WorldWideScience

Sample records for project native vegetation

  1. Effects of Lantana camara (L.) invasion on the native vegetation of ...

    African Journals Online (AJOL)

    ... camara (L.) invasion on the native vegetation of Gonarezhou National Park, Zimbabwe. ... A total of 41 native woody species and 2 native herbaceous species were ... Keywords : Alien plants, Biodiversity, Invasive plants, Lantana camara, ...

  2. Potential for water salvage by removal of non-native woody vegetation from dryland river systems

    Science.gov (United States)

    Doody, T.M.; Nagler, P.L.; Glenn, E.P.; Moore, G.W.; Morino, K.; Hultine, K.R.; Benyon, R.G.

    2011-01-01

    Globally, expansion of non-native woody vegetation across floodplains has raised concern of increased evapotranspiration (ET) water loss with consequent reduced river flows and groundwater supplies. Water salvage programs, established to meet water supply demands by removing introduced species, show little documented evidence of program effectiveness. We use two case studies in the USA and Australia to illustrate factors that contribute to water salvage feasibility for a given ecological setting. In the USA, saltcedar (Tamarix spp.) has become widespread on western rivers, with water salvage programs attempted over a 50-year period. Some studies document riparian transpiration or ET reduction after saltcedar removal, but detectable increases in river base flow are not conclusively shown. Furthermore, measurements of riparian vegetation ET in natural settings show saltcedar ET overlaps the range measured for native riparian species, thereby constraining the possibility of water salvage by replacing saltcedar with native vegetation. In Australia, introduced willows (Salix spp.) have become widespread in riparian systems in the Murray-Darling Basin. Although large-scale removal projects have been undertaken, no attempts have been made to quantify increases in base flows. Recent studies of ET indicate that willows growing in permanently inundated stream beds have high transpiration rates, indicating water savings could be achieved from removal. In contrast, native Eucalyptus trees and willows growing on stream banks show similar ET rates with no net water salvage from replacing willows with native trees. We conclude that water salvage feasibility is highly dependent on the ecohydrological setting in which the non-native trees occur. We provide an overview of conditions favorable to water salvage. Copyright ?? 2011 John Wiley & Sons, Ltd.

  3. South Texas Native Plant Restoration Project

    Science.gov (United States)

    2012-10-01

    The South Texas Native Plant Restoration Project was a resounding success in that the primary goal of : developing commercial sources of native seed has been substantially met. By the conclusion of the project : on August 31, 2011, 20 native seed sou...

  4. The Native Comic Book Project: native youth making comics and healthy decisions.

    Science.gov (United States)

    Montgomery, Michelle; Manuelito, Brenda; Nass, Carrie; Chock, Tami; Buchwald, Dedra

    2012-04-01

    American Indians and Alaska Natives have traditionally used stories and drawings to positively influence the well-being of their communities. The objective of this study was to describe the development of a curriculum that trains Native youth leaders to plan, write, and design original comic books to enhance healthy decision making. Project staff developed the Native Comic Book Project by adapting Dr. Michael Bitz's Comic Book Project to incorporate Native comic book art, Native storytelling, and decision-making skills. After conducting five train-the-trainer sessions for Native youth, staff were invited by youth participants to implement the full curriculum as a pilot test at one tribal community site in the Pacific Northwest. Implementation was accompanied by surveys and weekly participant observations and was followed by an interactive meeting to assess youth engagement, determine project acceptability, and solicit suggestions for curriculum changes. Six youths aged 12 to 15 (average age = 14) participated in the Native Comic Book Project. Youth participants stated that they liked the project and gained knowledge of the harmful effects of commercial tobacco use but wanted better integration of comic book creation, decision making, and Native storytelling themes. Previous health-related comic book projects did not recruit youth as active producers of content. This curriculum shows promise as a culturally appropriate intervention to help Native youth adopt healthy decision-making skills and healthy behaviors by creating their own comic books.

  5. Vegetation development and native species establishment in reclaimed coal mine lands in Alberta : directions for reclamation planning

    Energy Technology Data Exchange (ETDEWEB)

    Longman, P. [Calgary Univ., AB (Canada). Faculty of Environmental Design

    2010-07-01

    This paper discussed a study undertaken to evaluate reclamation vegetation at Coal Valley Mine in Alberta with respect to expected vegetation changes over time, establishing a successional model of vegetation development, and factors contributing to the observed patterns. Most of the expected vegetation trends were evident, including lower grass cover and height, lower legume cover, a higher degree of native plant species richness, and the establishment of woody species. Four vegetation communities (2 graminoid-dominated and 2 conifer-dominated) were identified in the study, for which a possible successional model was constructed. Vegetation dynamics for agronomic grasses, legumes, and tree cover were discussed. Areas with Lodgepole Pine were found to have higher species richness and cover. Concerns were raised that the identified trends may not in fact supply the expected opportunities for native species establishment. In order to facilitate the establishment of native species and better manage reclamation vegetation development, the author recommended that a conifer overstory be established to increase native richness and native cover, and that more appropriate seeding mixes be developed as certain agronomic species are detrimental to long-term goals. The author also recommended that site-specific seed mixes be developed according to end land-use goals, that a planting program for native plants and shrubs be developed, and that a monitoring program be established to better inform future reclamation efforts. The recommendations were designed to bring reclamation efforts into line with reclamation goals. 12 refs., 4 tabs., 2 figs.

  6. Native vegetation establishment for IDOT erosion control best management practices.

    Science.gov (United States)

    2014-05-01

    The objective of this report was to develop native roadside vegetation best management practices for : the Illinois Department of Transportation. A review of current practices was undertaken, along with a : review of those of other state departments ...

  7. Offsetting the impacts of mining to achieve no net loss of native vegetation.

    Science.gov (United States)

    Sonter, L J; Barrett, D J; Soares-Filho, B S

    2014-08-01

    Offsets are a novel conservation tool, yet using them to achieve no net loss of biodiversity is challenging. This is especially true when using conservation offsets (i.e., protected areas) because achieving no net loss requires avoiding equivalent loss. Our objective was to determine if offsetting the impacts of mining achieves no net loss of native vegetation in Brazil's largest iron mining region. We used a land-use change model to simulate deforestation by mining to 2020; developed a model to allocate conservation offsets to the landscape under 3 scenarios (baseline, no new offsets; current practice, like-for-like [by vegetation type] conservation offsetting near the impact site; and threat scenario, like-for-like conservation offsetting of highly threatened vegetation); and simulated nonmining deforestation to 2020 for each scenario to quantify avoided deforestation achieved with offsets. Mines cleared 3570 ha of native vegetation by 2020. Under a 1:4 offset ratio, mining companies would be required to conserve >14,200 ha of native vegetation, doubling the current extent of protected areas in the region. Allocating offsets under current practice avoided deforestation equivalent to 3% of that caused by mining, whereas allocating under the threat scenario avoided 9%. Current practice failed to achieve no net loss because offsets did not conserve threatened vegetation. Explicit allocation of offsets to threatened vegetation also failed because the most threatened vegetation was widely dispersed across the landscape, making conservation logistically difficult. To achieve no net loss with conservation offsets requires information on regional deforestation trajectories and the distribution of threatened vegetation. However, in some regions achieving no net loss through conservation may be impossible. In these cases, other offsetting activities, such as revegetation, will be required. © 2014 Society for Conservation Biology.

  8. A preliminary study of effects of feral pig density on native Hawaiian montane rainforest vegetation

    Science.gov (United States)

    Scheffler, Pamela Y.; Pratt, Linda; Foote, David; Magnacca, Karl

    2012-01-01

    This study aimed to examine the effects of different levels of pig density on native Hawaiian forest vegetation. Pig sign was measured across four pig management units in the 'Öla'a Forest from 1998 through 2004 and pig density estimated based upon pig activity. Six paired vegetation monitoring plots were established in the units, each pair straddling a pig fence. Percent cover and species richness of understory vegetation, ground cover, alien species, and preferred pig forage plants were measured in 1997 and 2003 and compared with pig density estimates. