directly hit by the particle receiving a high dose and neighboring cells not directly hit by primary particles but exposed to far-reaching secondary electrons (δ-electrons). These cells receive a much lower dose deposition in the order of a few mGy. The radial dose distribution of single particle tracks was

  7. Hanford Internal Dosimetry Project manual. Revision 1

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program

  8. Hanford Internal Dosimetry Project manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  9. Alternatives to dose, quality factor and dose equivalent for low level irradiation

    International Nuclear Information System (INIS)

    Sondhaus, C.A.; Bond, V.P.; Feinendegen, L.E.

    1988-01-01

    Randomly occurring energy deposition events produced by low levels of ionizing radiation interacting with tissue deliver variable amounts of energy to the sensitive target volumes within a small fraction of the cell population. A model is described in which an experimentally derived function relating event size to cell response probability operates mathematically on the microdosimetric event size distribution characterizing a given irradiation and thus determines the total fractional number of responding cells; this fraction measures the effectiveness of the given radiation. Normalizing to equal numbers of events produced by different radiations and applying this cell response or hit size effectiveness function (HSEF) should define radiation quality, or relative effectiveness, on a more nearly absolute basis than do the absorbed dose and dose evaluation, which are confounded when applied to low level irradiations. Examples using both calculation and experimental data are presented. 15 refs., 18 figs

  10. Does fast-neutron radiotherapy merely reduce the radiation dose

    International Nuclear Information System (INIS)

    Ando, Koichi

    1984-01-01

    We examined whether fast-neutron radiotherapy is superior to low-LET radiotherpy by comparing the relationship between cell survival and tumor control probabilities after exposure of tumor-bearing (species) to the two modalities. Analysis based on TCD 50 assay and lung colony assay indicated that single dose of fast neutron achieved animal cures at higher survival rates than other radiation modalities including single and fractionated γ-ray doses, fractionated doses of fast neutron, and the mixed-beam scheme with a sequence of N-γ-γ-γ-N. We conclude that fast-neutron radiotherapy cured animal tumors with lower cell killing rates other radiation modalities. (author)

  11. Options and pitfalls of normal tissues complication probability models

    International Nuclear Information System (INIS)

    Dorr, Wolfgang

    2011-01-01

    Full text: Technological improvements in the physical administration of radiotherapy have led to increasing conformation of the treatment volume (TV) with the planning target volume (PTV) and of the irradiated volume (IV) with the TV. In this process of improvement of the physical quality of radiotherapy, the total volumes of organs at risk exposed to significant doses have significantly decreased, resulting in increased inhomogeneities in the dose distributions within these organs. This has resulted in a need to identify and quantify volume effects in different normal tissues. Today, irradiated volume today must be considered a 6t h 'R' of radiotherapy, in addition to the 5 'Rs' defined by Withers and Steel in the mid/end 1980 s. The current status of knowledge of these volume effects has recently been summarized for many organs and tissues by the QUANTEC (Quantitative Analysis of Normal Tissue Effects in the Clinic) initiative [Int. J. Radiat. Oncol. BioI. Phys. 76 (3) Suppl., 2010]. However, the concept of using dose-volume histogram parameters as a basis for dose constraints, even without applying any models for normal tissue complication probabilities (NTCP), is based on (some) assumptions that are not met in clinical routine treatment planning. First, and most important, dose-volume histogram (DVH) parameters are usually derived from a single, 'snap-shot' CT-scan, without considering physiological (urinary bladder, intestine) or radiation induced (edema, patient weight loss) changes during radiotherapy. Also, individual variations, or different institutional strategies of delineating organs at risk are rarely considered. Moreover, the reduction of the 3-dimentional dose distribution into a '2dimensl' DVH parameter implies that the localization of the dose within an organ is irrelevant-there are ample examples that this assumption is not justified. Routinely used dose constraints also do not take into account that the residual function of an organ may be

  12. Quantitative dose-volume response analysis of changes in parotid gland function after radiotherapy in the head-and-neck region

    International Nuclear Information System (INIS)

    Roesink, Judith M.; Moerland, Marinus A.; Battermann, Jan J.; Hordijk, Gerrit Jan; Terhaard, Chris H.J.

    2001-01-01

    Purpose: To study the radiation tolerance of the parotid glands as a function of dose and volume irradiated. Methods and Materials: One hundred eight patients treated with primary or postoperative radiotherapy for various malignancies in the head-and-neck region were prospectively evaluated. Stimulated parotid flow rate was measured before radiotherapy and 6 weeks, 6 months, and 1 year after radiotherapy. Parotid gland dose-volume histograms were derived from CT-based treatment planning. The normal tissue complication probability model proposed by Lyman was fit to the data. A complication was defined as stimulated parotid flow rate 50 (the dose to the whole organ leading to a complication probability of 50%) was found to be 31, 35, and 39 Gy at 6 weeks, 6 months, and 1 year postradiotherapy, respectively. The volume dependency parameter n was around 1, which means that the mean parotid dose correlates best with the observed complications. There was no steep dose-response curve (m=0.45 at 1 year postradiotherapy). Conclusions: This study on dose/volume/parotid gland function relationships revealed a linear correlation between postradiotherapy flow ratio and parotid gland dose and a strong volume dependency. No threshold dose was found. Recovery of parotid gland function was shown at 6 months and 1 year after radiotherapy. In radiation planning, attempts should be made to achieve a mean parotid gland dose at least below 39 Gy (leading to a complication probability of 50%)

  13. THE MODEL OF EXPERT SYSTEM FOR SCIENTIFIC PROJECTS EVALUATION IN HIGHER EDUCATIONAL INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Олександр Михайлович ВОЗНИЙ

    2015-05-01

    Full Text Available There have been proposed the model of the expert system for the assessment of research projects in higher educational institutions, based on estimates of probability. It allows to rank alternative projects and scenarios. The model is implemented through the software "Small expert system." The principle of calculating the probability of approval of research projects, which form the basis of the expert system, is based on Bayes' theorem. Expert system calculates the probability of approval of research projects by Ministry of Science and Education on the basis of the responses to questions about the content of the request for the execution of research projects. Questions are formed on the basis of the criteria by which experts of state authorities evaluate scientific research projects.

  14. Probability in physics

    CERN Document Server

    Hemmo, Meir

    2012-01-01

    What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their  explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive. 

  15. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project: Draft

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    1993-03-01

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. The report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.

  16. PATIENT RADIATION DOSE FROM CHEST X-RAY EXAMINATIONS IN THE WEST BANK-PALESTINE.

    Science.gov (United States)

    Lahham, Adnan; Issa, Ahlam; ALMasri, Hussein

    2018-02-01

    Radiation doses to patients resulting from chest X-ray examinations were evaluated in four medical centers in the West Bank and East Jerusalem-Palestine. Absorbed organ and effective doses were calculated for a total of 428 adult male and female patients by using commercially available Monte Carlo based softwares; CALDOSE-X5 and PCXMC-2.0, and hermaphrodite mathematical adult phantoms. Patients were selected randomly from medical records in the time period from November 2014 to February 2015. A database of surveyed patients and exposure factors has been established and includes: patient's height, weight, age, gender, X-ray tube voltage, electric current (mAs), examination projection (anterior posterior (AP), posterior anterior (PA), lateral), X-ray tube filtration thickness in each X-ray equipment, anode angle, focus to skin distance and X-ray beam size. The average absorbed doses in the whole body from different projections were: 0.06, 0.07 and 0.11 mGy from AP, PA and lateral projections, respectively. The average effective dose for all surveyed patients was 0.14 mSv for all chest X-ray examinations and projections in the four investigated medical centers. The effect of projection geometry was also investigated. The average effective doses for AP, PA and lateral projections were 0.14, 0.07 and 0.22 mSv, respectively. The collective effective dose estimated for the exposed population was ~60 man-mSv. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Dose in sensitive organs during the prostate treatment with a 60Co unit

    International Nuclear Information System (INIS)

    Vega C, H. R.; Navarro B, J. A.; Perez A, M. L.; Perez L, L. H.

    2012-10-01

    The absorbed dose by the bladder, the rectum and the gland thyroid was measured during a treatment applied for prostate cancer by means of a Cobalt 60 unit. The dose was measured using thermoluminescent dosimeters of the type TLD 100, with the values of the absorbed the values of the effective dose were calculated and was determined the probability of the development of a secondary cancer. Because these measurements cannot be made -in vivo- a phantom or mannequin was built with water that represents the hip and part of the torso of the human body and to represent the neck was used polyethylene. The study was carried out in the Instituto Zacatecano del Tumor that has a -cobalt bomb- which is used to treat oncology patients, during the phantom irradiation a dose of 200 c Gy was applied of this dose the bladder received 96.7%, the rectum 100.8% and the gland thyroid 0.3%. The dose received by the rectum and the bladder is due to the therapeutic beam while the dose received by the thyroid is due to the dispersed radiation by the phantom. The probability that in these organs a new neoplasm is developed is of 0.033% for the bladder, 0.157% for the rectum and 7.8 x 10 -5 % for the thyroid case. (Author)

  18. Evaluation of the effect of prostate volume change on tumor control probability in LDR brachytherapy.

    Science.gov (United States)

    Knaup, Courtney; Mavroidis, Panayiotis; Stathakis, Sotirios; Smith, Mark; Swanson, Gregory; Papanikolaou, Niko

    2011-09-01

    This study evaluates low dose-rate brachytherapy (LDR) prostate plans to determine the biological effect of dose degradation due to prostate volume changes. In this study, 39 patients were evaluated. Pre-implant prostate volume was determined using ultrasound. These images were used with the treatment planning system (Nucletron Spot Pro 3.1(®)) to create treatment plans using (103)Pd seeds. Following the implant, patients were imaged using CT for post-implant dosimetry. From the pre and post-implant DVHs, the biologically equivalent dose and the tumor control probability (TCP) were determined using the biologically effective uniform dose. The model used RBE = 1.75 and α/β = 2 Gy. The prostate volume changed between pre and post implant image sets ranged from -8% to 110%. TCP and the mean dose were reduced up to 21% and 56%, respectively. TCP is observed to decrease as the mean dose decreases to the prostate. The post-implant tumor dose was generally observed to decrease, compared to the planned dose. A critical uniform dose of 130 Gy was established. Below this dose, TCP begins to fall-off. It was also determined that patients with a small prostates were more likely to suffer TCP decrease. The biological effect of post operative prostate growth due to operative trauma in LDR was evaluated using the concept. The post-implant dose was lower than the planned dose due to an increase of prostate volume post-implant. A critical uniform dose of 130 Gy was determined, below which TCP begun to decline.

  19. Evaluation of the effect of prostate volume change on tumor control probability in LDR brachytherapy

    Directory of Open Access Journals (Sweden)

    Courtney Knaup

    2011-09-01

    Full Text Available Purpose: This study evaluates low dose-rate brachytherapy (LDR prostate plans to determine the biological effectof dose degradation due to prostate volume changes. Material and methods: In this study, 39 patients were evaluated. Pre-implant prostate volume was determinedusing ultrasound. These images were used with the treatment planning system (Nucletron Spot Pro 3.1® to create treatmentplans using 103Pd seeds. Following the implant, patients were imaged using CT for post-implant dosimetry. Fromthe pre and post-implant DVHs, the biologically equivalent dose and the tumor control probability (TCP were determinedusing the biologically effective uniform dose. The model used RBE = 1.75 and α/β = 2 Gy. Results: The prostate volume changed between pre and post implant image sets ranged from –8% to 110%. TCP andthe mean dose were reduced up to 21% and 56%, respectively. TCP is observed to decrease as the mean dose decreasesto the prostate. The post-implant tumor dose was generally observed to decrease, compared to the planned dose.A critical uniform dose of 130 Gy was established. Below this dose, TCP begins to fall-off. It was also determined thatpatients with a small prostates were more likely to suffer TCP decrease. Conclusions: The biological effect of post operative prostate growth due to operative trauma in LDR was evaluatedusing the concept. The post-implant dose was lower than the planned dose due to an increase of prostate volumepost-implant. A critical uniform dose of 130 Gy was determined, below which TCP begun to decline.

  20. Radiation doses to neonates requiring intensive care

    International Nuclear Information System (INIS)

    Robinson, A.; Dellagrammaticas, H.D.

    1983-01-01

    Radiological investigations have become accepted as an important part of the range of facilities required to support severely ill newborn babies. Since the infants are so small, many of the examinations are virtually ''whole-body'' irradiations and it was thought that the total doses received might be appreciable. A group of such babies admitted to the Neonatal Intensive Care Unit in Sheffield over a six-month period have been studied. X-ray exposure factors used for each examination have been noted and total skin, gonad and bone marrow doses calculated, supplemented by measurements on phantoms. It is concluded that in most cases doses received are of the same order as those received over the same period from natural background radiation and probably less than those received from prenatal obstetric radiography, so that the additional risks from the diagnostic exposure are small. The highest doses are received in CT scans and barium examinations and it is recommended that the need for these should be carefully considered. (author)

  1. Routine oblique radiography of the pediatric lumbar spine: is it necessary. [Oblique radiography entails more than double the gonadal radiation dose of frontal-lateral projections

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, F.F.; Kishore, P.R.S.; Cunningham, M.E.

    1978-08-01

    A series of 86 pediatric lumbar spine abnormalities was evaluated to determine the diagnostic benefit of radiography in oblique projection as compared to frontal-lateral projections alone. In only four patients was an abnormality apparent on the oblique view which had not already been demonstrated by the frontal-lateral series; each of these represented an isolated spondylolysis. Because the diagnostic yield was low at a patient cost of more than double the gonadal radiation dose, it is recommended that oblique views be eliminated in the routine radiography of the pediatric lumbar spine.

  2. Doses resulting from intrusion into uranium tailings areas

    International Nuclear Information System (INIS)

    Walsh, M.L.

    1986-02-01

    In the future, it is conceivable that institutional controls of uranium tailings areas may cease to exist and individuals may intrude into these areas unaware of the potential radiation hazards. The objective of this study was to estimate the potential doses to the intruders for a comprehensive set of intrusion scenarios. Reference tailings areas in the Elliot Lake region of northern Ontario and in northern Saskatchewan were developed to the extent required to calculate radiation exposures. The intrusion scenarios for which dose calculations were performed, were categorized into the following classes: habitation of the tailings, agricultural activities, construction activities, and recreational activities. Realistic exposure conditions were specified and annual doses were calculated by applying standard dose conversion factors. The exposure estimates demonstrated that the annual doses resulting from recreational activities and from construction activities would be generally small, less than twenty millisieverts, while the habitational and agricultural activities could hypothetically result in doses of several hundred millisieverts. However, the probability of occurrence of these latter classes of scenarios is considered to be much lower than scenarios involving either construction or recreational activities

  3. Cavities at the Si projected range by high dose and energy Si ion implantation in Si

    International Nuclear Information System (INIS)

    Canino, M.; Regula, G.; Lancin, M.; Xu, M.; Pichaud, B.; Ntzoenzok, E.; Barthe, M.F.

    2009-01-01

    Two series of n-type Si samples α and β are implanted with Si ions at high dose (1 x 10 16 ) and high energies, 0.3 and 1.0 MeV, respectively. Both sort of samples are then implanted with 5 x 10 16 He cm -2 (at 10 or 50 keV) and eventually with B atoms. Some of the samples are annealed at temperatures ranging from 800 to 1000 deg. C to allow the thermal growth of He-cavities, located between sample surface and the projected range (R p ) of Si. After the triple ion implantation, which corresponds to defect engineering, samples were characterized by cross-section transmission electron microscopy (XTEM). Voids (or bubbles) are observed not only at the R p (He) on all annealed samples, but also at the R p (Si) on β samples implanted with He at 50 keV. The samples are also studied by positron annihilation spectroscopy (PAS) and the spectra confirm that as-implanted samples contain di-vacancies and that the annealed ones, even at high temperature have bigger open volumes, which are assumed to be the same voids observed by XTEM. It is demonstrated that a sole Si implantation at high energy and dose is efficient to create cavities which are thermally stable up to 1000 deg. C only in the presence of He.

  4. 3D delivered dose assessment using a 4DCT-based motion model

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj, E-mail: wcai@lroc.harvard.edu, E-mail: jhlewis@lroc.harvard.edu; Lewis, John H., E-mail: wcai@lroc.harvard.edu, E-mail: jhlewis@lroc.harvard.edu [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Seco, Joao [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-06-15

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  5. 3D delivered dose assessment using a 4DCT-based motion model

    International Nuclear Information System (INIS)

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj; Lewis, John H.; Seco, Joao

    2015-01-01

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  6. Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom

    International Nuclear Information System (INIS)

    Ryu, Young Jin; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One; Ha, Seongmin

    2016-01-01

    CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose 4 , levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose 4 levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose 4 level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose 4 obtained at 1.81 mSv. (orig.)

  7. Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom.

    Science.gov (United States)

    Ryu, Young Jin; Choi, Young Hun; Cheon, Jung-Eun; Ha, Seongmin; Kim, Woo Sun; Kim, In-One

    2016-03-01

    CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose(4), levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose(4) levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose(4) level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose(4) obtained at 1.81 mSv.

  8. Radiation dose to the patient in radionuclide studies

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    In medical radionuclide studies, the radiation risk has to be considered in addition to the general risk of administering a pharmaceutical. As radiation exposure is an essential factor in radiation risk estimation, some aspects of internal dose calculation, including radiation risk assessments, are treated. The formalism of current internal dose calculation is presented. The input data, especially the residence time and the absorbed dose per transformation, their origin and accuracy are discussed. Results of internal dose calculations for the ten most frequently used radionuclide studies are presented as somatically effective dose equivalents. The accuracy of internal dose calculation is treated in detail by considering the biokinetics of the radiopharmaceutical, the phantoms used for dose calculations, the absorbed dose per transformation, the administered activity, and the transfer of the dose, calculated for a phantom, to the patient. The internal dose calculated for a reference phantom may be assumed to be in accordance with the actual patient dose within a range described by a factor of about two to three. Finally, risk estimates for nuclear medicine procedures are quantified, being generally of sixth order. The radiation risk from the radioiodine test is comparably higher, but probably lower than calculated according to the UNSCEAR risk coefficients. However, further studies are needed to confirm these preliminary results and to improve the quantification of the radiation risk from the medical use of radionuclides. (author)

  9. Radioactive contamination of fish, shellfish, and waterfowl exposed to Hanford effluents: Annual summaries, 1945--1972. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, R.W.; Dirkes, R.L.; Duncan, J.P.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction Project (HEDR) is to estimate the potential radiation doses received by people living within the sphere of influence of the Hanford Site. A potential critical pathway for human radiation exposure is through the consumption of waterfowl that frequent onsite waste-water ponds or through eating of fish, shellfish, and waterfowl that reside in/on the Columbia River and its tributaries downstream of the reactors. This document summarizes information on fish, shellfish, and waterfowl radiation contamination for samples collected by Hanford monitoring personnel and offsite agencies for the period 1945 to 1972. Specific information includes the types of organisms sampled, the kinds of tissues and organs analyzed, the sampling locations, and the radionuclides reported. Some tissue concentrations are also included. We anticipate that these yearly summaries will be helpful to individuals and organizations interested in evaluating aquatic pathway information for locations impacted by Hanford operations and will be useful for planning the direction of future HEDR studies.

  10. Philosophical theories of probability

    CERN Document Server

    Gillies, Donald

    2000-01-01

    The Twentieth Century has seen a dramatic rise in the use of probability and statistics in almost all fields of research. This has stimulated many new philosophical ideas on probability. Philosophical Theories of Probability is the first book to present a clear, comprehensive and systematic account of these various theories and to explain how they relate to one another. Gillies also offers a distinctive version of the propensity theory of probability, and the intersubjective interpretation, which develops the subjective theory.

  11. Systematic design for trait introgression projects.

    Science.gov (United States)

    Cameron, John N; Han, Ye; Wang, Lizhi; Beavis, William D

    2017-10-01

    Using an Operations Research approach, we demonstrate design of optimal trait introgression projects with respect to competing objectives. We demonstrate an innovative approach for designing Trait Introgression (TI) projects based on optimization principles from Operations Research. If the designs of TI projects are based on clear and measurable objectives, they can be translated into mathematical models with decision variables and constraints that can be translated into Pareto optimality plots associated with any arbitrary selection strategy. The Pareto plots can be used to make rational decisions concerning the trade-offs between maximizing the probability of success while minimizing costs and time. The systematic rigor associated with a cost, time and probability of success (CTP) framework is well suited to designing TI projects that require dynamic decision making. The CTP framework also revealed that previously identified 'best' strategies can be improved to be at least twice as effective without increasing time or expenses.

  12. Parameters used in the environmental pathways and radiological dose modules (DESCARTES, CIDER, and CRD codes) of the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC)

    International Nuclear Information System (INIS)

    Snyder, S.F.; Farris, W.T.; Napier, B.A.; Ikenberry, T.A.; Gilbert, R.O.

    1994-05-01

    This letter report is a description of work performed for the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project was established to estimate the radiation doses to individuals resulting from releases of radionuclides from the Hanford Site during the period of 1944 to 1992. This work is being done by staff at Battelle, Pacific Northwest Laboratories under a contract with the Centers for Disease Control and Prevention with technical direction provided by an independent Technical Steering Panel (TSP)

  13. Parameters used in the environmental pathways and radiological dose modules (DESCARTES, CIDER, and CRD codes) of the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC)

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S.F.; Farris, W.T.; Napier, B.A.; Ikenberry, T.A.; Gilbert, R.O.

    1994-05-01

    This letter report is a description of work performed for the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project was established to estimate the radiation doses to individuals resulting from releases of radionuclides from the Hanford Site during the period of 1944 to 1992. This work is being done by staff at Battelle, Pacific Northwest Laboratories under a contract with the Centers for Disease Control and Prevention with technical direction provided by an independent Technical Steering Panel (TSP).

  14. Dose record keeping: a multi purpose tool in individual monitoring

    International Nuclear Information System (INIS)

    Bermann, F.; Julius, H.W.

    1993-01-01

    Proper recording of radiation doses is an essential part of the process of individual monitoring and shares in the same objective. A dose record keeping system is more than just a computer based data storage system and should rather be a Dose Registration and Information System (DRIS). Objectives of dose record keeping are given. As a result of the integration of member states of the European Communities, co-operation and exchange of personnel between countries will be increasing. This will probably require national dose registration systems and adequate data communication between them. These developments emphasize the necessity for international harmonization of dose record keeping systems and categorization of the data they contain. General characteristics and specific aspects of dose record keeping systems will be dealt with. Attention will also be given to some special applications of the recorded information, such as: the use of data for epidemiological studies and for QA purposes. (authors). 5 tabs., 4 refs

  15. Automatically-generated rectal dose constraints in intensity-modulated radiation therapy for prostate cancer

    Science.gov (United States)

    Hwang, Taejin; Kim, Yong Nam; Kim, Soo Kon; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-06-01

    The dose constraint during prostate intensity-modulated radiation therapy (IMRT) optimization should be patient-specific for better rectum sparing. The aims of this study are to suggest a novel method for automatically generating a patient-specific dose constraint by using an experience-based dose volume histogram (DVH) of the rectum and to evaluate the potential of such a dose constraint qualitatively. The normal tissue complication probabilities (NTCPs) of the rectum with respect to V %ratio in our study were divided into three groups, where V %ratio was defined as the percent ratio of the rectal volume overlapping the planning target volume (PTV) to the rectal volume: (1) the rectal NTCPs in the previous study (clinical data), (2) those statistically generated by using the standard normal distribution (calculated data), and (3) those generated by combining the calculated data and the clinical data (mixed data). In the calculated data, a random number whose mean value was on the fitted curve described in the clinical data and whose standard deviation was 1% was generated by using the `randn' function in the MATLAB program and was used. For each group, we validated whether the probability density function (PDF) of the rectal NTCP could be automatically generated with the density estimation method by using a Gaussian kernel. The results revealed that the rectal NTCP probability increased in proportion to V %ratio , that the predictive rectal NTCP was patient-specific, and that the starting point of IMRT optimization for the given patient might be different. The PDF of the rectal NTCP was obtained automatically for each group except that the smoothness of the probability distribution increased with increasing number of data and with increasing window width. We showed that during the prostate IMRT optimization, the patient-specific dose constraints could be automatically generated and that our method could reduce the IMRT optimization time as well as maintain the

  16. Radiation doses to Finns

    International Nuclear Information System (INIS)

    Rantalainen, L.

    1996-01-01

    The estimated annual radiation doses to Finns have been reduced in the recent years without any change in the actual radiation environment. This is because the radiation types have been changed. The risk factors will probably be changed again in the future, because recent studies show discrepancies in the neutron dosimetry concerning the city of Hiroshima. Neutron dosimetry discrepancy has been found between the predicted and estimated neutron radiation. The prediction of neutron radiation is calculated by Monte Carlo simulations, which have also been used when designing recommendations for the limits of radiation doses (ICRP60). Estimation of the neutron radiation is made on the basis of measured neutron activation of materials in the city. The estimated neutron dose beyond 1 km is two to ten, or more, times as high as the predicted dose. This discrepancy is important, because the most relevant distances with respect to radiation risk evaluation are between 1 and 2 km. Because of this discrepancy, the present radiation risk factors for gamma and neutron radiation, which rely on the Monte Carlo calculations, are false, too. The recommendations of ICRP60 have been adopted in a few countries, including Finland, and they affect the planned common limits of the EU. It is questionable whether happiness is increased by adopting false limits, even if they are common. (orig.) (2 figs., 1 tab.)

  17. Probability for statisticians

    CERN Document Server

    Shorack, Galen R

    2017-01-01

    This 2nd edition textbook offers a rigorous introduction to measure theoretic probability with particular attention to topics of interest to mathematical statisticians—a textbook for courses in probability for students in mathematical statistics. It is recommended to anyone interested in the probability underlying modern statistics, providing a solid grounding in the probabilistic tools and techniques necessary to do theoretical research in statistics. For the teaching of probability theory to post graduate statistics students, this is one of the most attractive books available. Of particular interest is a presentation of the major central limit theorems via Stein's method either prior to or alternative to a characteristic function presentation. Additionally, there is considerable emphasis placed on the quantile function as well as the distribution function. The bootstrap and trimming are both presented. Martingale coverage includes coverage of censored data martingales. The text includes measure theoretic...

  18. SU-F-T-335: Piecewise Uniform Dose Prescription and Optimization Based On PET/CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G; Liu, J [Hunan University, Changsha, Hunan (China)

    2016-06-15

    Purpose: In intensity modulated radiation therapy (IMRT), the tumor target volume is given a uniform dose prescription, which does not consider the heterogeneous characteristics of tumor such as hypoxia, clonogen density, radiosensitivity, tumor proliferation rate and so on. Our goal is to develop a nonuniform target dose prescription method which can spare organs at risk (OARs) better and does not decrease the tumor control probability (TCP). Methods: We propose a piecewise uniform dose prescription (PUDP) based on PET/CT images of tumor. First, we propose to delineate biological target volumes (BTV) and sub-biological target volumes (sub-BTVs) by our Hierarchical Mumford-Shah Vector Model based on PET/CT images of tumor. Then, in order to spare OARs better, we make the BTV mean dose minimized while restrict the TCP to a constant. So, we can get a general formula for determining an optimal dose prescription based on a linearquadratic model (LQ). However, this dose prescription is high heterogeneous, it is very difficult to deliver by IMRT. Therefore we propose to use the equivalent uniform dose (EUD) in each sub-BTV as its final dose prescription, which makes a PUDP for the BTV. Results: We have evaluated the IMRT planning of a patient with nasopharyngeal carcinoma respectively using PUDP and UDP. The results show that the highest and mean doses inside brain stem are 48.425Gy and 19.151Gy respectively when the PUDP is used for IMRT planning, while they are 52.975Gy and 20.0776Gy respectively when the UDP is used. Both of the resulting TCPs(0.9245, 0.9674) are higher than the theoretical TCP(0.8739), when 70Gy is delivered to the BTV. Conclusion: Comparing with the UDP, the PUDP can spare the OARs better while the resulting TCP by PUDP is not significantly lower than by UDP. This work was supported in part by National Natural Science Foundation of China undergrant no.61271382 and by the foundation for construction of scientific project platform forthe cancer

  19. SU-F-T-335: Piecewise Uniform Dose Prescription and Optimization Based On PET/CT Images

    International Nuclear Information System (INIS)

    Liu, G; Liu, J

    2016-01-01

    Purpose: In intensity modulated radiation therapy (IMRT), the tumor target volume is given a uniform dose prescription, which does not consider the heterogeneous characteristics of tumor such as hypoxia, clonogen density, radiosensitivity, tumor proliferation rate and so on. Our goal is to develop a nonuniform target dose prescription method which can spare organs at risk (OARs) better and does not decrease the tumor control probability (TCP). Methods: We propose a piecewise uniform dose prescription (PUDP) based on PET/CT images of tumor. First, we propose to delineate biological target volumes (BTV) and sub-biological target volumes (sub-BTVs) by our Hierarchical Mumford-Shah Vector Model based on PET/CT images of tumor. Then, in order to spare OARs better, we make the BTV mean dose minimized while restrict the TCP to a constant. So, we can get a general formula for determining an optimal dose prescription based on a linearquadratic model (LQ). However, this dose prescription is high heterogeneous, it is very difficult to deliver by IMRT. Therefore we propose to use the equivalent uniform dose (EUD) in each sub-BTV as its final dose prescription, which makes a PUDP for the BTV. Results: We have evaluated the IMRT planning of a patient with nasopharyngeal carcinoma respectively using PUDP and UDP. The results show that the highest and mean doses inside brain stem are 48.425Gy and 19.151Gy respectively when the PUDP is used for IMRT planning, while they are 52.975Gy and 20.0776Gy respectively when the UDP is used. Both of the resulting TCPs(0.9245, 0.9674) are higher than the theoretical TCP(0.8739), when 70Gy is delivered to the BTV. Conclusion: Comparing with the UDP, the PUDP can spare the OARs better while the resulting TCP by PUDP is not significantly lower than by UDP. This work was supported in part by National Natural Science Foundation of China undergrant no.61271382 and by the foundation for construction of scientific project platform forthe cancer

  20. Multilayer detector for skin absorbed dose measuring

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method for skin dosimetry based on utilization of multilayer detectors and permitting to estimate distribution of absorbed dose by skin depth is described. The detector represents a set of thin sensitive elements separated by tissue-equivalent absorbers. Quantitative evaluation and forecasting the degree of radiation injury of skin are determined by the formula based on determination of the probability of the fact that cells are not destroyed and they can divide further on. The given method ensures a possibility of quantitative evaluation of radiobiological effect and forecasting clinical consequences of skin irradiation by results of corresponding measurements of dose by means of the miultilayer detector

  1. A brief introduction to probability.

    Science.gov (United States)

    Di Paola, Gioacchino; Bertani, Alessandro; De Monte, Lavinia; Tuzzolino, Fabio

    2018-02-01

    The theory of probability has been debated for centuries: back in 1600, French mathematics used the rules of probability to place and win bets. Subsequently, the knowledge of probability has significantly evolved and is now an essential tool for statistics. In this paper, the basic theoretical principles of probability will be reviewed, with the aim of facilitating the comprehension of statistical inference. After a brief general introduction on probability, we will review the concept of the "probability distribution" that is a function providing the probabilities of occurrence of different possible outcomes of a categorical or continuous variable. Specific attention will be focused on normal distribution that is the most relevant distribution applied to statistical analysis.

