WorldWideScience

Sample records for project soil characterization

  1. Uranium soils integrated demonstration: Soil characterization project report

    International Nuclear Information System (INIS)

    Cunnane, J.C.; Gill, V.R.; Lee, S.Y.; Morris, D.E.; Nickelson, M.D.; Perry, D.L.; Tidwell, V.C.

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP

  2. Uranium soils integrated demonstration: Soil characterization project report

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [Argonne National Lab., IL (United States); Gill, V.R. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Lee, S.Y. [Oak Ridge National Lab., TN (United States); Morris, D.E. [Los Alamos National Lab., NM (United States); Nickelson, M.D. [HAZWRAP, Oak Ridge, TN (United States); Perry, D.L. [Lawrence Berkeley Lab., CA (United States); Tidwell, V.C. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

  3. Direct/Delayed Response Project: Soil-characterization comparison

    International Nuclear Information System (INIS)

    Fenstermaker, L.K.; Byers, G.E.; Starks, T.H.; Miah, M.J.; Palmer, C.J.

    1992-01-01

    A large amount of soil characterization data has been collected as a component of the Direct/Delayed Response Project (DDRP) in the acid rain Aquatic Effects Research Program. An interlaboratory comparison study was undertaken to identify the comparability of the data to that obtained from representative soil characterization laboratories. Participating laboratories were selected at random from four regions of the U.S. and two regions of Canada. Two original DDRP contract laboratories also participated. Duplicate samples of six soil audit materials and two liquid soil extracts were sent to each of the laboratories in two separate batches. Laboratories used their own protocols to perform the analyses requested except for the contract laboratories which followed the DDRP protocol. Liquid audits were used in an effort to identify if interlaboratory differences were due to extraction procedures or chemical measurements. A component of the variability in the results was attributed to differences in the methods used such as soil/solution ratios, extractants or extraction procedures. The largest number of different methods used was for the measurement of cation exchange capacity. The results between the DDRP soil survey data and the study's results were compared using Youden-pair plots. In addition, standard statistical tests were performed. Overall, the DDRP data were comparable to the data from the study. However, out of the total 141 comparisons involving results from six or more laboratories, the results from the two contract laboratories did not meet the comparison criteria in 19 cases. Since there was never a case in which both contract laboratories failed, it would appear that the 19 cases which were not comparable were due to random analytical errors, incorrectly reported results, or misapplication of DDRP protocol

  4. Project plan for the Background Soil Characterization Project on the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-08-01

    The Background Soil characterization Project (BSCP) will provide background concentration levels of selected metals, organic compounds, and radionuclides in soils from uncontaminated on-site areas at the Oak Ridge Reservation (ORR), and off-site in the western part of Roane County and the eastern part of Anderson County. The BSCP will establish a database, recommend how to use the data for contaminated site assessment, and provide estimates of the potential human health and environmental risks associated with the background level concentrations of potentially hazardous constituents

  5. Project plan for the Background Soil Characterization Project on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    The Background Soil characterization Project (BSCP) will provide background concentration levels of selected metals, organic compounds, and radionuclides in soils from uncontaminated on-site areas at the Oak Ridge Reservation (ORR), and off-site in the western part of Roane County and the eastern part of Anderson County. The BSCP will establish a database, recommend how to use the data for contaminated site assessment, and provide estimates of the potential human health and environmental risks associated with the background level concentrations of potentially hazardous constituents.

  6. Final report on the Background Soil Characterization Project at the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Watkins, D.R.; Ammons, J.T.; Branson, J.L.

    1993-10-01

    This report presents, evaluates, and documents data and results obtained in the Background Soil Characterization Project (BSCP). It is intended to be a stand-alone document for application and use in structuring and conducting remedial investigation and remedial action projects in the Environmental Restoration (ER) Program. The objectives of the BSCP consist of the following: determine background concentrations of organics, metals, and radionuclides in natural soils that are key to environmental restoration projects; provide remediation projects with 100% validated data on background concentrations, which are technically and legally defensible; and quantify baseline risks from background constituents for comparison of risks associated with contaminated sites

  7. Final report on the Background Soil Characterization Project at the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-10-01

    The Background Soil Characterization Project (BSCP) will provide background concentration levels of selected metals organic compounds, and radionuclides in soils from uncontaminated on-site areas at the Oak Ridge Reservation (ORR), and off-site in the western part of Roane County and the eastern part of Anderson County. The BSCP will establish a database, recommend how to use the data for contaminated site assessment, and provide estimates of the potential human health and environmental risks associated with the background level concentrations of potentially hazardous constituents. This volume contains the data from the Background Soil Characterization Project. When available, the following validation qualifiers are used in the appendixes. When validation qualifiers are not available, the corresponding contract laboratory data qualifiers appearing on the next page are used

  8. Standard characterization of soils employed in the FAO/IAEA phosphate project

    International Nuclear Information System (INIS)

    Montange, D.; Zapata, F.

    2002-01-01

    In the frame of the FAO/IAEA networked research project, the agronomic effectiveness of natural and modified phosphate rock (PR) products was evaluated using nuclear and related techniques under a variety of soil, climate and management conditions. In addition to the local soil analyses, it was decided to make a standard characterization of the soils employed in the project to gather direct and comparable information on the relevant soil properties affecting the suitability of PRs for direct application and to better interpret the results from the agronomic evaluation, including the creation of a database for phosphate modelling. This paper describes the standard characterization of soils, that was mainly made at CIRAD, Montpellier, France. A total of 51 soil samples were analyzed from 15 countries including Belarus (1), Brazil (2), Chile (3), China (20), Cuba (2) Ghana (6), Hungary (2), Indonesia (3), Kenya (1), Malaysia (1), Poland (1), Romania (2), Russia (1), Thailand (3) and Venezuela (3). Methods of analyses used for the soil characterization included textural class, pH, chemical analysis for total N and P, and exchangeable elements (CEC, saturation). Available P was measured using 4 methods including Olsen, Bray II, Pi paper and Resin. Available P measurements using resin method were made at CENA, Piracicaba, Brazil. The soil P dynamics was described using the 32 P isotope exchange kinetic method at CEN Cadarache, France with the same soil samples. As a result of the worldwide distribution of the soils employed in the project, the results showed a very large diversity in each of the measured soil characteristics. The analysis of the data focused on the most representative tropical acid soils, i.e. Ultisols and Oxisols. Inceptisols have also been included because most of them were acid and located in the tropics and subtropics. Results are synthesized and analyzed with particular emphasis on: i) identification of the most relevant soil characteristics

  9. Final report on the Background Soil Characterization Project at the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Hatmaker, T.L.; Hook, L.A.; Jackson, B.L.

    1993-10-01

    The Background Soil Characterization Project (BSCP) will provide background concentration levels of selected metals, organic compounds, and radionuclides in soils from uncontaminated on-site areas at the Oak Ridge Reservation (ORR), and off-site in the western part of Roane County and the eastern part of Anderson County. The BSCP will establish a database, recommend how to use the data for contaminated site assessment, and provide estimates of the potential human health and environmental risks associated with the background level concentrations of potentially hazardous constituents. ORR background soil characterization data will be used for two purposes. The first application will be in differentiating between naturally occurring constituents and site-related contamination. This is a very important step in a risk assessment because if sufficient background data are not available, no constituent known to be a contaminant can be eliminated from the assessment even if the sampled concentration is measured at a minimum level. The second use of the background data will be in calculating baseline risks against which site-specific contamination risks can be compared

  10. Probabilistic comparison of alternative characterization technologies at the Fernald Uranium-in-Soils Integrated Demonstration Project

    International Nuclear Information System (INIS)

    Rautman, C.A.; McGraw, M.A.; Istok, J.D.; Sigda, J.M.; Kaplan, P.G.

    1993-01-01

    The performance of four alternative characterization technologies proposed for use in characterization of surficial uranium contamination in soil at the Incinerator and Drum Baling Areas at the Fernald Environmental Management Project in southwestern Ohio has been evaluated using a probabilistic, risk-based decision-analysis methodology. The basis of comparison is to minimize a computed total cost for environmental cleanup. This total-cost-based approach provides a framework for evaluating the trade-offs among remedial investigation, the remedial design, and the risk of regulatory penalties. The approach explicitly recognizes the value of information provided by remedial investigation; additional measurements are only valuable to the extent that the information they provide reduces total cost

  11. Characterization of federated oil fractions used for the PTAC project to study the petroleum fraction-specific toxicity to soils

    International Nuclear Information System (INIS)

    Wang, Z.; Jokuty, P.; Fingas, M.; Sigouin, L.

    2001-01-01

    In 1998, the Petroleum Technology Alliance of Canada (PTAC) and the Canadian Association of Petroleum Producers (CAPP) launched an important research project for the oil and gas industry entitled A Fraction-Specific Toxicity and Derivation of Recommended Soil Quality Guidelines for Crude Oil in Agricultural Soils. The objective was to generate useful and relevant data that could be used to develop soil quality guidelines for petroleum hydrocarbon residuals in agricultural soils. The oil used in the study was Federated crude oil which was fractionated into four fractions using a distillation method. The fraction-based approach was used to support ecologically-relevant, risk-based, soil quality criteria for the protection of environmental health. This paper presented the nominal carbon number and boiling point ranges of these fractions and described the distillation procedures for producing the fractions from the Federated crude oil. The paper also presented the detailed chemical characterization results of each distillation fraction. The toxicity of the crude oil mixture to plants and soil invertebrates was also assessed using standardized toxicity tests. Tests were also conducted to assess the toxicity of fractions of the crude oil and the toxic interactions of the fractions responsible for a significant proportion of the toxicity. Phase 2 of the project was designed to determine if hydrocarbon residuals exceeding 1000 μg/g and weathered for short or long periods of time, posed an ecotoxicological risk or impaired soil physical, chemical and biological properties such that productivity of the agricultural soils was compromised. The objectives of phase 2 were to amend differently textured soils in field plots at sites with fresh crude oil and to monitor their toxicity to terrestrial organisms using laboratory-based ecotoxicity tests. The study showed that because of the nature of the chemical composition of hydrocarbons (such as boiling points, nominal carbon range

  12. Characterization of soil droughts in France and climate change. The ClimSec project: results and applications

    International Nuclear Information System (INIS)

    Soubeyroux, Jean-Michel; Blanchard, Michele; Dandin, Philippe; Kitova, Nadia; Martin, Eric; Vidal, Jean-Philippe

    2012-01-01

    The ClimSec project has studied the impact of climate change on drought and soil water over France by using a climatological reanalysis of the SAFRAN/ISBA/MODCOU suite (SIM) since 1958. Standardized drought indices for precipitation (SPI) and soil moisture (SSWI) have been defined for research purposes to characterize the various kinds of events. They were then adapted for operational hydrological monitoring and used to assess the exceptional drought of spring 2011. These indices were also calculated for future climate from the various regionalized climate projections available over France. Three particular experiments in socio-economic scenarios, climate models and down-scaling methods have been run to estimate the relative importance of the different uncertainties in drought evolution. The assessment of 21. century drought evolution shows a much earlier and more intense occurrence of changes for agricultural droughts linked to soil moisture deficits than for meteorological drought linked with precipitation deficits. Climate projections suggest that France could be affected on the second half of the 21. century by a quasi-continuous drought with a strong intensity, totally unknown in present climate. (authors)

  13. Validation procedures used in the Background Soil Characterization Project on the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-12-01

    The purpose of this report is (1) to document the data validation process developed for the Background Soil Characterization Project (BSCP); (2) to offer members of other project teams and potential data users the benefit of the experience gained in the BSCP in the area of developing project-specific data validation criteria and procedures based on best available guidance and technical information; and (3) to provide input and guidance to the efforts under way within Martin Marietta Energy Systems, Inc., to develop standard operating procedures to streamline and optimize the analytical laboratory data validation process for general use by making it more technically rigorous, consistent, and cost effective. Lessons learned from the BSCP are also provided to meet this end (Sect. 1.3)

  14. Final report on the Background Soil Characterization Project at the Oak Ridge Reservation, Oak Ridge, Tennessee. Volume 1: Results of Field Sampling Program

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, D.R.; Ammons, J.T.; Branson, J.L. [and others

    1993-10-01

    This report presents, evaluates, and documents data and results obtained in the Background Soil Characterization Project (BSCP). It is intended to be a stand-alone document for application and use in structuring and conducting remedial investigation and remedial action projects in the Environmental Restoration (ER) Program. The objectives of the BSCP consist of the following: determine background concentrations of organics, metals, and radionuclides in natural soils that are key to environmental restoration projects; provide remediation projects with 100% validated data on background concentrations, which are technically and legally defensible; and quantify baseline risks from background constituents for comparison of risks associated with contaminated sites.

  15. Annual report on the Background Soil Characterization Project on the Oak Ridge Reservation, Oak Ridge, Tennessee: Results of Phase 1 investigation

    International Nuclear Information System (INIS)

    Watkins, D.R.; Goddard, P.L.; Hatmaker, T.L.; Hook, L.A.; Jackson, B.L.; Kimbrough, C.W.; Lee, S.Y.; Lietzke, D.A.; McGin, C.W.; Nourse, B.D.; Schmoyer, R.L.; Shaw, R.A.; Stinnette, S.E.; Switek, J.; Wright, J.C.; Ammons, J.T.; Branson, J.L.; Burgoa, B.B.

    1993-05-01

    Many constituents of potential concern for human health occur naturally at low concentrations in undisturbed soils. The Background soil Characterization Project (BSCP) was undertaken to provide background concentration data on potential contaminants in natural soils on the Oak Ridge Reservation (ORR). The objectives of the BSCP are to provide baseline data for contaminated site assessment and estimates of potential human health risk associated with background concentrations of hazardous and other constituents in native soils. This report presents, evaluates, and documents data and results obtained in Phase I of the project. It is intended to be a stand-alone document for application and use in structuring and conducting remedial investigation and remedial action projects in the Environmental Restoration (ER) Program

  16. Annual report on the Background Soil Characterization Project on the Oak Ridge Reservation, Oak Ridge, Tennessee: Results of Phase 1 investigation

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, D.R.; Goddard, P.L.; Hatmaker, T.L.; Hook, L.A.; Jackson, B.L.; Kimbrough, C.W.; Lee, S.Y.; Lietzke, D.A.; McGin, C.W.; Nourse, B.D.; Schmoyer, R.L.; Shaw, R.A.; Stinnette, S.E.; Switek, J.; Wright, J.C. [Oak Ridge National Lab., TN (United States); Ammons, J.T.; Branson, J.L.; Burgoa, B.B. [Tennessee Univ., Knoxville, TN (United States). Dept. of Plant and Soil Science; Lietzke, D.A. [Lietzke (David A.), Rutledge, TN (United States)

    1993-05-01

    Many constituents of potential concern for human health occur naturally at low concentrations in undisturbed soils. The Background soil Characterization Project (BSCP) was undertaken to provide background concentration data on potential contaminants in natural soils on the Oak Ridge Reservation (ORR). The objectives of the BSCP are to provide baseline data for contaminated site assessment and estimates of potential human health risk associated with background concentrations of hazardous and other constituents in native soils. This report presents, evaluates, and documents data and results obtained in Phase I of the project. It is intended to be a stand-alone document for application and use in structuring and conducting remedial investigation and remedial action projects in the Environmental Restoration (ER) Program.

  17. Caresoil: A multidisciplinar Project to characterize, remediate, monitor and evaluate the risk of contaminated soils in Madrid (Spain)

    Science.gov (United States)

    Muñoz-Martín, Alfonso; Antón, Loreto; Granja, Jose Luis; Villarroya, Fermín; Montero, Esperanza; Rodríguez, Vanesa

    2016-04-01

    Soil contamination can come from diffuse sources (air deposition, agriculture, etc.) or local sources, these last being related to anthropogenic activities that are potentially soil contaminating activities. According to data from the EU, in Spain, and particularly for the Autonomous Community of Madrid, it can be considered that heavy metals, toxic organic compounds (including Non Aqueous Phases Liquids, NAPLs) and combinations of both are the main problem of point sources of soil contamination in our community. The five aspects that will be applied in Caresoil Program (S2013/MAE-2739) in the analysis and remediation of a local soil contamination are: 1) the location of the source of contamination and characterization of soil and aquifer concerned, 2) evaluation of the dispersion of the plume, 3) application of effective remediation techniques, 4) monitoring the evolution of the contaminated soil and 5) risk analysis throughout this process. These aspects involve advanced technologies (hydrogeology, geophysics, geochemistry,...) that require new developing of knowledge, being necessary the contribution of several researching groups specialized in the fields previously cited, as they are those integrating CARESOIL Program. Actually two cases concerning hydrocarbon spills, as representative examples of soil local contamination in Madrid area, are being studied. The first is being remediated and we are monitoring this process to evaluate its effectiveness. In the second location we are defining the extent of contamination in soil and aquifer to define the most effective remediation technique.

  18. Soil washing: From characterization to implementation

    International Nuclear Information System (INIS)

    Corden, F.L.; Groenendijk, E.

    1995-01-01

    Only recently has soil washing begun to be applied to remediation of contaminated soils in the US. The experience gained during full-scale and large pilot-scale projects points to the importance of soil and site characterization in correctly evaluating the applicability of soil washing to a site and determining accurate cost estimates for its implementation. This paper will discuss actual case studies of various treatability and pilot study approaches that led to successful evaluation and implementation of soil washing remedies. Soil washing is applicable to a broad variety of chemical contaminants. Target contaminants include metals, radionuclides, pesticides, polychlorinated biphenyls, polynuclear aromatic hydrocarbons and petroleum hydrocarbons, as well as combinations of these contaminants. Because the contaminants noted above are deposited in the soils in a variety of forms, the unit operations necessary to treat the soil vary. It is the diversity of the available treatment alternatives, and the ability to use the units in a variety of process flow configurations that result in a very broad definition of soil washing

  19. THE BNL ASTD FIELD LAB - NEAR - REAL - TIME CHARACTERIZATION OF BNL STOCKPILED SOILS TO ACCELERATE COMPLETION OF THE EM CHEMICAL HOLES PROJECT

    International Nuclear Information System (INIS)

    BOWERMAN, B.S.; ADAMS, J.W.; HEISER, J.; KALB, P.D.; LOCKWOOD, A.

    2003-01-01

    As of October 2001, approximately 7,000 yd 3 of stockpiled soil remained at Brookhaven National Laboratory (BNL) after the remediation of the BNL Chemical/Animal/Glass Pits disposal area. The soils were originally contaminated with radioactive materials and heavy metals, depending on what materials had been interred in the pits, and how the pits were excavated. During the 1997 removal action, the more hazardous/radioactive materials were segregated, along with, chemical liquids and solids, animal carcasses, intact gas cylinders, and a large quantity of metal and glass debris. Nearly all of these materials have been disposed of. In order to ensure that all debris was removed and to characterize the large quantity of heterogeneous soil, BNL initiated an extended sorting, segregation, and characterization project directed at the remaining soil stockpiles. The project was co-funded by the Department of Energy Environmental Management Office (DOE EM) through the BNL Environmental Restoration program and through the DOE EM Office of Science and Technology Accelerated Site Technology Deployment (ASTD) program. The focus was to remove any non-conforming items, and to assure that mercury and radioactive contaminant levels were within acceptable limits for disposal as low-level radioactive waste. Soils with mercury concentrations above allowable levels would be separated for disposal as mixed waste. Sorting and segregation were conducted simultaneously. Large stockpiles (ranging from 150 to 1,200 yd 3 ) were subdivided into manageable 20 yd 3 units after powered vibratory screening. The 1/2-inch screen removed almost all non-conforming items (plus some gravel). Non-conforming items were separated for further characterization. Soil that passed through the screen was also visually inspected before being moved to a 20 yd 3 ''subpile.'' Eight samples from each subpile were collected after establishing a grid of four quadrants: north, east, south and west, and two layers: top and

  20. Experimental data obtained by the characterization and leaching of industrially lead contaminated soil projected to the stored in a repository.

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data set contains the elemental composition, pH, and surface area, TOC, IC and bulk density of the soils to be deposited in a repository. Additionally, contains...

  1. SoilEffects – start characterization of the experimental soil

    OpenAIRE

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun; Riley, Hugh

    2013-01-01

    This report describes the establishment, experimental plan and initial soil characteristics of the field experiment linked to the project “Effects of anaerobically digested manure on soil fertility - establishment of a long-term study under Norwegian conditions” (SoilEffects, 2010-14). The aim of the SoilEffects project is to identify potential risks and benefits for soil fertility when animal manure is anaerobically digested for biogas production. The field experiment was established on...

  2. Area 5 Site characterization project report, FY 1994

    International Nuclear Information System (INIS)

    Albright, W.; Tyler, S.; Chapman, J.; Miller, M.; Estrella, R.

    1994-09-01

    The Area 5 Site Characterization Project is designed to determine the suitability of the Radioactive Waste Management Site (RWMS) for disposal of low-level waste (LLW), mixed waste (MW) and transuranic waste (TRU). The Desert Research institute (DRI) has conducted this study for the Area 5 Site Characterization Project for the US Department of Energy, Nevada Operations Office (DOE/NV), Waste Management Division (WMD). The purpose of DRI's Area 5 Site Characterization Project is to characterize important properties of the upper vadose zone which influence infiltration and redistribution of water and transport of solutes as well as to characterize the water quality and hydrologic conditions of the uppermost aquifer. This report describes methods and presents a summary of all data and results from laboratory physical and chemical testing from borehole samples through September 1994. DRI laboratories performed soil water content, soil water potential, soil bulk density, and soil water extract isotope analyses

  3. Characterization and Classification of Soils along the ...

    African Journals Online (AJOL)

    In developing countries, where research funds are limited, the availability of pedogenic information and proper classification of soils will be of great importance. The soils of Kindo Koye watershed were fully characterized along east and west facing toposequences that formed a catena and classified according to the Soil ...

  4. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D.E.; Hopkins, A.R.; Paladino, J.D.; Whitefield, P.D. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1997-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  5. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D E; Hopkins, A R; Paladino, J D; Whitefield, P D [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H V [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1998-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  6. Global characterization of surface soil moisture drydowns

    Science.gov (United States)

    McColl, Kaighin A.; Wang, Wei; Peng, Bin; Akbar, Ruzbeh; Short Gianotti, Daniel J.; Lu, Hui; Pan, Ming; Entekhabi, Dara

    2017-04-01

    Loss terms in the land water budget (including drainage, runoff, and evapotranspiration) are encoded in the shape of soil moisture "drydowns": the soil moisture time series directly following a precipitation event, during which the infiltration input is zero. The rate at which drydowns occur—here characterized by the exponential decay time scale τ—is directly related to the shape of the loss function and is a key characteristic of global weather and climate models. In this study, we use 1 year of surface soil moisture observations from NASA's Soil Moisture Active Passive mission to characterize τ globally. Consistent with physical reasoning, the observations show that τ is lower in regions with sandier soils, and in regions that are more arid. To our knowledge, these are the first global estimates of τ—based on observations alone—at scales relevant to weather and climate models.

  7. SoilEffects - start characterization of the experimental soil

    DEFF Research Database (Denmark)

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun

    -14). The aim of the SoilEffects project is to identify potential risks and benefits for soil fertility when animal manure is anaerobically digested for biogas production. The field experiment was established on Tingvoll research farm in 2011. A biogas plant was built at this farm in 2010, to digest the manure...... in spring, no legumes are grown, and aboveground plant material is removed at harvest. This practice is intended to stress the maintenance of soil organic matter in the arable system, to possibly reveal clearer effects of the experimental treatments. Within each cropping system, five experimental treatments...... by ignition loss was 11.3 % in the grass and 6.6 % in the arable system. Analyzed by total-C measurements, the corresponding SOM values were 11.03 % and 5.97 %. In Norwegian soil, SOM values between 3 and 6 % are regarded as high humus contents (“moldrik”), whereas values between 6 and 12 % are regarded...

  8. Green roof soil system affected by soil structural changes: A project initiation

    Science.gov (United States)

    Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal

    2014-05-01

    Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.

  9. Using USDA's National Cooperative Soil Survey Soil Characterization Data to detect soil change: A cautionary tale

    Science.gov (United States)

    Recently, the USDA-NRCS National Cooperative Soil Survey Soil Characterization Database (NSCD) was reported to provide evidence that total nitrogen (TN) stocks of agricultural soils have increased across the Mississippi basin since 1985. Unfortunately, due to omission of metadata from the NSCD, hist...

  10. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  11. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  12. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows

  13. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    Science.gov (United States)

    Thiet, Rachel K.

    2014-01-01

    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  14. Characterize Human Forward Contamination Project

    Science.gov (United States)

    Rucker, Michelle

    2015-01-01

    Let's face it: wherever we go, we will inevitably carry along the little critters that live in and on us. Conventional wisdom has long held that it's unlikely those critters could survive the space environment, but in 2007 microscopic animals called Tardigrades survived exposure to space and in 2008 Cyanobacteria lived for 548 days outside the International Space Station (ISS). But what about the organisms we might reasonably expect a crewed spacecraft to leak or vent? Do we even know what they are? How long might our tiny hitch-hikers survive in close proximity to a warm spacecraft that periodically leaks/vents water or oxygen-and how might they mutate with long-duration exposure? Unlike the Mars rovers that we cleaned once and sent on their way, crew members will provide a constantly regenerating contaminant source. Are we prepared to certify that we can meet forward contamination protocols as we search for life at new destinations? This project has four technical objectives: 1. TEST: Develop a test plan to leverage existing equipment (i.e. ISS) to characterize the kinds of organisms we can reasonably expect pressurized, crewed volumes to vent or leak overboard; as part of testing, we'll need to develop an Extravehicular Activity (EVA)-compatible tool that can withstand the pressure and temperature extremes of space, as well as collect, separate, and store multiple samples; 2. ANALYSIS: Develop an analysis plan to study those organisms in relevant destination environments, including spacecraft-induced conditions; 3. MODEL: Develop a modeling plan to model organism transport mechanisms in relevant destination environments; 4. SHARE: Develop a plan to disseminate findings and integrate recommendations into exploration requirements & ops. In short, we propose a system engineering approach to roadmap the necessary experiments, analysis, and modeling up front--rather than try to knit together disparate chunks of data into a sensible conclusion after the fact.

  15. Particle characterization of contaminated soil

    International Nuclear Information System (INIS)

    Miller, J.D.; Hupka, J.; Weidner, J.R.

    1991-05-01

    Samples collected from Test Reactor Area Warm Waste Pond sediments at the Idaho National Engineering Laboratory were characterized in the test facilities in the Metallurgy Department, University of Utah. The sediments were characterized in terms of several physical, chemical, and mineralogical properties judged to be most important for separating radioactive materials and hazardous metals from the sediment matrix. The properties include particle size, distribution, effects of heating at 600 degrees C, electrophoretic properties, magnetic separation, acid leaching, and analyses using ultra-violet light, infra-red, and x-ray diffraction. The results show that most radioactive and hazardous metals are present in the ≤ 150 micron size fraction and that 80% of the sediments occur in the ≥ 150 micron size fraction. No significant concentration of hazardous metals was found to be related to magnetic properties. Organic matter, probably as a thin film, was shown to be present. The mineralogy of the samples include quartz, chlorite, kaolinite, illite, calcite, and dolomite. 3 refs., 17 figs., 5 tabs

  16. Overview of a large-scale bioremediation soil treatment project

    International Nuclear Information System (INIS)

    Stechmann, R.

    1991-01-01

    How long does it take to remediate 290,000 yd 3 of impacted soil containing an average total petroleum hydrocarbon concentration of 3,000 ppm? Approximately 15 months from start to end of treatment using bioremediation. Mittelhauser was retained by the seller of the property (a major oil company) as technical manager to supervise remediation of a 45-ac parcel in the Los Angeles basin. Mittelhauser completed site characterization, negotiated clean-up levels with the regulatory agencies, and prepared the remedial action plan (RAP) with which the treatment approach was approved and permitted. The RAP outlined the excavation, treatment, and recompaction procedures for the impacted soil resulting from leakage of bunker fuel oil from a large surface impoundment. The impacted soil was treated on site in unline Land Treatment Units (LTUs) in 18-in.-thick lifts. Due to space restraints, multiple lifts site. The native microbial population was cultivated using soil stabilization mixing equipment with the application of water and agricultural grade fertilizers. Costs on this multimillion dollar project are broken down as follows: general contractor cost (47%), bioremediation subcontractor cost (35%), site characterization (10%), technical management (7%), analytical services (3%), RAP preparation and permitting (1%), and civil engineering subcontractor cost (1%). Start-up of field work could have been severely impacted by the existence of Red Fox habitation. The foxes were successfully relocated prior to start of field work

  17. Physicochemical and mineralogical characterization of transuranic contaminated soils for uranium soil integrated demonstration

    International Nuclear Information System (INIS)

    Elless, M.P.; Lee, S.Y.

    1994-10-01

    DOE has initiated the Uranium Soils Integrated Demonstration (USID) project. The objective of the USID project is to develop a remediation strategy that can be adopted for use at other DOE sites requiring remediation. Four major task groups within the USID project were formed, namely the Characterization Task Group (CTG), the Treatability Task Group (TTG), the Secondary Waste Treatment and Disposal Task Group (SWTDTG), and the Risk and Performance Assessment Task Group (RPATG). The CTG is responsible for determining the nature of the uranium contamination in both untreated and treated soil. The TTG is responsible for the selective removal of uranium from these soils in such a manner that the leaching does not seriously degrade the soil's physicochemical characteristics or generate a secondary waste form that is difficult to manage and/or dispose. The SWTDTG is responsible for developing strategies for the removal of uranium from all wastewaters generated by the TTGs. Finally the RPATG is responsible for developing the human health and environmental risk assessment of the untreated and treated soils. Because of the enormity of the work required to successfully remediate uranium-contaminated soils, an integrated approach was designed to avoid needless repetition of activities among the various participants in the USID project. Researchers from Oak Ridge National Laboratory (ORNL), Los Alamos National Laboratory (LANL), Argonne National Laboratory (ANL), and Idaho National Engineering Laboratory (INEL) were assigned characterization and/or treatability duties in their areas of specialization. All tasks groups are involved in the integrated approach; however, the thrust of this report concentrates on the utility of the integrated approach among the various members of the CTG. This report illustrates the use of the integrated approach for the overall CTG and to provide the results generated specifically by the CTG or ORNL from FY1993 to the present

  18. Soil Characterization at the Linde FUSRAP Site and the Impact on Soil Volume Estimates

    International Nuclear Information System (INIS)

    Boyle, J.; Kenna, T.; Pilon, R.

    2002-01-01

    The former Linde site in Tonawanda, New York is currently undergoing active remediation of Manhattan Engineering District's radiological contamination. This remediation is authorized under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The focus of this paper will be to describe the impact of soil characterization efforts as they relate to soil volume estimates and project cost estimates. An additional objective is to stimulate discussion about other characterization and modeling technologies, and to provide a ''Lessons Learned'' scenario to assist in future volume estimating at other FUSRAP sites. Initial soil characterization efforts at the Linde FUSRAP site in areas known to be contaminated or suspected to be contaminated were presented in the Remedial Investigation Report for the Tonawanda Site, dated February 1993. Results of those initial characterization efforts were the basis for soil volume estimates that were used to estimate and negotiate the current remediation contract. During the course of remediation, previously unidentified areas of contamination were discovered, and additional characterization was initiated. Additional test pit and geoprobe samples were obtained at over 500 locations, bringing the total to over 800 sample locations at the 135-acre site. New data continues to be collected on a routine basis during ongoing remedial actions

  19. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  20. Designing chemical soil characterization programs for mixed waste sites

    International Nuclear Information System (INIS)

    Meyers, K.A. Jr.

    1989-01-01

    The Weldon Spring Site Remedial Action Project is a remedial action effort funded by the U.S. Department of Energy. The Weldon Spring Site, a former uranium processing facility, is located in east-central Missouri on a portion of a former ordnance works facility which produced trinitrotoluene during World War II. As a result of both uranium and ordnance production, the soils have become both radiologically and chemically contaminated. As a part of site characterization efforts in support of the environmental documentation process, a chemical soil characterization program was developed. This program consisted of biased and unbiased sampling program which maximized areal coverage, provided a statistically sound data base and maintained cost effectiveness. This paper discusses how the general rationale and processes used at the Weldon Spring Site can be applied to other mixed and hazardous waste sites

  1. Measurements of Plutonium and Americium in Soil Samples from Project 57 using the Suspended Soil Particle Sizing System (SSPSS)

    International Nuclear Information System (INIS)

    John L. Bowen; Rowena Gonzalez; David S. Shafer

    2001-01-01

    As part of the preliminary site characterization conducted for Project 57, soils samples were collected for separation into several size-fractions using the Suspended Soil Particle Sizing System (SSPSS). Soil samples were collected specifically for separation by the SSPSS at three general locations in the deposited Project 57 plume, the projected radioactivity of which ranged from 100 to 600 pCi/g. The primary purpose in focusing on samples with this level of activity is that it would represent anticipated residual soil contamination levels at the site after corrective actions are completed. Consequently, the results of the SSPSS analysis can contribute to dose calculation and corrective action-level determinations for future land-use scenarios at the site

  2. Tank waste remediation system characterization project quality policies. Revision 1

    International Nuclear Information System (INIS)

    Trimble, D.J.

    1995-01-01

    These Quality Policies (QPs) describe the Quality Management System of the Tank Waste Characterization Project (hereafter referred to as the Characterization Project), Tank Waste Remediation System (TWRS), Westinghouse Hanford Company (WHC). The Quality Policies and quality requirements described herein are binding on all Characterization Project organizations. To achieve quality, the Characterization Project management team shall implement this Characterization Project Quality Management System

  3. Mineralogical characterization of West Chestnut Ridge soils

    International Nuclear Information System (INIS)

    Lee, S.Y.; Kopp, O.C.; Lietzke, D.A.

    1984-12-01

    The morphological, physicochemical, and mineralogical properties of the soils and residua from the proposed site of the Central Waste Disposal Facility were characterized. The proposed site is underlain by cherty dolostones, limestones, and shales of the Knox Group covered by a thick residuum. Three diagnostic horizons from four soil profiles and six samples from residuum cores were selected for mineralogical analysis. The coarse fractions (gravel and sand) of the samples included different types of chert, iron-manganese oxide nodules, and quartz. The samples were high in clay content (except those from the A and E horizons) and low in pH and base saturation. The clay fractions were composed of varying amounts of kaolinite, mica, vermiculite, aluminum hydroxy-interlayered vermiculite, amorphous iron and aluminum oxides, gibbsite, and quartz. Aluminum hydroxy-interlayered vermiculite is the major component in surface horizons, but kaolinite becomes dominant in subsurface horizons of the soils. Degradation of kaolinite and formation of aluminum hydroxy-interlayered vermiculite and iron and aluminum oxides are pronounced chemical weathering processes in the surface soils. The aluminum hydroxy interlayering of vermiculite reduces cation exchange and selective sorption capacities of soils. In the residua, micaceous minerals free of aluminum hydroxy interlayering, kaolinite, and amorphous iron and aluminum oxides are major components in the clay fraction. The sorption ratios of 137 Cs, 90 Sr, 60 Co, and the uranium isotopes expected to be in the radioactive wastes should be very high for the clays having such mineralogical composition. The low acid-buffering capacity (base saturation) of the residua suggest that the fragile chemical and mineralogical equilibria can be easily broken if an extreme chemical condition is imposed on the residua

  4. "Dirt Cheap" Project Teaches Soils Engineering

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    This article describes a soil-testing activity that enables students to learn some interesting and useful things about how soil behaves under varied conditions. It offers a great way to give them a practical pre-engineering experience and will show them how engineers think about construction and how local soils influence building design. The…

  5. Two Gonostomatid Ciliates from the Soil of Lombardia, Italy; including Note on the Soil Mapping Project.

    Science.gov (United States)

    Bharti, Daizy; Kumar, Santosh; La Terza, Antonietta

    2015-01-01

    Two gonostomatid ciliates, Gonostomum paronense n. sp. and G. strenuum, isolated from the soil sample of paddy field, Lombardia, Italy, were investigated using live observation and protargol impregnation. Gonostomum paronense n. sp. is mainly characterized by a tailed body, frontoventral cirri arranged in pairs, and presence of pretransverse and transverse cirri. Morphologically and morphometrically, the new species is similar to Gonostomum namibiense in having a tailed body and frontoventral cirral pairs; however, it differs mainly in the number of frontoventral cirral pairs (seven vs. three). Phylogenetic analyses based on the SSU rDNA sequences show that the new species is more closely related to G. namibiense than to G. strenuum, supporting the morphological classification based on the cirral pattern and the tailed body. However, due to the poor nodal support and absence of gene sequence of the type species Gonostomum, a more robust phylogeny of this group still remains unresolved. The biometric data of the Italian population of Gonostomum strenuum overlap with those from other known populations. Both species were collected from the industrial area of Parona, in the framework of the "Soil Mapping, Lombardia" project in which, for the first time in Italy, soil ciliates were used as bioindicators of soil quality. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  6. Adaptation of Regional Representative Soil Project and Soil Judging for Cameroon

    Science.gov (United States)

    Che, Celestine Akuma

    2013-01-01

    Representative regional soils have agricultural, cultural, economic, environmental, and historical importance to Cameroon. Twenty seven regional representative soils have been identified in Cameroon. A set of laboratory exercises, assignments and exam questions have been developed utilizing the Regional Representative Soil Project (RRSP) that…

  7. Mediterranean Agricultural Soil Conservation under global Change: The MASCC project.

    Science.gov (United States)

    Raclot, Damien; Ciampalini, Rossano

    2017-04-01

    The MASCC project (2016-2019, http://mascc-project.org) aims to address mitigation and adaptation strategies to global change by assessing current and future development of Mediterranean agricultural soil vulnerability to erosion in relation to projected land use, agricultural practices and climate change. It targets to i) assess the similarities/dissimilarities in dominant factors affecting the current Mediterranean agricultural soil vulnerability by exploring a wide range of Mediterranean contexts; ii) improve the ability to evaluate the impact of extreme events on both the current and projected agricultural soil vulnerability and the sediment delivery at catchment outlet; iii) evaluate the vulnerability and resilience of agricultural production to a combination of potential changes in a wide range of Mediterranean contexts, iv) and provide guidelines on sustainable agricultural conservation strategies adapted to each specific agro-ecosystem and taking into consideration both on- and off-site erosion effects and socio-economics issues. To achieve these objectives, the MASCC project consortium gather researchers from six Mediterranean countries (France, Morocco, Tunisia, Italy, Spain and Portugal) which monitor mid- to long-term environmental catchments and benefit from mutual knowledge created from previous projects and network. The major assets for MASCC are: i) the availability of an unrivalled database on catchment soil erosion and innovative agricultural practices comprising a wide range of Mediterranean contexts, ii) the capacity to better evaluate the impact of extreme events on soil erosion, iii) the expert knowledge of the LANDSOIL model, a catchment-scale integrated approach of the soil-landscape system that enables to simulate both the sediment fluxes at the catchment outlet and the intra-catchment soil evolving properties and iv) the multi-disciplinarity of the involved researchers with an international reputation in the fields of soil science

  8. Soil Remediation Demonstration Project: Biodegradation of Heavy Fuel Oils

    National Research Council Canada - National Science Library

    Reynolds, Charles

    1997-01-01

    .... Low-cost treatments applicable to small-scale spills are needed. The object of this CPAR project was to examine using cost-effective, on-site bioremediation techniques for heavy-oil-contaminated soil in cold regions...

  9. Terra e Arte Project: Soils connecting Art and Education

    Science.gov (United States)

    Muggler, Cristine Carole; Rozenberg, Bianca; de Cássia Francisco, Talita; Gramacho de Oliveira, Elisa

    2015-04-01

    The "Terra e Arte" project was designed to combine science and art by approaching soil contents in basic education schools in Viçosa, Minas Gerais, Brazil. The project was developed to awake, sensitize and create awareness about soils and their importance to life and environment within school communities. It was proposed and realized by the Earth Sciences Museum Alexis Dorofeef (MCTAD) of the Federal University of Viçosa (UFV), as part of the celebrations of its 20th anniversary. Since all the schools of the town visit the museum at least once a year and most of them have received and carried out pedagogic projects on soil themes in the last 20 years, it was proposed to them to develop a soil subject with any of their groups and combine it with painting using soil materials. Each group interested in joining the project received a basic set of material to produce soil paints. They were expected to develop a soil theme and its contents for a few weeks and to finalize it with a figurative and textual collective creation that synthetized their learning. 16 of the 24 visited schools joined the project and realized it for an average of two months. During this time, the school groups visited the museum and/or borrowed the itinerant exposition on soils from the museum to work with in in the school community. At the end of the projects, the productions were presented at the Knowledge Market (Feira do Conhecimento) that happens every year in the central square of the town, as part of the National Week of Science and Technology. At the event, 58 works were presented by 14 schools, involving directly 700 pupils and their teachers. They approached themes from soil formation and properties to agroecology and urban occupation and impacts on the soils. 30 of the works were selected for a commemorative exposition and 12 were chosen for a table calendar 2014. The movement created around the project mobilized many people and had strong impact on the school communities, especially

  10. Soil characterization in a recreation area of children and adolescents

    International Nuclear Information System (INIS)

    Melo, Bárbara E.S. de

    2017-01-01

    In the neighborhood of Apipucos, located on the edge of the Capibaribe River, the Apipucos Maximiano Campos Park was a green area covered by old irons deposit, which was transformed into a recreation space. Children, young people and adults are already in the park. Children and the elderly are the groups most susceptible to health problems, due to the direct contact with soil contaminated by microorganisms and inhalation route by chemical elements coming from automotive discharges near the place and because they are the groups that most demand for recreational activities in parks and public squares. In high concentrations, toxic elements can cause health problems to the exposed population. The objective of this work is to quantify the chemical elements in the soil of the Apipucos Maximiano Campos Park, characterizing the environment based on a project involving other CNEN institutes. Sediments were collected at five different points around the playground: soil analysis including determination of organic matter, amount of calcium carbonate, presence of Ancylostoma ssp. and trace metal quantification were detected. Major elements were: Ti, Ca, Mg, Al, Si, K and Fe; and Mn, Ni, Cu, Zn, Ga, Sr, Pb and V; minority elements: Mn, Ni, Cu, Zn, Ga, Sr, Pb, as well as the presence of Ancylostoma ssp in the analyzed samples. It was verified that Zn, Cu, V, Pb are derived from the anthropogenic activities, being considered pollutants: Cu, V, Pb. There is a need for health education measures to avoid contamination of individuals and reinfection in animals attending the park

  11. experimental characterization of clay soils behavior stabilized

    African Journals Online (AJOL)

    S. Rehab Bekkouche, G. Boukhatem

    2016-09-01

    Sep 1, 2016 ... California Bearing Ratio (CBR) ... the globe. Clay soils have the curious property of seeing their consistency changes according ... The use of building materials had been popularly applied to soil stabilization, such as cement.

  12. Soil structure characterized using computed tomographic images

    Science.gov (United States)

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  13. Characterization for Soil Fixation by Polyelectrolyte Complex

    International Nuclear Information System (INIS)

    Choi, Yong Suk; Kwon, Sang Woon; Yang, Heeman; Lee, Kune Woo; Seo, Bumkyoung; Moon, Jei Kwon

    2014-01-01

    According to report, the radioactivity bulk (approx. 95%) is localized within topsoil. Therefore soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils with Cs-137 by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been also used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and make into the polyelectrolyte complex (PEC) due to electrostatic interaction of polyanion and polycation in an aqueous solution. It can be avoids using the chemical cross-linking agents, and reducing the possible toxicity and other undesirable effects of the reagents. PEC can fix soil particles by flocculation and formation of crust between soil. The method can also prevent a spread of radioactive material by floating on a soil surface. Recently, PEC used for the solidification of soil near the Fukushima nuclear power plant in Japan. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. In this study, it was investigated the fixation of the soil by PEC to avoid the spread of the contamination in addition to the separation of soil and PEC. The physicochemical properties of polyelectrolyte complex solution and the stability of fixed soil by PEC were investigated. The mode of the addition is important to prepare the polyelectrolytes complex without PAA agglomerate. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation

  14. Characterization for Soil Fixation by Polyelectrolyte Complex

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Kwon, Sang Woon; Yang, Heeman; Lee, Kune Woo; Seo, Bumkyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    According to report, the radioactivity bulk (approx. 95%) is localized within topsoil. Therefore soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils with Cs-137 by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been also used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and make into the polyelectrolyte complex (PEC) due to electrostatic interaction of polyanion and polycation in an aqueous solution. It can be avoids using the chemical cross-linking agents, and reducing the possible toxicity and other undesirable effects of the reagents. PEC can fix soil particles by flocculation and formation of crust between soil. The method can also prevent a spread of radioactive material by floating on a soil surface. Recently, PEC used for the solidification of soil near the Fukushima nuclear power plant in Japan. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. In this study, it was investigated the fixation of the soil by PEC to avoid the spread of the contamination in addition to the separation of soil and PEC. The physicochemical properties of polyelectrolyte complex solution and the stability of fixed soil by PEC were investigated. The mode of the addition is important to prepare the polyelectrolytes complex without PAA agglomerate. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  15. Gypsy Field project in reservoir characterization

    Energy Technology Data Exchange (ETDEWEB)

    Castagna, John P.; Jr., O' Meara, Daniel J.

    2000-01-12

    The overall objective of this project was to use extensive Gypsy Field Laboratory and data as a focus for developing and testing reservoir characterization methods that are targeted at improved recovery of conventional oil. This report describes progress since project report DOE/BC/14970-7 and covers the period June 1997-September 1998 and represents one year of funding originally allocated for the year 1996. During the course of the work previously performed, high resolution geophysical and outcrop data revealed the importance of fractures at the Gypsy site. In addition, personnel changes and alternative funding (OCAST and oil company support of various kinds) allowed the authors to leverage DOE contributions and focus more on geophysical characterization.

  16. Characterizations of Soil Profiles Through Electric Resistivity Ratio

    Directory of Open Access Journals (Sweden)

    Chik Z

    2015-04-01

    Full Text Available This paper presents how near surface soil characteristics are obtained through soil electric resistivity ratio from soil apparent resistivity profile. In recent advances of electrical sensors, soil apparent resistivity is implemented as nondestructive method for obtaining near surface soil profile. Although geo-electric techniques offer an improvement to traditional soil sampling methods, the resulting data are still often misinterpreted for obtaining soil characteristics through apparent electrical resistivity in the field. Because, soil resistivity as before rain and after rain are changeable due to the presence of more moisture contents in field investigations. In this study, the parameter of soil electric resistivity ratio is incorporated to obtain reliable near surface soil profiles from apparent resistivity of adjacent two layers in soil. The variations of potential differences are taken into account for using four probes method to get the soil apparent resistivity profile. The research is significant for simpler and faster soil characterizations using resistivity ratio of apparent resistivity in soil investigations.

  17. The Pedotopia Project: A Transdisciplinary Experiment in Soil Education

    Science.gov (United States)

    Toland, A.; Wessolek, G.

    2012-04-01

    In the absence of every-day interactions with the land, a hands-on, comprehensive soil education across disciplines and ages is necessary. Soil education is usually integrated into earth science and geography curricula and only rarely into social science, arts and humanities programs. Furthermore, an emphasis on measurement and modeling in conventional classroom science often neglects aesthetic, moral and other non-quantifiable values, precluding a broader cultural context in which soil education could take place. The arts play a vital role in communicating environmental issues to the greater public and represent a dynamic approach to help students discover soil complexity in new and unexpected ways. Artistic methods have recently been introduced as pedagogical tools in soil awareness-raising programs for children and youth. Painting with soil has become an interesting new approach to soil education from Kindergarten to University levels (SZLEZAK 2008). And a growing amount of literature describes artists who have undertaken different soil issues, suggesting that such artistic focus may improve wider understanding and appreciation of soil conservation issues (FELLER et al 2010, TOLAND & WESSOLEK 2010, WAGNER 2002). How can art contribute to soil science, policy and education - both with the aim of generating greater public understanding, but also by honing creative methods to confront problems such as contamination, erosion, and urban sprawl? What artistic approaches exist to protect and restore soils as well as our relationship to the land? And how can these approaches support current soil education goals? These questions were addressed in the transdisciplinary soil seminar, "Pedotopia - Re-sourcing Urban Soils" from September 2010 to September 2011 in Berlin. A cooperation between the Technical University of Berlin's Department of Soil Protection and the Berlin University of Arts' Institute for Art in Context, the project served as a teaching experiment as well

  18. Imaging and Analytical Approaches for Characterization of Soil Mineral Weathering

    Energy Technology Data Exchange (ETDEWEB)

    Dohnalkova, Alice; Arey, Bruce; Varga, Tamas; Miller, Micah; Kovarik, Libor

    2017-07-01

    Soil minerals weathering is the primary natural source of nutrients necessary to sustain productivity in terrestrial ecosystems. Soil microbial communities increase soil mineral weathering and mineral-derived nutrient availability through physical and chemical processes. Rhizosphere, the zone immediately surrounding plant roots, is a biogeochemical hotspot with microbial activity, soil organic matter production, mineral weathering, and secondary phase formation all happening in a small temporally ephemeral zone of steep geochemical gradients. The detailed exploration of the micro-scale rhizosphere is essential to our better understanding of large-scale processes in soils, such as nutrient cycling, transport and fate of soil components, microbial-mineral interactions, soil erosion, soil organic matter turnover and its molecular-level characterization, and predictive modeling.

  19. Heavy Metals Contaminated Soil Project, Resource Recovery Project, and Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November, 1989. OTD has begun to search out, develop, test and demonstrate technologies that can now or in the future be applied to the enormous remediation problem now facing the DOE and the United States public in general. Technology demonstration projects have been designed to attack a separate problem as defined by DOE. The Heavy Metals Contaminated Soil Project was conceived to test and demonstrate off-the-shelf technologies (dominantly from the mining industry) that can be brought to bear on the problem of radionuclide and heavy metal contamination in soils and sediments. The Resource Recovery Project is tasked with identifying, developing, testing, and evaluating new and innovative technologies for the remediation of metal contaminated surface and groundwater. An innovative twist on this project is the stated goal of recovering the metals, formerly disposed of as a waste, for reuse and resale, thereby transforming them into a usable resource. Finally, the Dynamic Underground Stripping Project was developed to demonstrate and remediate underground spills of hydrocarbons from formations that are (1) too deep for excavation, and/or (2) require in-situ remediation efforts of long duration. This project has already been shown effective in reducing the time for remediation by conventional methods from an estimated 200 years at the Lawrence Livermore National Laboratory (LLNL) to less than one year. The savings in time and dollars from this technology alone can be immeasurable

  20. Characterization and Classification of Soils along the ...

    African Journals Online (AJOL)

    Muler

    along east and west facing toposequences that formed a catena and classified according to the Soil Taxonomy and the. WRB Legend ..... Morphological features and physical properties of the soils along the toposequences at Kindo Koye watershed. Horizon. Depth. (cm). Color (moist). Field texture. Structure*. Consistence.

  1. Sampling design for use by the soil decontamination project

    International Nuclear Information System (INIS)

    Rutherford, D.W.; Stevens, J.R.

    1981-01-01

    This report proposes a general approach to the problem and discusses sampling of soil to map the contaminated area and to provide samples for characterizaton of soil components and contamination. Basic concepts in sample design are reviewed with reference to environmental transuranic studies. Common designs are reviewed and evaluated for use with specific objectives that might be required by the soil decontamination project. Examples of a hierarchial design pilot study and a combined hierarchial and grid study are proposed for the Rocky Flats 903 pad area

  2. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y.

    2010-08-15

    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture

  3. Final report, Ames Mobile Laboratory Project: The development and operation of instrumentation in a mobile laboratory for in situ, real-time screening and characterization of soils using the laser ablation sampling technique

    International Nuclear Information System (INIS)

    Anderson, M.S.; Braymen, S.D.

    1995-01-01

    The main focus of the Ames Laboratory's Technology Integration Program, TIP, from May 1991 through December 1994 was the development, fabrication, and demonstration of a mobile instrumentation laboratory incorporating rapid in situ sampling systems for safe, rapid, and cost effective soil screening/characterization. The Mobile Demonstration Laboratory for Environmental Screening Technologies, MDLEST, containing the analysis instrumentation, along with surface and subsurface sampling probe prototypes employing the laser ablation sampling technique were chosen to satisfy the particular surface and subsurface soil characterization needs of the various Department of Energy facilities for determining the extent of heavy metal and radionuclide contamination. The MDLEST, a 44 foot long 5th wheel trailer, is easily configured for the analysis instrumentation and sampling system required for the particular site work. This mobile laboratory contains all of the utilities needed to satisfy the operating requirements of the various instrumentation installed. These utilities include, an electric generator, a chilled water system, process gases, a heating/air conditioning system, and computer monitoring and automatic operating systems. Once the MDLEST arrives at the job site, the instrumentation is aligned and calibration is completed, sampling and analysis operations begin. The sample is acquired, analyzed and the results reported in as little as 10 minutes. The surface sampling probe is used in two modes to acquire samples for analysis. It is either set directly on the ground over the site to be sampled, in situ sampling, or in a special fixture used for calibrating the sampling analysis system with standard soil samples, having the samples brought to the MDLEST. The surface sampling probe was used to in situ sample a flat concrete surface (nondestructively) with the ablated sample being analyzed by the instrumentation in the MDLEST

  4. Case study of shallow soil mixing and soil vacuum extraction remediation project

    International Nuclear Information System (INIS)

    Carey, M.J.; Day, S.R.; Pinewski, R.; Schroder, D.

    1995-01-01

    Shallow Soil Mixing (SSM) and Soil Vacuum Extraction (SVE) are techniques which have been increasingly relied on for the insitu remediation of contaminated soils. The primary applications of SSM have been to mix cement, bentonite, or other reagents to modify properties and thereby remediate contaminated soils or sludges. Soil vacuum extraction has been used at numerous applications for insitu removal of contaminants from soils. At a recent project in southern Ohio, the two technologies were integrated and enhanced to extract volatile organic compounds (VOCs) from soils at a Department of Energy facility. Advantages of the integrated SSM/SVE technology over alternative technologies include a relatively rapid remediation compared to other in-situ techniques at a lower cost, less exposure of waste to the surface environment and elimination of off-site disposal. These advantages led to the selection of the use of both technologies on the project in Southern Ohio. The information presented in this paper is intended to provide Engineers and owners with the level of understanding necessary to apply soil mixing and vacuum extraction technology to a specific site. The most important steps in implementing the technology are site investigation, feasibility estimate, selection of performance criteria, selection of appropriate materials, bench scale testing and construction

  5. Gypsy Field Project in Reservoir Characterization

    International Nuclear Information System (INIS)

    John P. Castagna; William J. Lamb; Carlos Moreno; Roger Young; Lynn Soreghan

    2006-01-01

    The objective of the Gypsy Project was to properly calculate seismic attributes and integrate these into a reservoir characterization project. Significant progress was made on the project in four areas. (1) Attenuation: In order for seismic inversion for rock properties or calculation of seismic attributes used to estimate rock properties to be performed validly, it is necessary to deal with seismic data that has had true amplitude and frequency content restored to account for earth filtering effects that are generally not included in seismic reservoir characterization methodologies. This requires the accurate measurement of seismic attenuation, something that is rarely achieved in practice. It is hoped that such measurements may also provide additional independent seismic attributes for use in reservoir characterization studies. In 2000, we were concerned with the ground truthing of attenuation measurements in the vicinity of wells. Our approach to the problem is one of extracting as time varying wavelet and relating temporal variations in the wavelet to an attenuation model of the earth. This method has the advantage of correcting for temporal variations in the reflectivity spectrum of the earth which confound the spectral ratio methodology which is the most commonly applied means of measuring attenuation from surface seismic data. Part I of the report describes our efforts in seismic attenuation as applied to the Gypsy data. (2) Optimal Attributes: A bewildering array of seismic attributes is available to the reservoir geoscientist to try to establish correlations to rock properties. Ultimately, the use of such a large number of degrees of freedom in the search for correlations with limited well control leads to common misapplication of statistically insignificant results which yields invalid predictions. Cross-validation against unused wells can be used to recognize such problems, but does not offer a solution to the question of which attributes should be used

  6. Chemometric characterization of soil depth profiles

    International Nuclear Information System (INIS)

    Krieg, M.; Einax, J.

    1994-01-01

    The application of multivariate-statistical methods to the description of the metal distribution in soil depth profiles is shown. By means of cluster analysis, it is possible to get a first overview of the main differences in the metal status of the soil horizons. In case of anthropogenic soil pollution or geogenic enrichment, cluster analysis was able to detect the extent of the polluted soil layer or the different geological layers. The results of cluster analysis can be confirmed by means of multidimensional variance and discriminant analysis. Methods of discriminant analysis can also be used as a tool to determine the optimum number of variables which has to be measured for the classification of unknown soil samples into different pollution levels. Factor analysis yields an identification of not directly observable relationships between the variables. With additional knowledge about the orographic situation of the area and the probable sources of emission the factor loadings give information on the immission structure at the sampling location. (orig.)

  7. Induced polarization for characterizing and monitoring soil stabilization processes

    Science.gov (United States)

    Saneiyan, S.; Ntarlagiannis, D.; Werkema, D. D., Jr.

    2017-12-01

    Soil stabilization is critical in addressing engineering problems related to building foundation support, road construction and soil erosion among others. To increase soil strength, the stiffness of the soil is enhanced through injection/precipitation of a chemical agents or minerals. Methods such as cement injection and microbial induced carbonate precipitation (MICP) are commonly applied. Verification of a successful soil stabilization project is often challenging as treatment areas are spatially extensive and invasive sampling is expensive, time consuming and limited to sporadic points at discrete times. The geophysical method, complex conductivity (CC), is sensitive to mineral surface properties, hence a promising method to monitor soil stabilization projects. Previous laboratory work has established the sensitivity of CC on MICP processes. We performed a MICP soil stabilization projects and collected CC data for the duration of the treatment (15 days). Subsurface images show small, but very clear changes, in the area of MICP treatment; the changes observed fully agree with the bio-geochemical monitoring, and previous laboratory experiments. Our results strongly suggest that CC is sensitive to field MICP treatments. Finally, our results show that good quality data alone are not adequate for the correct interpretation of field CC data, at least when the signals are low. Informed data processing routines and the inverse modeling parameters are required to produce optimal results.

  8. Soil-biological, soil-chemical and soil-physical parameters along a pollutant gradient on grassland sites in the vicinity o Brixlegg (Tyrol) - a pilot project

    International Nuclear Information System (INIS)

    Pohla, H.; Palzenberger, M.; Krassnigg, F.; Kandeler, E.; Schwarz, S.; Kasperowski, E.

