WorldWideScience

Sample records for project rpp waste

  1. River Protection Project (RPP) Dangerous Waste Training Plan

    Energy Technology Data Exchange (ETDEWEB)

    POHTO, R.E.

    2000-03-09

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.

  2. River Protection Project (RPP) Dangerous Waste Training Plan

    International Nuclear Information System (INIS)

    POHTO, R.E.

    2000-01-01

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E

  3. Letter of Intent for River Protection Project (RPP) Characterization Program: Process Engineering and Hanford Analytical Services and Characterization Project Operations and Quality Assurance

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    The Characterization Project level of success achieved by the River Protection Project (RPP) is determined by the effectiveness of several organizations across RPP working together. The requirements, expectations, interrelationships, and performance criteria for each of these organizations were examined in order to understand the performances necessary to achieve characterization objectives. This Letter of Intent documents the results of the above examination. It formalizes the details of interfaces, working agreements, and requirements for obtaining and transferring tank waste samples from the Tank Farm System (RPP Process Engineering, Characterization Project Operations, and RPP Quality Assurance) to the characterization laboratory complex (222-S Laboratory, Waste Sampling and Characterization Facility, and the Hanford Analytical Service Program) and for the laboratory complex analysis and reporting of analytical results

  4. High-Temperature Corrosion Study for the RPP Low Activity Waste Melter

    International Nuclear Information System (INIS)

    Marshall, K.M.

    2003-01-01

    The River Protection Program (RPP) low activity waste (LAW) melter design incorporates a series of bubblers used to increase convection in the molten glass. Through runs of a pilot melter at Duratek, Inc. in Columbia, Maryland, the bubblers have been identified as the major component limiting LAW melter availability, requiring frequent replacement due to corrosive degradation, primarily at the melt line. Laboratory experiments were performed to evaluate the performance of several alloys and coatings in simulated RPP low activity waste melter vapor space and molten glass environments. The performance of the alloys and coatings was studied in order to advance our understanding of how these materials react at the melt/air interface inside the melter. The ultimate goal was to identify a material with superior performance compared to that of Inconel 693, and to deliver a bubbler sub-assembly made of that material to the RPP LAW melter pilot facility for further testing

  5. River Protection Project (RPP) Readiness-to-Proceed 2 Internal Independent Review Team Final Report

    International Nuclear Information System (INIS)

    SCHAUS, P.S.

    2000-01-01

    This report describes the results of an independent review team brought in to assess CH2M HILL Hanford's readiness and ability to support the RPP's move into its next major phase - retrieval and delivery of tank waste to the Privatization Contractor

  6. River Protection Project (RPP) Readiness-to-Proceed 2 Internal Independent Review Team Final Report

    International Nuclear Information System (INIS)

    SCHAUS, P.S.

    2000-01-01

    This report describes the results of an independent review team brought in to assess CH2M Hill Hanford Group's readiness and ability to support the RPP's move into its next major phase - retrieval and delivery of tank waste to the Privatization Contractor

  7. River Protection Project (RPP) Immobilized Low- Ativity Waste (ILAW) Disposal Plan

    International Nuclear Information System (INIS)

    BRIGGS, M.G.

    2000-01-01

    This document replaces HNF-1517, Rev 2 which is deleted. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract change and associated DOE/ORP guidance. In addition it incorporates the cancellation of Project W-465, Grout Facility, and the associated modifications to Project W-520, Immobilized High-Level Waste Disposal Facility. It also includes document format changes and section number modifications consistent with CH2M HILL Hanford Group, Inc. procedures

  8. RPP Environmental Permits and Related Documentation

    International Nuclear Information System (INIS)

    DEXTER, M.L.

    2001-01-01

    This document contains the current list of environmental permits and related documentation for RPP facilities and activities. Copies of these permits and related approvals are maintained by RPP Environmental. In addition, notices of Correction and Notices of Violation are issued by State and Federal Regulators which are tracked by RPP Environmental to resolve any recently identified deficiencies. A listing of these recent Notices is provided as an attachment to this document. These permits, approval conditions, and recent regulatory agency notices, constitute an important element of the RPP Authorization Envelope. Permits are issued frequently and the reader is advised to check with RPP environmental for new permits or approval conditions. Interpretation of permit or approval conditions should be coordinated with RPP Environmental. This document is updated on a quarterly basis

  9. RPP Environmental Permits and Related Documentation

    International Nuclear Information System (INIS)

    DEXTER, M.L.

    2000-01-01

    This document contains the current list of environmental permits and related documentation for RPP facilities and activities. Copies of these permits and related approvals are maintained by RPP Environmental. In addition, Notices of Correction and Notices of Violation are issued by State and Federal Regulators which are tracked by RPP Environmental to resolve any recently identified deficiencies. A listing of these recent Notices is provided as an attachment to this document. These permits, approval conditions, and recent regulatory agency notices, constitute an important element of the RPP Authorization Envelope. Permits are issued frequently and the reader is advised to check with RPP environmental for new permits or approval conditions. Interpretation of permit or approval conditions should be coordinated with RPP Environmental. This document will be updated on a quarterly basis

  10. Solution Structure of Pfu RPP21, a Component of the Archaeal RNase P Holoenzyme, and Interactions with its RPP29 Protein Partner

    Science.gov (United States)

    Amero, Carlos D; Boomershine, William P; Xu, Yiren; Foster, Mark

    2009-01-01

    RNase P is the ubiquitous ribonucleoprotein metalloenzyme responsible for cleaving the 5′-leader sequence of precursor tRNAs during their maturation. While the RNA subunit is catalytically active on its own at high monovalent and divalent ion concentration, four proteins subunits are associated with archaeal RNase P activity in vivo: RPP21, RPP29, RPP30 and POP5. These proteins have been shown to function in pairs: RPP21-RPP29 and POP5-RPP30. We have determined the solution structure of RPP21 from the hyperthermophilic archaeon Pyrococcus furiosus (Pfu) using conventional and paramagnetic NMR techniques. Pfu RPP21 in solution consists of an unstructured N-terminus, two alpha helices, a zinc binding motif, and an unstructured C-terminus. Moreover, we have used chemical shift perturbations to characterize the interaction of RPP21 with Pfu RPP29. The data show that the primary contact with RPP29 is localized to the two helices of RPP21. This information represents a fundamental step towards understanding structure-function relationships of the archaeal RNase P holoenzyme. PMID:18922021

  11. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    International Nuclear Information System (INIS)

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-01-01

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria

  12. Vitrification and Product Testing of C-104 and AZ-102 Pretreated Sludge Mixed with Flowsheet Quantities of Secondary Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L.; Bates, Derrick J.; Goles, Ronald W.; Greenwood, Lawrence R.; Lettau, Ralph C.; Piepel, Gregory F.; Schweiger, Michael J.; Smith, Harry D.; Urie, Michael W.; Wagner, Jerome J.

    2001-02-01

    The U.S. Department of Energy (DOE) Office of River Protection (ORP) has acquired Hanford tank waste treatment services at a demonstration scale. The River Protection Project Waste Treatment Plant (RPP-WTP) team is responsible for producing an immobilized (vitrified) high-level waste (IHLW) waste form. Pacific Northwest National Laboratory, hereafter referred to as PNNL, has been contracted to produce and test a vitrified IHLW waste form from two Envelope D high-level waste (HLW) samples previously supplied to the RPP-WTP project by DOE.

  13. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    International Nuclear Information System (INIS)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-01-01

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was

  14. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-06-01

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was

  15. RPP-PRT-58489, Revision 1, One Systems Consistent Safety Analysis Methodologies Report. 24590-WTP-RPT-MGT-15-014

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Mukesh [URS Professional Solutions LLC, Aiken, SC (United States); Niemi, Belinda [Washington River Protection Solutions, LLC, Richland, WA (United States); Paik, Ingle [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2015-09-02

    In 2012, One System Nuclear Safety performed a comparison of the safety bases for the Tank Farms Operations Contractor (TOC) and Hanford Tank Waste Treatment and Immobilization Plant (WTP) (RPP-RPT-53222 / 24590-WTP-RPT-MGT-12-018, “One System Report of Comparative Evaluation of Safety Bases for Hanford Waste Treatment and Immobilization Plant Project and Tank Operations Contract”), and identified 25 recommendations that required further evaluation for consensus disposition. This report documents ten NSSC approved consistent methodologies and guides and the results of the additional evaluation process using a new set of evaluation criteria developed for the evaluation of the new methodologies.

  16. Cesium Ion Exchange Program at the Hanford River Protection Project Waste Treatment Plant

    International Nuclear Information System (INIS)

    CHARLES, NASH

    2004-01-01

    The River Protection Project - Hanford Tank Waste Treatment and Immobilization Plant will use cesium ion exchange to remove 137Cs from Low Activity Waste down to 0.3 Ci/m3 in the Immobilized LAW, ILAW product. The project baseline for cesium ion exchange is the elutable SuperLig, R, 644, SL-644, resin registered trademark of IBC Advanced Technologies, Inc., American Fork, UT or the Department of Energy approved equivalent. SL-644 is solely available through IBC Advanced Technologies. To provide an alternative to this sole-source resin supply, the RPP--WTP initiated a three-stage process for selection and qualification of an alternative ion exchange resin for cesium removal in the RPPWTP. It was recommended that resorcinol formaldehyde RF be pursued as a potential alternative to SL-644

  17. Technology Successes in Hanford Tank Waste Storage and Retrieval

    International Nuclear Information System (INIS)

    Cruz, E. J.

    2002-01-01

    The U. S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP), which is responsible for dispositioning approximately 204,000 cubic meters (54 million gallons) of high-level radioactive waste that has accumulated in 177 large underground tanks at the Hanford Site since 1944. The RPP is comprised of five major elements: storage of the waste, retrieval of the waste from the tanks, treatment of the waste, disposal of treated waste, and closure of the tank facilities. Approximately 3785 cubic meters (1 million gallons) of waste have leaked from the older ''single-shell tanks.'' Sixty-seven of the 147 single shell tanks are known or assumed ''leakers.'' These leaks have resulted in contaminant plumes that extend from the tank to the groundwater in a number of tank farms. Retrieval and closure of the leaking tanks complicates the ORP technical challenge because cleanup decisions must consider the impacts of past leaks along with a strategy for retrieving the waste in the tanks. Completing the RPP mission as currently planned and with currently available technologies will take several decades and tens of billions of dollars. RPP continue to pursue the benefits from deploying technologies that reduce risk to human health and the environment, as well as, the cost of cleanup. This paper discusses some of the recent technology partnering activities with the DOE Office of Science and Technology activities in tank waste retrieval and storage

  18. System Planning With The Hanford Waste Operations Simulator

    International Nuclear Information System (INIS)

    Crawford, T.W.; Certa, P.J.; Wells, M.N.

    2010-01-01

    At the U. S. Department of Energy's Hanford Site in southeastern Washington State, 216 million liters (57 million gallons) of nuclear waste is currently stored in aging underground tanks, threatening the Columbia River. The River Protection Project (RPP), a fully integrated system of waste storage, retrieval, treatment, and disposal facilities, is in varying stages of design, construction, operation, and future planning. These facilities face many overlapping technical, regulatory, and financial hurdles to achieve site cleanup and closure. Program execution is ongoing, but completion is currently expected to take approximately 40 more years. Strategic planning for the treatment of Hanford tank waste is by nature a multi-faceted, complex and iterative process. To help manage the planning, a report referred to as the RPP System Plan is prepared to provide a basis for aligning the program scope with the cost and schedule, from upper-tier contracts to individual facility operating plans. The Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulation and mass balance computer model, is used to simulate the current planned RPP mission, evaluate the impacts of changes to the mission, and assist in planning near-term facility operations. Development of additional modeling tools, including an operations research model and a cost model, will further improve long-term planning confidence. The most recent RPP System Plan, Revision 4, was published in September 2009.

  19. River Protection Project FY 2000 Multi Year Work Plan Summary

    International Nuclear Information System (INIS)

    LENSEIGNE, D.L.

    1999-01-01

    The River Protection Project (RPP), formerly the Tank Waste Remediation System (TWRS), is a major part of the U.S. Department of Energy's (DOE) Office of River Protection (ORP). The ORP was established as directed by Congress in Section 3139 of the Strom Thurmond National Defense Authorization Act for Fiscal Year (FY) 1999. The ORP was established to elevate the reporting and accountability for the RPP to the DOE-Headquarters level. This was done to gain Congressional visibility and obtain support for a major $10 billion high-level liquid waste vitrification effort

  20. Evaluation Of The Integrated Solubility Model, A Graded Approach For Predicting Phase Distribution In Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Kayla L.; Belsher, Jeremy D.; Seniow, Kendra R.

    2012-10-19

    The mission of the DOE River Protection Project (RPP) is to store, retrieve, treat and dispose of Hanford's tank waste. Waste is retrieved from the underground tanks and delivered to the Waste Treatment and Immobilization Plant (WTP). Waste is processed through a pretreatment facility where it is separated into low activity waste (LAW), which is primarily liquid, and high level waste (HLW), which is primarily solid. The LAW and HLW are sent to two different vitrification facilities and glass canisters are then disposed of onsite (for LAW) or shipped off-site (for HLW). The RPP mission is modeled by the Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulator and mass balance model that is used for mission analysis and strategic planning. The integrated solubility model (ISM) was developed to improve the chemistry basis in HTWOS and better predict the outcome of the RPP mission. The ISM uses a graded approach to focus on the components that have the greatest impact to the mission while building the infrastructure for continued future improvement and expansion. Components in the ISM are grouped depending upon their relative solubility and impact to the RPP mission. The solubility of each group of components is characterized by sub-models of varying levels of complexity, ranging from simplified correlations to a set of Pitzer equations used for the minimization of Gibbs Energy.

  1. Evaluation Of The Integrated Solubility Model, A Graded Approach For Predicting Phase Distribution In Hanford Tank Waste

    International Nuclear Information System (INIS)

    Pierson, Kayla L.; Belsher, Jeremy D.; Seniow, Kendra R.

    2012-01-01

    The mission of the DOE River Protection Project (RPP) is to store, retrieve, treat and dispose of Hanford's tank waste. Waste is retrieved from the underground tanks and delivered to the Waste Treatment and Immobilization Plant (WTP). Waste is processed through a pretreatment facility where it is separated into low activity waste (LAW), which is primarily liquid, and high level waste (HLW), which is primarily solid. The LAW and HLW are sent to two different vitrification facilities and glass canisters are then disposed of onsite (for LAW) or shipped off-site (for HLW). The RPP mission is modeled by the Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulator and mass balance model that is used for mission analysis and strategic planning. The integrated solubility model (ISM) was developed to improve the chemistry basis in HTWOS and better predict the outcome of the RPP mission. The ISM uses a graded approach to focus on the components that have the greatest impact to the mission while building the infrastructure for continued future improvement and expansion. Components in the ISM are grouped depending upon their relative solubility and impact to the RPP mission. The solubility of each group of components is characterized by sub-models of varying levels of complexity, ranging from simplified correlations to a set of Pitzer equations used for the minimization of Gibbs Energy

  2. Analysis of Waste Leak and Toxic Chemical Release Accidents from Waste Feed Delivery (WFD) Diluent System

    Energy Technology Data Exchange (ETDEWEB)

    WILLIAMS, J.C.

    2000-09-15

    Radiological and toxicological consequences are calculated for 4 postulated accidents involving the Waste Feed Delivery (WFD) diluent addition systems. Consequences for the onsite and offsite receptor are calculated. This analysis contains technical information used to determine the accident consequences for the River Protection Project (RPP) Final Safety Analysis Report (FSAR).

  3. Analysis of Waste Leak and Toxic Chemical Release Accidents from Waste Feed Delivery (WFD) Diluent System

    International Nuclear Information System (INIS)

    WILLIAMS, J.C.

    2000-01-01

    Radiological and toxicological consequences are calculated for 4 postulated accidents involving the Waste Feed Delivery (WFD) diluent addition systems. Consequences for the onsite and offsite receptor are calculated. This analysis contains technical information used to determine the accident consequences for the River Protection Project (RPP) Final Safety Analysis Report (FSAR)

  4. Technology Summary Advancing Tank Waste Retrieval And Processing

    International Nuclear Information System (INIS)

    Sams, T.L.; Mendoza, R.E.

    2010-01-01

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. This technology overview provides a high-level summary of technologies being investigated, developed, and deployed by WRPS to advance Hanford Site tank waste retrieval and processing. Transformational technologies are needed to complete Hanford tank waste retrieval and treatment by 12/31/2047. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated because it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans, and methods. WRPS and the DOE are developing, testing, and deploying technologies to meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them. DOE's Office of Environmental Management (EM) identifies the environmental management technology needs and the activities necessary to address them. The U.S. Congress then funds these activities through EM or the DOE field offices. Finally, an array of entities that include DOE site prime contractors and

  5. Application to refrigerator plastics by mechanical recycling from polypropylene in waste-appliances

    International Nuclear Information System (INIS)

    Ha, Kyung Ho; Kim, Moon Saeng

    2012-01-01

    Highlights: → Polypropylene is mechanically recycled from waste-appliances. → Recycled polypropylene (RPP) is impact enhanced polypropylene with ethylene-propylene rubber (EPR). → Performance evaluation shows that RPP is applicable to refrigerator plastics. -- Abstract: For the application to refrigerator plastics by mechanical recycling from polypropylene (PP) in waste-appliances, it needs to identify the degradation and heterogeneity of recycled polypropylene (RPP). It is applicable the thermal analysis such as differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), spectroscopic analysis such as Fourier Transform Infrared (FTIR) and morphological analysis such as scanning electronic microscope (SEM). The analysis results show that RPP from waste-appliances is the polyethylene (PE) and polypropylene (PP) copolymer enhanced impact property (Impact-PP) and it is possible to apply refrigerator plastics with good impact property at low temperature. Finally, the performance evaluation of RPP is estimated by Gel Permeation Chromatography (GPC) analysis and is performed by the various mechanical and physical testing methods. It shows that RPP has relatively high molecular weight and balanced properties with strength and toughness. It is expected that RPP by the mechanical recycling from waste-appliances will have about 50% cost-merit.

  6. River Protection Project: Interface Management in the Multi Contract Project Environment at Hanford

    International Nuclear Information System (INIS)

    SHIKASHIO, L.A.

    2000-01-01

    The Office of River Protection (ORP) is implementing the River Protection Project (RPP) using two prime contractors. CH2M Hill Hanford Group, Inc. (CHG) is responsible for operating the existing tank system, delivering the waste feed to the waste treatment plant, and managing the resulting low- and high-level glass waste ''product'' through a performance-based fee type contract. A separate prime contractor will be responsible for designing, constructing and commissioning of a new Waste Treatment and Immobilization Plant (WTP), and preparing the waste for ultimate disposal. In addition to the prime contractors and their interfaces, the River Protection Project is being conducted on the Hanford Site, which is under the management of another DOE organization, DOE Richland Field Office (DOE-RL). The infrastructure and utilities are provided by DOE-RL, for example. In addition, there are multiple other technical interfaces with federal, state and other regulatory agencies that influence the management of the activities. This paper provides an overview of the approach employed by ORP to identify, coordinate, and manage the technical interfaces of RPP. In addition, this paper describes the approach and methodologies used to: Establish an overall framework for interface management. Establish the requirements for defining and managing interfaces for the prime contractors and DOE. Contractually requiring the prime contractors to control and manage the interfaces

  7. River Protection Project Integrated safety management system phase II verification review plan - 7/29/99

    International Nuclear Information System (INIS)

    SHOOP, D.S.

    1999-01-01

    The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment

  8. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    International Nuclear Information System (INIS)

    Kruger, A. A.; Peeler, D. K.; Kim, D. S.; Vienna, J. D.; Piepel, G. F.; Schweiger, M. J.

    2015-01-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.

  9. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peeler, D. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, D. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, G. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, M. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-23

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.

  10. Waste Feed Delivery Planning at Hanford - 13232

    International Nuclear Information System (INIS)

    Certa, Paul J.; Hohl, Ted M.; Kelly, James W.; Larsen, Douglas C.; West, Elizha B.; Ritari, Jaakob S.; Rodriguez, Juissepp S.

    2013-01-01

    The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the Waste Treatment and Immobilization Plant (WTP) to safely and efficiently accomplish the River Protection Project (RPP) mission. The IWFDP, which is integrated with the Baseline Case operating scenario, is comprised of three volumes. Volume 1 - Process Strategy provides an overview of waste feed delivery (WFD) and describes how the WFD system will be used to prepare and deliver feed to the WTP based on the equipment configuration and functional capabilities of the WFD system. Volume 2 - Campaign Plan describes the plans for the first eight campaigns for delivery to the WTP, evaluates projected feed for systematic issues, projects 242-A Evaporator campaigns, and evaluates double-shell tank (DST) space and availability of contingency feed. Volume 3 - Project Plan identifies the scope and timing of the DST and infrastructure upgrade projects necessary to feed the WTP, and coordinates over 30 projectized projects and operational activities that comprise the needed WFD upgrades. (authors)

  11. Waste Feed Delivery Planning at Hanford - 13232

    Energy Technology Data Exchange (ETDEWEB)

    Certa, Paul J.; Hohl, Ted M.; Kelly, James W.; Larsen, Douglas C.; West, Elizha B.; Ritari, Jaakob S.; Rodriguez, Juissepp S. [Washington River Protection Solutions, LLC, P.O. 850, Richland, WA 99352 (United States)

    2013-07-01

    The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the Waste Treatment and Immobilization Plant (WTP) to safely and efficiently accomplish the River Protection Project (RPP) mission. The IWFDP, which is integrated with the Baseline Case operating scenario, is comprised of three volumes. Volume 1 - Process Strategy provides an overview of waste feed delivery (WFD) and describes how the WFD system will be used to prepare and deliver feed to the WTP based on the equipment configuration and functional capabilities of the WFD system. Volume 2 - Campaign Plan describes the plans for the first eight campaigns for delivery to the WTP, evaluates projected feed for systematic issues, projects 242-A Evaporator campaigns, and evaluates double-shell tank (DST) space and availability of contingency feed. Volume 3 - Project Plan identifies the scope and timing of the DST and infrastructure upgrade projects necessary to feed the WTP, and coordinates over 30 projectized projects and operational activities that comprise the needed WFD upgrades. (authors)

  12. Waste feed delivery planning at Hanford-13232

    International Nuclear Information System (INIS)

    Certa, Paul J.; West, Elizha B.; Rodriguez, Juissepp S.; Hohl, Ted M.; Larsen, Douglas C.; Ritari, Jaakob S.; Kelly, James W.

    2013-01-01

    The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the Waste Treatment and Immobilization Plant (WTP) to safely and efficiently accomplish the River Protection Project (RPP) mission. The IWFDP, which is integrated with the Baseline Case operating scenario, is comprised of three volumes. Volume 1 - Process Strategy provides an overview of waste feed delivery (WFD) and describes how the WFD system will be used to prepare and deliver feed to the WTP based on the equipment configuration and functional capabilities of the WFD system. Volume 2 - Campaign Plan describes the plans for the first eight campaigns for delivery to the WTP, evaluates projected feed for systematic issues, projects 242-A Evaporator campaigns, and evaluates double-shell tank (DST) space and availability of contingency feed. Volume 3 - Project Plan identifies the scope and timing of the DST and infrastructure upgrade projects necessary to feed the WTP, and coordinates over 30 projectized projects and operational activities that comprise the needed WFD upgrades

  13. FINAL REPORT DETERMINATION OF THE PROCESSING RATE OF RPP WTP HLW SIMULANTS USING A DURAMELTER J 1000 VITRIFICATION SYSTEM VSL-00R2590-2 REV 0 8/21/00

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEREZ-CARDENAS F; PEGG IL

    2011-12-29

    This report provides data, analysis, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic University of America (VSL) to determine the melter processing rates that are achievable with RPP-WTP HLW simulants. The principal findings were presented earlier in a summary report (VSL-00R2S90-l) but the present report provides additional details. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. As a consequence of the limited amount of relevant information, there exists, for good reasons, a significant disparity between design-base specific glass production rates for the RPP-WTP LAW and HLW conceptual designs (1.0 MT/m{sup 2}/d and 0.4 MT/m{sup 2}/d, respectively); furthermore, small-scale melter tests with HLW simulants that were conducted during Part A indicated typical processing rates with bubbling of around 2.0 MT/m{sup 2}/d. This range translates into more than a factor of five variation in the resultant surface area of the HLW melter, which is clearly not without significant consequence. It is clear that an undersized melter is undesirable in that it will not be able to support the required waste processing rates. It is less obvious that there are potential disadvantages associated with an oversized melter, over and above the increased capital costs. A melt surface that is consistently underutilized will have poor cold cap coverage, which will result in increased volatilization from the melt (which is generally undesirable) and

  14. Final Report Determination Of The Processing Rate Of RPP-WTP HLW Simulants Using A Duramelter J 1000 Vitrification System VSL-00R2590-2, Rev. 0, 8/21/00

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Perez-Cardenas, F.; Pegg, I.L.

    2011-01-01

    This report provides data, analysis, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic University of America (VSL) to determine the melter processing rates that are achievable with RPP-WTP HLW simulants. The principal findings were presented earlier in a summary report (VSL-00R2S90-l) but the present report provides additional details. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. As a consequence of the limited amount of relevant information, there exists, for good reasons, a significant disparity between design-base specific glass production rates for the RPP-WTP LAW and HLW conceptual designs (1.0 MT/m 2 /d and 0.4 MT/m 2 /d, respectively); furthermore, small-scale melter tests with HLW simulants that were conducted during Part A indicated typical processing rates with bubbling of around 2.0 MT/m 2 /d. This range translates into more than a factor of five variation in the resultant surface area of the HLW melter, which is clearly not without significant consequence. It is clear that an undersized melter is undesirable in that it will not be able to support the required waste processing rates. It is less obvious that there are potential disadvantages associated with an oversized melter, over and above the increased capital costs. A melt surface that is consistently underutilized will have poor cold cap coverage, which will result in increased volatilization from the melt (which is generally undesirable) and increased plenum

  15. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.

  16. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION and PLANNING FOR REVRIEVAL TREATMENT and EVENTUAL DISPOSAL AT WIPP

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-01

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP)

  17. Data Quality Objectives for Regulatory Requirements for Dangerous Waste Sampling and Analysis

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    1999-01-01

    This document describes sampling and analytical requirements needed to meet state and federal regulations for dangerous waste (DW). The River Protection Project (RPP) is assigned to the task of storage and interim treatment of hazardous waste. Any final treatment or disposal operations, as well as requirements under the land disposal restrictions (LDRs), fall in the jurisdiction of another Hanford organization and are not part of this scope. The requirements for this Data Quality Objective (DQO) Process were developed using the RPP Data Quality Objective Procedure (Banning 1996), which is based on the U.S. Environmental Protection Agency's (EPA) Guidance for the Data Quality Objectives Process (EPA 1994). Hereafter, this document is referred to as the DW DQO. Federal and state laws and regulations pertaining to waste contain requirements that are dependent upon the composition of the waste stream. These regulatory drivers require that pertinent information be obtained. For many requirements, documented process knowledge of a waste composition can be used instead of analytical data to characterize or designate a waste. When process knowledge alone is used to characterize a waste, it is a best management practice to validate the information with analytical measurements

  18. PROJECT W-551 DETERMINATION DATA FOR EARLY LAW INTERIM PRETREATMENT SYSTEM SELECTION

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR

    2008-08-11

    This report provides the detailed assessment forms and data for selection of the solids separation and cesium separation technology for project W-551, Interim Pretreatment System. This project will provide early pretreated low activity waste feed to the Waste Treatment Plant to allow Waste Treatment Plan Low Activity Waste facility operation prior to construction completion of the Pretreatment and High Level Waste facilities. The candidate solids separations technologies are rotary microfiltration and crossflow filtration, and the candidate cesium separation technologies are fractional crystallization, caustic-side solvent extraction, and ion-exchange using spherical resorcinol-formaldehyde resin. This data was used to prepare a cross-cutting technology summary, reported in RPP-RPT-37740.

  19. Waste Feed Evaporation Physical Properties Modeling

    International Nuclear Information System (INIS)

    Daniel, W.E.

    2003-01-01

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software

  20. Data Quality Objectives for Regulatory Requirements for Dangerous Waste Sampling and Analysis; FINAL

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    1999-01-01

    This document describes sampling and analytical requirements needed to meet state and federal regulations for dangerous waste (DW). The River Protection Project (RPP) is assigned to the task of storage and interim treatment of hazardous waste. Any final treatment or disposal operations, as well as requirements under the land disposal restrictions (LDRs), fall in the jurisdiction of another Hanford organization and are not part of this scope. The requirements for this Data Quality Objective (DQO) Process were developed using the RPP Data Quality Objective Procedure (Banning 1996), which is based on the U.S. Environmental Protection Agency's (EPA) Guidance for the Data Quality Objectives Process (EPA 1994). Hereafter, this document is referred to as the DW DQO. Federal and state laws and regulations pertaining to waste contain requirements that are dependent upon the composition of the waste stream. These regulatory drivers require that pertinent information be obtained. For many requirements, documented process knowledge of a waste composition can be used instead of analytical data to characterize or designate a waste. When process knowledge alone is used to characterize a waste, it is a best management practice to validate the information with analytical measurements

  1. Data Quality Objectives for Tank Farms Waste Compatibility Program

    International Nuclear Information System (INIS)

    BANNING, D.L.

    1999-01-01

    There are 177 waste storage tanks containing over 210,000 m 3 (55 million gal) of mixed waste at the Hanford Site. The River Protection Project (RPP) has adopted the data quality objective (DQO) process used by the U.S. Environmental Protection Agency (EPA) (EPA 1994a) and implemented by RPP internal procedure (Banning 1999a) to identify the information and data needed to address safety issues. This DQO document is based on several documents that provide the technical basis for inputs and decision/action levels used to develop the decision rules that evaluate the transfer of wastes. A number of these documents are presently in the process of being revised. This document will need to be revised if there are changes to the technical criteria in these supporting documents. This DQO process supports various documents, such as sampling and analysis plans and double-shell tank (DST) waste analysis plans. This document identifies the type, quality, and quantity of data needed to determine whether transfer of supernatant can be performed safely. The requirements in this document are designed to prevent the mixing of incompatible waste as defined in Washington Administrative Code (WAC) 173-303-040. Waste transfers which meet the requirements contained in this document and the Double-Shell Tank Waste Analysis Plan (Mulkey 1998) are considered to be compatible, and prevent the mixing of incompatible waste

  2. Interface Control Document Between the Double-Shell Tank (DST) system and the Waste Encapsulation and Storage Facility (WESF)

    International Nuclear Information System (INIS)

    HOFFERBER, G.A.

    2000-01-01

    This Interface Control Document (ICD) describes interfaces between the Double-Shell Tanks (DST) System and Waste Encapsulation and Storage Facility (WESF) (figure 1). WESF is currently operational as a storage facility for cesium and strontium capsules. This ICD covers current operational interfaces and those envisioned during Terminal Clean Out (TCO) activities in the future. WESF and the DST System do not have a direct physical interface. The waste will be moved by tank trailer to the 204-AR waste unloading facility. The purpose of the ICD process is to formalize working agreements between the River Protection Project (RPP) DST System and systems/facilities operated by organizations or companies internal and external to RPP. This ICD has been developed as part of the requirements basis for design of the DST System to support the Phase I Privatization effort

  3. Waste Treatment Plant LAW Evaporation: Antifoam Performance

    International Nuclear Information System (INIS)

    BAICH, MARKA

    2004-01-01

    This report describes the work performed to determine the performance and fate of several commercial antifoams during evaporation of various simulants of Envelope A, B, and C mixed with simulated River Protection Project Waste Treatment Plant (RPP-WTP) recycle streams. Chemical and radiation stability of selected antifoams was also investigated.Contributors to this effort include: Illinois Institute of Technology (IIT), DOW Corning Analytical, and Savannah River Technology Center (SRTC)

  4. Recent Improvements In Interface Management For Hanfords Waste Treatment And Immobilization Plant - 13263

    International Nuclear Information System (INIS)

    Arm, Stuart T.; Pell, Michael J.; Van Meighem, Jeffery S.; Duncan, Garth M.; Harrington, Christopher C.

    2012-01-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number of technical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. The WTP interface management process has recently been improved through changes in organization and technical issue management documented in an Interface Management Plan. Ten of the thirteen active WTP Interface Control Documents (ICDs) have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule

  5. LLNL Radiation Protection Program (RPP) Rev 9.2, Implementation of 10 CFR 835, 'Occupational Radiation Protection'

    Energy Technology Data Exchange (ETDEWEB)

    Shingleton, K. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-15

    The Department of Energy (DOE) originally issued Part 10 CFR 835, Occupational Radiation Protection, on January 1, 1994. This regulation, hereafter referred to as “the Rule”, required DOE contractors to develop and maintain a DOE-approved Radiation Protection Program (RPP); DOE approved the initial Lawrence Livermore National Laboratory (LLNL) RPP (Rev 2) on 6/29/95. DOE issued a revision to the Rule on December 4, 1998 and approved LLNL’s revised RPP (Rev 7.1) on 11/18/99. DOE issued a second Rule revision on June 8, 2007 (effective July 9, 2007) and on June 13, 2008 approved LLNL’s RPP (Rev 9.0) which contained plans and measures for coming into compliance with the 2007 Rule changes. DOE issued a correction to the Rule on April 21, 2009.

  6. Inexpensive electrolysis of batik waste water: Project-based learning (PjBL) in MA Salafiyah Simbang Kulon Pekalongan, Indonesia

    Science.gov (United States)

    Firmansyah, R. Arizal; Rohmatina, Ita

    2017-12-01

    Majority of people in Simbang kulon Indonesia almost every citizen who batik artisans, by utilizing river water to wash batik, as well as a place to dispose of waste. As a result, the river is polluted. However, there are no steps to educate young generation especially students to care about the environment. Therefore, project-based learning is appropriate approach. This research was intended to provide a description of the study of project-based chemistry on redox reaction material and its application for the waste treatment of class X MA Salafiyah Simbang Kulon Pekalongan. The implementation of project-based chemistry study of redox reaction material and its application on batik waste treatment in class X MA Salafiyah Simbang Kulon Pekalongan can be seen from several aspects, such as: (1) planning stage: includes preparation of learning planning activities such as RPP preparation of LKS etc, (2) Implementation stage: this stage consists of classroom discussion, and batik waste treatment project (3) evaluation stage. This evaluation was done by the researcher on the results of project-based learning to measure the level of effectiveness of learning with the achievement of students' competencies in terms of cognitive, that is by doing post-test and interview. The end result was to compare the results of the pre-test of learners who achieve the value of KKM with the results of post-test learners who reached the KKM value of 6.8. The results showed that: the effectiveness level of learning chemistry-based projects redox reaction material and its application on the batik waste treatment of class X MA Salafiyah Simbang Kulon Pekalongan was very high, this can be seen from the comparison of the percentage of school KKM achievement between the value of pre-test results with value of post-test result was difference of pre-test result 8,33% with result of post-test 91,66%, so difference was 81,26%. These results were then reinforced by the results of the researcher

  7. Project W-314 Polyurea Special Protective Coating (SPC) Test Report Chemical Compatibility and Physical Characteristics Testing

    International Nuclear Information System (INIS)

    MAUSER, R.W.

    2001-01-01

    This Engineering Test report outlines the results obtained from testing polyurea on its decon factor, tank waste compatibility, and adhesion strength when subjected to a high level of gamma radiation. This report is used in conjunction with RPP-7187 Project W-314 Pit Coatings Repair Requirements Analysis, to document the fact polyurea meets the project W-314 requirements contained in HNF-SD-W314-PDS-005 and is therefore an acceptable SPC for use in W-314 pit refurbishments

  8. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    KOZLOWSKI, S.D.

    2007-01-01

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below

  9. Interactions of a Pop5/Rpp1 heterodimer with the catalytic domain of RNase MRP.

    Science.gov (United States)

    Perederina, Anna; Khanova, Elena; Quan, Chao; Berezin, Igor; Esakova, Olga; Krasilnikov, Andrey S

    2011-10-01

    Ribonuclease (RNase) MRP is a multicomponent ribonucleoprotein complex closely related to RNase P. RNase MRP and eukaryotic RNase P share most of their protein components, as well as multiple features of their catalytic RNA moieties, but have distinct substrate specificities. While RNase P is practically universally found in all three domains of life, RNase MRP is essential in eukaryotes. The structural organizations of eukaryotic RNase P and RNase MRP are poorly understood. Here, we show that Pop5 and Rpp1, protein components found in both RNase P and RNase MRP, form a heterodimer that binds directly to the conserved area of the putative catalytic domain of RNase MRP RNA. The Pop5/Rpp1 binding site corresponds to the protein binding site in bacterial RNase P RNA. Structural and evolutionary roles of the Pop5/Rpp1 heterodimer in RNases P and MRP are discussed.

  10. One project`s waste is another project`s resource

    Energy Technology Data Exchange (ETDEWEB)

    Short, J.

    1997-02-01

    The author describes the efforts being made toward pollution prevention within the DOE complex, as a way to reduce overall project costs, in addition to decreasing the amount of waste to be handled. Pollution prevention is a concept which is trying to be ingrained into project planning. Part of the program involves the concept that ultimately the responsibility for waste comes back to the generator. Parts of the program involve efforts to reuse materials and equipment on new projects, to recycle wastes to generate offsetting revenue, and to increase awareness, accountability and incentives so as to stimulate action on this plan. Summaries of examples are presented in tables.

  11. Operational waste volume projection

    International Nuclear Information System (INIS)

    Koreski, G.M.; Strode, J.N.

    1995-06-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the tri-party agreement. Assumptions are current as of June 1995

  12. Operational Waste Volume Projection

    Energy Technology Data Exchange (ETDEWEB)

    STRODE, J.N.

    2000-08-28

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  13. Operational Waste Volume Projection

    International Nuclear Information System (INIS)

    STRODE, J.N.

    2000-01-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000

  14. Vitrification and Product Testing of AW-101 and AN-107 Pretreated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L.; Greenwood, Lawrence R.; Piepel, Gregory F.; Schweiger, Michael J.; Smith, Harry D.; Urie, Michael W.; Wagner, Jerome J.

    2000-10-31

    The primary objective for vitrifying the LAW samples is to generate glass products for subsequent product testing. The work presented in this report is divided into 6 work elements: 1) Glass Fabrication, 2) Chemical Composition, 3) Radiochemical Composition, 4) Crystalline and Non-crystalline Phase Determination, and 5) Release Rate (Modified PCT). These work elements will help demonstrate the RPP-WTP projects ability to satisfy the product requirements concerning, chemical and radionuclide reporting, waste loading, identification and quantification of crystalline and non-crystalline phases, and waste form leachability. VOA, SVOA, dioxins, furans, PCBs, and total cyanide analyses will be reported in as separate document (WTP-RPT-005).

  15. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    International Nuclear Information System (INIS)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-01

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the

  16. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    International Nuclear Information System (INIS)

    Dunford, Gary; Williams, David; Smith, Rick

    2013-01-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  17. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    Energy Technology Data Exchange (ETDEWEB)

    Dunford, Gary [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, WA 99352 (United States); Williams, David [WIT, Inc., 11173 Oak Fern Court, San Diego, CA 92131 (United States); Smith, Rick [Knowledge Systems Design, Inc., 13595 Quaker Hill Cross Rd, Nevada City, CA 95959 (United States)

    2013-07-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  18. One project's waste is another project's resource

    International Nuclear Information System (INIS)

    Short, J.

    1997-01-01

    The author describes the efforts being made toward pollution prevention within the DOE complex, as a way to reduce overall project costs, in addition to decreasing the amount of waste to be handled. Pollution prevention is a concept which is trying to be ingrained into project planning. Part of the program involves the concept that ultimately the responsibility for waste comes back to the generator. Parts of the program involve efforts to reuse materials and equipment on new projects, to recycle wastes to generate offsetting revenue, and to increase awareness, accountability and incentives so as to stimulate action on this plan. Summaries of examples are presented in tables

  19. Recent Improvements in Interface Management for Hanford's Waste Treatment and Immobilization Plant - 13263

    Energy Technology Data Exchange (ETDEWEB)

    Arm, Stuart T.; Van Meighem, Jeffery S. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States); Duncan, Garth M.; Pell, Michael J. [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States); Harrington, Christopher C. [Department of Energy - Office of River Protection, 2440 Stevens Center Place, Richland, Washington, 99352 (United States)

    2013-07-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which includes the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number of technical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. Partly in response to a DNFSB recommendation, the WTP interface management process managing these technical services has recently been improved through changes in organization and issue management. The changes are documented in an Interface Management Plan. The organizational improvement is embodied in the One System Integrated Project Team that was formed by integrating WTP and tank farms staff representing interfacing functional areas into a single organization. A number of improvements were made to the issue management process but most notable was the formal appointment of technical, regulatory and safety subject matter experts to ensure accurate identification of issues and open items. Ten of the thirteen active WTP Interface Control Documents have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule and accurately identify technical, regulatory and safety issues and open items. (authors)

  20. Final Report for Crucible -Scale Radioactive Vitrification and Product Test of Waste Envelope B (AZ-102) Low-Activity Waste Glass

    International Nuclear Information System (INIS)

    CRAWFORD, CHARLES

    2004-01-01

    A proof-of-technology demonstration for the Hanford River Protection Project (RPP) Waste treatment and Immobilization Plant (WTP) was performed by the Savannah River Technology Center (SRTC). As part of this demonstration, treated AZ-102 Low-Activity Waste supernate was vitrified using a crucible-scale furnace. Initial glass samples were quench-cooled and characterized for metals and radionuclides. The glass was also durability tested using the American Society for Testing and Materials (ASTM) Product Consistency Test (PCT) protocol. These tests used the AZ-102 glass formulation Low Activity Waste (LAW) B88 that targeted AZ-102 waste loading at 5 wt% Na2O. After these initial results were obtained with the quench-cooled LAWB88 glass, a prototypical container centerline cooling (CCC) program was supplied to SRTC by WTP. A portion of the quench-cooled LAWB88 glass was remelted and centerline cooled. Samples from the CCC low-activity AZ-102 glass waste form were durability tested using the PCT and characterized for crystalline phase identification.This final report documents the characterization and durability of this AZ-102 glass

  1. Laboratory-Scale SuperLig 639 Column Tests With Hanford Waste Simulants

    International Nuclear Information System (INIS)

    King, William D.; Spencer, William A.; Bussey, Myra Pettis

    2003-01-01

    This report describes the results of SuperLig 639 column tests conducted at the Savannah River Technology Center (SRTC) in support of the Hanford River Protection Project - Waste Treatment Plant (RPP-WTP). The RPP-WTP contract was awarded to Bechtel National Inc. (BNI) for the design, construction, and initial operation of a plant for the treatment and vitrification of millions of gallons of radioactive waste currently stored in tanks at Hanford, WA. Part of the current treatment process involves the removal of technetium from tank supernate solutions using columns containing SuperLig 639 resin. This report is part of a body of work intended to quantify and optimize the operation of the technetium removal columns with regard to various parameters (such as liquid flow rate, column aspect ratio, resin particle size, loading and elution temperature, etc.). The tests were conducted using nonradioactive simulants of the actual tank waste samples containing rhenium as a surrogate for the technetium in the actual waste. A previous report focused on the impacts of liquid flow rate and column aspect ratio upon performance. More recent studies have focused on the impacts of resin particle size, solution composition, and temperature. This report describes column loading experiments conducted varying temperature and solution composition. Each loading experiment was followed by high temperature elution of the sorbed rhenium. Results from limited testing are also described which were intended to evaluate the physical stability of SuperLig 639 resin during exposure to repeated temperature cycles covering the range of potential processing extremes

  2. Effects of RuPeng15 Powder (RPP15 on Monosodium Urate Crystal-Induced Gouty Arthritis in Rats

    Directory of Open Access Journals (Sweden)

    Y.-Y. Kou

    2015-01-01

    Full Text Available RuPeng15 Powder (RPP15 is a herbal multicompound remedy that originates from traditional Tibetan medicine and possesses antigout, anti-inflammatory, and antihyperuricemic properties based on the traditional conceptions. The present study was undertaken to evaluate the therapeutic effect of PRP15 in rat gouty arthritis induced by monosodium urate (MSU crystals. In the present study, we found that treatment with RPP15 (0.4, 0.8, and 1.2 g/kg in rats with gouty arthritis induced by MSU crystals significantly attenuated the knee swelling. Histomorphometric and immunohistochemistry analyses revealed that MSU-induced inflammatory cell infiltration and the elevated expressions of nuclear transcription factor-κB p65 (NF-κB p65 in synovial tissues were significantly inhibited, and enzyme-linked immunosorbent assay (ELISA result showed that MSU-induced high levels of tumor necrosis factor-alpha (TNF-α, interleukin-1 beta (IL-1β, and interleukin-8 (IL-8 in synovial fluid were reduced by treatment with RPP15 (0.4, 0.8, and 1.2 g/kg. We conclude that RPP15 may be a promising candidate for the development of a new treatment for gout and its activity of antigout may be partially related to inhibiting TNF-α, IL-1β, IL-8, and NF-κB p65 expression in the synovial tissues.