  2. A methodology to establish the appearance of cancer cases due to radiation dose in compressed breast; Uma metodologia para comprovar o aparecimento de casos de cancer devido a dose de radiacao na mama comprimida

    Energy Technology Data Exchange (ETDEWEB)

    Feital, Joao Carlos Da Silva; Delgado, Jose Ubiratan; Peixoto, Jose Guilherme P.; Fonseca, Hugo Geraldo Da, E-mail: jfeital@ird.gov.br, E-mail: delgado@ird.gov.br, E-mail: guilherm@ird.gov.br, E-mail: hfonseca@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-10-01

    It is known that more than 20% of the world's population will contract some type of cancer. In Brazil, with the exception of skin cancer (non melanoma) the breast cancer ranks first among the higher frequency of tumours among women and in general, although the methods of detection are advancing in the year 2010 took place about 13 thousand deaths in about 50,000 cases, probably due to late detection of these neoplasm. New cases of breast cancer in a given population can be proven from absorbed dose quantity, calculated for the compressed breast, due to the risk by means of exposure to x rays in this radiodiagnostic practices. Methodology: Exposures were held in an ionization chamber and the other quantities required were obtained to the screen-film equipment of mammography. Results: Also experimental results were of compressed breast an equivalent dose of ( 1.82 mSv {+-} 0.2%) or (3.64 mSv {+-} 0.2%) for both projections, i.e. medium lateral oblique and cranio caudal. The experimental value obtained here is consistent with the calculated results and published in the literature for analog and CR equipment. Conclusion: From the result of dose equivalent in the breast, one can say that there will be effectively attesting as to the appearance of new cases of cancer if approximately 80 million women are exposed to radiation emitted by mammographers. (author)

  3. Choice probability generating functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel; Bierlaire, Michel

    2013-01-01

    This paper considers discrete choice, with choice probabilities coming from maximization of preferences from a random utility field perturbed by additive location shifters (ARUM). Any ARUM can be characterized by a choice-probability generating function (CPGF) whose gradient gives the choice...... probabilities, and every CPGF is consistent with an ARUM. We relate CPGF to multivariate extreme value distributions, and review and extend methods for constructing CPGF for applications. The choice probabilities of any ARUM may be approximated by a cross-nested logit model. The results for ARUM are extended...

  4. Probability of satellite collision

    Science.gov (United States)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  5. Real analysis and probability

    CERN Document Server

    Ash, Robert B; Lukacs, E

    1972-01-01

    Real Analysis and Probability provides the background in real analysis needed for the study of probability. Topics covered range from measure and integration theory to functional analysis and basic concepts of probability. The interplay between measure theory and topology is also discussed, along with conditional probability and expectation, the central limit theorem, and strong laws of large numbers with respect to martingale theory.Comprised of eight chapters, this volume begins with an overview of the basic concepts of the theory of measure and integration, followed by a presentation of var

  6. Probability and Measure

    CERN Document Server

    Billingsley, Patrick

    2012-01-01

    Praise for the Third Edition "It is, as far as I'm concerned, among the best books in math ever written....if you are a mathematician and want to have the top reference in probability, this is it." (Amazon.com, January 2006) A complete and comprehensive classic in probability and measure theory Probability and Measure, Anniversary Edition by Patrick Billingsley celebrates the achievements and advancements that have made this book a classic in its field for the past 35 years. Now re-issued in a new style and format, but with the reliable content that the third edition was revered for, this

  7. Experimental Probability in Elementary School

    Science.gov (United States)

    Andrew, Lane

    2009-01-01

    Concepts in probability can be more readily understood if students are first exposed to probability via experiment. Performing probability experiments encourages students to develop understandings of probability grounded in real events, as opposed to merely computing answers based on formulae.

  8. A survey of doses to worker groups in the nuclear industry

    International Nuclear Information System (INIS)

    Khan, T.A.; Baum, J.W.

    1991-01-01

    The the US National Council on Radiation Protection and Measurements (NCRP) has suggested ''...as guidance for radiation programs that cumulative exposure not exceed the age of the individual in years x 10 mSv (years x 1 rem).'' The International Commission on Radiological Protection (ICRP) has recommended a dose limit of 10 rem averaged over 5 years. With these developments in mind, the US Nuclear Regulatory Commission (NRC) requested the ALARA Center of the Brookhaven National Laboratory to undertake two parallel studies. One study, which is still ongoing, is to examine the impact of the newly recommended dose limits on the nuclear industry as a whole; the other study was intended to assist in this larger project by looking more closely at the nuclear power industry. Preliminary data had indicated that the critical industry as far as the impact of new regulatory limits were concerned would be the nuclear power industry, because, it was conjectured, there existed a core of highly skilled workers in some groups which routinely get higher than average exposures. The objectives of the second study were to get a better understanding of the situation vis grave a vis the nuclear power industry, by identifying the high-dose worker groups, quantifying the annual and lifetime doses to these groups to see the extent of the problem if there was one, and finally to determine if there were any dose-reduction techniques which were particularly suited to reducing doses to these groups. In this presentation we describe some of the things learned during our work on the two projects. For more detailed information on the project on dose-reduction techniques for high-dose worker groups in the nuclear power industry, see NUREG/CR-5139. An industry/advisory committee has been set up which is in the process of evaluating the data from the larger project on the impact of new dose limits and will shortly produce its report. 7 refs., 5 figs., 6 tabs

  9. Netherlands contribution to the EC project: Benchmark exercise on dose estimation in a regulatory context

    International Nuclear Information System (INIS)

    Stolk, D.J.

    1987-04-01

    On request of the Netherlands government FEL-TNO is developing a decision support system with the acronym RAMBOS for the assessment of the off-site consequences of an accident with hazardous materials. This is a user friendly interactive computer program, which uses very sophisticated graphical means. RAMBOS supports the emergency planning organization in two ways. Firstly, the risk to the residents in the surroundings of the accident is quantified in terms of severity and magnitude (number of casualties, etc.). Secondly, the consequences of countermeasures, such as sheltering and evacuation, are predicted. By evaluating several countermeasures the user can determine an optimum policy to reduce the impact of the accident. Within the framework of the EC project 'Benchmark exercise on dose estimation in a regulatory context' on request of the Ministry of Housing, Physical Planning and Environment calculations were carried out with the RAMBOS system. This report contains the results of these calculations. 3 refs.; 2 figs.; 10 tabs

  10. Probabilities in physics

    CERN Document Server

    Hartmann, Stephan

    2011-01-01

    Many results of modern physics--those of quantum mechanics, for instance--come in a probabilistic guise. But what do probabilistic statements in physics mean? Are probabilities matters of objective fact and part of the furniture of the world, as objectivists think? Or do they only express ignorance or belief, as Bayesians suggest? And how are probabilistic hypotheses justified and supported by empirical evidence? Finally, what does the probabilistic nature of physics imply for our understanding of the world? This volume is the first to provide a philosophical appraisal of probabilities in all of physics. Its main aim is to make sense of probabilistic statements as they occur in the various physical theories and models and to provide a plausible epistemology and metaphysics of probabilities. The essays collected here consider statistical physics, probabilistic modelling, and quantum mechanics, and critically assess the merits and disadvantages of objectivist and subjectivist views of probabilities in these fie...

  11. Probability an introduction

    CERN Document Server

    Grimmett, Geoffrey

    2014-01-01

    Probability is an area of mathematics of tremendous contemporary importance across all aspects of human endeavour. This book is a compact account of the basic features of probability and random processes at the level of first and second year mathematics undergraduates and Masters' students in cognate fields. It is suitable for a first course in probability, plus a follow-up course in random processes including Markov chains. A special feature is the authors' attention to rigorous mathematics: not everything is rigorous, but the need for rigour is explained at difficult junctures. The text is enriched by simple exercises, together with problems (with very brief hints) many of which are taken from final examinations at Cambridge and Oxford. The first eight chapters form a course in basic probability, being an account of events, random variables, and distributions - discrete and continuous random variables are treated separately - together with simple versions of the law of large numbers and the central limit th...

  12. Evaluation of nuclear power plant component failure probability and core damage probability using simplified PSA model

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2000-01-01

    It is anticipated that the change of frequency of surveillance tests, preventive maintenance or parts replacement of safety related components may cause the change of component failure probability and result in the change of core damage probability. It is also anticipated that the change is different depending on the initiating event frequency or the component types. This study assessed the change of core damage probability using simplified PSA model capable of calculating core damage probability in a short time period, which is developed by the US NRC to process accident sequence precursors, when various component's failure probability is changed between 0 and 1, or Japanese or American initiating event frequency data are used. As a result of the analysis, (1) It was clarified that frequency of surveillance test, preventive maintenance or parts replacement of motor driven pumps (high pressure injection pumps, residual heat removal pumps, auxiliary feedwater pumps) should be carefully changed, since the core damage probability's change is large, when the base failure probability changes toward increasing direction. (2) Core damage probability change is insensitive to surveillance test frequency change, since the core damage probability change is small, when motor operated valves and turbine driven auxiliary feed water pump failure probability changes around one figure. (3) Core damage probability change is small, when Japanese failure probability data are applied to emergency diesel generator, even if failure probability changes one figure from the base value. On the other hand, when American failure probability data is applied, core damage probability increase is large, even if failure probability changes toward increasing direction. Therefore, when Japanese failure probability data is applied, core damage probability change is insensitive to surveillance tests frequency change etc. (author)

  13. Predictions of dose from electrons in space

    Science.gov (United States)

    Seltzer, Stephen M.

    1992-01-01

    The objective of the project is to develop a general-purpose, user-friendly computerized database and code package, for the PC as well as larger computers, which can be used for the routine prediction of the absorbed dose from incident electrons and their secondary bremsstrahlung (and from incident protons) as functions of the thickness of aluminum shielding in space. The assumption of homogeneous aluminum shields and of isotropic incident fluxes (at least in a time-averaged sense) allows for the rather reliable conversion of doses in slabs to those in other simple bodies, such as spherical and cylindrical solids and shells. On such a basis, depth-dose data for monoenergetic incident radiation can be generated once-and-for-all from accurate transport calculations, and this database can then be used repeatedly in rapid dose predictions for arbitrary radiation spectra and for a variety of spacecraft sizes and shapes, without recourse to the very time-consuming Monte Carlo calculations. This project entails a thorough updating, extension, and refinement of our earlier SHIELDOSE package, with the goal of a more reliable, fool-proof, and general system.

  14. A study on the evaluation of radiation doses in dental radiography

    International Nuclear Information System (INIS)

    Sugimoto, Koju

    1980-01-01

    Radiation doses and possible biological risks due to dental full mouth examination (adult: 10-film technique, child: 6-film technique) were evaluated based on preliminary experiments and statistical surveillance of patients' records. Dosimetrical studies were performed by using head and neck phantoms and a dental x-ray tube. Radiation doses were measured by x-ray films and thermoluminescence dosimeters. For the obtained doses of skin, eyes, thyroid gland and bone marrow, the biological risk of leukemia and thyroid cancer was discussed on the statistical basis of patients at Kanagawa Dental College Hospital. The major findings were as follows: The total number of patients who recieved full mouth x-ray examination at Kanagawa Dental College Hospital in 1978 was 1,099. The number of male patients was 382 (3,804 films) and that of female patients was 717 (7,138 films). In both sexes, the number of patients was the greatest in the group of 8 - 14 years of age. The collective doses of bone marrow due to full mouth 10-film examination performed at Kanagawa Dental College Hospital in 1978 were approximately 6.0 rad, which could induce leukemia with a probability of 1/8,000. The collective doses of thyroid gland were approximately 13 rad, which could induce lethal thyroid cancer with a probability of 1/15,000. The radiation dose due to the dental radiography for examination at Kanagawa Dental College Hospital was proved to be apparently below the level that could actually induce radiation injuries. But the collective radiation doses due to dental examination in Japan as a whole were approximately 8,000 times greater than that in Kanagawa Dental College Hospital. (J.P.N.)

  15. Assessment of patient radiation doses in chest X-ray examinations

    International Nuclear Information System (INIS)

    Orsini, S.; Scribano, V.S.; Merluzzi, F.; Tosca, L.

    1987-01-01

    The paper reports the initial results of a radioprotection programme for diagnostic radiology carried out in a major hospital in Milan. The data cover chest X-ray examinations. The dose values were obtained using different techniques, according to the specific diagnostic requirements in each departement. A wide radiation dose range was observed between the different techniques, with a ratio between maximum and minimum dose > 30 for the skin and the spine. The doses were however lower than those capable of inducing non-stochastic effects by about 10000 and were so low that the probability of a stochastics effect is minimal. Nevertheless, because chest X-rays are performed so frequently, it is recommended that radiologists take greater account of patient dose, as far as compatible with diagnostic requirements. Radiology technicians must strictly observe the regulations for radioprotection of the patient

  16. New vaccines against otitis media: projected benefits and cost-effectiveness.

    Science.gov (United States)

    O'Brien, Megan A; Prosser, Lisa A; Paradise, Jack L; Ray, G Thomas; Kulldorff, Martin; Kurs-Lasky, Marcia; Hinrichsen, Virginia L; Mehta, Jyotsna; Colborn, D Kathleen; Lieu, Tracy A

    2009-06-01

    New vaccines that offer protection against otitis media caused by nontypeable Haemophilus influenzae and by Moraxella catarrhalis are under development. However, the potential health benefits and economic effects of such candidate vaccines have not been systematically assessed. We created a computerized model to compare the projected benefits and costs of (1) the currently available 7-valent pneumococcal conjugate vaccine, (2) a candidate pneumococcal-nontypeable H influenzae vaccine that has been tested in Europe, (3) a hypothetical pneumococcal-nontypeable H influenzae-Moraxella vaccine, and (4) no vaccination. The clinical probabilities of acute otitis media and of otitis media with effusion were generated from multivariate analyses of data from 2 large health maintenance organizations and from the Pittsburgh Child Development/Otitis Media Study cohort. Other probabilities, costs, and quality-of-life values were derived from published and unpublished sources. The base-case analysis assumed vaccine dose costs of $65 for the 7-valent pneumococcal conjugate vaccine, $100 for the pneumococcal-nontypeable H influenzae vaccine, and $125 for the pneumococcal-nontypeable H influenzae-Moraxella vaccine. With no vaccination, we projected that 13.7 million episodes of acute otitis media would occur annually in US children aged 0 to 4 years, at an annual cost of $3.8 billion. The 7-valent pneumococcal conjugate vaccine was projected to prevent 878,000 acute otitis media episodes, or 6.4% of those that would occur with no vaccination; the corresponding value for the pneumococcal-nontypeable H influenzae vaccine was 3.7 million (27%) and for the pneumococcal-nontypeable H influenzae-Moraxella vaccine was 4.2 million (31%). Using the base-case vaccine costs, pneumococcal-nontypeable H influenzae vaccine use would result in net savings compared with nontypeable 7-valent pneumococcal conjugate use. Conversely, pneumococcal-nontypeable H influenzae-Moraxella vaccine use would not

  17. Introduction to probability

    CERN Document Server

    Freund, John E

    1993-01-01

    Thorough, lucid coverage of permutations and factorials, probabilities and odds, frequency interpretation, mathematical expectation, decision making, postulates of probability, rule of elimination, binomial distribution, geometric distribution, standard deviation, law of large numbers, and much more. Exercises with some solutions. Summary. Bibliography. Includes 42 black-and-white illustrations. 1973 edition.

  18. Evaluation of skin entrance radiation dose in pediatric patients undergoing chest X-rays exams

    International Nuclear Information System (INIS)

    Gabardo, Farly Piantini

    2016-01-01

    The aim of this work was to estimate the incident air kerma of lateral (LAT) and anterior-posterior (AP) together with posterior-anterior (PA) projection chest X-ray exams in one of the largest pediatric hospitals in Brazil. Dosimetric results are accompanied with the detailed analysis of patient characteristics and radiographer strategy. The exams of 225 (119 male and 106 female) patients were studied and 389 X-ray exams (200 AP/PA projections and 189 LAT projections) of pediatric patients were acquired. Patient thickness can be restored from age, height or weight with the uncertainty of ∼20-30%. Very slight correlation between the patient dose and thickness was observed with the difference in dose for patients of the same thickness reaching 4 times. By standardization of radiological protocols, it should be possible to keep dose within the intervals 50-100 μGy for LAT projection and 40-80 μGy for AP/PA projection. The dose values are lower than those recommended by major European guidelines to good practice. (author)

  19. RISC-RAD. A European integrated approach to the problem of low doses

    International Nuclear Information System (INIS)

    Meunier, A.; Sabatier, L.; Atkinson, M.; Paretzke, H.; Bouffler, S.; Mullenders, L.

    2007-01-01

    Complete text of publication follows. Funded by the European Commission in the framework of a dedicated programme supporting research in the Nuclear sector (FP6 Euratom), the project RISC-RAD undertakes experimental and modelling studies ultimately to improve low dose radiation cancer risk assessment by exploring and providing evidence for the most appropriate radiation cancer risk projection and interpolation models. It started on 1st January 2004 and is running until 31 st October 2008. It mobilizes a consortium of 31 partners and is coordinated by Dr. Laure Sabatier from the French atomic energy commission. Indeed the project represents an unprecedented attempt to integrate horizontally the research on the effects of low doses of IR at the European level. A multipartner project supporting objective-driven research, RISC-RAD aims at contributing to bridge the remaining gap of scientific knowledge about effects of lows doses of ionizing radiation. It spans a large part of the research spectrum, including many topics addressed during the LOWRAD2007 conference. This presentation intends to give an account of the integrative aspects of the project, insights on the innovative solutions found to approach a complex and controversial scientific topic like the biological effects of low doses of ionizing radiation, and links with some areas of social studies on science.The concept of 'integration' implies the development of a new kind of activity in the research field, which crosses its traditional boundaries : controversies of several kinds must temporarily be overcome within the project management board in order to define and follow a common strategy. Among them, how to reconcile the creative part of fundamental research with the compliance to strict project planning rules has come up as a debate which questions the best way a significant collective and coordinated action can address the issue of the low dose cancer risk assessment on the long term. The knowledge and

  20. Estimation of dose from chromosome aberration rate

    International Nuclear Information System (INIS)

    Li Deping

    1990-01-01

    The methods and skills of evaluating dose from correctly scored shromsome aberration rate are presented, and supplemented with corresponding BASIC computer code. The possibility and preventive measures of excessive probability of missing score of the aberrations in some of the current routine score methods are discussed. The use of dose-effect relationship with exposure time correction factor G in evaluating doses and their confidence intervals, dose estimation in mixed n-γ exposure, and identification of high by nonuniform acute exposure to low LET radiation and its dose estimation are discussed in more detail. The difference of estimated dose due to whether the interaction between subleisoms produced by n and γ have been taken into account is examined. In fitting the standard dose-aberration rate curve, proper weighing of experiment points and comparison with commonly accepted values are emphasised, and the coefficient of variation σ y √y of the aberration rate y as a function of dose and exposure time is given. In appendix I and II, the dose-aberration rate formula is derived from dual action theory, and the time variation of subleisom is illustrated and in appendix III, the estimation of dose from scores of two different types of aberrations (of other related score) is illustrated. Two computer codes are given in appendix IV, one is a simple code, the other a complete code, including the fitting of standard curve. the skills of using compressed data storage, and the production of simulated 'data ' for testing the curve fitting procedure are also given

  1. Intercomparison exercise on internal dose assessment. Final report of a joint IAEA-IDEAS project

    International Nuclear Information System (INIS)

    2007-09-01

    There have been several intercomparison exercises organized already at national and international levels for the assessment of occupational exposure due to intakes of radionuclides. These intercomparison exercises revealed significant differences in approaches, methods and assumptions, and consequently in the results. Because of the relevance of the issue for internal dosimetrists, the IAEA organized a new intercomparison exercise in cooperation with the IDEAS project General Guidelines for the Evaluation of Incorporation Monitoring Data, launched under the 5th EU Framework Programme (EU Contract No. FIKR-CT2001-00160). This new intercomparison exercise focused especially on the effect of the guidelines for harmonization of internal dosimetry. It also considered the following aspects: - to provide possibilities for the participating laboratories to check the quality of their internal dose assessment methods in applying the recent ICRP recommendations (e.g. for the new respiratory tract model); - to compare different approaches in interpretation of internal contamination monitoring data; - to quantify the differences in internal dose assessments based on the new guidelines or on other procedures, respectively; - to provide some figures for the influence of the input parameters on the monitoring results; and - to provide a broad forum for information exchange. Several cases have been selected for this exercise with the aim of covering a wide range of practices in the nuclear fuel cycle and in medical applications. The cases were: 1. Acute intake of HTO; 2. Acute inhalation of fission products 137 Cs and 90 Sr; 3. Intake of 60 Co; 4. Repeated intakes of 131 I; 5. Intake of enriched uranium; 6. Single intake of plutonium radionuclides and 241 Am. An Internet based approach had been used for the presentation of the cases, collection of responses and potential discussion of the results. Solutions to these cases were reported by 80 participants worldwide. This report

  2. Probably not future prediction using probability and statistical inference

    CERN Document Server

    Dworsky, Lawrence N

    2008-01-01

    An engaging, entertaining, and informative introduction to probability and prediction in our everyday lives Although Probably Not deals with probability and statistics, it is not heavily mathematical and is not filled with complex derivations, proofs, and theoretical problem sets. This book unveils the world of statistics through questions such as what is known based upon the information at hand and what can be expected to happen. While learning essential concepts including "the confidence factor" and "random walks," readers will be entertained and intrigued as they move from chapter to chapter. Moreover, the author provides a foundation of basic principles to guide decision making in almost all facets of life including playing games, developing winning business strategies, and managing personal finances. Much of the book is organized around easy-to-follow examples that address common, everyday issues such as: How travel time is affected by congestion, driving speed, and traffic lights Why different gambling ...

  3. Radiation therapy tolerance doses for treatment planning

    International Nuclear Information System (INIS)

    Lyman, J.T.

    1987-01-01

    To adequately plan acceptable dose distributions for radiation therapy treatments it is necessary to ensure that normal structures do not receive unacceptable doses. Acceptable doses are generally those that are below a stated tolerance dose for development of some level of complication. To support the work sponsored by the National Cancer Institute, data for the tolerance of normal tissues or organs to low-LET radiation has been compiled from a number of sources. These tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD 5 ) or 50% (TD 50 ) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represent doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same end point. 20 refs., 1 fig., 1 tab

  4. Risk Probabilities

    DEFF Research Database (Denmark)

    Rojas-Nandayapa, Leonardo

    Tail probabilities of sums of heavy-tailed random variables are of a major importance in various branches of Applied Probability, such as Risk Theory, Queueing Theory, Financial Management, and are subject to intense research nowadays. To understand their relevance one just needs to think...... analytic expression for the distribution function of a sum of random variables. The presence of heavy-tailed random variables complicates the problem even more. The objective of this dissertation is to provide better approximations by means of sharp asymptotic expressions and Monte Carlo estimators...

  5. Comparison of computational to human observer detection for evaluation of CT low dose iterative reconstruction

    Science.gov (United States)

    Eck, Brendan; Fahmi, Rachid; Brown, Kevin M.; Raihani, Nilgoun; Wilson, David L.

    2014-03-01

    Model observers were created and compared to human observers for the detection of low contrast targets in computed tomography (CT) images reconstructed with an advanced, knowledge-based, iterative image reconstruction method for low x-ray dose imaging. A 5-channel Laguerre-Gauss Hotelling Observer (CHO) was used with internal noise added to the decision variable (DV) and/or channel outputs (CO). Models were defined by parameters: (k1) DV-noise with standard deviation (std) proportional to DV std; (k2) DV-noise with constant std; (k3) CO-noise with constant std across channels; and (k4) CO-noise in each channel with std proportional to CO variance. Four-alternative forced choice (4AFC) human observer studies were performed on sub-images extracted from phantom images with and without a "pin" target. Model parameters were estimated using maximum likelihood comparison to human probability correct (PC) data. PC in human and all model observers increased with dose, contrast, and size, and was much higher for advanced iterative reconstruction (IMR) as compared to filtered back projection (FBP). Detection in IMR was better than FPB at 1/3 dose, suggesting significant dose savings. Model(k1,k2,k3,k4) gave the best overall fit to humans across independent variables (dose, size, contrast, and reconstruction) at fixed display window. However Model(k1) performed better when considering model complexity using the Akaike information criterion. Model(k1) fit the extraordinary detectability difference between IMR and FBP, despite the different noise quality. It is anticipated that the model observer will predict results from iterative reconstruction methods having similar noise characteristics, enabling rapid comparison of methods.

  6. Validation of dose calculation programmes for recycling

    International Nuclear Information System (INIS)

    Menon, Shankar; Brun-Yaba, Christine; Yu, Charley; Cheng, Jing-Jy; Williams, Alexander

    2002-12-01

    This report contains the results from an international project initiated by the SSI in 1999. The primary purpose of the project was to validate some of the computer codes that are used to estimate radiation doses due to the recycling of scrap metal. The secondary purpose of the validation project was to give a quantification of the level of conservatism in clearance levels based on these codes. Specifically, the computer codes RESRAD-RECYCLE and CERISE were used to calculate radiation doses to individuals during the processing of slightly contaminated material, mainly in Studsvik, Sweden. Calculated external doses were compared with measured data from different steps of the process. The comparison of calculations and measurements shows that the computer code calculations resulted in both overestimations and underestimations of the external doses for different recycling activities. The SSI draws the conclusion that the accuracy is within one order of magnitude when experienced modellers use their programmes to calculate external radiation doses for a recycling process involving material that is mainly contaminated with cobalt-60. No errors in the codes themselves were found. Instead, the inaccuracy seems to depend mainly on the choice of some modelling parameters related to the receptor (e.g., distance, time, etc.) and simplifications made to facilitate modelling with the codes (e.g., object geometry). Clearance levels are often based on studies on enveloping scenarios that are designed to cover all realistic exposure pathways. It is obvious that for most practical cases, this gives a margin to the individual dose constraint (in the order of 10 micro sievert per year within the EC). This may be accentuated by the use of conservative assumptions when modelling the enveloping scenarios. Since there can obviously be a fairly large inaccuracy in the calculations, it seems reasonable to consider some degree of conservatism when establishing clearance levels based on

  7. Validation of dose calculation programmes for recycling

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Shankar [Menon Consulting, Nykoeping (Sweden); Brun-Yaba, Christine [Inst. de Radioprotection et Securite Nucleaire (France); Yu, Charley; Cheng, Jing-Jy [Argonne National Laboratory, IL (United States). Environmental Assessment Div.; Bjerler, Jan [Studsvik Stensand, Nykoeping (Sweden); Williams, Alexander [Dept. of Energy (United States). Office of Environmental Management

    2002-12-01

    This report contains the results from an international project initiated by the SSI in 1999. The primary purpose of the project was to validate some of the computer codes that are used to estimate radiation doses due to the recycling of scrap metal. The secondary purpose of the validation project was to give a quantification of the level of conservatism in clearance levels based on these codes. Specifically, the computer codes RESRAD-RECYCLE and CERISE were used to calculate radiation doses to individuals during the processing of slightly contaminated material, mainly in Studsvik, Sweden. Calculated external doses were compared with measured data from different steps of the process. The comparison of calculations and measurements shows that the computer code calculations resulted in both overestimations and underestimations of the external doses for different recycling activities. The SSI draws the conclusion that the accuracy is within one order of magnitude when experienced modellers use their programmes to calculate external radiation doses for a recycling process involving material that is mainly contaminated with cobalt-60. No errors in the codes themselves were found. Instead, the inaccuracy seems to depend mainly on the choice of some modelling parameters related to the receptor (e.g., distance, time, etc.) and simplifications made to facilitate modelling with the codes (e.g., object geometry). Clearance levels are often based on studies on enveloping scenarios that are designed to cover all realistic exposure pathways. It is obvious that for most practical cases, this gives a margin to the individual dose constraint (in the order of 10 micro sievert per year within the EC). This may be accentuated by the use of conservative assumptions when modelling the enveloping scenarios. Since there can obviously be a fairly large inaccuracy in the calculations, it seems reasonable to consider some degree of conservatism when establishing clearance levels based on

  8. Low dose response analysis through a cytogenetic end-point

    International Nuclear Information System (INIS)

    Bojtor, I.; Koeteles, G.J.

    1998-01-01

    The effects of low doses were studied on human lymphocytes of various individuals. The frequency of micronuclei in cytokinesis-blocked cultured lymphocytes was taken as end-point. The probability distribution of radiation-induced increment was statistically proved and identified as to be asymmetric when the blood samples had been irradiated with doses of 0.01-0.05 Gy of X-rays, similarly to that in unirradiated control population. On the contrary, at or above 1 Gy the corresponding normal curve could be accepted only reflecting an approximately symmetrical scatter of the increments about their mean value. It was found that the slope as well as the closeness of correlation of the variables considerably changed when lower and lower dose ranges had been selected. Below approximately 0.2 Gy even an unrelatedness was found betwen the absorbed dose and the increment

  9. Uncertainties in the Dutch Reference Projections. Background information for the report 'Reference Projections Energy and Emissions 2005-2020'

    International Nuclear Information System (INIS)

    Seebregts, A.J.; Gijsen, A.

    2005-09-01

    The Dutch targets for greenhouse gases, ammonia and non-methane VOCs will likely be met in 2010 according to our calculations from an uncertainty analysis in the framework of the project on Reference Projections for energy, climate and acidifying emissions. However, it is unlikely that the targets for sulphur dioxide and nitrogen oxide will be attained This study distinguished between sources of uncertainty in the input variables of the Reference Projections. These sources were quantified with the help of the 'Guidance for Uncertainty Assessment and Communication' and 'expert judgement'. With the aid of a statistical Monte Carlo analysis, margins and probability distributions were determined for the most important outcomes of the Reference Projections. These probability distributions led, for example, to several statements being made on the chances of meeting certain targets. The use of 'Guidance for Uncertainty Assessment and Communication' was also evaluated [nl

  10. Reference doses and patient size in paediatric radiology

    International Nuclear Information System (INIS)

    Hart, D.; Wall, B.; Shrimpton, P.

    2000-01-01

    There is a wide range in patient size from a newborn baby to a 15 year old adolescent. Reference doses for paediatric radiology can sensibly be established only for specific sizes of children. Here five standard sizes have been chosen, representing 0 (newborn), 1, 5, 10 and 15 year old patients. This selection of standard ages has the advantage of matching the paediatric mathematical phantoms which are often used in Monte Carlo organ dose calculations. A method has been developed for calculating factors for normalising doses measured on individual children to those for the nearest standard-sized 'child'. These normalisation factors for entrance surface dose (ESD) and dose-area product (DAP) measurements depend on the thickness of the real child, the thickness of the nearest standard 'child', and an effective linear attenuation coefficient (μ) which is itself a function of the x-ray spectrum, the field size, and whether or not an antiscatter grid is used. Entrance and exit dose measurements were made with phantom material representing soft tissue to establish μ values for abdominal and head examinations, and with phantom material representing lung for chest examinations. These measurements of μ were confirmed and extended to other x-ray spectra and field sizes by Monte Carlo calculations. The normalisation factors are tabulated for ESD measurements for specific radiographic projections through the head and trunk, and for DAP measurements for complete multiprojection examinations in the trunk. The normalisation factors were applied to European survey data for entrance surface dose and dose-area product measurements to derive provisional reference doses for common radiographic projections and for micturating cystourethrography (MCU) examinations - the most frequent fluoroscopic examination on children. (author)

  11. Dose evaluation in paediatric patients undergoing chest X-ray examinations

    Science.gov (United States)

    Piantini, F.; Schelin, H. R.; Denyak, V.; Bunick, A. P.; Legnani, A.; Ledesma, J. A.; Filipov, D.; Paschuk, S. A.

    2017-11-01

    This study aimed to estimate the incident air kerma in chest X-ray examinations, for lateral (LAT) and anterior-posterior (AP) (together with posterior-anterior (PA)) projections, in one of the largest paediatric hospitals in Brazil, and to compare these with the results obtained in a general hospital of the same city. The dosimetric results were analysed along with the patient characteristics and radiographer strategies. The examinations of 225 (119 male and 106 female) patients were studied and 389 X-ray scans (200 AP/PA projections and 189 LAT projections) of paediatric patients were acquired. For analysis of the results, the patients were divided into the following age groups: 0-1 y, 1-5 y, 5-10 y, and 10-15 y. Patient's thickness can be determined from age, height or weight with an uncertainty of 20-30%. In different hospitals, the difference in patient's thicknesses between the same age groups can reach 25-55%. A minimal correlation between the patient dose and thickness was observed, with a 4-fold difference in the dose for patients of the same thickness. By standardizing radiological protocols, it should be possible to keep the dose within intervals of 50-100 μGy for LAT projection and 40-80 μGy for AP/PA projection.

  12. Quantum processes: probability fluxes, transition probabilities in unit time and vacuum vibrations

    International Nuclear Information System (INIS)

    Oleinik, V.P.; Arepjev, Ju D.

    1989-01-01

    Transition probabilities in unit time and probability fluxes are compared in studying the elementary quantum processes -the decay of a bound state under the action of time-varying and constant electric fields. It is shown that the difference between these quantities may be considerable, and so the use of transition probabilities W instead of probability fluxes Π, in calculating the particle fluxes, may lead to serious errors. The quantity W represents the rate of change with time of the population of the energy levels relating partly to the real states and partly to the virtual ones, and it cannot be directly measured in experiment. The vacuum background is shown to be continuously distorted when a perturbation acts on a system. Because of this the viewpoint of an observer on the physical properties of real particles continuously varies with time. This fact is not taken into consideration in the conventional theory of quantum transitions based on using the notion of probability amplitude. As a result, the probability amplitudes lose their physical meaning. All the physical information on quantum dynamics of a system is contained in the mean values of physical quantities. The existence of considerable differences between the quantities W and Π permits one in principle to make a choice of the correct theory of quantum transitions on the basis of experimental data. (author)

  13. Organ dose evaluation for CT scans based on in-phantom measurements

    International Nuclear Information System (INIS)

    Liu Haikuan; Zhuo Weihai; Chen Bo; Yi Yanling; Li Dehong

    2009-01-01

    Objective: To explore the organ doses and their distributions in different projections of CT scans. Methods: The CT values were measured and the linear absorption coefficients were derived for the main organs of the anthropomorphic phantom to compare with the normal values of human beings. The radiophotoluminescent glass dosimeters were set into various tissues or organs of the phantom for mimic measurements of the organ doses undergoing the head, chest, abdomen and pelvis CT scans, respectively. Results: The tissue equivalence of the phantom used in this study was good. The brain had the largest organ dose undergoing the head CT scan. The organ doses in thyroid, breast, lung and oesophagus were relatively large in performing the chest CT scan, while the liver, stomach, colon and lung had relatively hrge organ doses in abdomen CT practice. The doses in bone surface and colon exceeded by 50 mGy in a single pelvis CT scan. Conclusions: The organ doses and their distributions largely vary with different projections of CT scans. The organ doses of colon, bone marrow,gonads and bladder are fairly large in performing pelvis CT scan, which should be paid attention in the practice. (authors)

  14. Comparison of Acuros (AXB) and Anisotropic Analytical Algorithm (AAA) for dose calculation in treatment of oesophageal cancer: effects on modelling tumour control probability.

    Science.gov (United States)

    Padmanaban, Sriram; Warren, Samantha; Walsh, Anthony; Partridge, Mike; Hawkins, Maria A

    2014-12-23

    To investigate systematic changes in dose arising when treatment plans optimised using the Anisotropic Analytical Algorithm (AAA) are recalculated using Acuros XB (AXB) in patients treated with definitive chemoradiotherapy (dCRT) for locally advanced oesophageal cancers. We have compared treatment plans created using AAA with those recalculated using AXB. Although the Anisotropic Analytical Algorithm (AAA) is currently more widely used in clinical routine, Acuros XB (AXB) has been shown to more accurately calculate the dose distribution, particularly in heterogeneous regions. Studies to predict clinical outcome should be based on modelling the dose delivered to the patient as accurately as possible. CT datasets from ten patients were selected for this retrospective study. VMAT (Volumetric modulated arc therapy) plans with 2 arcs, collimator rotation ± 5-10° and dose prescription 50 Gy / 25 fractions were created using Varian Eclipse (v10.0). The initial dose calculation was performed with AAA, and AXB plans were created by re-calculating the dose distribution using the same number of monitor units (MU) and multileaf collimator (MLC) files as the original plan. The difference in calculated dose to organs at risk (OAR) was compared using dose-volume histogram (DVH) statistics and p values were calculated using the Wilcoxon signed rank test. The potential clinical effect of dosimetric differences in the gross tumour volume (GTV) was evaluated using three different TCP models from the literature. PTV Median dose was apparently 0.9 Gy lower (range: 0.5 Gy - 1.3 Gy; p AAA plans re-calculated with AXB and GTV mean dose was reduced by on average 1.0 Gy (0.3 Gy -1.5 Gy; p AAA plan (on average, dose reduction: lung 1.7%, heart 2.4%). Similar trends were seen for CRT plans. Differences in dose distribution are observed with VMAT and CRT plans recalculated with AXB particularly within soft tissue at the tumour/lung interface, where AXB has been shown to more

  15. The Impact of a One-Dose versus Two-Dose Oral Cholera Vaccine Regimen in Outbreak Settings: A Modeling Study

    Science.gov (United States)

    Azman, Andrew S.; Luquero, Francisco J.; Ciglenecki, Iza; Grais, Rebecca F.; Sack, David A.; Lessler, Justin

    2015-01-01

    Background In 2013, a stockpile of oral cholera vaccine (OCV) was created for use in outbreak response, but vaccine availability remains severely limited. Innovative strategies are needed to maximize the health impact and minimize the logistical barriers to using available vaccine. Here we ask under what conditions the use of one dose rather than the internationally licensed two-dose protocol may do both. Methods and Findings Using mathematical models we determined the minimum relative single-dose efficacy (MRSE) at which single-dose reactive campaigns are expected to be as or more effective than two-dose campaigns with the same amount of vaccine. Average one- and two-dose OCV effectiveness was estimated from published literature and compared to the MRSE. Results were applied to recent outbreaks in Haiti, Zimbabwe, and Guinea using stochastic simulations to illustrate the potential impact of one- and two-dose campaigns. At the start of an epidemic, a single dose must be 35%–56% as efficacious as two doses to avert the same number of cases with a fixed amount of vaccine (i.e., MRSE between 35% and 56%). This threshold decreases as vaccination is delayed. Short-term OCV effectiveness is estimated to be 77% (95% CI 57%–88%) for two doses and 44% (95% CI −27% to 76%) for one dose. This results in a one-dose relative efficacy estimate of 57% (interquartile range 13%–88%), which is above conservative MRSE estimates. Using our best estimates of one- and two-dose efficacy, we projected that a single-dose reactive campaign could have prevented 70,584 (95% prediction interval [PI] 55,943–86,205) cases in Zimbabwe, 78,317 (95% PI 57,435–100,150) in Port-au-Prince, Haiti, and 2,826 (95% PI 2,490–3,170) cases in Conakry, Guinea: 1.1 to 1.2 times as many as a two-dose campaign. While extensive sensitivity analyses were performed, our projections of cases averted in past epidemics are based on severely limited single-dose efficacy data and may not fully capture

  16. The Impact of a One-Dose versus Two-Dose Oral Cholera Vaccine Regimen in Outbreak Settings: A Modeling Study.

    Directory of Open Access Journals (Sweden)

    Andrew S Azman

    2015-08-01

    Full Text Available In 2013, a stockpile of oral cholera vaccine (OCV was created for use in outbreak response, but vaccine availability remains severely limited. Innovative strategies are needed to maximize the health impact and minimize the logistical barriers to using available vaccine. Here we ask under what conditions the use of one dose rather than the internationally licensed two-dose protocol may do both.Using mathematical models we determined the minimum relative single-dose efficacy (MRSE at which single-dose reactive campaigns are expected to be as or more effective than two-dose campaigns with the same amount of vaccine. Average one- and two-dose OCV effectiveness was estimated from published literature and compared to the MRSE. Results were applied to recent outbreaks in Haiti, Zimbabwe, and Guinea using stochastic simulations to illustrate the potential impact of one- and two-dose campaigns. At the start of an epidemic, a single dose must be 35%-56% as efficacious as two doses to avert the same number of cases with a fixed amount of vaccine (i.e., MRSE between 35% and 56%. This threshold decreases as vaccination is delayed. Short-term OCV effectiveness is estimated to be 77% (95% CI 57%-88% for two doses and 44% (95% CI -27% to 76% for one dose. This results in a one-dose relative efficacy estimate of 57% (interquartile range 13%-88%, which is above conservative MRSE estimates. Using our best estimates of one- and two-dose efficacy, we projected that a single-dose reactive campaign could have prevented 70,584 (95% prediction interval [PI] 55,943-86,205 cases in Zimbabwe, 78,317 (95% PI 57,435-100,150 in Port-au-Prince, Haiti, and 2,826 (95% PI 2,490-3,170 cases in Conakry, Guinea: 1.1 to 1.2 times as many as a two-dose campaign. While extensive sensitivity analyses were performed, our projections of cases averted in past epidemics are based on severely limited single-dose efficacy data and may not fully capture uncertainty due to imperfect

  17. Choline PET based dose-painting in prostate cancer - Modelling of dose effects

    International Nuclear Information System (INIS)

    Niyazi, Maximilian; Bartenstein, Peter; Belka, Claus; Ganswindt, Ute

    2010-01-01

    Several randomized trials have documented the value of radiation dose escalation in patients with prostate cancer, especially in patients with intermediate risk profile. Up to now dose escalation is usually applied to the whole prostate. IMRT and related techniques currently allow for dose escalation in sub-volumes of the organ. However, the sensitivity of the imaging modality and the fact that small islands of cancer are often dispersed within the whole organ may limit these approaches with regard to a clear clinical benefit. In order to assess potential effects of a dose escalation in certain sub-volumes based on choline PET imaging a mathematical dose-response model was developed. Based on different assumptions for α/β, γ50, sensitivity and specificity of choline PET, the influence of the whole prostate and simultaneous integrated boost (SIB) dose on tumor control probability (TCP) was calculated. Based on the given heterogeneity of all potential variables certain representative permutations of the parameters were chosen and, subsequently, the influence on TCP was assessed. Using schedules with 74 Gy within the whole prostate and a SIB dose of 90 Gy the TCP increase ranged from 23.1% (high detection rate of choline PET, low whole prostate dose, high γ50/ASTRO definition for tumor control) to 1.4% TCP gain (low sensitivity of PET, high whole prostate dose, CN + 2 definition for tumor control) or even 0% in selected cases. The corresponding initial TCP values without integrated boost ranged from 67.3% to 100%. According to a large data set of intermediate-risk prostate cancer patients the resulting TCP gains ranged from 22.2% to 10.1% (ASTRO definition) or from 13.2% to 6.0% (CN + 2 definition). Although a simplified mathematical model was employed, the presented model allows for an estimation in how far given schedules are relevant for clinical practice. However, the benefit of a SIB based on choline PET seems less than intuitively expected. Only under the

  18. Comparison of Acuros (AXB) and Anisotropic Analytical Algorithm (AAA) for dose calculation in treatment of oesophageal cancer: effects on modelling tumour control probability

    International Nuclear Information System (INIS)

    Padmanaban, Sriram; Warren, Samantha; Walsh, Anthony; Partridge, Mike; Hawkins, Maria A

    2014-01-01

    To investigate systematic changes in dose arising when treatment plans optimised using the Anisotropic Analytical Algorithm (AAA) are recalculated using Acuros XB (AXB) in patients treated with definitive chemoradiotherapy (dCRT) for locally advanced oesophageal cancers. We have compared treatment plans created using AAA with those recalculated using AXB. Although the Anisotropic Analytical Algorithm (AAA) is currently more widely used in clinical routine, Acuros XB (AXB) has been shown to more accurately calculate the dose distribution, particularly in heterogeneous regions. Studies to predict clinical outcome should be based on modelling the dose delivered to the patient as accurately as possible. CT datasets from ten patients were selected for this retrospective study. VMAT (Volumetric modulated arc therapy) plans with 2 arcs, collimator rotation ± 5-10° and dose prescription 50 Gy / 25 fractions were created using Varian Eclipse (v10.0). The initial dose calculation was performed with AAA, and AXB plans were created by re-calculating the dose distribution using the same number of monitor units (MU) and multileaf collimator (MLC) files as the original plan. The difference in calculated dose to organs at risk (OAR) was compared using dose-volume histogram (DVH) statistics and p values were calculated using the Wilcoxon signed rank test. The potential clinical effect of dosimetric differences in the gross tumour volume (GTV) was evaluated using three different TCP models from the literature. PTV Median dose was apparently 0.9 Gy lower (range: 0.5 Gy - 1.3 Gy; p < 0.05) for VMAT AAA plans re-calculated with AXB and GTV mean dose was reduced by on average 1.0 Gy (0.3 Gy −1.5 Gy; p < 0.05). An apparent difference in TCP of between 1.2% and 3.1% was found depending on the choice of TCP model. OAR mean dose was lower in the AXB recalculated plan than the AAA plan (on average, dose reduction: lung 1.7%, heart 2.4%). Similar trends were seen for CRT plans

  19. Earthquake Probability Assessment for the Active Faults in Central Taiwan: A Case Study

    Directory of Open Access Journals (Sweden)

    Yi-Rui Lee

    2016-06-01

    Full Text Available Frequent high seismic activities occur in Taiwan due to fast plate motions. According to the historical records the most destructive earthquakes in Taiwan were caused mainly by inland active faults. The Central Geological Survey (CGS of Taiwan has published active fault maps in Taiwan since 1998. There are 33 active faults noted in the 2012 active fault map. After the Chi-Chi earthquake, CGS launched a series of projects to investigate the details to better understand each active fault in Taiwan. This article collected this data to develop active fault parameters and referred to certain experiences from Japan and the United States to establish a methodology for earthquake probability assessment via active faults. We consider the active faults in Central Taiwan as a good example to present the earthquake probability assessment process and results. The appropriate “probability model” was used to estimate the conditional probability where M ≥ 6.5 and M ≥ 7.0 earthquakes. Our result shows that the highest earthquake probability for M ≥ 6.5 earthquake occurring in 30, 50, and 100 years in Central Taiwan is the Tachia-Changhua fault system. Conversely, the lowest earthquake probability is the Chelungpu fault. The goal of our research is to calculate the earthquake probability of the 33 active faults in Taiwan. The active fault parameters are important information that can be applied in the following seismic hazard analysis and seismic simulation.

  20. Propensity, Probability, and Quantum Theory

    Science.gov (United States)

    Ballentine, Leslie E.

    2016-08-01

    Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.

  1. MO-F-CAMPUS-I-02: Occupational Conceptus Doses From Fluoroscopically-Guided Interventional Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Damilakis, J; Perisinakis, K; Solomou, G [University of Crete (Greece); Stratakis, J [University of Crete, Heraklion, Crete (Greece)

    2015-06-15

    Purpose: The aim of this method was to provide dosimetric data on conceptus dose for the pregnant employee who participates in fluoroscopically-guided interventional procedures. Methods: Scattered air-kerma dose rates were obtained for 17 fluoroscopic projections involved in interventional procedures. These projections were simulated on an anthropomorphic phantom placed on the examination table supine. The operating theater was divided into two grids relative to the long table sides. Each grid consisted of 33 cells spaced 0.50 m apart. During the simulated exposures, at each cell, scatter air-kerma rate was measured at 110 cm from the floor i.e. at the height of the waist of the pregnant worker. Air-kerma rates were divided by the dose area product (DAP) rate of each exposure to obtain normalized data. For each projection, measurements were performed for 3 kVp and 3 filtration values i.e. for 9 different x-ray spectra. All measurements were performed by using a modern C-arm angiographic system (Siemens Axiom Artis, Siemens, Germany) and a radiation meter equipped with an ionization chamber. Results: The results consist of 153 iso-dose maps, which show the spatial distribution of DAP-normalized scattered air-kerma doses at the waist level of a pregnant worker. Conceptus dose estimation is possible using air-kerma to embryo/fetal dose conversion coefficients published in a previous study (J Cardiovasc Electrophysiol, Vol. 16, pp. 1–8, July 2005). Using these maps, occupationally exposed pregnant personnel may select a working position for a certain projection that keeps abdominal dose as low as reasonably achievable. Taking into consideration the regulatory conceptus dose limit for occupational exposure, determination of the maximum workload allowed for the pregnant personnel is also possible. Conclusion: Data produced in this work allow for the anticipation of conceptus dose and the determination of the maximum workload for a pregnant worker from any

  2. MO-F-CAMPUS-I-02: Occupational Conceptus Doses From Fluoroscopically-Guided Interventional Procedures

    International Nuclear Information System (INIS)

    Damilakis, J; Perisinakis, K; Solomou, G; Stratakis, J

    2015-01-01

    Purpose: The aim of this method was to provide dosimetric data on conceptus dose for the pregnant employee who participates in fluoroscopically-guided interventional procedures. Methods: Scattered air-kerma dose rates were obtained for 17 fluoroscopic projections involved in interventional procedures. These projections were simulated on an anthropomorphic phantom placed on the examination table supine. The operating theater was divided into two grids relative to the long table sides. Each grid consisted of 33 cells spaced 0.50 m apart. During the simulated exposures, at each cell, scatter air-kerma rate was measured at 110 cm from the floor i.e. at the height of the waist of the pregnant worker. Air-kerma rates were divided by the dose area product (DAP) rate of each exposure to obtain normalized data. For each projection, measurements were performed for 3 kVp and 3 filtration values i.e. for 9 different x-ray spectra. All measurements were performed by using a modern C-arm angiographic system (Siemens Axiom Artis, Siemens, Germany) and a radiation meter equipped with an ionization chamber. Results: The results consist of 153 iso-dose maps, which show the spatial distribution of DAP-normalized scattered air-kerma doses at the waist level of a pregnant worker. Conceptus dose estimation is possible using air-kerma to embryo/fetal dose conversion coefficients published in a previous study (J Cardiovasc Electrophysiol, Vol. 16, pp. 1–8, July 2005). Using these maps, occupationally exposed pregnant personnel may select a working position for a certain projection that keeps abdominal dose as low as reasonably achievable. Taking into consideration the regulatory conceptus dose limit for occupational exposure, determination of the maximum workload allowed for the pregnant personnel is also possible. Conclusion: Data produced in this work allow for the anticipation of conceptus dose and the determination of the maximum workload for a pregnant worker from any

  3. Dose fractionation theorem in 3-D reconstruction (tomography)

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, R.M. [Lawrence Berkeley National Lab., CA (United States)

    1997-02-01

    It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resulted in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens.

  4. Dose fractionation theorem in 3-D reconstruction (tomography)

    International Nuclear Information System (INIS)

    Glaeser, R.M.

    1997-01-01

    It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resulted in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens

  5. Probability of ignition - a better approach than ignition margin

    International Nuclear Information System (INIS)

    Ho, S.K.; Perkins, L.J.

    1989-01-01

    The use of a figure of merit - the probability of ignition - is proposed for the characterization of the ignition performance of projected ignition tokamaks. Monte Carlo and analytic models have been developed to compute the uncertainty distribution function for ignition of a given tokamak design, in terms of the uncertainties inherent in the tokamak physics database. A sample analysis with this method indicates that the risks of not achieving ignition may be unacceptably high unless the accepted margins for ignition are increased. (author). Letter-to-the-editor. 12 refs, 2 figs, 2 tabs

  6. Low dose epidemiology

    International Nuclear Information System (INIS)

    Tirmarche, M.; Hubert, P.

    1992-01-01

    Actually, epidemiological studies have to establish if the assessment of cancer risk can be verified at low chronic radiation doses. The population surveillance must be very long, the side effects and cancers of such radiation appearing much later. In France, this epidemiological study on nuclear workers have been decided recently. Before describing the experiment and french projects in epidemiology of nuclear workers, the authors present the main english and american studies

  7. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2013-05-15

    control probability (TCP) and normal tissue complication probability (NTCP). To assess potential local RBE variations, LET distributions were calculated with Monte Carlo, and compared for different plans. The results were assessed in terms of their sensitivity to uncertainties in model parameters and delivery. Results: IFD courses included equal number of fractions boosting either hemisphere, thus, the combined physical dose was close to uniform throughout the prostate. However, for the entire course, the prostate EUD in IFD was higher than in conventional FTP by up to 14%, corresponding to the estimated increase in TCP to 96% from 88%. The extent of gain depended on the mixing factor, i.e., relative weights used to combine FTP and STP spot weights. Increased weighting of STP typically yielded a higher target EUD, but also led to increased sensitivity of dose to variations in the proton's range. Rectal and bladder EUD were same or lower (per normalization), and the NTCP for both remained below 1%. The LET distributions in IFD also depended strongly on the mixing weights: plans using higher weight of STP spots yielded higher LET, indicating a potentially higher local RBE. Conclusions: In proton therapy delivered by pencil beam scanning, improved therapeutic outcome can potentially be expected with delivery of IFD distributions, while administering the prescribed quasi-uniform dose to the target over the entire course. The biological effectiveness of IFD may be further enhanced by optimizing the LET distributions. IFD distributions are characterized by a dose gradient located in proximity of the prostate's midplane, thus, the fidelity of delivery would depend crucially on the precision with which the proton range could be controlled.

  8. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    International Nuclear Information System (INIS)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-01-01

    control probability (TCP) and normal tissue complication probability (NTCP). To assess potential local RBE variations, LET distributions were calculated with Monte Carlo, and compared for different plans. The results were assessed in terms of their sensitivity to uncertainties in model parameters and delivery. Results: IFD courses included equal number of fractions boosting either hemisphere, thus, the combined physical dose was close to uniform throughout the prostate. However, for the entire course, the prostate EUD in IFD was higher than in conventional FTP by up to 14%, corresponding to the estimated increase in TCP to 96% from 88%. The extent of gain depended on the mixing factor, i.e., relative weights used to combine FTP and STP spot weights. Increased weighting of STP typically yielded a higher target EUD, but also led to increased sensitivity of dose to variations in the proton's range. Rectal and bladder EUD were same or lower (per normalization), and the NTCP for both remained below 1%. The LET distributions in IFD also depended strongly on the mixing weights: plans using higher weight of STP spots yielded higher LET, indicating a potentially higher local RBE. Conclusions: In proton therapy delivered by pencil beam scanning, improved therapeutic outcome can potentially be expected with delivery of IFD distributions, while administering the prescribed quasi-uniform dose to the target over the entire course. The biological effectiveness of IFD may be further enhanced by optimizing the LET distributions. IFD distributions are characterized by a dose gradient located in proximity of the prostate's midplane, thus, the fidelity of delivery would depend crucially on the precision with which the proton range could be controlled.

  9. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions.

    Science.gov (United States)

    Zeng, Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A; Trofimov, Alexei

    2013-05-01

    Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability

  10. Radiation dose of digital tomosynthesis for sinonasal examination: comparison with multi-detector CT.

    Science.gov (United States)

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Numano, Tomokazu; Abe, Shinji; Sabol, John M; Suzuki, Shigeru; Ueno, Eiko

    2012-06-01

    Using an anthropomorphic phantom, we have investigated the feasibility of digital tomosynthesis (DT) of flat-panel detector (FPD) radiography to reduce radiation dose for sinonasal examination compared to multi-detector computed tomography (MDCT). A female Rando phantom was scanned covering frontal to maxillary sinus using the clinically routine protocol by both 64-detector CT (120 kV, 200 mAs, and 1.375-pitch) and DT radiography (80 kV, 1.0 mAs per projection, 60 projections, 40° sweep, and posterior-anterior projections). Glass dosimeters were used to measure the radiation dose to internal organs including the thyroid gland, brain, submandibular gland, and the surface dose at various sites including the eyes during those scans. We compared the radiation dose to those anatomies between both modalities. In DT radiography, the doses of the thyroid gland, brain, submandibular gland, skin, and eyes were 230 ± 90 μGy, 1770 ± 560 μGy, 1400 ± 80 μGy, 1160 ± 2100 μGy, and 112 ± 6 μGy, respectively. These doses were reduced to approximately 1/5, 1/8, 1/12, 1/17, and 1/290 of the respective MDCT dose. For sinonasal examinations, DT radiography enables dramatic reduction in radiation exposure and dose to the head and neck region, particularly to the lens of the eye. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Choice Probability Generating Functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel L; Bierlaire, Michel

    This paper considers discrete choice, with choice probabilities coming from maximization of preferences from a random utility field perturbed by additive location shifters (ARUM). Any ARUM can be characterized by a choice-probability generating function (CPGF) whose gradient gives the choice...... probabilities, and every CPGF is consistent with an ARUM. We relate CPGF to multivariate extreme value distributions, and review and extend methods for constructing CPGF for applications....

  12. Prediction and probability in sciences

    International Nuclear Information System (INIS)

    Klein, E.; Sacquin, Y.

    1998-01-01

    This book reports the 7 presentations made at the third meeting 'physics and fundamental questions' whose theme was probability and prediction. The concept of probability that was invented to apprehend random phenomena has become an important branch of mathematics and its application range spreads from radioactivity to species evolution via cosmology or the management of very weak risks. The notion of probability is the basis of quantum mechanics and then is bound to the very nature of matter. The 7 topics are: - radioactivity and probability, - statistical and quantum fluctuations, - quantum mechanics as a generalized probability theory, - probability and the irrational efficiency of mathematics, - can we foresee the future of the universe?, - chance, eventuality and necessity in biology, - how to manage weak risks? (A.C.)

  13. Use of dose constraints in public exposure

    International Nuclear Information System (INIS)

    Tageldein, Amged

    2015-02-01

    An overview of the dose constraints in public exposures has been carried out in this project. The establishment, development and the application of the concept of dose constraints are reviewed with regards to public exposure. The role of dose constraints in the process of optimization of radiation protection was described and has been showed that the concept of the dose constraints along with many other concept of radiation protection is widely applied in the optimization of exposure to radiation. From the beginning of the establishment of dose constraints as a concept in radiation protection, the International Commission of Radiological Protection (ICRP) has published a number of documents that provides detailed application related to radiation protection and safety of public exposure from ionizing radiation. This work provides an overview of such publications and related documents with special emphasis on optimization of public exposure using dose constraints. (au)

  14. The probabilities of one- and multi-track events for modeling radiation-induced cell kill

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Uwe; Vasi, Fabiano; Besserer, Juergen [University of Zuerich, Department of Physics, Science Faculty, Zurich (Switzerland); Radiotherapy Hirslanden, Zurich (Switzerland)

    2017-08-15

    In view of the clinical importance of hypofractionated radiotherapy, track models which are based on multi-hit events are currently reinvestigated. These models are often criticized, because it is believed that the probability of multi-track hits is negligible. In this work, the probabilities for one- and multi-track events are determined for different biological targets. The obtained probabilities can be used with nano-dosimetric cluster size distributions to obtain the parameters of track models. We quantitatively determined the probabilities for one- and multi-track events for 100, 500 and 1000 keV electrons, respectively. It is assumed that the single tracks are statistically independent and follow a Poisson distribution. Three different biological targets were investigated: (1) a DNA strand (2 nm scale); (2) two adjacent chromatin fibers (60 nm); and (3) fiber loops (300 nm). It was shown that the probabilities for one- and multi-track events are increasing with energy, size of the sensitive target structure, and dose. For a 2 x 2 x 2 nm{sup 3} target, one-track events are around 10,000 times more frequent than multi-track events. If the size of the sensitive structure is increased to 100-300 nm, the probabilities for one- and multi-track events are of the same order of magnitude. It was shown that target theories can play a role for describing radiation-induced cell death if the targets are of the size of two adjacent chromatin fibers or fiber loops. The obtained probabilities can be used together with the nano-dosimetric cluster size distributions to determine model parameters for target theories. (orig.)

  15. Characteristics of repair following very low doses

    International Nuclear Information System (INIS)

    Braby, L.A.; Metting, N.F.; Nelson, J.M.

    1987-01-01

    The effects of ionizing radiation on living systems being with the physical processes of energy deposition and develop through many stages of chemical reaction and biological response. The modeling effort attempts to organize the available data and theories of all of these stages into self-consistent models that can be compared and tested. In some cases, important differences among models result in only small differences in cell survival within the ranges of dose and dose rate that are normally investigated. To overcome this limitation, new ways of irradiating cells at extremes of dose rate, or ways of evaluating the effects of very small doses, are developed. Mathematical modeling and cellular studies complement each other. It has recently been found that some mechanisms are not adequate to account for the interaction of dose and repair time as they affect the reproductive survival of plateau-phase Chinese hamster ovary (CHO) cells. Repair of radiation-induced cellular damage plays a central role in the survival of cells exposed to doses of 1 Gy or more. This repair is responsible for the dose rate, split-dose and delayed plating effect and can be evaluated. Because split-dose and dose-rate experiments involve repair during irradiation and delayed plating experiments involve repair after irradiation is completed, it was originally thought that different repair processes were involved. It is now clear that this is not necessarily the case. Appropriately designed models can account for observed effects at conventional doses (1 Gy or more) whether they assume all damage is lethal unless repaired or some damage is innocuous unless it interacts with additional damage. The fact that the survival following a plating delay is always less than the survival following immediate plating at low doses indicates that the damage produced is probably not potentially lethal

  16. Projections onto the Pareto surface in multicriteria radiation therapy optimization.

    Science.gov (United States)

    Bokrantz, Rasmus; Miettinen, Kaisa

    2015-10-01

    To eliminate or reduce the error to Pareto optimality that arises in Pareto surface navigation when the Pareto surface is approximated by a small number of plans. The authors propose to project the navigated plan onto the Pareto surface as a postprocessing step to the navigation. The projection attempts to find a Pareto optimal plan that is at least as good as or better than the initial navigated plan with respect to all objective functions. An augmented form of projection is also suggested where dose-volume histogram constraints are used to prevent that the projection causes a violation of some clinical goal. The projections were evaluated with respect to planning for intensity modulated radiation therapy delivered by step-and-shoot and sliding window and spot-scanned intensity modulated proton therapy. Retrospective plans were generated for a prostate and a head and neck case. The projections led to improved dose conformity and better sparing of organs at risk (OARs) for all three delivery techniques and both patient cases. The mean dose to OARs decreased by 3.1 Gy on average for the unconstrained form of the projection and by 2.0 Gy on average when dose-volume histogram constraints were used. No consistent improvements in target homogeneity were observed. There are situations when Pareto navigation leaves room for improvement in OAR sparing and dose conformity, for example, if the approximation of the Pareto surface is coarse or the problem formulation has too permissive constraints. A projection onto the Pareto surface can identify an inaccurate Pareto surface representation and, if necessary, improve the quality of the navigated plan.

  17. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space

    International Nuclear Information System (INIS)

    Chawla, Amarpreet S.; Lo, Joseph Y.; Baker, Jay A.; Samei, Ehsan

    2009-01-01

    Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomy specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular

  18. Bayesian nonparametric estimation of continuous monotone functions with applications to dose-response analysis.

    Science.gov (United States)

    Bornkamp, Björn; Ickstadt, Katja

    2009-03-01

    In this article, we consider monotone nonparametric regression in a Bayesian framework. The monotone function is modeled as a mixture of shifted and scaled parametric probability distribution functions, and a general random probability measure is assumed as the prior for the mixing distribution. We investigate the choice of the underlying parametric distribution function and find that the two-sided power distribution function is well suited both from a computational and mathematical point of view. The model is motivated by traditional nonlinear models for dose-response analysis, and provides possibilities to elicitate informative prior distributions on different aspects of the curve. The method is compared with other recent approaches to monotone nonparametric regression in a simulation study and is illustrated on a data set from dose-response analysis.

  19. A methodology to establish the appearance of cancer cases due to radiation dose in compressed breast

    International Nuclear Information System (INIS)

    Feital, Joao Carlos Da Silva; Delgado, Jose Ubiratan; Peixoto, Jose Guilherme P.; Fonseca, Hugo Geraldo Da

    2013-01-01

    It is known that more than 20% of the world's population will contract some type of cancer. In Brazil, with the exception of skin cancer (non melanoma) the breast cancer ranks first among the higher frequency of tumours among women and in general, although the methods of detection are advancing in the year 2010 took place about 13 thousand deaths in about 50,000 cases, probably due to late detection of these neoplasm. New cases of breast cancer in a given population can be proven from absorbed dose quantity, calculated for the compressed breast, due to the risk by means of exposure to x rays in this radiodiagnostic practices. Methodology: Exposures were held in an ionization chamber and the other quantities required were obtained to the screen-film equipment of mammography. Results: Also experimental results were of compressed breast an equivalent dose of ( 1.82 mSv ± 0.2%) or (3.64 mSv ± 0.2%) for both projections, i.e. medium lateral oblique and cranio caudal. The experimental value obtained here is consistent with the calculated results and published in the literature for analog and CR equipment. Conclusion: From the result of dose equivalent in the breast, one can say that there will be effectively attesting as to the appearance of new cases of cancer if approximately 80 million women are exposed to radiation emitted by mammographers. (author)

  20. The quantum probability calculus

    International Nuclear Information System (INIS)

    Jauch, J.M.

    1976-01-01

    The Wigner anomaly (1932) for the joint distribution of noncompatible observables is an indication that the classical probability calculus is not applicable for quantum probabilities. It should, therefore, be replaced by another, more general calculus, which is specifically adapted to quantal systems. In this article this calculus is exhibited and its mathematical axioms and the definitions of the basic concepts such as probability field, random variable, and expectation values are given. (B.R.H)

  1. Parameters used in the environmental pathways and radiological dose modules of the Phase I air pathway code

    International Nuclear Information System (INIS)

    Shindle, S.F.; Ikenberry, T.A.; Napier, B.A.

    1992-05-01

    This report is a description of work performed for the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project was established to estimate radiation doses to individuals resulting from releases of radionuclides from the Hanford Site since 1944, when facilities there first began operating. An independent Technical Steering Panel directs the project, which is conducted by Battelle staff from the Pacific Northwest Laboratory. The objective of Phase 1 of the HEDR Project was to demonstrate through calculation that adequate models and support data existed or could be developed to allow estimation of realistic doses to individuals from historical Hanford Site radionuclide releases. The HEDR Phase 1 computer code was used to model the transport of iodine-131 released to the atmosphere from the Hanford Site facilities, through environmental pathways to points of human exposure. Output from the code was preliminary estimates of doses received by members of the public living in the vicinity of the Hanford Site. Later project work continues to build upon Phase 1 progress in order to refine dose estimates

  2. Incidents in nuclear research reactor examined by deterministic probability and probabilistic safety analysis; Incidentes em reatores nucleares de pesquisa examinados por analise de probabilidade deterministica e analise probabilistica de seguranca

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Valdir Maciel

    2010-07-01

    This study aims to evaluate the potential risks submitted by the incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency, IAEA, were used, the Incident Report System for Research Reactor and Research Reactor Data Base. For this type of assessment was used the Probabilistic Safety Analysis (PSA), within a confidence level of 90% and the Deterministic Probability Analysis (DPA). To obtain the results of calculations of probabilities for PSA, were used the theory and equations in the paper IAEA TECDOC - 636. The development of the calculations of probabilities for PSA was used the program Scilab version 5.1.1, free access, executable on Windows and Linux platforms. A specific program to get the results of probability was developed within the main program Scilab 5.1.1., for two distributions Fischer and Chi-square, both with the confidence level of 90%. Using the Sordi equations and Origin 6.0 program, were obtained the maximum admissible doses related to satisfy the risk limits established by the International Commission on Radiological Protection, ICRP, and were also obtained these maximum doses graphically (figure 1) resulting from the calculations of probabilities x maximum admissible doses. It was found that the reliability of the results of probability is related to the operational experience (reactor x year and fractions) and that the larger it is, greater the confidence in the outcome. Finally, a suggested list of future work to complement this paper was gathered. (author)

  3. ALARA database value in future outage work planning and dose management

    International Nuclear Information System (INIS)

    Miller, D.W.; Green, W.H.

    1995-01-01

    ALARA database encompassing job-specific duration and man-rem plant specific information over three refueling outages represents an invaluable tool for the outage work planner and ALARA engineer. This paper describes dose-management trends emerging based on analysis of three refueling outages at Clinton Power Station. Conclusions reached based on hard data available from a relational database dose-tracking system is a valuable tool for planning of future outage work. The system's ability to identify key problem areas during a refueling outage is improving as more outage comparative data becomes available. Trends over a three outage period are identified in this paper in the categories of number and type of radiation work permits implemented, duration of jobs, projected vs. actual dose rates in work areas, and accuracy of outage person-rem projection. The value of the database in projecting 1 and 5 year station person-rem estimates is discussed

  4. ALARA database value in future outage work planning and dose management

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.W.; Green, W.H. [Clinton Power Station Illinois Power Co., IL (United States)

    1995-03-01

    ALARA database encompassing job-specific duration and man-rem plant specific information over three refueling outages represents an invaluable tool for the outage work planner and ALARA engineer. This paper describes dose-management trends emerging based on analysis of three refueling outages at Clinton Power Station. Conclusions reached based on hard data available from a relational database dose-tracking system is a valuable tool for planning of future outage work. The system`s ability to identify key problem areas during a refueling outage is improving as more outage comparative data becomes available. Trends over a three outage period are identified in this paper in the categories of number and type of radiation work permits implemented, duration of jobs, projected vs. actual dose rates in work areas, and accuracy of outage person-rem projection. The value of the database in projecting 1 and 5 year station person-rem estimates is discussed.

  5. Excluding joint probabilities from quantum theory

    Science.gov (United States)

    Allahverdyan, Armen E.; Danageozian, Arshag

    2018-03-01

    Quantum theory does not provide a unique definition for the joint probability of two noncommuting observables, which is the next important question after the Born's probability for a single observable. Instead, various definitions were suggested, e.g., via quasiprobabilities or via hidden-variable theories. After reviewing open issues of the joint probability, we relate it to quantum imprecise probabilities, which are noncontextual and are consistent with all constraints expected from a quantum probability. We study two noncommuting observables in a two-dimensional Hilbert space and show that there is no precise joint probability that applies for any quantum state and is consistent with imprecise probabilities. This contrasts with theorems by Bell and Kochen-Specker that exclude joint probabilities for more than two noncommuting observables, in Hilbert space with dimension larger than two. If measurement contexts are included into the definition, joint probabilities are not excluded anymore, but they are still constrained by imprecise probabilities.

  6. Linear positivity and virtual probability

    International Nuclear Information System (INIS)

    Hartle, James B.

    2004-01-01

    We investigate the quantum theory of closed systems based on the linear positivity decoherence condition of Goldstein and Page. The objective of any quantum theory of a closed system, most generally the universe, is the prediction of probabilities for the individual members of sets of alternative coarse-grained histories of the system. Quantum interference between members of a set of alternative histories is an obstacle to assigning probabilities that are consistent with the rules of probability theory. A quantum theory of closed systems therefore requires two elements: (1) a condition specifying which sets of histories may be assigned probabilities and (2) a rule for those probabilities. The linear positivity condition of Goldstein and Page is the weakest of the general conditions proposed so far. Its general properties relating to exact probability sum rules, time neutrality, and conservation laws are explored. Its inconsistency with the usual notion of independent subsystems in quantum mechanics is reviewed. Its relation to the stronger condition of medium decoherence necessary for classicality is discussed. The linear positivity of histories in a number of simple model systems is investigated with the aim of exhibiting linearly positive sets of histories that are not decoherent. The utility of extending the notion of probability to include values outside the range of 0-1 is described. Alternatives with such virtual probabilities cannot be measured or recorded, but can be used in the intermediate steps of calculations of real probabilities. Extended probabilities give a simple and general way of formulating quantum theory. The various decoherence conditions are compared in terms of their utility for characterizing classicality and the role they might play in further generalizations of quantum mechanics

  7. Decomposition analysis of differential dose volume histograms

    International Nuclear Information System (INIS)

    Heuvel, Frank van den

    2006-01-01

    Dose volume histograms are a common tool to assess the value of a treatment plan for various forms of radiation therapy treatment. The purpose of this work is to introduce, validate, and apply a set of tools to analyze differential dose volume histograms by decomposing them into physically and clinically meaningful normal distributions. A weighted sum of the decomposed normal distributions (e.g., weighted dose) is proposed as a new measure of target dose, rather than the more unstable point dose. The method and its theory are presented and validated using simulated distributions. Additional validation is performed by analyzing simple four field box techniques encompassing a predefined target, using different treatment energies inside a water phantom. Furthermore, two clinical situations are analyzed using this methodology to illustrate practical usefulness. A comparison of a treatment plan for a breast patient using a tangential field setup with wedges is compared to a comparable geometry using dose compensators. Finally, a normal tissue complication probability (NTCP) calculation is refined using this decomposition. The NTCP calculation is performed on a liver as organ at risk in a treatment of a mesothelioma patient with involvement of the right lung. The comparison of the wedged breast treatment versus the compensator technique yields comparable classical dose parameters (e.g., conformity index ≅1 and equal dose at the ICRU dose point). The methodology proposed here shows a 4% difference in weighted dose outlining the difference in treatment using a single parameter instead of at least two in a classical analysis (e.g., mean dose, and maximal dose, or total dose variance). NTCP-calculations for the mesothelioma case are generated automatically and show a 3% decrease with respect to the classical calculation. The decrease is slightly dependant on the fractionation and on the α/β-value utilized. In conclusion, this method is able to distinguish clinically

  8. The pleasures of probability

    CERN Document Server

    Isaac, Richard

    1995-01-01

    The ideas of probability are all around us. Lotteries, casino gambling, the al­ most non-stop polling which seems to mold public policy more and more­ these are a few of the areas where principles of probability impinge in a direct way on the lives and fortunes of the general public. At a more re­ moved level there is modern science which uses probability and its offshoots like statistics and the theory of random processes to build mathematical descriptions of the real world. In fact, twentieth-century physics, in embrac­ ing quantum mechanics, has a world view that is at its core probabilistic in nature, contrary to the deterministic one of classical physics. In addition to all this muscular evidence of the importance of probability ideas it should also be said that probability can be lots of fun. It is a subject where you can start thinking about amusing, interesting, and often difficult problems with very little mathematical background. In this book, I wanted to introduce a reader with at least a fairl...

  9. Dose calculations for severe LWR accident scenarios

    International Nuclear Information System (INIS)

    Margulies, T.S.; Martin, J.A. Jr.

    1984-05-01

    This report presents a set of precalculated doses based on a set of postulated accident releases and intended for use in emergency planning and emergency response. Doses were calculated for the PWR (Pressurized Water Reactor) accident categories of the Reactor Safety Study (WASH-1400) using the CRAC (Calculations of Reactor Accident Consequences) code. Whole body and thyroid doses are presented for a selected set of weather cases. For each weather case these calculations were performed for various times and distances including three different dose pathways - cloud (plume) shine, ground shine and inhalation. During an emergency this information can be useful since it is immediately available for projecting offsite radiological doses based on reactor accident sequence information in the absence of plant measurements of emission rates (source terms). It can be used for emergency drill scenario development as well

  10. Probable Inference and Quantum Mechanics

    International Nuclear Information System (INIS)

    Grandy, W. T. Jr.

    2009-01-01

    In its current very successful interpretation the quantum theory is fundamentally statistical in nature. Although commonly viewed as a probability amplitude whose (complex) square is a probability, the wavefunction or state vector continues to defy consensus as to its exact meaning, primarily because it is not a physical observable. Rather than approach this problem directly, it is suggested that it is first necessary to clarify the precise role of probability theory in quantum mechanics, either as applied to, or as an intrinsic part of the quantum theory. When all is said and done the unsurprising conclusion is that quantum mechanics does not constitute a logic and probability unto itself, but adheres to the long-established rules of classical probability theory while providing a means within itself for calculating the relevant probabilities. In addition, the wavefunction is seen to be a description of the quantum state assigned by an observer based on definite information, such that the same state must be assigned by any other observer based on the same information, in much the same way that probabilities are assigned.

  11. Psychophysics of the probability weighting function

    Science.gov (United States)

    Takahashi, Taiki

    2011-03-01

    A probability weighting function w(p) for an objective probability p in decision under risk plays a pivotal role in Kahneman-Tversky prospect theory. Although recent studies in econophysics and neuroeconomics widely utilized probability weighting functions, psychophysical foundations of the probability weighting functions have been unknown. Notably, a behavioral economist Prelec (1998) [4] axiomatically derived the probability weighting function w(p)=exp(-() (01e)=1e,w(1)=1), which has extensively been studied in behavioral neuroeconomics. The present study utilizes psychophysical theory to derive Prelec's probability weighting function from psychophysical laws of perceived waiting time in probabilistic choices. Also, the relations between the parameters in the probability weighting function and the probability discounting function in behavioral psychology are derived. Future directions in the application of the psychophysical theory of the probability weighting function in econophysics and neuroeconomics are discussed.

  12. Probability concepts in quality risk management.

    Science.gov (United States)

    Claycamp, H Gregg

    2012-01-01

    Essentially any concept of risk is built on fundamental concepts of chance, likelihood, or probability. Although risk is generally a probability of loss of something of value, given that a risk-generating event will occur or has occurred, it is ironic that the quality risk management literature and guidelines on quality risk management tools are relatively silent on the meaning and uses of "probability." The probability concept is typically applied by risk managers as a combination of frequency-based calculation and a "degree of belief" meaning of probability. Probability as a concept that is crucial for understanding and managing risk is discussed through examples from the most general, scenario-defining and ranking tools that use probability implicitly to more specific probabilistic tools in risk management. A rich history of probability in risk management applied to other fields suggests that high-quality risk management decisions benefit from the implementation of more thoughtful probability concepts in both risk modeling and risk management. Essentially any concept of risk is built on fundamental concepts of chance, likelihood, or probability. Although "risk" generally describes a probability of loss of something of value, given that a risk-generating event will occur or has occurred, it is ironic that the quality risk management literature and guidelines on quality risk management methodologies and respective tools focus on managing severity but are relatively silent on the in-depth meaning and uses of "probability." Pharmaceutical manufacturers are expanding their use of quality risk management to identify and manage risks to the patient that might occur in phases of the pharmaceutical life cycle from drug development to manufacture, marketing to product discontinuation. A probability concept is typically applied by risk managers as a combination of data-based measures of probability and a subjective "degree of belief" meaning of probability. Probability as

  13. Dosimetry in Interventional Radiology - Effective Dose Estimation

    International Nuclear Information System (INIS)

    Miljanic, S.; Buls, N.; Clerinx, P.; Jarvinen, H.; Nikodemova, D.; Ranogajec-Komor, M; D'Errico, F.

    2008-01-01

    Interventional radiological procedures can lead to significant radiation doses to patients and to staff members. In order to evaluate the personal doses with respect to the regulatory dose limits, doses measured by dosimeters have to be converted to effective doses (E). Measurement of personal dose equivalent Hp(10) using a single unshielded dosimeter above the lead apron can lead to significant overestimation of the effective dose, while the measurement with dosimeter under the apron can lead to underestimation. To improve the accuracy, measurements with two dosimeters, one above and the other under the apron have been suggested ( d ouble dosimetry ) . The ICRP has recommended that interventional radiology departments develop a policy that staff should wear two dosimeters. The aim of this study was to review the double dosimetry algorithms for the calculation of effective dose in high dose interventional radiology procedures. The results will be used to develop general guidelines for personal dosimetry in interventional radiology procedures. This work has been carried out by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its 6th Framework Program.(author)

  14. The perception of probability.

    Science.gov (United States)

    Gallistel, C R; Krishan, Monika; Liu, Ye; Miller, Reilly; Latham, Peter E

    2014-01-01

    We present a computational model to explain the results from experiments in which subjects estimate the hidden probability parameter of a stepwise nonstationary Bernoulli process outcome by outcome. The model captures the following results qualitatively and quantitatively, with only 2 free parameters: (a) Subjects do not update their estimate after each outcome; they step from one estimate to another at irregular intervals. (b) The joint distribution of step widths and heights cannot be explained on the assumption that a threshold amount of change must be exceeded in order for them to indicate a change in their perception. (c) The mapping of observed probability to the median perceived probability is the identity function over the full range of probabilities. (d) Precision (how close estimates are to the best possible estimate) is good and constant over the full range. (e) Subjects quickly detect substantial changes in the hidden probability parameter. (f) The perceived probability sometimes changes dramatically from one observation to the next. (g) Subjects sometimes have second thoughts about a previous change perception, after observing further outcomes. (h) The frequency with which they perceive changes moves in the direction of the true frequency over sessions. (Explaining this finding requires 2 additional parametric assumptions.) The model treats the perception of the current probability as a by-product of the construction of a compact encoding of the experienced sequence in terms of its change points. It illustrates the why and the how of intermittent Bayesian belief updating and retrospective revision in simple perception. It suggests a reinterpretation of findings in the recent literature on the neurobiology of decision making. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  15. Effective dose per unit kerma-area product conversion factors in adults undergoing modified barium swallow studies

    International Nuclear Information System (INIS)

    Shaw Bonilha, Heather; Wilmskoetter, Janina; Tipnis, Sameer V.; Martin-Harris, Bonnie; Huda, Walter

    2017-01-01

    This study presents an investigation of adult effective dose (E) per unit Kerma-Area Product (KAP) in Modified Barium Swallow Study (MBSS) examinations. PC program for X-ray Monte Carlo (version 2.0.1) was used to calculate patient organ doses during MBSS examinations, which used combined to generate effective dose. Normalized patient doses were obtained by dividing the effective dose (mSv) by the incident KAP (Gy.cm 2 ). Five standard projections were studied and the importance of X-ray beam size and in patient size (body mass index) were investigated. Lateral projections had an average E/ KAP conversion factor of 0.19 ± 0.04 mSv/Gy.cm 2 . The average E/KAP was highest for upper gastrointestinal (GI) anterior- posterior projections (0.27 ± 0.04 mSv/Gy.cm 2 ) and lowest for upper GI posterior-anterior projections (0.09 ± 0.03 mSv/ Gy.cm 2 ). E/KAP always increased with increasing filtration and/or X-ray tube voltage. Reducing the X-ray beam cross-sectional area increased the E/KAP conversion factors. Small patients have the E/KAP conversion factors that are twice those of a standard adult. Conversion factors for effective dose of adult patients undergoing MBSS examinations must account for X-ray beam projection, beam quality (kV and filtration), image size and patient size. (authors)

  16. Introduction to probability with R

    CERN Document Server

    Baclawski, Kenneth

    2008-01-01

    FOREWORD PREFACE Sets, Events, and Probability The Algebra of Sets The Bernoulli Sample Space The Algebra of Multisets The Concept of Probability Properties of Probability Measures Independent Events The Bernoulli Process The R Language Finite Processes The Basic Models Counting Rules Computing Factorials The Second Rule of Counting Computing Probabilities Discrete Random Variables The Bernoulli Process: Tossing a Coin The Bernoulli Process: Random Walk Independence and Joint Distributions Expectations The Inclusion-Exclusion Principle General Random Variable

  17. Applied probability and stochastic processes

    CERN Document Server

    Sumita, Ushio

    1999-01-01

    Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability i...

  18. THE FORMATION OF A CAPITAL INVESTMENT PROJECT INDUSTRIAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Y. S. Potashnik

    2015-01-01

    Full Text Available The article specifies the main sources of financing of investment projects of industrial enterprises, among which are proposed to distinguish between belonging to the participants (shareholders of the company and others. Shows the sequence and content of the steps in building the industrial enterprises of a specific capital investment project. The main requirements for the capital structure of the investment project. As such invited to consider the requirements for the financial feasibility of the project, minimize the cost of capital of the project, the need for additional investments and changes of property shares members of the company, and not exceeding the maximum level of the probability of occurrence of insolvency of the enterprise. The approach allowing to assess the adequacy of the probability of occurrence of insolvency of the enterprise in one way or another the capital structure of the project the maximum allowable (limit level. The methodical examples of basic calculations.

  19. Investigation of normal tissue complication probabilities in prostate and partial breast irradiation radiotherapy techniques

    International Nuclear Information System (INIS)

    Bezak, E.; Takam, R.; Bensaleh, S.; Yeoh, E.; Marcu, L.

    2011-01-01

    Full text: Normal- Tissue-Complication Probabilities of rectum, bladder and urethra following various radiation techniques for prostate cancer were evaluated using the relative-seriality and Lyman models. NTCPs of lungs, heart and skin, their dependence on sourceposition, balloon-deformation were also investigated for HDR mammosite brachytherapy. The prostate treatment techniques included external three dimentional conformal-radiotherapy, Low-Dose-Rate brachytherapy (1-125), High-Dose-Rate brachytherapy (Ir-I92). Dose- Volume-Histograms of critical structures for prostate and breast radiotherapy, retrieved from corresponding treatment planning systems, were converted to Biological Effective Dose (BEffD)-based and Equivalent Dose(Deq)-based DVHs to account for differences in radiation delivery and fractionation schedule. Literature-based model parameters were used to calculate NTCPs. Hypofractionated 3D-CRT (2.75 Gy/fraction, total dose 55 Gy) NTCPs of rectum, bladder and urethra were less than those for standard fractionated 4-field 3D-CRT (2-Gy/fraction, 64 Gy) and dose-escalated 4- and 5-field 3D-CRT (74 Gy). Rectal and bladder NTCPs (5.2% and 6.6%) following the dose-escalated 4-field 3D-CRT (74 Gy) were the highest among analyzed techniques. The average NTCP for rectum and urethra were 0.6% and 24.7% for LDRBT and 0.5% and 11.2% for HDR-BT. For Mammosite, NTCP was estimated to be 0.1 %, 0.1 %, 1.2% and 3.5% for skin desquamation, erythema, telangiectasia and fibrosis respectively (the source positioned at the balloon centre). A 4 mm Mammosite-balloon deformation leads to overdosing of PTV regions by ∼40%, resulting in excessive skin dose and increased NTCP. Conclusions Prostate brachytherapy resulted in NTCPs lower compared to external beam techniques. Mammosite-brachytherapy resulted in no heart/lung complications regardless of balloon deformation. However, 4 mm deformation caused 0.6% increase in tissue fibrosis NTCP.

  20. WE-AB-207B-01: Dose Tolerance for SBRT/SABR

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, J [Johns Hopkins University, Baltimore, MD (United States)

    2016-06-15

    Purpose: Stereotactic body radiation therapy (SBRT) / stereotactic ablative body radiotherapy (SABR) is gaining popularity, but quantitative dose tolerance has still been lacking. To improve this, the April 2016 issue of Seminars in Radiation Oncology will have normal tissue complication probability (NTCP) models for 10 critical structures: optic pathway, cochlea, oral mucosa, esophagus, chestwall, aorta, bronchi, duodenum, small bowel, and spinal cord. Methods: The project included more than 1500 treatments in 1–5 fractions using CyberKnife, Gamma Knife, or LINAC, with 60 authors from 15 institutions. NTCP models were constructed from the 97 grade 2–3 complications, predominantly scored using the common terminology criteria for adverse events (CTCAEv4). Dose volume histogram (DVH) data from each institutional dataset was loaded into the DVH Evaluator software (DiversiLabs, LLC, Huntingdon Valley, Pa) for modeling. The current state of the literature for the critical structures was depicted using DVH Risk Maps: comparative graphs of dose tolerance limits that can include estimated risk levels, reported complications, DVH data for study patients, as well as high- and low-risk dose tolerance limits. Results: For relatively acceptable toxicity like grade 1–3 rib fractures and chestwall pain, the high-risk limits have 50% risk and the low-risk limits have 5% risk. Emami et al (IJROBP 1991 May 15;21(1):109–22) used 50% and 5% risk levels for all structures, whereas this effort used clinically acceptable ranges for each: in structures like aorta or spinal cord where complications must be avoided, the high- and low-risk limits have about 3% and 1% risk, respectively, in this issue of Seminars. These statistically based guidelines can help ensure plan quality for each patient. Conclusion: NTCP for SBRT is now becoming available. Hypofractionated dose tolerance can be dramatically different than extrapolations of conventional fractionation so NTCP analysis of the