    1992-01-01

    It was the main aim of this pilot project to check the indicator value of soil organisms by means of distinct pollutant gradients - heavy metals, organic compounds (PCB, dioxins) -. On the basis of available results (1/2/3/), 4 grassland sites at increasing distances from a local emission source (copper production from scrap metal) were selected. Physical and chemical analyses as well as the quantification of habitat structures were used for the characterization of the sites. The following analyses were carried out accompanyingly: The performances of soil microorganisms under pollutant load, the accumulation of pollutants, and the structures of plants and animal communities (macro, meso and microfauna). The investigation area and the examined parameters are introduced, as well as first result on soil chemistry and enzymatics as well as for the accumulation of heavy metals in an earthworm species are introduced. (orig.) [de

  9. Hydrologic site characterization - the UMTRA project approach

    International Nuclear Information System (INIS)

    Binkman, J.E.; Hoopes, J.R.

    1985-01-01

    The United States Environmental Protection Agency (EPA) Standards (40 CFR 192) require site characterization of the hydrogeologic regime at and around each Uranium Mill Tailings Remedial Action (UMTRA) Project site. Also, ''judgements on the possible need for remedial or protective actions for groundwater aquifers should be guided by relevant considerations described in EPA's hazardous waste management system (47 CFR 32274).'' To address those two sets of rules and regulations, a generic approach is being developed. Fourteen primary issues were determined. These issues can be grouped into those that can be determined by documentation of available information and present conditions, those that require extensive field investigations and those that require some form of predictive modeling. To address the various issues requires an integrated effort of hydrogeologists, environmental engineers or scientists and health physicists. In this paper, the approach to the resolution of these fourteen issues is described briefly

  10. experimental characterization of clay soils behavior stabilized

    African Journals Online (AJOL)

    S. Rehab Bekkouche, G. Boukhatem

    2016-09-01

    Sep 1, 2016 ... their influence on the physical and mechanical properties of soil-po .... 1/2. Vitreous transition temperature. 300 (K). Softening temperature. 390 (K) .... f the piston is measured as a function of time until its stabilization. Th.

  11. Yucca Mountain Site characterization project bibliography, January--June 1991

    International Nuclear Information System (INIS)

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Science and Technology Database from January 1, 1990, through December 31, 1991

  12. Bioinformatic approaches reveal metagenomic characterization of soil microbial community.

    Directory of Open Access Journals (Sweden)

    Zhuofei Xu

    Full Text Available As is well known, soil is a complex ecosystem harboring the most prokaryotic biodiversity on the Earth. In recent years, the advent of high-throughput sequencing techniques has greatly facilitated the progress of soil ecological studies. However, how to effectively understand the underlying biological features of large-scale sequencing data is a new challenge. In the present study, we used 33 publicly available metagenomes from diverse soil sites (i.e. grassland, forest soil, desert, Arctic soil, and mangrove sediment and integrated some state-of-the-art computational tools to explore the phylogenetic and functional characterizations of the microbial communities in soil. Microbial composition and metabolic potential in soils were comprehensively illustrated at the metagenomic level. A spectrum of metagenomic biomarkers containing 46 taxa and 33 metabolic modules were detected to be significantly differential that could be used as indicators to distinguish at least one of five soil communities. The co-occurrence associations between complex microbial compositions and functions were inferred by network-based approaches. Our results together with the established bioinformatic pipelines should provide a foundation for future research into the relation between soil biodiversity and ecosystem function.

  13. Characterization of Soil Organic Matter from African Dark Earth (AfDE) Soils

    Science.gov (United States)

    Plante, A. F.; Fujiu, M.; Ohno, T.; Solomon, D.; Lehmann, J.; Fraser, J. A.; Leach, M.; Fairhead, J.

    2014-12-01

    Anthropogenic Dark Earths are soils generated through long-term human inputs of organic and pyrogenic materials. These soils were originally discovered in the Amazon, and have since been found in Australia and in this case in Africa. While tropical soils are typically characterized by low soil organic matter (SOM) concentrations, African Dark Earths (AfDE) are black, highly fertile and carbon-rich soils formed through an extant but ancient soil management system. The objective of this study was to characterize the organic matter accumulated in AfDE and contrast it with non-AfDE soils. Characterization of bulk soil organic matter of several (n=11) AfDE and non-AfDE pairs of surface (0-15 cm) soils using thermal analysis techniques (TG-DSC-EGA) resulted in substantial differences in SOM composition and the presence of pyrogenic C. Such pyrogenic organic matter is generally considered recalcitrant, but the fertility gains in AfDE are generated by labile, more rapidly cycling pools of SOM. As a result, we characterized hot water- and pyrophosphate-extractable pools of SOM using fluorescence (EEM/PARAFAC) and high resolution mass spectrometry (FT-ICR-MS). EEM/PARAFAC data suggests that AfDE samples had a greater fraction of their DOM that was more humic-like than the paired non-AfDE samples. Similarly, FT-ICR-MS analyses of extracts suggest that differences among the sites analyzed were larger than between the paired AfDE and non-AfDE extracts. Overall, in spite of substantial differences in the composition of bulk SOM, the extractable fractions appear to be relatively similar between the AfDE and non-AfDE soils.

  14. Project implementation : classification of organic soils and classification of marls - training of INDOT personnel.

    Science.gov (United States)

    2012-09-01

    This is an implementation project for the research completed as part of the following projects: SPR3005 Classification of Organic Soils : and SPR3227 Classification of Marl Soils. The methods developed for the classification of both soi...

  15. Soil Characterization by Large Scale Sampling of Soil Mixed with Buried Construction Debris at a Former Uranium Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Nardi, A.J.; Lamantia, L.

    2009-01-01

    Recent soil excavation activities on a site identified the presence of buried uranium contaminated building construction debris. The site previously was the location of a low enriched uranium fuel fabrication facility. This resulted in the collection of excavated materials from the two locations where contaminated subsurface debris was identified. The excavated material was temporarily stored in two piles on the site until a determination could be made as to the appropriate disposition of the material. Characterization of the excavated material was undertaken in a manner that involved the collection of large scale samples of the excavated material in 1 cubic meter Super Sacks. Twenty bags were filled with excavated material that consisted of the mixture of both the construction debris and the associated soil. In order to obtain information on the level of activity associated with the construction debris, ten additional bags were filled with construction debris that had been separated, to the extent possible, from the associated soil. Radiological surveys were conducted of the resulting bags of collected materials and the soil associated with the waste mixture. The 30 large samples, collected as bags, were counted using an In-Situ Object Counting System (ISOCS) unit to determine the average concentration of U-235 present in each bag. The soil fraction was sampled by the collection of 40 samples of soil for analysis in an on-site laboratory. A fraction of these samples were also sent to an off-site laboratory for additional analysis. This project provided the necessary soil characterization information to allow consideration of alternate options for disposition of the material. The identified contaminant was verified to be low enriched uranium. Concentrations of uranium in the waste were found to be lower than the calculated site specific derived concentration guideline levels (DCGLs) but higher than the NRC's screening values. The methods and results are presented

  16. Analytical characterization of contaminated soils from former manufactured gas plants

    International Nuclear Information System (INIS)

    Haeseler, F.; Blanchet, D.; Vandecasteele, J.P.; Druelle, V.; Werner, P.; Technische Univ., Dresden,

    1999-01-01

    Detailed analytical characterization of the organic matter (OM) of aged polluted soils from five former manufactured gas plants (MGP) and of two coal tars was completed. It was aimed at obtaining information relevant to the physicochemical state of the polycyclic aromatic hydrocarbon (PAH) pollutants and to their in-situ evolution in time. Overall characterization of total OM (essentially polluting OM) was carried out directly on soil samples with or without prior extraction with solvent. It involved a technique of pyrolysis/oxidation coupled to flame ionization/thermal conductivity detection. Extracts in solvent were fractionated by liquid chromatography into saturated hydrocarbons, PAH, and resins, the first two fractions being further characterized by gas chromatography and mass spectrometry. The compositions of OM of soils were found to be very similar. A total of 28% of organic carbon, including all PAH, was extractable by solvent. The compositions of coal tars were qualitatively similar to those of OM of MGP soils but with a higher proportion (48%) of total extractable OM and of PAH, in particular lower PAH. Contamination of MGP soils appeared essentially as coal tar having undergone natural attenuation. The constant association of PAH with heavy OM in MGP soils is important with respect to the mobility and bioaccessibility of these pollutants

  17. Characterization of Soil Organic Matter in Peat Soil with Different Humification Levels using FTIR

    Science.gov (United States)

    Teong, I. T.; Felix, N. L. L.; Mohd, S.; Sulaeman, A.

    2016-07-01

    Peat soil is defined as an accumulation of the debris and vegetative under the water logging condition. Soil organic matter of peat soil was affected by the environmental, weather, types of vegetative. Peat soil was normally classified based on its level of humification. Humification can be defined as the transformation of numerous group of substances (proteins, carbohydrates, lipids, etc.) and individual molecules present in living organic matter into group of substances with similar properties (humic substances). During the peat transformation process, content of soil organic matter also will change. Hence, that is important to determine out the types of the organic compound. FTIR (Fourier Transform Infrared) is a machine which is used to differential soil organic matter by using infrared. Infrared is a types of low energy which can determine the organic minerals. Hence, FTIR can be suitable as an indicator on its level of humification. The main objective of this study is to identify an optimized method to characterization of the soil organic content in different level of humification. The case study areas which had been chosen for this study are Parit Sulong, Batu Pahat and UCTS, Sibu. Peat soil samples were taken by every 0.5 m depth until it reached the clay layer. However, the soil organic matter in different humification levels is not significant. FTIR is an indicator which is used to determine the types of soil, but it is unable to differentiate the soil organic matter in peat soil FTIR can determine different types of the soil based on different wave length. Generally, soil organic matter was found that it is not significant to the level of humification.

  18. Modern Sorters for Soil Segregation on Large Scale Remediation Projects

    International Nuclear Information System (INIS)

    Shonka, J.J.; Kelley, J.E.; O'Brien, J.M.

    2008-01-01

    volume is 50 kilograms or less. Smaller sorting volumes can be obtained with lower throughput or by re-sorting the diverted material. This equipment can also handle large objects. The use of spectroscopy systems allows several regions of- interest to be set. Super-Sorters can bring waste processing charges down to less than $30/ metric ton on smaller jobs and can save hundreds of dollars per metric ton in disposal charges. The largest effect on the overall project cost occurs during planning and implementation. The overall goal is reduction of the length of the project, which dictates the most efficient soil processing. With all sorting systems the parameters that need to be accounted for are matrix type, soil feed rate, soil pre-processing, site conditions, and regulatory issues. The soil matrix and its ability to flow are extremely crucial to operations. It is also important to consider that as conditions change (i.e., moisture), the flowability of the soil matrix will change. Many soil parameters have to be considered: cohesive strength, internal and wall friction, permeability, and bulk density as a function of consolidating pressure. Clay bearing soils have very low permeability and high cohesive strength which makes them difficult to process, especially when wet. Soil feed speed is dependent on the equipment present and the ability to move the soil in the Super-Sorter processing area. When a Super-Sorter is running at 400 metric tons per hour it is difficult to feed the system. As an example, front-end loaders with large buckets would move approximately 5-10 metric tons of material, and 400 metric tons per hour would require 50-100 bucket-loads per hour to attain. Because the flowability of the soil matrix is important, poor material is often pre-processed before it is added to the feed hopper of the 'survey' conveyor. This pre-processing can consist of a 'grizzly' to remove large objects from the soil matrix, followed screening plant to prepare the soil so that it

  19. Effective dielectric mixture model for characterization of diesel contaminated soil

    International Nuclear Information System (INIS)

    Al-Mattarneh, H.M.A.

    2007-01-01

    Human exposure to contaminated soil by diesel isomers can have serious health consequences like neurological diseases or cancer. The potential of dielectric measuring techniques for electromagnetic characterization of contaminated soils was investigated in this paper. The purpose of the research was to develop an empirical dielectric mixture model for soil hydrocarbon contamination application. The paper described the basic theory and elaborated in dielectric mixture theory. The analytical and empirical models were explained in simple algebraic formulas. The experimental study was then described with reference to materials, properties and experimental results. The results of the analytical models were also mathematically explained. The proposed semi-empirical model was also presented. According to the result of the electromagnetic properties of dry soil contaminated with diesel, the diesel presence had no significant effect on the electromagnetic properties of dry soil. It was concluded that diesel had no contribution to the soil electrical conductivity, which confirmed the nonconductive character of diesel. The results of diesel-contaminated soil at saturation condition indicated that both dielectric constant and loss factors of soil were decreased with increasing diesel content. 15 refs., 2 tabs., 9 figs

  20. Characterization Plan for Soils Around Drain Line PLA-100115

    Energy Technology Data Exchange (ETDEWEB)

    D. Shanklin

    2006-05-24

    This Characterization Plan supports the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) closure of soils that may have been contaminated by releases from drain line PLA-100115, located within the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The requirements to address the closure of soils contaminated by a potential release from this line in a characterization plan was identified in the "HWMA/RCRA Less Than 90-day Generator Closure Report for the VES-SFE-126."

  1. Characterization of Heavy metals from banana farming soils

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dian; Huang, Cheng He; Huang, Dong Yi [College of Agronomy, Hainan University, Haikou City, Hainan Province (China); Ouyang, Ying [Department of Water Resources, St. Johns River Water Management District, Palatka, FL (United States)

    2010-06-15

    There is a growing public concern about the contamination of heavy metals in agricultural soils in China due to the increasingly applications of chemical fertilizers and pesticides during the last two decades. This study characterized the variability of heavy metals, including copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), and nickel (Ni), from the banana farming soils in western Hainan Island, China. Five banana farms from different locations in the island were selected to collect 69 mixed-soil samples in this study. Experimental data showed that concentrations of Cu ranged from 3.38 to 54.52, Zn from 24.0 to 189.8, Pb from 15.98 to 58.42, Cd from 0.43 to 3.21, and Ni from 3.47 to 121.86 mg kg{sup -1} dry wt. In general, concentrations of the heavy metals varied with metal species and changed from location to location, which occurred presumably due to the variations of soil parent materials and to a certain extent due to the use of different types of agrochemicals. Our study further revealed that concentrations of Cu and Zn were higher in the banana farming soils than in the natural (control) soils among all of the five locations, whereas mixed results were observed for Pb, Cd, and Ni in both the banana farming and control soils, depending on the locations. Comparisons of the heavy metal concentrations with the Chinese Soil Quality Standards (CSQSs) showed that Cu, Zn, and Pb contents were lower but Cd and Ni contents were higher in the banana farming soils than the Class II standard of the CSQSs. Results suggested that accumulation of Cu, Zn, and Pb in the soils is safe for banana fruit production, whereas accumulation of Cd and Ni in the same soils could potentially pose threats to banana fruit safety. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites

    International Nuclear Information System (INIS)

    1989-03-01

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites

  3. TWRS phase 1 infrastructure project (W-519) characterization

    International Nuclear Information System (INIS)

    Mitchell, C.J.

    1998-01-01

    In order to treat the mixed radioactive and hazardous waste stored in 177 underground tanks, the Tank Waste Remediation System (TWRS) program is developing a 'demonstration' site for treatment and immobilization of these wastes by a private contractor. Project W-519 is providing the infrastructure support to this site by developing the designs and emplacing required pipelines, roads, electrical, etc. In support of the TWRS Phase 1 Infrastructure Project (W-519) Characterization, Numatec Hanford Corporation (NHC) contracted with Waste Management Federal Services, Inc., Northwest Operations (WMNW) to investigate a number of locations in and just outside the 200 East Area eastern fenceline boundary. These areas consisted of known or suspected waste lines or waste sites that could potentially impact the construction and emplacement of the proposed facility improvements, including waterlines and roads. These sites were all located subsurface and sugaring would be required to obtain sample material from the desired depth. The soils would then be sampled and submitted to the laboratory for analysis of radioactivity

  4. Site characterization activities at Stripa and other Swedish projects

    International Nuclear Information System (INIS)

    Ahlstroehm, P.E.

    1991-01-01

    The Swedish research programme concerning spent nuclear fuel disposal aims for submitting a siting license application around the year 2000. An important step towards that goal will be the detailed characterization of at least two potential sites in late 1990s. In preparation for such characterization several research projects are conducted. One is the international Stripa Project that includes a site characterization and validation project for a small size granite rock body. The Stripa work also includes further development of instrumentation and measurement techniques. Another project is the Finnsjoen Fracture Zone Project, which is characterizing a subhorizontal zone at depths from 100 to 350 meters. The third project is the new Swedish Hard Rock Laboratory planned at the site of the Oskarshamn nuclear power plant. The preinvestigations and construction of this laboratory include major efforts in development, application and validation of site characterization methodology. (author) 6 figs., 9 refs

  5. Parameters that characterize the radon hazard of soils

    International Nuclear Information System (INIS)

    Blue, T.E.; Mervis, J.A.; Jarzemba, M.S.; Carey, W.E.

    1990-01-01

    It has been observed that the radon concentration in homes does not depend solely on the steady-state 222 Rn concentration in the soil. An explanation for the lack of correlation between radon concentrations in the soil and in adjacent homes includes factors such as the construction of the homes, their heating systems, and the habits of their occupants. Another explanation, which is proposed in this paper, is that the steady-state concentration of radon in the pore gas does not fully characterize the soil as a radon hazard. Other soil properties, such as its diffusion length for radon and its porosity, may be important. In this paper, the authors have identified the soil properties important in radon transport into the basement of a home by mathematically modeling ventilated basement air enclosed in basement walls and surrounded by soil and by solving the model equations to determine an expression for the basement air radon concentration as a function of the properties of the soil and basement wall

  6. strength characterization of foundation soils at federal university ...

    African Journals Online (AJOL)

    HOD

    used to calculate bearing capacity factors for structural footings [1]. One of in situ testing methods is the. Standard Penetration Test (SPT) that is used to identify soil type and stratigraphy along with being a relative measure of strength [2]. In this study, the SPT blow count was used as a parameter for in situ characterization of.

  7. Advanced testing and characterization of transportation soils and bituminous sands

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2007-12-01

    Full Text Available This research study was intended to develop laboratory test procedures for advance testing and characterization of fine-grained cohesive soils and oil sand materials. The test procedures are based on typical field loading conditions and the loading...

  8. Tank Waste Remediation System Characterization Project Programmatic Risk Management Plan

    International Nuclear Information System (INIS)

    Baide, D.G.; Webster, T.L.

    1995-12-01

    The TWRS Characterization Project has developed a process and plan in order to identify, manage and control the risks associated with tank waste characterization activities. The result of implementing this process is a defined list of programmatic risks (i.e. a risk management list) that are used by the Project as management tool. This concept of risk management process is a commonly used systems engineering approach which is being applied to all TWRS program and project elements. The Characterization Project risk management plan and list are subset of the overall TWRS risk management plan and list

  9. Risk characterization and remedial management of TPH-affected soils

    International Nuclear Information System (INIS)

    Smith, J.; Von Burg, R.; Preslo, L.; Lakin, M.

    1994-01-01

    A risk-based remedial program for petroleum hydrocarbon affected soils has been implemented at a large land parcel in California. The site is the former location of a manufacturing facility that had been in operation since the 1940s. As a result of various activities related to parts manufacturing, several large areas of soil were found to contain various petroleum products. The primary sources of petroleum hydrocarbons included cutting oils, lubricating oils, fuels, and hydraulic oils associated with the site operations. Concentrations of total petroleum hydrocarbons (TPH) as high as 100,000 mg/kg were identified in soil. These high concentrations of TPH were identified at depths up to 60 feet below ground surface (bgs), with the vadose zone extending to depths of more than 150 feet bgs. Within California, traditional cleanup levels for TPH-affected soils typically range from 100 to 1,000 mg/kg. Because of the client's desire to sell the property for rapid development, the remedial alternative of excavation and off-haul was deemed too time consuming and costly. The estimated costs associated with this remediation which potentially involved soil removal to 100--120 feet exceeded $20 million and could take up to one year to complete. To meet the schedule requirements for site remediations as well as significantly reduce the overall project cost, the authors undertook a risk-based approach to assess if remediation of the TPH-affected soils was required

  10. Soils radiological characterization under a nuclear facility - 59046

    International Nuclear Information System (INIS)

    Aubonnet, Emilie; Dubot, Didier

    2012-01-01

    Nowadays, nuclear industry is facing a crucial need in establishing radiological characterization for the appraisal and the monitoring of any remediation work. Regarding its experience in this domain, the French Alternative Energies and Atomic Energy Commission (CEA) of Fontenay-aux- Roses, established an important feedback and developed over the last 10 years a sound methodology for radiological characterization. This approach is based on several steps: - historical investigations; - assumption and confirmation of the contamination; - surface characterization; - in-depth characterization; - rehabilitation objectives; - remediation process. The amount of measures, samples and analysis is optimized for data processing using geo-statistics. This approach is now used to characterize soils under facilities. The paper presents the radiological characterization of soils under a facility basement. This facility has been built after the first generation of nuclear facilities, replacing a plutonium facility which has been dismantled in 1960. The presentation details the different steps of radiological characterization from historical investigations to optimization of excavation depths, impact studies and contaminated volumes. (authors)

  11. Plume Mitigation for Mars Terminal Landing: Soil Stabilization Project

    Science.gov (United States)

    Hintze, Paul E.

    2014-01-01

    Kennedy Space Center (KSC) has led the efforts for lunar and Martian landing site preparation, including excavation, soil stabilization, and plume damage prediction. There has been much discussion of sintering but until our team recently demonstrated it for the lunar case there was little understanding of the serious challenges. Simplistic sintering creates a crumbly, brittle, weak surface unsuitable for a rocket exhaust plume. The goal of this project is to solve those problems and make it possible to land a human class lander on Mars, making terminal landing of humans on Mars possible for the first time.

  12. Analytical method for the isotopic characterization of soils

    International Nuclear Information System (INIS)

    Sibello Hernandez, Rita; Cozzella, Maria Letizia; Mariani, Mario

    2014-01-01

    The aim of this work was to develop an analytical method in order to determine the isotopic composition of different elements in soil samples and to determine the existence of contamination. The method used in the digestion of the samples was the EPA 3050B, and some metal concentration were determined including uranium and thorium. For elements with even lower concentrations such as plutonium and radium a treatment after mineralization by EPA, was necessary. The measurement technique used was mass spectrometry with quadrupole and plasma induced associated (ICP-MS). Results of the analysis performed in two laboratories showed a good correspondence. This method allowed to perform the isotopic characterization of studied soils and results showed that the studied soils do not present any local pollution and that the presence of plutonium-239, is due to global failure

  13. Ground Characterization Studies in Canakkale Pilot Site of LIQUEFACT Project

    Science.gov (United States)

    Ozcep, F.; Oztoprak, S.; Aysal, N.; Bozbey, I.; Tezel, O.; Ozer, C.; Sargin, S.; Bekin, E.; Almasraf, M.; Cengiz Cinku, M.; Ozdemir, K.

    2017-12-01

    The our aim is to outline the ground characterisation studies in Canakkale test site. Study is based on the EU H2020 LIQUEFACT project entitled "Liquefact: Assessment and mitigation of liquefaction potential across Europe: a holistic approach to protect structures / infrastructures for improved resilience to earthquake-induced liquefaction disasters". Objectives and extent of ground characterization for Canakkale test site includes pre-existing soil investigation studies and complementary field studies. There were several SPT and geophysical tests carried out in the study area. Within the context of the complementary tests, six (6) study areas in the test site were chosen and complementary tests were carried out in these areas. In these areas, additional boreholes were opened and SPT tests were performed. It was decided that additional CPT (CPTU and SCPT) and Marchetti Dilatometer (DMT) tests should be carried out within the scope of the complementary testing. Seismic refraction, MASW and micro tremor measurements had been carried out in pre-existing studies. Shear wave velocities obtained from MASW measurements were evaluated to the most rigorous level. These tests were downhole seismic, PS-logging, seismic refraction, 2D-ReMi, MASW, micro tremor (H/V Nakamura method), 2D resistivity and resonance acoustic profiling (RAP). RAP is a new technique which will be explained briefly in the relevant section. Dynamic soil properties had not been measured in pre-existing studies, therefore these properties were investigated within the scope of the complementary tests. Selection of specific experimental tests of the complementary campaign was based on cost-benefit considerations Within the context of complementary field studies, dynamic soil properties were measured using resonant column and cyclic direct shear tests. Several sieve analyses and Atterberg Limits tests which were documented in the pre-existing studies were evaluated. In the complementary study carried out

  14. Towards the Wetness Characterization of Soil Subsurface Using Fibre Optic Distributed Acoustic Sensing

    Science.gov (United States)

    Ciocca, F.; Bodet, L.; Simon, N.; Karaulanov, R.; Clarke, A.; Abesser, C.; Krause, S.; Chalari, A.; Mondanos, M.

    2017-12-01

    Active seismic methods combined with detectors deployed at the soil surface, such as vertical collinear geophones, have revealed great potential for hydrogeophysical characterization of the soil vadose zone. In particular, recent findings have highlighted a clear dependence of both P-waves arrival times and surface-wave dispersion on the local degree of soil saturation, visible at laboratory as well as at field scale. In this study, we investigate the sensitivity of a fibre optic Distributed Acoustic Sensor (DAS) to different soil saturation. In vertical seismic applications, DAS have proven to offer equal and often better performance compared to the geophones, with the advantage that a fibre optic cable, whose length can reach 40 km, replaces the array of geophones as sensing element. We present the response to active seismic tests of 20 m of fibre optic cable buried in a poorly permeable bare soil. Tests were conducted in different moments of the year, with saturation monitored by means of independent dielectric probes. Body-wave travel times as well as surface-wave dispersion are compared. Finally, we discuss the possibility to determine a site-specific relation between the Poisson ratio and the soil saturation. This research has been performed in the framework of the British National Environmental Research Council (NERC) funded Distributed intelligent Heat Pulse System (DiHPS) project and of the Marie Curie H2020 Research and Innovation Staff Exchange (RISE) consortium Hi-Freq.

  15. Project, building and utilization of a tomograph of micro metric resolution to application in soil science

    International Nuclear Information System (INIS)

    Macedo, Alvaro; Torre Neto, Andre; Cruvinel, Paulo Estevao; Crestana, Silvio

    1996-08-01

    This paper describes the project , building and utilization of a tomograph of micro metric resolution in soil science. It describes the problems involved in soil's science study and it describes the system and methodology

  16. Soil Investigation Aspects of a Complex Metro Project in Amsterdam

    Science.gov (United States)

    Herbschleb, Jurgen

    The municipality of Amsterdam wishes to reduce the level of car traffic within the City Centre. As a consequence the public transport is to be extended by a new (bored) North/South Metro line. The excavation depths for the stations will exceed 30 m and will be constructed in difficult soft soil conditions. A further significant aspect is that the building pits are very near (3 to 5 m) to buildings of historical importance. The design philosophy of the station boxes was to determine an acceptable balance between the safety requirements and construction costs. The guidelines for the design, both for the building pits and the bored tunnel, are the predicted deformations of the adjacent building foundations. One of the more important geotechnical risks for this project is incorrect determination of the deformations arising from the building processes alongside the route of the metro. As such it should be realised that advanced finite element programs with second order material models require different geotechnical parameters than analytical models. The careful selection of calculation (soil) models, the level of safety (risk analysis), and site investigation is the start of the determination of the geotechnical parameters. This paper will focus on the interpretation of the site investigation for this complex project and will concentrate on the process followed, the problems encountered with the interpretation, the obtained results, and the used tools for geotechnical risk management.

  17. Isolation and Characterization of Aerobic Denitrifiers from Agricultural Soil

    OpenAIRE

    ÇELEN, Ebru; KILIÇ, Mehmet Akif

    2004-01-01

    Denitrification is generally considered an anaerobic process. However, in recent years it has been shown that bacteria can also reduce nitrate to nitrite under aerobic conditions. The characterization of biologically available nitrogen forms and their biological cycling mechanisms is important for ecological and agricultural implications. In this study, aerobic nitrate reducers were isolated from greenhouse soil. Using a nitrate reduction assay, it was found that 39 out of 60 isolates can red...

  18. Hydrogeologic Characterization Data from the Area 5 Shallow Soil Trenches

    International Nuclear Information System (INIS)

    Bechtel Nevada Geotechnical Sciences

    2005-01-01

    Four shallow soil trenches excavated in the vicinity of the Area 5 Radioactive Waste Management Site at the Nevada Test Site were sampled in 1994 to characterize important physical and hydrologic parameters which can affect the movement of water in the upper few meters of undisturbed alluvium. This report describes the field collection of geologic samples and the results of laboratory analyses made on these samples. This report provides only qualitative analyses and preliminary interpretations

  19. Yucca Mountain Site characterization project bibliography, January--June 1991

    International Nuclear Information System (INIS)

    Lorenz, J.J.; Stephan, P.M.

    1991-09-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1991 through June 1991. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  20. Yucca Mountain Site Characterization Project bibliography, January--June 1992

    International Nuclear Information System (INIS)

    1992-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1993, through June 30, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  1. Yucca Mountain Site Characterization Project Bibliography, July--December 1990

    International Nuclear Information System (INIS)

    1991-05-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountains Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from July 1990 through December 1990. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers and articles are included in the sponsoring organizations list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  2. Yucca Mountain Site characterization project bibliography, January--June 1992

    International Nuclear Information System (INIS)

    1992-09-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1992, through June 30, 1992. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor resorts, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  3. The VULCAN Project: Toward a better understanding of the vulnerability of soil organic matter to climate change in permafrost ecosystems

    Science.gov (United States)

    Plaza, C.; Schuur, E.; Maestre, F. T.

    2015-12-01

    Despite much recent research, high uncertainty persists concerning the extent to which global warming influences the rate of permafrost soil organic matter loss and how this affects the functioning of permafrost ecosystems and the net transfer of C to the atmosphere. This uncertainty continues, at least in part, because the processes that protect soil organic matter from decomposition and stabilize fresh plant-derived organic materials entering the soil are largely unknown. The objective of the VULCAN (VULnerability of soil organic CArboN to climate change in permafrost and dryland ecosystems) project is to gain a deeper insight into these processes, especially at the molecular level, and to explore potential implications in terms of permafrost ecosystem functioning and feedback to climate change. We will capitalize on a globally unique ecosystem warming experiment in Alaska, the C in Permafrost Experimental Heating Research (CiPEHR) project, which is monitoring soil temperature and moisture, thaw depth, water table depth, plant productivity, phenology, and nutrient status, and soil CO2 and CH4 fluxes. Soil samples have been collected from the CiPEHR experiment from strategic depths, depending on thaw depth, and allow us to examine effects related to freeze/thaw, waterlogging, and organic matter relocation along the soil profile. We will use physical fractionation methods to separate soil organic matter pools characterized by different preservation mechanisms of aggregation and mineral interaction. We will determine organic C and total N content, transformation rates, turnovers, ages, and structural composition of soil organic matter fractions by elemental analysis, stable and radioactive isotope techniques, and nuclear magnetic resonance tools. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com

  4. Technology projects for characterization--monitoring of volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Junk, G.A.; Haas, W.J. Jr.

    1992-07-01

    One hundred thirty technology project titles related to the characterization of volatile organic compounds (VOCs) at an arid site are listed alphabetically by first contact person in a master compilation that includes phone numbers, addresses, keywords, and short descriptions. Separate tables are presented for 62 field-demonstrated, 36 laboratory-demonstrated, and 35 developing technology projects. The technology projects in each of these three categories are also prioritized in separate summary tables. Additional tables are presented for a number of other categorizations of the technology projects: In Situ; Fiberoptic; Mass Spectrometer; Optical Spectroscopy; Raman or SERS; Ion Mobility or Acoustic; Associated; and Commercial. Four lists of contact person names are provided so details concerning the projects that deal with sampling, and VOCs in gases, waters, and soils (sediments) can be obtained. Finally, seven wide-ranging conclusions based on observations and experiences during this work are presented.

  5. Technology projects for characterization--monitoring of volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Junk, G.A.; Haas, W.J. Jr.

    1992-07-01

    One hundred thirty technology project titles related to the characterization of volatile organic compounds (VOCs) at an arid site are listed alphabetically by first contact person in a master compilation that includes phone numbers, addresses, keywords, and short descriptions. Separate tables are presented for 62 field-demonstrated, 36 laboratory-demonstrated, and 35 developing technology projects. The technology projects in each of these three categories are also prioritized in separate summary tables. Additional tables are presented for a number of other categorizations of the technology projects: In Situ; Fiberoptic; Mass Spectrometer; Optical Spectroscopy; Raman or SERS; Ion Mobility or Acoustic; Associated; and Commercial. Four lists of contact person names are provided so details concerning the projects that deal with sampling, and VOCs in gases, waters, and soils (sediments) can be obtained. Finally, seven wide-ranging conclusions based on observations and experiences during this work are presented

  6. Software quality assurance on the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Matras, J.R.

    1993-01-01

    The Yucca Mountain Site Characterization Project (YMP) has been involved over the years in the continuing struggle with establishing acceptable Software Quality Assurance (SQA) requirements for the development, modification, and acquisition of computer programs used to support the Mined Geologic Disposal System. These computer programs will be used to produce or manipulate data used directly in site characterization, design, analysis, performance assessment, and operation of repository structures, systems, and components. Scientists and engineers working on the project have claimed that the SQA requirements adopted by the project are too restrictive to allow them to perform their work. This paper will identify the source of the original SQA requirements adopted by the project. It will delineate the approach used by the project to identify concerns voiced by project engineers and scientists regarding the original SQA requirements. It will conclude with a discussion of methods used to address these problems in the rewrite of the original SQA requirements

  7. Analytical electron microscopy characterization of Fernald soils. Annual report, October 1993--September 1994

    International Nuclear Information System (INIS)

    Buck, E.C.; Brown, N.R.; Dietz, N.L.

    1995-03-01

    A combination of backscattered electron imaging and analytical electron microscopy (AEM) with electron diffraction have been used to determine the physical and chemical properties of uranium contamination in soils from the Fernald Environmental Management Project in Ohio. The information gained from these studies has been used in the development and testing of remediation technologies. Most chemical washing techniques have been reasonably effective with uranyl [U(VI)] phases, but U(IV) phases have proven difficult to remove from the soils. Carbonate leaching in an oxygen environment (heap leaching) has removed some of the U(IV) phases, and it appears to be the most effective technique developed in the program. The uranium metaphosphate, which was found exclusively at an incinerator site, has not been removed by any of the chemical methods. We suggest that a physical extraction procedure (either a magnetic separation or aqueous biphasic process) be used to remove this phase. Analytical electron microscopy has also been used to determine the effect of the chemical agents on the uranium phases. It has also been used to examine soils from the Portsmouth site in Ohio. The contamination there took the form of uranium oxide and uranium calcium oxide phases. Technology transfer efforts over FY 1994 have led to industry-sponsored projects involving soil characterization

  8. Characterization of unsaturated hydraulic parameters for homogeneous and heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Wildenschild, Dorthe

    1997-09-01

    Application of numerical models for predicting future spreading of contaminants into ground water aquifers is dependent on appropriate characterization of the soil hydraulic properties controlling flow and transport in the unsaturated zone. This thesis reviews the current knowledge on two aspects of characterization of unsaturated hydraulic parameters; estimation of the basic hydraulic parameters for homogeneous soils and statistical representation of heterogeneity for spatially variable soils. The retention characteristic is traditionally measured using steady-state procedures, but new ideas based on dynamic techniques have been developed that reduce experimental efforts and that produce retention curves which compare to those measured by traditional techniques. The unsaturated hydraulic conductivity is difficult to establish by steady-state procedures, and extensive research efforts have been focused on alternative methods that are based on inverse estimation. The inverse methods have commonly been associated with problems of numerical instability and ill-posedness of the parameter estimates, but recent investigations have shown that the uniqueness of parameter estimates can be improved by including additional, independent information on, for instance, the retention characteristic. Also, uniqueness may be improved by careful selection of experimental conditions are parametric functions. (au) 234 refs.

  9. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    Science.gov (United States)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  10. Hot-Gas Filter Ash Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, M.L.; Hurley, J.P.; Dockter, B.A.; O`Keefe, C.A.

    1997-07-01

    Large-scale hot-gas filter testing over the past 10 years has revealed numerous cases of cake buildup on filter elements that has been difficult, if not impossible, to remove. At times, the cake can blind or bridge between candle filters, leading to filter failure. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature, contribute to the difficulty in removing the cake, but chemical factors such as surface composition and gas-solid reactions also play roles in helping to bond the ash to the filters or to itself. This project is designed to perform the research necessary to determine the fuel-, sorbent-, and operations-related conditions that lead to blinding or bridging of hot-gas particle filters. The objectives of the project are threefold: (1) Determine the mechanisms by which a difficult-to-clean ash is formed and how it bridges hot-gas filters (2) Develop a method to determine the rate of bridging based on analyses of the feed coal and sorbent, filter properties, and system operating conditions and (3) Suggest and test ways to prevent filter bridging.

  11. The deployment of an innovative real-time radiological soil characterization system

    International Nuclear Information System (INIS)

    Allen, David; Danahy, Raymond; Laird, Gregory; Seiller, Dale; White, Joan; Janke, Robert

    2000-01-01

    Fluor Fernald Inc., in conjunction with partners from Argonne National Laboratory, the Department of Energy's Environmental Measurements Laboratory, and Idaho National Engineering and Environmental Laboratory, has developed a program for characterizing radiological contaminants in soil in real time. The soil characterization system in use at the Fernald Environmental Management Project (FEMP) for over three years combines gamma ray spectrometry equipment with other technologies to produce a system that can scan large areas of ground and produce color coded maps which display quantitative information regarding isotopic contamination patterns. Software running on a battery powered lap-top computer, is used to control acquisition of gamma spectral data to link the spectral Information with precise detector position measurements from Global Positioning System (GPS) satellites, and to control transmission of data to a central station or van via a wireless Ethernet link where Surfer6 mapping software is used to produce maps showing the position and amount of each target analyte. Either sodium iodide (NaI) gamma ray detectors mounted on three different vehicles for mobile measurements or stationary tripod-mounted hyper-pure germanium (HPGe) detectors can be used in this system to radiologically characterize soil. The operational and performance characteristics, as well as the strengths and limitations of each of these units, will be described. The isotopic information generated by this system can be made available to remediation project mangers within an hour after the completion of a scan to aid in determination of excavation footprints, segregation of contaminated soil and verification of contamination removal. The immediate availability of radiological characterization data made possible by this real-time scanning system has allowed Fluor Fernald to accelerate remediation schedules and reduce costs by avoiding excavation delays and expensive and time consuming

  12. Use of photoacoustic mid-infrared spectroscopy to characterize soil properties and soil organic matter stability

    Science.gov (United States)

    Peltre, Clement; Bruun, Sander; Du, Changwen; Stoumann Jensen, Lars

    2014-05-01

    The persistence of soil organic matter (SOM) is recognized as a major ecosystem property due to its key role in earth carbon cycling, soil quality and ecosystem services. SOM stability is typically studied using biological methods such as measuring CO2-C evolution from microbial decomposition of SOM during laboratory incubation or by physical or chemical fractionation methods, allowing the separation of a labile fraction of SOM. However these methods are time consuming and there is still a need for developing reliable techniques to characterize SOM stability, providing both quantitative measurements and qualitative information, in order to improve our understanding of the mechanisms controlling SOM persistence. Several spectroscopic techniques have been used to characterize and predict SOM stability, such as near infrared reflectance spectroscopy (NIRS) and diffuse reflectance mid-infrared spectroscopy (DRIFT). The latter allows a proper identification of spectral regions corresponding to vibrations of specific molecular or functional groups associated with SOM lability. However, reflectance spectroscopy for soil analyses raises some difficulties related to the low reflectance of soils, and to the high influence of particle size. In the last three decades, the progresses in microphone sensitivity dramatically increased the performance of photoacoustic Fourier transform mid-infrared spectroscopy (FTIR-PAS). This technique offers benefits over reflectance spectroscopy techniques, because particle size and the level of sample reflectance have little effect of on the PAS signal, since FTIR-PAS is a direct absorption technique. Despite its high potential for soil analysis, only a limited number of studies have so far applied FTIR-PAS for soil characterization and its potential for determining SOM degradability still needs to be investigated. The objective of this study was to assess the potential of FTIR-PAS for the characterization of SOM decomposability during

  13. Final Verification Success Story Using the Triad Approach at the Oak Ridge National Laboratory's Melton Valley Soils and Sediment Project

    International Nuclear Information System (INIS)

    King, D.A.; Haas, D.A.; Cange, J.B.

    2006-01-01

    The United States Environmental Protection Agency recently published guidance on the Triad approach, which supports the use of smarter, faster, and better technologies and work strategies during environmental site assessment, characterization, and cleanup. The Melton Valley Soils and Sediment Project (Project) at the Oak Ridge National Laboratory embraced this three-pronged approach to characterize contaminants in soil/sediment across the 1000-acre Melton Valley Watershed. Systematic Project Planning is the first of three prongs in the Triad approach. Management initiated Project activities by identifying key technical personnel, included regulators early in the planning phase, researched technologies, and identified available resources necessary to meet Project objectives. Dynamic Work Strategies is the second prong of the Triad approach. Core Team members, including State and Federal regulators, helped develop a Sampling and Analysis Plan that allowed experienced field managers to make real-time, in-the-field decisions and, thus, to adjust to conditions unanticipated during the planning phase. Real-time Measurement Technologies is the third and last prong of the Triad approach. To expedite decision-making, the Project incorporated multiple in-field technologies, including global positioning system equipment integrated with field screening instrumentation, magnetometers for utility clearance, and an on-site gamma spectrometer (spec) for rapid contaminant speciation and quantification. As a result of a relatively complex but highly efficient program, a Project field staff of eight collected approximately 1900 soil samples for on-site gamma spec analysis (twenty percent were also shipped for off-site analyses), 4.7 million gamma radiation measurements, 1000 systematic beta radiation measurements, and 3600 systematic dose rate measurements between July 1, 2004, and October 31, 2005. The site database previously contained results for less than 500 soil samples dating

  14. Spent nuclear fuels project characterization data quality objectives strategy

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Thornton, T.A.; Redus, K.S.

    1994-12-01

    A strategy is presented for implementation of the Data Quality Objectives (DQO) process to the Spent Nuclear Fuels Project (SNFP) characterization activities. Westinghouse Hanford Company (WHC) and the Pacific Northwest Laboratory (PNL) are teaming in the characterization of the SNF on the Hanford Site and are committed to the DQO process outlined in this strategy. The SNFP characterization activities will collect and evaluate the required data to support project initiatives and decisions related to interim safe storage and the path forward for disposal. The DQO process is the basis for the activity specific SNF characterization requirements, termed the SNF Characterization DQO for that specific activity, which will be issued by the WHC or PNL organization responsible for the specific activity. The Characterization Plan prepared by PNL defines safety, remediation, and disposal issues. The ongoing Defense Nuclear Facility Safety Board (DNFSB) requirement and plans and the fuel storage and disposition options studies provide the need and direction for the activity specific DQO process. The hierarchy of characterization and DQO related documentation requirements is presented in this strategy. The management of the DQO process and the means of documenting the DQO process are described as well as the tailoring of the DQO process to the specific need of the SNFP characterization activities. This strategy will assure stakeholder and project management that the proper data was collected and evaluated to support programmatic decisions

  15. Soil characterization methods for unsaturated low-level waste sites

    International Nuclear Information System (INIS)

    Wierenga, P.J.; Young, M.H.; Hills, R.G.

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies

  16. Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches

    Science.gov (United States)

    Communities of soil nematodes impact ecosystem functions, including plant growth, decomposition, and nutrient cycling, all of which are vital processes in agriculture. We used complementary morphological and DNA metabarcoding analyses to characterize soil nematode communities in three cropping syste...

  17. SMART 3D SUBSURFACE CONTAMINANT CHARACTERIZATION AT THE BGRR DEC OMMISSIONING PROJECT

    International Nuclear Information System (INIS)

    HEISER, J.; KALB, P.; SULLIVAN, T.; MILIAN, L.

    2002-01-01

    The Brookhaven Graphite Research Reactor is currently on an accelerated decommissioning schedule with a completion date projected for 2005. The accelerated schedule combines characterization with removal actions for the various systems and structures. A major project issue involves characterization of the soils beneath contaminated Below Grade Ducts (BGD), the main air ducts connecting the exhaust plenums with the Fan House. The air plenums experienced water intrusion during BGRR operations and after shutdown. The water intrusions were attributed to rainwater leaks into degraded parts of the system, and to internal cooling water system leaks. If the characterization could provide enough information to show that soil contamination surrounding the BGD is either below cleanup guidelines or is very localized and can be ''surgically removed'' at a reasonable cost, the ducts may be decontaminated and left in place. This will provide significant savings compared to breaking up the 170-ft. long concrete duct, shipping the projected 9,000 m 3 of waste off-site and disposing of it in an approved site

  18. Preliminary identification of problem soils for infrastructure projects

    CSIR Research Space (South Africa)

    Paige-Green, P

    2008-11-01

    Full Text Available soils are those within the top 1.0m or 1.5m of the soil profile, a mechanism for evaluating these materials without preliminary filed work and testing would be invaluable. Since 1971, the Department of Agriculture has systematically mapped the soils...

  19. Bioremediation of petroleum contaminated soil using vegetation--A technology transfer project

    International Nuclear Information System (INIS)

    Banks, M.K.; Schwab, A.P.; Govindaraju, R.S.; Chen, Z.

    1994-01-01

    A common environmental problem associated with the pumping and refining of crude oil is the disposal of petroleum sludge. Unfortunately, the biodegradation fate of more recalcitrant and potentially toxic contaminants, such as the polynuclear aromatic hydrocarbons (PNAs), is rapid at first but declines quickly. Biodegradation of these compounds is limited by their strong adsorption potential and low solubility. Recent research has suggested that vegetation may play an important role in the biodegradation of toxic organic chemicals, such as PNAs, in soil. The establishment of vegetation on hazardous waste sites may be an economic, effective, low maintenance approach to waste remediation and stabilization. Completed greenhouse studies have indicated that vegetative remediation is a feasible method for clean-up of surface soil contaminated with petroleum products. However, a field demonstration is needed to exhibit this new technology to the industrial community. In this project, several petroleum contaminated field sites will be chosen in collaboration with three industrial partners. These sites will be thoroughly characterized for chemical properties, physical properties, and initial PNA concentrations. A variety of plant species will be established on the sites, including warm and cool season grasses and alfalfa. Soil analyses for the target compounds over time will allow them to assess the efficiency and applicability of this remediation method

  20. Fractionation and characterization of soil organic carbon during transition to organic farming

    Science.gov (United States)

    Abdelrahman, H.; Olk, D.; Cocozza, C.; Miano, T.

    2012-04-01

    The transition from conventional to organic farming is the most difficult period faced by organic growers as it could be characterized by unstable conditions, such as nutrient availability, production reductions, mineralization extents. As soil organic matter (SOM), specifically soil organic carbon (SOC), is known to play important roles in maintenance and improvement of many soil properties, it is important to define its changes during the transition period. Total SOC might not be the suitable tool to track the changes in organically based soil fertility within a 3- to 5-yr transition period. Labile fractions that are important for nutrient cycling and supply are likely to be controlled by management to a much greater extent than is total SOM. Two field experiments, in south of Italy, were established in 2009 to study the changes in SOC during transition to organic farming. Experiments included a cereal/leguminous rotation with triplicates treatments of permitted amendments (compost and fertilizers). Soils were sampled at the beginning of the project, and after each crop harvest in 2010 and 2011. A sequential fractionation procedure was used to separate different SOC-fractions: light fraction (LF), two size classes of particulate organic matter (POM), mobile humic acid (MHA) and Ca++ bound humic acid (CaHA). Isolated fractions were quantified and analyzed for their content of C, N, carbohydrates and amino compounds fingerprints. The obtained results showed that compost application contributed to significantly higher quantities of LF, POM and MHA than did fertilizers application. Carbohydrates content decreased in LF while increased noticeably in POM and slightly in MHA fractions, which indicates that decomposing materials are converted, within the time span of humification, from young fractions into more mature fractions. Amino compounds were found to provide up to 40% of total soil N with a major contribution of the humified fractions, MHA and CaHA. The utilized

  1. Characterizing soil erosion potential using electrical resistivity imaging : final report.

    Science.gov (United States)

    2017-04-01

    The erosion rate, or erodibility, of soil depends on many soil characteristics including: plasticity, : water content, grain size, percent clay, compaction, and shear strength. Many of these characteristics also : influence soil in situ bulk electric...

  2. Characterizing soil erosion potential using electrical resistivity imaging : technical summary.

    Science.gov (United States)

    2017-04-01

    The erosion rate, or erodibility, of soil depends on many soil characteristics : including: plasticity, water content, grain size, percent clay, compaction, and shear : strength. Many of these characteristics also influence soil in situ bulk electric...

  3. Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring, SoilCAM project highlights

    Science.gov (United States)

    French, H. K.; Van Der Zee, S. E.; Wehrer, M.; Godio, A.; Pedersen, L. B.; Tsocano, G.

    2013-12-01

    The SoilCAM project (2008- 2012, EU-FP7-212663) aimed at improving methods for monitoring subsurace contaminant distribution and biodegradation. Two test sites were chosen, Oslo airport Gardermoen, Norway where de-icing agents infiltrate the soil during snowmelt and the Trecate site in Italy where an inland crude oil spill occurred in 1994. A number of geophysical investigation techniques were combined with soil and water sampling techniques. Data obtained from time-lapse measurements were further analysed by numerical modelling of flow and transport at different scales in order to characterise transport processes in the unsaturated and saturated zones. Laboratory experiments provided physical and biogeochemical data for model parameterisation and to select remediation methods. The geophysical techniques were used to map geological heterogeneities and to conduct time-lapse measurements of processes in the unsaturated zone. Both cross borehole and surface electrodes were used for electrical resistivity and induced polarisation surveys. Results showed clear indications of areas highly affected by de-icing chemicals along the runway at Oslo airport. The time lapse measurements along the runway at the airport showed infiltration patterns during snowmelt and were used to validate 2D unsaturated flow and transport simulations using SUTRA. The simulations illustrate the effect of layering geological structures and membranes, buried parallel to the runway, on the flow pattern. Complex interaction between bio-geo-chemical processes in a 1D vertical profile along the runway were described with the ORCHESTRA model. Smaller scale field site measurements revealed increase of iron and manganese during degradation of de-icing chemicals. At the Trecate site a combination of georadar, electrical resistivity and radio magneto telluric provided a broad outline of the geology down to 50 m. Anomalies in the Induced polarisation and electrical resistivity data from the cross borehole

  4. Characterization and remediation of highly radioactive contaminated soil at Hanford

    International Nuclear Information System (INIS)

    Buckmaster, M.A.; Erickson, J.K.

    1993-09-01

    The Hanford Site, Richland, Washington, contains over 1,500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy (DOE) has initiated a remedial investigation/feasibility study (RI/FS) at the 200-BP-1 operable unit. The 200-BP-1 RI/FS is the first Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) investigation on the Hanford Site that involves highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste sites within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling, chemical and physical analysis of samples, and development of a conceptual vadose zone model. These data were then used. to develop remedial alternatives during the FS evaluation. The preferred alternative resulting from the RI/FS process for the 200-BP-1 operable unit is to construct a surface isolation barrier. The multi-layered earthen barrier will be designed to prevent migration of contaminants resulting from water infiltration, biointrusion, and wind and water erosion

  5. Tank waste remediation system characterization project quality policies

    International Nuclear Information System (INIS)

    Board, D.C.

    1997-01-01

    This quality plan describes the system used by Characterization Project management to achieve quality. This plan is comprised of eleven quality policies which, when taken together, form a management system deployed to achieve quality. This quality management system is based on the customer's quality requirements known as the 'RULE', 10 CFR 830.120, Quality Assurance

  6. Properties of Subsurface Soil Cores from Four Geologic Provinces Surrounding Mars Desert Research Station, Utah: Characterizing Analog Martian Soil in a Human Exploration Scenario

    Science.gov (United States)

    Stoker, C. R.; Clarke, J. D. A.; Direito, S.; Foing, B.

    2011-01-01

    The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores

  7. Characterization of Soil Moisture Level for Rice and Maize Crops using GSM Shield and Arduino Microcontroller

    Science.gov (United States)

    Gines, G. A.; Bea, J. G.; Palaoag, T. D.

    2018-03-01

    Soil serves a medium for plants growth. One factor that affects soil moisture is drought. Drought has been a major cause of agricultural disaster. Agricultural drought is said to occur when soil moisture is insufficient to meet crop water requirements, resulting in yield losses. In this research, it aimed to characterize soil moisture level for Rice and Maize Crops using Arduino and applying fuzzy logic. System architecture for soil moisture sensor and water pump were the basis in developing the equipment. The data gathered was characterized by applying fuzzy logic. Based on the results, applying fuzzy logic in validating the characterization of soil moisture level for Rice and Maize crops is accurate as attested by the experts. This will help the farmers in monitoring the soil moisture level of the Rice and Maize crops.

  8. CHARACTERIZATION AND CLASSIFICATION OF FLOODPLAIN SOILS IN THE PORTO ALEGRE METROPOLITAN REGION, RS, BRAZIL

    Directory of Open Access Journals (Sweden)

    Luís de França da Silva Neto

    2015-10-01

    Full Text Available ABSTRACTIn the Porto Alegre metropolitan region (PAMR there are a significant proportion of floodplain soils, mainly Planosols and Gleysols, in relation to upland soils. This study aimed to evaluate the morphological, chemical and physical characteristics, and to classify floodplain soils in the PAMR. Six soil profiles were evaluated under different sedimentary lithologies and drainage classes, and samples were collected for chemical and physical analyzes. Two orders of mineral soils (Planosols and Gleysols and one order of organic soil (Organosols were identified. The soils were moderately deep to deep and stratified. In mineral soils hue ranged between 7.5YR and 2.5Y, with the occurrence of Bg, Btg or Cg gley horizons, while in organic soil the colors were neutral. Sand and silt were the predominant particle sizes according to the origin sedimentary deposits. The organic carbon content was negatively related to soil density and positively related to soil specific surface area and with soil cation exchange capacity. Soil chemical characterization showed expressive variation in bases, aluminum and sodium saturation. Ki index and Fe(CBD/Fe(H2SO4 ratio indicated a low soil weathering degree. The different sedimentary lithologies and the soil hydromorphism degree were the main factors related to differences in morphological, physical and chemical characteristics of soils in the PAMR.

  9. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  10. Some aspects concerning the characterization of iron oxides and hydroxides in soils and clays

    International Nuclear Information System (INIS)

    Vandenberghe, R.E.; Grave, E. de; Landuydt, C.; Bowen, L.H.

    1990-01-01

    A review of the systematic Moessbauer studies on the most encountered iron oxides and hydroxides is given in which the qualitative and quantitative aspects, helpful in the characterization of natural samples, are emphasized. The present possibilities of Moessbauer spectroscopy in soil characterization are further illustrated from some examples of natural soils. (orig.)

  11. Isolation and characterization of oxalotrophic bacteria from tropical soils.

    Science.gov (United States)

    Bravo, Daniel; Braissant, Olivier; Cailleau, Guillaume; Verrecchia, Eric; Junier, Pilar

    2015-01-01

    The oxalate-carbonate pathway (OCP) is a biogeochemical set of reactions that involves the conversion of atmospheric CO2 fixed by plants into biomass and, after the biological recycling of calcium oxalate by fungi and bacteria, into calcium carbonate in terrestrial environments. Oxalotrophic bacteria are a key element of this process because of their ability to oxidize calcium oxalate. However, the diversity and alternative carbon sources of oxalotrophs participating to this pathway are unknown. Therefore, the aim of this study was to characterize oxalotrophic bacteria in tropical OCP systems from Bolivia, India, and Cameroon. Ninety-five oxalotrophic strains were isolated and identified by sequencing of the 16S rRNA gene. Four genera corresponded to newly reported oxalotrophs (Afipia, Polaromonas, Humihabitans, and Psychrobacillus). Ten strains were selected to perform a more detailed characterization. Kinetic curves and microcalorimetry analyses showed that Variovorax soli C18 has the highest oxalate consumption rate with 0.240 µM h(-1). Moreover, Streptomyces achromogenes A9 displays the highest metabolic plasticity. This study highlights the phylogenetic and physiological diversity of oxalotrophic bacteria in tropical soils under the influence of the oxalate-carbonate pathway.

  12. Enhanced Cover Assessment Project:Soil Manipulation and Revegetation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W. Joseph [Navarro Research and Engineering, Inc.; Albright, Dr. Bill [Desert Research Inst. (DRI), Reno, NV (United States); Benson, Dr. Craig [University of Wisconsin-Madison

    2014-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating methods to enhance natural changes that are essentially converting conventional disposal cell covers for uranium mill tailings into water balance covers. Conventional covers rely on a layer of compacted clayey soil to limit exhalation of radon gas and percolation of rainwater. Water balance covers rely on a less compacted soil “sponge” to store rainwater, and on soil evaporation and plant transpiration (evapotranspiration) to remove stored water and thereby limit percolation. Over time, natural soil-forming and ecological processes are changing conventional covers by increasing hydraulic conductivity, loosening compaction, and increasing evapotranspiration. The rock armor on conventional covers creates a favorable habitat for vegetation by slowing soil evaporation, increasing soil water storage, and trapping dust and organic matter, thereby providing the water and nutrients needed for plant germination, survival, and sustainable transpiration. Goals and Objectives Our overall goal is to determine if allowing or enhancing these natural changes could improve cover performance and reduce maintenance costs over the long term. This test pad study focuses on cover soil hydrology and ecology. Companion studies are evaluating effects of natural and enhanced changes in covers on radon attenuation, erosion, and biointrusion. We constructed a test cover at the Grand Junction disposal site to evaluate soil manipulation and revegetation methods. The engineering design, construction, and properties of the test cover match the upper three layers of the nearby disposal cell cover: a 1-foot armoring of rock riprap, a 6-inch bedding layer of coarse sand and gravel, and a 2-foot protection layer of compacted fine soil. The test cover does not have a radon barrier—cover enhancement tests leave the radon barrier intact. We tested furrowing and ripping as means for creating depressions parallel to the slope

  13. Scoping key soil issues for the Suncor Voyageur Oil Sands Project EIA

    Energy Technology Data Exchange (ETDEWEB)

    Doram, D.; Gulley, J. [Golder Associates, Calgary, AB (Canada); Fordham, C. [Suncor Energy, Calgary, AB (Canada)

    2002-07-01

    An issue scoping process to focus the soil impact assessment undertaken in conjunction with Suncor Energy's Voyageur Project near Fort McMurray, Alberta, is described. Potential impacts to soils considered include disturbances from mining and in-situ developments, re-constructing soils to meet equivalent capability and predicting how soils will respond to acid deposition. The assessment also provides an opportunity to evaluate unique soil mitigation strategies at both the local and regional levels. New regulatory and soil reclamation challenges include developing soil salvage criteria for restoring the biodiversity which existed prior to the disturbance necessitated by the mining and in-situ operations and creating a suitable habitat for the caribou in the Firebag lease.

  14. Quality assurance program plan for SNF characterization support project

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the Spent Nuclear Fuel Characterization Support Project. This QAPP has been developed specifically for the Spent Nuclear Fuel Characterization Support Project, per Letter of Instruction (LOI) from Duke Engineering and Services Company, letter No. DESH-9655870, dated Nov. 22, 1996. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP) and LOI. These activities include installation of sectioning equipment and furnace, surface and subsurface examinations, sectioning for metallography, and element drying and conditioning testing, as well as project related operations within the 327 facility as it relates to the specific activities of this project. General facility activities are covered in other appropriate QA-PPS. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping,1261 and HSRCM-1, Hanford Site Radiological Control Manual. The 327 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a Babcock and Wilcox Hanford Company (BVMC) managed facility. During this transition process existing procedures and documents will be utilized until replaced by BVMC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to IO CFR 830.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be utilized in support of this project and the subject organizations are

  15. Plume Mitigation: Soil Erosion and Lunar Prospecting Sensor Project

    Science.gov (United States)

    Metzger, Philip T.

    2014-01-01

    Demonstrate feasibility of the simplest, lowest-mass method of measuring density of a cloud of lunar soil ejected by rocket exhaust, using new math techniques with a small baseline laser/camera system. Focus is on exploring the erosion process that occurs when the exhaust plume of a lunar rocket impacts the regolith. Also, predicting the behavior of the lunar soil that would be blasted from a lunar landing/launch site shall assist in better design and protection of any future lunar settlement from scouring of structures and equipment. NASA is gathering experimental data to improve soil erosion models and understand how lunar particles enter the plume flow.

  16. Technical support for the Soiltech soil washing project. Interim report

    International Nuclear Information System (INIS)

    Tomascik, T.S.

    1994-08-01

    The organic removal ability of a surfactant solution was studied for an ''as-received'' soil sample. A 15% surfactant solution was added to an equal portion of the soil sample, by volume, and blended. The mixture was then stirred with a magnetic stirrer. A black precipitate resulted, which was then periodically skimmed off the top of the solution. This was done at both room temperature and at 150 degrees F. The soil sample was examined before and after processing with optical microscopy, environmental scanning electron microscopy (ESEM) , energy dispersive x-ray microanalysis (EDS), and analytical chemical analysis (total oil and grease and petroleum hydrocarbons)

  17. WIRE project- Soil water repellence in biodiverse semi arid environments: new insights and implications for ecological restoration

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Jiménez-Morillo, Nicasio T.; Jordan, Antonio; Zavala, Lorena M.; Stevens, Jason; González-Pérez, Jose Antonio

    2017-04-01

    Background Soil water repellency (SWR) can have a critical effect on the restoration of disturbed ecosystems causing poor plant establishment and promoting erosion processes. Although SWR has been reported in most continents of the world for different soil types, climate conditions and land uses, there are still many research gaps in the knowledge of its causes and controlling factors (Doerr et al.,2000; Jordan et al., 2013), particularly in Mediterranean arid semi arid environments which are largely affected by this phenomenon. The WIRE project aims to investigate SWR in soils under different vegetation types of dominant biodiverse ecosystems of Western Australia (WA), e.g. hummock grasslands and Banksia woodlands, as well as characterizing organic compounds that induce hydrophobicity in these soils. Banksia woodlands (BW) are of particular interest in this project. These are iconic ecosystems of WA composed by an overstorey dominated by Proteaceae that are threatened by sand mining activities and urban expansion. Conservation and restoration of these woodlands are critical but despite considerable efforts to restore these areas, the success of current rehabilitation programs is poor due to the high sensitivity of the ecosystem to drought stress and the disruption of water dynamics in mature BW soils that result in low seedling survival rates (5-30%). The main objectives of this collaborative research are: i) to identify SWR intensity and severity under different vegetation types and evaluate controlling factors in both hummock grasslands and BW (ii) to characterize hydrophobic compounds in soils using analytical pyrolysis techniques and iii) to investigate the impact of SWR on water economy in relation with soil functioning and plant strategies for water uptake in pristine BW. Methods In a series of field trials and experimental studies, we measured SWR of soil samples under lab conditions in oven-dry samples (48 h, 105 °C) that were previously collected under

  18. characterization of soil and sediments parameters of oguta – izombe

    African Journals Online (AJOL)

    Prof

    where the clayey lateritic soil with iron oxide cementation of soil particles provides an appreciable degree of ... need for groundwater protection against pollution. Geological ..... consists of clayey laterite with iron oxide coating and cementation ...

  19. Chemical characterization of local and stratospheric plutonium in Ohio soils

    International Nuclear Information System (INIS)

    Muller, R.N.

    1978-01-01

    The chemical nature of plutonium derived from stratospheric fallout and industrial sources was studied in three agricultural soils. The majority of the soil plutonium was associated with a reductant-soluble, hydrous oxide phase that, under most conditions of terrestrial ecosystems, remains essentially immobile. The proportion of plutonium associated with organic matter (0.1N NaOH-extractable) varied among soils, and increased with decreasing particle size in the same soil. In a soil containing 238 Pu from a local fabrication facility and 239 , 240 Pu from stratospheric fallout, isotopic ratios between the NaOH-extractable and residual phases were essentially constant, indicating that, in these soils, plutonium from both sources behaves similarly. The distribution of soil plutonium with particle size appears to be most directly related to the mass of the soil particle

  20. Analysis of soil samples from OMRE decommissioning project

    International Nuclear Information System (INIS)

    Simpson, O.D.; Chapin, J.A.; Hine, R.E.; Mandler, J.W.; Orme, M.P.; Soli, G.A.

    1979-01-01

    In order to establish that the present Organic Moderated Reactor Experiment (OMRE) site does not exceed the criteria for radioactive contamination, samples obtained from the remainder of the facility that was not removed such as soil, concrete pads, various structural materials, and the leach pond area were analyzed to determine their radioactive content. The results of the analyses performed on soil samples are presented. Results of this study indicate that the activity at the OMRE decommissioned area is confined to localized areas (i.e., the leach pond area and reactor area). Comparisons of radionuclide concentrations measured in soil taken from the lip of the leach pond with concentrations in soil obtained outside the Idaho National Engineering Laboratory (INEL) site boundaries indicate that the concentration in the soil at the edge of the leach pond is at background levels. The vertical augering technique was determined to be the best approach for obtaining shallow soil samples at the INEL. Selection of this technique was based on ease of operation and analytical results. Less area is disturbed per sample than with the horizontal trenching and coring techniques. The radionuclide analysis of the samples shows the existence of a few regions in the reactor and leach pond areas that were still above INEL release criteria. These regions have been or are being further decontaminated

  1. Characterization, desorption, and mining of phosphorus in noncalcareous sandy soils

    NARCIS (Netherlands)

    Koopmans, G.F.

    2004-01-01

    In areas with intensive livestock farming, soils have been enriched with phosphorus (P), following heavy applications of animal manure. These soils are a risk for nearby surface waters, as the leaching of P from these soils contributes to eutrophication of these surface waters. This study was set up

  2. Geochemical indicators and characterization of soil water repellence in three dominant ecosystems of Western Australia

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Jiménez-Morillo, Nicasio T.; Jordan, Antonio; Zavala, Lorena M.; Stevens, Jason; González-Pérez, Jose Antonio

    2016-04-01

    H and electrical conductivity (EC) were determined in deionised water (1:2.5 and 1:5 w/v, respectively). The structural characterization of soil organic matter (SOM) was analysed by direct analytical pyrolysis (Py-GC/MS) performed at 500 °C (González-Vila et al., 2009). Only chromatogram peaks with an area higher than 0.2 % were identified and used to obtain the relative abundance of main chemical families in each vegetation cover. Results Our results show that soil water repellence is strongly correlated to microbial activity, pH and electrical conductivity. After Py-GC/MS analysis, soil organic matter in the Banksia woodland and the coastal dune showed a high heterogeneity. In the Banksia woodland two different patterns were observed. Samples under Banksia spp. showed a SOM with clear signs of altereation (humified) that included a high contribution of stable families like unspecific aromatic compounds and alkane/alkene pairs whereas under Eucalyptus spp. showed a less altered SOM with a high relative contribution from lignocellulose (lignin and carbohydrates), together with a low relative content of recalcitrant families. However in the soil samples from coastal dunes a very similar SOM chemical composition was found in all cases. The dominant family was unspecific aromatic compounds (>30%), followed by alkane/alkene pairs and a high relative contribution from N bearing peptide compounds. This, together with a low relative amount of carbohydrate and lignin derived (methoxyphenols) compounds points to a SOM that undergoes great alteration processes, possible because of high turn-over rates. Very low contents of SOM were found in the Pilbara system, under Py-GC/MS detection levels, and therefore it was not possible to establish its chemical composition. A principal components analysis (PCA) axes based on the relative abundances of chemical families of compounds released after SOM pyrolysis (70.9 % of total variation explained in the two first axes) indicate that

  3. THE BC CRIBS & TRENCHES GEOPHYSICAL CHARACTERIZATION PROJECT ONE STEP FORWARD IN HANFORDS CLEANUP PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    BENECKE, MN.W.

    2006-02-22

    A geophysical characterization project was conducted at the BC Cribs and Trenches Area, located south of 200 East at the Hanford Site. The area consists of 26 waste disposal trenches and cribs, which received approximately 30 million gallons of liquid waste from the uranium recovery process and the ferrocyanide processes associated with wastes generated by reprocessing nuclear fuel. Waste discharges to BC Cribs contributed perhaps the largest liquid fraction of contaminants to the ground in the 200 Areas. The site also includes possibly the largest inventory of Tc-99 ever disposed to the soil at Hanford with an estimated quantity of 400 Ci. Other waste constituents included high volumes of nitrate and U-238. The geophysical characterization at the 50 acre site primarily included high resolution resistivity (HRR). The resistivity technique is a non-invasive method by which electrical resistivity data are collected along linear transects, and data are presented as continuous profiles of subsurface electrical properties. The transects ranged in size from about 400-700 meters and provided information down to depths of 60 meters. The site was characterized by a network of 51 HRR lines with a total of approximately 19.7 line kilometers of data collected parallel and perpendicular to the trenches and cribs. The data were compiled to form a three-dimensional representation of low resistivity values. Low resistivity, or high conductivity, is indicative of high ionic strength soil and porewater resulting from the migration of nitrate and other inorganic constituents through the vadose zone. High spatial density soil data from a single borehole, that included coincident nitrate concentrations, electrical conductivity, and Tc-99, were used to transform the electrical resistivity data into a nitrate plume. The plume was shown to extend laterally beyond the original boundaries of the waste site and, in one area, to depths that exceeded the characterization strategy. It is

  4. THE BC CRIBS and TRENCHES GEOPHYSICAL CHARACTERIZATION PROJECT: ONE STEP FORWARD IN HANFORD'S CLEANUP PROCESS

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2005-01-01

    A geophysical characterization project was conducted at the BC Cribs and Trenches Area, located south of 200 East at the Hanford Site. The area consists of 26 waste disposal trenches and cribs, which received approximately 30 million gallons of liquid waste from the uranium recovery process and the ferrocyanide processes associated with wastes generated by reprocessing nuclear fuel. Waste discharges to BC Cribs contributed perhaps the largest liquid fraction of contaminants to the ground in the 200 Areas. The site also includes possibly the largest inventory of Tc-99 ever disposed to the soil at Hanford with an estimated quantity of 400 Ci. Other waste constituents included high volumes of nitrate and U-238. The geophysical characterization at the 50-acre site primarily included high resolution resistivity (HRR). The resistivity technique is a non-invasive method by which electrical resistivity data are collected along linear transects, and data are presented as continuous profiles of subsurface electrical properties. The transects ranged in size from about 400-700 meters and provided information down to depths of 60 meters. The site was characterized by a network of 51 HRR lines with a total of approximately 19.7 line kilometers of data collected parallel and perpendicular to the trenches and cribs. The data were compiled to form a three-dimensional representation of low resistivity values. Low resistivity, or high conductivity, is indicative of high ionic strength soil and porewater resulting from the migration of nitrate and other inorganic constituents through the vadose zone. High spatial density soil data from a single borehole, that included coincident nitrate concentrations, electrical conductivity. and Tc-99, were used to transform the electrical resistivity data into a nitrate plume. The plume was shown to extend laterally beyond the original boundaries of the waste site and, in one area, to depths that exceeded the characterization strategy

  5. Risk assessment framework on time impact: Infrastructure projects in soft soil during construction stage

    Science.gov (United States)

    Low, W. W.; Wong, K. S.; Lee, J. L.

    2018-04-01

    With the growth of economy and population, there is an increase in infrastructure construction projects. As such, it is unavoidable to have construction projects on soft soil. Without proper risk management plan, construction projects are vulnerable to different types of risks which will have negative impact on project’s time, cost and quality. Literature review showed that little or none of the research is focused on the risk assessment on the infrastructure project in soft soil. Hence, the aim of this research is to propose a risk assessment framework in infrastructure projects in soft soil during the construction stage. This research was focused on the impact of risks on project time and internal risk factors. The research method was Analytical Hierarchy Process and the sample population was experienced industry experts who have experience in infrastructure projects. Analysis was completed and result showed that for internal factors, the five most significant risks on time element are lack of special equipment, potential contractual disputes and claims, shortage of skilled workers, delay/lack of materials supply, and insolvency of contractor/sub-contractor. Results indicated that resources risk factor play a critical role on project time frame in infrastructure projects in soft soil during the construction stage.

  6. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, M. M.; Orth, R.; Cheruy, F.; Hagemann, S.; Lorenz, R.; Hurk, B. J. J. M.; Seneviratne, S. I.

    2017-02-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate the role of soil moisture-temperature feedbacks for this response based on multimodel experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of the hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America. Soil moisture trends are more important for this response than short-term soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections.

  7. A global spectral library to characterize the world's soil

    DEFF Research Database (Denmark)

    A. Viscarra Rossel, Raphael; Behrens, T.; Ben Dor, E.

    2016-01-01

    to sustainably manage and preserve it for future generations. To this end, we developed and analyzed a global soil visible–near infrared (vis–NIR) spectral library. It is currently the largest and most diverse database of its kind. We show that the information encoded in the spectra can describe soil composition...... help to deal with the shortage of data on soil to better understand it and to meet the growing demand for information to assess andmonitor soil at scales ranging fromregional to global.New contributions to the library are encouraged so that this work and our collaboration might progress to develop......Soil provides ecosystemservices, supports human health and habitation, stores carbon and regulatesemissions of greenhouse gases. Unprecedented pressures on soil from degradation and urbanization are threatening agroecological balances and food security. It is important that we learn more about soil...

  8. Evaluation of measurement reproducibility using the standard-sites data, 1994 Fernald field characterization demonstration project

    International Nuclear Information System (INIS)

    Rautman, C.A.

    1996-02-01

    The US Department of Energy conducted the 1994 Fernald (Ohio) field characterization demonstration project to evaluate the performance of a group of both industry-standard and proposed alternative technologies in describing the nature and extent of uranium contamination in surficial soils. Detector stability and measurement reproducibility under actual operating conditions encountered in the field is critical to establishing the credibility of the proposed alternative characterization methods. Comparability of measured uranium activities to those reported by conventional, US Environmental Protection Agency (EPA)-certified laboratory methods is also required. The eleven (11) technologies demonstrated included (1) EPA-standard soil sampling and laboratory mass-spectroscopy analyses, and currently-accepted field-screening techniques using (2) sodium-iodide scintillometers, (3) FIDLER low-energy scintillometers, and (4) a field-portable x-ray fluorescence spectrometer. Proposed advanced characterization techniques included (5) alpha-track detectors, (6) a high-energy beta scintillometer, (7) electret ionization chambers, (8) and (9) a high-resolution gamma-ray spectrometer in two different configurations, (10) a field-adapted laser ablation-inductively coupled plasma-atomic emission spectroscopy (ICP-AES) technique, and (11) a long-range alpha detector. Measurement reproducibility and the accuracy of each method were tested by acquiring numerous replicate measurements of total uranium activity at each of two ''standard sites'' located within the main field demonstration area. Meteorological variables including temperature, relative humidity. and 24-hour rainfall quantities were also recorded in conjunction with the standard-sites measurements

  9. Environmental projects. Volume 14: Removal of contaminated soil and debris

    Science.gov (United States)

    Kushner, Len

    1992-01-01

    Numerous diverse activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of six parabolic dish antennas. Some of these activities can result in possible spills or leakages of hazardous materials and wastes stored both above ground in steel drums and below ground in underground storage tanks (UST's). These possible leaks or spills, along with the past practice of burial of solid debris and waste in trenches and pits, could cause local subsurface contamination of the soil. In 1987, the Jet Propulsion Laboratory (JPL), retained Engineering-Science, Inc. (E-S), Pasadena, California, to identify the specific local areas within the GDSCC with subsurface soil contamination. The E-S study determined that some of the soils at the Apollo Site and the Mars Site were contaminated with hydrocarbons, while soil at a nonhazardous waste dumpsite at the Mojave Base site was contaminated with copper. This volume is a JPL-expanded version of the PE209 E-S report, and it also reports that all subsurface contaminated soils at the GDSCC were excavated, removed, and disposed of in an environmentally acceptable way, and the excavations were backfilled and covered in accordance with accepted Federal, State, and local environmental rules and regulations.

  10. Hydraulic characterization of a sealed loamy soil in a Mediterranean vineyard

    Science.gov (United States)

    Alagna, Vincenzo; Di Prima, Simone; Bagarello, Vincenzo; Guaitoli, Fabio; Iovino, Massimo; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    soil hydraulic characterization implying alteration at the soil surface, such as rainfall simulation experiments or the beerkan derived procedure discussed above, should contribute to a better understanding of sealing severity affecting water infiltration on bare soils. Ring insertion for the infiltration run does not seem to alter the sealed layer but more investigations are required with reference to this point. Acknowledgements This study was supported by grants from the Research Project CISV under grant n˚ 2014COMM-0363 CUP 872114000570002. References Alagna, V., Bagarello, V., Di Prima, S., Giordano, G. and Iovino, M.: A simple field method to measure the hydrodynamic properties of soil surface crust, Journal of Agricultural Engineering, 44(25), 74-79, doi:10.4081/jae.2013.(s1):e14, 2013. Bagarello, V., Di Prima, S., Giordano, G. and Iovino, M.: A test of the Beerkan Estimation of Soil Transfer parameters (BEST) procedure, Geoderma, 221-222, 20-27, doi:10.1016/j.geoderma.2014.01.017, 2014a. Bagarello, V., Castellini, M., Di Prima, S. and Iovino, M.: Soil hydraulic properties determined by infiltration experiments and different heights of water pouring, Geoderma, 213, 492-501, doi:10.1016/j.geoderma.2013.08.032, 2014b. Decagon: Minidisk Infiltrometer User's Manual, Decagon Devices, Inc., Pullman, USA, 24, 2014. Di Prima, S.: Automated single ring infiltrometer with a low-cost microcontroller circuit, Computers and Electronics in Agriculture, 118, 390-395, doi:10.1016/j.compag.2015.09.022, 2015. Di Prima, S., Bagarello, V., Angulo-Jaramillo, R., Bautista, I., Burguet, M., Cerdà, A., Iovino, M., Lassabatère, L. and Prosdocimi, M.: Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil, Submitted to Hydrological Processes, 2016a. Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M. and Angulo-Jaramillo, R.: Testing a new automated single ring infiltrometer for Beerkan infiltration

  11. TWRS privatization support project waste characterization database development

    International Nuclear Information System (INIS)

    1995-11-01

    Pacific Northwest National Laboratory requested support from ICF Kaiser Hanford Company in assembling radionuclide and chemical analyte sample data and inventory estimates for fourteen Hanford underground storage tanks: 241-AN-102, -104, -105, -106, and -107, 241-AP-102, -104, and -105, 241-AW-101, -103, and -105, 241 AZ-101 and -102; and 241-C-109. Sample data were assembled for sixteen radionuclides and thirty-five chemical analytes. The characterization data were provided to Pacific Northwest National Laboratory in support of the Tank Waste Remediation Services Privatization Support Project. The purpose of this report is to present the results and document the methodology used in preparing the waste characterization information data set to support the Tank Waste Remediation Services Privatization Support Project. This report describes the methodology used in assembling the waste characterization information and how that information was validated by a panel of independent technical reviewers. Also, contained in this report are the various data sets created: the master data set, a subset, and an unreviewed data set. The master data set contains waste composition information for Tanks 241-AN-102 and -107, 241-AP-102 and -105, 241-AW-101; and 241-AZ-101 and -102. The subset contains only the validated analytical sample data from the master data set. The unreviewed data set contains all collected but unreviewed sample data for Tanks 241-AN-104, -105, and -106; 241-AP-104; 241-AW-103 and-105; and 241-C-109. The methodology used to review the waste characterization information was found to be an accurate, useful way to separate the invalid or questionable data from the more reliable data. In the future, this methodology should be considered when validating waste characterization information

  12. The Effect of Soil Education Project on Pre-School Children

    Science.gov (United States)

    Gulay, Hulya; Yilmaz, Sevket; Gullac, Esin Turan; Onder, Alev

    2010-01-01

    The objective of this study is to evaluate the efficiency of the first two group applications of the project named "We are Learning about the Soil with Tipitop and His Friends" within the scope of the project group activities of The Scientific and Technological Research Council of Turkey (TUBITAK) "Schools of Nature and…

  13. Standard characterization of phosphate rock samples from the FAO/IAEA phosphate project

    International Nuclear Information System (INIS)

    Binh, Truong; Zapata, F.

    2002-01-01

    Phosphate rocks (PR) are phosphate-bearing minerals that vary widely in their inherent characteristics and consequently their agronomic potential. In the framework of a FAO/IAEA networked research project, the evaluation of the agronomic effectiveness of natural and modified PR products under a variety of soil climate and crop management conditions was carried out. The characterization of phosphate rocks is the first and essential step in evaluating their suitability for direct application. If several PR sources are utilized, standardized methods should be used for comparison purposes to determine their agronomic potential. This paper describes the standard characterization of phosphate rock products utilized in the project, in particular the mineralogical and crystallographic analyses, physical analyses, chemical composition and solubility in conventional reagents. A total of 28 phosphate rock samples from 15 countries were collected and analyzed in specialized laboratories. The data on mineralogy, chemical composition and solubility in conventional reagents are closely interrelated. An arbitrary classification of the reactivity of the PR samples was made based on the solubility indices in conventional reagents. On another hand, the results of the crystallographic parameters, calculated indices of absolute solubility, specific surface and porosity reflect the variability of the physical state and the sample pre-conditioning treatment of the analyzed products. A proper characterization of phosphate rock samples should provide the maximum of basic information that can be obtained in a cost-effective manner in normal chemical laboratories. Based on the results of this characterization, the following determinations are recommended: a description of the sample, major elemental (total P, Ca, Mg) composition, solubility in conventional reagents (neutral ammonium citrate, citric and formic acid) and particle size analysis. The classification of PR samples for direct

  14. Visualization and characterization of users in a citizen science project

    Science.gov (United States)

    Morais, Alessandra M. M.; Raddick, Jordan; Coelho dos Santos, Rafael D.

    2013-05-01

    Recent technological advances allowed the creation and use of internet-based systems where many users can collaborate gathering and sharing information for specific or general purposes: social networks, e-commerce review systems, collaborative knowledge systems, etc. Since most of the data collected in these systems is user-generated, understanding of the motivations and general behavior of users is a very important issue. Of particular interest are citizen science projects, where users without scientific training are asked for collaboration labeling and classifying information (either automatically by giving away idle computer time or manually by actually seeing data and providing information about it). Understanding behavior of users of those types of data collection systems may help increase the involvement of the users, categorize users accordingly to different parameters, facilitate their collaboration with the systems, design better user interfaces, and allow better planning and deployment of similar projects and systems. Behavior of those users could be estimated through analysis of their collaboration track: registers of which user did what and when can be easily and unobtrusively collected in several different ways, the simplest being a log of activities. In this paper we present some results on the visualization and characterization of almost 150.000 users with more than 80.000.000 collaborations with a citizen science project - Galaxy Zoo I, which asked users to classify galaxies' images. Basic visualization techniques are not applicable due to the number of users, so techniques to characterize users' behavior based on feature extraction and clustering are used.

  15. TWRS privatization support project waste characterization database development. Volume 1

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1995-11-01

    Pacific Northwest National Laboratory requested support from ICF Kaiser Hanford Company in assembling radionuclide and chemical analyte sample data and inventory estimates for fourteen Hanford under-ground storage tanks: 241-AN-102, -104, -105, -106, and -107, 241-AP-102, -104, and -105; 241-AW-101, -103, and -105, 241-AZ-101 and-102; and 241-C-109. Sample data were assembled for sixteen radio nuclides and thirty five chemical analytes. The characterization data were provided to Pacific Northwest National Laboratory in support of the Tank Waste Remediation Services Privatization Support Project. The purpose of this report is to present the results and document the methodology used in preparing the waste characterization information data set to support the Tank Waste Remediation Services Privatization Support Project. This report describes the methodology used in assembling the waste characterization information and how that information was validated by a panel of independent technical reviewers. Also, contained in this report are the various data sets created., the master data set, a subset, and an unreviewed data set

  16. Characterization of field-measured soil-water properties

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Reichardt, K.; Wierenga, P.J.

    1983-01-01

    As part of a five-year co-ordinated research programme of the International Atomic Energy Agency, the Use of Radiation and Isotope Techniques in Studies of Soil-Water Regimes, soil physicists examined soil-water properties of one or two field sites in 11 different countries (Brazil, Belgium, Cyprus, Chile, Israel, Japan, Madagascar, Nigeria, Senegal, Syria and Thailand). The results indicate that the redistribution method yields values of soil-water properties that have a large degree of uncertainty, and that this uncertainty is not necessarily related to the kind of soil being analysed. Regardless of the fundamental cause of this uncertainty (experimental and computational errors versus natural soil variability), the conclusion is that further developments of field technology depend upon stochastic rather than deterministic concepts

  17. Characterization and remediation of soil prior to construction of an on-site disposal facility at Fernald

    International Nuclear Information System (INIS)

    Hunt, A.; Jones, G.; Nelson, K.

    1998-03-01

    During the production years at the Feed Materials Production Center (FMPC), the soil of the site and the surrounding areas was surficially impacted by airborne contamination. The volume of impacted soil is estimated at 2.2 million cubic yards. During site remediation, this contamination will be excavated, characterized, and disposed of. In 1986 the US Environmental Protection Agency (EPA) and the Department of Energy (DOE) entered into a Federal Facility Compliance Agreement (FFCA) covering environmental impacts associated with the FMPC. A site wide Remedial Investigation/Feasibility Study (RI/FS) was initiated pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act (CERCLA). The DOE has completed the RI/FS process and has received approval of the final Records of Decision. The name of the facility was changed to the Fernald Environmental Management Project (FEMP) to emphasize the change in mission to environmental restoration. Remedial actions which address similar scopes of work or types of contaminated media have been grouped into remedial projects for the purpose of managing the remediation of the FEMP. The Soil Characterization and Excavation Project (SCEP) will address the remediation of FEMP soils, certain waste units, at- and below-grade material, and will certify attainment of the final remedial limits (FRLs) for the FEMP. The FEMP will be using an on-site facility for low level radioactive waste disposal. The facility will be an above-ground engineered structure constructed of geological material. The area designated for construction of the base of the on-site disposal facility (OSDF) is referred to as the footprint. Contaminated soil within the footprint must be identified and remediated. Excavation of Phase 1, the first of seven remediation areas, is complete

  18. Celebrating the Smithsonian Soils Exhibit in the Classroom with the State/Representative Soil Project

    Science.gov (United States)

    Mikhailova, E. A.; Post, C. J.; Koppenheffer, Andrea; Asbill, John

    2009-01-01

    State/representative soil is one of many symbols (e.g., tree, flower, bird, etc.) adopted by citizens to be recognized as an important item to their state. We have developed a set of laboratory exercises, assignments, and exam questions utilizing the state/representative soil that gives college students an opportunity to practice interpretation of…

  19. Physicochemical and mineralogical characterization of uranium-contaminated soils from the Fernald Integrated Demonstration Site

    International Nuclear Information System (INIS)

    Elless, M.P.; Lee, S.Y.; Timpson, M.E.

    1994-01-01

    An integrated approach that utilizes various characterization technologies has been developed for the Uranium Soil Integrated Demonstration program. The Fernald Environmental Restoration Management Corporation site near Cincinnati, Ohio, was selected as the host facility for this demonstration. Characterization of background, untreated contaminated, and treated contaminated soils was performed to assess the contamination and the effect of treatment efforts to remove uranium from these soils. Carbonate minerals were present in the contaminated soils (added for erosion control) but were absent in the nearby background soils. Because of the importance of the carbonate anion to uranium solubility, the occurrence of carbonate minerals in these soils will be an important factor in the development of a successful remediation technology. Uranium partitioning data among several particle-size fractions indicate that conventional soil washing will be ineffective for remediation of these soils and that chemical extraction will be necessary to lower the uranium concentration to the target level (52 mg/kg). Carbonate-based (sodium carbonate/bicarbonate) and acid-based (sulfuric and citric acids) lixiviants were employed for the selective removal of uranium from these soils. Characterization results have identified uranium phosphate minerals as the predominant uranium mineral form in both the untreated and treated soils. The low solubility associated with phosphate minerals is primarily responsible for their occurrence in the posttreated soils. Artificial weathering of the treated soils caused by the treatments, particularly acid-based lixiviants, was documented by their detrimental effects on several physicochemical characteristics of these soils (e.g., soil pH, particle-size distribution, and mineralogy)

  20. Permafrost sub-grid heterogeneity of soil properties key for 3-D soil processes and future climate projections

    Directory of Open Access Journals (Sweden)

    Christian Beer

    2016-08-01

    Full Text Available There are massive carbon stocks stored in permafrost-affected soils due to the 3-D soil movement process called cryoturbation. For a reliable projection of the past, recent and future Arctic carbon balance, and hence climate, a reliable concept for representing cryoturbation in a land surface model (LSM is required. The basis of the underlying transport processes is pedon-scale heterogeneity of soil hydrological and thermal properties as well as insulating layers, such as snow and vegetation. Today we still lack a concept of how to reliably represent pedon-scale properties and processes in a LSM. One possibility could be a statistical approach. This perspective paper demonstrates the importance of sub-grid heterogeneity in permafrost soils as a pre-requisite to implement any lateral transport parametrization. Representing such heterogeneity at the sub-pixel size of a LSM is the next logical step of model advancements. As a result of a theoretical experiment, heterogeneity of thermal and hydrological soil properties alone lead to a remarkable initial sub-grid range of subsoil temperature of 2 deg C, and active-layer thickness of 150 cm in East Siberia. These results show the way forward in representing combined lateral and vertical transport of water and soil in LSMs.

  1. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, Martha Marie; Orth, René; Cheruy, Frederique; Hagemann, Stefan; Lorenz, Ruth; van den Hurk, Bart; Seneviratne, Sonia Isabelle

    2017-04-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate here the role of soil moisture-temperature feedbacks for this response based on multi-model experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate physical processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America and between 42%-52% in Amazonia, Northern Australia and Southern Africa. Soil moisture trends (multi-decadal soil moisture variability) are more important for this response than short-term (e.g. seasonal, interannual) soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections. Vogel, M.M. et al.,2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, accepted.

  2. Cleanup protocol for 226Ra-contaminated cobbly soil at UMTRA Project sites

    International Nuclear Information System (INIS)

    Gonzales, D.E.; Millard, J.B.; Miller, M.L.; Metzler, D.

    1994-01-01

    The nonuniform distribution of 226Ra and other radiological contamination of cobbly soil encountered on several Uranium Mill Tailings Remedial Action Project sites is presented and discussed, and the concomitant challenges to the intent and implementation of the U.S. Environmental Protection Agency's soil cleanup standards are noted. In response to technical assessments and information presented to the U.S. Nuclear Regulatory Commission by the U.S. Department of Energy, the Nuclear Regulatory Commission has recently resolved the dilemma by concluding that compliance with Environmental Protection Agency soil cleanup standards for cobby soil at Uranium Mill Tailings Remedial Action Project sites would be adequately attained using bulk radionuclide concentrations, instead of requiring that the radionuclide concentration of the finer soil fraction passing a No. 4 mesh sieve met the standards. A Nuclear Regulatory Commission-approved procedure developed for cobbly soil remediation is outlined and discussed. The site-specific implementation of this procedure at Uranium Mill Tailings Remedial Action Project sites containing cobbly soil is estimated to save millions of dollars

  3. Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): Radiological characterization and relationships to geological formation, soil types and soil properties.

    Science.gov (United States)

    Ribeiro, F C A; Silva, J I R; Lima, E S A; do Amaral Sobrinho, N M B; Perez, D V; Lauria, D C

    2018-02-01

    Located in the south-western part of Brazil, the state of Rio de Janeiro is geotectonically contained within a complex structural province that resulted in the amalgamation of the Western Gondwana Paleocontinent. To undertake an extensive radiological characterization of this complex geological province and investigate the influence of bedrock, soil type and soil chemical-physical characteristics on natural radionuclide levels in soils, 259 surface soil samples were collected that encompassed the main soil types and geological formations throughout the state. Gamma spectrometry analysis of the samples resulted in median values of 114 Bq.kg -1 for 40 K, 32 Bq.kg -1 for 226 Ra and 74 Bq.kg -1 for 228 Ra. The median value for 226 Ra was similar to the world median value for soils, the 40 K value was well below the worldwide value, and that for 228 Ra exceeded the world median value. The intense weathering caused by the high rainfall rates and high temperatures may be responsible for the low levels of 40 K in the soils, of which the strongly acidic and clayey soils are markedly K-depleted. A soil from a high-grade metamorphic rock (granulite) presented the lowest 226 Ra (18 Bq.kg -1 ) content, whereas the highest levels for 226 Ra (92 Bq.kg -1 ) and 228 Ra (139 Bq.kg - 1) were observed in a young soil enriched in primary minerals (Leptsol). A lowland soil (Gleysol) showed the highest median of 40 K (301 Bq.kg -1 ). Strongly acidic soils tended to present high amounts of 226 Ra, and sandy soils tended to contain low levels of 228 Ra. The external radiation dose indicates that the state has a background radiation level within the natural range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Rocky Flats Environmental Technology Site beryllium characterization project

    International Nuclear Information System (INIS)

    Morrell, D.M.; Miller, J.R.; Allen, D.F.

    1999-01-01

    A site beryllium characterization project was completed at the Rocky Flats Environmental Technology Site (RFETS) in 1997. Information from historical reviews, previous sampling surveys, and a new sampling survey were used to establish a more comprehensive understanding of the locations and levels of beryllium contamination in 35 buildings. A feature of the sampling strategy was to test if process knowledge was a good predictor of where beryllium contamination could be found. Results revealed that this technique was effective at identifying where surface contamination levels might exceed the RFETS smear control level but that it was not effective in identifying where low concentrations of beryllium might be found

  5. Characterizing symmetries in a projected entangled pair state

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Garcia, D; Gonzalez-Guillen, C E [Departamento Analisis Matematico and IMI, Universidad Complutense de Madrid, 28040 Madrid (Spain); Sanz, M; Cirac, J I [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching (Germany); Wolf, M M [Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)], E-mail: dperez@mat.ucm.es

    2010-02-15

    We show that two different tensors defining the same translational invariant injective projected entangled pair state (PEPS) in a square lattice must be the same up to a trivial gauge freedom. This allows us to characterize the existence of any local or spatial symmetry in the state. As an application of these results we prove that a SU(2) invariant PEPS with half-integer spin cannot be injective, which can be seen as a Lieb-Shultz-Mattis theorem in this context. We also give the natural generalization for U(1) symmetry in the spirit of Oshikawa-Yamanaka-Affleck, and show that a PEPS with Wilson loops cannot be injective.

  6. PHYTOREMEDIATION OF TPH IN SOILS: AN RTDF PROJECT

    Science.gov (United States)

    The Remediation Technology Development Forum has undertaken a project to investigate the use of plants in remediation of sites contaminated by petroleum hydrocarbons. Since sites have been established at a number of locations the project will be able to consider climate, contain...

  7. Characterization and pedogenesis of mangrove soils from Ilhéus-BA, Brazil

    OpenAIRE

    Gomes,Felipe Haenel; Ker,João Carlos; Ferreira,Tiago Osório; Moreau,Ana Maria Souza dos Santos; Moreau,Maurício Santana

    2016-01-01

    ABSTRACT Despite its importance, studies of mangrove soils are scarce, especially from a pedological perspective. The objective of this work was to study the genesis of soils in a mangrove environment in northeastern Brazil (Ilhéus, Bahia) through a morphological, physical, chemical and mineralogical characterization. All soils presented a sandy texture, which is related to the parent material (Quaternary sand deposits). The tidal flooding and resulting hydromorphic conditions is responsible ...

  8. Characterization and Classification of Soils on an Agricultural ...

    African Journals Online (AJOL)

    subangular blocky in the surface and changes to angular blocky in .... have angular blocky structure at the surface and changes to ... The soils in TUP 3 were brown in colour (2.5YR 4/6) in ..... erosion and enhance and maintain soil quality and.

  9. A global spectral library to characterize the world's soil

    NARCIS (Netherlands)

    Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Bartholomeus, H.M.

    2016-01-01

    Soil provides ecosystem services, supports human health and habitation, stores carbon and regulates emissions of greenhouse gases. Unprecedented pressures on soil from degradation and urbanization are threatening agro-ecological balances and food security. It is important that we learn more about

  10. Experimental characterization of clay soils behavior stabilized by ...

    African Journals Online (AJOL)

    In this work, we propose to use both PVC and HDPE polymers such additions in cohesive soils to determine their influence on the physical and mechanical properties of soil-polymer material in function of time, which should insure some optimal period of life. For this purpose, different tests including Atterberg Limits, ...

  11. 471 Soil Characterization and Land Use of Arondizogu Inland Valley ...

    African Journals Online (AJOL)

    User

    2010-10-16

    Oct 16, 2010 ... Effective cation exchange capacity was low (4.60-6.39 meg/100g). Similarly, exchangeable acidity was generally ... more fragile or even marginal lands where over exploitation has led to high rate of deforestation, soil erosion and declining productivity. Also, some soil related factors have contributed to the.

  12. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 2, NRG corehole data appendices

    International Nuclear Information System (INIS)

    Brechtel, C.E.; Lin, Ming; Martin, E.; Kessel, D.S.

    1995-05-01

    This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes

  13. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 2, NRG corehole data appendices

    Energy Technology Data Exchange (ETDEWEB)

    Brechtel, C.E.; Lin, Ming; Martin, E. [Agapito Associates, Inc., Grand Junction, CO (United States); Kessel, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.

  14. Laboratory experiments to characterize radiochloride diffusion in unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Aldaba, D.; Fernandez-Torrent, R.; Rauret, G.; Vidal, M. [Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rigol, A. [Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)], E-mail: annarigol@ub.edu

    2010-03-15

    Diffusion transport of {sup 36}Cl was examined in seven soils under unsaturated conditions in tubes packed with two portions of each soil having different {sup 36}Cl activity concentrations. Apparent diffusion coefficients (D{sub a}) derived from diffusion profiles varied within a narrow range (from 3x10{sup -10} to 7x10{sup -10} m{sup 2} s{sup -1}) confirming the minor effect of soil properties on the diffusion of a non-reactive radionuclide like {sup 36}Cl. Instead, packing conditions had a major effect. Solid-liquid distribution coefficients (K{sub d}) derived from D{sub a} (0.02-0.2 L kg{sup -1}) were systematically lower than those obtained from batch experiments (0.6-1.0 L kg{sup -1}), but with a similar variation pattern among soils. The low values of K{sub d} (Cl) confirmed an almost negligible radiochloride-soil interaction.

  15. Creep behavior of soil nail walls in high plasticity index (PI) soils : project summary.

    Science.gov (United States)

    2015-08-31

    Soil nailing is a convenient and economic : stabilization method for the reinforcement of existing : excavations by installing threaded steel bars into cuts : or slopes as wall construction progresses from top : down (Figure 1). An aspect of particul...

  16. Microstructural characterization of copper corrosion in aqueous and soil environments

    International Nuclear Information System (INIS)

    Srivastava, A.; Balasubramaniam, R.

    2005-01-01

    Scanning electron microscopy has been used to investigate the surface films on pure copper after exposure to different aqueous and soil environments, containing chloride, sulfide and ammonium salts. The morphology of the films formed on copper surface in aqueous and soil environments was different for the same amount of pollutants. The surface films formed in soil environments were not homogenous in contrast to the films formed in aqueous environments. The damaging effect of chloride ions and the benign role of sulfide ions were revealed in both the environments. Local compositional analysis confirmed that the surface films formed on copper consisted predominantly of copper and oxygen

  17. Soils in our big back yard: characterizing the state, vulnerabilities, and opportunities for detecting changes in soil carbon storage

    Science.gov (United States)

    Harden, Jennifer W.; Loiesel, Julie; Ryals, Rebecca; Lawrence, Corey; Blankinship, Joseph; Phillips, Claire; Bond-Lamberty, Ben; Todd-Brown, Katherine; Vargas, Rodrigo; Hugelius, Gustaf; Nave, Luke; Malhotra, Avni; Silver, Whendee; Sanderman, Jon

    2017-04-01

    A number of diverse approaches and sciences can contribute to a robust understanding of the I. state, II. vulnerabilities, and III. opportunities for soil carbon in context of its potential contributions to the atmospheric C budget. Soil state refers to the current C stock of a given site, region, or ecosystem/landuse type. Soil vulnerabilities refers to the forms and bioreactivity of C stocks, which determine how soil C might respond to climate, disturbance, and landuse perturbations. Opportunities refer to the potential for soils in their current state to increase capacity for and rate of C storage under future conditions, thereby impacting atmospheric C budgets. In order to capture the state, vulnerability, and opportunities for soil C, a robust C accounting scheme must include at least three science needs: (1) a user-friendly and dynamic database with transparent, shared coding in which data layers of solid, liquid, and gaseous phases share relational metadata and allow for changes over time (2) a framework to characterize the capacity and reactivity of different soil types based on climate, historic, and landscape factors (3) a framework to characterize landuse practices and their impact on physical state, capacity/reactivity, and potential for C change. In order to transfer our science information to practicable implementations for land policies, societal and social needs must also include: (1) metrics for landowners and policy experts to recognize conditions of vulnerability or opportunity (2)communication schemes for accessing salient outcomes of the science. Importantly, there stands an opportunity for contributions of data, model code, and conceptual frameworks in which scientists, educators, and decision-makers can become citizens of a shared, scrutinized database that contributes to a dynamic, improved understanding of our soil system.

  18. A Decision Support System Based on Soil Ecological Criteria: Results from the European ECOGEN Project

    DEFF Research Database (Denmark)

    Cortet, J.; Bohanec, M.; ?nidar?ic, M.

    and the public who are concerned about the possible ecological implications. The ECOGEN (www.ecogen.dk) project Soil ecological and economic evaluation of genetically modified crops is an EU-funded project aimed at combining simple lab tests, multi-species model ecosystems and field studies to acquire...... mechanistic and realistic knowledge about economic and ecological impacts of GM crops on the soil (Cortet et al, 2005, Griffiths et al, 2005, Vercesi et al, 2005). Economic trade-offs are assessed and related to ecological effects (Scatasta at al, 2005). One of the goals of the project is to develop...... a computer-based decision support system for the assessment of economic and ecological impacts of using GM crops, with special emphasis on soil biology and ecology. For model development, we have taken the approach of qualitative multi-attribute modeling (Bohanec 2003). The idea is to develop a hierarchical...

  19. Technical data management at the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Statler, J.; Newbury, C.M.; Heitland, G.W.

    1992-01-01

    The Department of Energy/Office of Civilian Radioactive waste Management (DOE/OCRWM) is responsible for the characterization of Yucca Mountain, Nevada, to determine its potential as a site of a high-level radioactive waste repository. The characterization of Yucca Mountain encompasses many diverse investigations, both onsite and in laboratories across the country. Investigations are being conducted of the geology, hydrology, mineralogy, paleoclimate, geotechnical properties, and archeology of the area, to name a few. Effective program management requires that data from site investigations be processed, interpreted and disseminated in a timely manner to support model development and validation, repository design, and performance assessment. The Program must also meet regulatory requirements for making the technical data accessible to a variety of external users throughout the life of the Project. Finally, the DOE/OCRWM must make available the data or its description and access location available for use in support of the license application and supporting documentation. To accomplish these objectives, scientific and engineering data, generated by site characterization activities, and technical data, generated by environmental and socioeconomic impact assessment activities, must be systematically identified, cataloged, stored and disseminated in a controlled manner

  20. Characterization of mercury forms in contaminated floodplain soils

    International Nuclear Information System (INIS)

    Barnett, M.O.; Turner, R.R.; Henson, T.J.; Harris, L.A.; Melton, R.E.; Stevenson, R.J.

    1994-01-01

    The chemical form or speciation of Hg in the floodplain soils of the East Fork Poplar Creek in Oak Ridge TN, a site contaminated from past industrial activity, was investigated. Hg speciation in the soils is an important factor in controlling the fate and effect of mercury at the site and in assessing human health and ecological risk. Application of 3 different sequential extraction speciation schemes indicated the Hg at the site was predominantly relatively insoluble mercuric sulfide or metallic Hg, though the relative proportions of each did not agree well between procedures. Application of x-ray and electron beam studies to site soils confirmed the presence of metacinnabar, a form of mercuric sulfide, the first known evidence of authigenic mercuric sulfide formation in soils

  1. Soil/sediment characterization for 216-A-29 ditch

    International Nuclear Information System (INIS)

    Mitchell, R.M.

    1997-01-01

    This document provides a detailed description of the environmental samples collected from the 216-A-29 Ditch in 1988. Tables summarizing the laboratory data for radionuclides, metals, and soil chemistry are included

  2. Soil/sediment characterization for 216-A-29 ditch

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.M.

    1997-03-01

    This document provides a detailed description of the environmental samples collected from the 216-A-29 Ditch in 1988. Tables summarizing the laboratory data for radionuclides, metals, and soil chemistry are included.

  3. Real-Time Soils Characterization and Analyses Systems Used at Ohio Closure Sites

    International Nuclear Information System (INIS)

    Roybal, Lyle Gene; Carpenter, Michael Vance; Giles, John Robert; Hartwell, John Kelvin; Danahy, R.

    2003-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and the Fernald Environmental Management Project (FEMP) have jointly developed a field-deployed analytical system to rapidly scan, characterize, and analyze surface soil contamination. The basic system consists of a sodium iodide (NaI) spectrometer and global positioning system (GPS) hardware. This hardware can be deployed from any of four different platforms depending on the scope of the survey at hand. These platforms range from a large tractor-based unit (the RTRAK) used to survey large, relatively flat areas to a hand-pushed unit where maneuverability is important, to an excavator mounted system used to scan pits and trenches. The mobile sodium iodide concept was initially developed by the FEMP to provide pre-screening analyses for soils contaminated with uranium, thorium, and radium. The initial study is documented in the RTRAK Applicability Study and provides analyses supporting the field usage of the concept. The RTRAK system produced data that required several days of post-processing and analyses to generate an estimation of field coverage and activity levels. The INEEL has provided integrated engineering, computer hardware and software support to greatly streamline the data acquisition and analysis process to the point where real-time activity and coverage maps are available to the field technicians. On-line analyses have been added to automatically convert GPS data to Ohio State-Plane coordinates, examine and correct collected spectra for energy calibration drifts common to NaI spectrometers, and strip spectra in regions of interest to provide moisture corrected activity levels for total uranium, thorium-232, and radium-226. Additionally, the software provides a number of checks and alarms to alert operators that a hand-examination of spectral data in a particular area may be required. The FEMP has estimated that this technology has produced projected site savings in excess of $34M

  4. Error characterization methods for surface soil moisture products from remote sensing

    International Nuclear Information System (INIS)

    Doubková, M.

    2012-01-01

    To support the operational use of Synthetic Aperture Radar (SAR) earth observation systems, the European Space Agency (ESA) is developing Sentinel-1 radar satellites operating in C-band. Much like its SAR predecessors (Earth Resource Satellite, ENVISAT, and RADARSAT), the Sentinel-1 will operate at a medium spatial resolution (ranging from 5 to 40 m), but with a greatly improved revisit period, especially over Europe (∼2 days). Given the planned high temporal sampling and the operational configuration Sentinel-1 is expected to be beneficial for operational monitoring of dynamic processes in hydrology and phenology. The benefit of a C-band SAR monitoring service in hydrology has already been demonstrated within the scope of the Soil Moisture for Hydrometeorologic Applications (SHARE) project using data from the Global Mode (GM) of the Advanced Synthetic Aperture Radar (ASAR). To fully exploit the potential of the SAR soil moisture products, well characterized error needs to be provided with the products. Understanding errors of remotely sensed surface soil moisture (SSM) datasets was indispensible for their application in models, for extractions of blended SSM products, as well as for their usage in evaluation of other soil moisture datasets. This thesis has several objectives. First, it provides the basics and state of the art methods for evaluating measures of SSM, including both the standard (e.g. Root Mean Square Error, Correlation coefficient) and the advanced (e.g. Error propagation, Triple collocation) evaluation measures. A summary of applications of soil moisture datasets is presented and evaluation measures are suggested for each application according to its requirement on the dataset quality. The evaluation of the Advanced Synthetic Aperture Radar (ASAR) Global Mode (GM) SSM using the standard and advanced evaluation measures comprises a second objective of the work. To achieve the second objective, the data from the Australian Water Assessment System

  5. X-ray microtomography in the micromorphologic characterization of soil submitted to different management

    International Nuclear Information System (INIS)

    Passoni, Sabrina

    2013-01-01

    The X-ray computed microtomography (CT) represents a non-invasive technique that can be used with success to analyze physical properties by the soil scientists without destroying the structure of the soil. The technique has as advantage over conventional methods the characterization of the soil porous system in three dimensions, which allow morphological property analyses such as connectivity and tortuosity of the pores. However, as the soil is a non-homogeneous and complex system, the CT technique needs specific methodologies for digital image processing, mainly during the segmentation procedure. The objectives of this work were: 1) to develop a methodology for microtomographic digital image processing; 2) to characterize the soil structure by using micromorphology analysis of samples submitted to non-tillage and conventional systems collected in three distinct layers (0-10, 10-20 and 20-30 cm); and 3) to identify possible changes in the porous system of the soil analyzed due to the effect of different management systems. The use of the CT technique and the procedures adopted for microtomographic digital image processing show to be efficient for the micromorphologic characterization of soil porous system. Soil under non-tillage system presented the best results from the agricultural point of view regarding porosity, total number of pores, connectivity and tortuosity in comparison to the conventional tillage. (author)

  6. Yucca Mountain Site Characterization Project Waste Package Plan

    International Nuclear Information System (INIS)

    Harrison-Giesler, D.J.; Jardine, L.J.

    1991-02-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package program is to develop, confirm the effectiveness of, and document a design for a waste package and associated engineered barrier system (EBS) for spent nuclear fuel and solidified high-level nuclear waste (HLW) that meets the applicable regulatory requirements for a geologic repository. The Waste Package Plan describes the waste package program and establishes the technical approach against which overall progress can be measured. It provides guidance for execution and describes the essential elements of the program, including the objectives, technical plan, and management approach. The plan covers the time period up to the submission of a repository license application to the US Nuclear Regulatory Commission (NRC). 1 fig

  7. Fluid characterization for miscible EOR projects and CO2 sequestration

    DEFF Research Database (Denmark)

    Jessen, Kristian; Stenby, Erling Halfdan

    2007-01-01

    Accurate performance prediction of miscible enhanced-oil-recovery (EOR) projects or CO, sequestration in depleted oil and gas reservoirs relies in part on the ability of an equation-of-state (EOS) model to adequately represent the properties of a wide range of mixtures of the resident fluid...... in the data reduction and demonstrate that for some gas/oil systems, swelling tests do not contribute to a more accurate prediction of multicontact miscibility. Finally, we report on the impact that use of EOS models based on different characterization procedures can have on recovery predictions from dynamic...... and the injected fluid(s). The mixtures that form when gas displaces oil in a porous medium will, in many cases, differ significantly from compositions created in swelling tests and other standard pressure/volume/temperature (PVT) experiments. Multicontact experiments (e.g., slimtube displacements) are often used...

  8. Characterization of Microorganisms Isolated from Petroleum Hydrocarbon Polluted Soil

    Directory of Open Access Journals (Sweden)

    Adriana Criste

    2016-02-01

    Full Text Available Bioremediation has received a great deal of attention, and bacteria isolated from polluted soil can be usedin that process. In this study, we performed an evaluation of the physiological groups of microorganisms fromsoil contaminated with petroleum. Bacterial strains were isolated from contaminated soil using the selectiveenrichment technique. Minimal Salt Media was used for serial dilutions to determine viable cell count. Thenumber of total viable cells and different types of microorganisms in the original sample was determined by serialdilution, agar plating procedure using selective media. The plates were incubated at 300C for 24-72 hours. Distinctcolonies growing on each plate were selected, and stored at freezing temperatures. The bacterial colonies werethen identified by Gram staining and biochemical tests. Following our research, it was observed that although thetotal microbial load of soil is relatively close in value, there are differences regarding the physiological group ofmicroorganisms. In the oil contaminated soil sample the largest group of microorganisms was the nitrous nitrifyingbacteria followed by nitrate bacteria. All bacterial strains that were isolated from soil samples contaminated withhydrocarbons but also the Pseudomonas putida and Bacillus subtillis strains can use diesel fuel as a food source.With the increase of diesel fuel concentration from culture medium, the majority of the bacterial strains that wereused in our experiments showed an increased value of absorbance. This fact suggests that these strains can be usedin bioremediation processes.

  9. Characterizing Zinc Speciation in Soils from a Smelter-Affected Boreal Forest Ecosystem.

    Science.gov (United States)

    Hamilton, Jordan G; Farrell, Richard E; Chen, Ning; Feng, Renfei; Reid, Joel; Peak, Derek

    2016-03-01

    HudBay Minerals, Inc., has mined and/or processed Zn and Cu ore in Flin Flon, MB, Canada, since the 1930s. The boreal forest ecosystem and soil surrounding these facilities have been severely impacted by mixed metal contamination and HSO deposition. Zinc is one of the most prevalent smelter-derived contaminants and has been identified as a key factor that may be limiting revegetation. Metal toxicity is related to both total concentrations and speciation; therefore, X-ray absorption spectroscopy and X-ray fluorescence mapping were used to characterize Zn speciation in soils throughout the most heavily contaminated areas of the landscape. Zinc speciation was linked to two distinct soil types. Group I soils consist of exposed soils in weathered positions of bedrock outcrops with Zn present primarily as franklinite, a (ZnFeO) spinel mineral. Group II soils are stabilized by an invasive metal-tolerant grass species, with Zn found as a mixture of octahedral (Fe oxides) and tetrahedral Mn oxides) adsorption complexes with a franklinite component. Soil erosion influences Zn speciation through the redistribution of Zn and soil particulates from Group I landscape positions to Group II soils. Despite Group II soils having the highest concentrations of CaCl-extractable Zn, they support metal-tolerant plant growth. The metal-tolerant plants are probably preferentially colonizing these areas due to better soil and nutrient conditions as a result of soil deposition from upslope Group I areas. Zinc concentration and speciation appears to not influence the colonization by metal-tolerant grasses, but the overall soil properties and erosion effects prevent the revegetation by native boreal forest species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Soil-characterization and soil-amendment use on coal surface mine lands: An annotated bibliography. Information Circular/1991

    International Nuclear Information System (INIS)

    Norland, M.R.; Veith, D.L.

    1991-01-01

    The U.S. Bureau of Mines Report on United States and Canadian Literature pertaining to soil characterization and the use of soil amendments as a part of the reclamation process of coal surface-mined lands contains 1,280 references. The references were published during the 1977 to 1988 period. Each reference is evaluated by keywords, providing the reader with a means of rapidly sorting through the references to locate those articles with the coal mining regions and subjects of interest. All references are annotated

  11. Characterization of soils from an industrial complex contaminated with elemental mercury

    International Nuclear Information System (INIS)

    Miller, Carrie L.; Watson, David B.; Lester, Brian P.; Lowe, Kenneth A.; Pierce, Eric M.; Liang, Liyuan

    2013-01-01

    Historical use of liquid elemental mercury (Hg(0) l ) at the Y-12 National Security Complex in Oak Ridge, TN, USA, resulted in large deposits of Hg(0) l in the soils. The fate and distribution of the spilled Hg(0) are not well characterized. In this study we evaluated analytical tools for characterizing the speciation of Hg in the contaminated soils and then used the analytical techniques to examine the speciation of Hg in two soil cores collected at the site. These include x-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption (HgT). XRF was not found to be suitable for evaluating Hg concentrations in heterogeneous soils containing low concentration of Hg or Hg(0) because Hg concentrations determined using this method were lower than those determined by HgT analysis and the XRF detection limit is 20 mg/kg. Hg(0) g headspace analysis coupled with HgT measurements yielded good results for examining the presence of Hg(0) l in soils and the speciation of Hg. The two soil cores are highly heterogeneous in both the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400 mg/kg. In the first core, Hg(0) l was distributed throughout the 3.2 m depth, whereas the second core, from a location 12 m away, contained Hg(0) l in a 0.3 m zone only. Sequential extractions showed organically associated Hg dominant at depths with low Hg concentration. Soil from the zone of groundwater saturation showed reducing conditions and the Hg is likely present as Hg-sulfide species. At this depth, lateral Hg transport in the groundwater may be a source of Hg detected in the soil at the deeper soil depths. Overall, characterization of soils containing Hg(0) l is difficult because of the heterogeneous distribution of Hg within the soils. This is exacerbated in industrial facilities where fill materials make up much of the soils and historical and continued reworking of the

  12. Molecular characterization of soil bacterial community in a perhumid, low mountain forest.

    Science.gov (United States)

    Lin, Yu-Te; Whitman, William B; Coleman, David C; Chih-Yu, Chiu

    2011-01-01

    Forest disturbance often results in changes in soil properties and microbial communities. In the present study, we characterized a soil bacterial community subjected to disturbance using 16S rRNA gene clone libraries. The community was from a disturbed broad-leaved, low mountain forest ecosystem at Huoshaoliao (HSL) located in northern Taiwan. This locality receives more than 4,000 mm annual precipitation, one of the highest precipitations in Taiwan. Based on the Shannon diversity index, Chao1 estimator, richness and rarefaction curve analysis, the bacterial community in HSL forest soils was more diverse than those previously investigated in natural and disturbed forest soils with colder or less humid weather conditions. Analysis of molecular variance also revealed that the bacterial community in disturbed soils significantly differed from natural forest soils. Most of the abundant operational taxonomic units (OTUs) in the disturbed soil community at HSL were less abundant or absent in other soils. The disturbances influenced the composition of bacterial communities in natural and disturbed forests and increased the diversity of the disturbed forest soil community. Furthermore, the warmer and humid weather conditions could also increase community diversity in HSL soils.

  13. Characterization of vitrified soil produced by in situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Lokken, R.O.

    1984-01-01

    Radioactive or other hazardous wastes buried at waste disposal sites may require further stabilization to secure the isolation of these wastes from the environment. One method of waste stabilization being developed is in situ vitrification. This process involves the in-place melting of buried wastes and the surrounding soil to produce a glass and crystalline waste form. Engineering-scale and pilot-scale demonstrations of this concept with soil contaminated with nonradioactive, hazardous species (Cs, Sr, Ru, Pb, Cd, etc.) were performed. These demonstrations provided information on species migration, crystalline-phase formation, and waste form durability. In addition to the nonradioactive tests, a crucible-scale melt of soil spiked with radioactive uranium, plutonium, and cesium was leach tested. The results show that hazardous waste components are retained in the product. The durability of the waste form in both the vitreous and the crystalline phases is similar to that of Pyrex glass

  14. Characterization of vitrified soil produced by in-situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Lokken, R.O.

    1983-01-01

    Radioactive or other hazardous wastes buried at waste-disposal sites may require further stabilization to secure the isolation of these wastes from the environment. One method of waste stabilization being developed is in-situ vitrification. This process involves the in-place melting of buried wastes and the surrounding soil to produce a glass and crystalline waste form. Engineering-scale and pilot-scale demonstrations of this concept with soil contaminated with nonradioactive, hazardous species (Cs, Sr, Ru, Pb, Cd, etc.) were performed. These demonstrations provided information on species migration, crystalline phase formation, and waste form durability. In addition to the nonradioactive tests, a crucible-scale melt of soil spiked with radioactive uranium, plutonium, and cesium was leach tested. The results show that hazardous waste components are retained in the product. The durability of the waste form in both the vitreous and crystalline phases is similar to that of pyrex glass

  15. Physiological Characterization of Fungal Inoculum for Biotechnological Remediation of Soils

    Directory of Open Access Journals (Sweden)

    Nara Ballaminut

    2014-08-01

    Full Text Available The aim of this work was to study the bioremediating potential of Lentinus crinitus CCIBt2611 according to the physiological condition of the inoculum. Inoculum was prepared using sugarcane ground husk (C:N 90, at several physiological ages and applied in soil contaminated with pentachlorophenol. The inoculum's potential was assessed by evaluating the mycelium's vigor at soil's colonization, determination of peroxidase and phenoloxidase activities, in vitro degradation of Remazol Brilliant Blue R and in vivo degradation of pentachlorophenol. The results showed that the assessed parameters were relevant to identify the quality of the inoculum. For L. crinitus, 10 day old inoculum showed good soil-colonization speed with significant enzymatic activities, indicating the role of Manganese-dependent peroxidase and laccase in degradation, and efficient degradation of pentachlorophenol.

  16. History and progress of the North American Soil Geochemical Landscapes Project, 2001-2010

    Science.gov (United States)

    Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Rivera, Francisco Moreira; Rencz, Andrew N.; Garrett, Robert G.

    2012-01-01

    In 2007, the U.S. Geological Survey, the Geological Survey of Canada, and the Mexican Geological Survey initiated a low-density (1 site per 1600 km2, 13323 sites) geochemical and mineralogical survey of North American soils (North American Soil Geochemical Landscapes Project). Sampling and analytical protocols were developed at a series of workshops in 20032004 and pilot studies were conducted from 20042007. The ideal sampling protocol at each site includes a sample from 05 cm depth, a composite of the soil A horizon, and a sample from the soil C horizon. The 3, HClO4, and HF. Separate methods are used for As, Hg, Se, and total C on this same size fraction. The major mineralogical components are determined by a quantitative X-ray diffraction method. Sampling in the conterminous U.S. was completed in 2010 (c. 4800 sites) with chemical and mineralogical analysis currently underway. In Mexico, approximately 66% of the sampling (871 sites) had been done by the end of 2010 with completion expected in 2012. After completing sampling in the Maritime provinces and portions of other provinces (472 sites, 7.6% of the total), Canada withdrew from the project in 2010. Preliminary results for a swath from the central U.S. to Florida clearly show the effects of soil parent material and climate on the chemical and mineralogical composition of soils. A sample archive will be established and made available for future investigations.

  17. Chemical and mineralogical characterization of iron concretions of some Brazilian soils

    International Nuclear Information System (INIS)

    Soares, M.F.

    1980-01-01

    Chemical and physical analyses of concretionary materials were carried out, with the purpose of getting chemical and mineralogical characteristics of concretions found in some Brazilian soils in different ecosystems spectrophotometry was used for the chemical characterization, and x-ray diffraction and Moessbauer spectroscopy for the mineralogical characterization of the materials studied. (A.R.H.) [pt

  18. Characterization of Minerals: From the Classroom to Soils to Talc Deposits

    Science.gov (United States)

    McNamee, Brittani D.

    2013-01-01

    This dissertation addresses different methods and challenges surrounding characterizing and identifying minerals in three environments: in the classroom, in soils, and in talc deposits. A lab manual for a mineralogy and optical mineralogy course prepares students for mineral characterization and identification by giving them the methods and tools…

  19. Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-31

    The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

  20. Yucca Mountain Site Characterization Project Technical Data Catalog (quarterly supplement)

    International Nuclear Information System (INIS)

    1993-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated December 31, 1992, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1993

  1. Yucca Mountain Site Characterization Project Technical Data Catalog

    International Nuclear Information System (INIS)

    1992-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear, Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition

  2. Yucca Mountain Site Characterization Project technical data catalog

    International Nuclear Information System (INIS)

    1992-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition

  3. Yucca Mountain Site Characterization Project technical data catalog: Quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed-in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  4. Yucca Mountain Site Characterization Project exploratory studies facilities construction status

    International Nuclear Information System (INIS)

    Allan, J.N.; Leonard, T.M.

    1993-01-01

    This paper discusses the progress to date on the construction planning and development of the Yucca Mountain Site Characterization Project (YMP) Exploratory Studies Facilities (ESF). The purpose of the ESF is to determine early site suitability and to characterize the subsurface of the Yucca Mountain site to assess its suitability for a potential high level nuclear waste repository. The present ESF configuration concept is for two main ramps to be excavated by tunnel boring machines (TBM) from the surface to the Topopah Spring Member of the Paintbrush Tuff Formation. From the main ramps, slightly above Topopah Spring level, supplemental ramps will be penetrated to the Calico Hills formation below the potential repository. There will be exploratory development drifts driven on both levels with the Main Test Area being located on the Topopah Spring level, which is the level of the proposed repository. The Calico Hills formation lies below the Topopah Spring member and is expected to provide the main geo-hydrologic barrier between the potential repository and the underlying saturated zones in the Crater Flat Tuff

  5. A characterization of linearly repetitive cut and project sets

    Science.gov (United States)

    Haynes, Alan; Koivusalo, Henna; Walton, James

    2018-02-01

    For the development of a mathematical theory which can be used to rigorously investigate physical properties of quasicrystals, it is necessary to understand regularity of patterns in special classes of aperiodic point sets in Euclidean space. In one dimension, prototypical mathematical models for quasicrystals are provided by Sturmian sequences and by point sets generated by substitution rules. Regularity properties of such sets are well understood, thanks mostly to well known results by Morse and Hedlund, and physicists have used this understanding to study one dimensional random Schrödinger operators and lattice gas models. A key fact which plays an important role in these problems is the existence of a subadditive ergodic theorem, which is guaranteed when the corresponding point set is linearly repetitive. In this paper we extend the one-dimensional model to cut and project sets, which generalize Sturmian sequences in higher dimensions, and which are frequently used in mathematical and physical literature as models for higher dimensional quasicrystals. By using a combination of algebraic, geometric, and dynamical techniques, together with input from higher dimensional Diophantine approximation, we give a complete characterization of all linearly repetitive cut and project sets with cubical windows. We also prove that these are precisely the collection of such sets which satisfy subadditive ergodic theorems. The results are explicit enough to allow us to apply them to known classical models, and to construct linearly repetitive cut and project sets in all pairs of dimensions and codimensions in which they exist. Research supported by EPSRC grants EP/L001462, EP/J00149X, EP/M023540. HK also gratefully acknowledges the support of the Osk. Huttunen foundation.

  6. Characterizing near-surface CO2 conditions before injection - Perspectives from a CCS project in the Illinois Basin, USA

    Science.gov (United States)

    Locke, R.A.; Krapac, I.G.; Lewicki, J.L.; Curtis-Robinson, E.

    2011-01-01

    The Midwest Geological Sequestration Consortium is conducting a large-scale carbon capture and storage (CCS) project in Decatur, Illinois, USA to demonstrate the ability of a deep saline formation to store one million tonnes of carbon dioxide (CO2) from an ethanol facility. Beginning in early 2011, CO2 will be injected at a rate of 1,000 tonnes/day for three years into the Mount Simon Sandstone at a depth of approximately 2,100 meters. An extensive Monitoring, Verification, and Accounting (MVA) program has been undertaken for the Illinois Basin Decatur Project (IBDP) and is focused on the 0.65 km2 project site. Goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. MVA efforts are being conducted pre-, during, and post- CO2 injection. Soil and net CO2 flux monitoring has been conducted for more than one year to characterize near-surface CO2 conditions. More than 2,200 soil CO2 flux measurements have been manually collected from a network of 118 soil rings since June 2009. Three ring types have been evaluated to determine which type may be the most effective in detecting potential CO 2 leakage. Bare soil, shallow-depth rings were driven 8 cm into the ground and were prepared to minimize surface vegetation in and near the rings. Bare soil, deep-depth rings were prepared similarly, but were driven 46 cm. Natural-vegetation, shallow-depth rings were driven 8 cm and are most representative of typical vegetation conditions. Bare-soil, shallow-depth rings had the smallest observed mean flux (1.78 ??mol m-2 s-1) versus natural-vegetation, shallow-depth rings (3.38 ??mol m-2 s-1). Current data suggest bare ring types would be more sensitive to small CO2 leak signatures than natural ring types because of higher signal to noise ratios. An eddy covariance (EC) system has been in use since June

  7. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea

    Science.gov (United States)

    An increase in abnormal climate change patterns and unsustainable irrigation in uplands cause drought and affect agricultural water security, crop productivity, and price fluctuations. In this study, we developed a soil moisture model to project irrigation requirements (IR) for upland crops under cl...

  8. The Spanish Society of Soil Science: Main projects and activities developed during the last years

    Science.gov (United States)

    Porta, Jaume; Mataix-Solera, Jorge; Ortiz-Bernad, Irene; Arbelo, Carmen D.; Díaz-Raviña, Montserrat; Badía, David; Alcañiz, Josep M.; Santos, Fernando; Hermosin, M. Carmen; Barral, M. Teresa

    2017-04-01

    The Spanish Society of Soil Science (in Spanish: Sociedad Española de la Ciencia del Suelo, SECS) was founded in 1947 by the Spanish National Research Council (CSIC) to promote cohesion and collaboration between soil science professionals, and with an innovative spirit and a willingness to serve the society. The objectives are: to promote the study, knowledge, research and protection of the soil; to spread, from a scientific point of view, the role played by the soil in favour of society, through ecosystem services such as the production of food and raw materials; The SECS also focus on the protection of other habitats and the conservation of our archaeological heritage; and to preserve knowledge of the soil, its management and use, both from the production and environmental point of view, leading to the optimization of its capabilities. The activities and services of the SECS are accessible on the web site www.secs.com.es, which is continually updated. In this contribution, we will show some examples of recent projects and activities developed by the SECS such as: the edition of the Spanish Journal of Soil Science (SJSS) since 2011; books like the white book on "Tratamiento del suelo en los libros de texto de ESO y Bachillerato en España" available in http://www.secs.com.es/archivo/libro-suelo.pdf, in which the term "Soil" is analysed in many secondary school books (152) in the Spanish education system; conferences, courses, exhibitions, expositions, calendars, the comic "Vivir en el suelo" in diferent languages, and diverse material to promote and disseminate the importance of the soil to the society; and last but not least, the Multingual Soil Science Dictionary (Spanish, Catalan, Gallician and Potuguese with translations in English and French (in process)) available online: http://cit.iec.cat/GLOSECS/inici.html. The promotion of student teams for soil science contests, the SECS Award to attend the Simposio Latinoamericano de Enseñanza y Educación en Ciencia

  9. The characterization and removal of Chernobyl debris in garden soils

    International Nuclear Information System (INIS)

    Andersson, K.G.

    1991-01-01

    Severe nuclear accidents such as the one in Chernobyl in 1986 may give unacceptably high external radiation levels, which even in the late phase may make a resettlement of an evacuated population impossible unless action is taken to decrease the exposure. As the urban land areas to be reclaimed may be very large the cost of the dose reducing countermeasure to be used may be an important factor. In the Chernobyl debris the most important radionuclides concerning the long term external radiation were found to be Cs-137, Cs-134, and Ru-106. Therefore, the aim of this work is to investigate the behaviour of these radionuclides in garden soils, and on this background to examine cost-effective methods by which a reduction of the dose from such areas to people living in urban or sub-urban environments can be achieved. The fixation of the radioactive cations in soil was investigated by means of soil profile sampling, soil texture analysis, and speciation experiments. It was found that most of the Chernobyl fallout caesium was extremely firmly fixed. Much of the ruthenium was more loosely bound, to organic material. The cost-effectiveness of some dose reducing countermeasures was examined on the background of small scale tests. Here it was found that about 95% of the activity could be removed with peelable fixatives based on PVA or lignin. (author) 1 tab., 7 ills., 25 refs

  10. Soil characterization in contrasting cropping systems under the fast ...

    African Journals Online (AJOL)

    The contrasting production systems under study were communal area, A2 (large scale resettlement) and A1 (small scale resettlement).All these systems are in Manicaland province, Zimbabwe. The A1 and A2 production systems were brought about during the 2000 land reform programme. The soil samples were collected ...

  11. Characterizing Soil Lead Contamination Near Streams in Oakland, California

    Science.gov (United States)

    Tanouye, D.

    2017-12-01

    Lead (Pb) contamination of soils, groundwater, and surface waters is a major concern because of the potential health risks related to accumulation of high levels of lead in blood. This is a pervasive issue in many low-income neighborhoods throughout the United States, and is documented to be particularly acute in West Oakland, California. The fate and transport of lead in the environment is largely dependent on how it will bind to various solids and compounds in solution. These adsorption mechanisms are a principal aspect of metal dissolution and chemical speciation. Stream channels are natural drainage areas for urban runoff, and may represent a hot spot for increased levels of lead. This study evaluates the environmental conditions at 15 sites near streams in West Oakland using in-situ soil sampling with the handheld X-Ray Fluorescence (XRF) analyzer to measure concentrations of lead in soil. Results from this study suggest that the levels of lead in soils near stream channels are generally lower than the regional regulatory screening level of 80 milligrams per kilogram (mg/kg), but the highest concentrations are found near stream banks. The spatial distribution can be explained by a contaminant transport process related to the presence of fluvial channels.

  12. Characterization And Classification Of The Inland Valley Soils Of ...

    African Journals Online (AJOL)

    Six profiles located in the inland valley soils of central Cross River State were studied. The surface horizon colour of the first four were either dark Grey or dark brown. The last two profiles were grey. All subsurface horizons were either greyish or brownish and highly mottled. The structure of all the profiles were either blocky ...

  13. Spectral characterization of soil and coal contamination on snow

    Indian Academy of Sciences (India)

    Snow is a highly reflecting object found naturally on the Earth and its albedo is highly influenced by the amount and type of contamination. In the present study, two major types of contaminants (soil and coal) have been used to understand their effects on snow reflectance in the Himalayan region. These contaminants were ...

  14. Evolutive and regressive soil sequences for characterization of soils in laurel forest (Tenerife, Canary Islands

    Directory of Open Access Journals (Sweden)

    José Asterio Guerra-García

    2014-03-01

    Full Text Available Soil degradation processes have achieved the recognition of a global environmental problem in recent years. It has been suggested by various international forums and organizations that in order to adequately establish methods to combat land degradation, it is necessary to evaluate this degradation locally and at a detailed scale. The evaluation of soil degradation of natural ecosystems at a detailed scale requires the definition of standards to which to compare this degradation. To define these standards and properly handle the processes that give rise to variations in soil quality and degradation, it is necessary to establish in some detail the pedogenic processes that have or have not taken place in a particular area and which lead to the formation of a mature soil. A mature soil should be considered as standard in these situations and, therefore, a non-degraded soil. This paper presents the possible evolutive and regressive sequences of soil, and provides some examples of using this methodology to evaluate the degradation of the same in the Monteverde of the island of Tenerife. It also presents some physical, chemical and mineralogical properties of climacic mature soils, degraded soils and low quality soils, and examines their similarities and differences in this bioclimatic environment and on different parent materials. Thus it is observed that the main processes of degradation in these areas are related to plant cover modifications that lead to the decreasing protection of the soil surface, which results in the long term, in the onset of degradation processes such as water erosion, biological degradation, loss of andic properties, compaction and sealing and crusting surface, loss of water retention capacity, illuviation, etc. Climacic soils that can be found in areas of steep lava flows are Leptosols, while gently sloping areas are Cambisols and Andosols. On pyroclastic materials there are vitric Andosols and andic Andosols according to

  15. Two approaches to biological decontamination of groundwater and soil polluted by aromatics-characterization of microbial populations.

    Science.gov (United States)

    Demnerová, Katerina; Mackova, Martina; Spevákova, Veronika; Beranova, Katarina; Kochánková, Lucie; Lovecká, Petra; Ryslavá, Edita; Macek, Tomas

    2005-09-01

    As part of the EU project MULTIBARRIERS, six new endogenous aerobic bacterial isolates able to grow in the presence of BTmX (benzene, toluene, m-xylene) were characterized with respect to their growth specificities. Preliminary analysis included restriction fragment length polymorphism profiles and 16S rDNA sequencing. The diversity of these strains was confirmed by denaturing gradient gel electrophoresis. Additional aerobic bacterial strains were isolated from the rhizospheres of plants grown in polychlorinated biphenyl (PCB)-contaminated soils. Pot experiments were designed to show the beneficial effect of plants on the bacterial degradation of PCBs. The effect of PCB removal from soil was evaluated and bacteria isolated from three different plant species were examined for the presence of the bph operon.

  16. 77 FR 11112 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Science.gov (United States)

    2012-02-24

    ... debris waste from the FB-Line at SRS. This waste was generated by glovebox operations, decontamination... summary category group solids (S3000) or soils and gravel (S4000) is characterized for WIPP disposal; and...

  17. Assessment of restoration measures efficiency for soil contamination in Mediterranean Ecosystem. The case study of Guadiamar Green Corridor in the context of RECARE project

    Science.gov (United States)

    Anaya-Romero, Maria; José Blanco-Velázquez, Francisco; Muñoz-Vallés, Sara

    2017-04-01

    Restoration of soil ecosystems contaminated by heavy metals requires their characterization and the assessment of measures for risk reduction. Particular soil traits and history define different levels of resilience, so soil contamination assessment needs to take into account a site-by-site approach, which considers both the particular environmental characteristics of soils and the human activities. Nevertheless, current approaches for soil contamination assessment developed as academy and market solutions continue to be rather qualitative, and they do not allow as far the selection of efficient remediation measures to solve soil contamination at the long-term and extensively over larger áreas. In this context, under the framework of RECARE (Preventing and Remediating degradation of Soils in Europe through Land Care) project, we are designing a Decision Support System (DSS) which automatically assess soil contamination values by heavy metals in the topsoil and evaluate the efficiency of soil remediation measures under scenarios of climate and land-use change. The DSS works by simulating the spatio-temporal efficiency of three widely applied remediation measures (compost, sugar beet lime and iron-rich clayey materials). Input variables are divided into: (I) climate variables (mainly precipitation and temperature), (II) site variables (elevation, slope and erodibility), (III) soil (heavy metal content, pH, sand/clay content, soil organic carbon and bulk density), (IV) land use and (V) remediation measures. The predictor variables are related to soil functions expressed by % of change of heavy metal content (Currently the DSS consider cadmium dynamics due to the worldwide distribution in agricultural system and toxicity impact on health and plants), soil carbon and erosion dynamics. The pilot study area is the Guadiamar valley (SW Spain) where the main threat is soil contamination, after a mine spill occurred on April 1998. Since that time, a huge soil databse of

  18. Characterization of anthropogenic influence on the soil cover on selected localities of Prague

    Czech Academy of Sciences Publication Activity Database

    Žigová, Anna; Šťastný, Martin; Krejčová, J.; Hájek, Pavel

    2007-01-01

    Roč. 4, č. 3 (2007), s. 39-49 ISSN 1214-9705 R&D Projects: GA AV ČR IAA300130504 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z30460519 Keywords : soil development * clay mineralogy * anthropogenically affected areas of Prague * loess * hot-water extractable carbon Subject RIV: DF - Soil Science http://www.irsm.cas.cz/abstracts/AGG/AGG3_147/5_Zigova.pdf

  19. Electrochemical characterization of corrosion in materials of grounding systems, simulating conditions of synthetic soils with characteristics of local soils

    Science.gov (United States)

    Salas, Y.; Guerrero, L.; Vera-Monroy, S. P.; Blanco, J.; Jimenez, C.

    2017-12-01

    The integrity of structures buried in earthing becomes relevant when analysing maintenance and replacement costs of these systems, as the deterioration is mainly due to two factors, namely: the failures caused in the electrical systems, which are due to the system. Failure in earthing due to corrosion at the interface cause an alteration in the structure of the component material and generates an undesirable resistivity that cause malfunction in this type of protection systems. Two local soils were chosen that were categorized as sandy loam and clay loam type, whose chemical characteristics were simulated by means of an electrolyte corresponding to the amount of ions present determined by a soil characterization based on the CICE (effective cation exchange coefficient), which allows us to deduce the percentage of chloride and sulphate ions present for the different levels established in the experimental matrix. The interaction of these soils with grounding electrodes is a complex problem involving many factors to consider. In this study, the rates and corrosion currents of the different soils on two types of electrodes, one copper and the other AISI 304 stainless steel, were approximated by electrochemical techniques such as potentiodynamic curves and electrochemical impedance spectra. Considerably higher speeds were determined for copper-type electrodes when compared to those based on steel. However, from the Nyquist diagrams, it was noted that copper electrodes have better electrical performance than steel ones. The soil with the highest ionic activity turned out to be the sandy loam. The clay loam soil presents a tendency to water retention and this may be the reason for the different behaviour with respect to ionic mobility. The diffusion control in the steel seems to alter the ionic mobility because its corrosion rates proved to be very similar regardless of the type of soil chemistry. In general, corrosion rates fell since tenths of a millimetre every year to

  20. The isolation, enumeration, and characterization of Rhizobium bacteria of the soil in Wamena Biological Garden

    Directory of Open Access Journals (Sweden)

    SRI PURWANINGSIH

    2005-04-01

    Full Text Available The eleven soil samples have been isolated and characterized. The aims of the study were to get the pure culture and some data which described about enumeration and especially their characters in relation to the acids and bases reaction in their growth. The isolation of the bacteria use Yeast Extract Mannitol Agar medium (YEMA while the characterization by using YEMA medium mixed with Brom Thymol Blue and Congo Red indicators respectively. The results showed that eighteen isolates have been isolated which consisted of three low growing and fifteen fast growing bacteria. Two isolates were not indicated Rhizobium and sixteen were Rhizobium. Density of Rhizobium enumeration was varied which related to soil organic matter content. The enumeration bacteria in YEMA medium were in the range of 0.6 x 105 and 11.6 x 105 CFU /g soil. The highest population was found in soil sample of Wieb vegetation.

  1. Transformation of soil organics under extreme climate events: a project description

    Science.gov (United States)

    Blagodatskaya, Evgenia

    2017-04-01

    Recent climate scenarios predict not only continued global warming but also an increased frequency and intensity of extreme climatic events such as strong changes in temperature and precipitation with unusual regional dynamics. Weather anomalies at European territory of Russia are currently revealed as long-term drought and strong showers in summer and as an increased frequency of soil freezing-thawing cycles. Climate extremes totally change biogeochemical processes and elements cycling both at the ecosystem level and at the level of soil profile mainly affecting soil biota. Misbalance in these processes can cause a reduction of soil carbon stock and an increase of greenhouse gases emission. Our project aims to reveal the transformation mechanisms of soil organic matter caused by extreme weather events taking into consideration the role of biotic-abiotic interactions in regulation of formation, maintenance and turnover of soil carbon stock. Our research strategy is based on the novel concept considering extreme climatic events (showers after long-term droughts, soil flooding, freezing-thawing) as abiotic factors initiating a microbial succession. Study on stoichiometric flexibility of plants under climate extremes as well as on resulting response of soil heterotrophs on stoichiometric changes in substrate will be used for experimental prove and further development of the theory of ecological stoichiometry. The results enable us to reveal the mechanisms of biotic - abiotic interactions responsible for the balance between mobilization and stabilization of soil organic matter. Identified mechanisms will form the basis of an ecosystem model enabled to predict the effects of extreme climatic events on biogenic carbon cycle in the biosphere.

  2. Characterization of magnetically enhanced buried soil layer in arid environment

    Science.gov (United States)

    Petrovsky, E.; Grison, H.; Kapicka, A.; Silva, P. F.; Font, E.

    2011-12-01

    Magnetic susceptibility (MS) of soils, reflecting the presence of magnetite/maghemite, can be used in several environmental applications. Magnetic topsoil mapping is often used to outline areas polluted by atmospherically deposited dust. However, in these studies, the magnetically enhanced layer is usually shallow, some 5-6 cm under the surface. In our contribution, we present the case when the magnetic susceptibility is enhanced in deeper soil layers. Investigated soils are mostly sandy soils, from several localities in Portugal, in a zone with arid climate. Sample profiles were collected always in forests or forest stands with pines, cork oaks or eucalyptus trees in two areas: around the city of Sines (on the coast south of Lisbon) and around the city of Abrantes (inland, north-east of Lisbon). Both areas are presumably affected by one major source of pollution - power plant. Surface magnetic susceptibility measurements were performed by Bartington MS2D loop; values vary from 10 to 300 x 10-5 SI units. Vertical distribution of magnetic susceptibility was measured already in situ using the SM400 (ZHInstruments) on profiles about 40cm in length. Mass-specific MS was determined using Bartington MS2B dual frequency meter and Agico MFK1. Nine vertical profiles were selected for detailed analyses including the ARM, IRM and hysteresis measurements. Distinctly enhanced magnetic layers were detected in deeper horizons. This enhancement can be ascribed to several mechanisms. Migration of magnetic particles seems to be probable, as observed in our model experiments with sand columns. In coastal areas, the enhanced layer could be due to tsunami deposits, as described in other areas. Finally, in particular at sites close to power plants, the construction works followed by surface remediation have to be also considered as one of the possible mechanisms.

  3. Characterizations of Soil Collapsibility: Effect of Salts Dilution

    Directory of Open Access Journals (Sweden)

    omar H Al Hattamleh

    2015-03-01

    It has been shown that brine additive has pronounced effect on the Atterberg’s limits; it is clearly shown that as the amount of brine increases both liquid limit and plastic limit decrease.  Compaction curve characteristics of soil were altered by the presence of brine, the maximum dry density, obtained using Harvard miniature device, increased as brine percentage increased, however, the optimum moisture content showed substantial decrease with increasing the amount of brine.

  4. Preliminary characterizations study on three soil samples from the Idaho National Engineering Laboratory warm waste pond

    International Nuclear Information System (INIS)

    Burchett, R.T.; Richardson, W.S.; Hay, S.

    1994-01-01

    Three soil samples (Soil 1,2,and 3) from the Warm Waste Pond (WWP) system at the Test Reactor Area (TRA) of the Idaho National Engineering Laboratory (INEL) were sent to the National Air and Radiation Environmental Laboratory (NAREL) in Montgomery, Alabama, for soil characterization and analysis. Each sample was vigorously washed and separated by particle size using wet sieving and vertical-column hydroclassification. The resulting fractions were analyzed for radioactivity by gamma spectroscopy. The following conclusions are based on the results of these analyses: (1) The three samples examined are dissimilar in many characteristics examined in the study. (2) The optimal parameters for vigorously washing the soil samples are a washing time of 30 min 350 rpm using a liquid-to-solid ratio of 4/1 (volume of water/volume of soil). (3) The only size fraction from Soil 1 that is below the 690 picocuries per gram (pCi/g) cesium-137 Record of Division (ROD) criterion is the +25.4-mm(+1-in) fraction, which represents 17 percent of the total soil. (4) There is no size fraction from Soil 2 that is below the 690 pCi/g cesium-137 criterion. (5) At optimal conditions, at least 66 percent of Soil 3 can be recovered with a cesium-137 activity level below the 690 pCi/g criterion. (6) For Soil 3, lowering the liquid-to-solid ratio from 4/1 to 2/1 during vigorous washing produces a higher weight-percent recovery of soil below the 690 pCi/g criterion. At a liquid-to-solid ratio of 2/1, 76 percent of the soil can be recovered with a concentration below the removal criterion, indicating that attrition followed by particle-size separation represents a potential method for remediation

  5. Characterizing vertical heterogeneity of permafrost soils in support of ABoVE radar retrievals

    Science.gov (United States)

    Tabatabaeenejad, A.; Chen, R. H.; Silva, A.; Schaefer, K. M.; Moghaddam, M.

    2017-12-01

    Permafrost-affected soils, including the top active layer and underlying permafrost, have unique seasonal variations in terms of soil temperature, soil moisture, and freeze/thaw-state profiles. The presence of a perennially frozen and impermeable substrate maintains the required temperature gradient for the descending thawing front, and causes meltwater to accumulate and form the saturated zone in the active layer. Radar backscattering measurements are sensitive to dielectric properties of subsurface soils, which are strongly correlated with unfrozen water content and soil texture/composition. To enable accurate radar retrievals, we need to properly characterize soil profile heterogeneity, which can be modeled with layered soil or depth-dependent functions. To this end, we first cross compare the measured radar backscatter and model-predicted radar backscatter using in-situ dielectric profile measurements as well as mathematical or hydrologic-based profile functions. Since radar signal's backscatter has limited penetration, to fully capture the true heterogeneity profile, we determine the optimal profile function by minimizing the error between predicted and measured radar backscatter signals as well as between in-situ and fitted profiles. The in-situ soil profile data (temperature, dielectric constant, unfrozen water content, organic/mineral soils) are collected from the Soil Moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) sensor networks and from the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in August 2017 (concurrent with the ABoVE August flights over Alaska North Slope) while the radar data are acquired by NASA's P-band AirMOSS and L-band UAVSAR as part of the ABoVE airborne campaign. The retrieval results using our new heterogeneity model will be compared with the results from retrievals that model soil as a layered medium. This analysis can advance the accuracy of retrieval of active layer properties using low-frequency SAR

  6. Identification of hydrologic and geochemical pathways using high frequency sampling, REE aqueous sampling and soil characterization at Koiliaris Critical Zone Observatory, Crete

    Energy Technology Data Exchange (ETDEWEB)

    Moraetis, Daniel, E-mail: moraetis@mred.tuc.gr [Department of Environmental Engineering, Technical University of Crete, 73100 Chania (Greece); Stamati, Fotini; Kotronakis, Manolis; Fragia, Tasoula; Paranychnianakis, Nikolaos; Nikolaidis, Nikolaos P. [Department of Environmental Engineering, Technical University of Crete, 73100 Chania (Greece)

    2011-06-15

    Highlights: > Identification of hydrological and geochemical pathways within a complex watershed. > Water increased N-NO{sub 3} concentration and E.C. values during flash flood events. > Soil degradation and impact on water infiltration within the Koiliaris watershed. > Analysis of Rare Earth Elements in water bodies for identification of karstic water. - Abstract: Koiliaris River watershed is a Critical Zone Observatory that represents severely degraded soils due to intensive agricultural activities and biophysical factors. It has typical Mediterranean soils under the imminent threat of desertification which is expected to intensify due to projected climate change. High frequency hydro-chemical monitoring with targeted sampling for Rare Earth Elements (REE) analysis of different water bodies and geochemical characterization of soils were used for the identification of hydrologic and geochemical pathways. The high frequency monitoring of water chemical data highlighted the chemical alterations of water in Koiliaris River during flash flood events. Soil physical and chemical characterization surveys were used to identify erodibility patterns within the watershed and the influence of soils on surface and ground water chemistry. The methodology presented can be used to identify the impacts of degraded soils to surface and ground water quality as well as in the design of methods to minimize the impacts of land use practices.

  7. Integrated use of soil physical and water isotope methods for ecohydrological characterization of desertified areas

    Science.gov (United States)

    Külls, Christoph; Nunes, Alice; Köbel-Batista, Melanie; Branquinho, Cristina; Bianconi, Nadja; Costantini, Eduardo

    2014-05-01

    Measures for monitoring desertification and soil degradation require a thorough understanding of soil physical properties and of the water balance in order to guide restoration efforts (Costantini et al. 2009). It is hypothesized that long term restoration success on degraded land depends on a series of interacting factors such as exposition, soil type, soil hydrology including lateral flow on hill-slope catenae. Recently, new soil water isotope measurement techniques have been developed (Garvelmann et al. 2012) that provide much faster and reliable stable water isotope profiles in soils. This technique yield information on groundwater recharge, soil water balance and on the origin of water available for plants, which in combination with conservative chemical tracers (chloride) can be validated. A multidisciplinary study including ecologists, soil physicists and hydrologists of the COST Action Desert Restoration Hub was carried out on four semi-arid sites in Portugal. A comparative characterization of soil physical parameters, soil water isotope and chloride profiles was performed in order to estimate pedoclimate, soil aridity, soil water balance and groundwater recharge. In combination with soil physical data a comprehensive and cross-validated characterization of pedoclimate and soil aridity was obtained. These indicators were then integrated and related to plant cover. The long-term rainfall of the four sites ranges from 512 to 638 mm, whereas air temperature is from 15.8 to 17.0°C. The De Martonne index of aridity spans from 19.3 to 24.6, pointing to semiarid to moderately arid climatic conditions. The long-term average number of days when the first 0.50 m of soil is dry ranges from 110 to 134, while the mean annual soil temperature at 0.50 m spans from 15.8 and 19.1°C. The studied profiles show different hydrological characteristics, in particular, the estimated hydraulic conductivity ranges from 0.1-1 to 10-100 µm/s. Three out of four profiles show a

  8. Characterization and classification of two soils derived from basic rocks in Pernambuco State Coast, Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Oliveira Lindomário Barros de

    2004-01-01

    Full Text Available Geomorphic surfaces that present soils derived from basic rocks under warm and humid climate are unique scenarios for studying tropical soils. This paper aimed to characterize and classify two pedons derived from basalt at the Atlantic Forest Zone, Pernambuco State, Northeastern coast of Brazil. Two representative pedons (P1 and P2 were selected on a hillslope at the Cabo de Santo Agostinho municipality. Field macromorphological descriptions were carried out and soil horizon were sampled for physical, chemical, mineralogical and micromorphological characterization. The soils were classified, according to the Brazilian System of Soil Classification (and US Soil Taxonomy as: "Latossolo Vermelho-Amarelo distroférrico argissólico" (Typic Hapludox (P1 and "Nitossolo Vermelho distroférrico típico" (Rhodic Paleudult (P2. Pedon 1 differs from Pedon 2 in some aspects. For instance, P1 presents more yellowish colors, absence of clay illuviation, more friable consistence and the prismatic structure undergoes transformation to angular and subangular blocks. Pedon 2 presents ferri-argilans and leptocutans which indicate that vertical and lateral illuviation of clay is an active process in their formation. These chemically poor and mineralogically uniform soils are a result of the high temperature and rainfall of the studied area.

  9. Three dimensional characterization of soil macroporosity by X-ray microtomography

    International Nuclear Information System (INIS)

    Passoni, Sabrina; Pires, Luiz Fernando; Rosa, Jadir Aparecido

    2015-01-01

    Analysis of the soil pore system represents an important way of characterizing soil structure. Properties such as the shape and number of pores can be determined through soil pore evaluations. This study presents a three-dimensional (3D) characterization of the shape and number of pores of a sub-tropical soil. To do so, a second generation X-ray microtomography equipped with a plain type detector was employed. A voltage of 120 kV and current of 80 mA was applied to the X-ray tube. The soil samples analyzed were collected at three different depths (0-10, 10-20, and 20-30 cm). The results obtained allowed qualitative (images) and quantitative (3D) analyses of the soil structure, revealing the potential of the microtomographic technique, as well as the study of differences in soil macroporosity at different depths. Macroporosity was 5.14 % in the 0-10 cm layer, 5.10 % in the 10-20 cm layer, and 6.64 % in the 20-30 cm layer. The macroporosity of unclassified pores (UN) was 0.30 % (0-10 and 10-20 cm) and 0.40 % (20-30 cm), while equant pores (EQ) had values of 0.01 % at the three depths under analysis. (author)

  10. Three dimensional characterization of soil macroporosity by X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Passoni, Sabrina [Centro de Ensino Superior dos Campos Gerais, Ponta Grossa, PR (Brazil); Pires, Luiz Fernando, E-mail: lfpires@uepg.br [Universidade Estadual de Ponta Grossa (UFPG), Ponta Grossa, PR (Brazil). Departamento de Fisica; Heck, Richard [University of Guelph, School of Environmental Sciences, Guelph, Ontario (Canada); Rosa, Jadir Aparecido [Instituto Agronomico do Parana, Polo Regional de Pesquisa de Ponta Grossa, Ponta Grossa, PR (Brazil)

    2015-03-15

    Analysis of the soil pore system represents an important way of characterizing soil structure. Properties such as the shape and number of pores can be determined through soil pore evaluations. This study presents a three-dimensional (3D) characterization of the shape and number of pores of a sub-tropical soil. To do so, a second generation X-ray microtomography equipped with a plain type detector was employed. A voltage of 120 kV and current of 80 mA was applied to the X-ray tube. The soil samples analyzed were collected at three different depths (0-10, 10-20, and 20-30 cm). The results obtained allowed qualitative (images) and quantitative (3D) analyses of the soil structure, revealing the potential of the microtomographic technique, as well as the study of differences in soil macroporosity at different depths. Macroporosity was 5.14 % in the 0-10 cm layer, 5.10 % in the 10-20 cm layer, and 6.64 % in the 20-30 cm layer. The macroporosity of unclassified pores (UN) was 0.30 % (0-10 and 10-20 cm) and 0.40 % (20-30 cm), while equant pores (EQ) had values of 0.01 % at the three depths under analysis. (author)

  11. Characterization of Models for Time-Dependent Behavior of Soils

    DEFF Research Database (Denmark)

    Liingaard, Morten; Augustesen, Anders; Lade, Poul V.

    2004-01-01

      Different classes of constitutive models have been developed to capture the time-dependent viscous phenomena ~ creep, stress relaxation, and rate effects ! observed in soils. Models based on empirical, rheological, and general stress-strain-time concepts have been studied. The first part....... Special attention is paid to elastoviscoplastic models that combine inviscid elastic and time-dependent plastic behavior. Various general elastoviscoplastic models can roughly be divided into two categories: Models based on the concept of overstress and models based on nonstationary flow surface theory...

  12. Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo

    2016-06-05

    The leaching and accumulation of heavy metals are major concerns following the land application of sewage sludge compost (SSC). We comparatively characterized SSC, the reference soil, and the SSC amended soil to investigate their similarities and differences regarding heavy metal leaching behavior and then to evaluate the effect of SSC land application on the leaching behavior of soil. Results showed that organic matter, including both of particulate organic matter (POM) and dissolved organic matter (DOM), were critical factors influencing heavy metal leaching from both of SSC and the soil. When SSC was applied to soil at the application rate of 48t/ha, the increase of DOM content slightly enhanced heavy metal leaching from the amended soil over the applicable pH domain (6leaching behavior of heavy metals. The geochemical speciation modeling revealed that heavy metal speciation in the solid phase were similar between the reference soil and the amended soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Geophysical and Geotechnical Characterization of Beta-1,3/1,6-glucan Biopolymer treated Soil

    Science.gov (United States)

    Chang, I.; Cho, G.

    2012-12-01

    Bacteria or microbes in soil excrete hydrocarbon (e.g. polysaccharide) by-products which are called biopolymers. These biopolymers (or sometime biofilms) recently begun to make a mark on soil erosion control, aggregate stabilization, and drilling enhancement. However, the biological effect on soil behavior (e.g. bio-clogging or bio-cementation) has been poorly understood. In this study, the bio-cementation and bio-clogging effect induced by the existence of β-1,3/1,6-glucan biopolymers in soil were evaluated through a series of geophysical and geotechnical characterization tests in laboratory. According to the experimental test results, as the β-1,3/1,6-glucan content in soil increases, the compressive strength and shear wave velocity increase (i.e., bio-cementation) while the hydraulic conductivity decreases (i.e., bio-clogging) but the electrical conductivity increases due to the high electrical conductivity characteristic of β-1,3/1,6-glucan fibers. Coefficient of consolidation variation with the increases of β-1,3/1,6-glucan content in soil. SEM image of β-1,3/1,6-glucan treated soil. Fibers are form matices with soil particles.

  14. Characterizing Martian Soils: Correlating Orbital Observations with Chemistry and Mineralogy from Landed Missions

    Science.gov (United States)

    Bishop, J. L.

    2010-12-01

    Great advances have been achieved recently in our understanding of the surface of Mars at global scales from orbital missions and at local scales from landed missions. This presentation seeks to provide links between the chemistry and mineralogy observed by landed missions with remote detections of minerals from orbit. Spectral data from CRISM, OMEGA and TES characterize a mostly basaltic planet with some outcrops of hematite, clays, sulfates and carbonates at the surface. Recent alteration of these rocks to form soils has likely been dominated by physical processes; however, martian soils probably also contain relicts of early alteration involving aqueous processes. Clays, hydroxides, sulfates, carbonates and perchlorates are examples of surface components that may have formed early in the planet’s history in the presence of liquid water. Some of these minerals have not been detected in the soil, but all have likely contributed to the current soil composition. The grain size, shape, chemistry, mineralogy, and magnetic properties of Martian soils are similar to altered volcanic ash found at many analog sites on Earth. Reflectance and emission spectra of some of these analog soils are consistent with the basic soil spectral properties observed from orbit. The cemented soil units observed by rovers may have formed through interaction of the soil grains with salts, clays, and hydroxides. Lab experiments have shown that cementing of analog grains darkens the VN reflectance, which could explain the low reflectance of Martian soils compared to analog sites. Reflectance spectra of an analog soil mixture containing altered ash and sulfate are shown in Figure 1. A pellet was made by adding water and allowing the sample to dry in air. Finally, the pellet was crushed and ground again to properties might be.

  15. Letter of Intent for River Protection Project (RPP) Characterization Program: Process Engineering and Hanford Analytical Services and Characterization Project Operations and Quality Assurance

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    The Characterization Project level of success achieved by the River Protection Project (RPP) is determined by the effectiveness of several organizations across RPP working together. The requirements, expectations, interrelationships, and performance criteria for each of these organizations were examined in order to understand the performances necessary to achieve characterization objectives. This Letter of Intent documents the results of the above examination. It formalizes the details of interfaces, working agreements, and requirements for obtaining and transferring tank waste samples from the Tank Farm System (RPP Process Engineering, Characterization Project Operations, and RPP Quality Assurance) to the characterization laboratory complex (222-S Laboratory, Waste Sampling and Characterization Facility, and the Hanford Analytical Service Program) and for the laboratory complex analysis and reporting of analytical results

  16. Characterization of a desert soil sequence at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Guertal, W.R.; Hofmann, L.L. Hudson, D.B.; Flint, A.L.

    1994-01-01

    Yucca Mountain, Nevada, is currently being evaluated as a potential site for a geologic repository for high level radioactive waste. Hydrologic evaluation of the unsaturated zone of Yucca Mountain is being conducted as an integrated set of surface and subsurface-based activities with a common objective to characterize the temporal and spatial distribution of water flux through the potential repository. Yucca Mountain is covered with a thin to thick layer of colluvial/alluvial materials, where there are not bedrock outcrops. It is across this surface boundary that all infiltration and all exfiltration occurs. This surface boundary effects water movement through the unsaturated zone. Characterization of the hydrologic properties of surficial materials is then a necessary step for short term characterization goals and for long term modeling

  17. Soil nutrient budgets following projected corn stover harvest for biofuel production in the conterminous United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shuguang

    2015-01-01

    Increasing demand for food and biofuel feedstocks may substantially affect soil nutrient budgets, especially in the United States where there is great potential for corn (Zea mays L) stover as a biofuel feedstock. This study was designed to evaluate impacts of projected stover harvest scenarios on budgets of soil nitrogen (N), phosphorus (P), and potassium (K) currently and in the future across the conterminous United States. The required and removed N, P, and K amounts under each scenario were estimated on the basis of both their average contents in grain and stover and from an empirical model. Our analyses indicate a small depletion of soil N (−4 ± 35 kg ha−1) and K (−6 ± 36 kg ha−1) and a moderate surplus of P (37 ± 21 kg ha−1) currently on the national average, but with a noticeable variation from state to state. After harvesting both grain and projected stover, the deficits of soil N, P, and K were estimated at 114–127, 26–27, and 36–53 kg ha−1 yr−1, respectively, in 2006–2010; 131–173, 29–32, and 41–96 kg ha−1 yr−1, respectively, in 2020; and 161–207, 35–39, and 51–111 kg ha−1 yr−1, respectively, in 2050. This study indicates that the harvestable stover amount derived from the minimum stover requirement for maintaining soil organic carbon level scenarios under current fertilization rates can be sustainable for soil nutrient supply and corn production at present, but the deficit of P and K at the national scale would become larger in the future.

  18. Molecular Characterization of Wetland Soil Bacterial Communities in Constructed Mesocosms

    Science.gov (United States)

    2008-03-01

    projects, but little is known about the morphology and functionality of microbial consortia that perform bioremediation. In order to completely...affinity for Archaea and primer E533R has an affinity for both Archaea and Eukarya, these two universal primers are specific enough to 36 bacteria to

  19. Integration of Magnetic and Geotechnical methods for Shallow Subsurface Soil Characterization at Sungai Batu, Kedah, Malaysia

    Science.gov (United States)

    Samuel, Y. M.; Saad, R.; Muztaza, N. M.; Saidin, M. M.; Muhammad, S. B.

    2018-04-01

    Magnetic and geotechnical methods were used for shallow subsurface soil characterization at Sungai Batu, Kedah, (Malaysia). Ground magnetic data were collected along a survey line of length 160 m long at 2 m constant station spacing, while soil drilling using hand auger was conducted at 21 m on the survey line using 0.2 m sampling interval drilled to a depth of 5 m. Result from the processed magnetic profile data shows distribution of magnetic residuals in the range of -4.55 to 1.61 nT, with magnetic low (-4.55 nT to -0.058 nT) and were identified at distances 4 m, 10 to 16 m, 20 to 26 m, 58 m, 82 m, 104 to 106 m, 118 m, and 124 to 140 m. The magnetic lows are attributes of sediments. The result from the soil drilling shows sticky samples with variable sizes, greyish to brownish / reddish in colour, and some of the samples show the presence of shiny and black spots. The characteristics of the samples suggest the soil as a by-product of completely weathered rock; weak with high water content and classified as Grade V soil. The study concludes; integration of geophysical and geotechnical methods aided in characterizing the subsurface soil at Sungai Batu. The result was correlated with previous studies and confirms the importance of integrated approach in minimising ambiguity in interpretation.

  20. Site characterization report for the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1982-11-01

    This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues

  1. Chemical and microbiological characterization of an aged PCB-contaminated soil.

    Science.gov (United States)

    Stella, T; Covino, S; Burianová, E; Filipová, A; Křesinová, Z; Voříšková, J; Větrovský, T; Baldrian, P; Cajthaml, T

    2015-11-15

    This study was aimed at complex characterization of three soil samples (bulk soil, topsoil and rhizosphere soil) from a site historically contaminated with polychlorinated biphenyls (PCB). The bulk soil was the most highly contaminated, with a PCB concentration of 705.95 mg kg(-1), while the rhizosphere soil was the least contaminated (169.36 mg kg(-1)). PCB degradation intermediates, namely chlorobenzoic acids (CBAs), were detected in all the soil samples, suggesting the occurrence of microbial transformation processes over time. The higher content of organic carbon in the topsoil and rhizosphere soil than in the bulk soil could be linked to the reduced bioaccessibility (bioavailability) of these chlorinated pollutants. However, different proportions of the PCB congener contents and different bioaccessibility of the PCB homologues indicate microbial biotransformation of the compounds. The higher content of organic carbon probably also promoted the growth of microorganisms, as revealed by phospholipid fatty acid (PFLA) quantification. Tag-encoded pyrosequencing analysis showed that the bacterial community structure was significantly similar among the three soils and was predominated by Proteobacteria (44-48%) in all cases. Moreover, analysis at lower taxonomic levels pointed to the presence of genera (Sphingomonas, Bulkholderia, Arthrobacter, Bacillus) including members with reported PCB removal abilities. The fungal community was mostly represented by Basidiomycota and Ascomycota, which accounted for >80% of all the sequences detected in the three soils. Fungal taxa with biodegradation potential (Paxillus, Cryptococcus, Phoma, Mortierella) were also found. These results highlight the potential of the indigenous consortia present at the site as a starting point for PCB bioremediation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Soil characterization and vulnerability indices of the Autonomous region of Madrid. Scale 1:200.000

    International Nuclear Information System (INIS)

    Schmid, T.; Millan, R.; Lago, C; Trueba, C.

    2000-01-01

    Radioactive contamination of the soil due to a nuclear accident is a risk for the population. A research project, within the program of Radiological Protection by Intervention in CIEMAT, has been developed to study the behaviour of radionuclides in soils. An evaluation of the radiological vulnerability considering the external irradiation and the food chain pathway for caesium and strontium has been determined using partial and global indices, which indicate the potential transfer of the radionuclides via the two mentioned pathways. A detailed study of the soils found in the Autonomous Region of Madrid was carried out with data from individual soil profiles and combining data obtained from maps with a Geographic Information System in order to obtain a spatial distribution of the results. The soil vulnerability for the external irradiation pathway of caesium and strontium is in general found to be higher in more developed soils located in the south and leading to the foothills of the Sierra of Madrid in the north. The vulnerability for the food chain pathway is found to be higher in the less developed soils in acid conditions situated in the Sierra of Madrid. (Author) 11 refs

  3. ISRU Soil Mechanics Vacuum Facility: Soil Bin Preparation and Simulant Strength Characterization

    Science.gov (United States)

    Kleinhenz, Julie; Wilkinson, Allen

    2012-01-01

    Testing in relevant environments is key to exploration mission hardware development. This is true on both the component level (in early development) and system level (in late development stages). During ISRU missions the hardware will interface with the soil (digging, roving, etc) in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, conditioned simulant bed. However, in earth-based granular media, such as lunar soil simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. The Vacuum Facility #13, a mid-size chamber (3.66m tall, 1.5m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64m deep by 0.914m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types have been used. An electric cone penetrometer was used to measure simulant strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5Torr, regardless of the pump rate. However, slow off gassing of the soil lead to long test times, a full week, to reach 10-5Torr. This work highlights the need for robotic machine-simulant hardware and operations in vacuum to expeditiously perform (sub-)systems tests.

  4. Physicochemical Characterization of Potential Mobile Organic Matter In Five Typical German Agricultural Soils

    Science.gov (United States)

    Séquaris, J.-M.; Lewandowski, H.; Vereecken, H.

    Organic matter (OM) in soils plays an important role, i.e., in maintaining soil structure or as source of nutrients. OM is mainly adsorbed at the surface of clay minerals and oxides and remains mostly immobile. However, mobile OM in dissolved form (DOM) or associated with water dispersible colloids (WDC) in soil water may influence trans- port of pollutants. The goal of this study is to compare 5 typical German agricultural soils in terms of distribution and quality of OM in the top soil (0-15 cm). The present report focuses on the physicochemical characterization of potential mobile OM so- lutions obtained after physical fractionation of soil materials based on sedimentation after a prolonged shaking in water or electrolyte solutions. Three soil fractions dif- fering in particle size were separated in function of sedimentation time: a colloidal fraction: 20 ţm. The soil electrolyte phase containing the DOM fraction was obtained by a high-speed centrifugation of the colloidal phase. After a water or low electrolyte concentration (« 1 mM Ca2+) extraction, it can be shown that the mobile fraction of OM or OC (organic carbon) is distributed between the colloidal and the electrolyte phases in a concentration ratio range of 10-40 to 1. A less mobile OC fraction is associated with the microaggregate fraction while immobile OC remains adsorbed in the sediment fraction. An increasing OC and total-N content with diminishing particle-size of soil (colloidal and microaggregate fractions) has been confirmed. A higher OC input due to special soil management is sensitively detected in fractions with a greater particle size (sediment fraction). Increasing the Ca2+ concentration up to 10 mM during the water extraction diminishes the DOC concentration by an average factor of 3 while the OC associated with the dispersed colloids (OCWDC) vanished almost completely. Thus, a critical coagulation concentration of about 1-2 mM Ca2+ can be estimated which increases the stability of soil

  5. Characterizing water fingering phenomena in soils using magnetic resonance imaging and multifractal theory

    Directory of Open Access Journals (Sweden)

    A. Posadas

    2009-02-01

    Full Text Available The study of water movement in soils is of fundamental importance in hydrologic science. It is generally accepted that in most soils, water and solutes flow through unsaturated zones via preferential paths or fingers. This paper combines magnetic resonance imaging (MRI with both fractal and multifractal theory to characterize preferential flow in three dimensions. A cubic double-layer column filled with fine and coarse textured sand was placed into a 500 gauss MRI system. Water infiltration through the column (0.15×0.15×0.15 m3 was recorded in steady state conditions. Twelve sections with a voxel volume of 0.1×0.1×10 mm3 each were obtained and characterized using fractal and multifractal theory. The MRI system provided a detailed description of the preferential flow under steady state conditions and was also useful in understanding the dynamics of the formation of the fingers. The f(α multifractal spectrum was very sensitive to the variation encountered at each horizontally-oriented slice of the column and provided a suitable characterization of the dynamics of the process identifying four spatial domains. In conclusion, MRI and fractal and multifractal analysis were able to characterize and describe the preferential flow process in soils. Used together, the two methods provide a good alternative to study flow transport phenomena in soils and in porous media.

  6. Characterization of Soil Heterogeneity Across Scales in an Intensively Investigated Soil Volume

    Science.gov (United States)

    Patterson, Matthew; Gimenez, Daniel; Nemes, Attila; Dathe, Annette; French, Helen; Bloem, Esther; Koestel, John; Jarvis, Nick

    2016-04-01

    Heterogeneous water flow in undisturbed soils is a natural occurrence that is complex to model due to potential changes in hydraulic properties in soils over changes in space. The use of geophysical methods, such as Electrical Resistivity Tomography (ERT), can provide a minimally-invasive approximation of the spatial heterogeneity of the soil. This spatial distribution can then be combined with measured hydraulic properties to inform a model. An experiment was conducted on an Intensively Investigated Soil Volume (IISV), with dimensions of 2m x 1m x 0.8m, located in an agricultural field that is part of the Gryteland catchment in Ås, Norway. The location of the IISV was determined through surface ERT runs at two sequential resolutions. The first run was used to find an area of higher apparent electrical resistivity in a 23.5 x 11.5 m area with 0.5 m spacing. The second run measured apparent electrical resistivity in a 4.7 x 1 m area with 0.1 m spacing, from which the final IISV volume was derived. Distinct features found in the higher resolution run of the IISV, including a recent tire track from a harvester, were used as a spatial reference point for the installation of 20 pairs of TDR probes and tensiometers. The instruments measured water content, temperature and pressure potential at 10 minute intervals and ran continuously for a period of two weeks. After completion of the data collection the IISV was intensively sampled, with 30 samples taken for bulk density, 62 for hydraulic property measurements, and 20 to be used for both CT scanning and hydraulic property measurements. The measurement of hydraulic properties is ongoing and retention will be measured in the 0 - 100 cm range on a sand table, and from 100 - approx. 900 cm with an automated evaporation method. The formation of spatial clusters to represent the soil heterogeneity as relatively homogeneous units based on mesoscale properties like apparent electrical resistivity, bulk density, texture, in

  7. Enumeration and characterization of arsenic-tolerant diazotrophic bacteria in a long-term heavy-metal-contaminated soil

    OpenAIRE

    Oliveira, A.; Pampulha, M.E.; Neto, M.M.; Almeida, A.C.

    2009-01-01

    The abundance of arsenic-tolerant diazotrophic bacteria was compared in a long-term contaminated soil versus a non-contaminated one. In addition, the characterization of tolerant diazotrophic bacteria was carried out. Differences in the number of heterotrophic N2 fixers were found between soils. Contaminated soil showed a decrease in the microbial population size of about 80%, confirming the great sensitivity of this group of soil bacteria to metals. However, quantitat...

  8. Characterization of sulfate reducing bacteria isolated from urban soil

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia

    2017-05-01

    Sulfate reducing bacteria (SRB) was isolated from urban soil and applied for the remediation of heavy metals pollution from acid mine drainage. The morphology and physiological characteristics (e.g. pH and heavy metals tolerance) of SRB was investigated. The SRB was gram-negative bacteria, long rod with slight curve, cell size 0.5× (1.5-2.0) μm. The pH of medium had significant effect on SRB growth and the efficiency of sulfate reduction, and it showed that the suitable pH range was 5-9 and SRB could not survive at pH less than 4. The maximum tolerance of Fe (II), Zn (II), Cd (II), and Cu (II) under acidic condition (pH 5.0) was about 600 mg/L, 150 mg/L, 25 mg/L and 25 mg/L, respectively. The result indicated that SRB isolated in this study could be used for the bioremediation of acid mine drainage (pH>4) within the heavy metals concentrations tolerance.