  3. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  4. Low-level radioactive waste in the northeast: revised waste volume projections

    International Nuclear Information System (INIS)

    1984-06-01

    The volume of low-level radioactive waste generated in the eleven Northeast states has undergone significant change since the inital 1982 analysis and projection. These revised projections incorporate improved data reporting and evidence of sharp declines in certain categories of waste. Volumes in the 1982-1983 period reflect waste shipped for disposal as reported by disposal site operators. Projected waste volumes represent waste intended for disposal. The recent dramatic changes in source reduction and waste management practices underscore the need for annual review of waste volume projections. The volume of waste shipped for off-site disposal has declined approximately 12% in two years, from an average 1,092,500 ft 3 annually in 1979 to 1981 to an average annual 956,500 ft 3 in 1982 to 1983; reactor waste disposal volumes declined by about 39,000 ft 3 or 7% during this period. Non-reactor waste volumes shipped for disposal declined by over 70,000 ft 3 or 15% during this period. The data suggest that generators increased their use of such management practices as source reduction, compaction, or, for carbon-14 and tritium, temporary storage followed by disposal as non-radioactive waste under the NRC de minimus standard effective March 1981. Using the Technical Subcommittee projection methodology, the volume of low-level waste produced annually in the eleven states, individually and collectively, is expected to increase through the year 2000, but at a significantly lower rate of increase than initially projected. By the year 2000, the Northeast is projected to generate 1,137,600 ft 3 of waste annually, an increase of about 20% over 1982 to 1983 average volume

  5. Crawler Acquisition and Testing Demonstration Project Management Plan

    International Nuclear Information System (INIS)

    DEFIGH-PRICE, C.

    2000-01-01

    If the crawler based retrieval system is selected, this project management plan identifies the path forward for acquiring a crawler/track pump waste retrieval system, and completing sufficient testing to support deploying the crawler for as part of a retrieval technology demonstration for Tank 241-C-104. In the balance of the document, these activities will be referred to as the Crawler Acquisition and Testing Demonstration. During recent Tri-Party Agreement negotiations, TPA milestones were proposed for a sludge/hard heel waste retrieval demonstration in tank C-104. Specifically one of the proposed milestones requires completion of a cold demonstration of sufficient scale to support final design and testing of the equipment (M-45-03G) by 6/30/2004. A crawler-based retrieval system was one of the two options evaluated during the pre-conceptual engineering for C-104 retrieval (RPP-6843 Rev. 0). The alternative technology procurement initiated by the Hanford Tanks Initiative (HTI) project, combined with the pre-conceptual engineering for C-104 retrieval provide an opportunity to achieve compliance with the proposed TPA milestone M-45-03H. This Crawler Acquisition and Testing Demonstration project management plan identifies the plans, organizational interfaces and responsibilities, management control systems, reporting systems, timeline and requirements for the acquisition and testing of the crawler based retrieval system. This project management plan is complimentary to and supportive of the Project Management Plan for Retrieval of C-104 (RPP-6557). This project management plan focuses on utilizing and completing the efforts initiated under the Hanford Tanks Initiative (HTI) to acquire and cold test a commercial crawler based retrieval system. The crawler-based retrieval system will be purchased on a schedule to support design of the waste retrieval from tank C-104 (project W-523) and to meet the requirement of proposed TPA milestone M-45-03H. This Crawler

  6. TWRS Retrieval and Storage Mission and Immobilized Low Activity Waste (ILAW) Disposal Plan

    International Nuclear Information System (INIS)

    BURBANK, D.A.

    1999-01-01

    This project plan has a twofold purpose. First, it provides a waste stream project plan specific to the River Protection Project (RPP) (formerly the Tank Waste Remediation System [TWRS] Project) Immobilized Low-Activity Waste (LAW) Disposal Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-90-01 (Ecology et al. 1994) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan (Ecology et al. 1998). Second, it provides an upper tier document that can be used as the basis for future subproject line-item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 [DOE 1992] and 430.1 [DOE 1995a]). The format and content of this project plan are designed to accommodate the requirements mentioned by the Tri-Party Agreement and the DOE orders. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed

  7. PROGRESS & CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    Energy Technology Data Exchange (ETDEWEB)

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-23

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m{sup 3} (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m{sup 3} (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We

  8. Radioactive Demonstration Of Final Mineralized Waste Forms For Hanford Waste Treatment Plant Secondary Waste By Fluidized Bed Steam Reforming Using The Bench Scale Reformer Platform

    International Nuclear Information System (INIS)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-01-01

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137 Cs, 129 I, 99 Tc, Cl, F, and SO 4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form

  9. Test plan for measuring ventilation rates and combustible gas levels in RPP active catch tanks

    Energy Technology Data Exchange (ETDEWEB)

    NGUYEN, D.M.

    1999-06-03

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by River Protection Project (RPP). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  10. PROGRESS and CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    International Nuclear Information System (INIS)

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-01

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m 3 (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m 3 (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We plan to

  11. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    International Nuclear Information System (INIS)

    Wasan, Darsh T.; Nikolov, Alex D.; Lamber, D.P.; Calloway, T. Bond; Stone, M.E.

    2005-01-01

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays

  12. Calculation of projected waste loads for transuranic waste management alternatives

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1995-01-01

    The level of treatment and the treatment and interim storage site configurations (decentralized, regional, or centralized) impact transuranic (TRU) waste loads at and en route to sites in the US Department of Energy (DOE) complex. Other elements that impact waste loads are the volume and characteristics of the waste and the unit operation parameters of the technologies used to treat it. Projected annual complexwide TRU waste loads under various TRU waste management alternatives were calculated using the WASTEunderscoreMGMT computational model. WASTEunderscoreMGMT accepts as input three types of data: (1) the waste stream inventory volume, mass, and contaminant characteristics by generating site and waste stream category; (2) unit operation parameters of treatment technologies; and (3) waste management alternative definitions. Results indicate that the designed capacity of the Waste Isolation Pilot Plant, identified under all waste management alternatives as the permanent disposal facility for DOE-generated TRU waste, is sufficient for the projected complexwide TRU waste load under any of the alternatives

  13. Operational waste volume projection. Revision 20

    International Nuclear Information System (INIS)

    Koreski, G.M.; Strode, J.N.

    1994-01-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of July 1994

  14. Spent fuel and waste inventories and projections

    International Nuclear Information System (INIS)

    Carter, W.L.; Finney, B.C.; Alexander, C.W.; Blomeke, J.O.; McNair, J.M.

    1980-08-01

    Current inventories of commercial spent fuels and both commercial and US Department of Energy radioactive wastes were compiled, based on judgments of the most reliable information available from Government sources and the open literature. Future waste generation rates and quantities to be accumulated over the remainder of this century are also presented, based on a present projection of US commercial nuclear power growth and expected defense-related activities. Spent fuel projections are based on the current DOE/EIA estimate of nuclear growth, which projects 180 GW(e) in the year 2000. It is recognized that the calculated spent fuel discharges are probably high in view of recent reactor cancellations; hence adjustments will be made in future updates of this report. Wastes considered, on a chapter-by-chapter basis, are: spent fuel, high-level wastes, transuranic wastes, low-level wastes, mill tailings (active sites), and remedial action wastes. The latter category includes mill tailings (inactive sites), surplus facilities, formerly utilized sites, and the Grand Junction Project. For each category, waste volume inventories and projections are given through the year 2000. The land usage requirements are given for storage/disposal of low-level and transuranic wastes, and for present inventories of mill tailings

  15. PENGEMBANGAN RPP TEMATIK-INTEGRATIF UNTUK MENINGKATKAN KARAKTER KERJA KERAS DI KELAS 1 SD N 2 SOKARAJA TENGAH

    Directory of Open Access Journals (Sweden)

    Sri Muryaningsih

    2015-07-01

    Full Text Available Penelitian ini bertujuan untuk menghasilkan RPP tematik-integratif dalam peningkatan karakter kerja keras dan mengetahui efektifitas penerapan RPP tematik-integratif dalam peningkatan karakter kerja keras bagi peserta didik kelas 1 SD N 2 Sokaraja Tengah. Penelitian ini menggunakan langkah pengembangan menurut Borg and Gall.Hasil penelitian menunjukkan bahwa produk yang dikembangkan dalam penelitian ini layak digunakan sesuai hasil penilaian ahli teknologi pembelajarann dan ahli media pembelajaran terhadap produk yang dikembangkan dengan kriteria “sangat baik” dengan bukti perolehan skor total validasi sebesar 39 dan 38. Produk yang dikembangkan juga efektif diterapkan sesuai dengan hasil uji coba dilapangan. Keefektivan RPP hasil pengembangan dilihat dari hasil keterlaksanaan RPP adalah berkriteria “sangat baik” dengan bukti keterlaksanaan mencapai 100%. Kenaikan karakter kerja keras dari kriteria “cukup” menjadi kriteria “baik”. Ketuntasan hasil belajar kelas eksperimen mencapai 93,54% dan ketuntasan hasil belajar kelas kontrol mencapai 61,3%. Kata Kunci: RPP tematik-integratif, pendidikan karakter   DEVELOPING A THEMATIC-INTEGRATED LESSON PLAN TO INCREASE THE HARD-WORKING CHARACTER OF GRADE 1 STUDENTS OF SD N 2 SOKARAJA TENGAH Abstract This research is aimed to develop thematic-integrated lesson plan to increase hard-working character and to know the effectiveness of the thematic-integrated lesson plan in the increase of hard-workig character of grade 1 students of SD N 2 Sokaraja Tengah. This research is a research and development study from Borg & Gall model. The result shows that the product developed in this research is suitable to use.  The result of teaching technology and learning media expert analysis on this product shows that it is ”very good”, as proved by the validation total scores of 39 and 38 out of 45. This product is also effective to apply as shown the result of field testing of the lesson plan. The

  16. Technology Summary Advancing Tank Waste Retreival And Processing

    International Nuclear Information System (INIS)

    Sams, T.L.

    2010-01-01

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated since it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans and methods. WRPS and the DOE are therefore developing, testing, and deploying technologies to ensure that they can meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  17. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline

  18. Discovery of a seventh Rpp soybean rust resistance locus in soybean accession PI 605823

    Science.gov (United States)

    Soybean rust, caused by the obligate biotrophic fungal pathogen Phakopsora pachyrhizi Syd. & Syd, is a disease threat to soybean production in regions of the world with mild winters. Host plant resistance to P. pachyrhizi conditioned by Rpp genes has been found in numerous soybean accessions, and at...

  19. Identificação e validação de marcadores microssatélites ligados ao gene Rpp5 de resistência à ferrugem-asiática-da-soja Identification and validation of microsatellite markers linked to the Rpp5 gene conferring resistance to Asian soybean rust

    Directory of Open Access Journals (Sweden)

    Thaiza Galhardo Silva Morceli

    2008-11-01

    Full Text Available O objetivo deste trabalho foi identificar novos marcadores microssatélites, ligados ao gene Rpp5 de resistência à ferrugem-da-soja, e validar os marcadores previamente mapeados, para que possam ser utilizados em programas de seleção assistida por marcadores moleculares (SAM. Para tanto, uma população F2 com 100 indivíduos, derivada do cruzamento entre a PI 200526 e a cultivar Coodetec 208, suscetível à ferrugem, foi artificialmente infectada e avaliada quanto à sua reação de resistência à ferrugem. Marcadores microssatélites foram testados nos genitores e em dois "bulks" contrastantes, para a identificação de marcadores ligados. Dois novos marcadores, potencialmente associados à resistência, foram testados em plantas individuais, e se constatou que eles estão ligados ao gene Rpp5 e estão presentes no grupo de ligação N da soja. A eficiência de seleção foi determinada em relação a todos os marcadores ligados ao gene Rpp5, e a combinação entre os marcadores Sat_275+Sat_280 foi de 100%.The main objective of this work was to identify new microsatellite markers, linked to the Rpp5 resistance gene to Asian soybean rust, and to validate previously mapped markers for use in marker-assisted selection (MAS programs. To this end, a F2 population with 100 individuals, derived from crossing between PI 200526 and cultivar Coodetec 208, susceptible to rust, was artificially infected and evaluated for its reaction of resistance to rust. Microsatellite markers were tested on parents and in the two contrasting bulks to identifying linked markers. Two new markers, potentially associated with resistance, were tested in individual plants, and they were found to be linked to gene Rpp5 and to be present in the N linkage group of soybean. The selection efficiencies were determined for all markers linked to gene Rpp5, and the combination of the markers Sat_275+Sat_280 was 100%.

  20. Mixed and Low-Level Waste Treatment Facility Project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies

  1. PENGEMBANGAN RPP DAN LKPD BERBASIS REALISTIC MATHEMATICS EDUCATION DENGAN MEMERHATIKAN BEBAN KOGNITIF SISWA MATERI BANGUN RUANG SEDERHANA KELAS IV SD

    Directory of Open Access Journals (Sweden)

    Eko Waluyo

    2016-12-01

    Dalam suatu pembelajaran, dengan melibatkan siswa dalam menemukan suatu konsep materi matematika, siswa akan lebih mudah untuk memahami materi. Materi matematika dalam dipelajari dengan melibatkan obyek dunia nyata siswa sekolah dasar dengan memerhatikan beban kognitif siswa. Melalui bimbingan guru, siswa akan lebih mudah dalam menemukan konsep. Dalam tulisan ini dibahas pengembangan RPP dan LKPD berbasis Realistic Mathematics Education dengan memerhatikan beban kognitif siswa materi bangun ruang sederhana kelas IV SD. Model pengembangan yang digunakan model Plomp dengan lima fase. Hasil pengembangan RPP dan LKPD ini valid, praktis, dan efektif.

  2. Radioactive Demonstrations Of Fluidized Bed Steam Reforming As A Supplementary Treatment For Hanford's Low Activity Waste And Secondary Wastes

    International Nuclear Information System (INIS)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-01-01

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides

  3. Tank Waste Remediation System Projects Document Control Plan

    International Nuclear Information System (INIS)

    Slater, G.D.; Halverson, T.G.

    1994-01-01

    The purpose of this Tank Waste Remediation System Projects Document Control Plan is to provide requirements and responsibilities for document control for the Hanford Waste Vitrification Plant (HWVP) Project and the Initial Pretreatment Module (IPM) Project

  4. Project safety studies - nuclear waste management (PSE)

    International Nuclear Information System (INIS)

    1981-10-01

    The project 'Safety Studies-Nuclear Waste Management' (PSE) is a research project performed by order of the Federal Minister for Research and Technology, the general purpose of which is to deepen and ensure the understanding of the safety aspects of the nuclear waste management and to prepare a risk analysis which will have to be established in the future. Owing to this the project is part of a series of projects which serve the further development of the concept of nuclear waste management and its safety, and which are set up in such a way as to accompany the realization of that concept. This report contains the results of the first stage of the project from 1978 to mid-1981. (orig./RW) [de

  5. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    International Nuclear Information System (INIS)

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented

  6. Waste-to-Energy Cogeneration Project, Centennial Park

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  7. Hanford Site River Protection Project (RPP) High-Level Waste Storage

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.

    2000-01-01

    The CH2M HILL Hanford Group (CHG) conducts business to achieve the goals of the U.S. Department of Energy's (DOE) Office of River Protection at the Hanford Site. The CHG is organized to manage and perform work to safely store, retrieve, etc

  8. Evaluation of Flygt Propeller Mixers for Double-Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    International Nuclear Information System (INIS)

    PACQUET, E.A.

    2000-01-01

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt(trademark) submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt(trademark) mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described

  9. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    Energy Technology Data Exchange (ETDEWEB)

    PACQUET, E.A.

    2000-07-20

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.

  10. Accuracy of hazardous waste project estimates

    International Nuclear Information System (INIS)

    Hackney, J.W.

    1989-01-01

    The HAZRATE system has been developed to appraise the current state of definition of hazardous waste remedial projects. This is shown to have a high degree of correlation to the financial risk of such projects. The method employs a weighted checklist indicating the current degree of definition of some 150 significant project elements. It is based on the author's experience with a similar system for establishing the risk characteristics of process plant projects (Hackney, 1965 and 1989; 1985). In this paper definition ratings for 15 hazardous waste remedial projects have been correlated with the excesses of their actual costs over their base estimates, excluding any allowances for contingencies. Equations are presented, based on this study, for computation of the contingency allowance needed and estimate accuracy possible at a given stage of project development

  11. Project Management Plan (PMP) for Work Management Implementation

    International Nuclear Information System (INIS)

    SHIPLER, C.E.

    2000-01-01

    The purpose of this document is to provide a project plan for Work Management Implementation by the River Protection Project (RPP). Work Management is an information initiative to implement industry best practices by replacing some Tank Farm legacy system

  12. Waste diminution in Construction projects: Environmental Predicaments

    Science.gov (United States)

    Gharehbaghi, Koorosh; Scott-Young, Christina

    2018-03-01

    Waste diminution in construction projects is not only a behavioural issue, but also an energy consumption and reduction concern. With construction waste equating to the significant amount of exhausted energy together with increased pollution, this contributes to a series of environmental predicaments. The overall goal of construction solid Waste Management is to collect, treat and dispose of solid wastes generated by project activities in an environmentally and socially satisfactory manner, using the most economical means available. As cities expand, their construction activities and consumption patterns further drive up the solid waste quantities. Governments are usually authorized to have responsibility for providing solid Waste Management services, and various administrative laws give them exclusive ownership over the waste produced. In addition, construction waste processing can be further controlled and minimized according to specialized authorities such as Environmental Protection Agencies (EPA) and their relevant acts and regulations. Moreover, a Construction Environmental Management Plan (CEMP) can further control the treatment of waste and therefore, reduce the amount produced. Key elements of a CEMP not only include complying with relevant legislation, standards and guidance from the EPA; however, also to ensuring that there are systems in place to resolve any potential problems associated with site activities. Accordingly, as a part of energy consumption and lessening strategies, this paper will discuss various effective waste reduction methods for construction projects. Finally, this paper will also examine tactics to further improve energy efficiency through innovative construction Waste Management strategies (including desirability rating of most favourable options) to promote the lessening of overall CO2production.

  13. Determinants of sustainability in solid waste management - The Gianyar Waste Recovery Project in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Zurbruegg, Christian, E-mail: zurbrugg@eawag.ch [Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec), Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland); Gfrerer, Margareth, E-mail: margareth.gfrerer@gmx.net [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Ashadi, Henki, E-mail: henki@eng.ui.ac.id [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Brenner, Werner, E-mail: werner.brenner@gmx.at [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Kueper, David, E-mail: dkuper@indo.net.id [Yayasan Pemilahan Sampah Temesi, Temsi-Gianyar, Bali (Indonesia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Our assessment tool helps evaluate success factors in solid waste projects. Black-Right-Pointing-Pointer Success of the composting plant in Indonesia is linked to its community integration. Black-Right-Pointing-Pointer Appropriate technology is not a main determining success factor for sustainability. Black-Right-Pointing-Pointer Structured assessment of 'best practices' can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.

  14. FY-1981 project status for the Transuranic Waste Treatment Facility

    International Nuclear Information System (INIS)

    Benedetti, R.L.; Tait, T.D.

    1981-11-01

    The primary objective of the Transuranic Waste Treatment Facility (TWTF) Project is to provide a facility to process low-level transuranic waste stored at the Idaho National Engineering Laboratory (INEL) into a form acceptable for disposal at the Waste Isolation Pilot Plant. This report provides brief summary descriptions of the project objectives and background, project status through FY-1981, planned activities for FY-1982, and the EG and G TWTF Project office position on processing INEL transuranic waste

  15. Integrated Data Base: Status and waste projections

    International Nuclear Information System (INIS)

    Klein, J.A.

    1990-01-01

    The Integrated Data Base (IDB) is the official US Department of Energy (DOE) data base for spent fuel and radioactive waste inventories and projections. DOE low-level waste (LLW) is just one of the many waste types that are documented with the IDB. Summary-level tables and figures are presented illustrating historical and projected volume changes of DOE LLW. This information is readily available through the annual IDB publication. Other presentation formats are also available to the DOE community through a request to the IDB Program. 4 refs., 6 figs., 5 tabs

  16. Autoantibodies to the Rpp25 component of the Th/To complex are the most common antibodies in patients with systemic sclerosis without antibodies detectable by widely available commercial tests.

    Science.gov (United States)

    Mahler, Michael; Satoh, Minoru; Hudson, Marie; Baron, Murray; Chan, Jason Y F; Chan, Edward K L; Wick, James; Fritzler, Marvin J

    2014-07-01

    Antinuclear antibodies (ANA) occur in up to 95% of patients with systemic sclerosis (SSc). In most, SSc-associated antibodies are detected (i.e., centromere, topoisomerase I, RNA polymerase III, PM/Scl, Ro52/TRIM21, and U1RNP). Ribonuclease P protein subunit p25, (Rpp25) is an autoantigenic component of the Th/To complex. The contribution of anti-Th/To and anti-Rpp25 antibodies to ANA positivity in patients with SSc remains unknown. Sera from 873 patients with SSc were tested for ANA, and SSc-associated antibodies were measured. Samples without antibodies to extractable nuclear antigens (ENA; n = 53, ANA+/ENA-), were analyzed by immunoprecipitation (IP) and metabolically labeled proteins and for anti-Rpp25 antibodies (n = 50) by a chemiluminescent immunoassay (CLIA) and Rpp25 ELISA. Anti-Th/To antibodies occurred in 19/53 (36%), as determined by IP, and were the most common autoantibody in ANA+/ENA- SSc. Of those samples, 50/53 were available for additional testing by CLIA and ELISA. Anti-Rpp25 antibodies were detected in 12 (24% CLIA) or 10 (20% ELISA) of 50 patients. Receiver-operating characteristic curve analysis showed similar discrimination between Th/To IP-positive (n = 19) and -negative samples (n = 31) by CLIA and ELISA (area under the curve 0.90 vs 0.87; p = 0.6691). The positive percent agreement between IP and CLIA or ELISA was 12/19 (63.2%, 95% CI 38.4-83.7%) or 10/19 (52.6%, 95% CI 73.3-94.2%), respectively. Negative percent agreement was 100% for both assays. Autoantibodies to the Th/To autoantigen are important in patients with SSc who have been considered negative for SSc-specific or SSc-associated antibodies by widely available commercial assays. Rpp25 can be considered a major target of anti-Th/To antibodies. Assays detecting anti-Th/To and anti-Rpp25 antibodies may be important in SSc.

  17. Modifications to River Protection Project (RPP) Level -0 Logic

    International Nuclear Information System (INIS)

    SEEMAN, S.E.

    2000-01-01

    The following modifications were made to the River Protection Project Level-0 logic in going from Rev. I to Rev. 2. The first change was the change to the heading at the top of the drawing: ''TWRS Program Logic'' to ''River Protection Project Mission Logic''. Note that purely format changes (e.g., fonts, location of boxes, date format, addition of numbers to ''ghost'' boxes) are not discussed. However, the major format change was to show DOE-BNFL Inc. Interface Control Documents (ICDs) on the logic

  18. MANAGEMENT OF TRANSURANIC (TRU) WASTE RETRIEVAL PROJECT RISKS SUCCESSES IN THE STARTUP OF THE HANFORD 200 AREA TRU WASTE RETRIEVAL PROJECT

    International Nuclear Information System (INIS)

    GREENWLL, R.D.

    2005-01-01

    A risk identification and mitigation method applied to the Transuranic (TRU) Waste Retrieval Project performed at the Hanford 200 Area burial grounds is described. Retrieval operations are analyzed using process flow diagramming. and the anticipated project contingencies are included in the Authorization Basis and operational plans. Examples of uncertainties assessed include degraded container integrity, bulged drums, unknown containers, and releases to the environment. Identification and mitigation of project risks contributed to the safe retrieval of over 1700 cubic meters of waste without significant work stoppage and below the targeted cost per cubic meter retrieved. This paper will be of interest to managers, project engineers, regulators, and others who are responsible for successful performance of waste retrieval and other projects with high safety and performance risks

  19. Economic analysis of radioactive waste storage and disposal projects

    International Nuclear Information System (INIS)

    Kleinen, P.J.; Starnes, R.B.

    1995-01-01

    Radioactive waste storage and disposal efforts present challenging issues for cost and economic analyses. In particular, legal requirements for states and compact areas to develop radioactive waste disposal sites, combined with closure of some sites, have placed urgency on planning, locating, and constructing storage and disposal sites. Cost analyses of potential projects are important to the decision processes. Principal objectives for cost analyses for projects are to identify all activities, covering the entire project life cycle, and to develop costs for those activities using methods that allow direct comparisons between competing project alternatives. For radioactive waste projects, long project lives ranging from tens of years to 100 or more years must be considered. Alternative, and competing, technologies, designs, and operating plans must be evaluated. Thorough base cost estimates must be made for all project phases: planning, development, licensing/permitting, construction, operations, and maintenance, closure, and post-closure/institutional care. Economic analysis procedures need to accommodate the specific features of each project alternative and facilitate cost comparisons between differing alternatives. Economic analysis assumptions must be developed to address the unusually long project lives involved in radioactive waste projects

  20. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental ampersand Regulatory Planning ampersand Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria

  1. Determinants of sustainability in solid waste management – The Gianyar Waste Recovery Project in Indonesia

    International Nuclear Information System (INIS)

    Zurbrügg, Christian; Gfrerer, Margareth; Ashadi, Henki; Brenner, Werner; Küper, David

    2012-01-01

    Highlights: ► Our assessment tool helps evaluate success factors in solid waste projects. ► Success of the composting plant in Indonesia is linked to its community integration. ► Appropriate technology is not a main determining success factor for sustainability. ► Structured assessment of “best practices” can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.

  2. Project Plan for the evaluation of REDC waste for TRU-waste radionuclides

    International Nuclear Information System (INIS)

    Nguyen, L.; Yong, L.; Chapman, J.

    1996-09-01

    This project plan describes the plan to determine whether the solid radioactive wastes generated by the Radiochemical Engineering Development Center (REDC) meet the Department of Energy's definition of transuranic wastes. Existing waste characterization methods will be evaluated, as well as historical data, and recommendations will be made as necessary

  3. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  4. Low-level radioactive waste in the northeast: disposal volume projections

    International Nuclear Information System (INIS)

    1982-10-01

    The northeastern states, with support of the Coalition of Northeastern Governors (CONEG), are developing compact(s) for the disposal and management of low-level radioactive waste (LLRW) generated in the eleven northeastern states (Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont). The Technical Subcommittee has made a projection of future low-level radioactive waste to the year 2000 based on existing waste volume data and anticipated growth in the Northeast states. Aware of the difficulties involved with any long range projection - unforeseen events can drastically change projections based on current assumptions - the Technical Subcommittee believes that waste volume projections should be reviewed annually as updated information becomes available. The Technical Subcommittee made the following findings based upon a conservative projection methodology: volumes of low-level waste produced annually in the eleven states individually and collectively are expected to grow continually through the year 2000 with the rate of increase varying by state; by the year 2000, the Northeast is projected to generate 58,000 m 3 of low-level waste annually, about 1.9 times the current average; and based on current estimates, 47% of the total projected waste volume in the year 2000 will be produced by nuclear power plants, compared to the current average of 54%. Non-reactor wastes will equal 53% of the total in the year 2000 compared to the current 46%

  5. Quality Assurance Program Plan (QAPP) Waste Management Project

    Energy Technology Data Exchange (ETDEWEB)

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  6. Long Length Contaminated Equipment Retrieval System Receiver Trailer and Transport Trailer Operations and Maintenance Manual

    International Nuclear Information System (INIS)

    DALE, R.N.

    2000-01-01

    A system to accommodate the removal of long-length contaminated equipment (LLCE) from Hanford underground radioactive waste storage tanks was designed, procured, and demonstrated, via a project activity during the 1990s. The system is the Long Length Contaminated Equipment Removal System (LLCERS). LLCERS will be maintained and operated by Tank Farms Engineering and Operations organizations and other varied projects having a need for the system. The responsibility for the operation and maintenance of the LLCERS Receiver Trailer (RT) and Transport Trailer (TT) resides with the RPP Characterization Project Operations organization. The purpose of this document is to provide vendor supplied operating and maintenance (O and M) information for the RT and TT in a readily retrievable form. This information is provided this way instead of in a vendor information (VI) file to maintain configuration control of the operations baseline as described in RPP-6085, ''Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers''. Additional Operations Baseline documents are identified in RPP-6085

  7. Waste Management Project Contingency Analysis

    International Nuclear Information System (INIS)

    Edward L. Parsons, Jr.

    1999-01-01

    The purpose of this report is to provide the office of Waste Management (WM) with recommended contingency calculation procedures for typical WM projects. Typical projects were defined as conventional construction-type activities that use innovative elements when necessary to meet the project objectives. Projects involve treatment, storage, and disposal of low level, mixed low level, hazardous, transuranic, and high level waste. Cost contingencies are an essential part of Total Cost Management. A contingency is an amount added to a cost estimate to compensate for unexpected expenses resulting from incomplete design, unforeseen and unpredictable conditions, or uncertainties in the project scope (DOE 1994, AACE 1998). Contingency allowances are expressed as percentages of estimated cost and improve cost estimates by accounting for uncertainties. The contingency allowance is large at the beginning of a project because there are more uncertainties, but as a project develops, the allowance shrinks to adjust for costs already incurred. Ideally, the total estimated cost remains the same throughout a project. Project contingency reflects the degree of uncertainty caused by lack of project definition, and process contingency reflects the degree of uncertainty caused by use of new technology. Different cost estimation methods were reviewed and compared with respect to terminology, accuracy, and Cost Guide standards. The Association for the Advancement of Cost Engineering (AACE) methods for cost estimation were selected to represent best industry practice. AACE methodology for contingency analysis can be readily applied to WM Projects, accounts for uncertainties associated with different stages of a project, and considers both project and process contingencies and the stage of technical readiness. As recommended, AACE contingency allowances taper off linearly as a project nears completion

  8. Los Alamos National Laboratory TRU waste sampling projects

    International Nuclear Information System (INIS)

    Yeamans, D.; Rogers, P.; Mroz, E.

    1997-01-01

    The Los Alamos National Laboratory (LANL) has begun characterizing transuranic (TRU) waste in order to comply with New Mexico regulations, and to prepare the waste for shipment and disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. Sampling consists of removing some head space gas from each drum, removing a core from a few drums of each homogeneous waste stream, and visually characterizing a few drums from each heterogeneous waste stream. The gases are analyzed by GC/MS, and the cores are analyzed for VOC's and SVOC's by GC/MS and for metals by AA or AE spectroscopy. The sampling and examination projects are conducted in accordance with the ''DOE TRU Waste Quality Assurance Program Plan'' (QAPP) and the ''LANL TRU Waste Quality Assurance Project Plan,'' (QAPjP), guaranteeing that the data meet the needs of both the Carlsbad Area Office (CAO) of DOE and the ''WIPP Waste Acceptance Criteria, Rev. 5,'' (WAC)

  9. Hanford tank waste operation simulator operational waste volume projection verification and validation procedure

    International Nuclear Information System (INIS)

    HARMSEN, R.W.

    1999-01-01

    The Hanford Tank Waste Operation Simulator is tested to determine if it can replace the FORTRAN-based Operational Waste Volume Projection computer simulation that has traditionally served to project double-shell tank utilization. Three Test Cases are used to compare the results of the two simulators; one incorporates the cleanup schedule of the Tri Party Agreement

  10. Optimized application of systems engineering to nuclear waste repository projects

    International Nuclear Information System (INIS)

    Miskimin, P.A.; Shepard, M.

    1986-01-01

    The purpose of this presentation is to describe a fully optimized application of systems engineering methods and philosophy to the management of a large nuclear waste repository project. Knowledge gained from actual experience with the use of the systems approach on two repository projects is incorporated in the material presented. The projects are currently evaluating the isolation performance of different geologic settings and are in different phases of maturity. Systems engineering methods were applied by the principal author at the Waste Isolation Pilot Plant (WIPP) in the form of a functional analysis. At the Basalt Waste Isolation Project (BWIP), the authors assisted the intergrating contractor with the development and application of systems engineering methods. Based on this experience and that acquired from other waste management projects, an optimized plan for applying systems engineering techniques was developed. The plan encompasses the following aspects: project organization, developing and defining requirements, assigning work responsibilities, evaluating system performance, quality assurance, controlling changes, enhancing licensability, optimizing project performance, and addressing regulatory issues. This information is presented in the form of a roadmap for the practical application of system engineering principles to a nuclear waste repository project

  11. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    International Nuclear Information System (INIS)

    Slaybaugh, R.R.

    1997-08-01

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project

  12. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Slaybaugh, R.R.

    1997-08-29

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

  13. The S-curve for forecasting waste generation in construction projects.

    Science.gov (United States)

    Lu, Weisheng; Peng, Yi; Chen, Xi; Skitmore, Martin; Zhang, Xiaoling

    2016-10-01

    Forecasting construction waste generation is the yardstick of any effort by policy-makers, researchers, practitioners and the like to manage construction and demolition (C&D) waste. This paper develops and tests an S-curve model to indicate accumulative waste generation as a project progresses. Using 37,148 disposal records generated from 138 building projects in Hong Kong in four consecutive years from January 2011 to June 2015, a wide range of potential S-curve models are examined, and as a result, the formula that best fits the historical data set is found. The S-curve model is then further linked to project characteristics using artificial neural networks (ANNs) so that it can be used to forecast waste generation in future construction projects. It was found that, among the S-curve models, cumulative logistic distribution is the best formula to fit the historical data. Meanwhile, contract sum, location, public-private nature, and duration can be used to forecast construction waste generation. The study provides contractors with not only an S-curve model to forecast overall waste generation before a project commences, but also with a detailed baseline to benchmark and manage waste during the course of construction. The major contribution of this paper is to the body of knowledge in the field of construction waste generation forecasting. By examining it with an S-curve model, the study elevates construction waste management to a level equivalent to project cost management where the model has already been readily accepted as a standard tool. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Development plan. High activity-long living wastes project. Abstract

    International Nuclear Information System (INIS)

    2007-01-01

    This brochure presents the actions that the ANDRA (the French national agency of radioactive wastes) has to implement in the framework of the project of high activity-long living (HALL) radioactive wastes (HAVL project) conformably to the requirements of the program defined in the law from June 28, 2006 (law no 2006-739). This law precises the three, complementary, research paths to explore for the management of this type of wastes: separation and transmutation of long-living radioactive elements, reversible disposal in deep geologic underground, and long duration storage. The ANDRA's action concerns the geologic disposal aspect. The following points are presented: the HALL wastes and their containers, the reversible disposal procedure, the HAVL project: financing of researches, storage concepts, development plan of the project (dynamics, information and dialogue approach, input data, main steps, schedule); the nine programs of the HAVL project (laboratory experiments and demonstration tests, surface survey, scientific program, simulation program, surface engineering studies and technological tests, information and communication program, program of environment and facilities surface observation and monitoring, waste packages management, monitoring and transport program, disposal program); the five transverse technical and scientific activities (safety, reversibility, cost, health and occupational safety, impact study). (J.S.)

  15. Interface Control Document Between the Double Shell Tanks (DST) System and the Plutonium Finishing Plan (PFP)

    International Nuclear Information System (INIS)

    MAY, T.H.

    1999-01-01

    This document identifies the requirements and responsibilities for all parties to support waste transfer from the Plutonium Finishing Plant (PFP) facility to the Double-Shell Tank (DST) System of the River Protection Project (RPP). This Interface Control Document (ICD) will not attempt to control the physical portion of this interface because the physical equipment making up this interface, and any associated interface requirements, are already in place, operational and governed by existing operating specifications and other documentation. The PFP and DST Systems have a direct physical interface (the waste transfer pipeline) that travels between the 241-2 Building (TK-D5) and DST SY-102 via 244-TX double-contained receiver tank (DCRT). The purpose of the ICD process is to formalize working agreements between the RPP DST System and organization/companies internal and external to RPP. This ICD has been developed as part of the requirements basis for design of the DST System to support the Phase I Privatization effort

  16. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-01-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL's Program is utilizing nearly all areas in PMI's Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?'' and ''How are you approaching similar challenges?'' will be questions for a dialog with the audience

  17. Overview of the waste/barrier/rock interactions program of the basalt waste isolation project

    International Nuclear Information System (INIS)

    Salter, P.F.; Burnell, J.R.; Lane, D.L.

    1986-01-01

    The waste package waste/barrier/rock interactions testing program of the Basalt Waste Isolation Project is designed to assess the interactions between nuclear waste forms, other waste package components, and the environment in order to evaluate long-term waste package isolation (radionuclide release) behavior. The program involves reacting fully radioactive waste forms with combinations of steel or copper container material and basalt/bentonite packing material in site-specific ground water under anticipated repository conditions to obtain the steady state radionuclide concentrations required to predictively model waste package radionuclide concentrations required to predictively model waste package radionuclide releases. Both static and flow-through autoclaves are being used in the test program to determine radionuclide concentrations as a function of time and groundwater flow rate, and to evaluate the solid phase and water chemistry changes that control those concentrations. This test program, when combined with project hydrologic and geochemical testing and modeling efforts, and natural analog studies, provides the information required to evaluate long-term radionuclide mobility within a waste package emplaced in a basalt repository

  18. Project characteristics monitoring report: BWIP (Basalt Waste Isolation Program) repository project

    Energy Technology Data Exchange (ETDEWEB)

    Friedli, E.A.; Herborn, D.I.; Taylor, C.D.; Tomlinson, K.M.

    1988-03-01

    This monitoring report has been prepared to show compliance with provisions of the Nuclear Waste Policy Act of 1982 (NWPA) and to provide local and state government agencies with information concerning the Basalt Waste Isolation Program (BWIP). This report contains data for the time period May 26, 1986 to February 1988. The data include employment figures, salaries, project purchases, taxes and fees paid, worker survey results, and project closedown personal interview summaries. This information has become particularly important since the decision in December 1987 to stop all BWIP activities except those for site reclamation. The Nuclear Waste Policy Amendments Act of 1987 requires nonreclamation work at the Hanford Site to stop as of March 22, 1988. 7 refs., 6 figs., 28 tabs.

  19. Project characteristics monitoring report: BWIP [Basalt Waste Isolation Program] repository project

    International Nuclear Information System (INIS)

    Friedli, E.A.; Herborn, D.I.; Taylor, C.D.; Tomlinson, K.M.

    1988-03-01

    This monitoring report has been prepared to show compliance with provisions of the Nuclear Waste Policy Act of 1982 (NWPA) and to provide local and state government agencies with information concerning the Basalt Waste Isolation Program (BWIP). This report contains data for the time period May 26, 1986 to February 1988. The data include employment figures, salaries, project purchases, taxes and fees paid, worker survey results, and project closedown personal interview summaries. This information has become particularly important since the decision in December 1987 to stop all BWIP activities except those for site reclamation. The Nuclear Waste Policy Amendments Act of 1987 requires nonreclamation work at the Hanford Site to stop as of March 22, 1988. 7 refs., 6 figs., 28 tabs

  20. Mapping of information and identification of construction waste at project life cycle

    Science.gov (United States)

    Wibowo, Mochamad Agung; Handayani, Naniek Utami; Nurdiana, Asri; Sholeh, Moh Nur; Pamungkas, Gita Silvia

    2018-03-01

    The development of construction project towards green construction is needed in order to improve the efficiency of construction projects. One that needs to be minimized is construction waste. Construction waste is waste generated from construction project activities, both solid waste and non solid waste. More specifically, the waste happens at every phase of the project life cycle. Project life cycle are the stage of idea, design, construction, and operation/maintenance. Each phase is managed by different stakeholders. Therefore it requires special handling from the involved stakeholders. The objective of the study is to map the information and identify the waste at each phase of the project life cycle. The purpose of mapping is to figure out the process of information and product flow and with its timeline. This mapping used Value Stream Mapping (VSM). Identification of waste was done by distributing questionnaire to respondents to know the waste according to owner, consultant planner, contractor, and supervisory consultant. The result of the study is the mapping of information flow and product flow at the phases of idea, design, construction, and operation/ maintenance.

  1. Spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1983-09-01

    Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy radioactive wastes were compiled through December 31, 1982, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated over the next 40 years and characteristics of these materials are also presented, based on the latest DOE/EIA projection of US commercial nuclear power growth and expected defense-related and industrial and institutional activities. Materials considered, on a chapter-by-chapter bases, are: spent fuel, high-level waste, transuranic waste, low-level waste, active uranium mill tailings, airborne waste, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated, based on reported or calculated isotopic compositions. One chapter gives broad, summary data on the costs of spent fuel and radioactive waste management and disposal to provide an economic perspective. This chapter is not intended as a definitive guide, but it is a source of reasonable, order-of-magnitude costs and also provides references to more-detailed and scenario-specific studies. An appendix on generic flowsheets and source terms used for the projections is also included

  2. Major Components of the National TRU Waste System Optimization Project

    International Nuclear Information System (INIS)

    Moody, D.C.; Bennington, B.; Sharif, F.

    2002-01-01

    The National Transuranic (TRU) Program (NTP) is being optimized to allow for disposing of the legacy TRU waste at least 10 years earlier than originally planned. This acceleration will save the nation an estimated $713. The Department of Energy's (DOE'S) Carlsbad Field Office (CBFO) has initiated the National TRU Waste System Optimization Project to propose, and upon approvaI, implement activities that produce significant cost saving by improving efficiency, thereby accelerating the rate of TRU waste disposal without compromising safety. In its role as NTP agent of change, the National TRU Waste System Optimization Project (the Project) (1) interacts closely with all NTP activities. Three of the major components of the Project are the Central Characterization Project (CCP), the Central Confirmation Facility (CCF), and the MobiIe/Modular Deployment Program.

  3. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies

  4. Tank waste remediation system characterization project quality policies. Revision 1

    International Nuclear Information System (INIS)

    Trimble, D.J.

    1995-01-01

    These Quality Policies (QPs) describe the Quality Management System of the Tank Waste Characterization Project (hereafter referred to as the Characterization Project), Tank Waste Remediation System (TWRS), Westinghouse Hanford Company (WHC). The Quality Policies and quality requirements described herein are binding on all Characterization Project organizations. To achieve quality, the Characterization Project management team shall implement this Characterization Project Quality Management System

  5. Prioritization of proposed waste management construction projects for the Waste Management program within the Department of Energy

    International Nuclear Information System (INIS)

    Johnson, J.V.

    1995-01-01

    A prioritization process is used to evaluate and rank proposed construction projects within the Department of Energy's Waste Management program. The process is used to determine which projects should proceed with conceptual design activities. The proposed construction projects are evaluated against a set of criteria which reflect Waste Management priorities. A management review team ranks and scores the projects thereby generating a prioritized list of projects. Despite decreasing budgets and changing political climates, the process has been a successful decision-aiding tool for selecting construction projects to carry out the Waste Management mission within the Department of Energy

  6. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  7. The Los Alamos National Laboratory Transuranic Waste Retireval Project

    International Nuclear Information System (INIS)

    Montoya, G.M.; Christensen, D.V.; Stanford, A.R.

    1997-01-01

    This paper presents the status of the Los Alamos National Laboratory (LANL) project for remediation of transuranic (TRU) and TRU mixed waste from Pads 1, 2, and 4. Some of the TRU waste packages retrieved from Pad I are anticipated to be part of LANL's initial inventory to be shipped to the Waste Isolation Pilot Plant (WIPP) in April 1998. The TRU Waste Inspectable Storage Project (TWISP) was initiated in February 1993 in response to the New Mexico Environment Department's (NMED's) Consent Agreement for Compliance Order, ''New Mexico Hazardous Waste Agreement (NMHWA) 93-03.'' The TWISP involves the recovery of approximately 16,865 TRU and TRU-mixed waste containers currently under earthen cover on Pads 1, 2, and 4 at Technical Area 54, Area G, and placement of that waste into inspectable storage. All waste will be moved into inspectable storage by September 30, 2003. Waste recovery and storage operations emphasize protection of worker safety, public health, and the environment

  8. An overview of waste management systems at the West Valley demonstration project

    International Nuclear Information System (INIS)

    McIntosh, T.W.; Bixby, W.W.; Krauss, J.E.; Leap, D.R.

    1988-01-01

    In 1980, the United States Congress passed into law the West Valley Demonstration Project Act authorizing the Department of Energy (DOE) to conduct a nuclear waste management project at a former commercial nuclear fuel reprocessing facility located in West Valley, New York. The Project's main objective is to solidify approximately two million litres of high-level radioactive liquid waste into a form suitable for transport to a federal repository for final disposal. The majority of the liquid waste was produced as a by-product of the PUREX extraction process and is stored in an underground steel tank. A waste characterization program has shown that the neutralized waste has settled into two distinct layers: a clear alkaline liquid (supernatant) layer and a dense precipitate (sludge) layer. The principle radioactive elements in the waste are cesium 137 (supernatant) and strontium 90 (sludge). This paper describes the overall project strategy, the waste management systems, the present project engineering and construction status and the project schedule leading to radioactive operation

  9. Waste management project technical baseline description

    International Nuclear Information System (INIS)

    Sederburg, J.P.

    1997-01-01

    A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project

  10. DEVELOPMENT, QUALIFICATION, AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE

    International Nuclear Information System (INIS)

    Sams, T.L.; Edge, J.A.; Swanberg, D.J.; Robbins, R.A.

    2011-01-01

    Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

  11. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    International Nuclear Information System (INIS)

    Jacobsen, P.H.

    1997-01-01

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible

  12. Technetium Sorption Media Review

    International Nuclear Information System (INIS)

    Duncan, J.B.; Kelly, S.E.; Robbins, R.A.; Adams, R.D.; Thorson, M.A.; Haass, C.C.

    2011-01-01

    This report presents information and references to aid in the selection of 99Tc sorption media for feasibility studies regarding the removal of 99Tc from Hanford's low activity waste. The report contains literature search material for sorption media (including ion exchange media) for the most tested media to date, including SuperLig 639, Reillex HPQ, TAM (Kruion), Purolite A520E and A530E, and Dowex 1X8. The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities in a safe, environmentally compliant, cost-effective and energy-effective manner.

  13. TECHNETIUM SORPTION MEDIA REVIEW

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB; KELLY SE; ROBBINS RA; ADAMS RD; THORSON MA; HAASS CC

    2011-08-25

    This report presents information and references to aid in the selection of 99Tc sorption media for feasibility studies regarding the removal of 99Tc from Hanford's low activity waste. The report contains literature search material for sorption media (including ion exchange media) for the most tested media to date, including SuperLig 639, Reillex HPQ, TAM (Kruion), Purolite A520E and A530E, and Dowex 1X8. The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities in a safe, environmentally compliant, cost-effective and energy-effective manner.

  14. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  15. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, David K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Dong-Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule. The purpose of this advanced LAW glass research and development plan is to identify the near-term, mid-term, and longer-term research and development activities required to develop and validate advanced LAW glasses, property-composition models and their uncertainties, and an advanced glass algorithm to support WTP facility operations, including both Direct Feed LAW and full pretreatment flowsheets. Data are needed to develop, validate, and implement 1) new glass property-composition models and 2) a new glass formulation algorithm. Hence, this plan integrates specific studies associated with increasing the Na2O and SO3/halide concentrations in glass, because these components will ultimately dictate waste loadings for LAW vitrification. Of equal importance is the development of an efficient and economic strategy for 99Tc management. Specific and detailed studies are being implemented to understand the fate of Tc throughout

  16. River Protection Project information systems assessment

    International Nuclear Information System (INIS)

    JOHNSON, A.L.

    1999-01-01

    The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report

  17. Solid Waste Projection Model: Model user's guide

    International Nuclear Information System (INIS)

    Stiles, D.L.; Crow, V.L.

    1990-08-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford company (WHC) specifically to address solid waste management issues at the Hanford Central Waste Complex (HCWC). This document, one of six documents supporting the SWPM system, contains a description of the system and instructions for preparing to use SWPM and operating Version 1 of the model. 4 figs., 1 tab

  18. Spent fuel and radioactive-waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1982-10-01

    Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy radioactive wastes were compiled, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated over the next 40 years, and characteristics of these materials are also presented, based on a present DOE/EIA projection of US commercial nuclear power growth and expected defense-related and industrial and institutional activities. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, remedial action waste, active uranium mill tailings, airborne waste, and decommissioning. For each category, current and projected inventories are given through the year 2020. The land usage requirements are given for storage/disposal of low-level and transuranic wastes, and for the present inventories of inactive uranium mill tailings. For each waste category the radioactivity and thermal power are calculated. Isotopic compositions and cost data are given for each waste type and for spent fuel

  19. Status of Pantex Plant Waste Management Project/program control system

    International Nuclear Information System (INIS)

    Price, Wesley J.; Matthews, William L.

    1992-01-01

    During a December 1990 Waste Management Program Review held in Albuquerque, New Mexico, the Waste Management and Operational Surety Division (WMOSD) introduced the project control system to be used for the Waste Management (WM) Operations Program. The system was entitled 'TRAC-WM' (Tracking and Control for Waste Management). The stated objective for this system was to establish a frame work for planning, managing, and controlling work within the WM program. As a result Mason and Hanger (the operating contractor at the Pantex Plant) initiated the development of a computerized waste management project tracking system. (author)

  20. Role of quality assurance vs project manager's responsibility for waste projects

    International Nuclear Information System (INIS)

    Solecki, J.

    1989-01-01

    This paper takes a project manager's perspective and discusses the role of the quality assurance organization in the development, implementation and interface related to the QA program for waste projects. The author describes the role which the QA program plays in allowing project management to assure that the project manager knows what is placed in the repository and the characteristics of the surrounding environment meet closure requirements

  1. Solid Waste Projection Model: Database (Version 1.4)

    International Nuclear Information System (INIS)

    Blackburn, C.; Cillan, T.

    1993-09-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.4 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User's Guide. This document is available from the PNL Task M Project Manager (D. L. Stiles, 509-372-4358), the PNL Task L Project Manager (L. L. Armacost, 509-372-4304), the WHC Restoration Projects Section Manager (509-372-1443), or the WHC Waste Characterization Manager (509-372-1193)

  2. Spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1984-09-01

    Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy (DOE) radioactive wastes were compiled through December 31, 1983, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated over the next 37 years and characteristics of these materials are also presented, consistent with the latest DOE/Energy Information Administration (EIA) or projection of US commercial nuclear power growth and expected defense-related and private industrial and institutional activities. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, airborne waste, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated, based on reported or calculated isotopic compositions. 48 figures, 107 tables

  3. Acceptance for Beneficial Use (ABU) Update for 241-AW-104 Waste Transfer Project

    International Nuclear Information System (INIS)

    MEWES, B.S.

    2001-01-01

    In October of 2000 an Engineering Task Plan (ETP), RPP-6869, was drafted to define objectives, document requirements, and define organizational responsibilities for the purpose of design installation and turnover of the 241-AW-104 Pump Replacement Project The ETP included an Acceptance for Beneficial Use (ABU) checklist, which delineated all tasks necessary to turn the 241-AW-104 Replaced Transfer Pump over to Operations, Maintenance, and Plant Engineering Signature approval of the respective Engineering Data Transmittal (EDT 630501) signified agreement that the ABU checklist was all-inclusive. In January 2001 an additional EDT (EDT 624153) was drafted to define completed ABU items, provide corresponding supporting documentation, and status open items in need of completion. This supporting document is to serve two purposes: (1) update ABU checklist items completed since January 2001, and (2) define remaining ABU checklist items in need of completion

  4. Waste Tank Vapor Characterization Project: Annual status report for FY 1995

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Fruchter, J.S.; Huckaby, J.L.; Birn, M.B.; McVeety, B.D.; Evans, J.C. Jr.; Pool, K.H.; Silvers, K.L.; Goheen, S.C.

    1995-11-01

    This report compiles information collected during the Fiscal Year 1995 pertaining to the waste tank vapor characterization project. Information covers the following topics: project management; organic sampling and analysis; inorganic sampling and analysis; waste tank vapor data reports; and the waste tanks vapor database

  5. State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1992

    International Nuclear Information System (INIS)

    1992-01-01

    The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada's responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency's oversight responsibilities: (1) Assure that the health and safety of Nevada's citizens are adequately protected with regard to any federal high-level radioactive waste program within the State; (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987; (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State; (4) Work closely and consult with affected local governments and State agencies; (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository

  6. Sustainable waste management in Africa through CDM projects

    Energy Technology Data Exchange (ETDEWEB)

    Couth, R. [CRECHE, Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [CRECHE, Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer This is a compendium on GHG reductions via improved waste strategies in Africa. Black-Right-Pointing-Pointer This note provides a strategic framework for Local Authorities in Africa. Black-Right-Pointing-Pointer Assists LAs to select Zero Waste scenarios and achieve sustained GHG reduction. - Abstract: Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector.

  7. Project No. 4 - Waste incineration facility

    International Nuclear Information System (INIS)

    2000-01-01

    There are currently 12000 m 3 of combustible waste stored at the Ignalina NPP site. It is estimated that by 2005 the volume will have increase to 15000 m 3 (filters, personnel protection, clothing and plastics). As a part of the preparation for the closure of the Ignalina NPP an incineration facility will be required to process combustible wastes to reduce the overall volume of short-lived radioactive wastes stored at the Ignalina NPP site, thus reducing the overall risk to the environment. Project activities includes the design, construction and commissioning of the proposed facility, including all licensing documentation

  8. Sustainable waste management in Africa through CDM projects.

    Science.gov (United States)

    Couth, R; Trois, C

    2012-11-01

    Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Long Length Contaminated Equipment Retrieval System Receiver Trailer and Transport Trailer Operations and Maintenance Manual

    Energy Technology Data Exchange (ETDEWEB)

    DALE, R.N.

    2000-05-01

    A system to accommodate the removal of long-length contaminated equipment (LLCE) from Hanford underground radioactive waste storage tanks was designed, procured, and demonstrated, via a project activity during the 1990s. The system is the Long Length Contaminated Equipment Removal System (LLCERS). LLCERS will be maintained and operated by Tank Farms Engineering and Operations organizations and other varied projects having a need for the system. The responsibility for the operation and maintenance of the LLCERS Receiver Trailer (RT) and Transport Trailer (TT) resides with the RPP Characterization Project Operations organization. The purpose of this document is to provide vendor supplied operating and maintenance (O & M) information for the RT and TT in a readily retrievable form. This information is provided this way instead of in a vendor information (VI) file to maintain configuration control of the operations baseline as described in RPP-6085, ''Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers''. Additional Operations Baseline documents are identified in RPP-6085.

  10. Use of a Knowledge Management System in Waste Management Projects

    International Nuclear Information System (INIS)

    Gruendler, D.; Boetsch, W.U.; Holzhauer, U.; Nies, R.A.

    2006-01-01

    In Germany the knowledge management system 'WasteInfo' about waste management and disposal issues has been developed and implemented. Beneficiaries of 'WasteInfo' are official decision makers having access to a large information pool. The information pool is fed by experts, so called authors This means compiling of information, evaluation and assigning of appropriate properties (metadata) to this information. The knowledge management system 'WasteInfo' has been introduced at the WM04, the operation of 'WasteInfo' at the WM05. The recent contribution describes the additional advantage of the KMS being used as a tool for the dealing with waste management projects. This specific aspect will be demonstrated using a project concerning a comparative analysis of the implementation of repositories in six countries using nuclear power as examples: The information of 'WasteInfo' is assigned to categories and structured according to its origin and type of publication. To use 'WasteInfo' as a tool for the processing the projects, a suitable set of categories has to be developed for each project. Apart from technical and scientific aspects, the selected project deals with repository strategies and policies in various countries, with the roles of applicants and authorities in licensing procedures, with safety philosophy and with socio-economic concerns. This new point of view has to be modelled in the categories. Similar to this, new sources of information such as local and regional dailies or particular web-sites have to be taken into consideration. In this way 'WasteInfo' represents an open document which reflects the current status of the respective repository policy in several countries. Information with particular meaning for the German repository planning is marked and by this may influence the German strategy. (authors)

  11. A model for quantifying construction waste in projects according to the European waste list.

    Science.gov (United States)

    Llatas, C

    2011-06-01

    The new EU challenge is to recover 70% by weight of C&D waste in 2020. Literature reveals that one major barrier is the lack of data. Therefore, this paper presents a model which allows technicians to estimate C&D waste during the design stage in order to promote prevention and recovery. The types and quantities of CW are estimated and managed according to EU guidelines, by building elements and specifically for each project. The model would allow detection of the source of the waste and to adopt other alternative procedures which delete hazardous waste and reduce CW. Likewise, it develops a systematic structure of the construction process, a waste classification system and some analytical expressions which are based on factors. These factors depend on technology and represent a standard on site. It would allow to develop a database of waste anywhere. A Spanish case study is covered. Factors were obtained by studying over 20 dwellings. The source and types of packaging waste, remains, soil and hazardous waste were estimated in detail and were compared with other studies. Results reveal that the model can be implemented in projects and the chances of reducing and recovery C&D waste could be increased, well above the EU challenge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Vitrification and Testing of Hanford Pretreated Low Activity Waste

    International Nuclear Information System (INIS)

    Smith, Gary Lynn L.; Smith, Harry D.; Schweiger, Michael; Piepel, Gregory F.; Smith, Gary L.; Sundaram, S.K.; Spearing, Dane R.

    2002-01-01

    Actual pretreated LAW samples were vitrified to demonstrate the RPP-WTP projects ability to satisfy the LAW product ORP Phase B-1 contract requirements concerning, chemical and radionuclide reporting, waste loading, identification and quantification of crystalline and non-crystalline phases, and waste form leachability. Chemical compositions of two LAW glasses (i.e. elements (excluding oxygen) present in concentrations greater than 0.5 percent by weight) were measured using KOH and Na2O2 fusion preparation procedures. The measured wt% sodium oxide content for the AW-101 and AN-107 glasses are 17.7 and 18.3 respectively; however, it is argued herein that process knowledge, i.e. the target sodium oxide content, is better than the analytical measurement. Therefore for both LAW glasses the target oxide loading for sodium of 20 wt% is accepted. At these levels the glass meets or exceeds both the RPP-WTP glass specification and the DOE ORG contract requirement for waste sodium loading. The concentrations of 137Cs, 90Sr, 99Tc and transuranic (TRU) radionuclides for AW-101 and AN-107 are: (1) 0.231 and 0.292 Ci/m3, 0.435 and 0.005 Ci/m3, 0.019 and 0.129 Ci/m3, andlt; 0.16 andlt; 2.6 nCi/g, respectively. The ORP contract criteria for 137Cs, 90Sr and TRU (shall be less than 3 Ci/m3, 20 Ci/m3, and 100 nCi/g, respectively) are met in both glasses. The ORP contract criteria for 99Tc (shall be less than 0.1 Ci/m3) is met explicitly by AW-101 and will be met for the AN-107 glass by averaging its 99Tc content over the previous LAW glasses produced to meet the contract. After canister centerline cooling, no crystals were observed in the AW-101 and AN-107 glasses by XRD, optical examination and SEM analysis. The normalized PCT release rates of sodium, silicon, and boron at both 40 and 90 C from the AW-101 and AN-107 glasses are less than 2.0 g/m2 the ORP contract criteria

  13. Conceptual project of waste treatment plant of CDTN

    International Nuclear Information System (INIS)

    Gabriel, J.L.; Astolfi, D.

    1983-01-01

    This paper presents the conceptual project of the waste treatment plant of CDTN. Several areas, such as: process area, material entrance and exit area are studied. The treatment processes are: evaporation, filtration, cementation, cutting and processing of solid wastes. (C.M.)

  14. Waste management for the Shippingport Station Decommissioning Project

    International Nuclear Information System (INIS)

    Mullee, G.R.; Schulmeister, A.R.

    1987-01-01

    The Shippingport Station Decommissioning Project (SSDP) is being performed by the US Department of Energy (DOE) with the objectives of placing the station in a radiologically safe condition, demonstrating safe and cost effective dismantlement and providing useful data for future decommissioning projects. This paper describes the development of the Waste Management Plan which is being used for the accomplishment of the SSDP. Significant aspects of the Plan are described, such as the use of a process control and inventory system. The current status of waste management activities is reported. It is concluded that SSDP has some unique aspects which will provide useful information for future decommissioning projects

  15. Hanford Waste Vitrification Plant - the project and process systems

    International Nuclear Information System (INIS)

    Swenson, L.D.; Miller, W.C.; Smith, R.A.

    1990-01-01

    The Hanford Waste Vitrification Plant (HWVP) project is scheduled to start construction on the Hanford reservation in southeastern Washington State in 1991. The project will immobilize the liquid high-level defense waste stored there. The HWVP represents the third phase of the U.S. Department of Energy (DOE) activities that are focused on the permanent disposal of high-level radioactive waste, building on the experience of Defense Waste Processing Facility (DWPF) at the Savannah River site, South Carolina, and of the West Valley Demonstration Plant (WVDP), New York. This sequential approach to disposal of the country's commercial and defense high-level radioactive waste allows HWVP to make extensive use of lessons learned from the experience of its predecessors, using mature designs from the earlier facilities to achieve economies in design and construction costs while enhancing operational effectiveness

  16. Reducing construction waste: A study of urban infrastructure projects.

    Science.gov (United States)

    de Magalhães, Ruane Fernandes; Danilevicz, Ângela de Moura Ferreira; Saurin, Tarcisio Abreu

    2017-09-01

    The construction industry is well-known for producing waste detrimental to the environment, and its impacts have increased with the development process of cities. Although there are several studies focused on the environmental impact of residential and commercial buildings, less knowledge is available regarding decreasing construction waste (CW) generation in urban infrastructure projects. This study presents best practices to reduce waste in the said projects, stressing the role of decision-making in the design stage and the effective management of construction processes in public sector. The best practices were identified from literature review, document analysis in 14 projects of urban infrastructure, and both qualitative and quantitative survey with 18 experts (architects and engineers) playing different roles on those projects. The contributions of these research are: (i) the identification of the main building techniques related to the urban design typologies analyzed; (ii) the identification of cause-effect relationships between the design choices and the CW generation diagnosis; (iii) the proposal of a checklist to support the decision-making process, that can be used as a control and evaluation instrument when developing urban infrastructure designs, focused on the construction waste minimization (CWM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Waste-to-energy technologies and project implementation

    CERN Document Server

    Rogoff, Marc J

    2011-01-01

    This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects. Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99 per cent. With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE. The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE.

  18. River Protection Project information systems assessment

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, A.L.

    1999-07-28

    The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report.

  19. Nevada Nuclear Waste Storage Investigations. FY 1979 project plan

    International Nuclear Information System (INIS)

    1979-03-01

    This document presents the management and cost for the Nevada Nuclear Waste Storage Investigations (disposal of high-level wastes at Nevada Test Site) and provides a complete description of the overall project, management structure, technical approach, and work breakdown structure. The document is organized into five major sections. Section I summarizes the history of the project and indicates a potential future course of action. FY 1979 project work is briefly described in Section II. Section III outlines the delegated responsibilities of all project management functions. A list of critical questions that guide the technical approach of the project are presented in Section IV. Section V contains subtask work plans which outline the work in detail for this fiscal year

  20. Flowsheets and source terms for radioactive waste projections

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1985-03-01

    Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF 6 conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables

  1. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ

    2008-07-10

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste

  2. RIVER PROTECTION PROJECT SYSTEM PLAN

    International Nuclear Information System (INIS)

    CERTA PJ

    2008-01-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste

  3. Project Design Concept - Primary Ventilation System

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    Tank Farm Restoration and Safe Operation (TFRSO), Project W-3 14 was established to provide upgrades that would improve the reliability and extend the system life of portions of the waste transfer, electrical, ventilation, instrumentation and control systems for the Hanford Site Tank Farms. An assessment of the tank farm system was conducted and the results are documented in system assessment reports. Based on the deficiencies identified in the tank farm system assessment reports, and additional requirements analysis performed in support of the River Protection Project (RPP), an approved scope for the TFRSO effort was developed and documented in the Upgrade Scope Summary Report (USSR), WHC-SD-W314-RPT-003, Rev. 4. The USSR establishes the need for the upgrades and identifies the specific equipment to be addressed by this project. This Project Design Concept (PDC) is in support of the Phase 2 upgrades and provides an overall description of the operations concept for the W-314 Primary Ventilation Systems. Actual specifications, test requirements, and procedures are not included in this PDC. The PDC is a ''living'' document, which will be updated throughout the design development process to provide a progressively more detailed description of the W-314 Primary Ventilation Systems design. The Phase 2 upgrades to the Primary Ventilation Systems shall ensure that the applicable current requirements are met for: Regulatory Compliance; Safety; Mission Requirements; Reliability; and Operational Requirements

  4. Saltcake Dissolution FY 2000 Status Report

    International Nuclear Information System (INIS)

    HERTING, D.L.

    2000-01-01

    Laboratory tests were completed on the dissolution characteristics of Hanford saltcake waste from single-shell waste tanks 241-TX- 113, 241-BY-102, 241-BY-106, 241-A-101, and 241-S-102 (henceforth referred to as TX-113, BY-102, BY-106, A-101, and S-102, respectively). This work was funded by the Tanks Focus Area (EM-50) under Technical Task Plan Number RL0-8-WT-41, ''PHMC Pretreatment--Saltcake Dissolution''. The tests performed on saltcake from tank TX-113 were similar in scope to those completed in previous years on waste from tanks BY-102, BY-106, B-106, A-101, and S-102 (Herting 1998, 1999). In addition to the ''standard'' dissolution tests, new types of tests were performed this year related to feed stability and radionuclide distribution. The River Protection Project (RPP) is tasked with retrieving waste from double-shell and single-shell tanks to provide feed for vitrification. The RPP organization needs chemical and physical data to evaluate technologies for retrieving the waste. Little significant laboratory testing has been done to evaluate in-tank dissolution parameters for the various types of saltcake wastes that exist in single-shell tanks. A computer modeling program known as the Environmental Simulation Program (ESP), produced by OLI Systems, Inc of Morris Plains, New Jersey, is being used by the RPP organization to predict solubilities during dilution and retrieval of all tank waste types. Data from this task are provided to ESP users to support evaluation, refinement, and validation of the ESP model

  5. Salt Repository Project waste emplacement mode decision paper: Revison 1

    International Nuclear Information System (INIS)

    1987-08-01

    This paper provides a recommendation as to the mode of waste emplacement to be used as the current basis for site characterization activity for the Deaf Smith County, Texas, high level nuclear waste repository site. It also presents a plan for implementing the recommendation so as to provide a high level of confidence in the project's success. Since evaluations of high-level waste disposal in geologic repositories began in the 1950s, most studies emplacement in salt formations employed the vertical orientation for emplacing waste packages in boreholes in the floor of the underground facility. This orientation was used in trials at Project Salt Vault in the 1960s. The Waste Isolation Pilot Plant (WIPP) has recently settled on a combination of vertical and horizontal modes for various waste types. This paper analyzes the information available and develops a project position upon which to base current site characterization activities. The position recommended is that the SRP should continue to use the vertical waste emplacement mode as the reference design and to carry the horizontal mode as a ''passive'' alternative. This position was developed based upon the conclusions of a decision analysis, risk assessment, and cost/schedule impact assessment. 52 refs., 6 figs., 1 tab

  6. V-1 nuclear power plant standby RPP-16S computer software

    International Nuclear Information System (INIS)

    Suchy, R.

    1988-01-01

    The software structure of the function of program modules of the RPP-16S standby computer which is part of the information system of the V-1 Bohunice nuclear power plant are described. The multitasking AMOS operational system is used for the organization of programs in the computer. The program modules are classified in five groups by function, i.e., in modules for the periodical collection of values and for the measurement of process quantities for both nuclear power plant units; for the primary processing of the values; for the monitoring of exceedance of preset limits; for unit operators' communication with the computer. The fifth group consists of users program modules. The standby computer software was tested in the actual operating conditions of the V-1 power plant. The results showed it operated correctly; minor shortcomings were removed. (Z.M.). 1 fig

  7. Nuclear Waste Education Project

    International Nuclear Information System (INIS)

    1989-01-01

    In summary, both the Atlanta and Albuquerque pilot seminars achieved the Nuclear Waste Education Project's goal of informing citizens on both the substance and the process of nuclear waste policy so that they can better participate in future nuclear waste decisions. Nuclear waste issues are controversial, and the seminars exposed the nature of the controversy, and utilized the policy debates to create lively and provocative sessions. The format and content of any citizen education curriculum must be made to fit the particular goal that has been chosen. If the Department of Energy and the LWVEF decide to continue to foster an informed dialogue among presenters and participants, the principles of controversial issues education would serve this goal well. If, however, the Department of Energy and/or the LWVEF decide to go beyond imparting information and promoting a lively discussion of the issues, towards some kind of consensus-building process, it would be appropriate to integrate more interactive sessions into the format. As one evaluator wrote, ''In-depth participation in finding solutions or establishing policy -- small group discussion'' would have been preferable to the plenary sessions that mostly were in the form of lectures and expert panel discussion. The evaluator continued by saying, ''Since these [small group discussions] would require more time commitment, they might be part of follow-up workshops focused on particular topics.''

  8. Agency for Nuclear Projects/Nuclear Waste Project Office final progress report

    International Nuclear Information System (INIS)

    1992-01-01

    The Nevada Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) was formally established by Executive Policy in 1983 following passage of the federal Nuclear Waste Policy Act of 1982 (Act). That Act provides for the systematic siting, construction, operation, and closure of high-level radioactive defense and research by-products and other forms of high-level radioactive waste from around the country which will be stored at such repositories. In 1985 the Nevada legislature formally established the NWPO as a distinct and statutorily authorized agency to provide support to the Governor and State Legislature on matters concerning the high-level nuclear waste programs. The NWPO utilized a small, central staff supplemented by contractual services for needed technical and specialized expertise in order to provide high quality oversight and monitoring of federal activities, to conduct necessary independent studies, and to avoid unnecessary duplication of efforts. This report summarizes the results of this ongoing program to ensure that risks to the environment and to human safety are minimized. It includes findings in the areas of hydrogeology, geology, quality assurance activities, repository engineering, legislature participation, socioeconomic affects, risk assessments, monitoring programs, public information dissemination, and transportation activities. The bulk of the reporting deals with the Yucca Mountain facility

  9. Progress and Lessons Learned in Transuranic Waste Disposition at The Department of Energy's Advanced Mixed Waste Treatment Project

    International Nuclear Information System (INIS)

    J.D. Mousseau; S.C. Raish; F.M. Russo

    2006-01-01

    This paper provides an overview of the Department of Energy's (DOE) Advanced Mixed Waste Treatment Project (AMWTP) located at the Idaho National Laboratory (INL) and operated by Bechtel BWXT Idaho, LLC(BBWI) It describes the results to date in meeting the 6,000-cubic-meter Idaho Settlement Agreement milestone that was due December 31, 2005. The paper further describes lessons that have been learned from the project in the area of transuranic (TRU) waste processing and waste certification. Information contained within this paper would be beneficial to others who manage TRU waste for disposal at the Waste Isolation Pilot Plant (WIPP)

  10. Waste management CDM projects barriers NVivo 10® qualitative dataset.

    Science.gov (United States)

    Bufoni, André Luiz; de Sousa Ferreira, Aracéli Cristina; Oliveira, Luciano Basto

    2017-12-01

    This article contains one NVivo 10® file with the complete 432 projects design documents (PDD) of seven waste management sector industries registered as Clean Development Mechanism (CDM) under United Nations Framework Convention on Climate Change (UNFCCC) Kyoto Protocol Initiative from 2004 to 2014. All data analyses and sample statistics made during the research remain in the file. We coded PDDs in 890 fragments of text, classified in five categories of barriers (nodes): technological, financial, human resources, regulatory, socio-political. The data supports the findings of author thesis [1] and other two indexed publication in Waste Management Journal: "The financial attractiveness assessment of large waste management projects registered as clean development mechanism" and "The declared barriers of the large developing countries waste management projects: The STAR model" [2], [3]. The data allows any computer assisted qualitative content analysis (CAQCA) on the sector and it is available at Mendeley [4].

  11. The Stripa project in a Swedish waste management perspective

    International Nuclear Information System (INIS)

    Bjurstroem, S.

    1994-01-01

    This publication deals with the Swedish nuclear waste management program till the 60s; it also consists of a presentation of the Stripa Project, that played a important role in the research development work in Sweden. This project was carried out in collaboration with the United States, and an international participation was organized. The primary goals of this project were to develop scientific techniques to characterize a granite rock. The issues of such studies were of common concern to many countries that had research and development programs on the disposal of high-level radioactive wastes. (TEC)

  12. Technical program plan, Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1979-12-01

    The Basalt Waste Isolation Project (BWIP) program as administered by the DOE's Richland Operations Office and Rockwell Hanford Operations is described. The objectives, scope and scientific technologies are discussed. The work breakdown structure of the project includes: project management and support, systems integration, geosciences, hydrology, engineered barriers, test facility design and construction, engineering testing, repository studies, and schedules. The budget of the program including operating and capital cost control is also included

  13. River Protection Project (RPP) Immobilized High-Level Waste (HLW) Interim Storage Plan

    International Nuclear Information System (INIS)

    BRIGGS, M.G.

    2000-01-01

    This document replaces HNF-1751, Revision 1. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract and associated DOE-ORP guidance. In addition it includes planning associated with failed/used melter and sample handling and disposition work scope. The document also includes format modifications and section numbering update consistent with CH2M HILL Hanford Group, Inc. procedures

  14. Large scale waste combustion projects. A study of financial structures and sensitivities

    International Nuclear Information System (INIS)

    Brandler, A.

    1993-01-01

    The principal objective of the study was to determine the key contractual and financial aspects of large scale energy-from-waste projects, and to provide the necessary background information on financing to appreciate the approach lenders take when they consider financing waste combustion projects. An integral part of the study has been the preparation of a detailed financial model, incorporating all major financing parameters, to assess the economic and financial viability of typical waste combustion projects. (author)

  15. The role of intergenerational influence in waste education programmes: The THAW project

    International Nuclear Information System (INIS)

    Maddox, P.; Doran, C.; Williams, I.D.; Kus, M.

    2011-01-01

    Highlights: → Children can be effective advocates in changing their parents' lifestyles. → We investigated the role of intergenerational influence in waste education programmes. → Waste Watch's Take Home Action on Waste project worked with 6705 children in 39 schools. → The results showed increased participation in recycling and declines in residual waste. → The study shows that recycling behaviour is positively impacted by intergenerational influence. - Abstract: Whilst the education of young people is often seen as a part of the solution to current environmental problems seeking urgent attention, it is often forgotten that their parents and other household members can also be educated/influenced via home-based educational activities. This paper explores the theory of intergenerational influence in relation to school based waste education. Waste Watch, a UK-based environmental charity ( (www.wastewatch.org.uk)), has pioneered a model that uses practical activities and whole school involvement to promote school based action on waste. This methodology has been adopted nationally. This paper outlines and evaluates how effective school based waste education is in promoting action at a household level. The paper outlines Waste Watch's 'Taking Home Action on Waste (THAW)' project carried out for two and half years in Rotherham, a town in South Yorkshire, England. The project worked with 6705 primary age children in 39 schools (44% of primary schools in the project area) to enable them to take the 'reduce, reuse and recycle message' home to their families and to engage these (i.e. families) in sustainable waste management practices. As well as substantial increases in students' knowledge and understanding of waste reduction, measurement of the impact of the project in areas around 12 carefully chosen sample schools showed evidence of increased participation in recycling and recycling tonnages as well as declining levels of residual waste. Following delivery of

  16. Process Knowledge Characterization of Radioactive Waste at the Classified Waste Landfill Remediation Project Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    DOTSON, PATRICK WELLS; GALLOWAY, ROBERT B.; JOHNSON JR, CARL EDWARD

    1999-01-01

    This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where

  17. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    Science.gov (United States)

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  18. The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project

    International Nuclear Information System (INIS)

    Presgrove, S.B.

    1992-01-01

    The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on this project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review; (1) Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator, (2) The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. 1 ref

  19. Yucca Mountain Site Characterization Project Waste Package Plan

    International Nuclear Information System (INIS)

    Harrison-Giesler, D.J.; Jardine, L.J.

    1991-02-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package program is to develop, confirm the effectiveness of, and document a design for a waste package and associated engineered barrier system (EBS) for spent nuclear fuel and solidified high-level nuclear waste (HLW) that meets the applicable regulatory requirements for a geologic repository. The Waste Package Plan describes the waste package program and establishes the technical approach against which overall progress can be measured. It provides guidance for execution and describes the essential elements of the program, including the objectives, technical plan, and management approach. The plan covers the time period up to the submission of a repository license application to the US Nuclear Regulatory Commission (NRC). 1 fig

  20. Modelling sequential Biosphere systems under Climate change for radioactive waste disposal. Project BIOCLIM

    International Nuclear Information System (INIS)

    Texier, D.; Degnan, P.; Loutre, M.F.; Lemaitre, G.; Paillard, D.; Thorne, M.

    2000-01-01

    The BIOCLIM project (Modelling Sequential Biosphere systems under Climate change for Radioactive Waste Disposal) is part of the EURATOM fifth European framework programme. The project was launched in October 2000 for a three-year period. It is coordinated by ANDRA, the French national radioactive waste management agency. The project brings together a number of European radioactive waste management organisations that have national responsibilities for the safe disposal of radioactive wastes, and several highly experienced climate research teams. Waste management organisations involved are: NIREX (UK), GRS (Germany), ENRESA (Spain), NRI (Czech Republic) and ANDRA (France). Climate research teams involved are: LSCE (CEA/CNRS, France), CIEMAT (Spain), UPMETSIMM (Spain), UCL/ASTR (Belgium) and CRU (UEA, UK). The Environmental Agency for England and Wales provides a regulatory perspective. The consulting company Enviros Consulting (UK) assists ANDRA by contributing to both the administrative and scientific aspects of the project. This paper describes the project and progress to date. (authors)

  1. The role of intergenerational influence in waste education programmes: the THAW project.

    Science.gov (United States)

    Maddox, P; Doran, C; Williams, I D; Kus, M

    2011-12-01

    Whilst the education of young people is often seen as a part of the solution to current environmental problems seeking urgent attention, it is often forgotten that their parents and other household members can also be educated/influenced via home-based educational activities. This paper explores the theory of intergenerational influence in relation to school based waste education. Waste Watch, a UK-based environmental charity (www.wastewatch.org.uk), has pioneered a model that uses practical activities and whole school involvement to promote school based action on waste. This methodology has been adopted nationally. This paper outlines and evaluates how effective school based waste education is in promoting action at a household level. The paper outlines Waste Watch's 'Taking Home Action on Waste (THAW)' project carried out for two and half years in Rotherham, a town in South Yorkshire, England. The project worked with 6705 primary age children in 39 schools (44% of primary schools in the project area) to enable them to take the "reduce, reuse and recycle message" home to their families and to engage these (i.e. families) in sustainable waste management practices. As well as substantial increases in students' knowledge and understanding of waste reduction, measurement of the impact of the project in areas around 12 carefully chosen sample schools showed evidence of increased participation in recycling and recycling tonnages as well as declining levels of residual waste. Following delivery of the project in these areas, an average increase of 8.6% was recorded in recycling set out rates which led to a 4.3% increase in paper recycling tonnages and an 8.7% increase in tonnages of cans, glass and textiles collected for recycling. Correspondingly, there was a 4.5% fall in tonnages of residual waste. Waste Watch's THAW project was the first serious attempt to measure the intergenerational influence of an education programme on behaviour at home (i.e. other than schools

  2. Project report for the commercial disposal of mixed low-level waste debris

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  3. Project report for the commercial disposal of mixed low-level waste debris

    International Nuclear Information System (INIS)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project

  4. RIVER PROTECTION PROJECT SYSTEM PLAN

    International Nuclear Information System (INIS)

    Certa, P.J.; Kirkbride, R.A.; Hohl, T.M.; Empey, P.A.; Wells, M.N.

    2009-01-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal

  5. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and

  6. The new Wallula CO2 project may revive the old Columbia River Basalt (western USA) nuclear-waste repository project

    Science.gov (United States)

    Schwartz, Michael O.

    2018-02-01

    A novel CO2 sequestration project at Wallula, Washington, USA, makes ample use of the geoscientific data collection of the old nuclear waste repository project at the Hanford Site nearby. Both projects target the Columbia River Basalt (CRB). The new publicity for the old project comes at a time when the approach to high-level nuclear waste disposal has undergone fundamental changes. The emphasis now is on a technical barrier that is chemically compatible with the host rock. In the ideal case, the waste container is in thermodynamic equilibrium with the host-rock groundwater regime. The CRB groundwater has what it takes to represent the ideal case.

  7. Management of the solid waste in perforation projects exploratory hydrocarbons

    International Nuclear Information System (INIS)

    Rodriguez Miranda, J.P.

    2010-01-01

    This paper describes de considerations for solid waste management in hydrocarbons exploration projects, as the serious environmental affectation as a function of soil contamination by leachate form the temporary storage of contaminated industrial waste hydrocarbons, altered by the presence of deposits landscaping waste materials, pollution of water and vegetation and the production of odors.

  8. Final Hanford Site Transuranic (TRU) Waste Characterization Qualit Assurance Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP)

  9. Solid waste information and tracking system server conversion project management plan

    International Nuclear Information System (INIS)

    MAY, D.L.

    1999-01-01

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents

  10. Waste Package Project quarterly report, July 1, 1995--September 30, 1995

    International Nuclear Information System (INIS)

    Ladkany, S.G.

    1995-01-01

    The following tasks are reported: overview and progress of nuclear waste package project and container design; nuclear waste container design considerations; structural investigation of multi purpose nuclear waste package canister; and design requirements of rock tunnel drift for long-term storage of high-level waste (faulted tunnel model study by photoelasticity/finite element analysis)

  11. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 2. Commercial waste forms, packaging and projections for preconceptual repository design studies

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/2, ''Commercial Waste Forms, Packaging and Projections for Preconceptual Repository Design Studies,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume contains the data base for waste forms, packages, and projections from the commercial waste defined by the Office of Waste Isolation in ''Nuclear Waste Projections and Source Term Data for FY 1977,'' Y/OWI/TM-34. Also, as an alternative data base for repository design and analysis, waste forms, packages, and projections for commercial waste defined by Battelle Pacific Northwest Laboratory (BPNL) have been included. This data base consists of a reference case for use in the alternative design study and a definition of combustible wastes for use in mine fire and hydrogen generation analyses

  12. The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project

    International Nuclear Information System (INIS)

    Brock Presgrove, S.

    1992-01-01

    The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste currently stored at the DOE Savannah River Site Tank Farm. Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on the project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review: Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator; The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. (author)

  13. Midwestern High-Level Radioactive Waste Transportation Project

    International Nuclear Information System (INIS)

    1993-01-01

    On February 17,1989, the Midwestern Office of The Council of State Governments and the US Department of Energy entered into a cooperative agreement authorizing the initiation of the Midwestern High-Level Radioactive Waste Transportation Project. The transportation project continued to receive funding from DOE through amendments to the original cooperative agreement, with December 31, 1993, marking the end of the initial 5-year period. This progress report reflects the work completed by the Midwestern Office from February 17,1989, through December 31,1993. In accordance with the scopes of work governing the period covered by this report, the Midwestern Office of The Council of State Governments has worked closely with the Midwestern High-Level Radioactive Waste Committee. Project staff have facilitated all eight of the committee's meetings and have represented the committee at meetings of DOE's Transportation Coordination Group (TCG) and Transportation External Coordination Working Group (TEC/WG). Staff have also prepared and submitted comments on DOE activities on behalf of the committee. In addition to working with the committee, project staff have prepared and distributed 20 reports, including some revised reports (see Attachment 1). Staff have also developed a library of reference materials for the benefit of committee members, state officials, and other interested parties. To publicize the library, and to make it more accessible to potential users, project staff have prepared and distributed regular notices of resource availability

  14. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    International Nuclear Information System (INIS)

    1997-01-01

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste

  15. Progress and Lessons Learned in Transuranic Waste Disposition at The Department of Energy's Advanced Mixed Waste Treatment Project

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Mousseau; S.C. Raish; F.M. Russo

    2006-05-18

    This paper provides an overview of the Department of Energy's (DOE) Advanced Mixed Waste Treatment Project (AMWTP) located at the Idaho National Laboratory (INL) and operated by Bechtel BWXT Idaho, LLC(BBWI) It describes the results to date in meeting the 6,000-cubic-meter Idaho Settlement Agreement milestone that was due December 31, 2005. The paper further describes lessons that have been learned from the project in the area of transuranic (TRU) waste processing and waste certification. Information contained within this paper would be beneficial to others who manage TRU waste for disposal at the Waste Isolation Pilot Plant (WIPP).

  16. Waste management of Line Item projects at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Zill, D.S.

    1993-01-01

    With the growing number of companies involved with today's Line Item projects at the Oak Ridge National Laboratory (ORNL), there are ever increasing problems in the handling of Radioactive Solid Low-Level Waste (SLLW). The most important of these problems is who is going to do what with the waste and when are they going to do it. The who brings to mind training; the what, compliance; and the when, cost. At ORNL, the authors have found that the best way to address the challenges of waste handling where several contractors are involved is through communication, compromise and consistency. Without these elements, opportunities bred from waste handling are likely to bring the project to a halt

  17. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied. The terminal waste form processes considered were: borosilicate glass, low-alkali glass, marbles-in-lead matrix, and crystallinolecular potential and molecular dynamics calculations of the effect are yet to be completed. Cous oxide was also investigated. The reaction is first order in nitrite ion, second order in hydrogen ion, and between zero and first order in hydroxylamine monosulfonate, depending on the concentration

  18. Characterization of Simulant LAW Envelope A, B, and C with Glass Formers

    International Nuclear Information System (INIS)

    Hansen, E.K.

    2000-01-01

    The River Protection Project-Waste Treatment Plant (RPP-WPT) pretreatment and immobilization processes being developed by the DOE Office of River Protection will decontaminate High Level Waste (HLW) Envelopes A and B supernates using crossflow filtration followed by cesium and technetium ion exchange. Envelope C will undergo Sr/TRU precipitation prior to filtration to remove chelated actinides. The decontaminated supernates, now called low activity waste (LAW), will be concentrated through the LAW Melter Feed Evaporator. The concentrated LAW Melter Feed will be mixed with glass forming minerals and chemicals in an in the LAW Melter Feed Preparation Tank. The resulting slurry is then transferred to a Melter Feed Tank from which it is fed to one of the joule-heated, refractory-lined melters. Characterization of the melter feed slurry is required to complete the design of the RPP-WPT slurry feed systems. This report discusses the results obtained from the task, ''Bench Scale Mixing - Characterization of Simulant LAW Envelope A (AN105), B (AZ101), and C (AN107) With Glass Formers''. This task characterized the physical and chemical properties (rheology, particle size, weight percent soluble and insoluble solids, and chemical composition) of simulated LAW Melter feeds made from the different envelopes mentioned above. The goal of this task was to provide data for the design of the RPP-WPT Melter feed system

  19. Basalt waste isolation project. Quarterly report, April 1, 1981-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Deju, R.A.

    1981-08-01

    This document reports progress made in the Basalt Waste Isolation Project during the third quarter of fiscal year 1981. Efforts are described for the following programs of the project work breakdown structure: systems; waste package; site; repository; regulatory and institutional; test facilities; in situ test facilities.

  20. Salt Repository Project Waste Package Program Plan: Draft

    International Nuclear Information System (INIS)

    Carr, J.A.; Cunnane, J.C.

    1986-01-01

    Under the direction of the Office of Civilian Radioactive Waste Management (OCRWM) created within the DOE by direction of the Nuclear Waste Policy Act of 1982 (NWPA), the mission of the Salt Repository Project (SRP) is to provide for the development of a candidate salt repository for disposal of high-level radioactive waste (HLW) and spent reactor fuel in a manner that fully protects the health and safety of the public and the quality of the environment. In consideration of the program needs and requirements discussed above, the SRP has decided to develop and issue this SRP Waste Package Program Plan. This document is intended to outline how the SRP plans to develop the waste package design and to show, with reasonable assurance, that the developed design will satisfy applicable requirements/performance objectives. 44 refs., 16 figs., 16 tabs

  1. Waste management CDM projects barriers NVivo 10® qualitative dataset

    Directory of Open Access Journals (Sweden)

    André Luiz Bufoni

    2017-12-01

    Full Text Available This article contains one NVivo 10® file with the complete 432 projects design documents (PDD of seven waste management sector industries registered as Clean Development Mechanism (CDM under United Nations Framework Convention on Climate Change (UNFCCC Kyoto Protocol Initiative from 2004 to 2014. All data analyses and sample statistics made during the research remain in the file. We coded PDDs in 890 fragments of text, classified in five categories of barriers (nodes: technological, financial, human resources, regulatory, socio-political. The data supports the findings of author thesis [1] and other two indexed publication in Waste Management Journal: “The financial attractiveness assessment of large waste management projects registered as clean development mechanism” and “The declared barriers of the large developing countries waste management projects: The STAR model” [2,3]. The data allows any computer assisted qualitative content analysis (CAQCA on the sector and it is available at Mendeley [4

  2. The Waste Isolation Pilot Plant (WIPP) integrated project management system

    International Nuclear Information System (INIS)

    Olona, D.; Sala, D.

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP), located 26 miles east of Carlsbad, New Mexico, is a research and development project of the Department of Energy (DOE), tasked with the mission of demonstrating the safe disposal of transuranic (TRU) radioactive wastes. This unique project was authorized by Congress in 1979 in response to the national need for long-term, safe methods for disposing of radioactive by-products from our national defense programs. The WIPP was originally established in December of 1979, by Public Law 96-164, DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980. Since the inception of the WIPP Project, work has continued to prepare the facility to receive TRU wastes. Studies continue to be conducted to demonstrate the safety of the WIPP facility in accordance with federal and state laws, state agreements, environmental regulations, and DOE Orders. The objectives of implementing an integrated project management system are to assure compliance with all regulatory and federal regulations, identify areas of concern, provide justification for funding, provide a management tool for control of program workscope, and establish a project baseline from which accountability and performance will be assessed. Program management and project controls are essential for the success of the WIPP Project. The WIPP has developed an integrated project management system to establish the process for the control of the program which has an expected total dollar value of $2B over the ten-year period from 1990-2000. The implementation of this project management system was motivated by the regulatory requirements of the project, the highly public environment in which the project takes place, limited funding and resources, and the dynamic nature of the project. Specific areas to be addressed in this paper include strategic planning, project organization, planning and scheduling, fiscal planning, and project monitoring and reporting

  3. Waste management for Shippingport Station Decommissioning Project: Extended summary

    International Nuclear Information System (INIS)

    Mullee, G.R.; Schulmeister, A.R.

    1987-01-01

    The Shippingport Station (SSDP) is demonstrating that the techniques and methodologies of waste management, which are currently employed by the nuclear industry, provide adequate management and control of waste activities for the decommissioning of a large scale nuclear plant. The SSDP has some unique aspects in that as part of the objective to promote technology transfer, multiple subcontractors are being utilized in the project. The interfaces resulting from multiple subcontractors require additional controls. Effective control has been accomplished by the use of a process control and inventory system, coupled with personnel training in waste management activities. This report summarizes the waste management plan and provides a status of waste management activities for SSDP

  4. Waste management aspects of decontamination and decommissioning (D ampersand D) projects

    International Nuclear Information System (INIS)

    Becker, B.D.

    1993-01-01

    History shows that waste management concepts have generally been overlooked during the planning stages of most projects and experiments. This is resulting,in the generation of vast amounts of waste during the clean up or D ampersand D of these facilities. Managers are not only being frustrated in their waste minimization efforts (a relatively new concept) but are also facing the prospect of not being able to dispose of the waste materials at all. At the least, managers are having to budget extraordinary amounts of time, money, and effort in defending their positions that the waste materials are not only humanly and environmentally safe, but that the waste materials are in fact what management says they are. The following discussion will attempt to provide some guidance to D ampersand D managers to help them avoid many of the common pitfalls associated with the ultimate disposal of the materials generated during these projects

  5. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 2. Commercial waste forms, packaging and projections for preconceptual repository design studies

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Y/OWI/TM-36/2, ''Commercial Waste Forms, Packaging and Projections for Preconceptual Repository Design Studies,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume contains the data base for waste forms, packages, and projections from the commercial waste defined by the Office of Waste Isolation in ''Nuclear Waste Projections and Source Term Data for FY 1977,'' Y/OWI/TM-34. Also, as an alternative data base for repository design and analysis, waste forms, packages, and projections for commercial waste defined by Battelle Pacific Northwest Laboratory (BPNL) have been included. This data base consists of a reference case for use in the alternative design study and a definition of combustible wastes for use in mine fire and hydrogen generation analyses.

  6. Design requirements document for project W-520, immobilized low-activity waste disposal

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    1998-01-01

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity

  7. Design requirements document for project W-520, immobilized low-activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, S.C.

    1998-08-06

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity.

  8. Underground Test Area Project Waste Management Plan (Rev. No. 2, April 2002)

    International Nuclear Information System (INIS)

    IT Corporation, Las Vegas

    2002-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) initiated the UGTA Project to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the Nevada Test Site (NTS). The UGTA Project investigation sites have been grouped into Corrective Action Units (CAUs) in accordance with the most recent version of the Federal Facility Agreement and Consent Order. The primary UGTA objective is to gather data to characterize the groundwater aquifers beneath the NTS and adjacent lands. The investigations proposed under the UGTA program may involve the drilling and sampling of new wells; recompletion, monitoring, and sampling of existing wells; well development and hydrologic/ aquifer testing; geophysical surveys; and subsidence crater recharge evaluation. Those wastes generated as a result of these activities will be managed in accordance with existing federal and state regulations, DOE Orders, and NNSA/NV waste minimization and pollution prevention objectives. This Waste Management Plan provides a general framework for all Underground Test Area (UGTA) Project participants to follow for the characterization, storage/accumulation, treatment, and disposal of wastes generated by UGTA Project activities. The objective of this waste management plan is to provide guidelines to minimize waste generation and to properly manage wastes that are produced. Attachment 1 to this plan is the Fluid Management Plan and details specific strategies for management of fluids produced under UGTA operations

  9. TWRS privatization support project waste characterization database development

    International Nuclear Information System (INIS)

    1995-11-01

    Pacific Northwest National Laboratory requested support from ICF Kaiser Hanford Company in assembling radionuclide and chemical analyte sample data and inventory estimates for fourteen Hanford underground storage tanks: 241-AN-102, -104, -105, -106, and -107, 241-AP-102, -104, and -105, 241-AW-101, -103, and -105, 241 AZ-101 and -102; and 241-C-109. Sample data were assembled for sixteen radionuclides and thirty-five chemical analytes. The characterization data were provided to Pacific Northwest National Laboratory in support of the Tank Waste Remediation Services Privatization Support Project. The purpose of this report is to present the results and document the methodology used in preparing the waste characterization information data set to support the Tank Waste Remediation Services Privatization Support Project. This report describes the methodology used in assembling the waste characterization information and how that information was validated by a panel of independent technical reviewers. Also, contained in this report are the various data sets created: the master data set, a subset, and an unreviewed data set. The master data set contains waste composition information for Tanks 241-AN-102 and -107, 241-AP-102 and -105, 241-AW-101; and 241-AZ-101 and -102. The subset contains only the validated analytical sample data from the master data set. The unreviewed data set contains all collected but unreviewed sample data for Tanks 241-AN-104, -105, and -106; 241-AP-104; 241-AW-103 and-105; and 241-C-109. The methodology used to review the waste characterization information was found to be an accurate, useful way to separate the invalid or questionable data from the more reliable data. In the future, this methodology should be considered when validating waste characterization information

  10. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  11. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Duncan, David

    2011-01-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  12. Functions and requirements document, WESF decoupling project, low-level liquid waste system

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.H., Fluor Daniel Hanford

    1997-02-27

    The Waste Encapsulation and Storage Facility (WESF) was constructed in 1974 to encapsulate and store cesium and strontium which were isolated at B Plant from underground storage tank waste. The WESF, Building 225-B, is attached physically to the west end of B Plant, Building 221-B, 200 East area. The WESF currently utilizes B Plant facilities for disposing liquid and solid waste streams. With the deactivation of B Plant, the WESF Decoupling Project will provide replacement systems allowing WESF to continue operations independently from B Plant. Four major systems have been identified to be replaced by the WESF Decoupling Project, including the following: Low Level Liquid Waste System, Solid Waste Handling System, Liquid Effluent Control System, and Deionized Water System.

  13. Radioactive waste inventories and projections

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1982-11-01

    This bibliography contains information on radioactive waste inventories and projections included in the Department of Energy's Energy Data Base from January 1981 through September 1982. The arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. (25 abstracts)

  14. International intercomparison and harmonization projects for demonstrating the safety of radioactive waste management, decommissioning and radioactive waste disposal

    International Nuclear Information System (INIS)

    Metcalf, Phil; O'Donnell, Patricio; Jova Sed, Luis; Batandjieva, Borislava; Rowat, John; Kinker, Monica

    2008-01-01

    Full text: The Joint Convention on the safety of spent fuel management and the safety of radioactive waste management and the international safety standards on radioactive waste management, decommissioning and radioactive waste disposal call for assessment and demonstration of the safety of facilities and activities; during siting, design and construction prior to operation, periodically during operation and at the end of lifetime or upon closure of a waste disposal facility. In addition, more recent revisions of the international safety standards require the development of a safety case for such facilities and activities, documentation presenting all the arguments supporting the safety of the facilities and activities covering site and engineering features, quantitative safety assessment and management systems. Guidance on meeting these safety requirements also indicates the need for a graded approach to safety assessment, with the extent and complexity of the assessment being proportional to the complexity of the activity or facility, and its propensity for radiation hazard. Safety assessment approaches and methodologies have evolved over several decades and international interest in these developments has been considerable as they can be complex and often subjective, which has led to international projects being established aimed at harmonization. The IAEA has sponsored a number of such initiatives, particularly in the area of disposal facility safety, but more recently in the areas of pre disposal waste management and decommissioning, including projects known as ISAM, ASAM, SADRWMS and DeSa. The projects have a number of common aspects including development of standardized methodological approaches, application on test cases and assessment review; they also have activity and facility specific elements. The paper presents an overview of the projects, the outcomes from the projects to date and their future direction aimed very much at practical application of

  15. Project on effects of gas in underground storage facilities for radioactive waste (Pegasus project)

    International Nuclear Information System (INIS)

    Haijtink, B.; McMenamin, T.

    1993-01-01

    Whereas the subject of gas generation and gas release from radioactive waste repositories has gained in interest on the international scene, the Commission of the European Communities has increased its research efforts on this issue. In particular, in the fourth five-year R and D programme on management and storage of radioactive waste (1990-94), a framework has been set up in which research efforts on the subject of gas generation and migration, supported by the CEC, are brought together and coordinated. In this project, called Pegasus, about 20 organizations and research institutes are involved. The project covers theoretical and experimental studies of the processes of gas formation and possible gas release from the different waste types, LLW, ILW and HLW, under typical repository conditions in suitable geological formations such as clay, salt and granite. In this report the present status of the various research activities are described and 13 papers have been selected

  16. Early Involvement and Integration in Construction Projects: The Benefits of DfX in Elimination of Wastes

    Directory of Open Access Journals (Sweden)

    Heikki Halttula

    2017-12-01

    Full Text Available Typical construction processes provide waste: material waste but especially process-related waste. The majority of this waste can be avoided with efficient planning in the front end of projects. The main aim is to describe how the concept of Design for Excellence (DfX can reduce the most severe waste in construction projects. Based on a literature review of waste and requirements that aid early involvement and integration, we created a survey for analyzing and prioritizing types of waste in the construction industry. We describe how DFX reduces this waste, especially through the use of early involvement and integration. When applied, DfX creates incentives for project stakeholders to eliminate waste automatically through early involvement and integration.

  17. Overview of hydrothermal testing of waste-package barrier materials at the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1982-01-01

    The current Waste Package Department (WPD) hydrothermal testing program for the Basalt Waste Isolation Project (BWIP) has followed a systematic approach for the testing of waste-barrier-basalt interactions based on sequential penetration of barriers by intruding groundwaters. Present test activities in the WPD program have focused on determining radionuclide solubility limits (or steady-state conditions) of simulated waste forms and the long-term stability of waste package barriers under site-specific hydrothermal conditions. The resulting data on solution compositions and solid alteration products have been used to evaluate waste form degradation under conditions specific to a nuclear waste repository located in basalt (NWRB). Isothermal, time-invariant compositional data on sampled solutions have been coupled with realistic hydrologic flow data for near-field and far-field modeling for the calculation of meaningful radionuclide release rates. Radionuclides that are not strongly sorbed or precipitated from solution and that, therefore, may require special attention to ensure their isolation within the waste package have been identified. Taken together, these hydrothermal test data have been used to establish design requirements for waste packages located in basalt

  18. LLNL/YMP Waste Container Fabrication and Closure Project

    International Nuclear Information System (INIS)

    1990-10-01

    The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) Program is studying Yucca Mountain, Nevada as a suitable site for the first US high-level nuclear waste repository. Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing and developing the waste package for the permanent storage of high-level nuclear waste. This report is a summary of the technical activities for the LLNL/YMP Nuclear Waste Disposal Container Fabrication and Closure Development Project. Candidate welding closure processes were identified in the Phase 1 report. This report discusses Phase 2. Phase 2 of this effort involved laboratory studies to determine the optimum fabrication and closure processes. Because of budget limitations, LLNL narrowed the materials for evaluation in Phase 2 from the original six to four: Alloy 825, CDA 715, CDA 102 (or CDA 122) and CDA 952. Phase 2 studies focused on evaluation of candidate material in conjunction with fabrication and closure processes

  19. Radioactive liquid wastes lines removal project at Los Alamos (1981-1986)

    International Nuclear Information System (INIS)

    Elder, J.C.; Cox, E.J.; Hohner, D.P.; Valentine, A.M.

    1986-09-01

    This report describes the abandoned liquid waste lines removal operations conducted at Los Alamos in the period 1981 to 1986. Particular emphasis has been placed on as-left conditions, that is, on the location of sections of waste lines or contaminated soil which were left in place on the basis of ALARA decisions. Contaminated items were left when interfering utilities, roads, structures, or great depth made complete removal not cost effective or not safe. Left items were either not highly contaminated or they were not near the surface. Total cost of the project was $4.2 million. Approximately 5800 m 3 of contaminated waste was placed in the Solid Waste Management Site at TA-54 Area G. The project accomplished the removal of approximately 34,500 ft (6.5 miles) of abandoned waste lines under carefully controlled conditions. Procedures for excavation, waste disposal, personnel protection, and radiation monitoring are described. Environmental monitoring criteria and methods for determining acceptable levels of contamination in soils and on surfaces are discussed

  20. Swiss projects for the final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    McCombie, C.

    1987-01-01

    At present, the major part of the discussion does not focus on technical assessment methodology and data, but rather on interpretation of the available geologic data for high-level waste disposal planning. Meanwhile, plans for the implementation of repositories have to be developed. Accordingly, the longer-term studies on high-level waste disposal are proceeding at a pace appropriate for their relatively far-future timescales, and intensified efforts are being put into projects for design, siting, safety assessment and construction of the more urgently required repository for low and intermediate level waste. (orig./PW) [de

  1. Project study for the final disposal of intermediate toxicity radioactive wastes (low- and intermediate-level radioactive wastes) in geological formations

    International Nuclear Information System (INIS)

    1980-08-01

    The present report aimed to show variations in the construction- and operation-technical feasibility of a final repository for low- and intermediate-level radioactive wastes. This report represents the summary of a project study given under contract by Nagra with a view to informing a broader public of the technical conception of a final repository. Particular stress was laid on the treatment of the individual system elements of a repository concept during the construction, operation and sealing phases. The essential basis for the project study is the origin, composition and quantity of the wastes to be disposed. The final repository described in this report is foreseen for the reception of the following low- and intermediate-level solid radioactive wastes: wastes from the nuclear power plant operation; secondary wastes from the reprocessing of nuclear fuels; wastes from the decommissioning of nuclear power plants; wastes from research, medicine and industry

  2. Project plans for transuranic waste at small quantity sites in the Department of Energy comples-10522

    International Nuclear Information System (INIS)

    Mctaggart, Jerri Lynne; Lott, Sheila; Gadbury, Casey

    2009-01-01

    Los Alamos National Laboratory, Carlsbad Office (LANL-CO), has been tasked to write Project Plans for all of the Small Quantity Sites (SQS) with defense related Transuranic (TRU) waste in the Department of Energy (DOE) complex. Transuranic Work-Off Plans were precursors to the Project Plans. LANL-CO prepared a Work-Off Plan for each small quantity site. The Work-Off Plan that identified issues, drivers, schedules, and inventory. Eight sites have been chosen to deinventory their legacy TRU waste; Bettis Atomic Power Laboratory, General Electric-Vallecitos Nuclear Center, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory-Area 300, Nevada Test Site, Nuclear Radiation Development, Sandia National Laboratory, and the Separations Process Research Unit. Each plan was written for contact and/or remote handled waste if present at the site. These project plans will assist the small quantity sites to ship legacy TRU waste offsite and de-inventory the site of legacy TRU waste. The DOE is working very diligently to reduce the nuclear foot print in the United States. Each of the eight SQSs will be de-inventoried of legacy TRU waste during a campaign that ends September 2011. The small quantity sites have a fraction of the waste that large quantity sites possess. During this campaign, the small quantity sites will package all of the legacy TRU waste and ship to Idaho or directly to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The sites will then be removed from the Transuranic Waste Inventory if they are de-inventoried of all waste. Each Project Plan includes the respective site inventory report, schedules, resources, drivers and any issues. These project plans have been written by the difficult waste team and will be approved by each site. Team members have been assigned to each site to write site specific project plans. Once the project plans have been written, the difficult team members will visit the sites to ensure nothing has

  3. Spent fuel and radioactive waste inventories and projections as of December 31, 1980

    International Nuclear Information System (INIS)

    1981-09-01

    Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy radioactive wastes were compiled, based on the most reliable information available from Government sources and the open literature, technical reports, and direct contacts. Future waste generation rates and characteristics of these materials to be accumulated over the remainder of this century are also presented, based on a present DOE/EIA projection of US commercial nuclear power growth and expected defense-related and industrial and institutional activities. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level wastes, transuranic waste, low-level waste, remedial action waste, active uranium mill tailings, and airborne waste. For each category, current and projected inventories are given through the year 2000. The land usage requirements are given for storage/disposal of low-level and transuranic wastes, and for the present inventories of inactive uranium mill tailings

  4. Design a Solid Waste Management Course for Primary School focus on Reduce-Reuse-Recycle : Project: WastED – Export of Education, Waste Management - Target market: Vietnam

    OpenAIRE

    Pham, Linh

    2014-01-01

    This product-oriented Bachelor’s thesis looks at waste-management education in primary schools. The primary objective of the study was to design a basic wastemanagement course, concisely packed in a booklet, ready-to-use for teachers and trainers. The outcome of the thesis, the booklet (content of the course) is expected to be used as one of the materials for the WastED project – Export of Education in Waste Management. The study is made up of theory sections and a product design se...

  5. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BARKER, S.A.

    2006-07-27

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  6. Content and Formation Cause of VOCs in Medical Waste Non-incineration Treatment Project

    Science.gov (United States)

    Dengchao, Jin; Hongjun, Teng; Zhenbo, Bao; Yang, Li

    2018-02-01

    When medical waste is treated by non-incineration technology, volatile organic compounds in the waste will be volatile out and form odor pollution. This paper studied VOCs productions in medical waste steam treatment project, microwave treatment project and chemical dinifection project. Sampling and analysis were carried out on the waste gas from treatment equipment and the gas in treatment workshop. The contents of nine VOCs were determined. It was found that the VOCs content in the exhaust gas at the outlet of steam treatment unit was much higher than that of microwave and chemical treatment unit, while the content of VOCs in the chemical treatment workshop was higher than that in the steam and microwave treatment workshop. The formation causes of VOCs were also analyzed and discussed in this paper.

  7. Basalt Waste Isolation Project Technical Program Evaluation Process: a criteria-based method

    International Nuclear Information System (INIS)

    Babad, H.; Evans, G.C.; Wolfe, B.A.

    1982-01-01

    The need to objectively evaluate the progress being made by the Basalt Waste Isolation Project (BWIP) toward establishing the feasibility of siting a nuclear waste repository in basalt (NWRB) mandates a process for evaluating the technical work of the project. To assist BWIP management in the evaluation process, the Systems Department staff has developed a BWIP Technical Program Evaluation Process (TPEP). The basic process relates progress on project technical work to the SWIP Functional and System Performance Criteria as defined in National Waste Terminal Storage (MWTS) Criteria Documents. The benefits of the TPEP to BWIP and future plans for TPEP are discussed. During fiscal year (FY) 1982, TPEP wll be further formalized and further applied to the review of BWIP technical activities

  8. Remedial Action and Waste Disposal Project Manager's Implementing Instructions

    International Nuclear Information System (INIS)

    Dronen, V.R.

    1998-01-01

    These Project Manager's Implementing Instructions provide the performance standards required of all Environmental Restoration Contractor personnel in their work during operation and administration of the Remedial Action and Waste Disposal Project. The instructions emphasize technical competency, workplace discipline, and personal accountability to ensure a high level of safety and performance during operations activities

  9. Mixed Waste Treatment Project: Computer simulations of integrated flowsheets

    International Nuclear Information System (INIS)

    Dietsche, L.J.

    1993-12-01

    The disposal of mixed waste, that is waste containing both hazardous and radioactive components, is a challenging waste management problem of particular concern to DOE sites throughout the United States. Traditional technologies used for the destruction of hazardous wastes need to be re-evaluated for their ability to handle mixed wastes, and in some cases new technologies need to be developed. The Mixed Waste Treatment Project (MWTP) was set up by DOE's Waste Operations Program (EM30) to provide guidance on mixed waste treatment options. One of MWTP's charters is to develop flowsheets for prototype integrated mixed waste treatment facilities which can serve as models for sites developing their own treatment strategies. Evaluation of these flowsheets is being facilitated through the use of computer modelling. The objective of the flowsheet simulations is to provide mass and energy balances, product compositions, and equipment sizing (leading to cost) information. The modelled flowsheets need to be easily modified to examine how alternative technologies and varying feed streams effect the overall integrated process. One such commercially available simulation program is ASPEN PLUS. This report contains details of the Aspen Plus program

  10. Single-Shell Tank (SST) Retrieval Sequence Fiscal Year 2000 Update

    International Nuclear Information System (INIS)

    GARFIELD, J.S.

    2000-01-01

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project (RPP) updated for Fiscal Year 2000. The SST retrieval sequence identifies the proposed retrieval order (sequence), the tank selection and prioritization rationale, and planned retrieval dates for Hanford SSTs. In addition, the tank selection criteria and reference retrieval method for this sequence are discussed

  11. Double Shell Tank (DST) Transfer Piping Subsystem Specification

    International Nuclear Information System (INIS)

    GRAVES, C.E.

    2000-01-01

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of Waste Feed Delivery. This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of waste feed delivery. This subsystem transfers waste between transfer-associated structures (pits) and to the River Protection Project (RPP) Privatization Contractor Facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  12. Solid waste integrated cost analysis model: 1991 project year report

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  13. In-situ stabilization of TRU/mixed waste project at the INEEL

    International Nuclear Information System (INIS)

    Milian, L.W.; Heiser, J.H.; Adams, J.W.; Rutenkroeger, S.P.

    1997-08-01

    Throughout the DOE complex, buried waste poses a threat to the environment by means of contaminant transport. Many of the sites contain buried waste that is untreated, prior to disposal, or insufficiently treated, by today's standards. One option to remedy these disposal problems is to stabilize the waste in situ. This project was in support of the Transuranic/Mixed Buried Waste - Arid Soils product line of the Landfill Focus Area, which is managed currently by the Idaho National Engineering Laboratory (BNL) provided the analytical laboratory and technical support for the various stabilization activities that will be performed as part of the In Situ Stabilization of TRU/Mixed Waste project at the INEL. More specifically, BNL was involved in laboratory testing that included the evaluation of several grouting materials and their compatibility, interaction, and long-term durability/performance, following the encapsulation of various waste materials. The four grouting materials chosen by INEL were: TECT 1, a two component, high density cementious grout, WAXFIX, a two component, molten wax product, Carbray 100, a two component elastomeric epoxy, and phosphate cement, a two component ceramic. A simulated waste stream comprised of sodium nitrate, Canola oil, and INEL soil was used in this study. Seven performance and durability tests were conducted on grout/waste specimens: compressive strength, wet-dry cycling, thermal analysis, base immersion, solvent immersion, hydraulic conductivity, and accelerated leach testing

  14. Critical management practices influencing on-site waste minimization in construction projects.

    Science.gov (United States)

    Ajayi, Saheed O; Oyedele, Lukumon O; Bilal, Muhammad; Akinade, Olugbenga O; Alaka, Hafiz A; Owolabi, Hakeem A

    2017-01-01

    As a result of increasing recognition of effective site management as the strategic approach for achieving the required performance in construction projects, this study seeks to identify the key site management practices that are requisite for construction waste minimization. A mixed methods approach, involving field study and survey research were used as means of data collection. After confirmation of construct validity and reliability of scale, data analysis was carried out through a combination of Kruskal-Wallis test, descriptive statistics and exploratory factor analysis. The study suggests that site management functions could significantly reduce waste generation through strict adherence to project drawings, and by ensuring fewer or no design changes during construction process. Provision of waste skips for specific materials and maximisation of on-site reuse of materials are also found to be among the key factors for engendering waste minimization. The result of factor analysis suggests four factors underlying on-site waste management practices with 96.093% of total variance. These measures include contractual provisions for waste minimization, waste segregation, maximisation of materials reuse and effective logistic management. Strategies through which each of the underlying measures could be achieved are further discussed in the paper. Findings of this study would assist construction site managers and other site operatives in reducing waste generated by construction activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Recent progress of the waste processing and disposal projects within the Underground Storage Tank-Integrated Demonstration

    International Nuclear Information System (INIS)

    Hunt, R.D.; McGinnis, C.P.; Cruse, J.M.

    1994-01-01

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Remediation has created the Office of Technology Development (OTD) to provide new and improved remediation technologies for the 1 x 10 8 gal of radioactive waste in the underground storage tanks (USTs) at five DOE sites. The OTD established and the Underground Storage Tank-Integrated Demonstration (UST-ID) to perform demonstrations, tests, and evaluations on these new technologies before these processes are transferred to the tank sites for use in full-scale remediation of the USTs. The UST-ID projects are performed by the Characterization and Waste Retrieval Program or the Waste Processing and Disposal Program (WPDP). During FY 1994, the WPDP is funding 12 projects in the areas of supernate processing, sludge processing, nitrate destruction, and final waste forms. The supernate projects are primarily concerned with cesium removal. A mobile evaporator and concentrator for cesium-free supernate is also being demonstrated. The sludge projects are emphasizing sludge dissolution and the evaluation of the TRUEX and diamide solvent extraction processes for transuranic waste streams. One WPDP project is examining both supernate and sludge processes in an effort to develop a system-level plan for handling all UST waste. The other WPDP studies are concerned with nitrate and organic destruction as well as subsequent waste forms. The current status of these WPDP projects is presented

  16. Project Guarantee 1985. Radioactive wastes: Properties and allocation to final repository types

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    An overview of waste-specific data, as input into constructional engineering studies and safety analyses of Project Guarantee, is presented which describes the activity inventory of the radioactive waste to be disposed of, classified according to origin, the quantitative spezifications of the waste, the concept of classifying waste into appropriate categories, grouping into major categories and distribution of these between the different repository types, and finally, control measures which ensure observance of the specifications of the waste to be disposed of. It is expedient, for conceptional considerations and for the operational phase of the repository, to split the waste up into several suitably specified waste categories according to the practical aspects of origin and conditioning. This can be done in such a way that the waste within a specific category is sufficiently homogeneous with regard to its radiological properties and chemical composition for the requirements of safety analysis. The present volume contains base-data for around 30 waste types. Two waste types are documented with more detailed data as an example of the practicability of the comprehensive waste characterisation contained in reference report NTB 84-47. It is shown that waste-specific data which go into safety analysis and constructional engineering project studies are available in an appropriate degree of detail. The method of distributing the waste between repositories with differing degrees of protection and procedures for controlling adherence to admission specifications are developed and documented. It can be ensured that no waste with an impermissibly high radiotoxicity level will later be emplaced in a repository for low- and intermediate-level waste

  17. Accounting for socio-economic effects in nuclear waste disposal projects

    International Nuclear Information System (INIS)

    Van Hove, E.

    1996-01-01

    The disposal of nuclear waste has become highly controversial. This paper presents the approach taken by NIRAS, the Belgian agency for the disposal of nuclear waste, to come to a decision on the establishment of a site for the permanent disposal of low level nuclear waste. A formal model is elaborated to take social effects of such a project into account, allowing for a balanced discussion of positive and negative effects at the local level. It is too early to tell it the model described in detail in this paper con solve the problems encountered by disposal agencies. The approach discussed, does however, respond to need experienced on a international scale. The paper emphasises the need for openness in the fact of assertive and articulate citizens who no longer accept the paternalistic approach. The public must not feel that there is any lack of clarity about waste projects or they will quickly voice their opinions and any opposition they feel. As far as siting is concerned, most of the controversies are fuelled ba a basic notion of 'unfairness'. Somehow the burdens seem to be imposed on parties other than those who reap the benefits. An approach to decision making through local negotiation on all aspects of a disposal projects should allow the problem of fairness to be treated in a more constructive way. (author)

  18. TWRS privatization support project waste characterization database development. Volume 1

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1995-11-01

    Pacific Northwest National Laboratory requested support from ICF Kaiser Hanford Company in assembling radionuclide and chemical analyte sample data and inventory estimates for fourteen Hanford under-ground storage tanks: 241-AN-102, -104, -105, -106, and -107, 241-AP-102, -104, and -105; 241-AW-101, -103, and -105, 241-AZ-101 and-102; and 241-C-109. Sample data were assembled for sixteen radio nuclides and thirty five chemical analytes. The characterization data were provided to Pacific Northwest National Laboratory in support of the Tank Waste Remediation Services Privatization Support Project. The purpose of this report is to present the results and document the methodology used in preparing the waste characterization information data set to support the Tank Waste Remediation Services Privatization Support Project. This report describes the methodology used in assembling the waste characterization information and how that information was validated by a panel of independent technical reviewers. Also, contained in this report are the various data sets created., the master data set, a subset, and an unreviewed data set

  19. Hanford Waste Vitrification Project overview and status

    International Nuclear Information System (INIS)

    Swenson, L.D.; Smets, J.L.

    1993-01-01

    The Hanford Waste Vitrification Project (HWVP) is being constructed at the US DOE's Hanford Site in Richland, WA. Engineering and design are being accomplished by Fluor Daniel Inc. in Irvine, CA. Technical input is furnished by Westinghouse Hanford Co. and construction management services by UE ampersand C-Catalytic Inc. The HWVP will immobilize high level nuclear waste in a glass matrix for eventual disposal in the federal repository. The HWVP consists of several structures, the major ones being the Vitrification Building, the Canister Storage Building, fan house, sand filter, waste hold tank, pump house, and administration and construction facilities. Construction started in April 1992 with the clearing and grubbing activities that prepared the site for fencing and construction preparation. Several design packages have been released for procurement activities. The most significant package release is for the Canister Storage Building, which will be the first major structure to be constructed

  20. Waste-isolation projects, FY 1978

    International Nuclear Information System (INIS)

    Ramspott, L.D.

    1979-01-01

    This report describes Lawrence Livermore Laboratory (LLL) activities during FY 1978 in support of the National Waste Terminal Storage Program. Current projects at LLL fall into three categories: (1) field testing, (2) laboratory rock mechanics measurements, and (3) laboratory studies of sorption and leaching. Field test activities conducted in the Climax granite at the Nevada Test Site included electrical heater tests, preparation for a spent-fuel-storage test, and planning for a series of rock mechanics tests. The heater tests determined the in situ thermal properties of Climax granite and its in situ permeability as a function of rock temperature. The two main laboratory rock mechanics projects involved (1) measurement of the permeability, electrical conductivity, and acoustic velocity of 15-cm-diam cores of granitic rocks over a range of confining pressure, pore (water) pressure, and deviatoric stress, and (2) measurement of rock thermal properties as a function of temperature and confining pressure in the presence of pore fluids to 770 0 K and 200 Mpa. The leaching studies made use of an LLL-designed, single-pass leaching apparatus with three solutions, two leach temperatures, and three flow rates. The material evaluated was Np--Pu-doped simulated waste glass from Battelle Pacific Northwest Laboratories. The sorption studies involved standard static measurements of the equilibrium distribution coefficient (K/sub d/) for various radionuclides on a variety of rocks, and flow-through-core studies of dynamic sorption

  1. Technology evaluation report for the Buried Waste Robotics Program Subsurface Mapping Project

    International Nuclear Information System (INIS)

    Griebenow, B.E.

    1992-01-01

    This document presents a summary of the work performed in support of the Buried Waste Robotics Program Subsurface Mapping Project. The project objective was to demonstrate the feasibility of remotely characterizing buried waste sites. To fulfill this objective, a remotely-operated vehicle, equipped with several sensors, was deployed at the Idaho National Engineering Laboratory. Descriptions of the equipment and areas involved in the project are included in this report. Additionally, this document provides data that was obtained during characterization operations at the Cold Test Pit and the Subsurface Disposal Area, both at the Idaho National Engineering Laboratory's Radioactive Waste Management Complex, and at the Idaho Chemical Processing Plant. The knowledge gained from the experience, that can be applied to the next generation remote-characterization system, is extensive and is presented in this report

  2. Defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.; Maher, R.; Mellen, J.B.; Shafranek, L.F.; Stevens, W.R. III.

    1984-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level waste at the Savannah River Plant near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes produced by defense activities at the site. At the present time engineering and design are 45% complete, the site has been cleared, and startup is expected in 1989. This paper will describe project status as well as features of the design. 9 figures

  3. Alpha waste incineration prototype incinerator and industrial project

    International Nuclear Information System (INIS)

    Caramelle, D.; Meyere, A.

    1988-01-01

    To meet our requirements with respect to the processing of solid alpha wastes, a pilot cold incinerator has been used for R and D. This unit has a capacity of 5 kg/hr. The main objectives assigned to this incineration process are: a good reduction factor, controlled combustion, ash composition compatible with plutonium recovery, limited secondary solid and fluid wastes, releases within the nuclear and chemical standards, and in strict observance of the confinement and criticality safety rules. After describing the process we will discuss the major results of the incineration test campaigns with representative solid wastes (50 % PVC). We will then give a description of an industrial project with a capacity of 7 kg/hr, followed by a cost estimate

  4. Solid Waste Projection Model: Database (Version 1.3)

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1991-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.3 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement

  5. Combustion of Waste Wood. Second phase of the collaboration project on waste wood combustion

    International Nuclear Information System (INIS)

    Andersson, Annika; Andersson, Christer; Eriksson, Jan; Hemstroem, Bengt; Jungstedt, Jenny; Kling, Aasa; Bahr, Bo von; Ekvall, Annika; Eskilsson, David; Tullin, Claes; Harnevie, Henrik; Sieurin, Jan; Keihaes, Juha; Mueller, Christian; Berg, Magnus; Wikman, Karin

    2003-08-01

    Combustion of waste wood has during the last decade increased dramatically and this has resulted in a number of Swedish plants using this fuel, e.g. Handeloe P11 (Norrkoeping) and ldbaecken P3 (Nykoeping), and yet other plants that are under construction (e.g. Nynaeshamn). The experience from these plants are that waste wood combustion results in a number of operational problems. To some extent these problems are different compared with the problems related to combustion of other biofuels but the situation is not directly comparable to waste incinerators. The problems are mainly related to slagging and fouling of heat exchanger surfaces and accelerated corrosion at relatively low temperature compared to the situation for ordinary biofuels. In some cases an increase in the emissions of specific substances can also result in difficulties to fulfil the EC-directive on waste combustion. Within previous projects the main problems related to combustion of waste wood have been identified and to some extent the cause of these problems has been clarified. One result of this reported investigation is a deeper understanding of the actual causes of these problems. However, the most important result is a number of recommendations for different measures on how to achieve disturbance-free combustion of waste wood. These recommendations actually summarises the most important possible solutions on how to achieve a disturbance-free operation and a lower maintenance cost for boilers combusting waste wood and can thereby be regarded as a short summery of the whole project: 1) Improving fuel quality by Improved sorting at the source and Sieving of the fuel -> Reducing the amount of metals and chlorine and Separation of fines and thereby reducing the amount of metals. 2) Combustion modifications by Avoiding reducing conditions at the heat exchanger surfaces -> Minimising slagging, fouling and corrosion. 3) Additives or co-combustion by Addition of sulphur with the fuel; Injection of

  6. Radioactive Waste Management System: Draft Project Decision Schedule. Revision

    International Nuclear Information System (INIS)

    1985-07-01

    The Nuclear Waste Policy Act (NWPA) of 1982 (Pub. L. 97-425) requires that the Secretary of Energy prepare, in cooperation with affected Federal agencies, a Project Decision Schedule that portrays the optimum way to attain the operation of geologic repositories. The Draft Project Decision Schedule portrays the major milestones of the Radioactive Waste Management System. It also depicts the set of activities for which Federal agencies have responsibility and the deadlines for taking the required action that are associated with the activities. The NWPA also requires that Federal agencies having determined that they: (1) cannot comply with a deadline for taking a required action; or (2) fail to comply with a deadline contained in the Project Decision Schedule; submit a comprehensive report to the Secretary of Energy and Congress to explain their failure or expected failure. The Secretary, in turn, is required to submit to Congress a response to the agency's report. 7 figs., 13 tabs

  7. Underground disposal of hazardous waste - state of the art and R and D projects

    International Nuclear Information System (INIS)

    Pitterich, H.; Brueckner, C.

    1998-01-01

    The project management group Entsorgung (PTE) coordinates R and D activities on deep geological disposal of hazardous waste besides other activities in the field of nuclear disposal. R and D projects aim at the improvement of tools used to predict the long-term behaviour of underground disposal facilities and the threat for man and environment associated with these facilities. The current German situation on deep geological disposal of hazardous waste is described and some results from the fields waste-anaylsis, geochemical modelling and geotechnical barriers for the sealing of waste disposal sites are presented. (orig.)

  8. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    TU, T.A.

    2007-01-04

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  9. Final report of the project performance assessment and economic evaluation of nuclear waste management

    International Nuclear Information System (INIS)

    Rasilainen, K.; Anttila, M.; Hautojaervi, A.

    1993-05-01

    The publication is the final report of project Performance Assessment and Economic Evaluation of Nuclear Waste Management (TOKA) at the Nuclear Engineering Laboratory of VTT (Technical Research Centre of Finland), forming part of the Publicly Financed Nuclear Waste Management Research Programme (JYT). The project covers safety and cost aspects of all phases of nuclear waste management. The main emphasis has been on developing an integrated system of models for performance assessment of nuclear waste repositories. During the four years the project has so far been in progress, the total amount of work has been around 14 person-years. Computer codes are the main tools in the project, they are either developed by the project team or acquired from abroad. In-house model development has been especially active in groundwater flow, near-field and migration modelling. The quantitative interpretation of Finnish tracer experiments in the laboratory and natural analogue studies at Palmottu support performance assessments via increased confidence in the migration concepts used. The performance assessment philosophy adopted by the team consists of deterministic modelling and pragmatic scenario analysis. This is supported by the long-term experience in practical performance assessment of the team, and in theoretical probabilistic modelling exercises. The radiological risks of spent fuel transportation from the Loviisa nuclear power plant to Russia have been analysed using a probabilistic computer code and Finnish traffic accident statistics. The project assists the authorities in the annual assessment of utility estimates of funding needs for future nuclear waste management operations. The models and methods used within the project are tested in international verification/validation projects

  10. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  11. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    International Nuclear Information System (INIS)

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site

  12. Site identification presentation: Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1979-11-01

    The final step in the site identification process for the Basalt Waste Isolation Project is described. The candidate sites are identified. The site identification methodology is presented. The general objectives which must be met in selecting the final site are listed. Considerations used in the screening process are also listed. Summary tables of the guidelines used are included

  13. Final disposal of radioactive wastes in Switzerland: concept and overview of Project Guarantee 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The validity of the operational licences of the existing Swiss nuclear power plants (NPP) Beznau I and II, Muehleberg, Goesgen and Leibstadt after 31st. December 1985 is, because of official requirements, dependent on the demonstration of permanent, safe management and final disposal of radioactive waste. For this purpose, the NPP companies have to prepare a so-called guarantee project and present this to the Bundesrat for review. The appropriate investigations and research have been carried out by Nagra (National Cooperative for the Storage of Radioactive Waste). The 1985 Project Gewaehr (Guarantee) is described in an eight volume report NGB 85-01 to 85-08 and individual research projects are reported on in separate NTB-series reference reports. The present volume NGB 85-01 takes the form of a self-contained project overview in which the concepts for nuclear waste management are described, the contents of the remaining volumes NGB 85-02 to 85-08 are summarized and Project conclusions are drawn from Project Gewaehr 1985. Project Gewaehr 1985 covers two repository types: Type C repository for high-level and certain alpha-containing intermediate-level waste, and Type B repository for all remaining intermediate- and low-level waste. The Project shows in detail that technical feasibility of final disposal can be assumed given presently available methods, that the technical safety barriers show a high level of efficiency and that suitable geological options are available to ensure long-term safety in Switzerland as the concept is defined by official requirements. The Project safety analyses show that the chosen disposal concepts assure the protection of mankind and the environment under all realistically anticipated conditions

  14. Preliminary safety evaluation for 241-C-106 waste retrieval, project W-320

    International Nuclear Information System (INIS)

    Conner, J.C.

    1994-01-01

    This document presents the Preliminary Safety Evaluation for Project W-320, Tank 241-C-106 Waste Retrieval Sluicing System (WRSS). The US DOE has been mandated to develop plans for response to safety issues associated with the waste storage tanks at the Hanford Site, and to report the progress of implementing those plans to Congress. The objectives of Project W-230 are to design, fabricate, develop, test, and operate a new retrieval system capable of removing a minimum of about 75% of the high-heat waste contained in C-106. It is anticipated that sluicing operations can remove enough waste to reduce the remaining radiogenic heat load to levels low enough to resolve the high-heat safety issue as well as allow closure of the tank safety issue

  15. The evolution of the Waste Isolation Pilot Plant (WIPP) project's public affairs program

    International Nuclear Information System (INIS)

    Walter, L.H.

    1988-01-01

    As a first-of-a-kind facility, the Waste Isolation Pilot Plant (WIPP) presents a unique perspective on the value of designing a public affairs program that grown with and complements a project's evolution from construction to operations. Like the project itself, the public affairs programs progressed through several stages to its present scope. During the construction phase, foundations were laid in the community. Then, in this past year as the project entered a preoperational status, emphasis shifted to broaden the positive image that had been created locally. In this stage, public affairs presented the project's positive elements to the various state agencies, government officials, and federal organizations involved in our country's radioactive waste management program. Most recently, and continuing until receipt of the first shipment of waste in October 1988, an even broader, more aggressive public affairs program is planned

  16. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oily wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.

  17. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    International Nuclear Information System (INIS)

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oily wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals

  18. Nordic nuclear safety research 1994-1997. Project on disposal of radioactive waste

    International Nuclear Information System (INIS)

    Broden, Karin

    1999-01-01

    This presentation describes the Nordic Nuclear Safety Research (NKS) programme, which is a scientific co-operation programme in nuclear safety, radiation protection and emergence preparedness. The purpose of the programme is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, manuals, recommendations, and other types of background material. This material is to serve decision-makers and other concerned staff members at authorities, research establishments and enterprises in the nuclear field. Three waste disposal projects under NKS are briefly described: (1) Waste characterisation, (2) Performance analysis of the engineered barrier system of the repositories for low- and intermediate-level waste, (3) Environmental impact assessment

  19. Integrated data base for 1988: Spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1988-09-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1987. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reportd for miscellaneous, highly radioactive materials that may require geologic disposal. 89 refs., 46 figs., 104 tabs

  20. Solid Waste Projection Model: Database User's Guide

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1993-10-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for using Version 1.4 of the SWPM database: system requirements and preparation, entering and maintaining data, and performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions and does not Provide instruction in the use of Paradox, the database management system in which the SWPM database is established

  1. Integrated Data Base for 1989: Spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1989-11-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1988. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, commercial reactor and fuel cycle facility decommissioning waste, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous, highly radioactive materials that may require geologic disposal. 45 figs., 119 tabs

  2. HISPANIC ENVIRONMENTAL AND WASTE MANAGEMENT OUTREACH PROJECT

    International Nuclear Information System (INIS)

    Sebastian Puente

    1998-01-01

    The Department of Energy Office of Environmental Management (DOE-EM) in cooperation with the Self Reliance Foundation (SRF) is conducting the Hispanic Environmental and Waste Management Outreach Project (HEWMO) to increase science and environmental literacy, specifically that related to nuclear engineering and waste management in the nuclear industry, among the US Hispanic population. The project will encourage Hispanic youth and young adults to pursue careers through the regular presentation of Spanish-speaking scientists and engineers and other role models, as well as career information on nationally broadcast radio programs reaching youth and parents. This project will encourage making science, mathematics, and technology a conscious part of the everyday life experiences of Hispanic youth and families. The SRF in collaboration with the Hispanic Radio Network (HRN) produces and broadcasts radio programs to address the topics and meet the objectives as outlined in the Environmental Literacy Plan and DOE-EM Communications Plan in this document. The SRF has in place a toll-free ''800'' number Information and Resource Referral (I and RR) service that national radio program listeners can call to obtain information and resource referrals as well as give their reactions to the radio programs that will air. HRN uses this feature to put listeners in touch with local organizations and resources that can provide them with further information and assistance on the related program topics

  3. HISPANIC ENVIRONMENTAL AND WASTE MANAGEMENT OUTREACH PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian Puente

    1998-07-25

    The Department of Energy Office of Environmental Management (DOE-EM) in cooperation with the Self Reliance Foundation (SRF) is conducting the Hispanic Environmental and Waste Management Outreach Project (HEWMO) to increase science and environmental literacy, specifically that related to nuclear engineering and waste management in the nuclear industry, among the US Hispanic population. The project will encourage Hispanic youth and young adults to pursue careers through the regular presentation of Spanish-speaking scientists and engineers and other role models, as well as career information on nationally broadcast radio programs reaching youth and parents. This project will encourage making science, mathematics, and technology a conscious part of the everyday life experiences of Hispanic youth and families. The SRF in collaboration with the Hispanic Radio Network (HRN) produces and broadcasts radio programs to address the topics and meet the objectives as outlined in the Environmental Literacy Plan and DOE-EM Communications Plan in this document. The SRF has in place a toll-free ''800'' number Information and Resource Referral (I and RR) service that national radio program listeners can call to obtain information and resource referrals as well as give their reactions to the radio programs that will air. HRN uses this feature to put listeners in touch with local organizations and resources that can provide them with further information and assistance on the related program topics.

  4. Radioprotection considerations on the expansion project of an interim storage facility for radioactive waste

    International Nuclear Information System (INIS)

    Boni-Mitake, Malvina; Suzuki, Fabio F.; Dellamano, Jose C.

    2009-01-01

    The Radioactive Waste Management (GRR) of the Nuclear and Energy Research Institute (IPEN/CNEN-SP) receives, treats, packs, characterizes and stores institutional radioactive wastes generated at IPEN-CNEN/SP and also those received from several radiological facilities in the country. The current storage areas have been used to store the treated radioactive waste since the early 1980's and their occupation is close to their full capacity, so a storage area expansion is needed. The expansion project includes the rebuilding of two sheds and the enlargement of the third one in the area currently occupied by the GRR and in a small adjacent area. The civil works will be in controlled area, where the waste management operations will be maintained, so all the steps of this project should be planned and optimized, from the radioprotection point of view. The civil construction will be made in steps. During the project implementation there will be transfer operations of radioactive waste packages to the rebuilt area. After these transfer operations, the civil works will proceed in the vacant areas. This project implies on radiological monitoring, dose control of the involved workers, decontamination and clearance of areas and it is also envisaged the need for repacking of some radioactive waste. The objective this paper is to describe the radioprotection study developed to this expansion project, taking into account the national radioprotection and civil construction regulations. (author)

  5. COMPAS: a European project on the ''comparison of alternative waste management strategies for long-lived radioactive wastes''. Scope, working methods and conclusions

    International Nuclear Information System (INIS)

    Dutton, L.M.C.; Hillis, Z.K.; Roehlig, K.J.

    2004-01-01

    The paper presents the content and major findings of a project on the ''COMParison of Alternative waste management Strategies for long-lived radioactive wastes'' (COMPAS) carried out within the 5 th framework programme of the European commission. Under the leadership of NNC (UK), the project was carried out by individuals representing waste management organisations from 15 European countries. After having compiled information on the nature and amount of long-lived radioactive waste to be managed, issues influencing the selection of waste management strategies and options, presently adopted national strategies as well as options for the future were addressed. Conclusions concerning key issues for the success or otherwise of strategies and management solutions were drawn. (orig.)

  6. Hanford Waste Simulants Created to Support the Research and Development on the River Protection Project - Waste Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R.E.

    2001-07-26

    The development of nonradioactive waste simulants to support the River Protection Project - Waste Treatment Plant bench and pilot-scale testing is crucial to the design of the facility. The report documents the simulants development to support the SRTC programs and the strategies used to produce the simulants.

  7. Performance evaluation of restaurant food waste and biowaste to biogas pilot projects in China and implications for national policy.

    Science.gov (United States)

    De Clercq, Djavan; Wen, Zongguo; Fan, Fei

    2017-03-15

    The objective of this research was to conduct a performance evaluation of three food waste/biowaste-to-biogas pilot projects across 7 scenarios in China based on multi-criteria decision analysis (MCDA) methodology. The projects ranked included a food waste-biogas project in Beijing, a food waste-biogas project in Suzhou and a co-digestion project producing biomethane in Hainan. The projects were ranked from best to worst based on technical, economic and environmental criteria under the MCDA framework. The results demonstrated that some projects are encountering operational problems. Based on these findings, six national policy recommendations were provided: (1) shift away from capital investment subsidies to performance-based subsidies; (2) re-design feed in tariffs; (3) promote bio-methane and project clustering; (4) improve collection efficiency by incentivizing FW producers to direct waste to biogas projects; (5) incentivize biogas projects to produce multiple outputs; (6) incentivize food waste-based projects to co-digest food waste with other substrates for higher gas output. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Amoco-US Environmental Protection Agency, pollution prevention project, Yorktown, Virginia: Solid waste data

    International Nuclear Information System (INIS)

    Kizior, G.J.

    1991-01-01

    In late 1989 Amoco and the US Environmental Protection Agency initiated a joint project to review pollution prevention alternatives at Amoco Oil Company's Yorktown, Virginia, Refinery as a case study site. The report summarizes the solid waste emissions inventory, solids source identification, and the solid waste sampling program that was conducted at the Amoco Yorktown Refinery on September 25-27, 1990, in support of the Pollution Prevention Project. Major findings showed that the majority of solid waste generation occurs as end-of-pipe solids resulting from the treatment of wastewaters from the refinery sewer. Based on a regression analysis of the composition data for samples collected during this project, major upstream contributors to these solids appear to be soils. Solids from process units are also significant contributors

  9. Design requirements document for Project W-465, immobilized low-activity waste interim storage

    International Nuclear Information System (INIS)

    Burbank, D.A.

    1998-01-01

    The scope of this Design Requirements Document (DRD) is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste (ILAW) produced by the privatized Tank Waste Remediation System (TWRS) treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the TWRS ILAW Interim Storage facility project and provides traceability from the program level requirements to the project design activity. Technical and programmatic risk associated with the TWRS planning basis are discussed in the Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The design requirements provided in this document will be augmented by additional detailed design data documented by the project

  10. The Basalt Waste Isolation Project technical program evaluation process: A criteria-based method

    International Nuclear Information System (INIS)

    Babad, H.; Evans, C.; Wolfe, B.A.

    1982-01-01

    The need to objectively evaluate the progress being made by the Basalt Waste Isolation Project (BWIP) toward establishing the feasibility of siting a nuclear waste repository in basalt (NWRB) mandates a process for evaluating the technical work of the project. To assist BWIP management in the evaluation process, the Systems Department staff has developed a BWIP Technical Program Evaluation Process (TPEP). The basic process relates progress on project technical work to the BWIP Functional and System Performance Criteria as defined in National Waste Terminal Storage (NWTS) Criteria Documents. The benefits of the TPEP to BWIP and future plans for TPEP are discussed. During fiscal year (FY) 1982, TPEP will be further formalized and further applied to the review of BWIP technical activities

  11. Processing the THOREX waste at the West Valley demonstration project

    International Nuclear Information System (INIS)

    Barnes, S.M.; Schiffhauer, M.A.

    1994-01-01

    This paper focuses on several options for neutralizing the THOREX and combining it with the PUREX wastes. Neutralization testing with simulated wastes (nonradioactive chemicals) was performed to evaluate the neutralization reactions and the reaction product generation. Various methods for neutralizing the THOREX solution were examined to determine their advantages and disadvantages relative to the overall project objectives and compatibility with the existing process. The primary neutralization process selection criteria were safety and minimizing the potential delays prior to vitrification. The THOREX neutralization method selected was direct addition to the high pH PUREX wastes within Tank 8D-2. Laboratory testing with simulated waste has demonstrated rapid neutralization of the THOREX waste acid. Test results for various direct addition scenarios has established the optimum process operating conditions which provide the largest safety margins

  12. A successful waste stream analysis on a large construction project in a radiologically controlled area

    International Nuclear Information System (INIS)

    Kennicott, M.; Richardson, D.; Starke, T.P.

    1997-01-01

    The Los Alamos National Laboratory (the Laboratory) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently under going a major, multi-year demolition and construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D and D) job and are identical to the requirements of any of several upgrades projects anticipated for the laboratory and other Department of Energy (DOE) sites. For these reasons the CMR upgrades Project is seen as an ideal model facility--to test the application and measure the success of waste minimization techniques which could be implemented for any similar projects. The purpose of this paper will be to discuss the successful completion of a waste stream analysis. The analyses performed was to measure the potential impact of waste generation, in terms of volume and costs, for a reconfiguration option being considered to change the approach and execution of the original project

  13. A Study on Site Selecting for National Project including High Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kilyoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many national projects are stopped since sites for the projects are not determined. The sites selections are hold by NIMBY for unpleasant facilities or by PYMFY for preferable facilities among local governments. The followings are the typical ones; NIMBY projects: high level radioactive waste disposal, THAAD, Nuclear power plant(NPP), etc. PIMFY projects: South-east new airport, KTX station, Research center for NPP decommission, etc. The site selection for high level radioactive waste disposal is more difficult problem, and thus government did not decide and postpone to a dead end street. Since it seems that there is no solution for site selection for high level radioactive waste disposal due to NIMBY among local governments, a solution method is proposed in this paper. To decide a high level radioactive waste disposal, the first step is to invite a bid by suggesting a package deal including PIMFY projects such as Research Center for NPP decommission. Maybe potential host local governments are asked to submit sealed bids indicating the minimum compensation sum that they would accept the high level radioactive waste disposal site. If there are more than one local government put in a bid, then decide an adequate site by considering both the accumulated PESS point and technical evaluation results. By considering how fairly preferable national projects and unpleasant national projects are distributed among local government, sites selection for NIMBY or PIMFY facilities is suggested. For NIMBY national projects, risk, cost benefit analysis is useful and required since it generates cost value to be used in the PESS. For many cases, the suggested method may be not adequate. However, similar one should be prepared, and be basis to decide sites for NIMBY or PIMFY national projects.

  14. Double Shell Tank (DST) Transfer Pump Subsystem Specification

    International Nuclear Information System (INIS)

    GRAVES, C.E.

    2001-01-01

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to be applied during the design of the Double-Shell Tank (DST) Transfer Pump Subsystem that supports the first phase of waste feed delivery (WFD). The DST Transfer Pump Subsystem consists of a pump for supernatant and/or slurry transfer for the DSTs that will be retrieved during the Phase 1 WFD operations. This system is used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. It also will deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Waste Treatment Plant where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  15. Functional design criteria radioactive liquid waste line replacement, Project W-087. Revision 3

    International Nuclear Information System (INIS)

    McVey, C.B.

    1994-01-01

    This document provides the functional design criteria for the 222-S Laboratory radioactive waste drain piping and transfer pipeline replacement. The project will replace the radioactive waste drain piping from the hot cells in 222-S to the 219-S Waste Handling Facility and provide a new waste transfer route from 219-S to the 244-S Catch Station in Tank Farms

  16. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    International Nuclear Information System (INIS)

    Pickett, W.W.

    1997-01-01

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations

  17. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  18. Double-Shell Tank (DST) Utilities Specification

    International Nuclear Information System (INIS)

    SUSIENE, W.T.

    2000-01-01

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  19. Basalt waste isolation project overview

    International Nuclear Information System (INIS)

    Dahlem, D.H.

    1987-01-01

    The proposed candidate site for a high-level nuclear waste repository is located beneath the Hanford Nuclear Reservation in southeastern Washington State. At this point, the Hanford Reservation has been selected as one of three preferred candidates in the draft environmental assessment. Project activities have concentrated on understanding the site location with respect to the 10CFR60, 40CFR191, and 10CFR960, identifying critical parameters for design of water package and repository seals, and identifying parameters for repository design. This paper describes the program to evaluate the site and to identify the natural processes that would effect isolation

  20. FINAL REPORT SUMMARY OF DM 1200 OPERATION AT VSL VSL-06R6710-2 REV 0 9/7/06

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; DIENER G; BARDAKCI T; PEGG IL

    2011-12-29

    The principal objective of this report was to summarize the testing experience on the DuraMelter 1200 (DMI200), which is the High Level Waste (HLW) Pilot Melter located at the Vitreous State Laboratory (VSL). Further objectives were to provide descriptions of the history of all modifications and maintenance, methods of operation, problems and unit failures, and melter emissions and performance while processing a variety of simulated HL W and low activity waste (LAW) feeds for the Hanford Waste Treatment and Immobilization Plant (WTP) and employing a variety of operating methods. All of these objectives were met. The River Protection Project - Hanford Waste Treatment and Immobilization Plant (RPP-WTP) Project has undertaken a 'tiered' approach to vitrification development testing involving computer-based glass formulation, glass property-composition models, crucible melts, and continuous melter tests of increasing, more realistic scales. Melter systems ranging from 0.02 to 1.2 m{sup 2} installed at the Vitreous State Laboratory (VSL) have been used for this purpose, which, in combination with the 3.3 m{sup 2} low activity waste (LAW) Pilot Melter at Duratek, Inc., span more than two orders of magnitude in melt surface area. In this way, less-costly small-scale tests can be used to define the most appropriate tests to be conducted at the larger scales in order to extract maximum benefit from the large-scale tests. For high level waste (HLW) vitrification development, a key component in this approach is the one-third scale DuraMelter 1200 (DM 1200), which is the HLW Pilot Melter that has been installed at VSL with an integrated prototypical off-gas treatment system. That system replaced the DM1000 system that was used for HLW throughput testing during Part B1. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. In particular, the DM1200 provides for

  1. Final Report Summary Of DM 1200 Operation At VSL VSL-06R6710-2, Rev. 0, 9/7/06

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Diener, G.; Bardakci, T.; Pegg, I.L.

    2011-01-01

    The principal objective of this report was to summarize the testing experience on the DuraMelter 1200 (DMI200), which is the High Level Waste (HLW) Pilot Melter located at the Vitreous State Laboratory (VSL). Further objectives were to provide descriptions of the history of all modifications and maintenance, methods of operation, problems and unit failures, and melter emissions and performance while processing a variety of simulated HL W and low activity waste (LAW) feeds for the Hanford Waste Treatment and Immobilization Plant (WTP) and employing a variety of operating methods. All of these objectives were met. The River Protection Project - Hanford Waste Treatment and Immobilization Plant (RPP-WTP) Project has undertaken a 'tiered' approach to vitrification development testing involving computer-based glass formulation, glass property-composition models, crucible melts, and continuous melter tests of increasing, more realistic scales. Melter systems ranging from 0.02 to 1.2 m 2 installed at the Vitreous State Laboratory (VSL) have been used for this purpose, which, in combination with the 3.3 m 2 low activity waste (LAW) Pilot Melter at Duratek, Inc., span more than two orders of magnitude in melt surface area. In this way, less-costly small-scale tests can be used to define the most appropriate tests to be conducted at the larger scales in order to extract maximum benefit from the large-scale tests. For high level waste (HLW) vitrification development, a key component in this approach is the one-third scale DuraMelter 1200 (DM 1200), which is the HLW Pilot Melter that has been installed at VSL with an integrated prototypical off-gas treatment system. That system replaced the DM1000 system that was used for HLW throughput testing during Part B1. Both melters have similar melt surface areas (1.2 m 2 ) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. In particular, the DM1200 provides for testing on a vitrification

  2. ENGINEERING STUDY FOR THE 200 AREA EFFLUENT TREATMENT FACILITY (ETF) SECONDARY WASTE TREATMENT OF PROJECTED FUTURE WASTE FEEDS

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2004-01-01

    This report documents an engineering study conducted to evaluate alternatives for treating secondary waste in the secondary treatment train (STT) of the Hanford Site 200 Area Effluent Treatment Facility (ETF). The study evaluates ETF STT treatment alternatives and recommends preferred alternatives for meeting the projected future missions of the ETF. The preferred alternative(s) will process projected future ETF influents to produce a solid waste acceptable for final disposal on the Hanford Site. The main text of this report summarizes the ETF past and projected operations, lists the assumptions about projected operations that provide the basis for the engineering evaluation, and summarizes the evaluation process. The evaluation process includes identification of available modifications to the current ETF process, screens those modifications for technical viability, evaluates the technically viable alternatives, and provides conclusions and recommendations based on that evaluation

  3. Industrial Program of Waste Management - Cigeo Project - 13033

    Energy Technology Data Exchange (ETDEWEB)

    Butez, Marc [Agence nationale pour la gestion des dechets radioactifs - Andra, 1-7, rue Jean Monnet 92298 Chatenay-Malabry (France); Bartagnon, Olivier; Gagner, Laurent [AREVA NC Tour AREVA 1 place de la Coupole 92084 Paris La Defense (France); Advocat, Thierry; Sacristan, Pablo [Commissariat a l' energie atomique et aux energies alternatives - CEA, CEA-SACLAY 91191 Gif sur Yvette Cedex (France); Beguin, Stephane [Electricite de France - EDF, Division Combustible Nucleaire, 1, Place Pleyel Site Cap Ampere93282 Saint Denis (France)

    2013-07-01

    The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operational and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)

  4. Industrial Program of Waste Management - Cigeo Project - 13033

    International Nuclear Information System (INIS)

    Butez, Marc; Bartagnon, Olivier; Gagner, Laurent; Advocat, Thierry; Sacristan, Pablo; Beguin, Stephane

    2013-01-01

    The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operational and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)

  5. Assessment of Available Particle Size Data to Support an Analysis of the Waste Feed Delivery System Transfer System

    International Nuclear Information System (INIS)

    JEWETT, J.R.

    2000-01-01

    Available data pertaining to size distribution of the particulates in Hanford underground tank waste have been reviewed. Although considerable differences exist between measurement methods, it may be stated with 95% confidence that the median particle size does not exceed 275 (micro)m in at least 95% of the ten tanks selected as sources of HLW feed for Phase 1 vitrification in the RPP. This particle size is recommended as a design basis for the WFD transfer system

  6. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  7. Integrated data base for 1986: spent fuel and radioactive waste inventories, projections, and characteristics. Revision 2

    International Nuclear Information System (INIS)

    1986-09-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US Department of Energy (DOE) radioactive wastes through December 31, 1985, based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. Current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the expected defense-related and private industrial and institutional activities and the latest DOE/Energy Information Administration (EIA) projections of US commercial nuclear power growth. The materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or calculated isotopic compositions

  8. Underground engineering at the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1987-01-01

    A special task group was organized by the US National Committee for Rock Mechanics and the Board on Radioactive Waste Management of the National Research Council to address issues relating to the geotechnical site characterization program for an underground facility to house high-level radioactive waste of the Basalt Waste Isolation Project (BWIP). Intended to provide an overview of the geotechnical program, the study was carried out by a task group consisting of ten members with expertise in the many disciplines required to successfully complete such a project. The task group recognized from the outset that the short time frame of this study would limit its ability to address all geotechnical issues in detail. Geotechnical issues were considered to range from specific technical aspects such as in-situ testing for rock mass permeability; rock hardness testing in the laboratory; or geologic characterizations and quantification of joints, to broader aspects of design philosophy, data collection, and treatment of uncertainty. The task group chose to focus on the broader aspects of underground design and construction, recognizing that the BWIP program utilizes a peer review group on a regular basis which reviews the specific technical questions related to geotechnical engineering. In this way, it was hoped that the review provided by the task group would complement those prepared by the BWIP peer review group

  9. The Cigeo project: an industrial storage site for radioactive wastes in deep underground

    International Nuclear Information System (INIS)

    Krieguer, Jean-Marie

    2017-01-01

    In 2006, France has decided to store its high-level and long-lived radioactive wastes, mostly issued from the nuclear industry, in a deep geological underground disposal site. This document presents the Cigeo project, a deep underground disposal site (located in the East of France) for such radioactive wastes, which construction is to be started in 2021 (subject to authorization in 2018). After a brief historical review of the project, started 20 years ago, the document presents the radioactive waste disposal context, the ethical choice of underground storage (in France and elsewhere) for these types of radioactive wastes, the disposal site safety and financing aspects, the progressive development of the underground facilities and, of most importance, its reversibility. In a second part, the various works around the site are presented (transport, buildings, water and power supply, etc.) together with a description of the various radioactive wastes (high and intermediate level and long-lived wastes and their packaging) that will be disposed in the site. The different steps of the project are then reviewed (the initial design and initial construction phases, the pilot industrial phase (expected in 2030), the operating phase, and the ultimate phases that will consist in the definitive closure of the site and its monitoring), followed by an extensive description of the various installations of surface and underground facilities, their architecture and their equipment

  10. European research project 'Metrology for radioactive waste management'

    International Nuclear Information System (INIS)

    Suran, J.

    2014-01-01

    The three-year European research project M etrology for Radioactive Waste Management' was launched in October 2011 under the EMRP (European Metrology Research Programme). It involves 13 European national metrology institutes and a total budget exceeds four million Euros. The project is coordinated by the Czech Metrology Institute and is divided into five working groups. This poster presents impact, excellence, relevance to EMPR objectives, and implementation and management of this project.(author)

  11. INEL Waste and Environmental Information Integration Project approach and concepts

    International Nuclear Information System (INIS)

    Dean, L.A.; Fairbourn, P.J.; Randall, V.C.; Riedesel, A.M.

    1994-06-01

    The Idaho National Engineering, Laboratory (INEL) Waste and Environmental Information integration Project (IWEIIP) was established in December 1993 to address issues related to INEL waste and environmental information including: Data quality; Data redundancy; Data accessibility; Data integration. This effort includes existing information, new development, and acquisition activities. Existing information may not be a database record; it may be an entire document (electronic, scanned, or hard-copy), a video clip, or a file cabinet of information. The IWEIIP will implement an effective integrated information framework to manage INEL waste and environmental information as an asset. This will improve data quality, resolve data redundancy, and increase data accessibility; therefore, providing more effective utilization of the dollars spent on waste and environmental information

  12. Tunnel Boring Machine for nuclear waste repository research project

    International Nuclear Information System (INIS)

    Janzon, H.A.

    1994-01-01

    A description is presented of a Tunnel Boring Machine and its intended use on a research project underway in Sweden for demonstrating and testing methods for rock investigation at a suitable depth for a deep repository for nuclear waste

  13. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    International Nuclear Information System (INIS)

    Herbst, A.K.

    2000-01-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state

  14. Development plan. High activity-long living wastes project. Abstract; Plan de developpement. Projet HAVL. Resume

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This brochure presents the actions that the ANDRA (the French national agency of radioactive wastes) has to implement in the framework of the project of high activity-long living (HALL) radioactive wastes (HAVL project) conformably to the requirements of the program defined in the law from June 28, 2006 (law no 2006-739). This law precises the three, complementary, research paths to explore for the management of this type of wastes: separation and transmutation of long-living radioactive elements, reversible disposal in deep geologic underground, and long duration storage. The ANDRA's action concerns the geologic disposal aspect. The following points are presented: the HALL wastes and their containers, the reversible disposal procedure, the HAVL project: financing of researches, storage concepts, development plan of the project (dynamics, information and dialogue approach, input data, main steps, schedule); the nine programs of the HAVL project (laboratory experiments and demonstration tests, surface survey, scientific program, simulation program, surface engineering studies and technological tests, information and communication program, program of environment and facilities surface observation and monitoring, waste packages management, monitoring and transport program, disposal program); the five transverse technical and scientific activities (safety, reversibility, cost, health and occupational safety, impact study). (J.S.)

  15. Specifications of the International Atomic Energy Agency's international project on safety assessment driven radioactive waste management solutions

    International Nuclear Information System (INIS)

    Ghannadi, M.; Asgharizadeh, F.; Assadi, M. R.

    2008-01-01

    Radioactive waste is produced in the generation of nuclear power and the production and use of radioactive materials in the industry, research, and medicine. The nuclear waste management facilities need to perform a safety assessment in order to ensure the safety of a facility. Nuclear safety assessment is a structured and systematic way of examining a proposed facility, process, operation and activity. In nuclear waste management point of view, safety assessment is a process which is used to evaluate the safety of radioactive waste management and disposal facilities. In this regard the International Atomic Energy Agency is planed to implement an international project with cooperation of some member states. The Safety Assessment Driving Radioactive Waste Management Solutions Project is an international programme of work to examine international approaches to safety assessment in aspects of p redisposal r adioactive waste management, including waste conditioning and storage. This study is described the rationale, common aspects, scope, objectives, work plan and anticipated outcomes of the project with refer to International Atomic Energy Agency's documents, such as International Atomic Energy Agency's Safety Standards, as well as the Safety Assessment Driving Radioactive Waste Management Solutions project reports

  16. EPRI waste processing projects

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1987-01-01

    The Electric Power Research Institute (EPRI) manages research for its sponsoring electric utilities in the United States. Research in the area of low level radioactive waste (LLRW) from light water reactors focuses primarily on waste processing within the nuclear power plants, monitoring of the waste packages, and assessments of disposal technologies. Accompanying these areas and complimentary to them is the determination and evaluation of the sources of nuclear power plants radioactive waste. This paper focuses on source characterization of nuclear power plant waste, LLRW processing within nuclear power plants, and the monitoring of these wastes. EPRI's work in waste disposal technology is described in another paper in this proceeding by the same author. 1 reference, 5 figures

  17. Integrated data base for 1990: US spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1990-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1989. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 22 refs., 48 figs., 109 tabs

  18. Integrated Data Base for 1991: US spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1991-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1990. These data are based on the most reliable information available form government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated generally through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 160 refs., 61 figs., 142 tabs

  19. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-04-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  20. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  1. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-03-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  2. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-06-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  3. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  4. The Plasma Hearth Process demonstration project for mixed waste treatment

    International Nuclear Information System (INIS)

    Geimer, R.; Dwight, C.; McClellan, G.

    1994-01-01

    The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the Department of Energy (DOE) Office of Technology Development (OTD) Mixed Waste Integrated Program (MWIP). Testing to date has yielded encouraging results in displaying potential applications for the PHP technology. Early tests have shown that a wide range of waste materials can be readily processed in the PHP and converted to a vitreous product. Waste materials can be treated in their original container as received at the treatment facility, without pretreatment. The vitreous product, when cooled, exhibits excellent performance in leach resistance, consistently exceeding the Environmental Protection Agency (EPA) Toxicity Characteristic Leaching Procedure (TCLP) requirements. Performance of the Demonstration System during test operations has been shown to meet emission requirements. An accelerated development phase, being conducted at both bench- and pilot-scale on both nonradioactive and radioactive materials, will confirm the viability of the process. It is anticipated that, as a result of this accelerated technology development and demonstration phase, the PHP will be ready for a final field-level demonstration within three years

  5. ERM 593 Applied Project_Guidance for Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System_Final_05-05-15

    Energy Technology Data Exchange (ETDEWEB)

    Elicio, Andy U. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-05

    My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform a review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.

  6. The international STRIPA project. Experimental research on the underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    1983-03-01

    The International Stripa Project is a joint undertaking by a number of countries, carried out under the sponsorship of the OECD Nuclear Energy Agency. It concerns research into the feasibility and safety of disposal of highly radioactive wastes from nuclear power generation, deep underground in crystalline rock. The Project is managed by the Division KBS of the Swedish Nuclear Fuel Supply Company (SKBF), under the direction of representatives from each participating country. This report summarizes the objectives and preliminary results of experimental work performed within the framework of the Stripa Project and that undertaken prior to the establishment of the Project at the Stripa Mine in Sweden. It also describes the part played by the Project in the development of national policies for the safe disposal of radioactive wastes

  7. Characterization of low-level waste from the industrial sector, and near-term projection of waste volumes and types

    International Nuclear Information System (INIS)

    MacKenzie, D.R.

    1988-01-01

    A telephone survey of low-level waste generators has been carried out in order to make useful estimates of the volume and nature of the waste which the generators will be shipping for disposal when the compacts and states begin operating new disposal facilities. Emphasis of the survey was on the industrial sector, since there has been little information available on characteristics of industrial LLW. Ten large industrial generators shipping to Richland, ten shipping to Barnwell, and two whose wastes had previously been characterized by BNL were contacted. The waste volume shipped by these generators accounted for about two-thirds to three-quarters of the total industrial volume. Results are given in terms of the categories of LLW represented and of the chemical characteristics of the different wastes. Estimates by the respondents of their near-term waste volume projections are presented

  8. Characterization of low-level waste from the industrial sector, and near-term projection of waste volumes and types

    International Nuclear Information System (INIS)

    MacKenzie, D.R.

    1988-01-01

    A telephone survey of low-level waste generators has been carried out in order to make useful estimates of the volume and nature of the waste which the generators are shipping for disposal when the compacts and states begin operating new disposal facilities. Emphasis of the survey was on the industrial sector, since there has been little information available on characteristics of industrial LLW. Ten large industrial generators shipping to Richland, ten shipping to Barnwell, and two whose wastes had previously been characterized by BNL were contacted. The waste volume shipped by these generators accounted for about two-thirds to three-quarters of the total industrial volume. Results are given in terms of the categories of LLW represented and of the chemical characteristics of the different wastes. Estimates by the respondents of their near-term waste volume projections are presented

  9. Nested Fixed-Depth Fluidic Sampler and At Tank Analysis System Deployment Strategy and Plan

    International Nuclear Information System (INIS)

    REICH, F.R.

    2000-01-01

    Under the Hanford Site River Protection Project (RPP) privatization strategy, the U.S. Department of Energy (DOE) Office of River Protection (ORP) requires the CH2M Hill Hanford Group, Inc. (CHG) to supply tank waste to the privatization contractor, BNFL Inc. (BNFL), for separation and/or treatment and immobilization (vitrification). Three low-activity waste (LAW) specification envelopes represent the range of liquid waste types in the large, Hanford Site underground waste storage tanks. The CHG also is expected to supply high-level waste (HLW) separation and/or treatment and disposal. The HLW envelope is an aqueous slurry of insoluble suspended solids (sludge). The Phase 1 demonstration will extend over 24 years (1996 through 2019) and will be used to resolve technical uncertainties. About one-tenth of the total Hanford Site tank waste, by mass, will be processed during this period. This document provides a strategy and top-level implementation plan for demonstrating and deploying an alternative sampling technology. The alternative technology is an improvement to the current grab sampling and core sampling approaches that are planned to be used to support the RPP privatization contract. This work also includes adding the capability for some at-tank analysis to enhance the potential of this new technology to meet CHG needs. The first application is to LAW and HLW feed staging for privatization; the next is to support cross-site waste transfer from 200 West Area tanks

  10. The 2016-2018 National Plan of Management of Radioactive Materials and Wastes - Project

    International Nuclear Information System (INIS)

    Gazzo, Alexis; Robert, Jean-Gabriel; Abraham, Christophe; Benaze, Manon de

    2015-01-01

    A first document contains the project of the National Plan of Management of Radioactive Materials and Wastes (PNGMDR) for the period 2016-2018: principles and objectives (presentation of radioactive materials and wastes, principles to be taken into account to define pathways of management of radioactive wastes, legal and institutional framework, information transparency), the management of radioactive materials (context and challenges, management pathways, works on fast breeder reactors of fourth generation), assessment and perspectives of existing pathways of management of radioactive wastes (management of historical situations, management of residues of mining and sterile processing, management of waste with a high natural radioactivity, management of very short life waste, of very low activity wastes, and low and medium activity wastes), needs and perspectives regarding management processes to be implemented for the different types of radioactive wastes. Appendices to this document contain a recall of the content of previous PNGMDR since 2007, a synthesis of realisations and researches performed abroad, research orientations for the concerned period, and international agreement on spent fuel and radioactive waste management. A second document, released by the ASN, proposes an environmental and strategic assessment of the plan. A third one and a fourth one contain the opinion of the Environmental Authority, respectively on the plan preliminary focus, and on the plan itself. An answer to this last one is then proposed, followed by a synthesis of the plan project and the text of the corresponding decree

  11. Mixing of Process Heels, Process Solutions and Recycle Streams: Small-Scale Simulant

    International Nuclear Information System (INIS)

    Kaplan, D.I.

    2001-01-01

    The overall objective of this small-scale simulant mixing study was to identify the processes within the Hanford Site River Protection Project - Waste Treatment Plant (RPP-WTP) that may generate precipitates and to identify the types of precipitates formed. This information can be used to identify where mixtures of various solutions will cause precipitation of solids, potentially causing operational problems such as fouling equipment or increasing the amount of High Level Waste glass produced. Having this information will help guide protocols for flushing or draining tanks, mixing internal recycle streams, and mixing waste tank supernates. This report contains the discussion and thermodynamic chemical speciation modeling of the raw data

  12. Site 300 hazardous-waste-assessment project. Interim report: December 1981. Preliminary site reconnaissance and project work plan

    International Nuclear Information System (INIS)

    Raber, E.; Helm, D.; Carpenter, D.; Peifer, D.; Sweeney, J.

    1982-01-01

    This document was prepared to outline the scope and objectives of the Hazardous Waste Assessment Project (HWAP) at Site 300. This project was initiated in October, 1981, to investigate the existing solid waste landfills in an effort to satisfy regulatory guidelines and assess the potential for ground-water contamination. This involves a site-specific investigation (utilizing geology, hydrology, geophysics and geochemistry) with the goal of developing an effective ground-water quality monitoring network. Initial site reconnaissance work has begun and we report the results, to date, of our geologic hydrogeologic studies. All known solid waste disposal locations are underlain by rocks of either the Late Miocene Neroly Formation or the Cierbo Formation, both of which are dominantly sandstones interbedded with shale and claystone. The existence of a regional confined (artesian) aquifer, as well as a regional water-table aquifer is postulated for Site 300. Preliminary analysis has led to an understanding of directions and depths of regional ground-water flow

  13. West Valley Demonstration Project low-level and transuranic waste assay and methodology

    International Nuclear Information System (INIS)

    McVay, C.W.

    1987-03-01

    In the decontamination and decommissioning of the West Valley Nuclear Facility, waste materials are being removed and packaged in a variety of waste containers which require classification in accordance with USNRC 10 CFR 61 and DOE 5820.2 criteria. Low-Level and Transuranic waste assay systems have been developed to efficiently assay and classify the waste packages. The waste is assayed by segmented gamma scanning, passive neutron techniques, dose rate conversion, and/or radiochemical laboratory analysis. The systems are capable of handling all the waste forms currently packaged as part of the Project. The above systems produce a list of nuclides present with their concentrations and determines the classification of the waste packages based on criteria outlined in DOE Order 5820.2 and USNRC 10 CFR 61.55. 9 refs., 12 figs., 8 tabs

  14. The Los Alamos National Laboratory Chemistry and Metallurgy Research Facility upgrades project - A model for waste minimization

    International Nuclear Information System (INIS)

    Burns, M.L.; Durrer, R.E.; Kennicott, M.A.

    1996-07-01

    The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently undergoing a major, multi-year construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D ampersand D) job and are identical to the requirements of any of several upgrades projects anticipated for LANL and other Department of Energy (DOE) sites. For these reasons the CMR Upgrades Project is seen as an ideal model facility - to test the application, and measure the success of - waste minimization techniques which could be brought to bear on any of the similar projects. The purpose of this paper will be to discuss the past, present, and anticipated waste minimization applications at the facility and will focus on the development and execution of the project's open-quotes Waste Minimization/Pollution Prevention Strategic Plan.close quotes

  15. Position paper, need for additional waste storage capacity and recommended path forward for project W-236a, Multi-function Waste Tank Facility

    International Nuclear Information System (INIS)

    Awadalla, N.G.