  9. Exploratory Project: Rigid nanostructured organic polymer monolith for in situ collection and analysis of plant metabolites from soil matrices

    Energy Technology Data Exchange (ETDEWEB)

    Tharayil, Nishanth [Clemson Univ., SC (United States)

    2016-06-29

    Plant metabolites released from litter leachates and root exudates enable plants to adapt and survive in a wide range of habitats by facilitating resource foraging and plant-organismal interactions, and could influence soil carbon storage. The biological functions of these plant inputs and the organismal interactions they facilitate in soil are strictly governed by their composition and molecular identity. Our current understanding about the molecular identity of exudates is based on physiological studies that are done in soil-less axenic cultures. On the other hand, ecological studies that rely on isotope labeling to track the fluxes of carbon from plants to soil have found the complexities of soil-microbe matrices as an insurmountable barrier to undertake any meaningful molecular level characterization of plant inputs. Although it is constantly advocated to undertake a molecular level identification of the dynamicity of plant metabolites in soils, the complexity of soil system has thus far prevented any such endeavors. We developed polymeric probes through in-situ polymerization of poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) to elucidate the chemical environment of the soil to which the plant roots are exposed. Hypercrosslinking of the polymeric probes through an in-situ Friedel-Crafts alkylation significantly increased the surface area and the sorption capacity of the probes. Surface functionalization of the probes using a hybrid approach was also attempted. The efficacy of these probes was tested using batch equilibration. Scanning electron microscopy revealed extensive modification of the surface of the probes through hypercrosslinking. The probes exhibited a lower site specific sorption (slope of Freundlich adsorption isotherm close to unity) and percent recovery of the sorbed compounds from the probes were >70, indicating a predominance of reversible sorption. Further we imparted specificity to this copolymer matrix by using molecular

  10. Operational strategy for soil concentration predictions of strontium/yttrium-90 and cesium-137 in surface soil at the West Valley Demonstration Project site

    International Nuclear Information System (INIS)

    Myers, J.A.

    1995-01-01

    There are difficulties associated with the assessment of the interpretation of field measurements, determination of guideline protocols and control and disposal of low level radioactive contaminated soil in the environmental health physics field. Questions are raised among scientists and in public forums concerning the necessity and high costs of large area soil remediation versus the risks of low-dose radiation health effects. As a result, accurate soil activity assessments become imperative in decontamination situations. The West Valley Demonstration Project (WVDP), a US Department of Energy facility located in West Valley, New York is managed and operated by West Valley Nuclear Services Co., Inc. (WVNS). WVNS has identified contaminated on-site soil areas with a mixed variety of radionuclides (primarily fission product). Through the use of data obtained from a previous project performed during the summer of 1994 entitled ''Field Survey Correlation and Instrumentation Response for an In Situ Soil Measurement Program'' (Myers), the WVDP offers a unique research opportunity to investigate the possibility of soil concentration predictions based on exposure or count rate responses returned from a survey detector probe. In this study, correlations are developed between laboratory measured soil beta activity and survey probe response for the purposes of determining the optimal detector for field use and using these correlations to establish predictability of soil activity levels

  11. Geophysical characterization of soil moisture spatial patterns in a tillage experiment

    Science.gov (United States)

    Martinez, G.; Vanderlinden, K.; Giráldez, J. V.; Muriel, J. L.

    2009-04-01

    Knowledge on the spatial soil moisture pattern can improve the characterisation of the hydrological response of either field-plots or small watersheds. Near-surface geophysical methods, such as electromagnetic induction (EMI), provide a means to map such patterns using non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa. In this study ECa was measured using an EMI sensor and used to characterize spatially the hydrologic response of a cropped field to an intense shower. The study site is part of a long-term tillage experiment in Southern Spain in which Conventional Tillage (CT), Direct Drilling (DD) and Minimum Tillage (MT) are being evaluated since 1982. Soil ECa was measured before and after a rain event of 115 mm, near the soil surface and at deeper depth (ECas and ECad, respectively) using the EM38-DD EMI sensor. Simultaneously, elevation data were collected at each sampling point to generate a Digital Elevation Model (DEM). Soil moisture during the first survey was close to permanent wilting point and near field capacity during the second survey. For the first survey, both ECas and ECad, were higher in the CT and MT than in the DD plots. After the rain event, rill erosion appeared only in CT and MT plots were soil was uncovered, matching the drainage lines obtained from the DEM. Apparent electrical conductivity increased all over the field plot with higher increments in the DD plots. These plots showed the highest ECas and ECad values, in contrast to the spatial pattern found during the first sampling. Difference maps obtained from the two ECas and ECad samplings showed a clear difference between DD plots and CT and MT plots due to their distinct hydrologic response. Water infiltration was higher in the soil of the DD plots than in the MT and CT plots, as reflected by their ECad increment. Higher ECa increments were observed in the depressions of the terrain, where water and sediments accumulated. On the contrary, the

  12. Advanced Research Projects Agency on Materials Preparation and Characterization Research

    Science.gov (United States)

    Briefly summarized is research concerned with such topics as: Preparation of silica glass from amorphous silica; Glass structure by Raman ...ferroelectrics; Silver iodide crystals; Vapor phase growth; Refractory optical host materials; Hydroxyapatite ; Calcite; Characterization of single crystals with a double crystal spectrometer; Characterization of residual strain.

  13. Characterization of Volatiles Loss from Soil Samples at Lunar Environments

    Science.gov (United States)

    Kleinhenz, Julie; Smith, Jim; Roush, Ted; Colaprete, Anthony; Zacny, Kris; Paulsen, Gale; Wang, Alex; Paz, Aaron

    2017-01-01

    Resource Prospector Integrated Thermal Vacuum Test Program A series of ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations for RP Volatiles loss during sampling operations Hardware performance Sample removal and transfer Concept of operationsInstrumentation5 test campaigns over 5 years have been conducted with RP hardware with advancing hardware designs and additional RP subsystems Volatiles sampling 4 years Using flight-forward regolith sampling hardware, empirically determine volatile retention at lunar-relevant conditions Use data to improve theoretical predictions Determine driving variables for retention Bound water loss potential to define measurement uncertainties. The main goal of this talk is to introduce you to our approach to characterizing volatiles loss for RP. Introduce the facility and its capabilities Overview of the RP hardware used in integrated testing (most recent iteration) Summarize the test variables used thus farReview a sample of the results.

  14. Memorandum of understanding for the TWRS characterization retrieval project

    International Nuclear Information System (INIS)

    JO, J.

    1999-01-01

    During fiscal year 1999, various programs and projects will require analyses from the 222-S Laboratory. In order to prioritize and successfully meet the analytical demands of all the customers, multiple organizations across the Tank Waste Remediation System (TWRS) must work together. One of the projects that will require analyses from the 222-S Laboratory is the retrieval project. Successful completion of retrieval project objectives requires cooperation among four TWRS organizations. The requirements and expectations regarding retrieval project analytical work were examined in order to define roles and responsibilities for each of these TWRS organizations. This memorandum of understanding (MOU) documents the results of this review and establishes the roles and responsibilities. This MOU is subdivided into three sections, the first of which is this introduction. Section 2 provides a summary of the overall roles and responsibilities with respect to retrieval project analytical work for the four TWRS organizations involved. The final section describes the individual interfaces involved in performing retrieval project analytical work, and discusses the roles and responsibilities with respect to each individual interface

  15. Soil sample collection and analysis for the Fugitive Dust Characterization Study

    Science.gov (United States)

    Ashbaugh, Lowell L.; Carvacho, Omar F.; Brown, Michael S.; Chow, Judith C.; Watson, John G.; Magliano, Karen C.

    A unique set of soil samples was collected as part of the Fugitive Dust Characterization Study. The study was carried out to establish whether or not source profiles could be constructed using novel analytical methods that could distinguish soil dust sources from each other. The soil sources sampled included fields planted in cotton, almond, tomato, grape, and safflower, dairy and feedlot facilities, paved and unpaved roads (both urban and rural), an agricultural staging area, disturbed land with salt buildup, and construction areas where the topsoil had been removed. The samples were collected using a systematic procedure designed to reduce sampling bias, and were stored frozen to preserve possible organic signatures. For this paper the samples were characterized by particle size (percent sand, silt, and clay), dry silt content (used in EPA-recommended fugitive dust emission factors), carbon and nitrogen content, and potential to emit both PM 10 and PM 2.5. These are not the "novel analytical methods" referred to above; rather, it was the basic characterization of the samples to use in comparing analytical methods by other scientists contracted to the California Air Resources Board. The purpose of this paper is to document the methods used to collect the samples, the collection locations, the analysis of soil type and potential to emit PM 10, and the sample variability, both within field and between fields of the same crop type.

  16. Characterization of commercial iron chelates and their behavior in an alkaline and calcareous soil.

    Science.gov (United States)

    Cantera, Rodrigo G; Zamarreño, Angel M; García-Mina, José M

    2002-12-18

    Iron deficiency is a common problem for many plants grown in alkaline and calcareous soils. To correct this problem, iron is supplied to plants as chelates. Several iron chelates are sold under diverse trademarks with different characteristics. This work evaluated 18 commercial products containing the most representative chelated iron sources used in agricultural practice in Spain when the study was done, namely the ferric chelates of EDDHA, EDDHMA, EDDCHA, EDDHSA, EDTA, and DTPA. The chelates were comprehensively characterized and quantitated by several techniques, including several chromatographic methods. Iron and chelate dynamics in soil were also studied in a model alkaline and calcareous soil. Results indicate that, in this model soil, among the different iron compounds studied only FeEDDHA and analogues have the capacity to maintain soluble iron in soil solution over time. These results are in agreement with general experience under field conditions. Furthermore, among the different ortho-ortho isomers of FeEDDHA's, FeEDDHSA and FeEDDCHA showed greater capacity than FeEDDHA and FeEDDHMA to maintain the chelated iron in soil solution over time.

  17. Moessbauer Spectroscopy in the Characterization of waste product used like fertilizer in soil. Some Applications

    International Nuclear Information System (INIS)

    Furet, N. R.; Orihuela, D. L.; Hernandez

    2007-01-01

    At the present time, the use of industrial solid wastes is an important task, because a great effort that have been carried out to preserve the environmental and to obtain the high technologies. In this work, a characterization of a industrial waste product, on base of the monohydrous iron sulphate (FeSO 4 .1H 2 O) with a 15% approximately of free sulphuric acid, used like improvement of soil was carried out by Mossabuer spectroscopy. This waste product was used in a series of the experiences in parcels (where peaches, (Prunus persica), strawberries are cultivated) in the zone of Cartaya (Huelva, Spain). The characterisation of soil from the parcel before application of this product was carried out in order to analyse and compare with the final results by using the methods of the Moessbauer spectroscopy. High contents of Fe, S, and Zn at the studied product are observed . This elements are very important for plants. The pH in soil and Fe, Mn, and Zn contents in soil and leaf were determined. The knowledge of the main chemical-structural properties of this product, used like improvement of soil, will permit the study of the influence to) on the soil properly, b) on the peach leaves and c) on the foodstuff fruit. (Author)

  18. Characterizing changes in soil bacterial community structure in response to short-term warming

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jinbo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; School of Marine Sciences, Ningbo University, Ningbo China; Sun, Huaibo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Peng, Fei [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Zhang, Huayong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Xue, Xian [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Gibbons, Sean M. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago IL USA; Gilbert, Jack A. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Department of Ecology and Evolution, University of Chicago, Chicago IL USA; Chu, Haiyan [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China

    2014-02-18

    High altitude alpine meadows are experiencing considerably greater than average increases in soil surface temperature, potentially as a result of ongoing climate change. The effects of warming on plant productivity and soil edaphic variables have been established previously, but the influence of warming on soil microbial community structure has not been well characterized. Here, the impact of 15 months of soil warming (both + 1 and + 2 degrees C) on bacterial community structure was examined in a field experiment on a Tibetan plateau alpine meadow using bar-coded pyrosequencing. Warming significantly changed (P < 0.05) the structure of the soil bacterial community, but the alpha diversity was not dramatically affected. Changes in the abundance of the Actinobacteria and Alphaproteobacteria were found to contribute the most to differences between ambient (AT) and artificially warmed conditions. A variance partitioning analysis (VPA) showed that warming directly explained 7.15% variation in bacterial community structure, while warming-induced changes in soil edaphic and plant phenotypic properties indirectly accounted for 28.3% and 20.6% of the community variance, respectively. Interestingly, certain taxa showed an inconsistent response to the two warming treatments, for example Deltaproteobacteria showed a decreased relative abundance at + 1 degrees C, but a return to AT control relative abundance at + 2 degrees C. This suggests complex microbial dynamics that could result from conditional dependencies between bacterial taxa.

  19. Biosurfactant Producing Microbes from Oil Contaminated Soil - Isolation, Screening and Characterization

    OpenAIRE

    , A Pandey; , D Nandi; , N Prasad; , S Arora

    2016-01-01

    Th1s paper bas1cally deals W1th 1solat10n, productıon and characterızatıon of biosurfactant producing microbes from oil contaminated soil sample. In this paper, we are comparing and discussing different methods to screen & characterize microbes from soil which can degrade oil due to their biosurfactant producing activity which helps in reduction of surface tension of oil. Oils used to check the biosurfactant activity of microbes, were engine oil and vegetable oil. Further isolation of...

  20. Hydrometric, Hydrochemical, and Hydrogeophysical Runoff Characterization Across Multiple Land Covers in the Agua Salud Project, Panama

    Science.gov (United States)

    Litt, Guy Finley

    As the Panama Canal Authority faces sensitivity to water shortages, managing water resources becomes crucial for the global shipping industry's security. These studies address knowledge gaps in tropical water resources to aid hydrological model development and validation. Field-based hydrological investigations in the Agua Salud Project within the Panama Canal Watershed employed multiple tools across a variety of land covers to investigate hydrological processes. Geochemical tracers informed where storm runoff in a stream comes from and identified electrical conductivity (EC) as an economical, high sample frequency tracer during small storms. EC-based hydrograph separation coupled with hydrograph recession rate analyses identified shallow and deep groundwater storage-discharge relationships that varied by season and land cover. A series of plot-scale electrical resistivity imaging geophysical experiments coupled with rainfall simulation characterized subsurface flow pathway behavior and quantified respectively increasing infiltration rates across pasture, 10 year old secondary succession forest, teak (tectona grandis), and 30 year old secondary succession forest land covers. Additional soil water, groundwater, and geochemical studies informed conceptual model development in subsurface flow pathways and groundwater, and identified future research needs.

  1. Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project

    Energy Technology Data Exchange (ETDEWEB)

    Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller; Laura L. Glaser; Kathryn L. Hanson; Ross D. Hartleb; William R. Lettis; Scott C. Lindvall; Stephen M. McDuffie; Robin K. McGuire; Gerry L. Stirewalt; Gabriel R. Toro; Robert R. Youngs; David L. Slayter; Serkan B. Bozkurt; Randolph J. Cumbest; Valentina Montaldo Falero; Roseanne C. Perman' Allison M. Shumway; Frank H. Syms; Martitia (Tish) P. Tuttle

    2012-01-31

    This report describes a new seismic source characterization (SSC) model for the Central and Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent the center, body, and range of technically defensible interpretations of the available data, models, and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic source characterization and ground motion characterization. These two components are used to calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report provides a new seismic source model. Results and Findings The product of this report is a regional CEUS SSC model. This model includes consideration of an updated database, full assessment and incorporation of uncertainties, and the range of diverse technical interpretations from the larger technical community. The SSC model will be widely applicable to the entire CEUS, so this project uses a ground motion model that includes generic variations to allow for a range of representative site conditions (deep soil, shallow soil, hard rock). Hazard and sensitivity calculations were conducted at seven test sites representative of different CEUS hazard environments. Challenges and Objectives The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and who wish to use an updated SSC model. This model is based on a comprehensive and traceable process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for Probabilistic

  2. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  3. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities

    Directory of Open Access Journals (Sweden)

    Paola Durán

    2017-08-01

    Full Text Available Wheat production around the world is severely compromised by the occurrence of “take-all” disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt. In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous “Mapuche” communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control.

  4. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities.

    Science.gov (United States)

    Durán, Paola; Jorquera, Milko; Viscardi, Sharon; Carrion, Victor J; Mora, María de la Luz; Pozo, María J

    2017-01-01

    Wheat production around the world is severely compromised by the occurrence of "take-all" disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous "Mapuche" communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control.

  5. SMART 3D SUBSURFACE CONTAMINANT CHARACTERIZATION AT THE BGRR DECOMMISSIONING PROJECT. ACCELERATED SITE TECHNOLOGY DEPLOYMENT COST AND PERFORMANCE REPORT

    International Nuclear Information System (INIS)

    HEISER, J.; KALB, P.; SULLIVAN, T.; MILIAN, L.

    2001-01-01

    The Brookhaven Graphite Research Reactor (BGRR), which operated from 1951--1968 is currently undergoing decontamination and decommissioning (D and D). As part of this effort, many of the major structures and facilities (e.g., Above Grade Ducts, Cooling Fans, Pile Fan Sump, Transfer Canal and Instruments Houses) are being removed to eliminate contaminants and reduce the footprint of the overall facility. However, a significant cost savings (almost $5M) can potentially be realized if the large concrete Below Grade Ducts (BGD) can be decontaminated and left in place. In order to do this, soils beneath the ducts must be fully characterized to identify areas where contaminants may have leaked, what radioactive and hazardous contaminants remain, and in what concentrations. This information will then be used to evaluate whether discrete areas of localized contaminated soil can be selectively removed or, if the contamination is significant and widespread, and whether the ducts themselves must be removed for complete cleanup. The information generated from this effort is input into the BGRR BGD Characterization Report and an Engineering Evaluation/Cost Analysis (EE/CA) currently being prepared to evaluate potential options for the ducts. This FY01 Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project combined a suite of innovative technologies to provide cost-effective characterization of the soils beneath the BGD and present the data in an easily understandable three-dimensional representation of the contaminant concentrations beneath the ducts. Conventional characterization of the soil would have required sampling a very large area in a tight grid pattern to ensure that all areas of potential contamination were evaluated. It is estimated that using baseline techniques would require approximately 2500 samples (costing ∼$1.6M), depending on the level of precision required by regulators. This massive amount of data would then be difficult to

  6. Characterization of the coal derived humic acids from Mukah, Sarawak as soil conditioner

    Directory of Open Access Journals (Sweden)

    Fong Sim Siong

    2006-01-01

    Full Text Available In Malaysia, abundant coal resources were found in Sarawak and Sabah. The utilization of coal resources, to date, is emphasized on the energy productions. The non-energy utilization as soil conditioner is unexplored. Therefore, this study attempted to characterize the coal humic acids extracted from Mukah coal and to evaluate its properties as soil conditioner. The coal humic acids from the regenerated sample were also assessed. The results revealed that different extractants and concentrations influenced the properties of humic acids. The extraction with KOH at 0.5 mol L-1 produced humic acids with low ash content and high acidic functional groups, which are substantial as soil conditioner. However, the yield was low. Regeneration of coal sample with 10% nitric acids improved the yield to an average of 83.45%. The acidic functional groups of nitrohumic acids were improved with the ash content remained at a low level.

  7. Characterization and nutrient release from silicate rocks and influence on chemical changes in soil

    Directory of Open Access Journals (Sweden)

    Douglas Ramos Guelfi Silva

    2012-06-01

    Full Text Available The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O, supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste. The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol, which was incubated for 100 days, at 70 % (w/w moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB were the silicate rocks that most influenced soil pH, while the mining byproduct (MB led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.

  8. Multiteide Project: Multiparametric characterization of the activity of Teide-Pico Viejo volcanic system

    Science.gov (United States)

    Domínguez Cerdeña, Itahiza; Villasante-Marcos, Victor; Meletlidis, Stavros; Sainz-Maza, Sergio; Abella, Rafael; Torres, Pedro A.; Sánchez, Nieves; Luengo-Oroz, Natividad; José Blanco, María; García-Cañada, Laura; Pereda de Pablo, Jorge; Lamolda, Héctor; Moure, David; Del Fresno, Carmen; Finizola, Anthony; Felepto, Alicia

    2017-04-01

    Teide-Pico Viejo complex stands for one of the major natural volcanic hazards in the Canary Islands, due to the expected types of eruptions in the area and the high number of inhabitants in Tenerife Island. Therefore, it is necessary to have a volcanic alert system able to afford a precise assessment of the current state of the complex. For this purpose, the knowledge of the expected signals at each volcanic activity level is required. Moreover, the external effects that can affect the measurements shall be distinguished, external influences as the atmosphere are qualitatively known but have not been quantified yet. The objective of the project is to collect, analyze and jointly and continuously evaluate over time geophysical, geodetic, geochemical and meteorological data from the Teide-Pico Viejo complex and its surroundings. A continuous multiparametric network have been deployed in the area, which, together with the data provided by the Volcano Monitoring Network of the Instituto Geográfico Nacional (IGN) and data from other institutions will provide a comprehensive set of data with high resolution in both space and time. This multiparametric network includes a seismic array, two self-potential lines for continuous measurements, five magnetometers and two weather stations. The network will be complemented with 8 CGPS stations, one tiltmeter, 10 seismic stations, and four thermometric stations on the fumaroles of Teide volcano that IGN already manage in Tenerife. The data will be completed with the results from different repeated surveys of self potential, soil temperature and CO2 diffuse flux in several pre-established areas on top of Teide throughout the entire duration of project. During the project, new computation tools will be developed to study the correlation between the different parameters analyzed. The results obtained will characterize the possible seasonal fluctuations of each parameter and the variations related to meteorological phenomena. In

  9. Characterization of bacterial communities and functions of two submerged soils from San Vitale park (Italy)

    Science.gov (United States)

    Mocali, Stefano; Chiellini, Carolina; Lagomarsino, Alessandra; Ferronato, Chiara; Vittori Antisari, Livia; Vianello, Gilmo

    2015-04-01

    Subaqueous soils has been introduced in the last edition of the Keys to Soil Taxonomy (Soil surveystaff, 2014), to describe soils covered by a water column of up to 2.5 m where different pedogenetic processes can be recognized. However, the role of bacterial community structure and function in such environments and its potential use as pedogenetic indicator is still largely unknown. Two submerged soils (WAS-2 and WAS-4) were collected from San Vitale park (Italy), a site where the evolution of the landscape from subaqueous wetland to interdunal and dunal system, and the interfacing of freshwater with saltwater, made this site particularly suitable for examining the pedogenetic indicators which can characterize and predict the soil hydromorphism in trasitional ecosystems. The two soils were classified and their physicochemical and morphological features were investigated. Selective media were used to isolate both culturable aerobic and anaerobic (microaerophilic) bacteria associated with each horizon. In WAS-2 seven horizons were identified (depths 4-0, 0-6, 6-13, 13-20, 20-36, 36-59/60, and 59/60-83 cm) while in WAS-4, five horizons were identified (depths 0-14, 14-20, 20-40, 40-45, 45-100 cm) for a total of 12 horizons (samples). For each sample, aerobic bacterial plate count was performed on solid LB medium, coupled with microaerophilic bacterial plate count either on SA500 minimal medium and AYE medium (0.5% soft agar each). Molecular identification (16S rRNA gene sequencing) of ~100 strains isolated from each of the three used medium was performed, for a total of ~300 strains for each sample. To complete the characterization of the microbial communities in all horizons, Next Generation Sequencing (NGS) analysis was carried out with 454 platform on each of the 12 samples. Moreover, the N2O and CH4 emissions were determined from each pedon. All the parameters were used to highlight the similarities and the differences between and within the pedons. The results

  10. Highlights from the SoilCAM project: Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring

    Science.gov (United States)

    French, H. K.; van der Zee, S. E. A. T. M.; Wehrer, M.; Godio, A.; Pedersen, L. B.; Toscano, G.

    2012-04-01

    The SoilCAM project (Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring 2008-2012, EU-FP7-212663) is aimed at improving current methods for monitoring contaminant distribution and biodegradation in the subsurface. At two test sites, Oslo airport Gardermoen in Norway and the Trecate site in Italy, a number of geophysical techniques, lysimeter and other soil and water sampling techniques as well as numerical flow and transport modelling have been combined at different scales in order to characterise flow transport processes in the unsaturated and saturated zones. Laboratory experiments have provided data on physical and bio-geo-chemical parameters for use in models and to select remediation methods. The geophysical techniques were used to map geological heterogeneities and also conduct time-lapse measurements of processes in the unsaturated zone. Both cross borehole and surface electrodes were used for electrical resistivity and induced polarisation surveys. The geophysical surveys showed clear indications of areas highly affected by de-icing chemicals along the runway at Oslo airport. The time lapse measurements along the runway at the airport show infiltration patterns during snowmelt and are used to validate 2D unsaturated flow and transport simulations using SUTRA. The Orchestra model is used to describe the complex interaction between bio-geo-chemical processes in a 1D profile along the runway. The presence of installations such as a membrane along the runway highly affects the flow pattern and challenges the capacity of the numerical code. Smaller scale field site measurements have revealed the increase of iron and manganese during degradation of de-icing chemicals. The use of Nitrate to increase red-ox potential was tested, but results have not been analysed yet. So far it cannot be concluded that degradation process can be quantified indirectly by geophysical monitoring. At the Trecate site a combination of georadar, electrical

  11. Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, P.M. [ed.

    1996-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  12. Yucca Mountain Site Characterization Project bibliography, July--December 1992: An update, Supplement 3, Addendum 2

    International Nuclear Information System (INIS)

    1993-04-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from July 1, 1992, through December 31, 1992. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  13. Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, P.M. [ed.

    1995-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  14. Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1

    International Nuclear Information System (INIS)

    Stephan, P.M.

    1995-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  15. Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update

    International Nuclear Information System (INIS)

    Stephan, P.M.

    1996-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  16. TWRS privatization support project waste characterization resource dictionary

    International Nuclear Information System (INIS)

    Patello, G.K.; Wiemers, K.D.

    1996-09-01

    A single estimate of waste characteristics for each underground storage tanks at the Hanford Site is not available. The information that is available was developed for specific programmatic objectives and varies in format and level of descriptive detail, depending on the intended application. This dictionary reflects an attempt to define what waste characterization information is available. It shows the relationship between the identified resource and the original data source and the inter-relationships among the resources; it also provides a brief description of each resource. Developed as a general dictionary for waste characterization information, this document is intended to make the user aware of potenially useful resources

  17. Study of the Matrix Effect on the Plasma Characterization of Heavy Elements in Soil Sediments

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to perform a study of the matrix effect on the plasma characterization of soil sediment targets. The plasma is generated by focusing a pulsed Nd: YAG laser on the target in air at atmospheric pressure. The plasma emission spectrum was detected using a portable Echelle spectrometer (Mechelle 7500 — Multichannel Instruments, Stockholm, Sweden with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, and electron temperature. Four heavy elements V, Pb, Mn and Co were determined in the obtained spectra. The LTE and optically thin plasma conditions were verified for the produced plasma. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of the spectral lines of the heavy elements in the soil sediments. The electron temperature does not change with concentration. For environmental applications, the obtained results showed the capability of the proposed LIBS setup with the portable Mechelle 7500 spectrometer to be applied in-situ for real-time measurements of the variation of the matrix elemental composition of soil sediments by following up only a single element as a marker for the composition of the soil sediment without need of analysis of the other elements.

  18. Forty years of 9Sr in situ migration: importance of soil characterization in modeling transport phenomena

    International Nuclear Information System (INIS)

    Fernandez, J.M.; Piault, E.; Macouillard, D.; Juncos, C.

    2006-01-01

    In 1960 experiments were carried out on the transfer of 9 Sr between soil, grapes and wine. The experiments were conducted in situ on a piece of land limited by two control strips. The 9 Sr migration over the last 40 years was studied by performing radiological and physico-chemical characterizations of the soil on eight 70 cm deep cores. The vertical migration modeling of 9 Sr required the definition of a triple layer conceptual model integrating the rainwater infiltration at constant flux as the only external factor of influence. Afterwards the importance of a detailed soil characterization for modeling was discussed and satisfactory simulation of the 9 Sr vertical transport was obtained and showed a calculated migration rate of about 1.0 cm year -1 in full agreement with the in situ measured values. The discussion was regarding some of the key parameters such as granulometry, organic matter content (in the Van Genuchten parameter determination), Kd and the efficient rainwater infiltration. Besides the experimental data, simplifying assumptions in modeling such as water-soil redistribution calculation and factual discontinuities in conceptual model were examined

  19. Characterization of waste products prepared from radioactive contaminated clayey soil cemented according to the GEODUR process

    International Nuclear Information System (INIS)

    Brodersen, K.; Vinther, A.

    1990-11-01

    Radioactive contaminated soil may arise due to accidents of various types or may be detected during decommisioning of nuclear installations. Ordinary surface soil cannot normally be conditioned using conventional cementation processes since the content of humic materials retards or prevents the solidification. An additive available from the Danish firm Geodur A/S makes it possible to circumvent this difficulty and to produce a monolithic, nondusting waste type using rather small amounts of cement. The report describes work on characterization of such a cemented waste product prepared on basis of clayey top soil from the Risoe area. The claimed advantages of the process was verified, and data for the compression strength (low), hydraulic conductivity (satisfactory) and other pore structure-related properties are given for the obtained products. Unfortunately the behaviour of cesium and strontium, representing two of the most relevant radionuclides, was not too promising. The retention of cesium is satisfactory, but less good than for the untreated soil. Greatly improved cesium retention after drying of the materials was noticed. Good retention of strontium is only obtained after reaction of the material with carbon dioxide from the atmosphere. The behaviour of the two isotopes in other types of cemented waste is somewhat similar, but the decrease in retention compared with untreated soil makes the process less interesting as a possibility for remedial actions after accidents, etc. Some further studies of the cemented soil waste are beeing made within the frame of the Nordic Nuclear Safety Studies. Elements forming low solublity components in the high pH environment in the cemented soil will probably be retained quite efficiently. This was demonstrated in case of Zn. (author) 11 tabs., 22 ills., 8 refs

  20. Characterization of light gaseous hydrocarbons of the surface soils of Krishna-Godavari basin, India.

    Science.gov (United States)

    Lakshmi, M; Rasheed, M A; Madhavi, T; Kalpana, M S; Patil, D J; Dayal, A M

    2012-01-01

    Several techniques are used for the exploration of hydrocarbons, of which; the geochemical techniques involving the microbiological technique use the principle of detecting the light hydrocarbon seepage activities for indication of sub-surface petroleum accumulations. Asurvey was carried out to characterize the light gaseous hydrocarbons seeping in oil and gas fields of Krishna-Godavari basin ofAndhra Pradesh. Aset of 50 sub-soil samples were collected at depths of about 3 m for geochemical analyses and 1m for microbiological analysis. The microbial prospecting studies showed the presence of high bacterial population for methane 2.5 x 10(2) to 6.0 x 10(6) cfu g(-1), propane 1x10(2) to 8.0 x 10(6) cfu g(-1) in soil samples. The adsorbed soil gas analysis showed the presence of moderate to low concentrations of methane (26 to 139 ppb), ethane (0 to 17 ppb), propane (0 to 8 ppb), butane (0 to 5 ppb) and pentane (0 to 2 ppb) in the soil samples of the study area. Carbon isotope analysis for methane ('13C1) ranging from -36.6 to -22.7 per hundred Pee Dee Belemnite (PDB) suggests these gases are of thermogenic origin. Geo-microbial prospecting method coupled with adsorbed soil gas and carbon isotope ratio analysis have thus shown good correlation with existing oil/gas fields of Krishna-Godavari basin.

  1. Physical chemistry characterization of soils of the Storage Center of Radioactive Wastes

    International Nuclear Information System (INIS)

    Hernandez T, U. O.; Fernandez R, E.; Monroy G, F.; Anguiano A, J.

    2011-11-01

    Any type of waste should be confined so that it does not causes damage to the human health neither the environment and for the storage of the radioactive wastes these actions are the main priority. In the Storage Center of Radioactive Wastes the radioactive wastes generated in Mexico by non energy applications are storage of temporary way. The present study is focused in determining the physical chemistry properties of the lands of the Storage Center of Radioactive Wastes like they are: real density, ph, conductivity percentage of organic matter and percentage of humidity. With what is sought to make a characterization to verify the reaction capacity of the soils in case of a possible flight of radioactive material. The results show that there are different density variations, ph and conductivity in all the soil samples; the ph and conductivity vary with regard to the contact time between the soil and their saturation point in water, for the case of the density due to the characteristics of the same soil; for what is not possible to establish a general profile, but is necessary to know the properties of each soil type more amply. Contrary case is the content of organic matter and humidity since both are in minor proportions. (Author)

  2. Characterization and pedogenesis of mangrove soils from Ilhéus-BA, Brazil

    Directory of Open Access Journals (Sweden)

    Felipe Haenel Gomes

    2016-12-01

    Full Text Available ABSTRACT Despite its importance, studies of mangrove soils are scarce, especially from a pedological perspective. The objective of this work was to study the genesis of soils in a mangrove environment in northeastern Brazil (Ilhéus, Bahia through a morphological, physical, chemical and mineralogical characterization. All soils presented a sandy texture, which is related to the parent material (Quaternary sand deposits. The tidal flooding and resulting hydromorphic conditions is responsible for dominance of dark grey colors, and high organic matter contents (paludization process. As well as the high values of electrical conductivity (EC and dominance of Na+ in the saturation extract (salinization and solodization processes, respectively. Contrastingly, the M3 profile, with aninga (Montrichardia linifera vegetation, a non-exclusive mangrove plant, showed colors with high chromas due to a lesser influence of tidal flooding. The pH values and the SO4=/Cl- ratios indicated the presence of sulfidic material and, thus, the occurrence of the sulfidization process. The soil organic matter fractionation evidenced the humin as the fraction with the highest content, probably because of removal of most soluble fractions due to tidal action. Similar to mangrove soils from southeast Brazil, the XRD analysis identified kaolinite, mica and expandable 2:1 minerals in the clay fraction.

  3. Algological and Mycological Characterization of Soils under Pine and Birch Forests in the Pasvik Reserve

    Science.gov (United States)

    Korneikova, M. V.; Redkina, V. V.; Shalygina, R. R.

    2018-02-01

    The structure of algological and mycological complexes in Al-Fe-humus podzols (Albic Podzols) under pine and birch forests of the Pasvik Reserve is characterized. The number of micromycetes is higher in more acid soils of the pine forest, while the species diversity is greater under the birch forest. The genus Penicillium includes the largest number of species. The greatest abundance and occurrence frequency are typical for Penicillium spinulosum, P. glabrum, and Trichoderma viride in pine forest and for Umbelopsis isabellina, Mucor sp., Mortierella alpina, P. glabrum, Aspergillus ustus, Trichoderma viride, and T. koningii in birch forest. Cyanobacteria-algal cenoses of the investigated soils are predominated by green algae. Soils under birch forest are distinguished by a greater diversity of algal groups due to the presence of diatoms and xanthophytes. Species of frequent occurrence are represented by Pseudococcomyxa simplex and Parietochloris alveolaris in soils of the pine forest and by Tetracystis cf. aplanospora, Halochlorella rubescens, Pseudococcomyxa simplex, Fottea stichococcoides, Klebsormidium flaccidum, Hantzschia amphioxys, Microcoleus vaginatus, and Aphanocapsa sp. in soils under birch forest

  4. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    Science.gov (United States)

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Characterization and effects of cross-linked potassium polyacrylate as soil amendment

    OpenAIRE

    Sanz Gómez, Jorge

    2016-01-01

    Falta palabras clave Cross-linked potassium polyacrylate (Luquasorb®1280R) is a granular anionic superabsorbent polymer with the ability to absorb large amounts of water. The objectives of this study were the physicochemical characterization of the material and its effects when used as soil amendment together with the evaluation of the impact on agronomical parameters when it was applied to processing varieties of tomato (Solanum lycopersicum L.) grown under Mediterranean climate condit...

  6. Characterizing agricultural soil nitrous acid (HONO) and nitric oxide (NO) emissions with their nitrogen isotopic composition

    Science.gov (United States)

    Chai, J.; Miller, D. J.; Guo, F.; Dell, C. J.; Karsten, H.; Hastings, M. G.

    2017-12-01

    Nitrous acid (HONO) is a major source of atmospheric hydroxyl radical (OH), which greatly impacts air quality and climate. Fertilized soils may be important sources of HONO in addition to nitric oxide (NO). However, soil HONO emissions are especially challenging to quantify due to huge spatial and temporal variation as well as unknown HONO chemistry. With no in-situ measurements available, soil HONO emissions are highly uncertain. Isotopic analysis of HONO may provide a tool for tracking these sources. We characterize in situ soil HONO and NO fluxes and their nitrogen isotopic composition (δ15N) across manure management and meteorological conditions during a sustainable dairy cropping study in State College, Pennsylvania. HONO and NO were simultaneously collected at hourly resolution from a custom-coated dynamic soil flux chamber ( 3 LPM) using annular denuder system (ADS) coupled with an alkaline-permanganate NOx collection system for offline isotopic analysis of δ15N with ±0.6 ‰ (HONO) and ±1.5 ‰ (NO) precision. The ADS method was tested using laboratory generated HONO flowing through the chamber to verify near 100% collection (with no isotopic fractionation) and suitability for soil HONO collection. Corn-soybean rotation plots (rain-fed) were sampled following dairy manure application with no-till shallow-disk injection (112 kg N ha-1) and broadcast with tillage incorporation (129 kg N ha-1) during spring 2017. Soil HONO fluxes (n=10) ranged from 0.1-0.6 ng N-HONO m-2 s-1, 4-28% of total HONO+NO mass fluxes. HONO and NO fluxes were correlated, with both declining during the measurement period. The soil δ15N-HONO flux weighted mean ±1σ of -15 ± 6‰ was less negative than δ15N of simultaneously collected NO (-29 ± 8‰). This can potentially be explained by fractionations associated with microbial conversion of nitrite, abiotic production of HONO from soil nitrite, and uptake and release with changing soil moisture. Our results have implications for

  7. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Lee

    2005-09-15

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  8. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    International Nuclear Information System (INIS)

    Lee, T.A.

    2005-01-01

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  9. Vadose zone characterization of highly radioactive contaminated soil at the Hanford Site

    International Nuclear Information System (INIS)

    Buckmaster, M.A.

    1993-05-01

    The Hanford Site in south-central Washington State contains over 1500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy has initiated a remedial investigation/feasibility study at the 200-BP-1 operable unit. The 200-BP-1 remedial investigation is the first Comprehensive Environmental Response, Compensation, and Liability Act of 1980 investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste site within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling the waste site, chemical and physical analysis of samples, and development of a conceptual vadose zone model. Predicted modeling concentrations compared favorably to analytical data collected during the initial characterization activities

  10. Soil carbon sequestration potential for "grain for green" project in Loess Plateau, China

    Science.gov (United States)

    Chang, R.; Fu, B.; Liu, Gaisheng; Liu, S.

    2011-01-01

    Conversion of cropland into perennial vegetation land can increase soil organic carbon (SOC) accumulation, which might be an important mitigation measure to sequester carbon dioxide from the atmosphere. The “Grain for Green” project, one of the most ambitious ecological programmes launched in modern China, aims at transforming the low-yield slope cropland into grassland and woodland. The Loess Plateau in China is the most important target of this project due to its serious soil erosion. The objectives of this study are to answer three questions: (1) what is the rate of the SOC accumulation for this “Grain for Green” project in Loess Plateau? (2) Is there a difference in SOC sequestration among different restoration types, including grassland, shrub and forest? (3) Is the effect of restoration types on SOC accumulation different among northern, middle and southern regions of the Loess Plateau? Based on analysis of the data collected from the literature conducted in the Loess Plateau, we found that SOC increased at a rate of 0.712 TgC/year in the top 20 cm soil layer for 60 years under this project across the entire Loess Plateau. This was a relatively reliable estimation based on current data, although there were some uncertainties. Compared to grassland, forest had a significantly greater effect on SOC accumulation in middle and southern Loess Plateau but had a weaker effect in the northern Loess Plateau. There were no differences found in SOC sequestration between shrub and grassland across the entire Loess Plateau. Grassland had a stronger effect on SOC sequestration in the northern Loess Plateau than in the middle and southern regions. In contrast, forest could increase more SOC in the middle and southern Loess Plateau than in the northern Loess Plateau, whereas shrub had a similar effect on SOC sequestration across the Loess Plateau. Our results suggest that the “Grain for Green” project can significantly increase the SOC storage in Loess Plateau

  11. THz transceiver characterization : LDRD project 139363 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Nordquist, Christopher Daniel; Wanke, Michael Clement; Cich, Michael Joseph; Reno, John Louis; Fuller, Charles T.; Wendt, Joel Robert; Lee, Mark; Grine, Albert D.

    2009-09-01

    LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. In addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project.

  12. An example of treated waste water use for soil irrigation in the SAFIR project.

    Science.gov (United States)

    Cary, L.; Jovanovic, Z.; Stikic, R.; Blagojevic, S.; Kloppmann, W.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops on soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). In this context, the European FP6 SAFIR project (Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management) investigates the geochemical quality of the root zone soil, knowing it is the main transit and storage compartment for pollutants. The type of reaction (sorption, co-precipitation…) and the reactive mineral phases also determine the availability of trace elements for the plant and determine the passage towards crops and products. Reactions of the infiltrating water with the soil solid phase are important for the solute cycling, temporary fixation and remobilisation of trace pollutants. Therefore the soil water quality was directly or indirectly assessed. Direct measurements of soil water were made through porous cups. The experiments were carried out during the growing season of 2006, 2007 and 2008 in a vegetable commercial farm, located at 10 km north of Belgrade. The soil is silty clayey, and developed on alluvial deposits. It was classified as humogley according to USDA Soil Classification. The climate of the field side is a continental type with hot and dry summers and cold and rainy winters. As in the rest of Serbia, farm suffers from water deficits during the main growing season. The initial soil quality was assessed through a sampling campaign before the onset of first year irrigation; the soil quality was then monitored throughout three years. Soil sampling

  13. Integrating removal actions and remedial actions: Soil and debris management at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Goidell, L.C.; Hagen, T.D.; Strimbu, M.J.; Dupuis-Nouille, E.M.; Taylor, A.C.; Weese, T.E.; Yerace, P.J.

    1996-01-01

    Since 1991, excess soil and debris generated at the Fernald Environmental management Project (FEMP) have been managed in accordance with the principles contained in a programmatic Removal Action (RvA) Work Plan (WP). This plan provides a sitewide management concept and implementation strategy for improved storage and management of excess soil and debris over the period required to design and construct improved storage facilities. These management principles, however, are no longer consistent with the directions in approved and draft Records of Decision (RODs) and anticipated in draft RODs other decision documents. A new approach has been taken to foster improved management techniques for soil and debris that can be readily incorporated into remedial design/remedial action plans. Response, Compensation and Liability Act (CERCLA) process. This paper describes the methods that were applied to address the issues associated with keeping the components of the new work plan field implementable and flexible; this is especially important as remedial design is either in its initial stages or has not been started and final remediation options could not be precluded

  14. Successful Characterization and Remedial Contour of Highly Contaminated Mercury Soil at the Y-12 National Security Complex - 13593

    Energy Technology Data Exchange (ETDEWEB)

    White, Aaron; Rigas, Michael [U.S. Department of Energy Oak Ridge Operations, Oak Ridge, TN 37830 (United States); Birchfield, Joseph W. III [1528 Paxton Drive Knoxville, TN 37918 (United States)

    2013-07-01

    An area known as the 81-10 pad within the footprint of the Y-12 National Security Complex, suspected to be heavily contaminated with mercury, was slated for characterization in support of a Federal Facilities Agreement (FFA) milestone to be accomplished by September 30, 2012. A full remedial design report (RDR) required the soil in Exposure Unit -9 (EU-9) to be fully characterized for a number of contaminates of concern including mercury. The goal of this characterization effort was to determine what soil, if any, would need to be removed for the protection of industrial workers and impacts to the surface and ground water. Funding for this project was made available using buy-back scope under the American Recovery and Reinvestment Act (ARRA). The EU-9 soil unit involved 3 different classifications which were determined as follows: Class 1: Known to have been impacted, contamination is likely; Class 2: Suspected to have been impacted, contamination is unknown; Class 3: Area not known to have been impacted, contamination unlikely. Due to various sampling and analysis events since the 1980's, significant mercury contamination was expected under the concrete pad of an area known as 81-10. Mercury contamination outside of the boundary of this pad within the EU-9 footprint was not known and therefore an original planned estimate of 1,461 cubic meters of material were expected to be heavily contaminated with mercury requiring removal, treatment and disposal. Through the use of a highly effective nature and extent sampling and analysis design that involved a hybrid of statistically-based and judgmental sampling, the actual remedial contour requiring removal was approximately 717 cubic meters, roughly 12% of the original estimate. This characterization approach was executed in full compliance with the Record of Decision (ROD) [1] documents that were agreed upon by the U.S. Department of Energy, Environmental Protection Agency and Tennessee Department of Environment and

  15. Characterization of a soil amendment derived from co-composting of agricultural wastes and biochar

    Science.gov (United States)

    Curaqueo, Gustavo; Ángel Sánchez-Monedero, Miguel; Meier, Sebastián; Medina, Jorge; Panichini, Marcelo; Borie, Fernando; Navia, Rodrigo

    2016-04-01

    contents increased in BC10 treatment, while the K contents were similar in all treatments as well as C/N ratio (around 15). The organic matter content was BC10>BC5>BC0 and the dissolved organic C content was lower than 8.3 g kg-1 for all piles confirming the maturity of compost. The germination test showed a non-toxic effect of all amendments in the species assayed obtaining a germination index between 55% and 80.7% indicating maturity of the amendments evaluated. Our results indicated that the combined use of agricultural wastes and biochar by mean of a co-composting process is a suitable option for generating good quality amendments for improving soil condition and optimizing nutrient cycling at farm scale. Financial support for this research was provided by the National Commission for Scientific and Technological Research through FONDECYT 11140508 Project

  16. Waste Tank Vapor Characterization Project: Annual status report for FY 1995

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Fruchter, J.S.; Huckaby, J.L.; Birn, M.B.; McVeety, B.D.; Evans, J.C. Jr.; Pool, K.H.; Silvers, K.L.; Goheen, S.C.

    1995-11-01

    This report compiles information collected during the Fiscal Year 1995 pertaining to the waste tank vapor characterization project. Information covers the following topics: project management; organic sampling and analysis; inorganic sampling and analysis; waste tank vapor data reports; and the waste tanks vapor database

  17. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1995 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1996-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project`s (YMP`s) quality assurance program for January 1 to September 30, 1995. The report includes major sections on program activities and trend analysis.

  18. Characterization of Soil Suppressiveness to Root-Knot Nematodes in Organic Horticulture in Plastic Greenhouse.

    Science.gov (United States)

    Giné, Ariadna; Carrasquilla, Marc; Martínez-Alonso, Maira; Gaju, Núria; Sorribas, Francisco J

    2016-01-01

    The fluctuation of Meloidogyne population density and the percentage of fungal egg parasitism were determined from July 2011 to July 2013 in two commercial organic vegetable production sites (M10.23 and M10.55) in plastic greenhouses, located in northeastern Spain, in order to know the level of soil suppressiveness. Fungal parasites were identified by molecular methods. In parallel, pot tests characterized the level of soil suppressiveness and the fungal species growing from the eggs. In addition, the egg parasitic ability of 10 fungal isolates per site was also assessed. The genetic profiles of fungal and bacterial populations from M10.23 and M10.55 soils were obtained by Denaturing Gradient Gel Electrophoresis (DGGE), and compared with a non-suppressive soil (M10.33). In M10.23, Meloidogyne population in soil decreased progressively throughout the rotation zucchini, tomato, and radish or spinach. The percentage of egg parasitism was 54.7% in zucchini crop, the only one in which eggs were detected. Pochonia chlamydosporia was the only fungal species isolated. In M10.55, nematode densities peaked at the end of the spring-summer crops (tomato, zucchini, and cucumber), but disease severity was lower than expected (0.2-6.3). The percentage of fungal egg parasitism ranged from 3 to 84.5% in these crops. The results in pot tests confirmed the suppressiveness of the M10.23 and M10.55 soils against Meloidogyne. The number of eggs per plant and the reproduction factor of the population were reduced (P < 0.05) in both non-sterilized soils compared to the sterilized ones after one nematode generation. P. chlamydosporia was the only fungus isolated from Meloidogyne eggs. In in vitro tests, P. chlamydosporia isolates were able to parasitize Meloidogyne eggs from 50 to 97% irrespective of the site. DGGE fingerprints revealed a high diversity in the microbial populations analyzed. Furthermore, both bacterial and fungal genetic patterns differentiated suppressive from non

  19. Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse

    Directory of Open Access Journals (Sweden)

    Ariadna eGiné

    2016-02-01

    Full Text Available The fluctuation of Meloidogyne population density and the percentage of fungal egg parasitism were determined from July 2011 to July 2013 in two commercial organic vegetable production sites (M10.23 and M10.55 in plastic greenhouses, located in northeastern Spain, in order to know the level of soil suppressiveness. Fungal parasites were identified by molecular methods. In parallel, pot tests characterized the level of soil suppressiveness and the fungal species growing from the eggs. In addition, the egg parasitic ability of ten fungal isolates per site was also assessed. The genetic profiles of fungal and bacterial populations from M10.23 and M10.55 soils were obtained by Denaturing Gradient Gel Electrophoresis (DGGE, and compared with a non-suppressive soil (M10.33. In M10.23, Meloidogyne population in soil decreased progressively throughout the rotation zucchini, tomato, and radish or spinach. The percentage of egg parasitism was 54.7% in zucchini crop, the only one in which eggs were detected. Pochonia chlamydosporia was the only fungal species isolated. In M10.55, nematode densities peaked at the end of the spring-summer crops (tomato, zucchini, and cucumber, but disease severity was lower than expected (0.2 to 6.3. The percentage of fungal egg parasitism ranged from 3 to 84.5% in these crops. The results in pot tests confirmed the suppressiveness of the M10.23 and M10.55 soils against Meloidogyne. The number of eggs per plant and the reproduction factor of the population were reduced (P < 0.05 in both non-sterilized soils compared to the sterilized ones after one nematode generation. Pochonia chlamydosporia was the only fungus isolated from Meloidogyne eggs. In in vitro tests, P. chlamydosporia isolates were able to parasitize Meloidogyne eggs from 50 to 97% irrespective of the site. DGGE fingerprints revealed a high diversity in the microbial populations analyzed. Furthermore, both bacterial and fungal genetic patterns differentiated

  20. Preparation, Characterization, and UV Irradiation of Mars Soil Analogues Under Simulated Martian Conditions to Support Detection of Molecular Biomarkers

    Science.gov (United States)

    Fornaro, T.; Brucato, J. R.; ten Kate, I. L.; Siljeström, S.; Steele, A.; Cody, G. D.; Hazen, R. M.

    2018-04-01

    We present laboratory activities of preparation, characterization, and UV irradiation processing of Mars soil analogues, which are key to support both in situ exploration and sample return missions devoted to detection of molecular biomarkers on Mars.

  1. Summer Student Project: GEM Simulation and Gas Mixture Characterization

    CERN Document Server

    Oviedo Perhavec, Juan Felipe

    2013-01-01

    Abstract This project is a numerical simulation approach to Gas Electron Multiplier (GEM) detectors design. GEMs are a type of gaseous ionization detector that have proposed as an upgrade for CMS muon endcap. The main advantages of this technology are high spatial and time resolution and outstanding aging resistance. In this context, fundamental physical behavior of a Gas Electron Multiplier (GEM) is analyzed using ANSYS and Garfield++ software coupling. Essential electron transport properties for several gas mixtures were computed as a function of varying electric and magnetic field using Garfield++ and Magboltz.

  2. Final Hanford Site Transuranic (TRU) Waste Characterization Qualit Assurance Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP)

  3. Fundamental remote sensing science research program. Part 1: Scene radiation and atmospheric effects characterization project

    Science.gov (United States)

    Murphy, R. E.; Deering, D. W.

    1984-01-01

    Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest.

  4. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Naoko [EcoTopia Science Institute, Nagoya University Nagoya 464-8603 (Japan)]. E-mail: ysd75@esi.nagoya-u.ac.jp; Yoshida, Yukina [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Handa, Yuko [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kim, Hyo-Keun [Korea Ginseng and Tobacco Research Institute, Taejon 305-345 (Korea, Republic of); Ichihara, Shigeyuki [Faculty of Agriculture, Meijo University, Nagoya 468-8502 (Japan); Katayama, Arata [EcoTopia Science Institute, Nagoya University Nagoya 464-8603 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2007-08-01

    Dechlorination of PCP has been observed previously under anaerobic condition in paddy soil. However, there is poor information about the dechlorination pathway of PCP and the microbial community associated with the PCP dechlorination in paddy soil. In this study, an anaerobic microbial community dechlorinating PCP was enriched by serial transfers from a paddy soil using a medium containing PCP, lactate and the steam-sterilized paddy soil. The enriched microbial community dechlorinated PCP completely to phenol under the anaerobic condition by a dechlorinating pathway as follows; PCP {sup {yields}} 2,3,4,5-tetrachlorophenol {sup {yields}} 3,4,5-trichlorophenol {sup {yields}} 3,5-dichlorophenol {sup {yields}} 3-chlorophenol {sup {yields}} phenol. Intermediate products such as 3-chlorophenol were not accumulated, which were immediately dechlorinated to phenol. The enriched microbial community was characterized physiologically by testing the effects of electron donors and electron acceptors on the dechlorinating activity. The dechlorinating activity was promoted with lactate, pyruvate, and hydrogen as electron donors but not with acetate. Electron acceptors, nitrate and sulphate, inhibited the dechlorinating activity competitively but not iron (III). The microbial group associated with the anaerobic dechlorination was characterized by the effect of specific inhibitors on the PCP dechlorination. Effects of specific metabolic inhibitors and antibiotics indicated the involvement of Gram-positive spore-forming bacteria with the PCP dechlorinating activity, which was represented as bacteria of phylum Firmicutes. The structure of the microbial community was characterized by fluorescence in situ hybridization, quinone profiling, and PCR-DGGE (denaturing gel gradient electrophoresis). The combined results indicated the predominance of Clostridium species of phylum Firmicutes in the microbial community. Desulfitobacterium spp. known as anaerobic Gram-positive spore

  5. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil

    International Nuclear Information System (INIS)

    Yoshida, Naoko; Yoshida, Yukina; Handa, Yuko; Kim, Hyo-Keun; Ichihara, Shigeyuki; Katayama, Arata

    2007-01-01

    Dechlorination of PCP has been observed previously under anaerobic condition in paddy soil. However, there is poor information about the dechlorination pathway of PCP and the microbial community associated with the PCP dechlorination in paddy soil. In this study, an anaerobic microbial community dechlorinating PCP was enriched by serial transfers from a paddy soil using a medium containing PCP, lactate and the steam-sterilized paddy soil. The enriched microbial community dechlorinated PCP completely to phenol under the anaerobic condition by a dechlorinating pathway as follows; PCP → 2,3,4,5-tetrachlorophenol → 3,4,5-trichlorophenol → 3,5-dichlorophenol → 3-chlorophenol → phenol. Intermediate products such as 3-chlorophenol were not accumulated, which were immediately dechlorinated to phenol. The enriched microbial community was characterized physiologically by testing the effects of electron donors and electron acceptors on the dechlorinating activity. The dechlorinating activity was promoted with lactate, pyruvate, and hydrogen as electron donors but not with acetate. Electron acceptors, nitrate and sulphate, inhibited the dechlorinating activity competitively but not iron (III). The microbial group associated with the anaerobic dechlorination was characterized by the effect of specific inhibitors on the PCP dechlorination. Effects of specific metabolic inhibitors and antibiotics indicated the involvement of Gram-positive spore-forming bacteria with the PCP dechlorinating activity, which was represented as bacteria of phylum Firmicutes. The structure of the microbial community was characterized by fluorescence in situ hybridization, quinone profiling, and PCR-DGGE (denaturing gel gradient electrophoresis). The combined results indicated the predominance of Clostridium species of phylum Firmicutes in the microbial community. Desulfitobacterium spp. known as anaerobic Gram-positive spore-forming bacteria dechlorinating PCP were not detected by PCR using a

  6. Tank characterization project (TWRS) process engineering data management plan

    International Nuclear Information System (INIS)

    Adams, M.R.

    1997-01-01

    The Tank Characterization Data Management (TCDM) system provides customers and users with data and information of known and acceptable quality when they are needed, in the form they are needed, and at a reasonable cost. The TCDM mission will be accomplished by the following: (1) maintaining and managing tank characterization data and information based on business needs and objectives including transfer of ownership to future contractors; (2) capturing data where it originates and entering it only once to control data consistency, electronic data and information management shall be emphasized to the extent practicable; (3) establishing data quality standards, and managing and certifying databases and data sources against these standards to maintain the proper level of data and information quality consistent with the importance of the data and information, data obtained at high cost with significant implications to decision making regarding tank safety and/or disposal will be maintained and managed at the highest necessary levels of quality; (4) establishing and enforcing data management standards for the Tank Characterization Database (TCD) and supporting data sources including providing mechanisms for discovering and correcting data errors before they propagate; (5) emphasizing electronic data sharing with all authorized users, customers, contractors, and stakeholders to the extent practicable; (6) safeguarding data and information from unauthorized alteration or destruction; (7) providing standards for electronic information deliverables to subcontractors and vendors to achieve uniformity in electronic data management; and (8) investing in new technology (hardware and/or software) as prudent and necessary to accomplish the mission in an efficient and effective manner

  7. Distribution of lithium in agricultural and grazing land soils at European continental scale (GEMAS project)

    Science.gov (United States)

    Negrel, Philippe; Reimann, Clemens; Ladenberger, Anna; Birke, Manfred

    2017-04-01

    The environmental chemistry of Li has received attention because Li has been shown to have numerous and important implications for human health and agriculture and the stable isotope composition of lithium is a powerful geochemical tool that provides quantitative information about Earth processes such as sediment recycling, global chemical weathering and its role in the carbon cycle, hydrothermal alteration, and groundwater evolution. However, the role of bedrock sources, weathering and climate changes in the repartition of Li at the continental scale has been scarcely investigated. Agricultural soil (Ap-horizon, 0-20 cm) and grazing land soil (Gr-horizon, 0-10 cm) samples were collected from a large part of Europe (33 countries, 5.6 million km2) as a part of the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) soil mapping project. GEMAS soil data have been used to provide a general view of element mobility and source rocks at the continental scale, either by reference to average crustal abundances or to normalized patterns of element mobility during weathering processes. The survey area includes a diverse group of soil parent materials with varying geological history, a wide range of climate zones and landscapes. The concentrations of Li in European soil were determined by ICP-MS after a hot aqua regia extraction, and their spatial distribution patterns generated by means of a GIS software. Due to the partial nature of the aqua regia extraction, the mean concentration of Li in the European agricultural soil (ca 11.4 mg/kg in Ap and Gr soils) is about four times lower than in the Earth's upper continental crust (UCC = 41 mg/kg). The combined plot histogram - density trace one- dimensional scattergram - boxplot of the aqua regia data displays the univariate data distribution of Li. The one-dimensional scattergram and boxplot highlight the existence of many outliers at the lower end of the Li distribution and very few at the upper end. Though the

  8. Environmental Indicators for Italian Soils (SIAS Project: Development of a New Approach from Regional to Harmonised National Data

    Directory of Open Access Journals (Sweden)

    Irene Rischia

    2010-10-01

    Full Text Available Erosion and loss of organic matter of soils are two of the threats identified by the European Communication “Towards a Thematic Strategy for Soil Protection” (2002/267, and by the Thematic Strategy for Soil Protection (COM 2006, 231. Regarding Italian context, a new approach that exploits soil data and expertise available at local level has been developed in a pilot project, named SIAS Project (Sviluppo Indicatori Ambientali sul Suolo that involves ISPRA (Italian Institute for Environmental Protection and Research as project coordinator and financing body, Regional Agency for Environmental Prevention and Protection in Veneto (ARPAV, responsible of the technical coordination of the activities, Regional Soil Survey Services that contribute to the methodology definition and responsible for the data elaboration within their region of the data, JRC and CRA – ABP as technical support. The SIAS Project concerns the building of two soil environmental indicators, erosion and organic matter content, based on harmonisation of regional data and according with the INSPIRE directive. The main aim of the SIAS Project can be summarised in exploiting at most the existing information and local expertise for indicator assessment in a relatively short time, in order to obtain interregional harmonisation of the information about erosion and organic matter content at regional scale. For this purpose, it has been chosen to assess and represent output data by a reference grid (1 km x 1 km with a common coordinate reference system, following the recommendations of the INSPIRE Directive. Furthermore an exchange format for storing data and metadata information has been set up jointly by the working group. So far a large part of the Northern and Central Italy has completed the project, while a part of Southern Region has only recently joined it. The results show that at the present moment there are some differences both in soil loss and in organic matter content

  9. Tank Vapor Characterization Project: Annual status report for FY 1996

    International Nuclear Information System (INIS)

    Silvers, K.L.; Fruchter, J.S.; Huckaby, J.L.; Almeida, T.L.; Evans, J.C. Jr.; Pool, K.H.; Simonen, C.A.; Thornton, B.M.

    1997-01-01

    In Fiscal Year 1996, staff at the Vapor Analytical Laboratory at Pacific Northwest National Laboratory performed work in support of characterizing the vapor composition of the headspaces of radioactive waste tanks at the Hanford Site. Work performed included support for technical issues and sampling methodologies, upgrades for analytical equipment, analytical method development, preparation of unexposed samples, analyses of tank headspaces samples, preparation of data reports, and operation of the tank vapor database. Progress made in FY 1996 included completion and issuance of 50 analytical data reports. A sampling system comparison study was initiated and completed during the fiscal year. The comparison study involved the vapor sampling system (VSS), a truck-based system, and the in situ vapor sampling system (ISVS), a cart-based system. Samples collected during the study were characterized for inorganic, permanent gases, total non-methane organic compounds and organic speciation by SUMMA trademark and TST methods. The study showed comparable sampling results between the systems resulting in the program switching from the VSS to the less expensive ISVS methodology in late May 1996. A temporal study was initiated in January 1996 in order to understand the influences seasonal temperatures changes have on the vapors in the headspace of Hanford waste tanks. A holding time study was initiated in the fourth quarter of FY 1996. Samples were collected from tank S-102 and rushed to the laboratory for time zero analysis. Additional samples will be analyzed at 1, 2, 4, 8, 16, and 32 weeks

  10. Field Guide to Soils. Earth Science Curriculum Project Pamphlet Series PS-2.

    Science.gov (United States)

    Foth, Henry; Jacobs, Hyde S.

    Discussed are the importance of soil to plant and animal life, the evolution of a soil profile, and the major kinds of soil in the United States. On a suggested field trip, students examine different kinds of soil profiles; they also measure soil acidity and water-holding capacity. Suggestions for further study are provided along with references…

  11. Soil and its selected properties on the example of an individual project for the grade 1 students of upper secondary school

    Science.gov (United States)

    Krzeczkowska, Małgorzata

    2014-05-01

    According to the requirements of the new core curriculum for Chemistry, students shall acquire knowledge through research and use the acquired chemical knowledge in their everyday life. However, in the recommended conditions and mode of implementation of the curriculum it is confirmed, that students' autonomous observation constitutes a basis for experiencing, inferences, analysis, and generalisations of phenomena [1]. It is obvious that teachers should create proper didactic situations, during which school students have a possibility to develop attitudes, skills and competences. More about competences we can find in the recommendations of the European Parliament and of the Council of 18 December 2006 on key competences for lifelong learning [2]. The detailed content of the core curriculum for the subject of chemistry at the fourth stage of education (basic level), we read: "4. Chemistry of soil. Student: 1) explains what the sorption properties of the soil are; plans and performs .... study of the sorption properties of the soil. " In the school year 2012/2013 chemistry teachers decided to offer students of a first-class to be involved in the project "Soil in the chemist's eye." It was considered that the method of the project is known from lower secondary school level and the teacher will have an opportunity to recognize students, who in the future, will choose the class with advanced chemistry program and determine the level of their skills, in particular the research skills. What we can offer to students does not necessarily take place in a well-equipped chemical laboratory. On the contrary, this process should be based on the well-known school subjects items, articles, objects and phenomena, which students meet in everyday life. The well-chosen methodologies and ways of showing the world will be, more understandable and skills will become a permanent part of the students, knowledge. Project characterization: a) The proposed project is problem-oriented, in

  12. Information Theoretic Characterization of Physical Theories with Projective State Space

    Science.gov (United States)

    Zaopo, Marco

    2015-08-01

    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

  13. Radioisotope ratios in characterizing the movement of different physical and chemical species through natural soils

    International Nuclear Information System (INIS)

    Robertson, D.E.; Perkins, R.W.

    1975-01-01

    Physicochemical characterization studies of reactor effluent water radionuclides at the Hanford N-Reactor are providing important information describing the mobility of radionuclides in freshwater environments. At N-Reactor, cooling water containing a wide spectrum of radionuclides in various physicochemical forms is discharged to a seepage trench located near the reactor. The effluent water migrates through a soil bank between the trench and the Columbia River, and a portion of the water emerges as seepage springs along the bank of the Columbia River near the reactor. The mobility of effluent water radionuclides during transport through the soil is greatly dependent upon the physicochemical forms of the radionuclides. Radionuclides in particulate and cationic forms are nearly quantitatively retained in the soil bank by sorption onto mineral phases; whereas, radionuclides in anionic and soluble nonionic forms are relatively mobile and are retained by the soil to a much lesser degree. Several radionuclides such as 60 Co, 103-106 Ru and 122-124-125 Sb are present in reactor effluent water partitioned among particulate, cationic, anionic and non-ionic species. However, as these radionuclides migrate through the woil bank their particulate and cationic forms are retained, and predominantly anionic and nonionic forms emerged in the seepage springs. Studies of the behavior of these radionuclides are providing data for assessing present rad-waste treatment processes and in improving future processes for reducing environmental releases of radionuclides from nuclear installations. (author)

  14. Characterization and inventory of contaminants in WAG 2 floodplain soils of White Oak Creek

    International Nuclear Information System (INIS)

    Ford, C.J.; Nyquist, J.E.; Purucker, S.T.; Burgoa, B.B.; Winterfield, R.F.

    1997-01-01

    A remedial investigation was conducted to determine the extent and type of contamination in the floodplain soils of Waste Area Grouping (WAG) 2, in conjunction with environmental restoration activities at the US Department of Energy (DOE) Oak Ridge Reservation (ORR). WAG 2 is located downstream from the main Oak Ridge National Laboratory (ORNL) plant area. As a result of past, present, and potential future releases of hazardous substances to the environment, the ORR was placed on the National Priorities List in December 1989. Sites on this list must be investigated to determine if remedial actions are possible. This report documents the findings of the remedial investigation of the WAG 2 floodplain soils by (1) presenting the characterization and inventory of contaminants, (2) comparing the walkover survey data to quantitative gamma-emitting radionuclide data, and (3) presenting an assessment of human health risk from exposure to these soils. Contaminant characterization results indicated that the primary contaminants in the WAG 2 floodplain are the gamma-emitting radionuclides 137 Cs and 60 Co, although cobalt activity levels are 1/25th or less than those of cesium. Inorganic contaminants discussed in this report were limited to those contributing significantly to human exposure: antimony, barium, chromium(IV), manganese, mercury, and nickel

  15. Engineering characterization of ground motion. Task II: Soil structure interaction effects on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Luco, J E; Wong, H L [Structural and Earthquake Engineering Consultants, Inc., Sierra Madre, CA (United States); Chang, C -Y; Power, M S; Idriss, I M [Woodward-Clyde Consultants, Walnut Creek, CA (United States)

    1986-08-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies.

  16. Volkov transform generalized projection algorithm for attosecond pulse characterization

    International Nuclear Information System (INIS)

    Keathley, P D; Bhardwaj, S; Moses, J; Laurent, G; Kärtner, F X

    2016-01-01

    An algorithm for characterizing attosecond extreme ultraviolet pulses that is not bandwidth-limited, requires no interpolation of the experimental data, and makes no approximations beyond the strong-field approximation is introduced. This approach fully incorporates the dipole transition matrix element into the retrieval process. Unlike attosecond retrieval methods such as phase retrieval by omega oscillation filtering (PROOF), or improved PROOF, it simultaneously retrieves both the attosecond and infrared (IR) pulses, without placing fundamental restrictions on the IR pulse duration, intensity or bandwidth. The new algorithm is validated both numerically and experimentally, and is also found to have practical advantages. These include an increased robustness to noise, and relaxed requirements for the size of the experimental dataset and the intensity of the streaking pulse. (paper)

  17. Numerical Analysis of Soil Settlement Prediction and Its Application In Large-Scale Marine Reclamation Artificial Island Project

    Directory of Open Access Journals (Sweden)

    Zhao Jie

    2017-11-01

    Full Text Available In an artificial island construction project based on the large-scale marine reclamation land, the soil settlement is a key to affect the late safe operation of the whole field. To analyze the factors of the soil settlement in a marine reclamation project, the SEM method in the soil micro-structural analysis method is used to test and study six soil samples such as the representative silt, mucky silty clay, silty clay and clay in the area. The structural characteristics that affect the soil settlement are obtained by observing the SEM charts at different depths. By combining numerical calculation method of Terzaghi’s one-dimensional and Biot’s two-dimensional consolidation theory, the one-dimensional and two-dimensional creep models are established and the numerical calculation results of two consolidation theories are compared in order to predict the maximum settlement of the soils 100 years after completion. The analysis results indicate that the micro-structural characteristics are the essential factor to affect the settlement in this area. Based on numerical analysis of one-dimensional and two-dimensional settlement, the settlement law and trend obtained by two numerical analysis method is similar. The analysis of this paper can provide reference and guidance to the project related to the marine reclamation land.

  18. Corn Belt soil carbon and macronutrient budgets with projected sustainable stover harvest

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shu-Guang

    2015-01-01

    Corn (Zea mays L.) stover has been identified as a prime feedstock for biofuel production in the U.S. Corn Belt because of its perceived abundance and availability, but long-term stover harvest effects on regional nutrient budgets have not been evaluated. We defined the minimum stover requirement (MSR) to maintain current soil organic carbon levels and then estimated current and future soil carbon (C), nitrogen (N), phosphorus (P), and potassium (K) budgets for various stover harvest scenarios. Analyses for 2006 through 2010 across the entire Corn Belt indicated that currently, 28 Tg or 1.6 Mg ha−1 of stover could be sustainably harvested from 17.95 million hectares (Mha) with N, P, and K removal of 113, 26, and 47 kg ha−1, respectively, and C removal for that period was estimated to be 4.55 Mg C ha−1. Assuming continued yield increases and a planted area of 26.74 Mha in 2050, 77.4 Tg stover (or 2.4 Mg ha−1) could be sustainably harvested with N, P, and K removal of 177, 37, and 72 kg ha−1, respectively, along with C removal of ∼6.57 Mg C ha−1. Although there would be significant variation across the region, harvesting only the excess over the MSR under current fertilization rates would result in a small depletion of soil N (−5 ± 27 kg ha−1) and K (−20 ± 31 kg ha−1) and a moderate surplus of P (36 ± 18 kg ha−1). Our 2050 projections based on continuing to keep the MSR, but having higher yields indicate that soil N and K deficits would become larger, thus emphasize the importance of balancing soil nutrient supply with crop residue removal.

  19. Real-Time Soil Characterization and Analysis Systems Used at US Department of Energy Closure Sites in Ohio

    International Nuclear Information System (INIS)

    Roybal, L. G.; Carpenter, M. V.; Giles, J. R.; Danahy, R. J.

    2003-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and the Fernald Environmental Management Project (FEMP) have jointly developed a field-deployed analytical system to rapidly scan, characterize, and analyze surface soil contamination. The basic system consists of a sodium iodide (NaI) spectrometer and global positioning system (GPS) hardware. This hardware can be deployed from any of four different platforms depending on the scope of the survey at hand. These platforms range from a large tractor-based unit (the RTRAK) used to survey large, relatively flat areas to a hand-pushed unit where maneuverability is important, to an excavator mounted system used to scan pits and trenches. The mobile sodium iodide concept was initially developed by the FEMP to provide pre-screening analyses for soils contaminated with uranium, thorium, and radium. The initial study is documented in the RTRAK Applicability Study and provides analyses supporting the field usage of the concept. The RTRAK system produced data that required several days of post-processing and analyses to generate an estimation of field coverage and activity levels. The INEEL has provided integrated engineering, computer hardware and software support to greatly streamline the data acquisition and analysis process to the point where real-time activity and coverage maps are available to the field technicians. On-line analyses have been added to automatically convert GPS data to Ohio State-Plane coordinates, examine and correct collected spectra for energy calibration drifts common to NaI spectrometers, and strip spectra in regions of interest to provide moisture corrected activity levels for total uranium, thorium-232, and radium-226. Additionally, the software provides a number of checks and alarms to alert operators that a hand-examination of spectral data in a particular area may be required. The FEMP has estimated that this technology has produced projected site savings in excess of $34M

  20. Yucca Mountain Site Characterization Project Bibliography, July--December 1994: An update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  1. Yucca Mountain Site Characterization Project Bibliography, July, December 194: An update

    International Nuclear Information System (INIS)

    1995-03-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  2. Characterization of tillage effects on soil permeability using different measures of macroporosity derived from tension infiltrometry

    Science.gov (United States)

    Bodner, G.; Schwen, A.; Scholl, P.; Kammerer, G.; Buchan, G.; Kaul, H.-P.; Loiskandl, W.

    2010-05-01

    approaches (direct vs. inverse evaluation, capillary vs. flow weighted pore radius). We will show the influence of the distinct evaluation procedures on the resulting effective macroporosity, as well as on the relationships between macropore radius and hydraulic conductivity (Moret and Arrúe, 2007) and pore fraction respectively (Carey et al., 2007). The infiltration measurements used in this study were obtained in a long-term tillage trial located in the semi-arid region of Eastern Austria. Measurements were taken five times over the vegetation period, starting immediately after tillage until harvest of the winter wheat crop. Three tillage systems were evaluated, being conventional tillage with plough, minimum tillage with chisel and no-tillage. Additional to infiltration measurements, also soil water content was monitored continuously by a capacitance probe in all three replicates of each tillage treatment in 10, 20 and 40 cm soil depth. Water content time series are used to derive flow velocity in the wet range by cross-correlation analysis (Wu et al., 1997). This effective parameter of water transmission will then be compared to the flow behaviour expected from the characterization of soil macroporosity. We will show that mainly in no-tillage systems large macropores contribute essentially to flow and therefore the decision on pore measure and evaluation procedure to be used leads to substantial differences. For a detailed comparison of tillage effects on soil hydraulic properties it is therefore essential to analyse the contribution of different tension infiltrometry based evaluation methods to explain effective water transmission through the complex porous network of the soil. References Carey, S.K., Quinton, W.L., Goeller, N.T. 2007. Field and laboratory estimates of pore size properties and hydraulic characteristics for subarctic organic soils. Hydrol. Process. 21, 2560-2571. Moret, D., Arrúe, J.L. 2007. Characterizing soil water conducting macro- and mesoporosity

  3. Characterizing the impact of projected changes in climate and ...

    Science.gov (United States)

    The impact of climate change on human and environmental health is of critical concern. Population exposures to air pollutants both indoors and outdoors are influenced by a wide range of air quality, meteorological, behavioral, and housing-related factors, many of which are also impacted by climate change. An integrated methodology for modeling changes in human exposures to tropospheric ozone (O3) owing to potential future changes in climate and demographics was implemented by linking existing modeling tools for climate, weather, air quality, population distribution, and human exposure. Human exposure results from the Air Pollutants Exposure Model (APEX) for 12 US cities show differences in daily maximum 8-h (DM8H) exposure patterns and levels by sex, age, and city for all scenarios. When climate is held constant and population demographics are varied, minimal difference in O3 exposures is predicted even with the most extreme demographic change scenario. In contrast, when population is held constant, we see evidence of substantial changes in O3 exposure for the most extreme change in climate. Similarly, we see increases in the percentage of the population in each city with at least one O3 exposure exceedance above 60 p.p.b and 70 p.p.b thresholds for future changes in climate. For these climate and population scenarios, the impact of projected changes in climate and air quality on human exposure to O3 are much larger than the impacts of changing demographics.

  4. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    International Nuclear Information System (INIS)

    GERBER MS

    2007-01-01

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site

  5. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2007-12-05

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site.

  6. Climate change impact on the PAH photodegradation in soils: Characterization and metabolites identification.

    Science.gov (United States)

    Marquès, Montse; Mari, Montse; Audí-Miró, Carme; Sierra, Jordi; Soler, Albert; Nadal, Martí; Domingo, José L

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are airborne pollutants that are deposited on soils. As climate change is already altering temperature and solar radiation, the global warming is suggested to impact the environmental fate of PAHs. This study was aimed at evaluating the effect of climate change on the PAH photodegradation in soils. Samples of Mediterranean soils were subjected to different temperature and light radiation conditions in a climate chamber. Two climate scenarios were considered according to IPCC projections: 1) a base (B) scenario, being temperature and light intensity 20°C and 9.6W/m(2), respectively, and 2) a climate change (CC) scenario, working at 24°C and 24W/m(2), respectively. As expected, low molecular weight PAHs were rapidly volatilized when increasing both temperature and light intensity. In contrast, medium and high molecular weight PAHs presented different photodegradation rates in soils with different texture, which was likely related to the amount of photocatalysts contained in both soils. In turn, the hydrogen isotopic composition of some of the PAHs under study was also investigated to verify any degradation process. Hydrogen isotopes confirmed that benzo(a)pyrene is degraded in both B and CC scenarios, not only under light but also in the darkness, revealing unknown degradation processes occurring when light is lacking. Potential generation pathways of PAH photodegradation by-products were also suggested, being a higher number of metabolites formed in the CC scenario. Consequently, in a more or less near future, although humans might be less exposed to PAHs, they could be exposed to new metabolites of these pollutants, which might be even more toxic. Copyright © 2016. Published by Elsevier Ltd.

  7. Assessment and restoring soil functionality in degraded areas of organic vineyards. The preliminary results of the ReSolVe project in Italy

    Science.gov (United States)

    Priori, Simone; Agnelli, Alessandro; Castaldini, Maurizio; D'Avino, Lorenzo; D'Errico, Giada; Gagnarli, Elena; Giudi, Silvia; Goggioli, Donatella; Lagomarsino, Alessandra; Landi, Silvia; Leprini, Marco; Pellegrini, Sergio; Perria, Rita; Puccioni, Sergio; Simoni, Sauro; Storchi, Paolo; Valboa, Giuseppe; Zombardo, Alessandra; Costantini, Edoardo

    2016-04-01

    In both conventional and organic Italian vineyards, it is quite common to have areas characterized by problems in vine health, grape production and quality, often caused by improper land preparation before vine plantation and/or management. Causes for soil malfunctioning can include: reduced contribution of the soil fauna to the ecosystem services (i.e. nutrient cycles), poor organic matter content, imbalance of some element ratio, altered pH, water deficiency, soil compaction and/or scarce oxygenation. ReSolVe is a transnational and interdisciplinary 3-years research project aimed at testing the effects of selected organic strategies for restoring optimal soil functionality in degraded areas within vineyard. The different restoring strategies implemented in each plot will be: i) compost produced on farm by manure + pruning residue + grass, ii) faba bean and barley green manure, iii) sowing and dry mulching with Trifolium squarrosum L. During two years of such treatments, the trend of the soil features and the grapevine status will be monitored in detail, to reveal the positive and negative effects of such treatments. The project involves 8 research groups in 6 different EU countries (Italy, France, Spain, Sweden, Slovenia, and Turkey), with experts from several disciplines, including soil science, ecology, microbiology, grapevine physiology, viticulture, and biometry. The experimental vineyards are situated in Italy (Chianti hills and Maremma plain, Tuscany), France (Bordeaux and Languedoc), Spain (La Rioja) and Slovenia (Primorska) for winegrape, and in Turkey (Adana and Mersin) for table grape. Soil features before implementing restoring strategies showed lower content of soil organic matter and enzyme activities, and higher carbonates in degraded areas than in the non-degraded areas. The Biological Soil Quality values of microarthropods were always high, in comparison with data registered in similarly managed vineyards or stable ecosystems, and the data showed

  8. Final work plan: Expedited Site Characterization of the IES Industries, Inc., Site at Marshalltown, Iowa. Ames Expedited Site Characterization Project, Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-04

    The overall goal of the Ames Laboratory Expedited Site Characterization (ESC) project is to evaluate and promote both innovative and state-of-the-practice site characterization and/or monitoring technologies. This will be accomplished by fielding both types of technologies together in the context of an expedited site characterization. The first site will be at a former manufactured gas plant (FMGP) in Marshalltown, Iowa. The project will field three areas of technology: geophysical, analytical, and data fusion. Geophysical technologies are designed to understand the subsurface geology to help predict fate and transport of the target contaminants. Analytical technologies/methods are designed to detect and quantify the target contaminants. Data fusion technology consists of software systems designed to rapidly integrate or fuse all site information into a conceptual site model that then becomes the decision making tool for the site team to plan subsequent sampling activity. Not all of the contaminants present can be located at the action level. Polynuclear aromatic hydrocarbons (PAHs) are the signature organics associated with the coal tar activities that took place at the site. As a result, PAHs were selected as the target compounds. Screening analytical instruments and nonintrusive geophysical techniques will be fielded to qualitatively map the spatial contaminant distribution. Soil gas surveys, immunoassay testing (IMA), innovative optical techniques, and passive organic sorbent sensors will be deployed along with the geophysical methods. Gas chromatography/mass spectrometry (GC/MS) instruments and a cone penetrometer system equipped with a laser-induced fluorescence (LIF) probe will quantitatively map the action level edges of the PAH plume(s). Samples will be taken both by the cone penetrometer test system (CPT) and the Geoprobe {reg_sign} sampler system.

  9. Process Knowledge Characterization of Radioactive Waste at the Classified Waste Landfill Remediation Project Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    DOTSON, PATRICK WELLS; GALLOWAY, ROBERT B.; JOHNSON JR, CARL EDWARD

    1999-01-01

    This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where

  10. Characterization and influence of biochars on nitrous oxide emission from agricultural soil

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Zheng, Hao; Luo, Ye; Deng, Xia; Herbert, Stephen; Xing, Baoshan

    2013-01-01

    Extensive use of biochar to mitigate N 2 O emission is limited by the lack of understanding on the exact mechanisms altering N 2 O emissions from biochar-amended soils. Biochars produced from giant reed were characterized and used to investigate their influence on N 2 O emission. Responses of N 2 O emission varied with pyrolysis temperature, and the reduction order of N 2 O emission by biochar (BC) was: BC200 ≈ BC600 > BC500 ≈ BC300 ≈ BC350 > BC400. The reduced emission was attributed to enhanced N immobilization and decreased denitrification in the biochar-amended soils. The remaining polycyclic aromatic hydrocarbons (PAHs) in low-temperature biochars (300–400 °C) played a major role in reducing N 2 O emission, but not for high-temperature biochars (500–600 °C). Removal of phenolic compounds from low-temperature (200–400 °C) biochars resulted in a surprising reduction of N 2 O emission, but the mechanism is still unknown. Overall, adding giant reed biochars could reduce N 2 O evolution from agricultural soil, thus possibly mitigating global warming. -- Highlights: ► C content of biochar increased with temperature but O and H content decreased. ► Biochars produced at 200–600 °C reduced N 2 O emissions from agricultural soil. ► PAHs in biochars (300–400 °C) seem a dominant factor for the reduced N 2 O emission. ► Phenolic compounds in biochars ( 2 O emission. -- Biochars (200–600 °C) produced from giant reed reduced N 2 O emissions from a soil due to enhanced N immobilization and decreased denitrification

  11. Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico

    International Nuclear Information System (INIS)

    Fischer, J.C. von; Tieszen, L.L.

    1995-01-01

    We examined natural abundances of 13 C in vegetation and soil organic maner (SOM) of subtropical wet and rain forests to characterize the isotopic enrichment through decomposition that has been reported for temperate forests. Soil cores and vegetative samples from the decomposition continuum (leaves, new litter, old liner, wood, and roots) were taken from each of four forest types in the Luquillo Experimental Forest, Puerto Rico. SOM δ 13 C was enriched 1.60/00 relative to aboveground litter. We found no further enrichment within the soil profile. The carbon isotope ratios of vegetation varied among forests, ranging from -28.20/00 in the Colorado forest to -26.90/00 in the Palm forest. Isotope ratios of SOM differed between forests primarily in the top 20 em where the Colorado forest was again most negative at -28.00/00, and the Palm forest was most positive at -26.50/00. The isotopic differences between forests are likely attributable to differences in light regimes due to canopy density variation, soil moisture regimes, and/or recycling of CO 2 . Our data suggest that recalcitrant SOM is not derived directly from plant lignin since plant lignin is even more 13 C depleted than the bulk vegetation. We hypothesize that the anthropogenic isotopic depletion of atmospheric CO 2 , (ca 1.50/00 in the last 150 years) accounts for some of the enrichment observed in the SOM relative to the more modern vegetation in this study and others. This study also supports other observations that under wet or anaerobic soil environments there is no isotopic enrichment during decomposition or with depth in the active profile. (author)

  12. Isolation, Characterization and Application of Bacterial Population From Agricultural Soil at Sohag Province, Egypt

    Directory of Open Access Journals (Sweden)

    Bahig, A. E.

    2008-01-01

    Full Text Available Forty soil samples of agriculture soil were collected from two different sites in Sohag province, Egypt, during hot and cold seasons. Twenty samples were from soil irrigated with canal water (site A and twenty samples were from soil irrigated with wastewater (site B. This study aimed to compare the incidence of plasmids in bacteria isolated from soil and to investigate the occurrence of metal and antibiotic resistance bacteria, and consequently to select the potential application of these bacteria in bioremediation. The total bacterial count (CFU/gm in site (B was higher than that in site (A. Moreover, the CFU values in summer were higher than those values in winter at both sites. A total of 771 bacterial isolates were characterized as Bacillus, Micrococcus, Staphylococcus, Pseudomonas, Eschershia, Shigella, Xanthomonas, Acetobacter, Citrobacter, Enterobacter, Moraxella and Methylococcus. Minimum inhibitory concentrations (MICs of Pb+2, Cu+2, Zn+2, Hg+2, Co+2, Cd+2, Cr+3, Te+2, As+2 and Ni+2 for plasmid-possessed bacteria were determined and the highest MICs were 1200 µg/mL for lead, 800 µg/mL for both Cobalt and Arsenate, 1200 µg/mL for Nickel, 1000 µg/ml for Copper and less than 600 µg/mL for other metals. Bacterial isolates from both sites A and B showed multiple heavy metal resistance. A total of 337 bacterial isolates contained plasmids and the incidence of plasmids was approximately 25-50% higher in bacteria isolated from site (B than that from site (A. These isolates were resistance to different antibiotics. Approximately, 61% of the bacterial isolates were able to assimilate insecticide, carbaryl, as a sole source of carbon and energy. However, the Citrobacter AA101 showed the best growth on carbaryl.

  13. Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.C. von [Cornell University, Ithaca, NY (United States); Tieszen, L. L.

    1995-06-15

    We examined natural abundances of {sup 13}C in vegetation and soil organic maner (SOM) of subtropical wet and rain forests to characterize the isotopic enrichment through decomposition that has been reported for temperate forests. Soil cores and vegetative samples from the decomposition continuum (leaves, new litter, old liner, wood, and roots) were taken from each of four forest types in the Luquillo Experimental Forest, Puerto Rico. SOM δ{sup 13}C was enriched 1.60/00 relative to aboveground litter. We found no further enrichment within the soil profile. The carbon isotope ratios of vegetation varied among forests, ranging from -28.20/00 in the Colorado forest to -26.90/00 in the Palm forest. Isotope ratios of SOM differed between forests primarily in the top 20 em where the Colorado forest was again most negative at -28.00/00, and the Palm forest was most positive at -26.50/00. The isotopic differences between forests are likely attributable to differences in light regimes due to canopy density variation, soil moisture regimes, and/or recycling of CO{sub 2}. Our data suggest that recalcitrant SOM is not derived directly from plant lignin since plant lignin is even more {sup 13}C depleted than the bulk vegetation. We hypothesize that the anthropogenic isotopic depletion of atmospheric CO{sub 2}, (ca 1.50/00 in the last 150 years) accounts for some of the enrichment observed in the SOM relative to the more modern vegetation in this study and others. This study also supports other observations that under wet or anaerobic soil environments there is no isotopic enrichment during decomposition or with depth in the active profile. (author)

  14. Characterization of binding and mobility of metals and xenobiotics in continuous flow and soil biosystems

    International Nuclear Information System (INIS)

    Sunovska, A.

    2016-01-01

    The main aim of the dissertation thesis was to contribute to development of analytical tools and approaches application in characterization of binding and mobility of heavy metals and organic compounds (xenobiotics) in continuous flow and soil biosystems. Within the solution of this aim, a wide range of analytical methods (gamma-spectrometry, UV-VIS spectrophotometry, AAS, X-ray fluorescence spectrometry, ion chromatography, and stripping volt-amperometry) and approaches (mathematical modelling - methods of nonlinear regression and in silico prediction modelling; chemometrics and statistical analysis of the data; single-step extraction methods, and lysimetry) were applied. In the first step of thesis solution, alternative sorbents of biological origin (biomass of microalgae, freshwater mosses, and waste biomass of hop) were obtained and physico-chemically characterized mainly in order to prediction of sorption capacities of Cd and synthetic dyes thioflavine T (TT), malachite green (MG) or methylene blue (MB) removal from single component or binary aqueous solutions and under conditions of batch or continuous flow systems. For these purposes, mathematical models of adsorption isotherms and models originated from chromatographic separation methods by application of methods of nonlinear regression analysis were used. In the second part of the work, methods of multivariate analysis in the evaluation of processes of synthetic dyes TT and MB binding in terms of the finding of relationships between sorption-desorption variables describing the stability of the bond and parameters defining the physic-chemical properties of river sediments and the environment of real or model waters were applied. In the last part of the work, a special laboratory lysimeter system was designed and applied within the soil biosystem defined by: soil additive (SA) derived from sewage sludge representing the source of microelements Zn and Cu <-> agriculturally used soil <-> soil solution <-> root

  15. Characterization of binding and mobility of metals and xenobiotics in continuous flow and soil biosystems

    International Nuclear Information System (INIS)

    Sunovska, A.

    2016-01-01

    The main aim of the dissertation thesis was to contribute to development of analytical tools and approaches application in characterization of binding and mobility of heavy metals and organic compounds (xenobiotics) in continuous flow and soil biosystems. Within the solution of this aim, a wide range of analytical methods (gamma-spectrometry, UV-VIS spectrophotometry, AAS, X-ray fluorescence spectrometry, ion chromatography, and stripping volt-amperometry) and approaches (mathematical modelling - methods of nonlinear regression and in silico prediction modelling; chemometrics and statistical analysis of the data; single-step extraction methods, and lysimetry) were applied. In the first step of thesis solution, alternative sorbents of biological origin (biomass of microalgae, freshwater mosses, and waste biomass of hop) were obtained and physico-chemically characterized mainly in order to prediction of sorption capacities of Cd and synthetic dyes thioflavine T (TT), malachite green (MG) or methylene blue (MB) removal from single component or binary aqueous solutions and under conditions of batch or continuous flow systems. For these purposes, mathematical models of adsorption isotherms and models originated from chromatographic separation methods by application of methods of nonlinear regression analysis were used. In the second part of the work, methods of multivariate analysis in the evaluation of processes of synthetic dyes TT and MB binding in terms of the finding of relationships between sorption-desorption variables describing the stability of the bond and parameters defining the physic-chemical properties of river sediments and the environment of real or model waters were applied. In the last part of the work, a special laboratory lysimeter system was designed and applied within the soil biosystem defined by: soil additive (SA) derived from sewage sludge representing the source of microelements Zn and Cu agriculturally used soil soil solution root system of

  16. Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report

    International Nuclear Information System (INIS)

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

    1994-10-01

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 μm in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level

  17. Characterization and screening of antimicrobial activity of Micromonospora strains from Thai soils

    Directory of Open Access Journals (Sweden)

    Songsumanus, A.

    2013-01-01

    Full Text Available Aims: Rare actinomycete strains were isolated from mountain soils and island soil collected in Thailand. They were screened for antimicrobial activity and characterized for their secondary metabolites.Methodology and results: The strains were isolated by the standard dilution technique using starch casein nitrate agar. They were identified and characterized based on the phenotypic, chemotaxonomic and genotypic characteristics. The chemotaxonomic characteristics of ten isolates coincided with those of the genus Micromonospora. On the basis of phylogenetic analysis using 16S rRNA gene sequences and DNA-DNA relatedness, they were divided into 6 Groups, ASC19-2-1 (Group A was identified as Micromonospora marina; AL8-8 and AL10-3 (Group B were M. aurantiaca; AL7-5 (Group C was M. chalcea; AL3-16 and AL9-20 (Group D were identified as M. chokoriensis; AL9-13 and AL9-22 (Group E were M. tulbaghiae; and AL1-15-2 and AL1-16B (Group F were M. chersina. On the primary screening, only the isolate AL7-5 (Group C could inhibit Kocuria rhizophila ATCC 9341. This isolate produced rakicidin when cultivated on A3M, A11M and A16 media and produced compound BU4664L only on A16 medium.Conclusion, significance and impact of study: The isolation and characterization of the rare actinomycetes from Thai soils will be useful for the taxonomic study and for the discovery of bioactive metabolites that are active against microorganisms.

  18. Central Colorado Assessment Project (CCAP)-Geochemical data for rock, sediment, soil, and concentrate sample media

    Science.gov (United States)

    Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.

    2010-01-01

    This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons

  19. Chemical and structural characterization of soil humic substances under agroforestry and conventional systems

    Directory of Open Access Journals (Sweden)

    Gislane M. de Moraes

    2011-10-01

    Full Text Available Studies have proven that the agroforestry systems in the semi-arid region of the State of Ceará, Brazil, induce an increase in soil organic C levels. Notwithstanding, there is no information if this increase also results in qualitative changes in different pools of soil organic matter. The objective of this study was to verify the possible chemical and structural alterations in fulvic and humic acids of a Luvisol in areas adopting agroforestry, traditional intensive cultivation and native forest in a long-term experiment conducted in the semi-arid region of Ceará State, Brazil. The study was conducted in an experimental area of the National Goat Research Center (Embrapa in Sobral, CE. The following treatments were evaluated: agrosilvopasture (AGP, silvopasture (SILV, intensive cultivation under fallow (ICF, and areas with native forest (NF. Soil fulvic and humic acids fractions were extracted from the 0-6 and 6-12 cm layers and characterized by elemental composition, thermogravimetry and infrared spectroscopy analyses. The elemental composition analysis of humic acids confirmed the data found for fulvic acids, showing reduction in the C, H and N levels, followed by an increase in O contents in the AGP and ICF treatments over SILV and NF. In all treatments, except to SILV in the 0-6 cm layer, the percentage of mass loss was highest (300-600 °C for humic acids in the thermally most stable region. Despite the similarity between infrared spectra, soil fulvic acids in the SILV treatment extracted from 6-12 cm depth decrease the absorption bands at 1708 and 1408 cm-1 followed by an increase in the absorption band at 1608 cm-1 attributed to aromatic C=C groups. This behavior suggests an increase in the aromatic character of the structure. The AGP and ICF treatments, which increase the soil tilling, favored the maintenance of humic substances with a more aromatic character in the soil than SILV and NF. The less aromatic humic substances in the SILV

  20. Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural Soil

    NARCIS (Netherlands)

    Jung, M.Y.; Park, S.J.; Min, D.; Kim, J.S.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Kim, G.J.; Madsen, E.L.; Rhee, S.K.

    2011-01-01

    Soil nitrification is an important process for agricultural productivity and environmental pollution. Though one cultivated representative of ammonia-oxidizing Archaea from soil has been described, additional representatives warrant characterization. We describe an ammonia-oxidizing archaeon (strain

  1. Soil spectral measurements in the field: problems and solutions in light of the GEO-CARDEL project

    Science.gov (United States)

    Dor, E. Ben; Granot, Amihai

    2017-09-01

    The GEO-CRADEL project aims to establish several knowhow for GEO applications. One of them is food security in which soil spectroscopy plays a major role. To that end we had developed a new assembly for measuring surface reflectance in the field. This was done in order to fill the gap between laboratory and field soil spectral measurements. This device, named SoilPRO (SP) can be connected to any field spectrometer fiber's tip and used to measure representative and undisturbed surfaces of different soil types. The SoilPRO's performance was evaluated against laboratory measurements under optimal conditions and demonstrated high performance in the field. As the SP measurement is not dependent on main factors such as the sun's radiation, atmospheric variations, operator stability or measurement geometry, and it does not disturb the surface being measured, its measurement can be used with laboratory soil spectral data (SSL). To that end the SSL that is generated under the GEO-CARDEL project is now can be used for agro- application in the field.

  2. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  3. Characterization of uranium- and plutonium-contaminated soils by electron microscopy

    International Nuclear Information System (INIS)

    Buck, E.C.; Dietz, N.L.; Fortner, J.A.; Bates, J.K.; Brown, N.R.

    1995-01-01

    Electron beam techniques have been used to characterize uranium-contaminated soils from the Fernald Site in Ohio, and also plutonium-bearing 'hot particles, from Johnston Island in the Pacific Ocean. By examining Fernald samples that had undergone chemical leaching it was possible to observe the effect the treatment had on specific uranium-bearing phases. The technique of Heap leaching, using carbonate solution, was found to be the most successful in removing uranium from Fernald soils, the Heap process allows aeration, which facilitates the oxidation of uraninite. However, another refractory uranium(IV) phase, uranium metaphosphate, was not removed or affected by any soil-washing process. Examination of ''hot particles'' from Johnston Island revealed that plutonium and uranium were present in 50--200 nm particles, both amorphous and crystalline, within a partially amorphous aluminum oxide matrix. The aluminum oxide is believed to have undergone a crystalline-to-amorphous transition caused by alpha-particle bombardment during the decay of the plutonium

  4. Chemical characterization of some soils from four counties that produce Flue-cured tobacco

    Directory of Open Access Journals (Sweden)

    Marcela Rodríguez

    2012-09-01

    Full Text Available The municipalities or counties of Campoalegre and Garzón (State of Huila and Capitanejo and Enciso (State of Santander show different chemical soil characteristics when their origin is taken into account, based on their edaphogenetic environments. For the characterization of the soils from these counties, samples from 65 farms were arranged, based on the database of farmers associated with the Protabaco Company. With the soil samples taken, chemical and texture analyses were performed, codifying the results in order to analyze them, keeping in mind the ideal parameters for the tobacco crop. In the counties of Huila, the texture, pH and organic matter were found to have ideal levels, in contrast to the phosphorus, potassium, magnesium, sulfur and chloride levels which were unsuitable, but the calcium content showed levels between suitable and good. In Santander, the pH, organic matter, phosphorus, calcium, sulfur and chloride were at unsuitable levels, in contrast, the contrary occurred with the texture and potassium which were at normal levels. It is recommended, due to the difference among the chemical parameters, that a fertilization program be handled differently for the zones of Santander and Huila, bearing in mind that the chemical parameters were found to be more limited in Santander than in Huila

  5. Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Jantzi, Sarah C; Almirall, José R

    2011-07-01

    A method for the quantitative elemental analysis of surface soil samples using laser-induced breakdown spectroscopy (LIBS) was developed and applied to the analysis of bulk soil samples for discrimination between specimens. The use of a 266 nm laser for LIBS analysis is reported for the first time in forensic soil analysis. Optimization of the LIBS method is discussed, and the results compared favorably to a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method previously developed. Precision for both methods was LIBS limits of detection were LIBS method successfully discriminated samples from two different sites in Dade County, FL. Analysis of variance, Tukey's post hoc test and Student's t test resulted in 100% discrimination with no type I or type II errors. Principal components analysis (PCA) resulted in clear groupings of the two sites. A correct classification rate of 99.4% was obtained with linear discriminant analysis using leave-one-out validation. Similar results were obtained when the same samples were analyzed by LA-ICP-MS, showing that LIBS can provide similar information to LA-ICP-MS. In a forensic sampling/spatial heterogeneity study, the variation between sites, between sub-plots, between samples and within samples was examined on three similar Dade sites. The closer the sampling locations, the closer the grouping on a PCA plot and the higher the misclassification rate. These results underscore the importance of careful sampling for geographic site characterization.

  6. Improved soil characterization for pipe piles in sand in API RP-2A

    International Nuclear Information System (INIS)

    Hossain, M.K.; Briaud, J.L.

    1993-01-01

    In the offshore, most foundations are steel pipe piles and most of them are designed using the API RP 2A guidelines. For axial capacity of piles in sand the current guidelines in many cases show definite discrepancies when compared against actual load capacities of piles. An updated data base analysis shows that there are three major weaknesses in the current guidelines with respect to soil characterization: (a) the consideration of the lateral earth pressure coefficient, K, as a constant (1.0 or 0.8); (b) the consideration of the unit point bearing resistance, q, as a linear function of depth; and (c) the absence of an unambiguous soil parameter determination process based on reliable in-situ test results. In this paper, specific modifications to the current API RP 2A guidelines are proposed on the basis of a data base analysis to account for the discrepancies arising from (a), (b), and (c) above. These modifications will reduce the discrepancies in the current API RP 2A method and increase the accuracy of the prediction of axial capacity of pipe piles in sand. Furthermore this will make the method fundamentally more consistent with soil behavior in deep foundations

  7. Soil characterization using patterns of magnetic susceptibility versus effective radium concentration

    Directory of Open Access Journals (Sweden)

    F. Girault

    2011-08-01

    Full Text Available Low-field magnetic susceptibility χm and effective radium concentration ECRa, obtained from radon emanation, have been measured in the laboratory with 129 soil samples from Nepal. Samples along horizontal profiles in slope debris or terrace scarps showed rather homogeneous values of both χm and ECRa. One sample set, collected vertically on a lateritic terrace scarp, had homogeneous values of ECRa while χm increased by a factor of 1 to 10 for residual soils and topsoils. However, for a set of samples collected on three imbricated river terraces, values of ECRa, homogeneous over a given terrace, displayed a gradual increase from younger to older terraces. By contrast, χm showed more homogeneous mean values over the three terraces, with a larger dispersion, however, for the younger one. Similarly, Kathmandu sediments exhibited a large increase in ECRa from sand to clay layers, while χm increased moderately. The combination of χm and ECRa, thus, provides a novel tool to characterize quantitatively various soil groups and may be of interest to distinguish modes of alteration or deposition histories.

  8. The instrumentation for express characterization of historical radwaste storages and contaminated soil

    International Nuclear Information System (INIS)

    Volkovich, A.G.; Ignatov, S.M.; Danilovich, A.S.; Potapov, V.N.; Ivanov, O.P.; Stepanov, V.E.; Smirnov, S.V.

    2008-01-01

    A variety of special radiation measurement problems arise in planning and performance of rehabilitation activities at the radwaste disposal site (RWDS), including acquisition and refinement of data on composition, location and activity of radwaste (RW) in the old repositories, evaluation of activity of radwaste to be removed, measurement of radioactive contamination of repository structures and soil, monitoring of dose rates [1]. The old repositories are characterized by nonuniform RW distribution over the repository volume. The radwaste in the old repositories are mixed with soil, concrete and other materials. A number of new instruments and systems were developed to conduct the necessary measurements. New instruments with collimated scintillation detectors operating both in current and spectrometry modes were developed for measurements of the distribution of the RW specific activity over layers in the old repositories. The measurements are taken in exploratory wells that are drilled in the old repositories prior to their opening. The technique of specific activity measurements with collimated detectors was used when examining radioactive contamination of soil in a number of Russian contaminated territories and demonstrated a good agreement with results of sampling performed at the same time. (author)

  9. Yucca Mountain Site Characterization Project bibliography, 1992--1994. Supplement 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE).

  10. Yucca Mountain Site Characterization Project bibliography, 1992--1993. Supplement 4

    International Nuclear Information System (INIS)

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE)

  11. Studies on the availability of sulphur in four soil series of soil and water management project, Patiala

    International Nuclear Information System (INIS)

    Sharma, Kesho Ram; Dev, G.

    1974-01-01

    Differential behaviour of four soils series (Banra, Fatehpur, Temple and Samana) for availability of S to wheat (Kalyan-sona) was studied in a pot experiment using five doses of labelled sulphur (0, 5, 10, 20 and 40 kg/ha) applied as (NH 4 ) 2 35 SO 4 . The yield, sulphur content and total removal of sulphur by plant, was found dependent upon sulphur supplying power of the soil, which was confirmed by the radioassay data as well. (author)

  12. Soil response to long-term projections of extreme temperature and precipitation in the southern La Plata Basin

    Science.gov (United States)

    Pántano, Vanesa C.; Penalba, Olga C.

    2017-12-01

    Projected changes were estimated considering the main variables which take part in soil-atmosphere interaction. The analysis was focused on the potential impact of these changes on soil hydric condition under extreme precipitation and evapotranspiration, using the combination of Global Climate Models (GCMs) and observational data. The region of study is the southern La Plata Basin that covers part of Argentine territory, where rainfed agriculture production is one of the most important economic activities. Monthly precipitation and maximum and minimum temperatures were used from high quality-controlled observed data from 46 meteorological stations and the ensemble of seven CMIP5 GCMs in two periods: 1970-2005 and 2065-2100. Projected changes in monthly effective temperature and precipitation were analysed. These changes were combined with observed series for each probabilistic interval. The result was used as input variables for the water balance model in order to obtain consequent soil hydric condition (deficit or excess). Effective temperature and precipitation are expected to increase according to the projections of GCMs, with few exceptions. The analysis revealed increase (decrease) in the prevalence of evapotranspiration over precipitation, during spring (winter). Projections for autumn months show precipitation higher than potential evapotranspiration more frequently. Under dry extremes, the analysis revealed higher projected deficit conditions, impacting on crop development. On the other hand, under wet extremes, excess would reach higher values only in particular months. During December, projected increase in temperatures reduces the impact of extreme high precipitation but favours deficit conditions, affecting flower-fructification stage of summer crops.

  13. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1994 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1996-03-01

    This status report is for calendar year 1994. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, a baseline is established that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify adverse trends and to evaluate improvements. This is the fourth annual status report.

  14. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1994 quality program status report

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1996-03-01

    This status report is for calendar year 1994. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, a baseline is established that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify adverse trends and to evaluate improvements. This is the fourth annual status report

  15. Hydrologic characterization of desert soils with varying degrees of pedogenesis: 1. field experiments evaluating plant-relevant soil water behavior

    Science.gov (United States)

    Nimmo, J.R.; Perkins, K.S.; Schmidt, K.M.; Miller, D.M.; Stock, J.D.; Singha, K.

    2009-01-01

    To assess the eff ect of pedogenesis on the soil moisture dynamics infl uencing the character and quality of ecological habitat, we conducted infi ltration and redistribution experiments on three alluvial deposits in the Mojave National Preserve: (i) recently deposited active wash sediments, (ii) a soil of early Holocene age, and (iii) a highly developed soil of late Pleistocene age. At each, we ponded water in a 1-m-diameter infi ltration ring for 2.3 h and monitored soil water content and matric pressure during and atier infi ltration, using probes and electrical resistivity imaging (ERI). Infi ltration and downward fl ow rates were greater in younger material, favoring deep-rooted species. Deep-rooted species tend to colonize the margins of washes, where they are unaff ected by sediment transport that inhibits colonization. The ERI results support important generalizations, for example that shallower than 0.5 m, infi ltrated water persists longer in highly developed soil, favoring shallow-rooted species. Soil moisture data for the two youngest soils suggested that saturation overshoot, which may have signifi cant but unexplored hydroecologic and pedogenic eff ects, occurred at the horizontally advancing weting front. Spatial heterogeneity of soil properties generally increased with pedogenic development. Evidence suggested that some early-stage developmental processes may promote uniformity; the intermediate- age soil appeared to have the least heterogeneity in terms of textural variation with depth, and also the least anisotropy. Lateral heterogeneity was pronounced in older soil, having a multitude of eff ects on the distribution and retention of soil water, and may facilitate certain water-conserving strategies of plants over what would be possible in a laterally homogeneous soil. ?? Soil Science Society of America.

  16. Continuous, environmental radon monitoring program at the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Liu, N.; Sorensen, C.D.; Tung, C.H.; Orchard, C.R.

    1995-01-01

    A continuous, environmental radon monitoring program has been established in support of the Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP). The monitoring program is to characterize the natural radon emissions at the YMP site, to understand the existing radon concentrations in the environmental background, and to assess and control the potential work exposure. Based upon a study of the monitoring results, this paper presents a preliminary understanding of the magnitudes, characteristics, and exposure levels of radon at the YMP site

  17. Management system information of characterization of the dismantling project of Jose Cabrera

    International Nuclear Information System (INIS)

    Gimeno Blesa, M. E.; Martin Palomo, N.; Gomez Rodriguez, C. A.

    2011-01-01

    In the proposed dismantling and decommissioning of the Jose Cabrera NPP is designed and implemented a database of physical and radiological inventory, which provides a powerful tool to optimize the storage, monitoring and control of the characterization data. The database is a useful and reliable management system characterization information that facilitates access and information processing, and ensures their integrity and traceability along of the dismantling project.

  18. Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 3: Corrosion and data modeling

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; McCright, R.D.; Roy, A.K.; Jones, D.A.

    1995-08-01

    This three-volume report serves several purposes. The first volume provides an introduction to the engineered materials effort for the Yucca Mountain Site Characterization Project. It defines terms and outlines the history of selection and characterization of these materials. A summary of the recent engineered barrier materials characterization workshop is presented, and the current candidate materials are listed. The second volume tabulates design data for engineered materials, and the third volume is devoted to corrosion data, radiation effects on corrosion, and corrosion modeling. The second and third volumes are intended to be evolving documents, to which new data will be added as they become available from additional studies. The initial version of Volume 3 is devoted to information currently available for environments most similar to those expected in the potential Yucca Mountain repository. This is volume three

  19. Characterization of culturable heterotrophic bacteria in hydrocarbon-contaminated soil from an alpine former military site.

    Science.gov (United States)

    Zhang, Dechao; Margesin, Rosa

    2014-06-01

    We characterized the culturable, heterotrophic bacterial community in soil collected from a former alpine military site contaminated with petroleum hydrocarbons. The physiologically active eubacterial community, as revealed by fluorescence-in situ-hybridization, accounted for 14.9 % of the total (DAPI-stained) bacterial community. 4.0 and 1.2 % of the DAPI-stained cells could be attributed to culturable, heterotrophic bacteria able to grow at 20 and 10 °C, respectively. The majority of culturable bacterial isolates (23/28 strains) belonged to the Proteobacteria with a predominance of Alphaproteobacteria. The remaining isolates were affiliated with the Firmicutes, Actinobacteria and Bacteroidetes. Five strains could be identified as representatives of novel species. Characterization of the 28 strains demonstrated their adaptation to the temperature and nutrient conditions prevailing in the studied soil. One-third of the strains was able to grow at subzero temperatures (-5 °C). Studies on the effect of temperature on growth and lipase production with two selected strains demonstrated their low-temperature adaptation.

  20. Characterization of Environmental Nano- and Macrocolloid Particles Extracted from Selected Soils and Biosolids

    Directory of Open Access Journals (Sweden)

    J. L. Ghezzi

    2014-01-01

    Full Text Available Environmental nanoparticles found in soil systems and biosolids may pose a considerable risk to groundwater quality as contaminant carriers. Little effort has been invested in the characterization of natural nanocolloids compared to corresponding macrocolloids. This study involved physicochemical, mineralogical, and morphological characterizations of nanocolloids and macrocolloids fractionated from three Kentucky soils and one biosolid. Particle size and morphology were investigated using scanning/transmission electron microscopy and dynamic light scattering. Mineralogical composition was determined by X-ray diffraction and thermogravimetric and Fourier-transform infrared spectroscopy analyses. Zeta potentials and cation exchange capacities assessed surface charge and chemical reactivity. The estimated average hydrodynamic diameter of nanoparticles was nearly twice the ideal 100 nm range, apparently due to irregular particle shapes and partial aggregation. Nanoparticles were also found attached to surfaces of macrocolloids, forming macro-nano aggregates and obscuring some of their physical and chemical characteristics. However, nanocolloids exhibited greater surface reactivity, likely due to their smaller size, poor crystallinity, and morphological shape distortions. In spite of some behavior modification due to nanoaggregation phenomena, nanocolloids appeared to be much more potent vectors of contaminant transport in subsurface environments than their macrosize fractions. Nevertheless, their heterogeneous nature brings to light important considerations in addressing pollution prevention and remediation challenges.

  1. Mineralogical and particulate morphological characterization of geophagic clayey soils from Botswana

    Directory of Open Access Journals (Sweden)

    Georges-Ivo Ekosse

    2012-12-01

    Full Text Available This study focused on determining the minerals composition and particle morphology of geophagic clayey soils from Botswana in order to infer on how they could influence human health. Six representative geophagic clayey soils from Botswana were mineralogically characterized using X-ray powder diffractometry (XRPD, optical microscopy, and environmental scanning electron microscopy (ESEM. Results of identified mineral phases revealed quartz (SiO2 as the most dominant in all samples constituting close to 70 wt %; followed by goethite (FeO.OH having a mean concentration of 9 wt%, and kaolinite (Al2Si2O5(OH4 with a mean concentration of 8 wt%. Other minerals present were smectite ((Na,Ca(Al,Mg6(Si4O103(OH6-n(H2O, mica (AB2-3(Al,SiSi3O10(F,OH2, feldspar (Na/K(AlSi3O8 and hematite (Fe2O3. The quartz particles were generally coarse; and angular to very angular in morphology. Due to ions present in goethite, kaolinite, and smectite, these minerals impact positively on properties of geophagic clayey soils and could possibly influence human health when consumed. The quartz particles could negatively affect dental enamel as a result of mastication; and cause abrasion of the walls of the gastro-intestinal tract which may lead to rupturing. Although the studied clayey soils could have potential to provide medicinal benefits to the consumer, there is need for beneficiation exercise to be conducted to reduce the coarse angular particles contained in them. It is therefore necessary for constructive efforts to be directed at beneficiating geophagic materials which will render them safe for human consumption.DOI: http://dx.doi.org/10.4314/bcse.v26i3.6

  2. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  3. Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization.

    Science.gov (United States)

    Fuess, Lucas T; Rodrigues, Isabella J; Garcia, Marcelo L

    2017-09-19

    This paper reports the characterization of the polluting potential of sugarcane vinasse, the main wastewater from ethanol production. Compositional data from vinasse samples collected from sugarcane biorefineries were used to predict negative effects on the soil, water resources and crops potentially associated with fertirrigation, the primary final destination of vinasse in Brazil. High risks of soil salinization were associated with the land disposal of vinasse, as evidenced by the high levels of total dissolved solids (TDS; >4,000 mg L -1 ) and electrical conductivity (>6.7 dS m -1 ). The high TDS levels coupled with the high biodegradable organic content of vinasse (>14 g L -1 ) also favor organic overloading events, leading to local anaerobiosis conditions. Conversely, soil sodification should not be observed in areas fertirrigated with sugarcane vinasse, given the low Na concentrations (145.1 mg L -1 ) and Ca (>458.4 mg L -1 ) levels. Priority pollutants (Cu, Cr, Ni, Pb and Zn) and phytotoxic elements (Al and Fe) were also found in the analyzed samples; however, relevant environmental impacts should not be associated with these particular constituents. Overall, the relatively simple methodology used herein could efficiently replace massive field data collection to provide a basic understanding of the fate of vinasse in the environment in order to highlight the priority points to be considered in the management of this effluent. In summary, the prompt implementation of treatment plants in distilleries, in addition to a continuous and broad compositional characterization of vinasse, is essential to guarantee its adequate reuse.

  4. Soil-plant water status and wine quality: the case study of Aglianico wine (the ZOViSA project)

    Science.gov (United States)

    Bonfante, Antonello; Manna, Piero; Albrizio, Rossella; Basile, Angelo; Agrillo, Antonietta; De Mascellis, Roberto; Caputo, Pellegrina; Delle Cave, Aniello; Gambuti, Angelita; Giorio, Pasquale; Guida, Gianpiero; Minieri, Luciana; Moio, Luigi; Orefice, Nadia; Terribile, Fabio

    2014-05-01

    The terroir analysis, aiming to achieve a better use of environmental features with respect to plant requirement and wine production, needs to be strongly rooted on hydropedology. In fact, the relations between wine quality and soil moisture regime during the cropping season is well established. The ZOViSA Project (Viticultural zoning at farm scale) tests a new physically oriented approach to terroir analysis based on the relations between the soil-plant water status and wine quality. The project is conducted in southern Italy in the farm Quintodecimo of Mirabella Eclano (AV) located in the Campania region, devoted to quality Aglianico red wine production (DOC). The soil spatial distribution of study area (about 3 ha) was recognized by classical soil survey and geophysics scan by EM38DD; then the soil-plant water status was monitored for three years in two experimental plots from two different soils (Cambisol and Calcisol). Daily climate variables (temperature, solar radiation, rainfall, wind), daily soil water variables (through TDR probes and tensiometers), crop development (biometric and physiological parameters), and grape must and wine quality were monitored. The agro-hydrological model SWAP was calibrated and applied in the two experimental plots to estimate soil-plant water status in different crop phenological stages. The effects of crop water status on crop response and wine quality was evaluated in two different pedo-systems, comparing the crop water stress index with both: crop physiological measurements (leaf gas exchange, leaf water potential, chlorophyll content, LAI measurement), grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and wine quality (aromatic response). Finally a "spatial application" of the model was carried out and different terroirs defined.

  5. SF Box--a tool for evaluating the effects on soil functions in remediation projects.

    Science.gov (United States)

    Volchko, Yevheniya; Norrman, Jenny; Rosén, Lars; Norberg, Tommy

    2014-10-01

    Although remediation is usually aimed at reducing the risks posed by contaminants to human health and the environment, it is also desirable that the remediated soil within future green spaces is capable of providing relevant ecological functions, e.g., basis for primary production. Yet while addressing a contamination problem by reducing contaminant concentration and/or amounts in the soil, the remedial action itself can lead to soil structure disturbances, decline in organic matter and nutrient deficiencies, and in turn affect a soil's capacity to carry out its ecological soil functions. This article presents the Soil Function Box (SF Box) tool that is aimed to facilitate integration of information from suggested soil quality indicators (SQIs) into a management process in remediation using a scoring method. The scored SQIs are integrated into a soil quality index corresponding to 1 of 5 classes. SF Box is applied to 2 cases from Sweden (Kvillebäcken and Hexion), explicitly taking into consideration uncertainties in the results by means of Monte Carlo simulations. At both sites the generated soil quality indices corresponded to a medium soil performance (soil class 3) with a high certainty. The main soil constraints at both Kvillebäcken and Hexion were associated with biological activity in the soil, as soil organisms were unable to supply plant-available N. At the Kvillebäcken site the top layer had a content of coarse fragment (ø > 2 mm) higher than 35%, indicating plant rooting limitations. At the Hexion site, the soil had limited amount of organic matter, thus poor aggregate stability and nutrient cycling potential. In contrast, the soil at Kvillebäcken was rich in organic matter. The soils at both sites were capable of storing a sufficient amount of water for soil organisms between precipitation events. © 2014 SETAC.

  6. The use of nuclear techniques in the management of nitrogen fixation by trees to enhance fertility of fragile tropical soils. Results of a co-ordinated research project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated in 1990 a Co-ordinated Research Project on The Use of Nuclear or Related Techniques in Management of Nitrogen Fixation by Trees for Enhancing Soil Fertility and Soil Conservation in Fragile Tropical Soils. This document contains nine papers referring to the results of the project. A separate abstract was prepared for each paper Refs, figs, tabs

  7. The use of nuclear techniques in the management of nitrogen fixation by trees to enhance fertility of fragile tropical soils. Results of a co-ordinated research project

    International Nuclear Information System (INIS)

    1998-11-01

    The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated in 1990 a Co-ordinated Research Project on The Use of Nuclear or Related Techniques in Management of Nitrogen Fixation by Trees for Enhancing Soil Fertility and Soil Conservation in Fragile Tropical Soils. This document contains nine papers referring to the results of the project. A separate abstract was prepared for each paper

  8. An Assessment Of Physicochemical Properties, Heavy Metal Enrichment And Fungal Characterization Of Refined Kerosene Impacted Soil In Anand, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Shamiyan R Khan

    2013-12-01

    Full Text Available The present study was carried out to assess the physico-chemical properties, heavy metal enrichment and fungal isolation and characterization of the top soil samples collected in-situ from aged refined kerosene contaminated as well as uncontaminated garden soil sites in Anand, Gujarat, India. The total petroleum hydrocarbon (TPH concentrations were 17,510 mg/kg in kerosene contaminated soil against 142.65 mg/kg for uncontaminated soils. The contamination increased the soil organic carbon, nitrogen and clay to 2.95 %, 0.612 %, 36.22 % as compared to 1.5%, 0.153%, 32.4% respectively in the uncontaminated soil. Increased concentration of heavy metals like Cobalt, Copper, Iron, Zinc and Lead against the uncontaminated soil was encountered. Ten native fungal speciesbelonging to a total of five genera include Aspergillus (A. terreus, A. versicolor, A. niger; Fusarium oxysporum; Penicilliumjanthinellum from the uncontaminated garden soil, whereas the contaminated soil included Aspergillus (A. terreus, A. versicolor , A. niger Candida tropicalis,Cladosporiumbruhnei and Fusarium oxysporum, identified based on 18S rRNA and the nucleotide sequences were submitted to the NCBI, GenBank database. The changes created by kerosene contamination resulted in variation in individual concentrations of physicochemical properties, soil conductivity, pH and soil fertility indices probably dwindle the growth of fungal strains causing a reduction in the fungal population in the kerosene contaminated soil. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 164-174 DOI: http://dx.doi.org/10.3126/ije.v2i1.9219

  9. Soil health in the Mediterranean region: Development and consolidation of a multifactor index to characterize the health of agricultural lands

    Science.gov (United States)

    Gil, Eshel; Guy, Levy; Oshri, Rinot; Michael, Borisover; Uri, Yermiyahu; Leah, Tsror; Hanan, Eizenberg; Tal, Svoray; Alex, Furman; Yael, Mishael; Yosef, Steinberger

    2017-04-01

    that are difficult to control), soil-borne diseases, and pesticide fixation and release. We, a group of more than ten Israeli scientists, have recently started a multidisciplinary study aimed at developing and consolidating a multiparameter soil-health index to characterize the health of agricultural soils in Mediterranean regions. Such an index will enable us to quantitatively evaluate the contribution of different cultivation managements and reclamation activities. In order to achieve our goal, a three steps approach was adopted: 1) acquiring a multivariate component database (about 42 variables) that will be quantified in the laboratory and in the fields in two soil types of the most important agricultural region of Israel, at three different soil usage: orchard, field crops and "native" as a reference. The acquired biological, physical, and chemical variables comprise basic quantitative values in the soil health of agricultural land; (2) developing a multivariate soil-health index based on a multivariate correlation, in addition to conducting meetings with farmers and panel discussions with other scientists in the field. The whole study angled to evaluate the relative contribution of each of the biotic and abiotic parameters in order to develop a model related to soil health; and (3) to validate the efficiency of the developed index for characterizing and assessing soil-health state at the various agricultural regions in Israel where conservation and reclamation activities took place. We are open to extend our study to other areas with a Mediterranean climate and look forward to establishing cooperative activities with other research groups.

  10. Introduction of digital soil mapping techniques for the nationwide regionalization of soil condition in Hungary; the first results of the DOSoReMI.hu (Digital, Optimized, Soil Related Maps and Information in Hungary) project

    Science.gov (United States)

    Pásztor, László; Laborczi, Annamária; Szatmári, Gábor; Takács, Katalin; Bakacsi, Zsófia; Szabó, József; Dobos, Endre

    2014-05-01

    Due to the former soil surveys and mapping activities significant amount of soil information has accumulated in Hungary. Present soil data requirements are mainly fulfilled with these available datasets either by their direct usage or after certain specific and generally fortuitous, thematic and/or spatial inference. Due to the more and more frequently emerging discrepancies between the available and the expected data, there might be notable imperfection as for the accuracy and reliability of the delivered products. With a recently started project (DOSoReMI.hu; Digital, Optimized, Soil Related Maps and Information in Hungary) we would like to significantly extend the potential, how countrywide soil information requirements could be satisfied in Hungary. We started to compile digital soil related maps which fulfil optimally the national and international demands from points of view of thematic, spatial and temporal accuracy. The spatial resolution of the targeted countrywide, digital, thematic maps is at least 1:50.000 (approx. 50-100 meter raster resolution). DOSoReMI.hu results are also planned to contribute to the European part of GSM.net products. In addition to the auxiliary, spatial data themes related to soil forming factors and/or to indicative environmental elements we heavily lean on the various national soil databases. The set of the applied digital soil mapping techniques is gradually broadened incorporating and eventually integrating geostatistical, data mining and GIS tools. In our paper we will present the first results. - Regression kriging (RK) has been used for the spatial inference of certain quantitative data, like particle size distribution components, rootable depth and organic matter content. In the course of RK-based mapping spatially segmented categorical information provided by the SMUs of Digital Kreybig Soil Information System (DKSIS) has been also used in the form of indicator variables. - Classification and regression trees (CART) were

  11. Recent progress in volcanism studies: Site characterization activities for the Yucca Mountain site characterization project

    International Nuclear Information System (INIS)

    Crowe, B.M.; Valentine, G.; Morley, R.; Perry, F.V.

    1992-01-01

    Significant progress has been made on volcanism studies over the past calendar year. There are a number of major highlights from this work. Geochronology data have been obtained for the Lathrop Wells center using a range of isotopic, radiogenic, and age-calibrated methods. Initial work is encouraging but still insufficient to resolve the age of the center with confidence. Geologic mapping of the Sleeping Butte volcanic centers was completed and a report issued on the geology and chronology data. Twenty shallow trenches have been constructed in volcanic units of the Lathrop Wells volcanic center. Results of detailed studies of the trenches support a polycyclic eruptive history. New soil data from the trenches continue to support a late Pleistocene or Holocene age for many of the volcanic units at the center. Geochemical data (trace element and isotopic analysis) show that the volcanic units of the Lathrop Wells center cannot be related to one another by fractional crystallization of a single magma batch, supporting a polycyclic model of volcanism. Structural models using existing data are used to evaluate the probability of magmatic disruption of a potential repository. Several permissive models have been developed but none lead to significant differences in calculating the disruption ratio. Work was initiated on the eruptive and subsurface effects of magmatic activity on a repository. (author)

  12. K Basin sandfilter backwash line characterization project, analytical results for Campaign 20

    International Nuclear Information System (INIS)

    STEEN, F.H.

    1999-01-01

    Sample 112KWBMF was taken from the K West Sandfilter Backwash Pit on June 1 , 1999, and received by 222-S Laboratory on June 2,1999. Analyses were performed on sample 112KWBMF in accordance with Letter of Instruction for K Basins Sandfilter Backwash Line Samples (LOI) in support of the K Basin Sandfilter Backwash Line Characterization Project

  13. K basin sandfilter backwash line characterization project, analytical results for campaign 15

    International Nuclear Information System (INIS)

    Steen, F.H.

    1999-01-01

    Sample 183KWBMF was taken from the K West Sandfilter Backwash Pit on August 28, 1998 and received by 222-S Laboratory on August 28, 1998. Analyses were performed in accordance with ''Letter of Instruction for K Basins Sandfilter Backwash Line Samples'' (LOI) in support of the K Basin Sandfilter Backwash Line Characterization Project

  14. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1995 quality program status report

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1996-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project's (YMP's) quality assurance program for January 1 to September 30, 1995. The report includes major sections on program activities and trend analysis

  15. Purification and Characterization of Taq Polymerase: A 9-Week Biochemistry Laboratory Project for Undergraduate Students

    Science.gov (United States)

    Bellin, Robert M.; Bruno, Mary K.; Farrow, Melissa A.

    2010-01-01

    We have developed a 9-week undergraduate laboratory series focused on the purification and characterization of "Thermus aquaticus" DNA polymerase (Taq). Our aim was to provide undergraduate biochemistry students with a full-semester continuing project simulating a research-like experience, while having each week's procedure focus on a single…

  16. K Basin Sandfilter Backwash Line Characterization Project and Analytical Results for Campaign 24

    International Nuclear Information System (INIS)

    STEEN, F.H.

    1999-01-01

    Sample 203KWBMF was taken from the K West Sandfilter Backwash Pit on November 4, 1999 and received by 2224 Laboratory on November 4, 1999. Analyses were performed on sample 203KWBMF in accordance with ''Letter of Instruction for K Basins sandfilter Backwash Line Samples'' (LOI) in support of the K Basin Sandfilter Backwash Line Characterization Project

  17. Application of QA grading to Yucca Mountain Site Characterization Project items and activities

    International Nuclear Information System (INIS)

    Murthy, R.B.; Smith, S.C.

    1991-01-01

    Grading is the act of selecting the quality assurance (QA) measures necessary to develop and maintain confidence in the quality of an item or activity. The list of QA measures from which this selection is made are the 20 criteria of the Yucca Mountain Site Characterization Project Quality Assurance Requirements Document

  18. Los Alamos National Laboratory Yucca Mountain Site Characterization Project: 1991 quality program status report

    International Nuclear Information System (INIS)

    1992-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory (Los Alamos) Yucca Mountain Site Characterization Project's (YMP) quality assurance program for calendar year 1991. The report is divided into three Sections: Program Activities, Verification Activities, and Trend Analysis

  19. TECHNOLOGY EVALUATION REPORT: TORONTO HARBOUR COMMISSIONERS (THC) SOIL RECYCLE TREATMENT TRAIN. Project Summary

    Science.gov (United States)

    A demonstration of the Toronto Harbour Commissioners' (THC) Soil Recycle Treatment Train was performed under the Superfund Innovative Technology Evaluation (SITE) Program at a pilot plant facility in Toronto, Ontario, Canada. The Soil Recycle Treatment Train, which consists of s...

  20. Independent Verification Survey of the Clean Coral Storage Pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project

    International Nuclear Information System (INIS)

    Wilson-Nichols, M.J.; Egidi, P.V.; Roemer, E.K.; Schlosser, R.M.

    2000-01-01

    f I The Oak Ridge National Laboratory (ORNL) Environmental Technology Section conducted an independent verification (IV) survey of the clean storage pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project (JAPCSRP) from January 18-25, 1999. The goal of the JAPCSRP is to restore a 24-acre area that was contaminated with plutonium oxide particles during nuclear testing in the 1960s. The selected remedy was a soil sorting operation that combined radiological measurements and mining processes to identify and sequester plutonium-contaminated soil. The soil sorter operated from about 1990 to 1998. The remaining clean soil is stored on-site for planned beneficial use on Johnston Island. The clean storage pile currently consists of approximately 120,000 m3 of coral. ORNL conducted the survey according to a Sampling and Analysis Plan, which proposed to provide an IV of the clean pile by collecting a minimum number (99) of samples. The goal was to ascertain wi th 95% confidence whether 97% of the processed soil is less than or equal to the accepted guideline (500-Bq/kg or 13.5-pCi/g) total transuranic (TRU) activity

  1. Technical approach to finalizing sensible soil cleanup levels at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Carr, D.; Hertel, B.; Jewett, M.; Janke, R.; Conner, B.

    1996-01-01

    The remedial strategy for addressing contaminated environmental media was recently finalized for the US Department of Energy's (DOE) Fernald Environmental Management Project (FEMP) following almost 10 years of detailed technical analysis. The FEMP represents one of the first major nuclear facilities to successfully complete the Remedial Investigation/Feasibility Study (RI/FS) phase of the environmental restoration process. A critical element of this success was the establishment of sensible cleanup levels for contaminated soil and groundwater both on and off the FEMP property. These cleanup levels were derived based upon a strict application of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations and guidance, coupled with positive input from the regulatory agencies and the local community regarding projected future land uses for the site. The approach for establishing the cleanup levels was based upon a Feasibility Study (FS) strategy that examined a bounding range of viable future land uses for the site. Within each land use, the cost and technical implications of a range of health-protective cleanup levels for the environmental media were analyzed. Technical considerations in driving these cleanup levels included: direct exposure routes to viable human receptors; cross- media impacts to air, surface water, and groundwater; technical practicality of attaining the levels; volume of affected media; impact to sensitive environmental receptors or ecosystems; and cost. This paper will discuss the technical approach used to support the finalization of the cleanup levels for the site. The final cleanup levels provide the last remaining significant piece to the puzzle of establishing a final site-wide remedial strategy for the FEMP, and positions the facility for the expedient completion of site-wide remedial activities

  2. Isolation, molecular and biochemical characterization of oil degrading bacteria from contaminated soil at an oil refinery

    International Nuclear Information System (INIS)

    AL-Deeb, T.M.; Malkawi, H.I.

    2009-01-01

    Biodegradation using microorganisms is considered to be cost-effective and environmentally friendly treatment of oil-contaminated sites. Oil-biodegrading bacterial strains were isolated, identified and characterized from oil contaminated soil samples at oil refinery in Zarqa (Jordan). Thirty four bacterial isolates were grown on mineral salt media supplemented with crude oil, but 16 showed positive biodegradation of diesel. All the 34 bacterial isolates were characterized at the molecular and bio-chemical levels, and showed positive polymerase chain reaction (PCR) amplification product size of 1500 bp when 16s rDNA bacterial universal primers were used. Eighteen bacterial isolates showed positive PCR amplification product size of 150 bp specific for the genus Pseudomonas and 3 bacterial isolates showed positive amplification product size of 1500 bp specific for the genus Acinetobacter. Biochemical and physiological characterization performed on the 34 bacterial isolates revealed the presence of oil biodegrading bacterial genera and species of Pseudomonas Acidovorans, P. aeruginosa, P. vesicularis, Acinetobacter calcoaceticus, Ac. lowffii, Micro-ococcus luteus, M. varians, M. lylae, M. roseus, Alcaligenes denitrificians, Bacillus megaterium, Comamonas sp., Moralxella sp., Bordetella sp., P. putida, P. stutzeri and P. mallei. (au)

  3. Characterization of biosurfactants from indigenous soil bacteria recovered from oil contaminated sites.

    Science.gov (United States)

    Kumar, Govind; Kumar, Rajesh; Sharma, Anita

    2015-09-01

    Three bacterial isolates (G1, G2 and G3) characterized as Pseudomonas plecoglossicida, Lysinibacillus fusiformis and Bacillus safensis were recovered from contaminated soil of oil refinery. These bacterial isolates produced biosurfactants in MSM medium in stationary phase. Biosurfactants were characterized on the basis of their emulsifying properties with petrol, diesel, mobil oil and petrol engine oil. Reduction in surface tension (below 40 mN m(-1)) and blood hemolysis were also included in biosurfactants characterization. Emulsification indices of G1, G2 and G3 were in the range of 98.82, 23.53 and 58.82 for petrol; 29.411,1.05 and 70.588 for diesel; 35.31, 2.93 and 17.60 for mobil oil and 35.284, 58.82 and 17.647 for petrol engine oil respectively. Dry weight of the extracted biosurfactant was 4.6, 1.4 and 2.4 g I(-1) for G1, G2 and G3 respectively. Structural analysis of the biosurfactants by Fourier Transform Infrared Spectroscopy (FTIR) revealed significant differences in the bonding pattern of individual biosurfactant.

  4. Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 2, Design data

    International Nuclear Information System (INIS)

    Konynenburg, R.A.; McCright, R.D.; Roy, A.K.; Jones, D.A.

    1995-08-01

    This is Volume 2 of the Engineered Materials Characterization Report which presents the design data for candidate materials needed in fabricating different components for both large and medium multi-purpose canister (MPC) disposal containers, waste packages for containing uncanistered spent fuel (UCF), and defense high-level waste (HLW) glass disposal containers. The UCF waste package consists of a disposal container with a basket therein. It is assumed that the waste packages will incorporate all-metallic multibarrier disposal containers to accommodate medium and large MPCs, ULCF, and HLW glass canisters. Unless otherwise specified, the disposal container designs incorporate an outer corrosion-allowance metal barrier over an inner corrosion-resistant metal barrier. The corrosion-allowance barrier, which will be thicker than the inner corrosion-resistant barrier, is designed to undergo corrosion-induced degradation at a very low rate, thus providing the inner barrier protection from the near-field environment for a prolonged service period

  5. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling.

    Science.gov (United States)

    Baderna, Diego; Lomazzi, Eleonora; Passoni, Alice; Pogliaghi, Alberto; Petoumenou, Maria Ifigeneia; Bagnati, Renzo; Lodi, Marco; Viarengo, Aldo; Sforzini, Susanna; Benfenati, Emilio; Fanelli, Roberto

    2015-10-15

    The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity and the predicted environmental concentrations based on the conditions of use are lower than the NOAEC for soils but higher than the NOAEC for water, posing a potential risk to the waters due to the levels of foaming agents in the muck. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, Kristen; Allgaier, Martin; Chavarria, Yaucin; Fortney, Julian; Hugenholtz, Phillip; Simmons, Blake; Sublette, Kerry; Silver, Whendee; Hazen, Terry

    2011-07-14

    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.

  7. Characterization of trapped lignin-degrading microbes in tropical forest soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Allgaier, M.; Chavarria, Y.; Fortney, J.L.; Hugenholz, P.; Simmons, B.; Sublette, K.; Silver, W.L.; Hazen, T.C.

    2011-03-01

    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.

  8. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Baderna, Diego, E-mail: diego.baderna@marionegri.it [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Lomazzi, Eleonora [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Passoni, Alice [Unit of Analytical Instrumentation, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Pogliaghi, Alberto; Petoumenou, Maria Ifigeneia [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Bagnati, Renzo [Unit of Analytical Instrumentation, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Lodi, Marco [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Viarengo, Aldo; Sforzini, Susanna [Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale “A. Avogadro”, 15121 Alessandria (Italy); Benfenati, Emilio [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Fanelli, Roberto [Department of Environmental Health Sciences, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy)

    2015-10-15

    Highlights: • An integrated approach was applied to study three foaming agents. • Several compounds not reported on the safety data sheets were identified by HRMS. • Environmental impacts were investigated with a battery of biological assays. • An ecotoxicological ranking of the products was obtained. - Abstract: The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity

  9. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling

    International Nuclear Information System (INIS)

    Baderna, Diego; Lomazzi, Eleonora; Passoni, Alice; Pogliaghi, Alberto; Petoumenou, Maria Ifigeneia; Bagnati, Renzo; Lodi, Marco; Viarengo, Aldo; Sforzini, Susanna; Benfenati, Emilio; Fanelli, Roberto

    2015-01-01

    Highlights: • An integrated approach was applied to study three foaming agents. • Several compounds not reported on the safety data sheets were identified by HRMS. • Environmental impacts were investigated with a battery of biological assays. • An ecotoxicological ranking of the products was obtained. - Abstract: The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity

  10. Fractionation characterization and speciation of heavy metals in composts and compost and compost-amended soils

    International Nuclear Information System (INIS)

    Lwegbue, C. M.A.; Emuh, F.N.; Isirimah, N.O.; Egun, A.C.

    2007-01-01

    Speciation of heavy metals in soils determines the availability for metals for plant uptake and potential for contamination of groundwater following application of composts to agricultural lands. Methods used to characterize heavy metals in solid phase of composts and compost amended soils include physical fractionation and chemical extraction. Chemical extraction schemes are most frequently used approach to fractionate trace metals in soils, sewage sludge and composts. Several variations exist in the sequential extraction procedures. These variations include reagent types, strength, volume and extraction time. A main drawback shared by all sequential extraction schemes is that the procedures themselves are complex and time consuming. This setback has been overcome by the use of ultrasound accelerated extraction which reduce the extraction time for the entire extraction steps to about 90 minutes allowing composting process to be monitored more frequently which help to provide detailed understanding of the partitioning behaviour of heavy metals. Inspite of the variability the sequential extraction schemes, they all aimed at correlating each fraction with the mobility and plant availability of each metal. Several studies have shown that phase association of heavy metal in composts include water-soluble, exchangeable, precipitated as discrete phases, co-precipitate in metal oxides and adsorbed or complexed by organic ligands and residual forms. The phase association and solubility of metals changes over composting time thereby altering metal availability. It is apparent that the positive effects of resulting from compost application far outweigh the negative effect, but more research is needed on a wide range of municipal solid waste compost with more precise determination of the fate of municipal solid waste compost applied trace metals in the environment. (author)

  11. Soil physico-chemical characterization in the different soil layers of National Maize Research Program, Rampur, Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Dinesh Khadka

    2017-12-01

    Full Text Available Soil pit digging and their precise study is a decision making tool to assess history and future of soil management of a particular area. Thus, the present study was carried out to differentiate soil physico-chemical properties in the different layers of excavated pit of the National Maize Research Program, Rampur, Chitwan, Nepal. Eight pits were dug randomly from three blocks at a depth of 0 to 100 cm. The soil parameters were determined in-situ, and in laboratory for texture, pH, OM, N, P (as P2O5, K (as K2O, Ca, Mg, S, B, Fe, Zn, Cu and Mn of collected soils samples of different layers following standard analytical methods at Soil Science Division, Khumaltar. The result revealed that soil structure was sub-angular in majority of the layers, whereas bottom layer was single grained. The value and chrome of colour was increasing in order from surface to bottom in the majority pits. Similarly, the texture was sandy loam in majority layers of the pits. Moreover, four types of consistence (loose to firm were observed. Furthermore, mottles and gravels were absent in the majority layers. Likewise, soil was very to moderately acidic in observed layers of majority pits, except bottom layer of agronomy block was slightly acidic. Regarding fertility parameters (OM, macro and micronutrients, some were increasing and vice-versa, while others were intermittent also. Therefore, a single layer is not dominant for particular soil physico-chemical parameters in the farm. In overall, surface layer is more fertile than rest of the layers in all the pits.

  12. Soil as natural heat resource for very shallow geothermal application: laboratory and test site updates from ITER Project

    Science.gov (United States)

    Di Sipio, Eloisa; Bertermann, David

    2017-04-01

    Nowadays renewable energy resources for heating/cooling residential and tertiary buildings and agricultural greenhouses are becoming increasingly important. In this framework, a possible, natural and valid alternative for thermal energy supply is represented by soils. In fact, since 1980 soils have been studied and used also as heat reservoir in geothermal applications, acting as a heat source (in winter) or sink (in summer) coupled mainly with heat pumps. Therefore, the knowledge of soil thermal properties and of heat and mass transfer in the soils plays an important role in modeling the performance, reliability and environmental impact in the short and long term of engineering applications. However, the soil thermal behavior varies with soil physical characteristics such as soil texture and water content. The available data are often scattered and incomplete for geothermal applications, especially very shallow geothermal systems (up to 10 m depths), so it is worthy of interest a better comprehension of how the different soil typologies (i.e. sand, loamy sand...) affect and are affected by the heat transfer exchange with very shallow geothermal installations (i.e. horizontal collector systems and special forms). Taking into consideration these premises, the ITER Project (Improving Thermal Efficiency of horizontal ground heat exchangers, http://iter-geo.eu/), funded by European Union, is here presented. An overview of physical-thermal properties variations under different moisture and load conditions for different mixtures of natural material is shown, based on laboratory and field test data. The test site, located in Eltersdorf, near Erlangen (Germany), consists of 5 trenches, filled in each with a different material, where 5 helix have been installed in an horizontal way instead of the traditional vertical option.

  13. Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Santos Silva, Mariana dos; Sgarbi Cocenza, Daniela [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Grillo, Renato; Silva de Melo, Nathalie Ferreira [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Department of Biochemistry, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP (Brazil); Tonello, Paulo Sergio [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Camargo de Oliveira, Luciana [Department of Chemistry, UFSCAr, Campus Sorocaba, SP (Brazil); Lopes Cassimiro, Douglas [Institute of Chemistry, Sao Paulo State University - UNESP, Araraquara, SP (Brazil); Rosa, Andre Henrique [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Fernandes Fraceto, Leonardo, E-mail: leonardo@sorocaba.unesp.br [Department of Environmental Engineering, Sao Paulo State University - UNESP, Avenida Tres de Marco, No. 511, CEP 18087-180, Sorocaba, SP (Brazil); Department of Biochemistry, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP (Brazil)

    2011-06-15

    Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physico-chemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 {+-} 12 nm, polydispersion of 0.518, zeta potential of -22.8 {+-} 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles, was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat.

  14. Hyperfine and radiological characterization of soils of the province of Buenos Aires, Argentina

    Science.gov (United States)

    Montes, M. L.; Taylor, M. A.; Mercader, R. C.; Sives, F. R.; Desimoni, J.

    2010-03-01

    The depth profile concentration of both natural and anthropogenic gamma-ray-emitter nuclides were determined in soil samples collected in an area located at 34° 54.452' S, 58° 8.365' W, down to 50 cm in depth, using an hyper-pure Ge spectrometer. The soil samples were also characterized by means of Mössbauer spectrometry and X-ray diffraction. The activities of 238U and 232Th natural chains remain constant in depth at 41 Bq/kg and 46 Bq/kg, respectively, while the 40K activity increases from 531 Bq/kg to 618 Bq/kg between 2.5 cm y 25.5 cm of depth. The only anthropogenic detected nuclide is 137Cs, whose activity changes form 1.4 Bq/kg to values lower than the detection limit (LD) for depths below 25 cm, exhibiting a maximum at 10 cm beneath the surface. The Mössbauer spectra show two magnetic sextets associated with α-Fe2O3 and Fe3O4, as well as two Fe+3 Fe+2 doublets, probably originated in octahedral and tetrahedral sites of paramagnetic phases. The Fe3+ paramagnetic signal relative fraction increases up to 82% at the expense of the α-Fe2O3 one when de depth increases. No correlation between Fe3O4 and the 137Cs was identificated.

  15. Elemental Characterization of Soil and Sediment Using NAA Technique for BATAN Inter Laboratory Comparison

    International Nuclear Information System (INIS)

    Syukria Kurniawati; Diah Dwiana Lestiani; Natalia Adventini

    2009-01-01

    Elemental characterization of soil and sediment samples using neutron activation analysis (NAA) for BATAN inter laboratory comparison have been conducted. TAR laboratory have been accredited by KAN since 2006, participating the test to evaluate and maintain its capability as testing laboratory that implemented ISO/IEC 17025. Samples from PTBIN were dried at 110°C for 2 hours and homogenized. The samples were irradiated at rabbit system of Multi-Purpose Reactor G.A Siwabessy for 1, 2, 10 and 60 minutes, then counted using HPGe gamma spectrometer. Several statistical test were applied such as μ-test, relative deviation, acceptance criteria for accuracy and precision. The result showed that soil contains V, Al, Ca, Mn, Na, K, As, Fe, Zn and Hg. From accuracy and precision, final status for 9 elements were passed but Ca was rejected, while V, Al, Mn, Cr, Fe, Zn and Co were detected in sediment samples. Final status for V, Al, Mn, Cr, Fe and Co elements were passed but Zn was rejected. (author)

  16. Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems.

    Science.gov (United States)

    Noyes, Noelle R; Yang, Xiang; Linke, Lyndsey M; Magnuson, Roberta J; Cook, Shaun R; Zaheer, Rahat; Yang, Hua; Woerner, Dale R; Geornaras, Ifigenia; McArt, Jessica A; Gow, Sheryl P; Ruiz, Jaime; Jones, Kenneth L; Boucher, Christina A; McAllister, Tim A; Belk, Keith E; Morley, Paul S

    2016-04-20

    It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents.

  17. Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria

    Directory of Open Access Journals (Sweden)

    Santhakumar Muthukamalam

    Full Text Available ABSTRACT Role of microbes in bioremediation of oil spills has become inevitable owing to their eco friendly nature. This study focused on the isolation and characterization of bacterial strains with superior oil degrading potential from crude-oil contaminated soil. Three such bacterial strains were selected and subsequently identified by 16S rRNA gene sequence analysis as Corynebacterium aurimucosum, Acinetobacter baumannii and Microbacterium hydrocarbonoxydans respectively. The specific activity of catechol 1,2 dioxygenase (C12O and catechol 2,3 dioxygenase (C23O was determined in these three strains wherein the activity of C12O was more than that of C23O. Among the three strains, Microbacterium hydrocarbonoxydans exhibited superior crude oil degrading ability as evidenced by its superior growth rate in crude oil enriched medium and enhanced activity of dioxygenases. Also degradation of total petroleum hydrocarbon (TPH in crude oil was higher with Microbacterium hydrocarbonoxydans. The three strains also produced biosurfactants of glycolipid nature as indicated d by biochemical, FTIR and GCMS analysis. These findings emphasize that such bacterial strains with superior oil degrading capacity may find their potential application in bioremediation of oil spills and conservation of marine and soil ecosystem.

  18. Identification and characterization of natural pipe systems in forested tropical soils

    Science.gov (United States)

    Bovi, Renata Cristina; Moreira, Cesar Augusto; Stucchi Boschi, Raquel; Cooper, Miguel

    2017-04-01

    Erosive processes on soil surface have been well studied and comprehended by several researchers, however little is known about subsurface erosive processes (piping). Piping is a type of subsurface erosion caused by water flowing in the subsurface and is still considered one of the most difficult erosive processes to be studied. Several processes have been considered as resposible for subsurface erosion and their interaction is complex and difficult to be studied separately. Surface investigations on their own may underestimate the erosion processes, due to the possible occurrence of subsurface processes that are not yet exposed on the surface. The network of subsurface processes should also be understood to better control erosion. Conservation practices that focus on water runoff control may be inefficient if the subsurface flow is not considered. In this study, we aimed to identify and characterize subsurface cavities in the field, as well as understand the network of these cavities, by using geophysical methods (electrical tomography). The study area is situated at the Experimental Station of Tupi, state of São Paulo, Brazil. The soil of the area was classified as Hapludults. The area presents several erosive features, ranging from laminar to permanent gullies and subsurface erosions. The geophysical equipment used was the Terrameter LS resistivity meter, manufactured by ABEM Instruments. The method of electrical tomography was efficient to detect collapsed and non-collapsed pipes. The results presented valuable information to detect areas of risk.

  19. Molecular Characterization of Microbial Communities in a JP-4 Fuel Contaminated Soil

    International Nuclear Information System (INIS)

    Barcelona, M.J.; Chang, Y.-J.; Gan, Y.D.; Macnaughton, S.J.; Peacock, A.; Stephen, J.R.; White, D.C.

    1999-01-01

    In this study, lipid biomarker characterization of the bacterial and eukaryotic communities was combined with PCR-DGGE analysis of the eubacterial community to evaluate correlation between JP-4 fuel concentration and community structure shifts. Vadose, capillary fringe and saturated-soils were taken from cores within, up- and down-gradient of the contaminant plume. Significant differences in biomass and proportion of Gram negative bacteria were found inside and outside the plume. Sequence analysis of DGGE bands from within the spill site suggested dominance by a limited number of phylogenetically diverse bacteria. Used in tandem with pollutant quantification, these molecular techniques should facilitate significant improvements over current assessment procedures for determination of remediation end points

  20. Partial characterization of bacitracin like inhibitory substance from bacillus subtilis BS15, a local soil isolate

    International Nuclear Information System (INIS)

    Alam, S.I.; Kamran, M.; Sohail, M.; Ahmad, A.; Khan, S.A.

    2011-01-01

    The aim of this study was to investigate the production of bacteriocin/bacteriocin-like inhibitory substances (BLIS) from Bacillus subtilis BS15, isolated from soil. The inhibitory substance was partially purified and characterized as BLIS with a molecular-weight of 3-5 kDa, as determined by SDS-PAGE. Its production was observed during the late exponential phase or at the beginning of stationary-phase. It retained its activity up to 80 deg. C and over a wide range of pH i.e., 3-9. It was found active against several clinically important bacterial species such as Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Salmonella typhi and also against the food-spoilage causing microbes, and may be considered as future food preservative. (author)

  1. Topographical survey and soil characterization of a candidate site for Radioactive Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Peconick, Diva Godoi de O.; Mourao, Rogerio P., E-mail: godiva@cdtn.br, E-mail: mouraor@cdtn.br [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Brazil has already initiated the establishment of a national near-surface repository for the low- and intermediate short-lived radioactive wastes generated within its territory. With two nuclear power plants in operation and a third one under construction, five active nuclear research institutes and another one planned for the intermediate future, operational constraints and social pressure built up for a disposal solution for such a waste category. The Brazilian Nuclear Commission CNEN was tasked at designing, building and commissioning this repository, which implies, among other activities, finding a suitable place for the facility. After an initial technical desk job, a federal land, not far from the NPPs, was appointed and in situ studies for the site characterization were started. This paper describes the topographical survey and soil drilling campaign carried out for the initial evaluation of the feasibility of the site vis-a-vis the applicable national regulations for site selection and disposal facilities licensing. (author)

  2. Isolation and characterization of diesel degrading bacteria, Sphingomonas sp. and Acinetobacter junii from petroleum contaminated soil

    Science.gov (United States)

    Zhang, Qiuzhuo; Wang, Duanchao; Li, Mengmeng; Xiang, Wei-Ning; Achal, Varenyam

    2014-03-01

    Two indigenous bacteria of petroleum contaminated soil were characterized to utilize diesel fuel as the sole carbon and energy sources in this work. 16S rRNA gene sequence analysis identified these bacteria as Sphingomonas sp. and Acinetobacter junii. The ability to degrade diesel fuel has been demonstrated for the first time by these isolates. The results of IR analyses showed that Sphingomonas sp. VA1 and A. junii VA2 degraded up to 82.6% and 75.8% of applied diesel over 15 days, respectively. In addition, Sphingomonas sp. VA1 possessed the higher cellular hydrophobicities of 94% for diesel compared to 81% by A. junii VA2. The isolates Sphingomonas sp. VA1 and A. junii VA2 exhibited 24% and 18%, respectively emulsification activity. This study reports two new diesel degrading bacterial species, which can be effectively used for bioremediation of petroleum contaminated sites.

  3. Topographical survey and soil characterization of a candidate site for Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Peconick, Diva Godoi de O.; Mourao, Rogerio P.

    2015-01-01

    Brazil has already initiated the establishment of a national near-surface repository for the low- and intermediate short-lived radioactive wastes generated within its territory. With two nuclear power plants in operation and a third one under construction, five active nuclear research institutes and another one planned for the intermediate future, operational constraints and social pressure built up for a disposal solution for such a waste category. The Brazilian Nuclear Commission CNEN was tasked at designing, building and commissioning this repository, which implies, among other activities, finding a suitable place for the facility. After an initial technical desk job, a federal land, not far from the NPPs, was appointed and in situ studies for the site characterization were started. This paper describes the topographical survey and soil drilling campaign carried out for the initial evaluation of the feasibility of the site vis-a-vis the applicable national regulations for site selection and disposal facilities licensing. (author)

  4. Elemental, stable isotopic and biochemical characterization of soil organic matter alteration across a natural peatland gradient

    Science.gov (United States)

    Cowie, G.; Mowbray, S.; Belyea, L.; Laing, C.; Allton, K.; Abbott, G.; Muhammad, A.

    2010-12-01

    Northern peatlands store around one third of global soil C and thus represent a key reservoir. To elucidate how these systems might respond to climate change, field- and laboratory-based experimental incubation studies are being conducted at sites across a natural peatland gradient in the boreonemoral zone of central Sweden (Ryggmossen). The site comprises four successional stages, from edge to centre; Swamp Forest (SF), Lagg Fen (LF), Bog Margin (BM) and Bog Plateau (BP). The well-preserved succession shows strong decreases in mineral cations and pH, and distinct changes in vegetation and water-table depth. As an underpinning to these experiments, comprehensive characterization of natural soil organic matter (SOM) alteration has been carried out through detailed analyses of vegetation and downcore profiles at contrasting topographic sites (hummock vs hollow) in each of the four locations. As illustrated in Figure 1, while some similarities occur in downcore trends, contrasts are observed in C and N elemental and stable isotopic compositions, between stages and, in some cases, between microtopographic settings. Downcore trends and intersite differences are also observed in biochemical yields and molecular composition (carbohydrates, amino acids, phenols, lipids and D/L amino acid ratios). These reflect SOM decay and alteration combined with the effects of contrasting hydrologic, redox and nutrient regimes and differing vegetation and microbial inputs at each of the study sites. Multivariate analysis is used to to elucidate compositional patterns that characterize and delineate progressive SOM decay, specific vegetation types, and the effects of contrasting environmental conditions at the different sites. Figure 1. A. Organic carbon content (wt %), B. Atomic ratio of organic C to total N, C. Stable C isotopic composition of organic C (d13Corg), and D. Stable N isotopic composition of total nitrogen (d15N), all for core profiles from contrasting settings (hummock and

  5. Large Area Projection Microstereolithography: Characterization and Optimization of 3D Printing Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Melissa R. [Ohlone College, Fremont, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Bryan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bekker, Logan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dudukovic, Nikola [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-12

    Large Area Projection Microstereolithography (LAPμSL) is a new technology that allows the additive manufacture of parts that have feature sizes spanning from centimeters to tens of microns. Knowing the accuracy of builds from a system like this is a crucial step in development. This project explored the capabilities of the second and newest LAPμSL system that was built by comparing the features of actual builds to the desired structures. The system was then characterized in order to achieve the best results. The photo polymeric resins that were used were Autodesk PR48 and HDDA. Build parameters for Autodesk PR48 were found that allowed the prints to progress while using the full capacity of the system to print quality parts in a relatively short amount of time. One of the larger prints in particular had a print time that was nearly eighteen times faster than it would have been had printed in the first LAPμSL system. The characterization of HDDA resin helped the understanding that the flux of the light projected into the resin also affected the quality of the builds, rather than just the dose of light given. Future work for this project includes exploring the use of other resins in the LAPμSL systems, exploring the use of Raman Spectroscopy to analyze builds, and completing the characterization of the LAPμSL system.

  6. The characterization of the soil biological quality of organic viticulture can be achieved by analyzing soil nematofauna

    OpenAIRE

    Coll, P; Le Cadre, E; Mérot, A; Villenave, C

    2013-01-01

    Soil nematofauna is a bioindicator that can highlight changes in biological functioning when changing agricultural practices. In the present study, the effects of conversion of vineyards to organic agriculture on biological soil quality were evaluated. Twenty four conventional plots and organic plots in Cruscades (Aude) were studied: they were divided into four groups: (1) conventional, (2) converted for 7 years (Bio 7 years), (3) converted for 11 years (Bio 11) and (4) converted for 17 (Bio ...

  7. Environment, safety, health, and quality plan for the TRU- Contaminated Arid Soils Project of the Landfill Stabilization Focus Area Program

    International Nuclear Information System (INIS)

    Watson, L.R.

    1995-06-01

    The Landfill Stabilization Focus Area (LSFA) is a program funded by the US Department of Energy Office of Technology Development. LSFA supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The TRU-Contaminated Arid Soils project is being conducted under the auspices of the LSFA Program. This document describes the Environment, Safety, Health, and Quality requirements for conducting LSFA/Arid Soils activities at the Idaho National Engineering Laboratory. Topics discussed in this report, as they apply to LSFA/Arid Soils operations, include Federal, State of Idaho, and Environmental Protection Agency regulations, Health and Safety Plans, Quality Program, Data Quality Objectives, and training and job hazard analysis. Finally, a discussion is given on CERCLA criteria and system and performance audits as they apply to the LSFA Program

  8. Relationships between nuclear magnetic resonance parameters used to characterize weathering spilled oil and soil toxicity in central Patagonia.

    Science.gov (United States)

    Ríos, Stella Maris; Barquin, Mercedes; Katusich, Ofelia; Nudelman, Norma

    2014-01-01

    Oil spill in the Central Patagonian zone was studied to evaluate if any relationship exists between the parameters used to characterize weathering spilled oil and soil toxicity for two plant species and to evaluate if the phytotoxicity to local species would be a good index for the soil contamination. Nuclear magnetic resonance (NMR) structural indexes and column chromatography compositional indexes were determined to characterize the oil spill in the soil samples. Bioassays were also carried out using Lactuca sativa L (reference) and Atriplex lampa (native species) as test organisms. Measurements of the total petroleum hydrocarbon (TPH) and the electrical conductivity (EC) of the soil were carried out to evaluate the effect on the bioassays. The principal components analysis of the parameters determined by NMR, compositional indexes, EC, TPH, and toxicology data shows that the first three principal components accounted for the 78% of the total variance (40%, 25%, and 13% for the first, second, and third PC, respectively). A good agreement was found between information obtained by compositional indexes and NMR structural indexes. Soil toxicity increases with the increase of EC and TPH. Other factors, such as, the presence of branched and aromatic hydrocarbons is also significant. The statistical evaluation showed that the Euclidean distances (3D) between the background and each one of the samples might be a better indicator of the soil contamination, compared with chemical criterion of TPH.

  9. Characterization of spinal afferent neurons projecting to different chambers of the rat heart.

    Science.gov (United States)

    Guić, Maja Marinović; Kosta, Vana; Aljinović, Jure; Sapunar, Damir; Grković, Ivica

    2010-01-29

    The pattern of distribution of spinal afferent neurons (among dorsal root ganglia-DRGs) that project to anatomically and functionally different chambers of the rat heart, as well as their morphological and neurochemical characteristics were investigated. Retrograde tracing using a patch loaded with Fast blue (FB) was applied to all four chambers of the rat heart and labeled cardiac spinal afferents were characterized by using three neurochemical markers. The majority of cardiac projecting neurons were found from T1 to T4 DRGs, whereas the peak was at T2 DRG. There was no difference in the total number of FB-labeled neurons located in ipsilateral and contralateral DRGs regardless of the chambers marked with the patch. However, significantly more FB-labeled neurons projected to the ventricles compared to the atria (859 vs. 715). The proportion of isolectin B(4) binding in FB-labeled neurons was equal among all neurons projecting to different heart chambers (2.4%). Neurofilament 200 positivity was found in greater proportions in DRG neurons projecting to the left side of the heart, whereas calretinin-immunoreactivity was mostly represented in neurons projecting to the left atrium. Spinal afferent neurons projecting to different chambers of the rat heart exhibit a variety of neurochemical phenotypes depending on binding capacity for isolectin B(4) and immunoreactivity for neurofilament 200 and calretinin, and thus represent important baseline data for future studies. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  10. Global Threat Reduction Initiative Fuel Thermo-Physical Characterization Project: Sample Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pereira, Mario M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steen, Franciska H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-01-01

    This sample management plan provides guidelines for sectioning, preparation, acceptance criteria, analytical path, and end-of-life disposal for the fuel element segments utilized in the Global Threat Reduction Initiative (GTRI), Fuel Thermo-Physical Characterization Project. The Fuel Thermo-Physical Characterization Project is tasked with analysis of irradiated Low Enriched Uranium (LEU) Molybdenum (U-Mo) fuel element samples to support the GTRI conversion program. Sample analysis may include optical microscopy (OM), scanning electron microscopy (SEM) fuel-surface interface analysis, gas pycnometry (density) measurements, laser flash analysis (LFA), differential scanning calorimetry (DSC), thermogravimetry and differential thermal analysis with mass spectroscopy (TG /DTA-MS), Inductively Coupled Plasma Spectrophotometry (ICP), alpha spectroscopy, and Thermal Ionization Mass Spectroscopy (TIMS). The project will utilize existing Radiochemical Processing Laboratory (RPL) operating, technical, and administrative procedures for sample receipt, processing, and analyses. Test instructions (TIs), which are documents used to provide specific details regarding the implementation of an existing RPL approved technical or operational procedure, will also be used to communicate to staff project specific parameters requested by the Principal Investigator (PI). TIs will be developed, reviewed, and issued in accordance with the latest revision of the RPL-PLN-700, RPL Operations Plan. Additionally, the PI must approve all project test instructions and red-line changes to test instructions.

  11. Restoration of degraded arid farmland at Project Wadi Attir: Impact of conservation on biological productivity and soil organic matter

    Science.gov (United States)

    Mor-Mussery, Amir; Helman, David; Ben Eli, Michael; Leu, Stefan

    2017-04-01

    The Israeli Negev Desert, as most Mediterranean drylands, is profoundly degraded. We have been documenting degradation and successful rehabilitation approaches in recent research, aiming at maximizing environmental and economic benefits while restoring healthy dryland soils and perennial vegetation to act as carbon sinks. These methods have been implemented for rehabilitation of Project Wadi Attir's. 50 hectares of heavily degraded farmland suffering from intensive soil erosion (expressed in dense gullies net and massive overland flow). Project Wadi Attir is a groundbreaking initiative of the Bedouin community in the Negev, for establishing a model sustainable agricultural operation. The project was initiated by the US-based Sustainability Laboratory and the Hura Municipal Council. The project is designed to demonstrate implementation of holistic sustainability principles developed by The Lab. The project's ecosystem restoration component involves site development, erosion control, soil conservation and improvement, planting of native and agroforestry trees, together with conservation and protection of biodiversity hotspots and avoiding grazing have, within three years, revealed the high biodiversity and productivity potential of this arid/semi-arid landscape. A number of shrublands and loess plots were subject to strict conservation, avoiding tilling and grazing. Soil fertility, productivity and biodiversity of these conserved plots inside the farm boundaries was compared to similar unprotected plots outside the farm fences by sampling in the field and by using satellite imaging. Our findings indicate a gradual improvement of SOM content specifically in the conserved shrubland area. Water infiltration, herbaceous biomass productivity and ants' activity of the protected plots also significantly increased within 3 years compared to the unprotected control areas. Starting from similar soil organic matter content in 2013 (3.3%) in the rocky slopes, in 2016 1% higher

  12. Near real-time characterization of radio-contaminated soils in France: challenges and methods

    International Nuclear Information System (INIS)

    Desnoyers, Y.; Dubot, D.

    2011-01-01

    Over the last 10 years, the French Atomic Energy Commission (CEA, Commissariat a l'Energie Atomique) has set up an innovative methodology aiming at characterizing radiological contaminations. The application of the latter relies on various tools such as expertise vehicles with embedded measurement devices and a recently developed software platform called Kartotrak. A Geographic Information System tailored to radiological needs constitutes the heart of the platform; it is surrounded by several modules aiming at (i) sampling preparation, (ii) data analysis and geostatistical modeling and (iii) real-time monitoring and data acquisition. This paper presents a methodological framework for the follow-up of decontamination projects, from doubt removal to the verification of the decontamination process. The use of the radiological characterization methodology and its related developments leads to a better appreciation of the contamination and, most importantly, to the optimization of the waste volumes and the reduction of the global cost of the remediation process. (author)

  13. Near real-time characterization of radio-contaminated soils in France: challenges and methods

    Energy Technology Data Exchange (ETDEWEB)

    Desnoyers, Y. [Geovariances, Avon (France); Dubot, D. [Commissariat a l' Energie Atomique (CEA), Fontenay-aux-Roses (France)

    2011-07-01

    Over the last 10 years, the French Atomic Energy Commission (CEA, Commissariat a l'Energie Atomique) has set up an innovative methodology aiming at characterizing radiological contaminations. The application of the latter relies on various tools such as expertise vehicles with embedded measurement devices and a recently developed software platform called Kartotrak. A Geographic Information System tailored to radiological needs constitutes the heart of the platform; it is surrounded by several modules aiming at (i) sampling preparation, (ii) data analysis and geostatistical modeling and (iii) real-time monitoring and data acquisition. This paper presents a methodological framework for the follow-up of decontamination projects, from doubt removal to the verification of the decontamination process. The use of the radiological characterization methodology and its related developments leads to a better appreciation of the contamination and, most importantly, to the optimization of the waste volumes and the reduction of the global cost of the remediation process. (author)

  14. Restoring Soil Quality to Mitigate Soil Degradation

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2015-05-01

    Full Text Available Feeding the world population, 7.3 billion in 2015 and projected to increase to 9.5 billion by 2050, necessitates an increase in agricultural production of ~70% between 2005 and 2050. Soil degradation, characterized by decline in quality and decrease in ecosystem goods and services, is a major constraint to achieving the required increase in agricultural production. Soil is a non-renewable resource on human time scales with its vulnerability to degradation depending on complex interactions between processes, factors and causes occurring at a range of spatial and temporal scales. Among the major soil degradation processes are accelerated erosion, depletion of the soil organic carbon (SOC pool and loss in biodiversity, loss of soil fertility and elemental imbalance, acidification and salinization. Soil degradation trends can be reversed by conversion to a restorative land use and adoption of recommended management practices. The strategy is to minimize soil erosion, create positive SOC and N budgets, enhance activity and species diversity of soil biota (micro, meso, and macro, and improve structural stability and pore geometry. Improving soil quality (i.e., increasing SOC pool, improving soil structure, enhancing soil fertility can reduce risks of soil degradation (physical, chemical, biological and ecological while improving the environment. Increasing the SOC pool to above the critical level (10 to 15 g/kg is essential to set-in-motion the restorative trends. Site-specific techniques of restoring soil quality include conservation agriculture, integrated nutrient management, continuous vegetative cover such as residue mulch and cover cropping, and controlled grazing at appropriate stocking rates. The strategy is to produce “more from less” by reducing losses and increasing soil, water, and nutrient use efficiency.

  15. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Directory of Open Access Journals (Sweden)

    A. B. Moldes

    2013-01-01

    Full Text Available The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-. The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage, as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment.

  16. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Science.gov (United States)

    Moldes, A. B.; Paradelo, R.; Vecino, X.; Cruz, J. M.; Gudiña, E.; Rodrigues, L.; Teixeira, J. A.; Domínguez, J. M.; Barral, M. T.

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment. PMID:23691515

  17. Characterization of soil fauna under the influence of mercury atmospheric deposition in Atlantic Forest, Rio de Janeiro, Brazil.

    Science.gov (United States)

    Buch, Andressa Cristhy; Correia, Maria Elizabeth Fernandes; Teixeira, Daniel Cabral; Silva-Filho, Emmanoel Vieira

    2015-06-01

    The increasing levels of mercury (Hg) found in the atmosphere arising from anthropogenic sources, have been the object of great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of strong importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transference to the soil through litter, playing an important role as sink of this element. Soil microarthropods are keys to understanding the soil ecosystem, and for such purpose were characterized by the soil fauna of two Units of Forest Conservation of the state of the Rio de Janeiro, inwhich one of the areas suffer quite interference from petrochemicals and industrial anthropogenic activities and other area almost exempts of these perturbations. The results showed that soil and litter of the Atlantic Forest in Brazil tend to stock high mercury concentrations, which could affect the abundance and richness of soil fauna, endangering its biodiversity and thereby the functioning of ecosystems. Copyright © 2015. Published by Elsevier B.V.

  18. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Montaña, José Salvador; Martínez, María Mercedes

    With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB) of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen

  19. Changes in Soil Dissolved Organic Carbon Affect Reconstructed History and Projected Future Trends in Surface Water Acidification

    Czech Academy of Sciences Publication Activity Database

    Hruška, Jakub; Krám, Pavel; Moldan, Filip; Oulehle, Filip; Evans, C. D.; Wright, R. F.; Cosby, B. J.; Kopáček, Jiří

    2014-01-01

    Roč. 225, č. 7 (2014), s. 2015 ISSN 0049-6979 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 ; RVO:60077344 Keywords : acidification * surface waters * soils * dissolved organic carbon * magic model * preindustrial water chemistry Subject RIV: EH - Ecology, Behaviour; DA - Hydrology ; Limnology (BC-A) Impact factor: 1.554, year: 2014

  20. Exploring Patterns of Soil Organic Matter Decomposition with Students and the Public Through the Global Decomposition Project (GDP)

    Science.gov (United States)

    Wood, J. H.; Natali, S.

    2014-12-01

    The Global Decomposition Project (GDP) is a program designed to introduce and educate students and the general public about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. This easy-to-use hands-on activity focuses on questions such as "How do environmental conditions control decomposition of organic matter in soil?" and "Why do some areas accumulate organic matter and others do not?" Soil organic matter is important to local ecosystems because it affects soil structure, regulates soil moisture and temperature, and provides energy and nutrients to soil organisms. It is also important globally because it stores a large amount of carbon, and when microbes "eat", or decompose organic matter they release greenhouse gasses such as carbon dioxide and methane into the atmosphere, which affects the earth's climate. The protocol describes a commonly used method to measure decomposition using a paper made of cellulose, a component of plant cell walls. Participants can receive pre-made cellulose decomposition bags, or make decomposition bags using instructions in the protocol and easily obtained materials (e.g., window screen and lignin-free paper). Individual results will be shared with all participants and the broader public through an online database. We will present decomposition bag results from a research site in Alaskan tundra, as well as from a middle-school-student led experiment in California. The GDP demonstrates how scientific methods can be extended to educate broader audiences, while at the same time, data collected by students and the public can provide new insight into global patterns of soil decomposition. The GDP provides a pathway for scientists and educators to interact and reach meaningful education and research goals.

  1. Isolation and characterization of a biosurfactant-producing Fusarium sp. BS-8 from oil contaminated soil.

    Science.gov (United States)

    Qazi, Muneer A; Kanwal, Tayyaba; Jadoon, Muniba; Ahmed, Safia; Fatima, Nighat

    2014-01-01

    This study reports characterization of a biosurfactant-producing fungal isolate from oil contaminated soil of Missa Keswal oil field, Pakistan. It was identified as Fusarium sp. BS-8 on the basis of macroscopic and microscopic morphology, and 18S rDNA gene sequence homology. The biosurfactant-producing capability of the fungal isolates was screened using oil displacement activity, emulsification index assay, and surface tension (SFT) measurement. The optimization of operational parameters and culture conditions resulted in maximum biosurfactant production using 9% (v/v) inoculum at 30°C, pH 7.0, using sucrose and yeast extract, as carbon and nitrogen sources, respectively. A C:N ratio of 0.9:0.1 (w/w) was found to be optimum for growth and biosurfactant production. At optimal conditions, it attained lowest SFT (i.e., 32 mN m(-1) ) with a critical micelle concentration of ≥ 1.2 mg mL(-1) . During 5 L shake flask fermentation experiments, the biosurfactant productivity was 1.21 g L(-1) pure biosurfactant having significant emulsifying index (E24 , 70%) and oil-displacing activity (16 mm). Thin layer chromatography and Fourier transform infrared spectrometric analyses indicated a lipopeptide type of the biosurfactant. The Fusarium sp. BS-8 has substantial potential of biosurfactant production, yet it needs to be fully characterized with possibility of relatively new class of biosurfactants. © 2014 American Institute of Chemical Engineers.

  2. Sequential Extraction Versus Comprehensive Characterization of Heavy Metal Species in Brownfield Soils

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, Cheryl L.; Williamson, Connie A.; Collins, W. Keith; Dahlin, David C.

    2002-06-01

    The applicability of sequential extraction as a means to determine species of heavy-metals was examined by a study on soil samples from two Superfund sites: the National Lead Company site in Pedricktown, NJ, and the Roebling Steel, Inc., site in Florence, NJ. Data from a standard sequential extraction procedure were compared to those from a comprehensive study that combined optical- and scanning-electron microscopy, X-ray diffraction, and chemical analyses. The study shows that larger particles of contaminants, encapsulated contaminants, and/or man-made materials such as slags, coke, metals, and plastics are subject to incasement, non-selectivity, and redistribution in the sequential extraction process. The results indicate that standard sequential extraction procedures that were developed for characterizing species of contaminants in river sediments may be unsuitable for stand-alone determinative evaluations of contaminant species in industrial-site materials. However, if employed as part of a comprehensive, site-specific characterization study, sequential extraction could be a very useful tool.

  3. CACAO: A project for a laboratory for the production and characterization of thin radioactive layers

    Energy Technology Data Exchange (ETDEWEB)

    Bacri, C.O., E-mail: bacri@ipno.in2p3.f [Institut de Physique Nucleaire d' Orsay, 91406 Orsay Cedex, CNRS (UMR8608-IN2P3), Universite Paris-Sud (Paris XI) (France); Petitbon, V.; Pierre, S. [Institut de Physique Nucleaire d' Orsay, 91406 Orsay Cedex, CNRS (UMR8608-IN2P3), Universite Paris-Sud (Paris XI) (France)

    2010-02-11

    CACAO, Chimie des Actinides et Cibles radioActives a Orsay (actinide chemistry and radioactive targets at Orsay), is a project under construction that consists of the installation of a hot laboratory dedicated to the production and characterization of thin radioactive layers. The project aims to be a joint CNRS-CEA national laboratory to overcome difficulties related mainly to safety issues and to the lack of knowledge and potential manpower. The first goal is to fulfill, at least, the needs of the whole French community, and to be able to coordinate the different activities related to radioactive targets. For this purpose, itis important to be complementary to already existing international installations. Inside this framework, it will of course be possible to produce and/or characterize targets for other users.

  4. CACAO: A project for a laboratory for the production and characterization of thin radioactive layers

    Science.gov (United States)

    Bacri, C. O.; Petitbon, V.; Pierre, S.; Cacao Group

    2010-02-01

    CACAO, Chimie des Actinides et Cibles radioActives à Orsay (actinide chemistry and radioactive targets at Orsay), is a project under construction that consists of the installation of a hot laboratory dedicated to the production and characterization of thin radioactive layers. The project aims to be a joint CNRS-CEA national laboratory to overcome difficulties related mainly to safety issues and to the lack of knowledge and potential manpower. The first goal is to fulfill, at least, the needs of the whole French community, and to be able to coordinate the different activities related to radioactive targets. For this purpose, itis important to be complementary to already existing international installations. Inside this framework, it will of course be possible to produce and/or characterize targets for other users.

  5. CACAO: A project for a laboratory for the production and characterization of thin radioactive layers

    International Nuclear Information System (INIS)

    Bacri, C.O.; Petitbon, V.; Pierre, S.

    2010-01-01

    CACAO, Chimie des Actinides et Cibles radioActives a Orsay (actinide chemistry and radioactive targets at Orsay), is a project under construction that consists of the installation of a hot laboratory dedicated to the production and characterization of thin radioactive layers. The project aims to be a joint CNRS-CEA national laboratory to overcome difficulties related mainly to safety issues and to the lack of knowledge and potential manpower. The first goal is to fulfill, at least, the needs of the whole French community, and to be able to coordinate the different activities related to radioactive targets. For this purpose, itis important to be complementary to already existing international installations. Inside this framework, it will of course be possible to produce and/or characterize targets for other users.

  6. 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE). Screening-Level Feasibility Assessment and Design Tool in Support of 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) ESTCP Project ER 201326

    Science.gov (United States)

    2017-10-01

    USER GUIDE 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) Screening-Level Feasibility Assessment and Design Tool in...Support of 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) ESTCP Project ER-201326 OCTOBER 2017 Rob Hinchee Integrated Science...Technology, Inc. 1509 Coastal Highway Panacea, FL 32346 8/8/2013 - 8/8/2018 10-2017 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) Screening

  7. Independent technical reviews for groundwater and soil remediation projects at US Department Of Energy sites - 59188

    International Nuclear Information System (INIS)

    Kaback, Dawn S.; Chamberlain, Grover; Morse, John G.; Petersen, Scott W.

    2012-01-01

    The US Department of Energy Office of Environmental Management has supported independent technical reviews of soil and groundwater projects at multiple DOE sites over the last 10 years. These reviews have resulted in significant design improvements to remedial plans that have accelerated cleanup and site closure. Many have also resulted in improved understanding of complex subsurface conditions, promoting better approaches to design and implementation of new technologies. Independent technical reviews add value, because they provide another perspective to problem solving and act as a check for especially challenging problems. By bringing in a team of independent experts with a broad experience base, alternative solutions are recommended for consideration and evaluation. In addition, the independence of the panel is significant, because it is able to address politically sensitive issues. The expert panel members typically bring lessons learned from other sites to help solve the DOE problems. In addition, their recommendations at a particular site can often be applied at other sites, making the review even more valuable. The review process can vary, but some common lessons ensure a successful review: - Use a multi-disciplinary broadly experienced team; - Engage the panel early and throughout the project; - Involve regulators and stakeholders in the workshop, if appropriate. - Provide sufficient background information; - Close the workshop with a debriefing followed by a written report. Many groundwater remediation challenges remain at DOE sites. Independent technical reviews have and will ensure that the best capabilities and experience are applied to reduce risks and uncertainties. Even though the groundwater remediation industry has developed significantly over the last twenty years, advancements are needed to address the complexities of the subsurface at the DOE sites. These advancements have tremendous potential to save millions of dollars and to accelerate the

  8. GENISES: A GIS Database for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Beckett, J.

    1991-01-01

    This paper provides a general description of the Geographic Nodal Information Study and Evaluation System (GENISES) database design. The GENISES database is the Geographic Information System (GIS) component of the Yucca Mountain Site Characterization Project Technical Database (TDB). The GENISES database has been developed and is maintained by EG ampersand G Energy Measurements, Inc., Las Vegas, NV (EG ampersand G/EM). As part of the Yucca Mountain Project (YMP) Site Characterization Technical Data Management System, GENISES provides a repository for geographically oriented technical data. The primary objective of the GENISES database is to support the Yucca Mountain Site Characterization Project with an effective tool for describing, analyzing, and archiving geo-referenced data. The database design provides the maximum efficiency in input/output, data analysis, data management and information display. This paper provides the systematic approach or plan for the GENISES database design and operation. The paper also discusses the techniques used for data normalization or the decomposition of complex data structures as they apply to GIS database. ARC/INFO and INGRES files are linked or joined by establishing ''relate'' fields through the common attribute names. Thus, through these keys, ARC can allow access to normalized INGRES files greatly reducing redundancy and the size of the database

  9. Study of ultrasonic characterization and propagation in austenitic welds: The MOSAICS project

    Energy Technology Data Exchange (ETDEWEB)

    Chassignole, Bertrand, E-mail: bertrand.chassignole@edf.fr [EDF R and D, MMC department, Les Renardières, 77818 Moret sur Loing (France); Recolin, Patrick, E-mail: patrick.recolin@dcnsgroup.com [DCNS CESMAN, 44620 La montagne (France); Leymarie, Nicolas, E-mail: nicolas.leymarie@cea.fr [CEA LIST, 91191 Gif-sur-Yvette (France); Gueudré, Cécile, E-mail: cecile.gueudre@univ-amu.fr [LMA, Aix Marseille Université, CNRS, UPR 7051, F-13402 Marseille Cedex 20 (France); Guy, Philippe, E-mail: philippe.guy@insa-lyon.fr [INSA Lyon, LVA laboratory, 69621 Villeurbanne (France); Elbaz, Deborah, E-mail: deborah.elbaz@extende.com [Extende, 91400 Orsay (France)

    2015-03-31

    Regulatory requirements enforce a volumetric inspection of welded components of nuclear equipments. However, the multi-pass austenitic welds are characterized by anisotropic and heterogeneous structures which lead to numerous disturbances of the ultrasonic beam. The MOSAICS project supported by the ANR (French National Research Agency) aims at matching various approaches to improve the prediction of the ultrasonic testing in those welds. The first stage consists in characterizing the weld structure (determination of the columnar grain orientation and measurements of elastic constants and attenuation coefficients). The techniques of characterization provide input data for the modeling codes developed in another task of the project. For example, a 3D version of the finite elements code ATHENA is developed by EDF R and D to take into account anisotropic texture in any direction. Semi-analytical models included in CIVA software are also improved to better predict the ultrasonic propagation in highly anisotropic and heterogeneous structures. The last stage deals with modeling codes validation based on experimental inspections on representative mock-ups containing calibrated defects. The objective of this paper is to give an overview of the MOSAICS project and to present specific results illustrating the various tasks.

  10. Evaluating water erosion prediction project model using Cesium-137-derived spatial soil redistribution data

    Science.gov (United States)

    The lack of spatial soil erosion data has been a major constraint on the refinement and application of physically based erosion models. Spatially distributed models can only be thoroughly validated with distributed erosion data. The fallout cesium-137 has been widely used to generate spatial soil re...

  11. Summary of field operations Technical Area I well PGS-1. Site-Wide Hydrogeologic Characterization Project

    International Nuclear Information System (INIS)

    Fritts, J.E.; McCord, J.P.

    1995-02-01

    The Environmental Restoration (ER) Project at Sandia National Laboratories, New Mexico is managing the project to assess and, when necessary, to remediate sites contaminated by the lab operations. Within the ER project, the site-wide hydrogeologic characterization task is responsible for the area-wide hydrogeologic investigation. The purpose of this task is to reduce the uncertainty about the rate and direction of groundwater flow beneath the area and across its boundaries. This specific report deals with the installation of PGS-1 monitoring well which provides information on the lithology and hydrology of the aquifer in the northern area of the Kirtland Air Force Base. The report provides information on the well design; surface geology; stratigraphy; structure; drilling, completion, and development techniques; and borehole geophysics information

  12. Environmental Restoration Program pollution prevention checklist guide for the facility characterization project phase

    International Nuclear Information System (INIS)

    1993-09-01

    A facility characterization (FC) is conducted to determine the nature and extent contamination at a potential hazardous facility waste site. The information gathered during an FC includes (1) data on the volume and chemical nature of the waste, (2) information on the extent of contamination and the migration potential of the contaminants, (3) preliminary information on evaluation of alternative concepts that can or cannot be considered, and (4)supportive technical and cost data. For the purposes of identification, the following operational phases will be used for definition for this phase of the decommissioning and decontamination process (1) facility characterization before clean up, (2) characterization during clean up, (3) characterization of waste materials, and (4) site characterization after clean up. A key consideration in this process is the prevention of any waste to be generated from these characterization activities. The purpose of this checklist guide is to assist users with incorporating pollution prevention/waste minimization (PP/WM) in all FC phase projects of the Environmental Restoration (ER) Program. This guide will help users document PP/WM activities for technology transfer and reporting requirements. Automated computer screens will be created from the checklist data to assist users with implementing and evaluating waste reduction

  13. Characterization of Several Paddy Soil Types in Bogor, West Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Kurniati

    2016-01-01

    Full Text Available Paddy soil has different morphology and pedogenic characteristics compared to dry land, due to the influence of inundation during several months in a year. Puddling and drying that occurs in turns (redox cycle in paddy soil can lead to the formation of concretions or rusty Fe and Mn. The main purpose of this study was to understand the changing of the morphological and chemical properties as a result of changing of the dry land to paddy soil. Besides, the study also aimed to understand plow pan layer formation in Podsolic, Latosol, Regosol, and Andosol soil type. Results showed that content of soil density (bulk density of dry land ranged from 0.5 to 1.0, while paddy soil is 0.8 to 1.0 (g cm-3. Bulk density values in all four types of soils increased after the changing. Observation also demonstrated that severity levels of paddy soil is higher than dry land, especially in the second and third soil layers or under the surface of soils. Acidity of dry land was likely to be higher than paddy soil. There were no significant differences in nutrient such as C-organic, P and N. Meanwhile, using dithionite as solvent, paddy soil has higher Fe, Mn, and Al content than that of dry land, and remain the same when extracted with pyrophosphate and oxalate. From the four types of soil observed,the paddy soil showed formation of plow pan layer. This was shown by the soil severity level higher than the topsoil or other layers. Paddy soil had unique properties due to redox reaction, thereby providing soil discoloration i.e darker due to high solubility of Fe, Mn, and Al.

  14. Characterization of radon penetration of different structural domains of concrete. Final project report

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1996-05-01

    This report documents the research activities by Rogers and Associates Engineering Corporation on grant DE-FG03-93ER61600 during the funded project period from August 1993 to April 1996. The objective of this research was to characterize the mechanisms and rates of radon gas penetration of the different structural domains of the concrete components of residential floor slabs, walls, and associated joints and penetrations. The research was also to characterize the physical properties of the concretes in these domains to relate their radon resistance to their physical properties. These objectives support the broader goal of characterizing which, if any, concrete domains and associated properties constitute robust barriers to radon and which permit radon entry, either inherently or in ways that could be remediated or avoided

  15. A simplified extraction schema to for the analytical characterization of apple orchard soils

    Science.gov (United States)

    Sager, Manfred

    2014-05-01

    In agriculture, soil analysis is mainly done to monitor available nutrients as well contaminants, in order to find the optimum fertilization resp. remediation strategy. Traditionally, available nutrients in soils have been obtained from a series of different extractions, some just for one single parameter. In order to simplify the entire procedures, multi-element techniques, like ICP-OES and ICP-MS, have been applied to a sequence of extracts obtained with 0,16M acetic acid and 0,1M oxalate buffer pH 3, which are more suitable for the plasma than traditional salt extractant solutions. Dilute acetic acid should characterize exchangeables plus carbonates, and oxalate buffer the pedogenic oxides. Aqua regia extractions in glass have been replaced by pressure digestion with KClO3 in dilute nitric acid, which yields results equivalent to aqua regia, and additionally permits the determination of total sulfur, as well as acid-leachable boron and silicon. Total digestion was done in PTFE beakers by fuming with HNO3/HClO4, subsequently with HF, and final uptake in 1+1 HCl. The results of total digestion could be verified by XRF analysis of the solid, Ti recovery was the most critical item. The method was applied to 34 soils from apple orchards of different soil types and climatic zones. P and K obtained from standard acetate-lactate extract as well as B obtained from the Baron extract correlated with the results from the acetic acid extract better than 0,9. Just Mg from the CaCl2 extract (Schachtschabel) was independent from all other Mg fractions. The results for Ca, Cu, Mg, Mn, Sr, Pb and Zn obtained from KClO3 digest and from totals, were strongly correlated. The Rare Earth elements formed a strongly intercorrelated group as well after total digestion as in the oxalate leach. Factor analysis was utilized to prove if the obtained fractions part into groups in a geochemically feasible way. The fraction mobilized by dilute acetic acid contained Ca-Mg-carbonates as well as

  16. Characterization of some chemical components, in the soil of different agro- ecosystems of cattle farms

    Directory of Open Access Journals (Sweden)

    Ernesto Noval-Artiles

    2014-01-01

    Full Text Available The concentration of some chemical components was characterized, in soils of an agro- ecosystem of a cattle farm with different reliefs, one located in the plains and another in a hilly area. The statistical descriptive variables were calculated for organic matter, pH, P2O5, K2O, Cu, Zn, Fe and Mn; by means of a t- Student test for independent samples, the variables were compared among the rainy and dry seasons. In the agro-ecosystem of the plains the 24.5, 75.4, 20.7, 41.5, 33.9 and 56.6 % of the samples were below the critical limit for organic matter, P2O5, K2O, Cu, Mn and Zn, respectively. In the hilly region the concentrations of the organic matter and the mentioned chemical elements were deficient in a 25, 80, 42.5, 7.5 and 25 %, and 2.5 % in the samples of Fe. They were significant levels of Cu for the rainy season, while in the Mn was significant in the dry season for the agro-ecosystem of the plains, while in the hilly region there were small significant values in the Cu, Fe and Mn in the dry season, on the contrary of the P2O5 that showed small values during the rainy season. It concludes that independent in the agro-ecosystems that there were deficiencies in a percent of the soil samples, equally significant variation existed in the levels of the minerals in conjunction with the season.

  17. Nevada Test Site Perspective on Characterization and Loading of Legacy Transuranic Drums Utilizing the Central Characterization Project

    International Nuclear Information System (INIS)

    R.G. Lahoud; J. F. Norton; I. L. Siddoway; L. W. Griswold

    2006-01-01

    The Nevada Test Site (NTS) has successfully completed a multi-year effort to characterize and ship 1860 legacy transuranic (TRU) waste drums for disposal at the Waste Isolation Pilot Plant (WIPP), a permanent TRU disposal site. This has been a cooperative effort among the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), the U.S. Department of Energy, Carlsbad Field Office (DOE/CBFO), the NTS Management and Operations (M and O) contractor Bechtel Nevada (BN), and various contractors under the Central Characterization Project (CCP) umbrella. The success is due primarily to the diligence, perseverance, and hard work of each of the contractors, the DOE/CBFO, and NNSA/NSO, along with the support of the U.S. Department of Energy, Headquarters (DOE/HQ). This paper presents, from an NTS perspective, the challenges and successes of utilizing the CCP for obtaining a certified characterization program, sharing responsibilities for characterization, data validation, and loading of TRU waste with BN to achieve disposal at WIPP from a Small Quantity Site (SQS) such as the NTS. The challenges in this effort arose from two general sources. First, the arrangement of DOE/CBFO contractors under the CCP performing work and certifying waste at the NTS within a Hazard Category 2 (HazCat 2) non-reactor nuclear facility operated by BN, presented difficult challenges. The nuclear safety authorization basis, safety liability and responsibility, conduct of operations, allocation and scheduling of resources, and other issues were particularly demanding. The program-level and field coordination needed for the closely interrelated characterization tasks was extensive and required considerable effort by all parties. The second source of challenge was the legacy waste itself. None of the waste was generated at the NTS. The waste was generated at Lawrence Livermore National Laboratory (LLNL), Lawrence Berkeley Laboratory (LBL), Lynchburg, Rocky

  18. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Harden, Jennifer W.; Hugelius, Gustaf; Ahlstrom, Anders; Blankinship, Joseph; Bond-Lamberty, Benjamin; Lawrence, Corey; Loisel, Julie; Malhotra, Avni; Jackson, Robert B.; Ogle, S.M.; Phillips, Claire; Ryals, Rebecca; Todd-Brown, Katherine EO; Vargas, Rodrigo; Vergara, Sintana; Cotrufo, Francesca; Keiluweit, M.; Heckman, Katherine; Crow, Susan; Silver, Whendee; Delonge, Marcia; Nave, Lucas

    2018-02-01

    Over 75% of soil organic carbon (C) in the upper meter of earth’s terrestrial surface has been subjected to cropping, grazing, forestry, or urbanization. As a result, terrestrial C cycling cannot be studied out of land use context. Meanwhile, amendments by soil organic matter demonstrate reliable methodologies to restore and improve soils to a more productive state, therefore soil health and productivity cannot be understood without reference to soil C. Measurements for detecting changes in soil C are needed to constrain and monitor best practices and must reflect processes of C stabilization and destabilization over various timescales, soil types, and spatial scales in order to quantify C sequestration at regional to global scales. We have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of soil carbon and its management for sustained production and climate regulation.

  19. Characterization and immobilization of cesium-137 in soil at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ningping; Mason, C.F.V.; Turney, W.R.J.R.

    1996-06-01

    At Los Alamos National Laboratory, cesium-137 ({sup 137}Cs) is a major contaminant in soils of Technical Area 21 (TA-21) and is mainly associated with soil particles {<=}2.00 mm. Cesium-137 was not leached by synthetic groundwater or acid rainwater. Soil erosion is a primary mechanism of {sup 137}Cs transport in TA-21. The methodology that controls soil particle runoff can prevent the transport of {sup 137}Cs.

  20. Characterization and immobilization of cesium-137 in soil at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Lu, Ningping; Mason, C.F.V.; Turney, W.R.J.R.

    1996-01-01

    At Los Alamos National Laboratory, cesium-137 ( 137 Cs) is a major contaminant in soils of Technical Area 21 (TA-21) and is mainly associated with soil particles ≤2.00 mm. Cesium-137 was not leached by synthetic groundwater or acid rainwater. Soil erosion is a primary mechanism of 137 Cs transport in TA-21. The methodology that controls soil particle runoff can prevent the transport of 137 Cs

  1. The Dust Management Project: Characterizing Lunar Environments and Dust, Developing Regolith Mitigation Technology and Simulants

    Science.gov (United States)

    Hyatt, Mark J.; Straka, Sharon A.

    2010-01-01

    A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth?s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting long-term operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it?s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, plans, and accomplishments will be presented.

  2. Draft site characterization analysis of the site characterization report for the Basalt Waste Isolation Project, Hanford, Washington Site. Main report and Appendices A through D

    International Nuclear Information System (INIS)

    1983-03-01

    On November 12, 1982, the US Department of Energy submitted to the US Nuclear Regulatory Commission the Site Characterization Report for the Basalt Waste Isolation Project (DOE/RL 82-3). The Basalt Waste Isolation Project is located on DOE's Hanford Reservation in the State of Washington. NUREG-0960 contains the detailed analysis, by the NRC staff, of the site characterization report. Supporting technical material is contained in Appendices A through W

  3. Structure, Aboveground Biomass, and Soil Characterization of Avicennia marina in Eastern Mangrove Lagoon National Park, Abu Dhabi

    Science.gov (United States)

    Alsumaiti, Tareefa Saad Sultan

    Mangrove forests are national treasures of the United Arab Emirates (UAE) and other arid countries with limited forested areas. Mangroves form a crucial part of the coastal ecosystem and provide numerous benefits to society, economy, and especially the environment. Mangrove trees, specifically Avicennia marina, are studied in their native habitat in order to characterize their population structure, aboveground biomass, and soil properties. This study focused on Eastern Mangrove Lagoon National Park in Abu Dhabi, which was the first mangrove protected area to be designated in UAE. In situ measurements were collected to estimate Avicennia marina status, mortality rate (%), height (m), crown spread (m), stem number, diameter at breast height (cm), basal area (m), and aboveground biomass (t ha-1 ). Small-footprint aerial light detection and ranging (LIDAR) data acquired by UAE were processed to characterize mangrove canopy height and aboveground biomass density. This included extraction of LIDAR-derived height percentile statistics, segmentation of the forest into structurally homogenous units, and development of regression relationships between in situ reference and remote sensing data using a machine learning approach. An in situ soil survey was conducted to examine the soils' physical and chemical properties, fertility status, and organic matter. The data of soil survey were used to create soil maps to evaluate key characteristics of soils, and their influence on Avicennia marina in Eastern Mangrove Lagoon National Park. The results of this study provide new insights into Avicennia marina canopy population, structure, aboveground biomass, and soil properties in Abu Dhabi, as data in such arid environments is lacking. This valuable information can help in managing and preserving this unique ecosystem.

  4. Hydraulic characterization of aquifers, reservoir rocks, and soils: A history of ideas

    Science.gov (United States)

    Narasimhan, T. N.

    1998-01-01

    Estimation of the hydraulic properties of aquifers, petroleum reservoir rocks, and soil systems is a fundamental task in many branches of Earth sciences and engineering. The transient diffusion equation proposed by Fourier early in the 19th century for heat conduction in solids constitutes the basis for inverting hydraulic test data collected in the field to estimate the two basic parameters of interest, namely, hydraulic conductivity and hydraulic capacitance. Combining developments in fluid mechanics, heat conduction, and potential theory, the civil engineers of the 19th century, such as Darcy, Dupuit, and Forchheimer, solved many useful problems of steady state seepage of water. Interest soon shifted towards the understanding of the transient flow process. The turn of the century saw Buckingham establish the role of capillary potential in governing moisture movement in partially water-saturated soils. The 1920s saw remarkable developments in several branches of the Earth sciences; Terzaghi's analysis of deformation of watersaturated earth materials, the invention of the tensiometer by Willard Gardner, Meinzer's work on the compressibility of elastic aquifers, and the study of the mechanics of oil and gas reservoirs by Muskat and others. In the 1930s these led to a systematic analysis of pressure transients from aquifers and petroleum reservoirs through the work of Theis and Hurst. The response of a subsurface flow system to a hydraulic perturbation is governed by its geometric attributes as well as its material properties. In inverting field data to estimate hydraulic parameters, one makes the fundamental assumption that the flow geometry is known a priori. This approach has generally served us well in matters relating to resource development primarily concerned with forecasting fluid pressure declines. Over the past two decades, Earth scientists have become increasingly concerned with environmental contamination problems. The resolution of these problems

  5. Characterization of phosphorus in the sedimentary environments of inundated agricultural soils around the Huainan Coal Mines, Anhui, China.

    Science.gov (United States)

    Yi, Qitao; Xie, Kai; Sun, Pengfei; Kim, Youngchul

    2014-02-15

    Extensive coal mining in the Huainan Coal Mines, Anhui China, in light of the local hydrology and geology, has resulted in extensive land subsidence and submergence around the mines. This has led to the formation of large (>100 km(2)) lakes. Three representative lakes were selected to study the mechanisms of phosphorus (P) unavailability for primary production from the perspective of sedimentary environments, which in turn owe their formation to permanently inundated agricultural soils. Two important issues were considered: (1) potential of P transport from the cultivated soil column toward surface sediments and (2) characterization of P behavior in view of regional ecological rehabilitation and conservation. Accordingly, we conducted field sediment analyses, combined with simulation experiments of soil column inundation/submergence lasting for four months. Enrichment of Fe-(hydr)oxides in surface sediments was verified to be the main reason for limitations in regional P availability in water bodies. Iron (Fe), but not its bound P, moved upward from the submerged soil column to the surface. However, an increasing upward gradient in the contents of organic matter (OM), total nitrogen (N), total phosphorus (TP), and different P fractions was caused by spatial heterogeneity in soil properties. Phosphorus was unable to migrate upward toward the surface sediments as envisioned, because of complex secondary reactions within soil minerals. Phosphorus bound to Fe and/or Al comprised over 50% of TP, which has important implications for local ecological rehabilitation and water conservation. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Mississippi Basin Carbon Project: upland soil database for sites in Nishnabotna River basin, Iowa

    Science.gov (United States)

    Harden, J.W.; Fries, T.L.; Haughy, R.; Kramer, L.; Zheng, Shuhui

    2001-01-01

    The conversion of land from its native state to an agricultural use commonly results in a significant loss of soil carbon (Mann, 1985; Davidson and Ackerman, 1993). Globally, this loss is estimated to account for as much as 1/3 of the net CO2 emissions for the period of 1850 to 1980 (Houghton and others, 1983). Roughly 20 to 40 percent of original soil carbon is estimated to be lost as CO2 as a result of agricultural conversion, or "decomposition enhancement". Global models use this estimate along with land conversion data to provide agricultural contributions of CO2 emissions for global carbon budgets (Houghton and others, 1983; Schimel, 1995). Soil erosion rates are significantly (10X) higher on croplands than on their undisturbed equivalents (Dabney and others, 1997). Most of the concern over erosion is related to diminished productivity of the uplands (Stallings, 1957; McGregor and others, 1969; Rhoton, 1990) or to increased hazards and navigability of the lowlands in the late 1800's to early 1900's. Yet because soil carbon is concentrated at the soil surface, with an exponential decline in concentration with depth (Harden et al, 1999), it is clear that changes in erosion rates seen on croplands must also impact soil carbon storage and terrestrial carbon budgets as well. As yet, erosional losses of carbon are not included in global carbon budgets explicitly as a factor in land conversion nor implicitly as a portion of the decomposition enhancement. However, recent work by Lal and others (1995) and by Stallard (1998) suggests that significant amounts of eroded soil may be stored in man-made reservoirs and depositional environments as a result of agricultural conversion. Moreover, Stallard points out that eroding soils have the potential for replacing part of the carbon trapped in man-made reservoirs. If true, then the global carbon budget may grossly underestimate or ignore a significant sink term resulting from the burial of eroded soil.

  7. Mississippi Basin Carbon Project; upland soil database for sites in Yazoo Basin, northern Mississippi

    Science.gov (United States)

    Harden, J.W.; Fries, T.L.; Huntington, T.G.

    1999-01-01

    The conversion of land from its native state to an agricultural use commonly results in a significant loss of soil carbon (Mann, 1985; Davidson and Ackerman, 1993). Globally, this loss is estimated to account for as much as 1/3 of the net CO2 emissions for the period of 1850 to 1980 (Houghton et al, 1983). Roughly 20 to 40 percent of original soil carbon is estimated to be lost as CO2 as a result of agricultural conversion, or 'decomposition enhancement', and global models use this estimate along with land conversion data to provide agricultural contributions of CO2 emissions for global carbon budgets (Houghton and others, 1983; Schimel, 1995). As yet, erosional losses of carbon are not included in global carbon budgets explicitly as a factor in land conversion nor implicitly as a portion of the decomposition enhancement. However, recent work by Lal et al (1995) and by Stallard (1998) suggests that significant amounts of eroded soil may be stored in man-made reservoirs and depositional environments as a result of agricultural conversion. Moreover, Stallard points out that if eroding soils have the potential for replacing part of the carbon trapped in man-made reservoirs, then the global carbon budget may grossly underestimate or ignore a significant sink term resulting from the burial of eroded soil. Soil erosion rates are significantly (10X) higher on croplands than on their undisturbed equivalents (Dabney et al, 1997). Most of the concern over erosion is related to diminished productivity of the uplands (Stallings, 1957; McGregor et al, 1993; Rhoton and Tyler, 1990) or to increased hazards and navigability of the lowlands in the late 1800's to early 1900's. Yet because soil carbon is concentrated at the soil surface, with an exponential decline in concentration with depth, it is clear that changes in erosion rates seen on croplands must also impact soil carbon storage and terrestrial carbon budgets as well.

  8. Carbon and Hydrogen Isotopic Composition of Plant Wax n-Alkanes: A Tool for Characterizing Soil Provenance in Forensic Science

    Science.gov (United States)

    Pedentchouk, N.; Wagner, T.; Jones, M.

    2009-04-01

    Forensic science is an integrative discipline that requires material evidence from diverse sources. Geochemical evidence derived from inorganic and organic substances is becoming increasingly popular among law enforcement agencies in industrialized countries. Previous investigations indicate that the relative distributions of individual plant-derived biomarkers found in soils are linked to the biomarker patterns found in the overlying vegetation. However, identification of soil provenance based on the distribution of plant-derived biomarkers for forensic purposes is inhibited by the fact that a significant number of terrestrial plant species have overlapping biomarker distributions. In order to enhance the resolving power of plant-derived biomarker signal, we propose to enhance the molecular approach by adding a stable isotope component, i.e. the delta13C/deltaD values of individual biomarkers. The first objective of this project is to determine the delta13C/deltaD signatures of n-alkanes derived from various higher plant types commonly growing in the UK. The second objective is to investigate whether the same species/plant types differ isotopically between two locations affected by different weather patterns in the UK: a relatively warmer and drier Norwich, Norfolk and a cooler and wetter Newcastle-upon-Tyne in NE England. The n-C29 alkane data from 14 tree species sampled during July 2007 and August 2008 in Newcastle show a clear negative trend between delta13C and deltaD values. When these data are plotted against each other, the six deciduous angiosperms (delta13C: c. -39 to -35 per mil; deltaD: c. -155 to -130 per mil) are completely separated from four evergreen angiosperms (delta13C: c. -33 to -28 per mil; deltaD: c. -195 to -165 per mil). The four gymnosperm species data plot between those of the deciduous and evergreen angiosperms. Because all 14 species in Newcastle experience the same environmental conditions, we suggest that the observed isotopic

  9. Soil Characterization Database for the Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Remortel, R. D. Van; Lee, Y. J.; Snyder, K. E.

    2005-01-01

    Soils were characterized in an investigation at the Area 3 Radioactive Waste Management Site at the U.S. Department of Energy Nevada Test Site in Nye County, Nevada. Data from the investigation are presented in four parameter groups: sample and site characteristics, U.S. Department of Agriculture (USDA) particle size fractions, chemical parameters, and American Society for Testing Materials-Unified Soil Classification System (ASTM-USCS) particle size fractions. Spread-sheet workbooks based on these parameter groups are presented to evaluate data quality, conduct database updates, and set data structures and formats for later extraction and analysis. This document does not include analysis or interpretation of presented data

  10. Soil Characterization Database for the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Lee, Y. J.; Remortel, R. D. Van; Snyder, K. E.

    2005-01-01

    Soils were characterized in an investigation at the Area 5 Radioactive Waste Management Site at the U.S. Department of Energy Nevada Test Site in Nye County, Nevada. Data from the investigation are presented in four parameter groups: sample and site characteristics, U.S. Department of Agriculture (USDA) particle size fractions, chemical parameters, and American Society for Testing Materials-Unified Soil Classification System (ASTM-USCS) particle size fractions. Spread-sheet workbooks based on these parameter groups are presented to evaluate data quality, conduct database updates,and set data structures and formats for later extraction and analysis. This document does not include analysis or interpretation of presented data

  11. Interpolation Approaches for Characterizing Spatial Variability of Soil Properties in Tuz Lake Basin of Turkey

    Science.gov (United States)

    Gorji, Taha; Sertel, Elif; Tanik, Aysegul

    2017-12-01

    Soil management is an essential concern in protecting soil properties, in enhancing appropriate soil quality for plant growth and agricultural productivity, and in preventing soil erosion. Soil scientists and decision makers require accurate and well-distributed spatially continuous soil data across a region for risk assessment and for effectively monitoring and managing soils. Recently, spatial interpolation approaches have been utilized in various disciplines including soil sciences for analysing, predicting and mapping distribution and surface modelling of environmental factors such as soil properties. The study area selected in this research is Tuz Lake Basin in Turkey bearing ecological and economic importance. Fertile soil plays a significant role in agricultural activities, which is one of the main industries having great impact on economy of the region. Loss of trees and bushes due to intense agricultural activities in some parts of the basin lead to soil erosion. Besides, soil salinization due to both human-induced activities and natural factors has exacerbated its condition regarding agricultural land development. This study aims to compare capability of Local Polynomial Interpolation (LPI) and Radial Basis Functions (RBF) as two interpolation methods for mapping spatial pattern of soil properties including organic matter, phosphorus, lime and boron. Both LPI and RBF methods demonstrated promising results for predicting lime, organic matter, phosphorous and boron. Soil samples collected in the field were used for interpolation analysis in which approximately 80% of data was used for interpolation modelling whereas the remaining for validation of the predicted results. Relationship between validation points and their corresponding estimated values in the same location is examined by conducting linear regression analysis. Eight prediction maps generated from two different interpolation methods for soil organic matter, phosphorus, lime and boron parameters

  12. Watershed prioritization in the upper Han River basin for soil and water conservation in the South-to-North Water Transfer Project (middle route) of China.

    Science.gov (United States)

    Wu, Haibing

    2018-01-01

    Watershed prioritization with the objective of identifying critical areas to undertake soil and water conservation measures was conducted in the upper Han River basin, the water source area of approximately 95,000 km 2 for the middle route of China's South-to-North Water Transfer Project. Based on the estimated soil erosion intensity in uplands and clustering analysis of measured nutrient concentrations in rivers, the basin was grouped into very-high-, high-, moderate-, and low-priority regions for water and soil conservation, respectively. The results indicated that soil erosion was primarily controlled by topography, and nutrients in rivers were associated with land use and land cover in uplands. Also, there was large spatial disparity between soil erosion intensity in the uplands and nutrient concentrations in the rivers across the basin. Analysis was then performed to prioritize the basin by the integration of the soil erosion intensity and water quality on a GIS platform in order to identify critical areas for water and soil conservation in the basin. The identified high-priority regions which occupy 5.74% of the drainage areas need immediate attention for soil and water conservation treatments, of which 5.28% is critical for soil erosion prevention and 0.46% for water conservation. Understandings of the basin environment and pollutant loading with spatial explicit are critical to the soil and water resource conservation for the interbasin water transfer project.

  13. Site characterization quality assurance for the California LLRW Disposal Site Project

    International Nuclear Information System (INIS)

    Hanrahan, T.P.; Ench, J.E.; Serlin, C.L.; Bennett, C.B.

    1988-01-01

    In December of 1985 US Ecology was chosen as the license designee for the State of California's low-level radioactive waste disposal facility. In early 1987, three candidate sites were selected for characterization studies in preparation for identifying the preferred site. The geotechnical characterization activities along with studies of the ecological and archaeological attributes, as well as assessments of the socio-economic impacts and cultural resources all provide input towards selection of the proposed site. These technical studies in conjunction with comments from local citizen committees and other interested parties are used as a basis for determining the proposed site for which full site characterization as required by California licensing requirements are undertaken. The purpose of this paper is to present an overview of the program for Quality Assurance and Quality Control for the site characterization activities on the California LLRW Disposal Site Project. The focus is on three major perspectives: The composite QA Program and two of the primary characterization activities, the geotechnical and the meteorological investigations

  14. Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 1, Introduction, history, and current candidates

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; McCright, R.D.; Roy, A.K.; Jones, D.A.

    1995-08-01

    The purpose of the Yucca Mountain Site Characterization Project is to evaluate Yucca Mountain for its suitability as a potential site for the nation's first high-level nuclear waste repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL) has been occupied for a number of years with developing and evaluating the performance of waste packages for the potential repository. In recent years this work has been carried out under the guidance of and in collaboration with the Management and Operating contractor for the Civilian Radioactive Waste Management System, TRW Environmental Safety Systems, Inc., which in turn reports to the Office of Civilian Radioactive Waste Management of the US Department of Energy. This report summarizes the history of the selection and characterization of materials to be used in the engineered barrier system for the potential repository at Yucca Mountain, describes the current candidate materials, presents a compilation of their properties, and summarizes available corrosion data and modeling. The term ''engineered materials'' is intended to distinguish those materials that are used as part of the engineered barrier system from the natural, geologic materials of the site

  15. Rapid stabilization of thawing soils For enhanced vehicle mobility: a field demonstration project

    Science.gov (United States)

    1999-02-01

    Thawing soil presents a formidable challenge for vehicle operations cross-country and on unsurfaced roads. To mitigate the problem, a variety of stabilization techniques were evaluated for their suitability for rapid employment to enhance military ve...

  16. A project for storing the radioactive sludges from Marcoule in the soil (1960)

    International Nuclear Information System (INIS)

    Cohen, P.; Gailledreau, C.

    1960-01-01

    A study of the feasibility of storing radioactive sludges in the soil. Special attention is paid to the case of the Marcoule plant, producing three kinds of sludges. The movement of the different fission products is given. (author) [fr

  17. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification.

    Science.gov (United States)

    O'Neill, B; Grossman, J; Tsai, M T; Gomes, J E; Lehmann, J; Peterson, J; Neves, E; Thies, J E

    2009-07-01

    Microbial community composition was examined in two soil types, Anthrosols and adjacent soils, sampled from three locations in the Brazilian Amazon. The Anthrosols, also known as Amazonian dark earths, are highly fertile soils that are a legacy of pre-Columbian settlement. Both Anthrosols and adjacent soils are derived from the same parent material and subject to the same environmental conditions, including rainfall and temperature; however, the Anthrosols contain high levels of charcoal-like black carbon from which they derive their dark color. The Anthrosols typically have higher cation exchange capacity, higher pH, and higher phosphorus and calcium contents. We used culture media prepared from soil extracts to isolate bacteria unique to the two soil types and then sequenced their 16S rRNA genes to determine their phylogenetic placement. Higher numbers of culturable bacteria, by over two orders of magnitude at the deepest sampling depths, were counted in the Anthrosols. Sequences of bacteria isolated on soil extract media yielded five possible new bacterial families. Also, a higher number of families in the bacteria were represented by isolates from the deeper soil depths in the Anthrosols. Higher bacterial populations and a greater diversity of isolates were found in all of the Anthrosols, to a depth of up to 1 m, compared to adjacent soils located within 50-500 m of their associated Anthrosols. Compared to standard culture media, soil extract media revealed diverse soil microbial populations adapted to the unique biochemistry and physiological ecology of these Anthrosols.

  18. Radiometric characterization of six soils in the microwave X-range through complex permittivity measurements

    International Nuclear Information System (INIS)

    Palme, U.W.

    1987-10-01

    Estimating and monitoring up-to-date soil moisture conditions over extensive areas through passive (or active) microwave remote sensing techniques requires the knowledge of the complex relative permittivity (ε r * ) in function of soil moisture. X-band measurements of ε r * for different moisture conditions were made in laboratory for soil samples of six important Soils (PV 2 , LV 3 , LR d , LE 1 , SAP and Sc). Using a theoretical model and computational programmes developed, these measurements allowed estimates of the emissive characteristics of the soils that would be expected with the X-Band Microwave Radiometer built at INPE. The results, new, for soils from tropical regions, showed that only the physical characteristics and properties of the soils are not sufficient to explain the behaviour of ε r * in function of soil moisture, indicating that the chemical and/or mineralogical properties of the soils do have an important contribution. The results also showed thast ε r * in function of soil moisture depends on soil class. (author) [pt

  19. Isolation and Characterization of Agrobacterium Strains from Soil: A Laboratory Capstone Experience

    Directory of Open Access Journals (Sweden)

    Kim R. Finer

    2016-12-01

    Full Text Available In this investigation, the students’ goal was to isolate and characterize Agrobacterium strains from soil. Following selection and enrichment on 1A-t medium, putative Agrobacterium isolates were characterized by Gram stain reaction and biochemical tests. Isolates were further evaluated using polymerase chain reaction (PCR with different primer sets designed to amplify specific regions of bacterial deoxyribonucleic acid (DNA. Primer sets included AGRH to identify isolates that were members of the Rhizobiaceae, BIOVAR1 primers to identify members of Agrobacterium biovar group I, and a third set, VIRG, to determine presence of virG (only present in pathogenic Agrobacterium strains. During the investigation, students applied previously learned techniques including serial dilution, use of selective/differential media, staining protocols, biochemical analysis, molecular analysis via PCR, and electrophoresis. Students also gained practical experience using photo documentation to record data for an eventual mock journal publication of the capstone laboratory experience. Pre- and post-evaluation of class content knowledge related to the techniques, protocols, and learning objectives of these laboratories revealed significant learning gains in the content areas of Agrobacterium–plant interactions (p ≤ 0.001 and molecular biology (p ≤ 0.01. The capstone journal assignment served as the assessment tool to evaluate mastery and application of laboratory technique, the ability to accurately collect and evaluate data, and critical thinking skills associated with experimental troubleshooting and extrapolation. Analysis of journal reports following the capstone experience showed significant improvement in assignment scores (p ≤ 0.0001 and attainment of capstone experience learning outcomes.

  20. Isolation, Characterization, and Molecular Identification of Phosphate Solubilizing Bacteria from Several Tropical Soils

    Directory of Open Access Journals (Sweden)

    Fahrizal Hazra

    2013-03-01

    Full Text Available The objectives of the research were: (i to isolate and characterize of phosphate solubilizing bacteria (PSB and (ii to identify PSB based on molecular amplification of 16S rRNA gene. Soil samples were collected from rhizosphere in Bogor, West Nusa Tenggara, and East Nusa Tenggara. Several stages in this research were: (i isolation PSB in Pikovskaya agar, (ii morphological and biochemical characterization of PSB, (iii measurement of phosphatase enzymes, and (iv measurement of secreting indole acetic acid phytohormone. As many as 29 isolates of PSB have been collected and three isolates of them, namely: P 3.5 (East Nusa Tenggara, P 6.2 (West Nusa Tenggara, and P 10.1 (Citeureup, West Java were chosen for further study. There were many characteristics of isolate P 10.1: (i it had capable to solubilize P with the value of highest solubilization index (1.80, (ii it had the highest phosphatase enzyme (120.40 mg kg-1, and (iii it had the highest pH decrease at each observation for six days. Isolates P 3.5 and P 10.1 were the Gram-negative bacteria with coccus shapes and isolate P 6.2 was a Gram-negative bacteria with bacillus shape. Deoxiribonucleat Acid (DNA amplification of these bacteria employing 16S rRNA primers generated the 1,300bp-PCR product. The results of the analysis of 16S rRNA gene sequences showed that isolates P 3.5 and P 10.1 has 98% similarity with Gluconacetobacter sp. strains Rg1-MS-CO and isolate P 6.2 has 97% similarity with Enterobacter sp. pp9c strains.

  1. Characterizing changes in the excitability of corticospinal projections to proximal muscles of the upper limb.

    Science.gov (United States)

    Carson, Richard G; Nelson, Barry D; Buick, Alison R; Carroll, Timothy J; Kennedy, Niamh C; Cann, Rachel Mac

    2013-09-01

    There has been an explosion of interest in methods of exogenous brain stimulation that induce changes in the excitability of human cerebral cortex. The expectation is that these methods may promote recovery of function following brain injury. To assess their effects on motor output, it is typical to assess the state of corticospinal projections from primary motor cortex to muscles of the hand, via electromyographic responses to transcranial magnetic stimulation. If a range of stimulation intensities is employed, the recruitment curves (RCs) obtained can, at least for intrinsic hand muscles, be fitted by a sigmoid function. To establish whether sigmoid fits provide a reliable basis upon which to characterize the input-output properties of the corticospinal pathway for muscles proximal to the hand, and to assess as an alternative the area under the (recruitment) curve (AURC). A comparison of the reliability of these measures, using RCs obtained for muscles that are frequently the targets of rehabilitation. The AURC is an extremely reliable measure of the state of corticospinal projections to hand and forearm muscles, which has both face and concurrent validity. Construct validity is demonstrated by detection of widely distributed (across muscles) changes in corticospinal excitability induced by paired associative stimulation (PAS). The parameters derived from sigmoid fits are unlikely to provide an adequate means to assess the effectiveness of therapeutic regimes. The AURC can be employed to characterize corticospinal projections to a range of muscles, and gauge the efficacy of longitudinal interventions in clinical rehabilitation. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Characterization of the Process Mechanical Cell at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Drake, John; Schneider, Ken; Choroser, Jeff; Hughes, Karl

    2003-01-01

    The West Valley Demonstration Project has initiated decontamination and dismantlement (D and D) of the most highly radioactive and contaminated cells in a former spent nuclear fuel reprocessing plant. The goals of the D and D project are to remove loose debris in the cells and estimate the residual radioactivity level of legacy plant equipment. To support accomplishment of these goals, a unique characterization approach was developed to gather the information to meet anticipated Waste Isolation Pilot Plant (WIPP) acceptance criteria for remote-handled transuranic waste, and to facilitate segregation and packaging operations. Implementation of the characterization approach included the development and use of innovative, remote technology for measuring gamma radiation within the hot cell. The technology was used to identify and quantify radiation from individual debris items in radiation fields up to 2,000 R/hr (20 sieverts/hr). Sampling and analysis of the debris were also performed via remote handling means. Significant challenges associated with characterizing the highly radioactive and highly contaminated hot cells were encountered. The innovative solutions for meeting these challenges are applicable throughout the Department of Energy Complex and help support the goal of targeting D and D efforts toward reducing risks to public health and the environment

  3. Isolation and characterization of mesophilic, oxalate-degrading Streptomyces from plant rhizosphere and forest soils

    Science.gov (United States)

    Sahin, Nurettin

    2004-10-01

    The present work was aimed at the isolation of additional new pure cultures of oxalate-degrading Streptomyces and its preliminary characterization for further work in the field of oxalate metabolism and taxonomic studies. Mesophilic, oxalate-degrading Streptomyces were enriched and isolated from plant rhizosphere and forest soil samples. Strains were examined for cultural, morphological (spore chain morphology, spore mass colour, diffusible and melanin pigment production), physiological (antibiosis, growth in the presence of inhibitory compounds, assimilation of organic acids and enzyme substrates) and chemotaxonomic characters (cellular lipid components and diagnostic cell-wall diamino acid). The taxonomic data obtained were analysed by using the simple matching (SSM) and Jaccard (SJ) coefficients, clustering was achieved using the UPGMA algorithm. All strains were able to utilize sodium-, potassium-, calcium- and ammonium-oxalate salts. Based on the results of numerical taxonomy, isolates were grouped into five cluster groups with a ≥70% SSM similarity level. Streptomyces rochei was the most common of the cluster groups, with a Willcox probability of P>0.8. Streptomyces antibioticus, S. anulatus, S. fulvissimus, S. halstedii and S. violaceusniger are newly reported as oxalate-utilizing Streptomyces.

  4. Cost results from the 1994 Fernald characterization field demonstration for uranium-contaminated soils

    International Nuclear Information System (INIS)

    Douthat, D.M.; Stewart, R.N.; Armstrong, A.Q.

    1995-04-01

    One of the principal objectives of the US Department of Energy (DOE) Office of Technology Development is to develop an optimum integrated system of technologies for removing uranium substances from soil. This system of technologies, through demonstration, must be proven in terms of cost reduction, waste minimization, risk reduction, and user applicability. To evaluate the effectiveness of these technologies, a field demonstration was conducted at the Fernald site in the summer of 1994. Fernald was selected as the host site for the demonstration based on environmental problems stemming from past production of uranium metal for defense-related applications. The following six alternative technologies were developed and/or demonstrated by the principal investigators in the Characterization Task Group at the field demonstration: (1) beta scintillation detector by Pacific Northwest Laboratory (PNL), (2) in situ gamma detector by PNL, (3) mobile laser ablation-inductively coupled plasma/atomic emission spectrometry (LA-ICP/AES) laboratory by Ames Laboratory, (4) long-range alpha detector (LRAD) by Los Alamos National Laboratory (LANL), (5) passive radon monitoring by ORNL, and (6) electret ion chamber by ORNL

  5. A semester-long soil mapping project for an undergraduate pedology course

    Science.gov (United States)

    Brown, David J.

    2015-04-01

    Most students taking a pedology course will never work as soil mappers. But many will use soil maps at some point in their careers. At Montana State University, students spent 3 "lab" hours a week, complementing two lectures a week, in the field learning how to study soils literally from the ground up. The only prerequisites for enrollment were completion of an introductory soil science class and 3rd year standing at the university. The area to be mapped, just a km from campus, included a steep mountain backslope, and a complex footslope-toeslope area with diverse soils. Students were divided into teams of 3-4, with approximately 40 students altogether split over two sections that overlapped in the field by one hour. In the first lab session, groups completed a very basic description of just one soil profile. In subsequent weeks, they rotated through multiple pits excavated in a small area, and expanded their soil profile descriptions and interpretations. As students developed proficiency, they were assigned more dispersed locations to study, working for the most part independently as I hiked between pits. Throughout this process, every pit was geolocated using a GPS unit, and every profile description was copied and retained in a designated class file. Student groups delineated map units using stereo air photography, then used these delineations to guide the selection of their final locations to describe. At the end of the course, groups used all of the combined and georeferenced profile descriptions to construct a soil map of the study area complete with map unit descriptions. Most students struggled to make sense of the substantial variability within their map units, but through this struggle -- and their semester of field work -- they gained an appreciation for the value and limitations of a soil map that could not be obtained from even the most entertaining lecture. Both the class and particularly the field sessions received consistently high student reviews

  6. Characterization of contaminated soil and groundwater surrounding an illegal landfill (S. Giuliano, Venice, Italy) by principal component analysis and kriging

    International Nuclear Information System (INIS)

    Critto, Andrea; Carlon, Claudio; Marcomini, Antonio

    2003-01-01

    Information on soil and groundwater contamination was used to develop a site conceptual model and to identify exposure scenarios. - The characterization of a hydrologically complex contaminated site bordering the lagoon of Venice (Italy) was undertaken by investigating soils and groundwaters affected by the chemical contaminants originated by the wastes dumped into an illegal landfill. Statistical tools such as principal components analysis and geostatistical techniques were applied to obtain the spatial distribution of chemical contaminants. Dissolved organic carbon (DOC), SO 4 2- and Cl - were used to trace the migration of the contaminants from the top soil to the underlying groundwaters. The chemical and hydrogeological available information was assembled to obtain the schematic of the conceptual model of the contaminated site capable to support the formulation of major exposure scenarios, which are also provided

  7. Characterizing Drought Impacted Soils in the San Joaquin Valley of California Using Remote Sensing

    Science.gov (United States)

    Wahab, L. M.; Miller, D.; Roberts, D. A.

    2017-12-01

    California's San Joaquin Valley is an extremely agriculturally productive region of the country, and understanding the state of soils in this region is an important factor in maintaining this high productivity. In this study, we quantified changing soil cover during the drought and analyzed spatial changes in salinity, organic matter, and moisture using unique soil spectral characteristics. We used data from the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) from Hyperspectral Infrared Imager (HyspIRI) campaign flights in 2013 and 2014 over the San Joaquin Valley. A mixture model was applied to both images that identified non- photosynthetic vegetation, green vegetation, and soil cover fractions through image endmembers of each of these three classes. We optimized the spectral library used to identify these classes with Iterative Endmember Selection (IES), and the images were unmixed using Multiple Endmember Spectral Mixture Analysis (MESMA). Maps of soil electrical conductivity, organic matter, soil saturated moisture, and field moisture were generated for the San Joaquin Valley based on indices developed by Ben-Dor et al. [2002]. Representative polygons were chosen to quantify changes between years. Maps of spectrally distinct soils were also generated for 2013 and 2014, in order to determine the spatial distribution of these soil types as well as their temporal dynamics between years. We estimated that soil cover increased by 16% from 2013-2014. Six spectrally distinct soil types were identified for the region, and it was determined that the distribution of these soil types was not constant for most areas between 2013 and 2014. Changes in soil pH, electrical conductivity, and soil moisture were strongly tied in the region between 2013 and 2014.

  8. Micromorphological Aspects of Forensic Geopedology II: Ultramicroscopic vs Microscopic Characterization of Phosphatic Impregnations on Soil Particles in Experimental Burials

    Science.gov (United States)

    Ern, S. I. E.; Trombino, L.; Cattaneo, C.

    2012-04-01

    Grows up the importance of the role played by soil scientists in the modern forensic sciences, in particular when buried human remains strongly decomposed or skeletonized are found in different environment situations. Among the different techniques normally used in geopedology, it is usefull to apply in such forensic cases, soil micromorphology (including optical microscopy and ultramicroscopy) that has been underused up today, for various kind of reasons. An interdisciplinary Italian-team, formed by earth scientists and legal medicine, is working on several sets of experimental burial of pigs and piglets in different soil types and for different times of burial, in order to get new evidences on environmental behaviour related to the burial, focalising on geopedological and micropedological aspects. The present work is focused on: - ultramicroscopic (SEM-EDS) characterization of the phosphatic impregnation (by body fluids) on soils sampled under the dead bodies of five couples of pigs, buried respectively for one month, six month, one year, two years and two years and half in two different areas; - microscopic (petrographic microscope) and ultramicroscopic (SEM-EDS) cross characterization of the phosphatic impregnation (by body fluids) on soils sampled under the dead bodies of several piglets, buried for twenty months. The first results show trends of persistency of such phosphatic features, mainly related to the grain size of the impregnated soil particles and weather conditions (or seasons) of exhumation, while apparently time since burial is only marginally effective for the investigated burial period. Further experiments are in progress in order to clarify the pathways of phosphorus precipitation and leaching for longer times of burial and different seasons of exhumation, both from the microscopic and the pedological/chemical point of view.

  9. NEOShield-2 Project: Final Results on Compositional Characterization of small NEOs

    Science.gov (United States)

    Barucci, Maria Antonieta; Perna, Davide; Fornasier, Sonia; Doressoundiram, Alain; Lantz, Cateline; Popescu, Marcel; Merlin, Frederic; Fulchignoni, Marcello

    2017-10-01

    NEOShield-2 project was selected in the framework of the European Commission H2020 program in answer to the call for “Access technologies and characterisation for Near Earth Objects (NEOs)”. NEOShield-2 project (2015-2017) is a follow-up of the first NEOShield (2012-2015) and includes 11 European Institutions and Industries. The main objectives of NEOShield-2 project are: i) technological development on techniques and instruments needed for GNC for possible asteroid missions and ii) characterization of NEOs of small sizes.Our team at LESIA is the leader of the entire observational program which involved complementary techniques to provide physical and compositional characterization of NEOs. Priority has been given to potential space-mission targets, optimized for mitigation or exploration missions. In this framework an agreement with the European Southern Observatory was signed to obtain Guaranteed Time Observations at the 3.6-meter NTT with an allocation of 30 nights to characterize by spectroscopy the composition of the smaller asteroids. The objects with an absolute magnitude larger than 20 were selected, with a priority for the very small newly discovered objects.We obtained more than 170 new spectra of NEOs. The observations were performed with EFOSC2 instrument. We covered the wavelength interval 0.4-0.92 microns, with a resolution of R=~200. The observed asteroids include 29 asteroids with diameters smaller than 100 meters and 71 with diameters between 100 and 300 m.The taxonomic type has been assigned for 137 individual objects. Our results on NEO mineralogical compositions provide a body of reference data directly applicable to the design and development of mitigation-relevant space missions. Within our survey, we found eight D-types with ΔV funding by European Commission Horizon 2020 program (contract No. PROTEC-2-2014-640351).

  10. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1993 Quality Program status report

    International Nuclear Information System (INIS)

    Boliver, S.L.

    1995-05-01

    This status report is for calendar year 1993. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory (Los Alamos) Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, we establish a baseline that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify long term trends and to evaluate improvements. This is the third annual status report (Bolivar, 1992; Bolivar, 1994). This report is divided into two primary sections: Program Activities and Trend Analysis. Under Program Activities, programmatic issues occurring in 1993 are discussed. The goals for 1993 are also listed, followed by a discussion of their status. Lastly, goals for 1994 are identified. The Trend Analysis section is a summary of 1993 quarterly trend reports and provides a good overview of the quality assurance issues of the Los Alamos YMP

  11. The MEarth Project: Finding the Best Targets for Atmospheric Characterization with JWST

    Science.gov (United States)

    Berta-Thompson, Z.

    2014-04-01

    If we want to directly observe the radius, orbit, mass, and atmosphere of a small, cool, habitable exoplanet, our best opportunity is to find such a planet transiting a small, cool, nearby M dwarf star. The MEarth Project is an ongoing all-sky survey for Earth-like planets transiting the closest, smallest M dwarfs in the Galaxy. MEarth aims to find good targets for atmospheric characterization with JWST and the next generation of enormous ground-based telescopes. Th