    1994-01-01

    Project W-236a, Multi-function waste Tank Facility (MWTF), was initiated to increase the safe waste storage capacity for the Tank Waste Remediation System (TWRS) by building two new one million gallon underground storage tanks in the 200 West Area and four tanks in the 200 East Area. Construction of the tanks was scheduled to begin in September 1994 with operations beginning in calendar year (CY) 1998. However, recent reviews have raised several issues regarding the mission, scope, and schedule of the MWTF. The decision to build new tanks must consider several elements, such as: Operational risk and needs -- Operational risk and flexibility must be managed such that any identified risk is reduced as soon as practicable; The amount of waste that will be generated in the future -- Additional needed tank capacity must be made available to support operations and maintain currently planned safety improvement activities; Safety issues -- The retrieval of waste from single-shell tanks (SSTs) and watch list tanks will add to the total amount of waste that must be stored in a double-shell tank (DST); Availability of existing DSTs -- The integrity of the 28 existing DSTs must be continuously managed; and Affect on other projects and programs -- Because MWTF systems have been integrated with other projects, a decision on one project will affect another. In addition the W-236a schedule is logically tied to support retrieval and safety program plans. Based on the above, two new tanks are needed for safe waste storage in the 200 West Area, and they need to be built as soon as practicable. Design should continue for the tanks in the 200 East Area with a decision made by September, on whether to construct them. Construction of the cross-site transfer line should proceed as scheduled. To implement this recommendation several actions need to be implemented

  16. The ''Ulisse'' project for the treatment of radioactive wastes of ENEA Department of Fuel

    International Nuclear Information System (INIS)

    Broglia, M.

    1988-01-01

    The high-level liquid wastes producedby the Nuclear Fuel Cycle Department of the Italian Committee for R and D of Nuclear and Alternative Energy since 1970 up today, are characterized by a very high aluminum content which would seriously limit the option of their vitrification. A simple chemical process for the separation of the radioactive fraction from the aluminum nitrate solution before vitrification has been proposed, reducing by a factor 10 the finally obtainable glass-waste volume (the ''ULISSE'' Project). This comparative study of the ''ULISSE'' high-level waste and detailed compositions of preferred products from various international Laboratories should supply a good initial condition in a glass matrix design for waste immobilization, and a feed-back control on the Project parameters

  17. Effects of an incinerator project on a healthcare-waste management system.

    Science.gov (United States)

    Khammaneechan, Patthanasak; Okanurak, Kamolnetr; Sithisarankul, Pornchai; Tantrakarnapa, Kraichat; Norramit, Poonsup

    2011-10-01

    This evaluative research study aimed to assess the effects of the central healthcare incinerator project on waste management in Yala Province. The study data were collected twice: at baseline and during the operational phase. A combination of structured interview and observation were used during data collection. The study covered 127 healthcare facilities: government hospitals, healthcare centres, and private clinics. The results showed 63% of healthcare risk waste (HCRW) handlers attended the HCRW management training. Improvements in each stage of the HCRW management system were observed in all groups of facilities. The total cost of the HCRW management system did not change, however; the costs for hospitals decreased, whereas those for clinics increased significantly. It was concluded that the central healthcare waste incinerator project positively affected HCRW management in the area, although the costs of management might increase for a particular group. However, the benefits of changing to a more appropriately managed HCRW system will outweigh the increased costs.

  18. How does one develop the right quality assurance program for waste management projects?

    International Nuclear Information System (INIS)

    Hedges, D.

    1988-01-01

    The quality assurance requirements in use today for radioactive waste facilities, geologic repositories and hazardous waste projects were developed initially for the nuclear power plant industry, and their intent is being applied to regulations and guidance documents to radioactive and hazardous waste programs. The wording of the Nuclear Regulatory Commission (NRC) quality assurance (QA) requirements in Appendix B of 10CFR50, the related guidance documents and the industry's ANSI/ASME NQA-1 were developed over a period of several years to address quality assurance for the design and construction of the complex and interactive systems to produce electrical power using nuclear fuel. Now, those same documents are the basis for the quality assurance requirements and guidance for waste management facilities and repositories. The intent of Appendix B of 10CFR50 and NQA-1 can easily be applied to waste projects providing one understands and uses the intent of the requirements. This paper describes the intent of existing QA requirements as they apply to radioactive and hazardous waste programs. Methods of ensuring that the quality assurance program design will be acceptable to DOE and regulatory agencies are illustrated

  19. How does one develop the right quality assurance program for waste management projects?

    International Nuclear Information System (INIS)

    Hedges, D.

    1988-01-01

    The quality assurance requirements in use today for radioactive waste facilities, geologic repositories and hazardous waste projects were developed initially for the nuclear power plant industry, and their intent is being applied by regulations and guidance documents to radioactive and hazardous waste programs. The wording of the NRC quality assurance requirements in Appendix B of 10CFR50, the related guidance documents and the industry's ANSI/ASME NQA-1 were developed over a period of several years to address quality assurance for the design and construction of the complex and interactive systems to produce electrical power using nuclear fuel. Now, those same documents are the basis for the quality assurance requirements and guidance for waste management facilities and repositories. The intent of Appendix B of 10CFR50 and NQA-1 can easily be applied to waste projects, providing one understands and uses the intent of the requirements. This paper describes the intent of existing QA requirements as they apply to radioactive and hazardous waste programs. Methods of ensuring that the quality assurance program design will be acceptable to DOE and regulatory agencies are illustrated

  20. Tank Waste Remediation System Characterization Project Programmatic Risk Management Plan

    International Nuclear Information System (INIS)

    Baide, D.G.; Webster, T.L.

    1995-12-01

    The TWRS Characterization Project has developed a process and plan in order to identify, manage and control the risks associated with tank waste characterization activities. The result of implementing this process is a defined list of programmatic risks (i.e. a risk management list) that are used by the Project as management tool. This concept of risk management process is a commonly used systems engineering approach which is being applied to all TWRS program and project elements. The Characterization Project risk management plan and list are subset of the overall TWRS risk management plan and list

  1. A post-contract project analysis of material waste and cost overrun ...

    African Journals Online (AJOL)

    Material waste and cost overrun have been identified as common problems in the construction industry. These problems occur at both pre- and post-contract stages of a construction project. As a result of a dearth of empirical research and low level of awareness, the majority of managers of construction projects in Nigeria ...

  2. Project Guarantee 1985. Repository for high-level radioactive waste: construction and operation

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    An engineering project study aimed at demonstrating the feasibility of constructing a deep repository for high-level waste (Type C repository) has been carried out; the study is based on a model data-set representing typical geological and rock mechanical conditions as found outside the so-called Permocarboniferous basin in the regions under investigation by Nagra in Cantons Aargau, Schaffhausen, Solothurn and Zuerich. The repository is intended for disposal of high-level waste and any intermediate-level waste from re-processing in which the concentration of long-lived alpha-emitters exceeds the permissible limits set for a Type B repository. Final disposal of high-level waste is in subterranean, horizontally mined tunnels and of intermediate-level waste in underground vertical silos. The repository is intended to accomodate a total of around 6'000 HWL-cylinders (gross volume of around 1'200 m3) and around 10'000 m3 of intermediate-level waste. The total excavated volume is around 1'100'000 m3 and a construction time for the whole repository (up to the beginning of emplacement) of around 15 years is expected. For the estimated 50-year emplacement operations, a working team of around 60 people will be needed and a team of around 160 for the simultaneous tunnelling operations and auxiliary work. The project described in the present report permits the conclusion that construction of a repository for high-level radioactive waste and, if necessary, spent fuel-rods is feasible with present-day technology

  3. Solid waste integrated cost analysis model: 1991 project year report. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The purpose of the City of Houston`s 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA`s Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  4. Waste-efficient materials procurement for construction projects: A structural equation modelling of critical success factors.

    Science.gov (United States)

    Ajayi, Saheed O; Oyedele, Lukumon O

    2018-05-01

    Albeit the understanding that construction waste is caused by activities ranging from all stages of project delivery process, research efforts have been concentrated on design and construction stages, while the possibility of reducing waste through materials procurement process is widely neglected. This study aims at exploring and confirming strategies for achieving waste-efficient materials procurement in construction activities. The study employs sequential exploratory mixed method approach as its methodological framework, using focus group discussion, statistical analysis and structural equation modelling. The study suggests that for materials procurement to enhance waste minimisation in construction projects, the procurement process would be characterised by four features. These include suppliers' commitment to low waste measures, low waste purchase management, effective materials delivery management and waste-efficient Bill of Quantity, all of which have significant impacts on waste minimisation. This implies that commitment of materials suppliers to such measures as take back scheme and flexibility in supplying small materials quantity, among others, are expected of materials procurement. While low waste purchase management stipulates the need for such measures as reduced packaging and consideration of pre-assembled/pre-cut materials, efficient delivery management entails effective delivery and storage system as well as adequate protection of materials during the delivery process, among others. Waste-efficient specification and bill of quantity, on the other hand, requires accurate materials take-off and ordering of materials based on accurately prepared design documents and bill of quantity. Findings of this study could assist in understanding a set of measures that should be taken during materials procurement process, thereby corroborating waste management practices at other stages of project delivery process. Copyright © 2018. Published by Elsevier Ltd.

  5. Mobile/Modular Deployment Project-Enhancing Efficiencies within the National Transuranic Waste Program

    International Nuclear Information System (INIS)

    Triay, I.R.; Basabilvazo, G.B.; Countiss, S.; Moody, D.C.; Behrens, R.G.; Lott, S.A.

    2002-01-01

    In 1999, the National Transuranic (TRU) Waste Program (NTP) achieved two significant milestones. First, the Waste Isolation Plant (WIPP) opened in March for the permanent disposal of TRU waste generated by, and temporarily stored at, various sites supporting the nation's defense programs. Second, the Hazardous Waste Facility Permit, issued by the New Mexico Environment Department, for WIPP became effective in November. While the opening of WIPP brought to closure a number of scientific, engineering, regulatory, and political challenges, achieving this major milestone led to a new set of challenges-how to achieve the Department of Energy's (DOE's) NTP end-state vision: All TRU waste from DOE sites scheduled for closure is removed All legacy TRU waste from DOE sites with an ongoing nuclear mission is disposed 0 All newly generated TRU waste is disposed as it is generated The goal is to operate the national TRU waste program safely, cost effectively, in compliance with applicable regulations and agreements, and at full capacity in a fully integrated mode. The existing schedule for TRU waste disposition would achieve the NTP vision in 2034 at an estimated life-cycle cost of $16B. The DOE's Carlsbad Field Office (CBFO) seeks to achieve this vision early-by at least 10 years- while saving the nation an estimated $48 to $6B. CBFO's approach is to optimize, or to make as functional as possible, TRU waste disposition. That is, to remove barriers that impede waste disposition, and increase the rate and cost efficiency of waste disposal at WIPP, while maintaining safety. The Mobile/Modular Deployment Project (MMDP) is the principal vehicle for implementing DOE's new commercial model of using best business practices of national authorization basis, standardization, and economies of scale to accelerate the completion of WIPP's mission. The MMDP is one of the cornerstones of the National TRU Waste System Optimization Project (1). The objective of the MMDP is to increase TRU

  6. Risk identification for PPP waste-to-energy incineration projects in China

    International Nuclear Information System (INIS)

    Song, Jinbo; Song, Danrong; Zhang, Xueqing; Sun, Yan

    2013-01-01

    Municipal solid waste (MSW) is regarded as a renewable energy source. In China, the sharp increase of MSW has precipitated the rapid growth of waste-to-energy (WTE) incineration plants. Private capital has been getting into the WTE incineration industry through the public–private partnership (PPP) arrangement. Due to the large construction cost and the long concession period commonly associated with this arrangement, a number of failures have emerged in PPP WTE incineration projects. The aim of this paper is to investigate the key risks of PPP WTE incineration projects in China and study the strategies for managing these risks by drawing experience and learning lessons from these projects. First, we analyzed the MSW management practices, relevant legislations and policies, and the development of PPP WTE incineration projects in China. Second, we identified ten key risks through interviews, surveys and visits to some selected projects, and provided detailed analysis of these risks. Lastly, we developed response strategies for these risks from the perspectives of both public and private sectors. - Highlights: • We analyze MSW management practices, relevant legislations and policies in China. • Through case study on PPP WTE incineration projects, ten key risks are identified. • Response strategies for key risks are developed

  7. Characterization, Leaching, and Filtration Testing for Tributyl Phosphate (TBP, Group 7) Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matthew K.; Billing, Justin M.; Blanchard, David L.; Buck, Edgar C.; Casella, Amanda J.; Casella, Andrew M.; Crum, J. V.; Daniel, Richard C.; Draper, Kathryn E.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.; Swoboda, Robert G.

    2009-03-09

    .A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. The tributyl phosphate sludge (TBP, Group 7) is the subject of this report. The Group 7 waste was anticipated to be high in phosphorus as well as aluminum in the form of gibbsite. Both are believed to exist in sufficient quantities in the Group 7 waste to address leaching behavior. Thus, the focus of the Group 7 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  8. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    International Nuclear Information System (INIS)

    Smith, K.E.

    1994-01-01

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design

  9. Statement of John H. Anttonen, Project Manager, Basalt Waste Isolation Project, Richland Operations Office, Department of Energy

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    My name is John Anttonen and I am the Project Manager for the Basalt Waste Isolation Project (BWIP) at the Department of Energy Richland Operation Office. The responsibilities of may office are to manage the day-to-day activities of the site suitability investigations of the basalt formations at the Hanford Site, a Department complex that is involved in a variety of national missions, including defense materials production, nuclear energy research, and radioactive waste management. In may prepared comments today I would like to touch upon four specific subject areas relating to the BWIP program and then I would be happy to answer any questions you might have. The topics I will cover are: (1) historical aspects; (2) site specific technical issues and how they will be addressed during site characterization of the basalt site at Hanford; (3) current project status and; (4) institutional interaction. For clarity, I have attached several charts to my statement

  10. CONRRAD Project: how CNEA is managing radioactive waste knowledge

    International Nuclear Information System (INIS)

    Vetere, Claudia L.; Gomiz, Pablo R.

    2009-01-01

    The aim of this paper is to introduce CONRRAD Project, which is an initiative of the Knowledge Management Group (GesCon) belonged to the Nuclear Safety and Environment Area, for knowledge preservation of Radioactive Waste Management. It discusses the methodology and the results that have been achieved at present. (author)

  11. Radioactive waste management. International projects on biosphere modelling

    International Nuclear Information System (INIS)

    Carboneras, P.; Cancio, D.

    1993-01-01

    The paper presents a general overview and discussion on the state of art concerning the biospheric transfer and accumulation of contaminants. A special emphasis is given to the progress achieved in the field of radioactive contaminants and particularly to those implied in radioactive waste disposal. The objectives and advances of the international projects BIOMOVS and VAMP on validation of model predictions are also described. (Author)

  12. Low-Level Waste Vitrification Plant Project contracting strategy decision analysis report

    International Nuclear Information System (INIS)

    Felise, P.; Phillips, J.D.

    1994-01-01

    Ten basic contracting strategies were developed after a review of past strategies that had been used at the Hanford Site, other US Department of Energy (DOE) sites, other US government agencies, and in the private sector. As applicable to the Low-Level Waste Vitrification Plant (LLWVP) Project, each strategy was described and depicted in a schedule format to assess compatibility with the Hanford Federal Facility Agreement and Consent Order, al so known as the Tri-Party Agreement (Ecology et al. 1994) milestones, key decision points, and other project requirements. The-pro and con aspects of each strategy also were tabulated. Using this information as a basis, the LLWVP Project team members, along with representatives of Tank Waste Remediation System (TWRS) Engineering, TWRS Programs, and Procurement Materials Management, formed a Westinghouse Hanford Company (WHC) evaluation team to select the best strategy. Kepner-Tregoe decision analysis techniques were used in facilitated meetings to arrive at the best balanced choice

  13. Low-Level Waste Vitrification Plant Project contracting strategy decision analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Felise, P.; Phillips, J.D.

    1994-10-17

    Ten basic contracting strategies were developed after a review of past strategies that had been used at the Hanford Site, other US Department of Energy (DOE) sites, other US government agencies, and in the private sector. As applicable to the Low-Level Waste Vitrification Plant (LLWVP) Project, each strategy was described and depicted in a schedule format to assess compatibility with the Hanford Federal Facility Agreement and Consent Order, al so known as the Tri-Party Agreement (Ecology et al. 1994) milestones, key decision points, and other project requirements. The-pro and con aspects of each strategy also were tabulated. Using this information as a basis, the LLWVP Project team members, along with representatives of Tank Waste Remediation System (TWRS) Engineering, TWRS Programs, and Procurement Materials Management, formed a Westinghouse Hanford Company (WHC) evaluation team to select the best strategy. Kepner-Tregoe decision analysis techniques were used in facilitated meetings to arrive at the best balanced choice.

  14. Salt Repository Project: Waste Package Program (WPP) modeling activiteis: FY 1984 annual report

    International Nuclear Information System (INIS)

    Kuhn, W.L.; Simonson, S.A.; Pulsipher, B.A.

    1987-03-01

    The Pacific Northwest Laboratory (PNL) is supporting the US Department of Energy's (DOE) Salt Repository Project (SRP) through its Waste Package Program (WPP). During FY 1984, the WPP continued its program of waste package component development and interactions testing and application of the resulting data base to develop predictive models describing waste package degradation and radionuclide release. Within the WPP, the Modeling Task (Task 04 during FY 1984) was conducted to interpret the tests in such a way that scientifically defensible models can be developed for use in qualification of the waste package

  15. ''Project Crystal'' for ultimate storage of highly radioactive waste

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    NAGRA (The National Association for storage of radioactive waste) in Baden has launched in North Switzerland an extensive geological research program. The current research program, under the title of ''Project Crystal'', aims at providing the scientific knowledge which is required for the assessment of the suitability of the crystalline sub-soil of North Switzerland for the ultimate storage of highly radioactive waste. Safety and feasibility of such ultimate storage are in the forefront of preoccupations. Scientific institutes of France, Germany, USA and Canada are cooperating more particularly on boring research and laboratory analyses. Technical data are given on the USA and German installations used. (P.F.K.)

  16. Project W-320, waste retrieval sluicing system: BIO/SER implementation matrices

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    This document provides verification that the safety related commitments specified in HNF-SD-WM-810-001, Addendum 1 for the Waste Retrieval Sluicing System, Project W-320 and Project W-320 Safety Evaluation Report (SER), have been implemented in the project hardware, procedures and administrative controls. Four appendices include matrices which show where the 810 commitments are implemented for limiting conditions of operation and surveillance requirements controls, administrative controls, defense-in-depth controls and controls discussed in 810 Addendum 1. A fifth appendix includes the implementation of Project W-320 SER issues and provisions

  17. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1992-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal

  18. Filtration and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Geeting, John GH; Hallen, Richard T.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Snow, Lanee A.; Swoboda, Robert G.

    2009-02-20

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.( ) The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP-RPP-WTP-467, eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste-testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan • Characterizing the homogenized sample groups • Performing parametric leaching testing on each group for compounds of interest • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on filtration/leaching tests performed on two of the eight waste composite samples and follow-on parametric tests to support aluminum leaching results from those tests.

  19. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  20. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    International Nuclear Information System (INIS)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2012-01-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  1. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    International Nuclear Information System (INIS)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2013-01-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  2. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton J. [U.S. Department of Energy, Office of River Protection, Post Office Box 550, Richland, Washington 99352 (United States); Kacich, Richard M. [Bechtel National, Inc., 2435 Stevens Center Place, Richland, Washington 99354 (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Post Office Box 850, Richland, Washington 99352 (United States)

    2013-07-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines

  3. The public visits a nuclear waste site: Survey results from the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hoffman, W.D.

    1987-01-01

    This paper discusses the results of the 1986 survey taken at the West Valley Demonstration Project Open House where a major nuclear waste cleanup is in progress. Over 1400 people were polled on what they think is most effective in educating the public on nuclear waste. A demographic analysis describes the population attending the event and their major interests in the project. Responses to attitudinal questions are examined to evaluate the importance of radioactive waste cleanup as an environmental issue and a fiscal responsibility. Additionally, nuclear power is evaluated on its public perception as an energy resource. The purpose of the study is to find out who visits a nuclear waste site and why, and to measure their attitudes on nuclear issues

  4. Process Control Plan for 242-A Evaporator Campaign January 2001

    International Nuclear Information System (INIS)

    LE, E.Q.

    2001-01-01

    Wastewater stored in 104-AW that was generated during the terminal cleanout of the PUREX facility is the primary feed to be processed during the 242-A Evaporator Campaign 01-01, Approximately 801,600 gallons of 104-AW waste was transferred to feed tank 102-AW at the end of January 2001, in preparation for the campaign. The total feed volume that will be processed during Campaign 01-01 is 8 15,200 gallons, which includes the waste from 104-AW and residual waste from the previous evaporator campaign, 00-01, Additional feed will be generated during the pre-campaign cold run and processed during campaign 01-01. Based on characterization data from 104-AW feed waste 'and the evaluation of waste processability presented in Section 5 of this PCP, Campaign 01-01 does not pose any unacceptable risks to the facility, safety, environmental, human health offsite, or onsite personnel. Evaporator Campaign 01-01 is essential in supporting the River Protection Project (RPP) to maintaining its critical mission schedule and regulator commitments for tank waste systems. Several of RPP critical activities requiring completion of Campaign 01-01 by April 1, 2001 are highlighted below. Availability of DST space: Additional tank space that will be made available by this campaign is needed to support the continued interim stabilization of Single-Shell Tanks (SSTs). This additional space will also be used to move waste among Double-Shell Tanks (DSTs) to support the demonstrations of SST waste retrieval. DST life extension: An electrical outage in the AW Tank Farm is scheduled to begin following completion of the Campaign 01-01. This outage is a critical step in identifying and completing life extension upgrades to the DST systems. DST upgrades: Project W-314 plans significant upgrades to the AW Tank Farm to retrieve and supply waste feed to the Waste Treatment (Vitrification) Plant using a system that complies with current environmental requirements. These upgrades will commence on

  5. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hall, H. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  6. Yucca Mountain Project bibliography, January--June 1988: An update: Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    Tamura, A.T.; Lorenz, J.J.

    1988-10-01

    The Nevada Nuclear Waste Storage Investigations Project was renamed the Yucca Mountain Project on August 5, 1988. This update contains information that was added to the DOE Energy Data Base during the first six months of 1988. The update is categorized by principal project participating organizations, and items are arranged in chronological order. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Previous information on this project can be found in the Nevada Nuclear Waste Storage Investigations bibliographies, DOE/TIC-3406 which covers the years 1977--1985, and DOE/OSTI-3406(Suppl.1) which covers 1986 and 1987. These bibliographies contain indexes for Corporate Author, Personal Author, Subject, Contract Number, Report Number, Order Number Correlation and Key Word in Context

  7. Low-Level Legacy Waste Processing Experience at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Valenti, P.J.; Rowell, L.E.; Kurasch, D.H.; Moore, H.R.

    2006-01-01

    This paper presents detailed results and lessons learned from the very challenging and highly successful 2005 low level radioactive waste sorting, packaging, and shipping campaign that removed over 95% of the available inventory of 350,000 ft 3 of legacy low level waste at the West Valley Demonstration Project near West Valley, New York. First some programmatic perspective and site history is provided to provide pertinent context for DOE's waste disposal mandates at the site. This is followed by a detailed description of the waste types, the storage locations, the containers, and the varied sorting and packaging facilities used to accomplish the campaign. The overall sorting and packaging protocols for this inventory of wastes are defined. This is followed by detailed sorting data and results concluding with lessons learned. (authors)

  8. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

  9. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    International Nuclear Information System (INIS)

    1992-01-01

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs

  10. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico

    International Nuclear Information System (INIS)

    Garcia A, E.; Hernandez F, I. Y.; Fernandez R, E.; Monroy G, F.; Lizcano C, D.

    2014-10-01

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  11. Mine subsidence control projects associated with solid waste disposal facilities

    International Nuclear Information System (INIS)

    Wood, R.M.

    1994-01-01

    Pennsylvania environmental regulations require applicant's for solid waste disposal permits to provide information regarding the extent of deep mining under the proposed site, evaluations of the maximum subsidence potential, and designs of measures to mitigate potential subsidence impact on the facility. This paper presents three case histories of deep mine subsidence control projects at solid waste disposal facilities. Each case history presents site specific mine grouting project data summaries which include evaluations of the subsurface conditions from drilling, mine void volume calculations, grout mix designs, grouting procedures and techniques, as well as grout coverage and extent of mine void filling evaluations. The case studies described utilized basic gravity grouting techniques to fill the mine voids and fractured strata over the collapsed portions of the deep mines. Grout mixtures were designed to achieve compressive strengths suitable for preventing future mine subsidence while maintaining high flow characteristics to penetrate fractured strata. Verification drilling and coring was performed in the grouted areas to determine the extent of grout coverage and obtain samples of the in-place grout for compression testing. The case histories presented in this report demonstrate an efficient and cost effective technique for mine subsidence control projects

  12. Projecting future solid waste management requirements on the Hanford Site

    International Nuclear Information System (INIS)

    Shaver, S.R.; Stiles, D.L.; Holter, G.M.; Anderson, B.C.

    1990-09-01

    The problem of treating and disposing of hazardous transuranic (TRU), low-level radioactive, and mixed waste has become a major concern of the public and the government. At the US Department of Energy's Hanford Site in Washington state, the problem is compounded by the need to characterize, retrieve, and treat the solid waste that was generated and stored for retrieval during the past 20 years. This paper discusses the development and application of a Solid Waste Projection Model that uses forecast volumes and characteristics of existing and future solid waste to address the treatment, storage, and disposal requirements at Hanford. The model uses a data-driven, object-oriented approach to assess the storage and treatment throughout requirements for each operation for each of the distinct waste classes and the accompanying cost of the storage and treatment operations. By defining the elements of each alternative for the total waste management system, the same database can be used for numerous analyses performed at different levels of detail. This approach also helps a variety of users with widely varying information requirements to use the model and helps achieve the high degree of flexibility needed to cope with changing regulations and evolving treatment and disposal technologies. 2 figs

  13. Waste Management Plan for the Lower East Fork Poplar Creek Remedial Action Project Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Lower East Fork Poplar Creek (LEFPC) Remedial Action project will remove mercury-contaminated soils from the floodplain of LEFPC, dispose of these soils at the Y-12 Landfill V, and restore the affected floodplain upon completion of remediation activities. This effort will be conducted in accordance with the Record of Decision (ROD) for LEFPC as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) action. The Waste Management Plan addresses management and disposition of all wastes generated during the remedial action for the LEFPC Project Most of the solid wastes will be considered to be sanitary or construction/demolition wastes and will be disposed of at existing Y-12 facilities for those types of waste. Some small amounts of hazardous waste are anticipated, and the possibility of low- level or mixed waste exists (greater than 35 pCi/g), although these are not expected. Liquid wastes will be generated which will be sanitary in nature and which will be capable of being disposed 0214 of at the Oak Ridge Sewage Treatment Plant.

  14. Waste Management Plan for the Lower East Fork Poplar Creek Remedial Action Project Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    The Lower East Fork Poplar Creek (LEFPC) Remedial Action project will remove mercury-contaminated soils from the floodplain of LEFPC, dispose of these soils at the Y-12 Landfill V, and restore the affected floodplain upon completion of remediation activities. This effort will be conducted in accordance with the Record of Decision (ROD) for LEFPC as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) action. The Waste Management Plan addresses management and disposition of all wastes generated during the remedial action for the LEFPC Project Most of the solid wastes will be considered to be sanitary or construction/demolition wastes and will be disposed of at existing Y-12 facilities for those types of waste. Some small amounts of hazardous waste are anticipated, and the possibility of low- level or mixed waste exists (greater than 35 pCi/g), although these are not expected. Liquid wastes will be generated which will be sanitary in nature and which will be capable of being disposed 0214 of at the Oak Ridge Sewage Treatment Plant

  15. Environmental Management Integration Project/Mixed Waste Focus Area Partnership

    International Nuclear Information System (INIS)

    Gombert, D.; Kristofferson, K.; Cole, L.

    1999-01-01

    On January 16, 1998, the Assistant Secretary for the Environmental Management (EM) Program at the Department of Energy, issued DOE-Idaho the Program Integration and Systems Engineering Guidance for Fiscal Year 1998, herein called Guidance, which directed that program integration tasks be performed for all EM program areas. This guidance directed the EM Integration team, as part of the Task 1, to develop baseline waste and material disposition maps which are owned by the site Project Baseline Summary (PBS) manager. With these baselines in place Task 2 gave direction to link Science and Technology activities to the waste and material stream supported by that technology. This linkage of EM Program needs with the OST activities supports the DOE goal of maximizing cleanup at DOE sites by 2006 and provides a defensible science and technology program. Additionally, this linkage is a valuable tool in the integration of the waste and material disposition efforts for the DOE complex

  16. The International Stripa Project: Technology transfer from cooperation in scientific and technological research on nuclear waste disposal

    International Nuclear Information System (INIS)

    Levich, R.A.; Ferrigan, P.M.; Wilkey, P.L.

    1990-01-01

    The Nuclear Energy Agency of the organization for Economic Cooperation and Development (OECD/NEA) sponsors the International Stripa Project. The objectives of the Stripa Project are to develop techniques for characterizing sites located deep in rock formations that are potentially suitable for the geologic disposal of high-level radioactive wastes and to evaluate particular engineering design considerations that could enhance the long-term safety of a high-level radioactive waste repository in a geologic medium. The purpose of this paper is to briefly summarize the research conducted at Stripa and discuss the ways in which the technology developed for the Stripa Project has been and will be transfered to the United States Civilian Radioactive Waste Management Program's Yucca Mountain Project. 3 refs., 2 figs

  17. International projects on radioactive waste management in the Northwest region of Russia

    International Nuclear Information System (INIS)

    Melnikov, Nikolay

    1999-01-01

    This presentation deals with a project of the EC within the TACIS (Technical Assistance to the CIS - Commonwealth of Independent States) Programme ''Improvement of Safety of Radioactive Waste Management in the Northwest of Russia''. The individual subtasks considered are (1) Detailed project organisation, (2) Conceptual repository design, (3) Identification of suitable sites, (4) Identification of necessary site surveys, (5) Identification of necessary in-situ experiments, (6) Preliminary safety assessment of conceptual repositories, (7) Evaluation of suitable sites, (8) Draft repository waste acceptance criteria, (9) Conceptual design of surface infrastructures, (10) Outline of the future programme, and (11) Final report. There is a table showing the proposed repository sites and their geological environments

  18. Projection and enterprises controlling in domestic waste water econom

    Directory of Open Access Journals (Sweden)

    Schröder Reinhard

    2000-03-01

    Full Text Available The development of the cost of communal waste water disposal is widely discussed among the population, among politicians and experts. Not only the absolute amount of the charged fees are the cause of concern, but also their increase over the last few years. As part of this thesis, the PC software SloVaKon, which facilitates project and operation decision, will be designed to apply the experience gained during the building and expansion of the waste water industry in Germany´s five new federal states to the conditions in the Slovak republic. For this, a comparison of both country´s topographical, technical, legal and economical conditions proved necessary.

  19. Preliminary corrosion models for BWIP [Basalt Waste Isolation Project] canister materials

    International Nuclear Information System (INIS)

    Fish, R.L.; Anantatmula, R.P.

    1983-01-01

    Waste package development for the Basalt Waste Isolation Project (BWIP) requires the generation of materials degradation data under repository relevant conditions. These data are used to develop predictive models for the behavior of each component of waste package. The component models are exercised in performance analyses to optimize the waste package design. This document presents all repository relevant canister materials corrosion data that the BWIP and others have developed to date, describes the methodology used to develop preliminary corrosion models and provides the mathematical description of the models for both low carbon steel and Fe9Cr1Mo steel. Example environment/temperature history and model application calculations are presented to aid in understanding the models. The models are preliminary in nature and will be updated as additional corrosion data become available. 6 refs., 5 tabs

  20. Preliminary selection criteria for the Yucca Mountain Project waste package container material

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1991-01-01

    The Department of Energy's Yucca Mountain Project (YMP) is evaluating a site at Yucca Mountain in Nevada for construction of a geologic repository for the storage of high-level nuclear waste. Lawrence Livermore National Laboratory's (LLNL) Nuclear Waste Management Project (NWMP) has the responsibility for design, testing, and performance analysis of the waste packages. The design is performed in an iterative manner in three sequential phases (conceptual design, advanced conceptual design, and license application design). An important input to the start of the advanced conceptual design is the selection of the material for the waste containers. The container material is referred to as the 'metal barrier' portion of the waste package, and is the responsibility of the Metal Barrier Selection and Testing task at LLNL. The selection will consist of several steps. First, preliminary, material-independent selection criteria will be established based on the performance goals for the container. Second, a variety of engineering materials will be evaluated against these criteria in a screening process to identify candidate materials. Third, information will be obtained on the performance of the candidate materials, and final selection criteria and quantitative weighting factors will be established based on the waste package design requirements. Finally, the candidate materials will be ranked against these criteria to determine whether they meet the mandated performance requirements, and to provide a comparative score to choose the material for advanced conceptual design activities. This document sets forth the preliminary container material selection criteria to be used in screening candidate materials. 5 refs

  1. Catalytic hydrotreatment of refinery waste: Demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The object of this project and report is to produce liquid hydrocarbons by the catalytic hydroprocessing of solid refinery wastes (hard pitches) in order to improve the profitability of deep conversion processes and reduce the excess production of heavy fuels. The project was mostly carried out on the ASVAHL demonstration platform site, at Solaize, and hard pitches were produced primarily by deasphalting of atmospheric or vacuum distillation residues. The project includes two experimental phases and an economic evaluation study phase. In Phase 1, two granular catalysts were used to transform pitch into standard low sulfur fuel oil: a continuously moving bed, with demetallation and conversion catalyst; a fixed bed, with hydrorefining catalyst. In Phase 2 of the project, it was proven that a hydrotreatment process using a finely dispersed catalyst in the feedstock, can, under realistic operating conditions, transform with good yields hard pitch into distillates that can be refined through standard methods. In Phase 3 of the project, it was shown that the economics of such processes are tightly linked to the price differential between white'' and black'' oil products, which is expected to increase in the future. Furthermore, the evolution of environmental constraints will impel the use of such methods, thus avoiding the coproduction of polluting solid residues. 11 figs., 1 tab.

  2. Waste receiving and processing facility module 1 data management system software project management plan

    International Nuclear Information System (INIS)

    Clark, R.E.

    1994-01-01

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  3. A post-contract project analysis of material waste and cost overrun ...

    African Journals Online (AJOL)

    In Malaysia, 28.34% of the total waste sent to landfills originates from ..... by comparing the opinions of the first two interviewees. The process continued .... the causes of delay and cost overrun in Uganda's public sector construction projects.

  4. The opalinus clay project - disposal of medium and highly-active nuclear wastes

    International Nuclear Information System (INIS)

    Mueller, U.

    2003-01-01

    This article describes the project to demonstrate the feasibility of disposing of long-living medium-active and highly-radioactive nuclear wastes in sedimentary rock in Switzerland. The disposal tasks to be carried out are reviewed and the solutions proposed are described, including short-term handling, intermediate storage and final disposal of low, medium and highly-active wastes. The present state of affairs is described and, in particular, the feasibility of implementing a final storage facility in the opalinus clay beds to be found in northern Switzerland. The project for such a facility in the wine-growing area of the canton of Zurich is described in detail, including the storage concept, the technology to be used and operational aspects as well as questions of safety

  5. Management of uranium mining and processing wastes at Turamdih project

    International Nuclear Information System (INIS)

    Puri, R.C.; Verma, R.P.

    1991-01-01

    Based on environmental impact assessment, comprehensive plan for management of wastes has been drawn up. No solid waste from the mine is being disposed off outside the project area. The quantity of waste generated after processing of ore is large because of low content of uranium in the ore. A big tailings pond has been planned in specially selected suitable valley near the plant. No liquid effluents are to be discharged into general surrounding environment. Mine water is to be fed to the process plant. Effluents from tailings pond will be collected in a storage cum evaporation pond. All water from different zones of the project shall be collected in zonal ponds and then pumped to tailings effluent storage pond. All the ponds will be provided with requisite impervious liners. The effluents of the storage pond will be treated for removal of radium and manganese and discharged into monitoring pond. Large surface areas for various ponds are envisaged to take advantage of evaporation with aim for zero discharge. To reduce impact from gaseous emissions, high efficiency dust suppression and extraction systems shall be provided. High stacks have been incorporated for DG set, boiler plants, sulphuric acid plant and dust extraction systems for crushing and grinding section and the quality of discharges will be very much within the prescribed limits. The paper describes the management plan in detail. (author)

  6. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public

  7. Lessons learned in demonstration projects regarding operational safety during final disposal of vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Filbert, Wolfgang; Herold, Philipp

    2015-01-01

    The paper summarizes the lessons learned in demonstration projects regarding operational safety during the final disposal of vitrified waste and spent fuel. The three demonstration projects for the direct disposal of vitrified waste and spent fuel are described. The first two demonstration projects concern the shaft transport of heavy payloads of up to 85 t and the emplacement operations in the mine. The third demonstration project concerns the borehole emplacement operation. Finally, open issues for the next steps up to licensing of the emplacement and disposal systems are summarized.

  8. Nevada nuclear waste storage investigations: FY 1980 Project Plan and FY 1981 forecast

    International Nuclear Information System (INIS)

    1980-02-01

    The DOE is responsible for developing or improving the technology for safely and permanently isolating radioactive wastes from the biosphere. The National Waste Terminal Storage Program, which is a part of the US Nuclear Waste Management Program, is concerned with disposing of the high-level wastes associated with DOE and commercial nuclear reactor fuel cycles. The DOE/NV has been delegated the responsibility to evaluate the geohydrologic setting and underground rock masses of the Nevada Test Site (NTS) area to determine whether a suitable site exists for constructing a repository for isolating highly radioactive solid wastes. Accordingly, the Nevada Nuclear Waste Storage Investigations (NNWSI) were established by NV to conduct these evaluations. The NNWSI are managed by the DOE/NV, but the field and laboratory investigations are being performed by scientific investigators from several organizations. The four primary organizations involved are: Los Alamos Scientific Laboratory (LASL), Lawrence Livermore Laboratory (LLL), Sandia Laboratories (SL), and the US Geological Survey (USGS). DOE/NV is responsible for coordinating these investigations. This document presents the Project Plan for the NNWSI for FY 1980 and forecasts activities for FY 1981. Each task is divided into subtasks and described. This Plan is subject ot periodic review and revision by the DOE/NV. Changes will be addressed as they occur in NNWSI Quarterly Reports. This document also presents information on the Project's technical approach as well as its history, organization, and management

  9. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List

  10. Integrated waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Armstrong, C.

    2004-01-01

    'Full text:' The BC Hydrogen Highway's, Integrated Waste Hydrogen Utilization Project (IWHUP) is a multi-faceted, synergistic collaboration that will capture waste hydrogen and promote its use through the demonstration of 'Hydrogen Economy' enabling technologies developed by Canadian companies. IWHUP involves capturing and purifying a small portion of the 600 kg/hr of by-product hydrogen vented to the atmosphere at the ERCO's electrochemical sodium chlorate plant in North Vancouver, BC. The captured hydrogen will then be compressed so it is suitable for transportation on roadways and can be used as a fuel in transportation and stationary fuel cell demonstrations. In summary, IWHUP invests in the following; Facilities to produce up to 20kg/hr of 99.999% pure 6250psig hydrogen using QuestAir's leading edge Pressure Swing Absorption technology; Ultra high-pressure transportable hydrogen storage systems developed by Dynetek Industries, Powertech Labs and Sacre-Davey Engineering; A Mobile Hydrogen Fuelling Station to create Instant Hydrogen Infrastructure for light-duty vehicles; Natural gas and hydrogen (H-CNG) blending and compression facilities by Clean Energy for fueling heavy-duty vehicles; Ten hydrogen, internal combustion engine (H-ICE), powered light duty pick-up vehicles and a specialized vehicle training, maintenance, and emissions monitoring program with BC Hydro, GVRD and the District of North Vancouver; The demonstration of Westport's H-CNG technology for heavy-duty vehicles in conjunction with local transit properties and a specialized vehicle training, maintenance, and emissions monitoring program; The demonstration of stationary fuel cell systems that will provide clean power for reducing peak-load power demands (peak shaving), grid independence and water heating; A comprehensive communications and outreach program designed to educate stakeholders, the public, regulatory bodies and emergency response teams in the local community, Supported by industry

  11. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  12. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions

  13. Arenas for risk governance in nuclear waste management - The European Union ARGONA Project

    International Nuclear Information System (INIS)

    Jonsson, Josefin P.; Wetzel, Carina; Andersson, Kjell; Lidberg, Maria

    2009-12-01

    There is a large knowledge base about governance issues but how to implement the new processes of transparency and participation is not self-evident. In other words there is a common demand for bridging the gap between research and implementation for the governance of nuclear waste management. There are legal, organizational, historical and cultural factors that set conditions which have to be understood for effective implementation. We must also understand how deliberative methods and the transparency approach relate to each other, and to formal decision-making in representative democracy. Therefore, the ARGONA project intends to demonstrate how participation and transparency link to the political and legal systems and how new approaches can be implemented in nuclear waste management programmes. For this purpose, the project includes: Studies of the context within which processes of participation and transparency take place, in order to understand how the processes can be used in the waste management programs. Studies of theory - in order to build participation and transparency on a firm ground; Case studies - to understand how different processes work; Implementation - to make a difference, learn and demonstrate. The project now approaches its finalization and it is foreseen that the reporting, in addition to 25 deliverables to the European Commission, will include a full final report, a summary final report and recommendations with proposed guidelines that can be considered by national actors of nuclear waste programmes as well as the European Commission

  14. Arenas for risk governance in nuclear waste management - The European Union ARGONA Project

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Josefin P.; Wetzel, Carina (Swedish Radiation Safety Authority, SE-171 16 Stockholm (Sweden)); Andersson, Kjell; Lidberg, Maria (Karita Research AB, Box 6048, SE-187 06 Taeby (Sweden))

    2009-12-15

    There is a large knowledge base about governance issues but how to implement the new processes of transparency and participation is not self-evident. In other words there is a common demand for bridging the gap between research and implementation for the governance of nuclear waste management. There are legal, organizational, historical and cultural factors that set conditions which have to be understood for effective implementation. We must also understand how deliberative methods and the transparency approach relate to each other, and to formal decision-making in representative democracy. Therefore, the ARGONA project intends to demonstrate how participation and transparency link to the political and legal systems and how new approaches can be implemented in nuclear waste management programmes. For this purpose, the project includes: Studies of the context within which processes of participation and transparency take place, in order to understand how the processes can be used in the waste management programs. Studies of theory - in order to build participation and transparency on a firm ground; Case studies - to understand how different processes work; Implementation - to make a difference, learn and demonstrate. The project now approaches its finalization and it is foreseen that the reporting, in addition to 25 deliverables to the European Commission, will include a full final report, a summary final report and recommendations with proposed guidelines that can be considered by national actors of nuclear waste programmes as well as the European Commission

  15. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    Klein, J.A.; Storch, S.N.; Ashline, R.C.

    1994-03-01

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal

  16. The residuals analysis project: Evaluating disposal options for treated mixed low-level waste

    International Nuclear Information System (INIS)

    Waters, R.D.; Gruebel, M.M.; Case, J.T.; Letourneau, M.J.

    1997-01-01

    For almost four years, the U.S. Department of Energy (DOE) through its Federal Facility Compliance Act Disposal Workgroup has been working with state regulators and governors' offices to develop an acceptable configuration for disposal of its mixed low-level waste (MLLW). These interactions have resulted in screening the universe of potential disposal sites from 49 to 15 and conducting ''performance evaluations'' for those fifteen sites to estimate their technical capabilities for disposal of MLLW. In the residuals analysis project, we estimated the volume of DOE's MLLW that will require disposal after treatment and the concentrations of radionuclides in the treated waste. We then compared the radionuclide concentrations with the disposal limits determined in the performance evaluation project for each of the fifteen sites. The results are a scoping-level estimate of the required volumetric capacity for MLLW disposal and the identification of waste streams that may pose problems for disposal based on current treatment plans. The analysis provides technical information for continued discussions between the DOE and affected States about disposal of MLLW and systematic input to waste treatment developers on disposal issues

  17. Radioactive waste management in Spain: co-ordination and projects

    International Nuclear Information System (INIS)

    2007-01-01

    The sixth workshop of the OECD/NEA Forum on Stakeholder Confidence (FSC) was hosted by ENRESA, the Spanish agency responsible for the management of radioactive waste and the dismantling of nuclear power plants, and the Council of Nuclear Safety (CSN), with the support of the Association of Spanish Municipalities in Areas Surrounding Nuclear Power Plants (AMAC). The workshop took place at L'Hospitalet de l'Infant, Catalonia, Spain, on 21-23 November 2005. At this workshop, Spanish stakeholders and delegates from 14 countries discussed current co-ordination of radioactive waste management decision making in Spain. Findings were shared from Cowam-Spain, a co-operative research project on the involvement of local stakeholders, the relationship between national and local levels of decision making, and the long-term sustainability of decisions regarding the siting of a centralized interim storage facility for high-level waste. These proceedings include the workshop presentations and discussions, as well as the rapporteurs' reflections on what was learned about policy making and participative decision making. (author)

  18. The waste isolation pilot plant project: a changing paradigm

    International Nuclear Information System (INIS)

    Sheppard, L.E.; McFadden, M.H.

    1996-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) repository that has been developed to demonstrate the safe and permanent isolation of transuranic radioactive wastes in a deep geologic site. It is located in 650 m below the surface in a bedded salt formation, and is designed to hold approximately 175,500 cubic meters of waste. Compliance with the regulations has become the principal focus for the Project. The scientific baseline is an important and integral part of the CCA, as it provides the foundation for conducting total system performance assessment calculations for comparison with applicable standards. The activities required to support the scientific baseline are being pursued in parallel to minimize the time required to collect, analyze, interpret and fully incorporate the results into the CCA. The DOE has shifted its approach to demonstrating compliance with the applicable regulations from a paradigm of a series of broad investigations to a new paradigm of highly focused activities conducted in parallel. The success of this approach will be assessed by the EPA when the application is critically reviewed

  19. Solid Waste Operations Complex W-113: Project cost estimate. Preliminary design report. Volume IV

    International Nuclear Information System (INIS)

    1995-01-01

    This document contains Volume IV of the Preliminary Design Report for the Solid Waste Operations Complex W-113 which is the Project Cost Estimate and construction schedule. The estimate was developed based upon Title 1 material take-offs, budgetary equipment quotes and Raytheon historical in-house data. The W-113 project cost estimate and project construction schedule were integrated together to provide a resource loaded project network

  20. Factors contributing to the waste generation in building projects of Pakistan

    International Nuclear Information System (INIS)

    Memon, N.A.; Memon, F.A.

    2016-01-01

    Generation of construction waste is a worldwide issue that concerns not only governments but also the building actors involved in construction industry. For developing countries like Pakistan, rising levels of waste generation, due to the rapid growth of towns and cities have become critical issue. Therefore this study is aimed to detect the factors, which are the main causes of construction waste generation. Questionnaire survey has been conducted to achieve this task and RIW (Relative Importance Weight) method has been used to analyze the results of this study. The important factors contributing to the generation of construction as identified in this study are: frequent changes/ revision in design during construction process; poor scheduling; unavailability of storage; poor workmanship; poor layout; inefficient planning and scheduling of resources and lack of coordination among supervision staff deployed at site. Based on the identified factors, the study also has presented some suggestions for the reduction of construction waste in building construction projects of Pakistan. (author)

  1. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Mendiratta, O.P.; Ploetz, D.K.

    2000-01-01

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste processing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999

  2. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  3. UP2 400 High Activity Oxide Legacy Waste Retrieval Project Scope and Progress-13048

    Energy Technology Data Exchange (ETDEWEB)

    Chabeuf, Jean-Michel; Varet, Thierry [AREVA Site Value Development Business Unit, La Hague Site (France)

    2013-07-01

    The High Activity Oxide facility (HAO) reprocessed sheared and dissolved 4500 metric tons of light water reactor fuel the fuel of the emerging light water reactor spent fuel between 1976 and 1998. Over the period, approximately 2200 tons of process waste, composed primarily of sheared hulls, was produced and stored in a vast silo in the first place, and in canisters stored in pools in subsequent years. Upon shutdown of the facility, AREVA D and D Division in La Hague launched a thorough investigation and characterization of the silos and pools content, which then served as input data for the definition of a legacy waste retrieval and reconditioning program. Basic design was conducted between 2005 and 2007, and was followed by an optimization phase which lead to the definition of a final scenario and budget, 12% under the initial estimates. The scenario planned for the construction of a retrieval and reconditioning cell to be built on top of the storage silo. The retrieved waste would then be rinsed and sorted, so that hulls could subsequently be sent to La Hague high activity compacting facility, while resins and sludge would be cemented within the retrieval cell. Detailed design was conducted successfully from 2008 until 2011, while a thorough research and development program was conducted in order to qualify each stage of the retrieval and reconditioning process, and assist in the elaboration of the final waste package specification. This R and D program was defined and conducted as a response and mitigation of the major project risks identified during the basic design process. Procurement and site preparatory works were then launched in 2011. By the end of 2012, R and D is nearly completed, the retrieval and reconditioning process have been secured, the final waste package specification is being completed, the first equipment for the retrieval cell is being delivered on site, while preparation works are allowing to free up space above and around the silo, to

  4. LLNL/YMP Waste Container Fabrication and Closure Project; GFY technical activity summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-10-01

    The Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM) Program is studying Yucca Mountain, Nevada as a suitable site for the first US high-level nuclear waste repository. Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing and developing the waste package for the permanent storage of high-level nuclear waste. This report is a summary of the technical activities for the LLNL/YMP Nuclear Waste Disposal Container Fabrication and Closure Development Project. Candidate welding closure processes were identified in the Phase 1 report. This report discusses Phase 2. Phase 2 of this effort involved laboratory studies to determine the optimum fabrication and closure processes. Because of budget limitations, LLNL narrowed the materials for evaluation in Phase 2 from the original six to four: Alloy 825, CDA 715, CDA 102 (or CDA 122) and CDA 952. Phase 2 studies focused on evaluation of candidate material in conjunction with fabrication and closure processes.

  5. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  6. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    International Nuclear Information System (INIS)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-01-01

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at 6 (the Hanford IDF criteria for Na) in the first few hours. The granular and monolithic waste forms also pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) for all Resource Conservation and Recovery Act (RCRA) components at the Universal Treatment

  7. Radioactive waste management: a series of bibliographies. Radioactive waste inventories and projections. Supplement 1

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1986-01-01

    This bibliography contains information on radioactive waste inventories and projections included in the Department of Energy's Energy Data Base from October 1982 through December 1984. The arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 31 abstracts

  8. Fabrication and closure development of nuclear waste disposal containers for the Yucca Mountain Project: Status report

    International Nuclear Information System (INIS)

    Domian, H.A.; Robitz, E.S.; Conrardy, C.C.; LaCount, D.F.; McAninch, M.D.; Fish, R.L.; Russell, E.W.

    1991-09-01

    In GFY 89, a project was underway to determine and demonstrate a suitable method for fabricating thin-walled monolithic waste containers for service within the potential repository at Yucca Mountain. A concurrent project was underway to determine and demonstrate a suitable closure process for these containers after they have been filled with high-level nuclear waste. Phase 1 for both the fabrication and closure projects was a screening phase in which candidate processes were selected for further laboratory testing in Phase 2. This report describes the final results of the Phase 1 efforts. It also describes the preliminary results of Phase 2 efforts

  9. The Efficacy of Waste Management Plans in Australian Commercial Construction Refurbishment Projects

    Directory of Open Access Journals (Sweden)

    Mary Hardie

    2012-11-01

    Full Text Available Renovation and refurbishment of the existingcommercial building stock is a growing area oftotal construction activity and a significantgenerator of waste sent to landfill in Australia. Awritten waste management plan (WMP is awidespread regulatory requirement forcommercial office redevelopment projects. Thereis little evidence, however, that WMPs actuallyincrease the quantity of waste that is ultimatelydiverted from landfill. Some reports indicate anabsence of any formal verification or monitoringprocess by regulators to assess the efficacy ofthe plans. In order to gauge the extent of theproblem a survey was conducted of twenty fourconsultants and practitioners involved incommercial office building refurbishment projectsto determine the state of current practice withregard to WMPs and to elicit suggestions withregard to ways of making the process moreeffective. Considerable variation in commitmentto recycling policies was encountered indicatinga need to revisit waste minimisation practices ifthe environmental performance of refurbishmentprojects is to be improved.

  10. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8

    Energy Technology Data Exchange (ETDEWEB)

    Payton, M. L.; Williams, J. T.; Tolbert-Smith, M.; Klein, J. A.

    1992-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  11. Basalt Waste Isolation Project. Annual report, fiscal year 1980

    International Nuclear Information System (INIS)

    1980-11-01

    During this fiscal year the information available in the fields of geology and hydrology of the Columbia Plateau was consolidated and two reports were issued summarizing this information. In addition, the information on engineered barriers was consolidated and a report summarizing the research to date on waste package development and design of borehole seals was prepared. The waste package studies, when combined with the hydrologic integration, revealed that even under extreme disruptive conditions, a repository in basalt with appropriately designed waste packages can serve as an excellent barrier for containment of radionuclides for the long periods of time required for waste isolation. On July 1, 1980, the first two heater tests at the Near-Surface Test Facility were started and have been successfully operated to this date. The papers on the Near-Surface Test Facility section of this report present the results of the equipment installed and the preliminary results of the testing. In October 1979, the US Department of Energy selected the joint venture of Kaiser Engineers/Parsons Brinckerhoff Quade and Douglas, Inc., to be the architect-engineer to produce a conceptual design of a repository in basalt. During the year, this design has progressed and concept selection has now been completed. This annual report presents a summary of the highlights of the work completed during fiscal year 1980. It is intended to supplement and summarize the nearly 200 papers and reports that have been distributed to date as a part of the Basalt Waste Isolation Project studies

  12. Solid waste projection model: Database user's guide (Version 1.0)

    International Nuclear Information System (INIS)

    Carr, F.; Stiles, D.

    1991-01-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for preparing to use Version 1 of the SWPM database, for entering and maintaining data, and for performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions, and does not provide instructions in the use of Paradox, the database management system in which the SWPM database is established. 3 figs., 1 tab

  13. Solid Waste Projection Model: Database user's guide (Version 1.3)

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1991-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for preparing to use Version 1.3 of the SWPM database, for entering and maintaining data, and for performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions and does not provide instruction in the use of Paradox, the database management system in which the SWPM database is established

  14. Expedited technology demonstration project (Revised mixed waste management facility project) Project baseline revision 4.0 and FY98 plan

    International Nuclear Information System (INIS)

    Adamson, M. G.

    1997-01-01

    The re-baseline of the Expedited Technology Demonstration Project (Revised Mixed Waste Facility Project) is designated as Project Baseline Revision 4.0. The last approved baseline was identified as Project Baseline Revision 3.0 and was issued in October 1996. Project Baseline Revision 4.0 does not depart from the formal DOE guidance followed by, and contained in, Revision 3.0. This revised baseline document describes the MSO and Final Forms testing activities that will occur during FY98, the final year of the ETD Project. The cost estimate for work during FY98 continues to be $2.OM as published in Revision 3.0. However, the funds will be all CENRTC rather than the OPEX/CENTRC split previously anticipated. LLNL has waived overhead charges on ETD Project CENRTC funds since the beginning of project activities. By requesting the $2.OM as all CENTRC a more aggressive approach to staffing and testing can be taken. Due to a cost under- run condition during FY97 procurements were made and work was accomplished, with the knowledge of DOE, in the Feed Preparation and Final Forms areas that were not in the scope of Revision 3.0. Feed preparation activities for FY98 have been expanded to include the drum opening station/enclosure previously deleted

  15. Papers presented at the 7th status report of the Reprocessing and Waste Treatment Project

    International Nuclear Information System (INIS)

    1988-10-01

    The report contains all lectures on the present state of the R+D work which were delivered on the occasion of the 7th seminar on the present state of the Reprocessing and Waste Treatment Project in the Karlsruhe Nuclear Research Centre on 15/16 March 1988. The project is aimed at improving methods for nuclear waste disposal with regard to the German reprocessing plant for light-water reactor fuels currently under construction in Wackersdorf. The individual contributions were separately adapted for the INIS and EDB data banks. (RB) [de

  16. Project management plan for low-level mixed waste and greater-than-category 3 waste per tri-party agreement M-91-10

    Energy Technology Data Exchange (ETDEWEB)

    BOUNINI, L.

    1999-05-20

    The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-thaw category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10, The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; (4) an acquisition plan was developed to establish the technical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are tabulated, along with the required treatment for disposal.

  17. Project management plan for low-level mixed waste and greater-than-category 3 waste per tri-party agreement M-91-10

    International Nuclear Information System (INIS)

    BOUNINI, L.

    1999-01-01

    The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-thaw category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10, The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; (4) an acquisition plan was developed to establish the technical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are tabulated, along with the required treatment for disposal

  18. Basalt Waste Isolation Project exploratory shaft site: Final reclamation report

    International Nuclear Information System (INIS)

    Brandt, C.A.; Rickard, W.H. Jr.

    1990-06-01

    The restoration of areas disturbed by activities of the Basalt Waste Isolation Project (BWIP) constitutes a unique operation at the US Department of Energy's (DOE) Hanford Site, both from the standpoint of restoration objectives and the time frame for accomplishing these objectives. The BWIP reclamation program comprises three separate projects: borehole reclamation, Near Surface Test Facility (NSTF) reclamation, and Exploratory Shaft Facility (ESF) reclamation. The main focus of this report is on determining the success of the revegetation effort 1 year after work was completed. This report also provides a brief overview of the ESF reclamation program. 21 refs., 7 figs., 14 tabs

  19. Systems Engineering Plan and project record Configuration Management Plan for the Mixed Waste Disposal Initiative

    International Nuclear Information System (INIS)

    Bryan, W.E.; Oakley, L.B.

    1993-04-01

    This document summarizes the systems engineering assessment that was performed for the Mixed Waste Disposal Initiative (MWDI) Project to determine what types of documentation are required for the success of the project. The report also identifies the documents that will make up the MWDI Project Record and describes the Configuration Management Plan describes the responsibilities and process for making changes to project documentation

  20. Yucca Mountain Project bibliography, July--December 1988: An update: Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    Tamura, A.T.; Lorenz, J.J.

    1989-04-01

    This update contains information on the Yucca Mountain Project that was added to the Energy Data Base during the last six months of 1988. The update also includes a new section which provides information about publications on the Energy Data Base that were not sponsored by the project but have some relevance to it. This section covers the period 1977 to 1988. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. The update is categorized by principal project participating organizations, and items are arranged in chronological order. Participant-sponsored subcontractor reports, meeting papers, and journal articles are included with sponsoring organization. Previous information on this project can be found in the Nevada Nuclear Waste Storage Investigations bibliographies: DOE/TIC-3406, which covers the years 1977 to 1985; DOE/OSTI-3406(Suppl.1), which covers 1986 and 1987; and the Yucca Mountain Project Bibliography, DOE/OSTI-3406(Suppl.1)(Add. 1), which covers the first six months of 1988. All entries in these publications are searchable on-line on the NNW data base file which can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy

  1. Waste minimization and pollution prevention technology transfer : the Airlie House Projects

    International Nuclear Information System (INIS)

    Gatrone, R.; McHenry, J.; Myron, H.; Thout, J. R.

    1998-01-01

    The Airlie House Pollution Prevention Technology Transfer Projects were a series of pilot projects developed for the US Department of Energy with the intention of transferring pollution prevention technology to the private sector. The concept was to develop small technology transfer initiatives in partnership with the private sector. Argonne National Laboratory developed three projects: the microscale chemistry in education project, the microscale cost benefit study project, and the Bethel New Life recycling trainee project. The two microscale chemistry projects focused on introducing microscale chemistry technologies to secondary and college education. These programs were inexpensive to develop and received excellent evaluations from participants and regulators. The Bethel New Life recycling trainee project provided training for two participants who helped identify recycling and source reduction opportunities in Argonne National Laboratory's solid waste stream. The pilot projects demonstrated that technology transfer initiatives can be developed and implemented with a small budget and within a short period of time. The essential components of the pilot projects were identifying target technologies that were already available, identifying target audiences, and focusing on achieving a limited but defined objective

  2. Fifth Single-Shell Tank Integrity Project Expert Panel Meeting August 28-29, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Todd M. [Washington River Protection Solutions, LLC, Richland, WA (United States; Gunter, Jason R. [Washington River Protection Solutions, LLC, Richland, WA (United States); Boomer, Kayle D. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2015-01-07

    On August 28th and 29th, 2014 the Single-Shell Tank Integrity Project (SSTIP) Expert Panel (Panel) convened in Richland, Washington. This was the Panel’s first meeting since 2011 and, as a result, was focused primarily on updating the Panel on progress in response to the past recommendations (Single-Shell Tank Integrity Expert Panel Report, RPP-RPT-45921, Rev 0, May 2010). This letter documents the Panel’s discussions and feedback on Phase I activities and results.

  3. Law project on the radioactive materials and wastes management 2006 recommendations presented by Anne Duthilleul

    International Nuclear Information System (INIS)

    2006-01-01

    This document provides recommendations on the law project concerning the radioactive material and wastes management. It precises the law objectives, the french particularities concerning the radioactive wastes and materials management, the public debate in France, the evaluation of the researches, the recommendations of the economic and social council. (A.L.B.)

  4. Issues related to uncertainty in projections of hazardous and mixed waste volumes in the U.S. Department of Energy's environmental restoration program

    International Nuclear Information System (INIS)

    Picel, K.C.

    1995-01-01

    Projected volumes of contaminated media and debris at US Department of Energy (DOE) environmental restoration sites that are potentially subject to the hazardous waste provisions of the Resource Conservation and Recovery Act are needed to support programmatic planning. Such projections have been gathered in various surveys conducted under DOE's environmental restoration and waste management programs. It is expected that reducing uncertainty in the projections through review of existing site data and process knowledge and through further site characterization will result in substantially lowered projections. If promulgated, the US Environmental Protection Agency's Hazardous Waste Identification Rule would result in potentially even greater reductions in the projections when site conditions are reviewed under the provisions of the new rule. Reducing uncertainty in projections under current and future waste identification rules may be necessary to support effective remediation planning. Further characterization efforts that may be conducted should be designed to limit uncertainty in identifying volumes of wastes to the extent needed to support alternative selection and to minimize costs of remediation

  5. From waste to traffic fuel -projects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rasi, S; Lehtonen, E; Aro-Heinilae, E [and others

    2012-11-01

    The main objective of the project was to promote biogas production and its use as traffic fuel. The aims in the four Finnish and two Estonian case regions were to reduce the amount and improve the sustainable use of waste and sludge, to promote biogas production, to start biogas use as traffic fuel and to provide tools for implementing the aims. The results of this study show that achieving the food waste prevention target will decrease greenhouse gas emissions by 415 000 CO{sub 2}-eq tons and result in monetary savings for the waste generators amounting to almost 300 euro/ capita on average in all case regions in 2020. The results show that waste prevention should be the first priority in waste management and the use of waste materials as feedstock for energy production the second priority. In total 3 TWh energy could be produced from available biomass in the studied case regions. This corresponds to the fuel consumption of about 300 000 passenger cars. When a Geographical Information System (GIS) was used to identify suitable biogas plant site locations with particular respect to the spatial distribution of available biomass, it was found that a total of 50 biogas plants with capacity varying from 2.1 to 14.5 MW could be built in the case regions. This corresponds to 2.2 TWh energy and covers from 5 to 40% of the passenger car fuel consumption in these regions. Using all produced biogas (2.2 TWh energy) for vehicle fuel GHG emissions would lead to a 450 000 t CO{sub 2}-eq reduction. The same effect on emissions would be gained if more than 100 000 passenger cars were to be taken off the roads. On average, the energy consumed by biogas plants represents approximately 20% of the produced energy. The results also show that biomethane production from waste materials is profitable. In some cases the biomethane production costs can be covered with the gained gate fees. The cost of biomethane production from agricultural materials is less than 96 euro/MWh{sub th

  6. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  7. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  8. Nuclear waste

    International Nuclear Information System (INIS)

    1992-05-01

    The Nuclear Waste Policy Act of 1982, as amended in 1987, directed the Secretary of Energy to, among other things, investigate Yucca Mountain, Nevada, as a potential site for permanently disposing of highly radioactive wastes in an underground repository. In April 1991, the authors testified on Yucca Mountain project expenditures before your Subcommittee. Because of the significance of the authors findings regrading DOE's program management and expenditures, you asked the authors to continue reviewing program expenditures in depth. As agreed with your office, the authors reviewed the expenditures of project funds made available to the Department of Energy's (DOE) Lawrence Livermore National Laboratory, which is the lead project contractor for developing a nuclear waste package that wold be used for disposing of nuclear waste at Yucca Mountain. This report discusses the laboratory's use of nuclear waste funds to support independent research projects and to manage Yucca Mountain project activities. It also discusses the laboratory's project contracting practices

  9. The development of the Waste Isolation Pilot Plant (WIPP) project's public affairs program

    International Nuclear Information System (INIS)

    Walter, L.H.

    1988-01-01

    The Waste Isolation Pilot Plant (WIPP) offers a perspective on the value of designing flexibility into a public affairs program to enable it to grow with and complement a project's evolution from construction through to operations. This paper discusses how the WIPP public affairs program progressed through several stages to its present scope. During the WIPP construction phase, the public affairs program laid a foundation for Project acceptance in the community. A speaker's bureau, a visitors program, and various community outreach and support programs emphasized the educational and socioeconomic benefits of having this controversial project in Carlsbad. Then, in this past year as the project entered a preoperational status, the public affairs program emphasis shifted to broaden the positive image that had been created locally. In this stage, the program promoted the project's positive elements with the various state agencies, government officials, and federal organizations involved in our country's radioactive waste management and transportation program. Currently, an even broader, more aggressive public affairs program is planned. During this stage public affairs will be engaged in a comprehensive institutional and outreach program, explaining and supporting WIPP's mission in each of the communities and agencies affected by the operation of the country's first geologic repository

  10. Nuclear Waste Facing the Test of Time: The Case of the French Deep Geological Repository Project.

    Science.gov (United States)

    Poirot-Delpech, Sophie; Raineau, Laurence

    2016-12-01

    The purpose of this article is to consider the socio-anthropological issues raised by the deep geological repository project for high-level, long-lived nuclear waste. It is based on fieldwork at a candidate site for a deep storage project in eastern France, where an underground laboratory has been studying the feasibility of the project since 1999. A project of this nature, based on the possibility of very long containment (hundreds of thousands of years, if not longer), involves a singular form of time. By linking project performance to geology's very long timescale, the project attempts "jump" in time, focusing on a far distant future, without understanding it in terms of generations. But these future generations remain measurements of time on the surface, where the issue of remembering or forgetting the repository comes to the fore. The nuclear waste geological storage project raises questions that neither politicians nor scientists, nor civil society, have ever confronted before. This project attempts to address a problem that exists on a very long timescale, which involves our responsibility toward generations in the far future.

  11. Methodology for Safety Assessment Applied to Predisposal Waste Management. Report of the Results of the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) 2004–2010)

    International Nuclear Information System (INIS)

    2015-12-01

    Report of the Results of the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) (2004–2010) The IAEA’s progamme on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) focused on approaches and mechanisms for application of safety assessment methodologies for the predisposal management of radioactive waste. The initial outcome of the SADRWMS Project was achieved through the development of flowcharts, which have since been incorporated into IAEA Safety Standards Series No. GSG-3, Safety Case and Safety Assessment for Predisposal Management of Radioactive Waste. In 2005, an initial specification was developed for the Safety Assessment Framework (SAFRAN) software tool to apply the SADRWMS flowcharts. In 2008, an in-depth application of the SAFRAN tool and the SADRWMS methodology was carried out on the predisposal management facilities of the Thailand Institute of Nuclear Technology Radioactive Waste Management Centre (TINT Facility). This publication summarizes the content and outcomes of the SADRWMS programme. The Chairman’s Report of the SADRWMS Project and the Report of the TINT test case are provided on the CD-ROM which accompanies this report

  12. Uranium Mill Tailings remedial action project waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    1994-07-01

    The purpose of this plan is to establish a waste minimization and pollution prevention awareness (WM/PPA) program for the U.S. Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The program satisfies DOE requirements mandated by DOE Order 5400.1. This plan establishes planning objectives and strategies for conserving resources and reducing the quantity and toxicity of wastes and other environmental releases

  13. Waste Generation Forecast for DOE-ORO's Environmental Restoration OR-1 Project: FY 1994--FY 2001

    International Nuclear Information System (INIS)

    1993-12-01

    This Waste Generation Forecast for DOE-ORO's Environmental Restoration OR-1 Project. FY 1994--FY 2001 is the third in a series of documents that report current estimates of the waste volumes expected to be generated as a result of Environmental Restoration activities at Department of Energy, Oak Ridge Operations Office (DOE-ORO), sites. Considered in the scope of this document are volumes of waste expected to be generated as a result of remedial action and decontamination and decommissioning activities taking place at these sites. Sites contributing to the total estimates make up the DOE-ORO Environmental Restoration OR-1 Project: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Y-12 Plant, the Paducah Gaseous Diffusion Plant, the Portsmouth Gaseous Diffusion Plant, and the off-site contaminated areas adjacent to the Oak Ridge facilities (collectively referred to as the Oak Ridge Reservation Off-Site area). Estimates are available for the entire fife of all waste generating activities. This document summarizes waste estimates forecasted for the 8-year period of FY 1994-FY 2001. Updates with varying degrees of change are expected throughout the refinement of restoration strategies currently in progress at each of the sites. Waste forecast data are relatively fluid, and this document represents remediation plans only as reported through September 1993

  14. Project Strategy For The Remediation And Disposition Of Legacy Transuranic Waste At The Savannah River Site, South Carolina, USA

    International Nuclear Information System (INIS)

    Rodriguez, M.

    2010-01-01

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing

  15. Business System Planning Project, Alternatives Analysis

    International Nuclear Information System (INIS)

    EVOSEVICH, S.

    2000-01-01

    The CHG Chief Information Officer (CIO) requested a study of alternatives to the current business system computing environment. This Business Systems Planning (BSP) Project Alternatives Analysis document presents an analysis of the current Project Controls, Work Management, and Business Management systems environment and alternative solutions that support the business functions. The project team has collected requirements and priorities from stakeholders in each business area and documented them in the BSP System Requirements Specification (SRS), RPP-6297. The alternatives analysis process identifies and measures possible solutions in each of the business process areas against the requirements as documented in the SRS. The team gathered input from both internal and external sources to identify and grade the possible solutions. This document captures the results of that activity and recommends a suite of software products. This study was to select the best product based on how well the product met the requirements, not to determine the platform or hardware environment that would be used. Additional analysis documentation can be found in BSP project files

  16. Final waste forms project: Performance criteria for phase I treatability studies

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Hutchins, D.A.; Chodak, P. III

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide open-quotes proof-of-principleclose quotes data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.)

  17. Final waste forms project: Performance criteria for phase I treatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M. [Oak Ridge National Lab., TN (United States); Hutchins, D.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Chodak, P. III [Massachusetts Institute of Technology (United States)

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).

  18. Waste minimization value engineering workshop for the Los Alamos National Laboratory Omega West Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Hartnett, S.; Seguin, N.; Burns, M.

    1995-01-01

    The Los Alamos National Laboratory Pollution Prevention Program Office sponsored a Value Engineering (VE) Workshop to evaluate recycling options and other pollution prevention and waste minimization (PP/WMin) practices to incorporate into the decommissioning of the Omega West Reactor (OWR) at the laboratory. The VE process is an organized, systematic approach for evaluating a process or design to identify cost saving opportunities, or in this application, waste reduction opportunities. This VE Workshop was a facilitated process that included a team of specialists in the areas of decontamination, decommissioning, PP/WMin, cost estimating, construction, waste management, recycling, Department of Energy representatives, and others. The uniqueness of this VE Workshop was that it used an interdisciplinary approach to focus on PP/WMin practices that could be included in the OWR Decommissioning Project Plans and specifications to provide waste reduction. This report discusses the VE workshop objectives, summarizes the OWR decommissioning project, and describes the VE workshop activities, results, and lessons learned

  19. Waste minimization value engineering workshop for the Los Alamos National Laboratory Omega West Reactor Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    Hartnett, S.; Seguin, N. [Benchmark Environmental Corp., Albuquerque, NM (United States); Burns, M. [Los Alamos National Lab., NM (United States)

    1995-12-31

    The Los Alamos National Laboratory Pollution Prevention Program Office sponsored a Value Engineering (VE) Workshop to evaluate recycling options and other pollution prevention and waste minimization (PP/WMin) practices to incorporate into the decommissioning of the Omega West Reactor (OWR) at the laboratory. The VE process is an organized, systematic approach for evaluating a process or design to identify cost saving opportunities, or in this application, waste reduction opportunities. This VE Workshop was a facilitated process that included a team of specialists in the areas of decontamination, decommissioning, PP/WMin, cost estimating, construction, waste management, recycling, Department of Energy representatives, and others. The uniqueness of this VE Workshop was that it used an interdisciplinary approach to focus on PP/WMin practices that could be included in the OWR Decommissioning Project Plans and specifications to provide waste reduction. This report discusses the VE workshop objectives, summarizes the OWR decommissioning project, and describes the VE workshop activities, results, and lessons learned.

  20. A systems study of the waste management system in Gothenburg. Part of the project: Thermal and biological waste treatment in a systems perspective; Systemstudie Avfall i Goeteborg. Delprojekt i Termisk och biologisk avfallsbehandling i ett systemperspektiv

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Mattias; Sundberg, Johan; Haraldsson, Maarten; Norrman Eriksson, Ola

    2010-07-01

    The purpose of the project A system study of waste management in Gothenburg is to evaluate new waste treatment options for municipal and industrial waste from a system perspective. The project has been carried out as a part of the project Thermal and biological waste treatment in a systems perspective - WR21. The focus is set to the waste and district heating system in Gothenburg. The project has been running for 2,5 years with an active group consisting of persons from Renova, Kretsloppskontoret, Goeteborg Energi, Gryaab and Profu. The work on development of models and of methods of handling strategic questions within the field has gone back and forth within the group. This report focuses on presenting the final results from the project, which means that the process in which we've excluded several treatment options and scenarios are only briefly described

  1. Review of selected 100-N waste sites related to N-Springs remediation projects

    International Nuclear Information System (INIS)

    DeFord, D.H.; Carpenter, R.W.

    1996-01-01

    This document has been prepared in support of the environmental restoration program at the US Department of Energy's Hanford Site near Richland, Washington, by the Bechtel Hanford, Inc. Facility and Waste Site Research Office. It provides historical information that documents and characterizes selected waste sites that are related to the N-Springs remediation projects. The N-Springs are a series of small, inconspicuous groundwater seepage springs located along the Columbia River shoreline near the 100-N Reactor. The spring site is hydrologically down-gradient from several 100-N Area liquid waste sites that are believed to have been the source(s) of the effluents being discharged by the springs. This report documents and characterizes these waste sites, including the 116-N-1 Crib and Trench, 116-N-3 Crib and Trench, unplanned releases, septic tariks, and a backwash pond

  2. Operating experience during high-level waste vitrification at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Valenti, P.J.; Elliott, D.I.

    1999-01-01

    This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes

  3. Integrated data base report - 1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions

  4. Double Shell Tank (DST) Transfer Pump Subsystem Specification

    International Nuclear Information System (INIS)

    LESHIKAR, G.A.

    2000-01-01

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Transfer Pump Subsystem which supports the first phase of Waste Feed Delivery (WFD). This specification establishes the performance requirements and provides the references to the requisite codes and standards to be applied during the design of the DST Transfer Pump Subsystem that supports the first phase of (WFD). The DST Transfer Pump Subsystem consists of a pump for supernatant and or slurry transfer for the DSTs that will be retrieved during the Phase 1 WFD operations. This system is used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. It also will deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  5. Decontamination and dismantlement of the building 594 waste ion exchange facility at Argonne National Laboratory-East project final report

    International Nuclear Information System (INIS)

    Wiese, E. C.

    1998-01-01

    The Building 594 D and D Project was directed toward the following goals: Removal of any radioactive and hazardous materials associated with the Waste Ion Exchange Facility; Decontamination of the Waste Ion Exchange Facility to unrestricted use levels; Demolition of Building 594; and Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure) These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the Waste Ion Exchange Facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The ion exchange system and the resin contained in the system were the primary areas of concern, while the condition of the building which housed the system was of secondary concern. ANL-E health physics technicians characterized the Building 594 Waste Ion Exchange Facility in September 1996. The characterization identified a total of three radionuclides present in the Waste Ion Exchange Facility with a total activity of less than 5 microCi (175 kBq). The radionuclides of concern were Co 60 , Cs 137 , and Am 241 . The highest dose rates observed during the project were associated with the resin in the exchange vessels. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem (50 mSv)/yr; the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr)

  6. Rockfish Pilot Permit Program (RPP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rockfish Pilot Program was a five-year project that allowed harvesters to form voluntary cooperatives and receive an exclusive harvest privilege for groundfish...

  7. Waste Tank Organic Safety Project organic concentration mechanisms task. FY 1994 progress report

    International Nuclear Information System (INIS)

    Gerber, M.A.

    1994-09-01

    The Pacific Northwest Laboratory (PNL), Waste Tank Organic Safety Project is conducting research to support Westinghouse Hanford Company's (WHC) Waste Tank Safety Program, sponsored by the U.S. Department of Energy's Tank Farm Project Office. The goal of PNL's program is to provide a scientific basis for analyzing organics in Hanford's underground storage tanks (USTs) and for determining whether they are at concentrations that pose a potentially unsafe condition. Part of this research is directed toward determining what organic concentrations are safe by conducting research on organic aging mechanisms and waste energetics to assess the conditions necessary to produce an uncontrolled energy release in tanks due to reactions between the organics and the nitrate and nitrate salts in the tank wastes. The objective of the Organic Concentration Mechanisms Task is to assess the degree of localized enrichment of organics to be expected in the USTs due to concentration mechanisms. This report describes the progress of research conducted in FY 1994 on two concentration mechanisms of interest to the tank safety project: (1) permeation of a separate organic liquid phase into the interstitial spaces of the tank solids during the draining of free liquid from the tanks; and (2) concentration of organics on the surfaces of the solids due to adsorption. Three experiments were conducted to investigate permeation of air and solvent into a sludge simulant that is representative of single-shell tank sludge. The permeation behavior of air and solvent into the sludge simulant can be explained by the properties of the fluid pairs (air/supernate and solvent supernate) and the sludge. One important fluid property is the interfacial tension between the supernate and either the solvent or air. In general, the greater the interfacial tension between two fluids, the more difficult it will be for the air or solvent to displace the supernate during dewatering of the sludge

  8. The Cigeo project, Meuse/Haute-Marne reversible geological disposal facility for radioactive waste. Project Owner File, Public debate of 15 May to 15 October 2013

    International Nuclear Information System (INIS)

    Dupuis, Marie-Claude; Gonnot, Francois-Michel

    2013-07-01

    Andra is exploring several options for the disposal of low-level long-lived waste (LLW-LL). With the French Government's approval, in June 2008 Andra began looking around France for a site to build an LLW-LL repository. In late 2008 it provided the Government with a report analysing the geological, environmental and socio-economic aspects of the forty odd municipalities that expressed an interest in the project. After the withdrawal of the two municipalities chosen in 2009 to conduct geological investigations, the government asked Andra to re-explore the various management options for graphite and radium-bearing waste, focusing in particular on ways to manage these types of waste separately. The High Committee for Transparency and Information on Nuclear Safety (HCTISN) created a working group to provide feedback on the search for a site for LLW-LL. Andra submitted a report to the Government in late 2012. This report contains proposals for continuing the search and draw in particular on the HCTISN's recommendations. Contents: 1 - Radioactive waste (Sources, Types, Management, Waste to be disposed of at Cigeo, Cigeo's estimated disposal capacities, Where IS HLW and ILW-LL being stored until Cigeo is commissioned? 2 - Why deep geological disposal? (A 15-year research programme, Presentation and assessment of the research results, The public debate of 2005-2006, Deep geological disposal ratified by the 2006 Planning Act, The 2006 Planning Act: other areas of research complementary to deep geological disposal, The situation in other countries); 3 - Why the Meuse/Haute-Marne site? (Selection of the Meuse and Haute-Marne site to host an underground research laboratory, The geological formation in the Meuse and Haute-Marne site, Callovo-Oxfordian clay, Siting of Cigeo's installations); 4 - How will Cigeo operate? (The installations at Cigeo, Construction of Cigeo, Transport of waste packages, Operation of Cigeo, Closure of Cigeo); 5 - Safety at Cigeo

  9. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

    1994-03-01

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  10. Solid low-level radioactive waste volume projections at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Art, K.; Minton-Hughes, J.; Peper, C.

    1995-01-01

    In response to regulatory requirements, the current economic environment, and diminishing on-site low-level radioactive waste (LLW) disposal capacity, LANL needed to develop a system to collect data on future LLW generation that would comply with DOE Order 5820. 2A and be an effective facility planning tool. The LANL Volume Projections Project (VPP) was created to meet these needs. This paper describes objectives, scope, and components of the VPP that will provide information essential to future facility planning and development

  11. Yield Stress Reduction of Radioactive Waste Slurries by Addition of Surfactants

    International Nuclear Information System (INIS)

    MICHAEL, STONE

    2005-01-01

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass while the facilities at the Hanford site are in the design/construction phase. Both processes utilize slurry-fed joule heated melters to vitrify the waste slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and melter feed processes. The use of a surface active agent, or surfactant, to increase the solids loading that can be fed to the melters would increase melt rate by reducing the heat load on the melter required to evaporate the water in the feed. The waste slurries are non-Newtonian fluids with rheological properties that were modeled using the Bingham Plastic mod el (this model is typically used by SRNL when studying the DWPF process1).The results illustrate that altering the surface chemistry of the particulates in the waste slurries can lead to a reduction in the yield stress. Dolapix CE64 is an effective surfactant over a wide range of pH values and was effective for all simulants tested. The effectiveness of the additive increased in DWPF simulants as the concentration of the additive was increased. No maxi main effectiveness was observed. Particle size measurements indicate that the additive acted as a flocculant in the DWPF samples and as a dispersant in the RPP samples

  12. Greater-than-Class C low-level waste characterization. Appendix I: Impact of concentration averaging low-level radioactive waste volume projections

    International Nuclear Information System (INIS)

    Tuite, P.; Tuite, K.; O'Kelley, M.; Ely, P.

    1991-08-01

    This study provides a quantitative framework for bounding unpackaged greater-than-Class C low-level radioactive waste types as a function of concentration averaging. The study defines the three concentration averaging scenarios that lead to base, high, and low volumetric projections; identifies those waste types that could be greater-than-Class C under the high volume, or worst case, concentration averaging scenario; and quantifies the impact of these scenarios on identified waste types relative to the base case scenario. The base volume scenario was assumed to reflect current requirements at the disposal sites as well as the regulatory views. The high volume scenario was assumed to reflect the most conservative criteria as incorporated in some compact host state requirements. The low volume scenario was assumed to reflect the 10 CFR Part 61 criteria as applicable to both shallow land burial facilities and to practices that could be employed to reduce the generation of Class C waste types

  13. Nuclear Waste Separation and Transmutation Research with Special Focus on Russian Transmutation Projects Sponsored by ISTC

    International Nuclear Information System (INIS)

    Conde, Henri; Blomgren, Jan; Olsson, Nils

    2003-03-01

    for transmutation of long lived nuclear waste should be carried through on about the same level as present (5 MSEK/year). Support is also given for participation in international projects, primarily EU projects. The aim of the research is to provide knowledgeable experts in the field to assess the international research and development on transmutation. Swedish transmutation research, in general fundamental research, are performed at three universities CTH, KTH and Uppsala University with the essential support from SKB, SKI and Swedish Nuclear Technology Centre. The same university groups are also participating in a number of international transmutation related research projects, in particular, the projects under the 5th Framework Programme of the European Commission. One of the main issues of the International Science and Technology Center (ISTC) in Moscow, which is financially supported by USA, EU, Russia, Japan, South Korea and Norway, is to reduce the proliferation risk by engaging experts at the former Soviet Union nuclear weapon laboratories in civilian research. This issue has been more pronounced since the terrorist attacks on September 11, 2001 and the following threats from the same group of terrorists. At a workshop in Saltsjoebaden in 1991 on Accelerator Based Radioactive Waste Transmutation it was concluded that research on incineration and transmutation of reactor- and weapons grade plutonium was a civilian research area well suited to occupy the former USSR weapon experts with support from ISTC. The Expert Group on Transmutation/SKI Reference Group has chosen to initiate ISTC projects, which are dealing with fundamental technical issues for the accelerator driven transmutation concepts. The possibility of finding a Swedish research group as a counterpart to the Russian group has also played a role in the reference group's selection of projects. The Swedish research groups from CTH, KTH and UU are at present collaborating in 9 transmutation projects

  14. Project Swiftsure final report: Destruction of chemical agent waste at Defence Research Establishment Suffield. Special publication

    Energy Technology Data Exchange (ETDEWEB)

    McAndless, J.M.

    1994-04-01

    Project Swiftsure describes a three-year project at the Defence Research Establishment Suffield to safely destroy stockpiles of mustard lewisite, nerve agents and decontaminate scrap material which was stored on the DRES Experimental Proving Ground. Using both in-house and contracted resources, the agent waste was destroyed by chemical neutralization or incineration. With the exception of the arsenic byproducts from the lewisite neutralization process, all secondary waste generated by chemical neutralization was incinerated. Mustard in different forms was thermally destroyed using a transportable incinerator of commercial design. Extensive environmental monitoring and public consultation programs were conducted during the project. Results of the monitoring programs verified that the chemical warfare agents were destroyed in a safe, environmentally-responsible manner. jg p.329.

  15. Gunite and associated tanks remediation project recycling and waste minimization effort

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Saunders, A.D.

    1998-05-01

    The Department of Energy's Environmental Management Program at Oak Ridge National Laboratory has initiated clean up of legacy waste resulting from the Manhattan Project. The gunite and associated tanks project has taken an active pollution prevention role by successfully recycling eight tons of scrap metal, reusing contaminated soil in the Area of Contamination, using existing water (supernate) to aid in sludge transfer, and by minimizing and reusing personal protective equipment (PPE) and on-site equipment as much as possible. Total cost savings for Fiscal Year 1997 activities from these efforts are estimated at $4.2 million dollars

  16. 324 Building liquid waste handling and removal system project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.E.

    1998-07-29

    This report evaluates the modification options for handling radiological liquid waste generated during decontamination and cleanout of the 324 Building. Recent discussions indicate that the Hanford site railroad system will be closed by the end of FY 1998 necessitating the need for an alternate transfer method. The issue of handling of Radioactive Liquid Waste (RLW) from the 324 Building (assuming the 340 Facility is not available to accept the RLW) has been examined in at least two earlier engineering studies (Parsons 1997a and Hobart 1997). Each study identified a similar preferred alternative that included modifying the 324 Building RLWS to allow load-out of wastewater to a truck tanker, while making maximum use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes to the building. This alternative is accepted as the basis for further discussion presented in this study. The goal of this engineering study is to verify the path forward presented in the previous studies and assure that the selected alternative satisfies the 324 Building deactivation goals and objectives as currently described in the project management plan. This study will also evaluate options available to implement the preferred alternative and select the preferred option for implementation of the entire system. Items requiring further examination will also be identified. Finally, the study will provide a conceptual design, schedule and cost estimate for the required modifications to the 324 Building to allow removal of RLW. Attachment 5 is an excerpt from the project baseline schedule found in the Project Management Plan.

  17. Inventory and characteristics of current and projected low-level radioactive materials and waste in the United States

    International Nuclear Information System (INIS)

    Bisaria, A.; Bugos, R.G.; Pope, R.B.; Salmon, R.; Storch, S.N.; Lester, P.B.

    1994-01-01

    The Integrated Data Base (IDB), under US Department of Energy (DOE) funding and guidance, provides an annual update of compiled data on current and projected inventories and characteristics of DOE and commercially owned radioactive wastes. The data base addresses also the inventories of DOE and commercial spent fuel. These data are derived from reliable information from government sources, open literature, technical reports, and direct contacts. The radioactive materials considered are spent nuclear fuel, high-level waste (HLW), transuranic (TRU) waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, and mixed-LLW. This paper primarily focuses on LLW inventory and characterization

  18. Waste acid detoxification and reclamation: Phase 1, Project planning and concept development

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, T.L.; Brouns, T.M.

    1988-02-01

    The objectives of this project are to develop processes for reducing the volume, quantity, and toxicity of metal-bearing waste acids. The primary incentives for implemeting these types of waste minimization processes are regulatory and economic in that they meet requirements in the Resource Conservation and Recovery Act and reduce the cost for treatment, storage, and disposal. Two precipitation processes and a distillation process are being developed to minimize waste from fuel fabrication operations, which comprise a series of metal-finishing operations. Waste process acids, such as HF/--/HNO/sub 3/ etch solutions contianing Zr as a major metal impurity and HNO/sub 3/ strip solutions containing Cu as a major metal impurity, are detoxified and reclaimed by concurrently precipitating heavy metals and regenerating acid for recycle. Acid from a third waste acid stream generated from chemical milling operations will be reclaimed using distillation. This stream comprises HNO/sub 3/ and H/sub 2/SO/sub 4/ which contains U as the major metal impurity. Distillation allows NO/sub 3//sup /minus// to be displaced by SO/sub 4//sup /minus/2/ in metal salts; free HNO/sub 3/ is then vaporized from the U-bearing sulfate stream. Uranium can be recovered from the sulfate stream in downstream precipitation step. These waste minimization processes were developed to meet Hanford's fuel fabrication process needs. 7 refs., 4 figs., 1 tab.

  19. Waste acid detoxification and reclamation: Phase 1, Project planning and concept development

    International Nuclear Information System (INIS)

    Stewart, T.L.; Brouns, T.M.

    1988-02-01

    The objectives of this project are to develop processes for reducing the volume, quantity, and toxicity of metal-bearing waste acids. The primary incentives for implemeting these types of waste minimization processes are regulatory and economic in that they meet requirements in the Resource Conservation and Recovery Act and reduce the cost for treatment, storage, and disposal. Two precipitation processes and a distillation process are being developed to minimize waste from fuel fabrication operations, which comprise a series of metal-finishing operations. Waste process acids, such as HF/--/HNO 3 etch solutions contianing Zr as a major metal impurity and HNO 3 strip solutions containing Cu as a major metal impurity, are detoxified and reclaimed by concurrently precipitating heavy metals and regenerating acid for recycle. Acid from a third waste acid stream generated from chemical milling operations will be reclaimed using distillation. This stream comprises HNO 3 and H 2 SO 4 which contains U as the major metal impurity. Distillation allows NO 3 /sup /minus// to be displaced by SO 4 /sup /minus/2/ in metal salts; free HNO 3 is then vaporized from the U-bearing sulfate stream. Uranium can be recovered from the sulfate stream in downstream precipitation step. These waste minimization processes were developed to meet Hanford's fuel fabrication process needs. 7 refs., 4 figs., 1 tab

  20. Principal elements of the Basalt Waste Isolation Project performance assessment studies

    International Nuclear Information System (INIS)

    Baca, R.G.; Wilde, R.T.

    1983-12-01

    In this paper, three of the principal elements of the Basalt Waste Isolation Project (BWIP) performance assessment studies are focused on: (1) development of a methodology for probabilistic risk assessment, (2) performance analyses of repository subsystems, and (3) selection and ranking of disruptive event scenarios. Other elements of the BWIP performance assessment studies are briefly outlined. 12 references, 5 figures

  1. Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1996-12-01

    The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens

  2. Waste indicators

    Energy Technology Data Exchange (ETDEWEB)

    Dall, O.; Lassen, C.; Hansen, E. [Cowi A/S, Lyngby (Denmark)

    2003-07-01

    The Waste Indicator Project focuses on methods to evaluate the efficiency of waste management. The project proposes the use of three indicators for resource consumption, primary energy and landfill requirements, based on the life-cycle principles applied in the EDIP Project. Trial runs are made With the indicators on paper, glass packaging and aluminium, and two models are identified for mapping the Danish waste management, of which the least extensive focuses on real and potential savings. (au)

  3. Waste indicators

    International Nuclear Information System (INIS)

    Dall, O.; Lassen, C.; Hansen, E.

    2003-01-01

    The Waste Indicator Project focuses on methods to evaluate the efficiency of waste management. The project proposes the use of three indicators for resource consumption, primary energy and landfill requirements, based on the life-cycle principles applied in the EDIP Project. Trial runs are made With the indicators on paper, glass packaging and aluminium, and two models are identified for mapping the Danish waste management, of which the least extensive focuses on real and potential savings. (au)

  4. Integration of health physics, safety and operational processes for management and disposition of recycled uranium wastes at the Fernald Environmental Management Project (FEMP)

    International Nuclear Information System (INIS)

    Barber, James; Buckley, James

    2003-01-01

    Fluor Fernald, Inc. (Fluor Fernald), the contractor for the U. S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP), recently submitted a new baseline plan for achieving site closure by the end of calendar year 2006. This plan was submitted at DOE's request, as the FEMP was selected as one of the sites for their accelerated closure initiative. In accordance with the accelerated baseline, the FEMP Waste Management Project (WMP) is actively evaluating innovative processes for the management and disposition of low-level uranium, fissile material, and thorium, all of which have been classified as waste. These activities are being conducted by the Low Level Waste (LLW) and Uranium Waste Disposition (UWD) projects. Alternatives associated with operational processing of individual waste streams, each of which poses potentially unique health physics, industrial hygiene and industrial hazards, are being evaluated for determination of the most cost effective and safe met hod for handling and disposition. Low-level Mixed Waste (LLMW) projects are not addressed in this paper. This paper summarizes historical uranium recycling programs and resultant trace quantity contamination of uranium waste streams with radionuclides, other than uranium. The presentation then describes how waste characterization data is reviewed for radiological and/or chemical hazards and exposure mitigation techniques, in conjunction with proposed operations for handling and disposition. The final part of the presentation consists of an overview of recent operations within LLW and UWD project dispositions, which have been safely completed, and a description of several current operations

  5. Co-operation between Slovenia and Croatia in the low- and intermediate level radioactive waste repository project

    International Nuclear Information System (INIS)

    Schaller, A.; Lokner, V.; Subasic, D.; Zeleznik, N.; Mele, I.; Tomse, P.

    2001-01-01

    The paper describes the LILW repository project development in Slovenia and Croatia from the viewpoint of co-operation of national agencies for radioactive waste management - ARAO in Slovenia and APO in Croatia. The project performance, as well as the co-operation itself, are based on the fact that NPP Krsko, sited in Slovenia, is the joint venture facility of both countries, which are consequently obliged to find a proper solution for final disposal of operational and decommissioning radioactive waste generated by the plant. The main aspects of the project development in both countries, such as LILW repository site selection and characterisation, development of repository conceptual design, performance assessment/safety analysis procedures and public participation, are presented in the paper. Based on separate descriptions of the project development in Slovenia and Croatia respectively, the main aspects of co-operation between ARAO and APO are elaborated.(author)

  6. Cementitious materials for radioactive waste management within IAEA coordinated research project - 59021

    International Nuclear Information System (INIS)

    Drace, Zoran; Ojovan, Michael I.

    2012-01-01

    The IAEA Coordinated Research Project (CRP) on cementitious materials for radioactive waste management was launched in 2007 [1, 2]. The objective of CRP was to investigate the behaviour and performance of cementitious materials used in radioactive waste management system with various purposes and included waste packages, waste-forms and backfills as well as investigation of interactions and interdependencies of these individual elements during long term storage and disposal. The specific research topics considered were: (i) cementitious materials for radioactive waste packaging: including radioactive waste immobilization into a solid waste form, (ii) waste backfilling and containers; (iii) emerging and alternative cementitious systems; (iv) physical-chemical processes occurring during the hydration and ageing of cement matrices and their influence on the cement matrix quality; (v) methods of production of cementitious materials for: immobilization into wasteform, backfills and containers; (vi) conditions envisaged in the disposal environment for packages (physical and chemical conditions, temperature variations, groundwater, radiation fields); (vii) testing and non-destructive monitoring techniques for quality assurance of cementitious materials; (viii) waste acceptance criteria for waste packages, waste forms and backfills; transport, long term storage and disposal requirements;and finally (ix) modelling or simulation of long term behaviours of cementations materials used for packaging, waste immobilization and backfilling, especially in the post-closure phase. The CRP has gathered overall 26 research organizations from 22 Member States aiming to share their research and practices on the use of cementitious materials [2]. The main research outcomes of the CRP were summarized in a summary report currently under preparation to be published by IAEA. The generic topical sections covered by report are: a) conventional cementitious systems; b) novel cementitious

  7. Performance analysis for waste repositories in the nordic countries. Report for project AFA-1.2

    Energy Technology Data Exchange (ETDEWEB)

    Vuori, S. [VTT Energy (Finland); Broden, K. [Studsvik RadWaste AB (Sweden); Carugati, S.; Brodersen, K. [Forskningscenter Risoe (Denmark); Walderhaug, T. [Icelandic Radiation Protection Institute (Iceland); Helgason, J. [Ekra Geological Consulting (Iceland); Sneve, M.; Hornkjoel, S. [Norwegian Radiation Protection (Norway); Backe, S. [IFE (Norway)

    1997-02-01

    The Nordic Nuclear Safety Research (NKS) project (AFA-1) focused on safety in the final disposal of long-lived low and medium level radioactive waste and its sub project (AFA-1.2), where this report has been produced, is dealing with the performance analysis of the engineered barrier system (near-field) of the repositories for low-and medium level wastes. The topic intentionally excludes the discussion of the characteristics of the geological host medium. Therefore a more generic discussion of the features of performance analysis is possible independent of the fact that different host media are considered in the Nordic countries. The different waste management systems existing and planned in the Nordic countries are shortly described in the report. In the report main emphasis is paid on the general repositories. Some of the phenomena and interactions relevant for a generic type of repository are discussed as well. Among the different approaches for the development of scenarios for safety and performance analyses one particular method - the Rock Engineering System (RES) - was chosen to be demonstratively tested in a brainstorming session, where the possible interactions and their safety significance were discussed employing a simplified and generic Nordic repository system as the reference system. As an overall impression, the AFA-project group concludes that the use of the RES approach is very easy to learn even during a short discussion session. The use of different ways to indicate the safety significance of various interactions in a graphical user interface increases the clarity. Within the project a simple software application was developed employing a generally available spread sheet programme. The developed tool allows an easy opportunity to link the cell specific comments readily available for the `reader` of the obtained results. A short review of the performance analyses carried out in the Nordic countries for actual projects concerning repositories for

  8. Performance analysis for waste repositories in the nordic countries. Report for project AFA-1.2

    International Nuclear Information System (INIS)

    Vuori, S.; Broden, K.; Carugati, S.; Brodersen, K.; Walderhaug, T.; Helgason, J.; Sneve, M.; Hornkjoel, S.; Backe, S.

    1997-02-01

    The Nordic Nuclear Safety Research (NKS) project (AFA-1) focused on safety in the final disposal of long-lived low and medium level radioactive waste and its sub project (AFA-1.2), where this report has been produced, is dealing with the performance analysis of the engineered barrier system (near-field) of the repositories for low-and medium level wastes. The topic intentionally excludes the discussion of the characteristics of the geological host medium. Therefore a more generic discussion of the features of performance analysis is possible independent of the fact that different host media are considered in the Nordic countries. The different waste management systems existing and planned in the Nordic countries are shortly described in the report. In the report main emphasis is paid on the general repositories. Some of the phenomena and interactions relevant for a generic type of repository are discussed as well. Among the different approaches for the development of scenarios for safety and performance analyses one particular method - the Rock Engineering System (RES) - was chosen to be demonstratively tested in a brainstorming session, where the possible interactions and their safety significance were discussed employing a simplified and generic Nordic repository system as the reference system. As an overall impression, the AFA-project group concludes that the use of the RES approach is very easy to learn even during a short discussion session. The use of different ways to indicate the safety significance of various interactions in a graphical user interface increases the clarity. Within the project a simple software application was developed employing a generally available spread sheet programme. The developed tool allows an easy opportunity to link the cell specific comments readily available for the 'reader' of the obtained results. A short review of the performance analyses carried out in the Nordic countries for actual projects concerning repositories for

  9. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  10. Operating test report for project W-417, T-plant steam removal upgrade, waste transfer portion

    International Nuclear Information System (INIS)

    Myers, N.K.

    1997-01-01

    This Operating Test Report (OTR) documents the performance results of the Operating Test Procedure HNF-SD-W417-OTP-001 that provides steps to test the waste transfer system installed in the 221-T Canyon under project W-417. Recent modifications have been performed on the T Plant Rail Car Waste Transfer System. This Operating Test Procedure (OTP) will document the satisfactory operation of the 221-T Rail Car Waste Transfer System modified by project W-417. Project W-417 installed a pump in Tank 5-7 to replace the steam jets used for transferring liquid waste. This testing is required to verify that operational requirements of the modified transfer system have been met. Figure 2 and 3 shows the new and existing system to be tested. The scope of this testing includes the submersible air driven pump operation in Tank 5-7, liquid waste transfer operation from Tank 5-7 to rail car (HO-IOH-3663 or HO-IOH-3664), associated line flushing, and the operation of the flow meter. This testing is designed to demonstrate the satisfactory operation-of the transfer line at normal operating conditions and proper functioning of instruments. Favorable results will support continued use of this system for liquid waste transfer. The Functional Design Criteria for this system requires a transfer flow rate of 40 gallons per minute (GPM). To establish these conditions the pump will be supplied up to 90 psi air pressure from the existing air system routed in the canyon. An air regulator valve will regulate the air pressure. Tank capacity and operating ranges are the following: Tank No. Capacity (gal) Operating Range (gal) 5-7 10,046 0 8040 (80%) Rail car (HO-IOH-3663 HO-IOH-3664) 097219,157 Existing Tank level instrumentation, rail car level detection, and pressure indicators will be utilized for acceptance/rejection Criteria. The flow meter will be verified for accuracy against the Tank 5-7 level indicator. The level indicator is accurate to within 2.2 %. This will be for information only

  11. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland)

    2003-07-01

    'iWaste' is a project for developing and testing intelligent computational methods for more comprehensive waste management. Important issues are automated reporting, optimisation of waste collection, forecasting of waste formation, data handling of waste disposal sites and simulation and modelling of regional waste management. The main objective of the project is to identify and analyse known sources of information and to link them to the existing information processing systems in the field of waste management. Additionally, the goal is to identify and test functional elements that could be developed further to software products and services. The results of the project can be categorized into three sectors. Firstly, the guidelines for a comprehensive information system in waste management will be created. This includes the requirement specifications of different parties, definitions for the data exchange interfaces and an architectural plan for software products capable of co-operative processing. Secondly, the central parts of the intelligent information system will be piloted using the research database collected in the early stage of the project. The main topics investigated are data quality, the use of Geographical Information Systems (GIS), automated reporting, optimisation of waste collection and forecasting of waste formation. Additionally, the pilot information system can be utilized in derivative projects to speed up the starting phases of them. This makes it possible to create persistent development of waste management information systems both academically and commercially. (orig.)

  12. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  13. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations

  14. Study on quality assurance for high-level radioactive waste disposal project

    International Nuclear Information System (INIS)

    Takada, Susumu

    2005-01-01

    The U.S. Department of Energy (DOE) has developed comparatively detailed quality assurance requirements for the high-level radioactive waste disposal systems. Quality assurance is recognized as a key issue for confidence building and smooth implementation of the HLW program in Japan, and Japan is at an initial phase of repository development. Then the quality assurance requirements at site research and site selection, site characterization, and site suitability analysis used in the Yucca Mountain project were examined in detail and comprehensive descriptions were developed using flow charts. Additionally, the applicability to the Japan high-level radioactive waste disposal project was studied. The examination and study were performed for the following QA requirements: The requirements that have the relative importance at site research and site selection, site characterization, and site suitability analysis (such as planning and performing scientific investigations, sample control, data control, model development and use, technical report review, software control, and control of the electric management of data). The requirements that have the relative importance at the whole repository phases (such as quality assurance program, document control, and control of quality assurance records). (author)

  15. HANFORD DST THERMAL & SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; RINKER MW; ABATT FG

    2007-02-14

    Revision 0A of this document contains new Appendices C and D. Appendix C contains a re-analysis of the rigid and flexible tanks at the 460 in. liquid level and was motivated by recommendations from a Project Review held on March 20-21, 2006 (Rinker et al Appendix E of RPP-RPT-28968 Rev 1). Appendix D contains the benchmark solutions in support of the analyses in Appendix C.

  16. Baseline options and greenhouse gas emission reduction of clean development mechanism project in urban solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Ai; Hanaki, K. [Department of Urban Engineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Aramaki, T. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904(Japan)

    2003-07-01

    The Clean Development Mechanism (CDM) was adopted in the Kyoto Protocol as a flexibility mechanism to reduce greenhouse gases (GHGs) and has been started with such projects as improving efficiency of individual technology. Although applying various countermeasures to urban areas has significant potentials for reducing GHGs, these countermeasures have not been proposed as CDM projects in the practical stage. A CDM project needs to be validated that it will reduce GHGs additionally compared with a baseline, that is, a predictive value of GHG emissions in the absence of the project. This study examined the introduction of solid waste incineration with electricity generation into three different cities, A, B and C. The main solid waste treatment and the main fuel source are landfill and coal, respectively, in City A, incineration and natural gas in City B, and landfill and hydro in City C. GHG emission reductions of each city under several baseline options assumed here were evaluated. Even if the same technology is introduced, the emission reduction greatly varies according to the current condition and the future plan of the city: 1043-1406 kg CO2/t of waste in City A, 198-580 kg CO2/t in City B, and wide range of zero to over 1000 kg CO2/t in City C. Baseline options also cause significant difference in the emission reduction even in the same city (City C). Incinerating solid waste after removing plastics by source separation in City B increased GHG emission reduction potential up to 730-900 kg CO2/t, which enhances the effectiveness as a CDM project.

  17. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    International Nuclear Information System (INIS)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG ampersand G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory's (INEL's) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG ampersand G Idaho is responsible concerning the INEL WETP. Even though EG ampersand G Idaho has no responsibility for the work that ANL-W is performing, EG ampersand G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and

  18. Otter Brook Lake, New Hampshire Connecticut River Basin, Flood Control Project, Solid Waste Management Plan

    National Research Council Canada - National Science Library

    1996-01-01

    .... This plan provides guidance to establish policies, and responsibilities, procedures, and instructions for proper handling, storage, disposal and recycling of solid waste generated at the flood control project...

  19. Supplemental design requirements document enhanced radioactive and mixed waste storage Phase V Project W-112

    International Nuclear Information System (INIS)

    Ocampo, V.P.; Boothe, G.F.; Greager, T.M.; Johnson, K.D.; Kooiker, S.L.; Martin, J.D.

    1994-11-01

    This document provides additional and supplemental information to WHC-SD-W112-FDC-001, Project W-112 for radioactive and mixed waste storage. It provides additional requirements for the design and summarizes Westinghouse Hanford Company key design guidance and establishes the technical baseline agreements to be used for definitive design of the Project W-112 facilities

  20. Financing Waste to Wealth Project-Malaysian Experience

    International Nuclear Information System (INIS)

    Abdul Nasir Adnan

    2010-01-01

    In Malaysia, waste were coming from industrial waste, residential waste and others. So, all of these wastes were dumped into landfill and some was treated back for several purposes. All these efforts will need more money to make sure it proceeds. So, this presentation focused on how we can generate back our money from these waste. According to statistics, more than 95 % waste will go to landfills and only 5 % was recycled. 47 % were organic waste, 15 % paper, 14 % plastics, 4 % metal and only 3 % were glass or ceramics with 291 open dumpsites all over the country. So, with the establishment of RRC/ RDF-WTE, all of these wastes were managed systematically. The establishment of waste RDF plants to generate electricity also can give opportunities to government as alternative ways from depending on fossil fuel plants. Although there are several challenges such as market failure, absence of legal framework, lack of institutional measures and others, these will not break the spirit to make sure that someday all of these efforts will meet their targets.

  1. Preliminary waste acceptance requirements - Konrad repository project

    International Nuclear Information System (INIS)

    Brennecke, P.W.; Warnecke, E.H.

    1991-01-01

    In Germany, the planned Konrad repository is proposed for the disposal of all types of radioactive wastes whose thermal influence upon the host rock is negligible. The Bundesamt fuer Strahlenschutz has established Preliminary Waste Acceptance Requirements (as of April 1990) for this facility. The respective requirements were developed on the basis of the results of site-specific safety assessments. They include general requirements on the waste packages to be disposed of as well as more specific requirements on the waste forms, the packaging and the radionuclide inventory per waste package. In addition, the delivery of waste packages was regulated. An outline of the structure and the elements of the Preliminary Waste Acceptance Requirements of April 1990 is given including comments on their legal status. (Author)

  2. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  3. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    International Nuclear Information System (INIS)

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs

  4. Hanford DST Thermal and Seismic Project - Dytran Analysis Of Seismically Induced Fluid-Structure Interaction In A Hanford Double-Shell Primary Tank

    International Nuclear Information System (INIS)

    Mackey, T.C.; Rinker, M.W.; Abatt, F.G.

    2007-01-01

    Revision 0A of this document contains new Appendices C and D. Appendix C contains a re-analysis of the rigid and flexible tanks at the 460 in. liquid level and was motivated by recommendations from a Project Review held on March 20-21, 2006 (Rinker et al Appendix E of RPP-RPT-28968 Rev 1). Appendix D contains the benchmark solutions in support of the analyses in Appendix C.

  5. Battleground Energy Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, Daniel [USDOE Gulf Coast Clean Energy Application Center, Woodlands, TX (United States)

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  6. Providing an integrated waste management strategy and operation focused on project end states at the Hanford site

    International Nuclear Information System (INIS)

    Blackford, L.

    2009-01-01

    CH2M HILL Plateau Remediation Company (CHPRC) is the U.S. Department of Energy's (DOE) contractor responsible for the safe, environmental cleanup of the Central Plateau of the Hanford Site. The 586-square-mile Hanford Site is located along the Columbia River in southeastern Washington State. A plutonium production complex with nine nuclear reactors and associated processing facilities, Hanford played a pivotal role in the nation's defense for more than 40 years, beginning in the 1940's with the Manhattan Project. Today, under the direction of the DOE, Hanford is engaged in the world's largest environmental cleanup project. The Plateau Remediation Contract (PRC) is a 10-year project paving the way for closure of the Hanford Site through demolition of the Plutonium Finishing Plant; remediation of six burial grounds and 11 groundwater systems; treatment of 43.8 meters of sludge; and disposition of 8,200 meters of transuranic waste, 800 spent nuclear material containers, 2,100 metric tons of spent nuclear fuel, and two reactors. The $4.5 billion project, funded through the U.S. DOE Office of Environmental Management, focuses equally on reducing risks to workers, the public, and the environment and on protecting the Columbia River. The DOE, which operates the Hanford Site, the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology) signed a comprehensive cleanup and compliance agreement on May 15, 1989. The Hanford Federal Facility Agreement and Consent Order, or Tri-Party Agreement (TPA), is an agreement for achieving compliance with the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) remedial action provisions and with the Resource Conservation and Recovery Act (RCRA) treatment, storage, and disposal (TSD) unit regulations and corrective action provisions . More specifically, the Tri-Party Agreement does the following: 1) defines and ranks CERCLA and RCRA cleanup commitments; 2) establishes

  7. Remedial action and waste disposal project: 100-B/C remedial action readiness evaluation plan

    International Nuclear Information System (INIS)

    April, J.G.; Bryant, D.L.; Cislo, G.B.

    1996-06-01

    The Readiness Evaluation Plan presents the methodology used to assess the readiness of the 100-B/C Remedial Action Project. The 100 Areas Remedial Action Project will remediate the 100 Areas liquid waste site identified in the Interim Action Record of Decision for the 100- BC-1, 100-DR-1, and 100-HR-1 Operable Units. These sites are located in the 100 Area of the Hanford Site in Richland, Washington

  8. Minimizing waste in environmental restoration

    International Nuclear Information System (INIS)

    Thuot, J.R.; Moos, L.

    1996-01-01

    Environmental restoration, decontamination and decommissioning, and facility dismantlement projects are not typically known for their waste minimization and pollution prevention efforts. Typical projects are driven by schedules and milestones with little attention given to cost or waste minimization. Conventional wisdom in these projects is that the waste already exists and cannot be reduced or minimized; however, there are significant areas where waste and cost can be reduced by careful planning and execution. Waste reduction can occur in three ways: beneficial reuse or recycling, segregation of waste types, and reducing generation of secondary waste

  9. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Lee

    2005-09-15

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  10. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    International Nuclear Information System (INIS)

    Lee, T.A.

    2005-01-01

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  11. International co-ordinated research project on low and intermediate level waste package performance

    Energy Technology Data Exchange (ETDEWEB)

    Dayal, R. [International Atomic Energy Agency IAEA, Vienna (Austria)

    2001-07-01

    As part of IAEA's mandate to facilitate the transfer and exchange of information amongst Member States, the Agency is currently coordinating an international R and D project, involving 12 developed and developing countries, on Performance of Low and Intermediate Level Waste Packages under Disposal Conditions. This paper will review the current status of the Coordinated Research Project (CRP) and summarize the key findings of the work completed to date within the context of the CRP in the participating Member States. (author)

  12. International co-ordinated research project on low and intermediate level waste package performance

    International Nuclear Information System (INIS)

    Dayal, R.

    2001-01-01

    As part of IAEA's mandate to facilitate the transfer and exchange of information amongst Member States, the Agency is currently coordinating an international R and D project, involving 12 developed and developing countries, on Performance of Low and Intermediate Level Waste Packages under Disposal Conditions. This paper will review the current status of the Coordinated Research Project (CRP) and summarize the key findings of the work completed to date within the context of the CRP in the participating Member States. (author)

  13. CHALLENGES AND OPPORTUNITIES--INTEGRATED LIFE-CYCLE OPTIMIZATION INITIATIVES FOR THE HANFORD RIVER PROTECTION PROJECT--WASTE TREATMENT PLANT

    International Nuclear Information System (INIS)

    Auclair, K. D.

    2002-01-01

    This paper describes the ongoing integrated life-cycle optimization efforts to achieve both design flexibility and design stability for activities associated with the Waste Treatment Plant at Hanford. Design flexibility is required to support the Department of Energy Office of River Protection Balance of Mission objectives, and design stability to meet the Waste Treatment Plant construction and commissioning requirements in order to produce first glass in 2007. The Waste Treatment Plant is a large complex project that is driven by both technology and contractual requirements. It is also part of a larger overall mission, as a component of the River Protection Project, which is driven by programmatic requirements and regulatory, legal, and fiscal constraints. These issues are further complicated by the fact that both of the major contractors involved have a different contract type with DOE, and neither has a contract with the other. This combination of technical and programmatic drivers, constraints, and requirements will continue to provide challenges and opportunities for improvement and optimization. The Bechtel National, Inc. team is under contract to engineer, procure, construct, commission and test the Waste Treatment Plant on or ahead of schedule, at or under cost, and with a throughput capacity equal to or better than specified. The Department of Energy is tasked with the long term mission of waste retrieval, treatment, and disposal. While each mission is a compliment and inextricably linked to one another, they are also at opposite ends of the spectrum, in terms of expectations of one another. These mission requirements, that are seemingly in opposition to one another, pose the single largest challenge and opportunity for optimization: one of balance. While it is recognized that design maturation and optimization are the normal responsibility of any engineering firm responsible for any given project, the aspects of integrating requirements and the management

  14. Biodegradation of hazardous waste using white rot fungus: Project planning and concept development document

    International Nuclear Information System (INIS)

    Luey, J.; Brouns, T.M.; Elliott, M.L.

    1990-11-01

    The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable for the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs

  15. 40 CFR 258.41 - Project XL Bioreactor Landfill Projects.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Project XL Bioreactor Landfill... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Design Criteria § 258.41 Project XL Bioreactor Landfill Projects. (a) Buncombe County, North Carolina Project XL Bioreactor Landfill Requirements...

  16. Safety assessment methodologies and their application in development of near surface waste disposal facilities - the ASAM project

    International Nuclear Information System (INIS)

    Metcalf, P.

    2003-01-01

    The scope of ASAM project covers near surface disposal facilities for all types of low and intermediate level wastes with emphasis of the post-closure safety assessment.The objectives are to explore practical application to a range of disposal facilities for a number of purposes e.g. development of design concepts, safety re-assessment, upgrading safety and to develop practical approaches to assist regulators, operators and other experts in review of safety assessment. The task of the Co-ordination Group are: reassessment of existing facilities - use of safety assessment in decision making on selection of options (volunteer site Hungary); disused sealed sources - evaluation of disposability of disused sealed sources in near surface facilities (volunteer site Saratov, Russia); mining and minerals processing waste - evaluation of long-term safety (volunteer site pmc S. Africa). An agreement on the scope and objectives of the project are reached and the further consideration, such as human intrusion/institutional control/security; waste from oil/gas industry; very low level waste; categorization of sealed sources coordinated with other IAEA activities are outlined

  17. Performance allocation traceable to regulatory criteria as applied to site characterization work at the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    Deju, R.A.; Babad, H.; Bensky, M.S.; Jacobs, G.K.

    1983-01-01

    The Basalt Waste Isolation Project has developed a method for defining in detail the work required to demonstrate the feasibility of emplacing and providing for the safe isolation of nuclear wastes in a repository in the deep basalts at the Hanford Site near Richland, Washington. Criteria analysis allows the identification of areas of significant technical uncertainty or controversy that can be highlighted as issues. A preliminary analysis has been conducted, which, by identifying key radionuclides and allocating performance among the multiple barriers in a repository constructed in a basalt, allows the design and development testing activities at the Basalt Waste Isolation Project to be put into perspective. Application of sophisticated uncertainty analysis techniques will allow refinements in the analysis to be made and to further guide characterization and testing activities. Preliminary results suggest that a repository constructed in basalt will provide for the safe isolation of nuclear wastes in a cost-effective and reliable manner with a high degree of confidence

  18. Biomethanization of tannery waste: An industrial experiment: Demonstration project. Biomethanisation de residus de tannerie: Une experience industrielle: Projet de demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Aloy, M.; Mermet, R.; Sanejouand, J.

    1988-01-01

    The tanning and leather dressing industry produces large amounts of waste products including which can be placed in three categories: unrtanned waste, tanned waste, and liquid waste. Both untanned and liquid waste have a high organic content (proteins and fats) and their humidity levels are such that they are readily degraded by methanic fermentation. The results of the experiments confirm the technical feasibility of the project and indicate the economic limits of this type of plant. 14 figs.

  19. Municipal Solid Waste management

    OpenAIRE

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  20. Minimizing waste in environmental restoration

    International Nuclear Information System (INIS)

    Moos, L.; Thuot, J.R.

    1996-01-01

    Environmental restoration, decontamination and decommissioning and facility dismantelment projects are not typically known for their waste minimization and pollution prevention efforts. Typical projects are driven by schedules and milestones with little attention given to cost or waste minimization. Conventional wisdom in these projects is that the waste already exists and cannot be reduced or minimized. In fact, however, there are three significant areas where waste and cost can be reduced. Waste reduction can occur in three ways: beneficial reuse or recycling; segregation of waste types; and reducing generation of secondary waste. This paper will discuss several examples of reuse, recycle, segregation, and secondary waste reduction at ANL restoration programs

  1. Yucca Mountain Project waste package design for MRS [Monitored Retrievable Storage] system studies

    International Nuclear Information System (INIS)

    Nelson, T.; Russell, E.; Johnson, G.L.; Morissette, R.; Stahl, D.; LaMonica, L.; Hertel, G.

    1989-04-01

    This report, prepared by the Yucca Mountain Project, is the report for Task E of the MRS System Study. A number of assumptions were necessary prior to initiation of this system study. These assumptions have been defined in Section 2 for the packaging scenarios, the waste forms, and the waste package concepts and materials. Existing concepts were utilized because of schedule constraints. Section 3 provides a discussion of sensitivity considerations regarding the impact of different assumptions on the overall result of the system study. With the exception of rod consolidation considerations, the system study should not be sensitive to the parameters assumed for the waste package. The current reference waste package materials and concepts are presented in Section 4. Although stainless steel is assumed for this study, a container material has not yet been selected for Advanced Conceptual Design (ACD) from the six candidates currently under study. Section 5 discusses the current thinking for possible alternate waste package materials and concepts. These concepts are being considered in the event that the waste package emplacement environment is more severe than is currently anticipated. Task E also provides a concept in Section 6 for an MRS canister to contain consolidated fuel for storage at the MRS and eventual shipment to the repository. 5 refs., 14 figs., 10 tabs

  2. Design review plan for Multi-Function Waste Tank Facility (Project W-236A)

    International Nuclear Information System (INIS)

    Renfro, G.G.

    1994-01-01

    This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices

  3. Project B-589, 300 Area transuranic waste interim storage project engineering study

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1985-08-01

    The purpose of the study was to look at various alternatives of taking newly generated, remote-handled transuranic waste (caisson waste) in the 300 Area, performing necessary transloading operations and preparing the waste for storage. The prepared waste would then be retrieved when the Waste Isolation Pilot Plant becomes operational and transshipped to the repository in New Mexico with a minimum of inspection and packaging. The scope of this study consisted of evaluating options for the transloading of the TRU wastes for shipment to a 200 Area storage site. Preconceptual design information furnished as part of the engineering study is listed below: produce a design for a clean, sealed waste canister; hot cell loadout system for the waste; in-cell loading or handling equipment; determine transshipment cask options; determine assay system requirements (optional); design or specify transport equipment required; provide a SARP cost estimate; determine operator training requirements; determine waste compaction equipment needs if desirable; develop a cost estimate and approximate schedule for a workable system option; and update the results presented in WHC Document TC-2025

  4. Interdisciplinary perspectives on dose limits in radioactive waste management : A research paper developed within the ENTRIA project

    NARCIS (Netherlands)

    Kalmbach, K.; Röhlig, K.-J.

    2016-01-01

    Within the ENTRIA project, an interdisciplinary group of scientists developed a research paper aiming at a synthesis of the technical, sociology of knowledge, legal, societal, and political aspects of dose limits within the field of radioactive waste management. In this paper, the ENTRIA project is

  5. Risk management for noncombustion wastes

    International Nuclear Information System (INIS)

    Connor, K.K.; Rice, J.S.

    1991-01-01

    The Noncombustion Waste Risk Management Project is designed to incorporate the insights and information developed in these projects into tools that will help utilities make better noncombustion waste management decisions. Specific project goals are to synthesize information useful to utilities on noncombustion wastes, emphasize waste reduction as a priority over end-of-pipe management, develop methods to manage the costs and risks associated with noncombustion wastes (e.g., direct costs, permitting costs, liability costs, public relations costs), develop software and documentation to deliver the information and analysis methods to the industry. This project was initiated EPRI's Environment Division in late 1988. The early phases of the project involved gathering information on current noncombustion waste management practices, specific utility problems and concerns with respect to these wastes, current and potential future regulations, and current and emerging management options. Recent efforts have focused on characterizing the direct and indirect (e.g., lawsuits, remedial action) costs of managing these wastes and on developing and implementing risk management methods for a subset of wastes. The remainder of this paper describes the specific issues addressed by and the results and insights from the three completed waste-specific studies

  6. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    MULKEY, C.H.

    1999-07-06

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.

  7. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    1999-01-01

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants

  8. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis; FINAL

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    1999-01-01

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants

  9. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  10. Phase V storage (Project W-112) Central Waste Complex operational readiness review, final report

    International Nuclear Information System (INIS)

    Wight, R.H.

    1997-01-01

    This document is the final report for the RFSH conducted, Contractor Operational Readiness Review (ORR) for the Central Waste Complex (CWC) Project W-112 and Interim Safety Basis implementation. As appendices, all findings, observations, lines of inquiry and the implementation plan are included

  11. Phase 5 storage (Project W-112) Central Waste Complex operational readiness review, final report

    Energy Technology Data Exchange (ETDEWEB)

    Wight, R.H.

    1997-05-30

    This document is the final report for the RFSH conducted, Contractor Operational Readiness Review (ORR) for the Central Waste Complex (CWC) Project W-112 and Interim Safety Basis implementation. As appendices, all findings, observations, lines of inquiry and the implementation plan are included.

  12. Lessons Learned Report for the radioactive mixed waste land disposal facility (Trench 31, Project W-025)

    International Nuclear Information System (INIS)

    Irons, L.G.

    1995-01-01

    This report presents the lessons learned from a project that involved modification to the existing burial grounds at the Hanford Reservation. This project has been focused on the development and operation of a Resource Conservation and Recovery Act compliant landfill which will accept low-level radioactive wastes that have been placed in proper containers

  13. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  14. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    International Nuclear Information System (INIS)

    Hua, F.; Pasupathi, P.; Brown, N.; Mon, K.

    2005-01-01

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  15. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae - iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland); Isoaho, S. [Tampere Univ. (Finland)

    2004-07-01

    ''Waste'' - Intelligent Information System for Waste Management - is a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project is to create a basis for more comprehensive utilisation and management of waste management data and for the development of database management systems. The results of the project are numerous. A study of the present state of data management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, interfaces for information exchange between different actors, and the characteristics of the software products. During the second phase of the project, a hyper document describing waste management systems, and a software application for describing material flows and their management will be finalized. Also methodologies and practices for processing data into information, which is needed in the decision making process, will be developed. The developed methodologies include e.g. data mining techniques, and the practices include e.g. the prediction of waste generation and optimisation of waste collection and transport. (orig.)

  16. Project management approach for the Waste Area Grouping 6 Closure/Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-07-01

    This document has been developed as a preliminary definition of the Waste Area Grouping (WAG) 6 Closure Project Management Approach. The purpose of this document is to identify the roles and responsibilities of the various project team members and to identify the project scope, schedule and budget. This document is intended to be a living document. As information develops, this document will be revised to create a WAG 6 Project Management Plan (PMP). The PMP will provide additional focus to the information contained in this document. The information required will be available as the selected alternative for remediation of WAG 6 is approved and Remedial Action Plans are conceptualized. This document has been reviewed against, and is intended to be consistent with, the Environmental Restoration Program Management Plan

  17. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE's instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department's obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act

  18. Development and Characterization of Gibbsite Component Simulant

    International Nuclear Information System (INIS)

    Russell, Renee L.; Smith, Harry D.; Rinehart, Donald E.; Peterson, Reid A.

    2009-01-01

    According to Bechtel National, Inc.'s (BNI's) Test Specification 24590-PTF-TSP-RT-06-006,, 'Simulant Development to Support the Development and Demonstration of Leaching and Ultrafiltration Pretreatment Processes', simulants for boehmite, gibbsite, and filtration are to be developed so they can be used in subsequent bench and integrated testing of the leaching/filtration processes for the River Protection Project-Waste Treatment and Immobilization Plant (RPP-WTP). These simulants will then be used to demonstrate the leaching process and to help refine processing conditions that may impact safety basis considerations (Smith 2006). This report documents PNNL's results of the gibbsite simulant development.

  19. Physical Characterization of Florida International University Simulants

    Energy Technology Data Exchange (ETDEWEB)

    HANSEN, ERICHK.

    2004-08-19

    Florida International University shipped Laponite, clay (bentonite and kaolin blend), and Quality Assurance Requirements Document AZ-101 simulants to the Savannah River Technology Center for physical characterization and to report the results. The objectives of the task were to measure the physical properties of the fluids provided by FIU and to report the results. The physical properties were measured using the approved River Protection Project Waste Treatment Plant characterization procedure [Ref. 1]. This task was conducted in response to the work outlined in CCN066794 [Ref. 2], authored by Gary Smith and William Graves of RPP-WTP.

  20. Systems engineering management and implementation plan for Project W-464, immobilized high-level waste storage

    International Nuclear Information System (INIS)

    Wecks, M.D.

    1998-01-01

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-46 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan. (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented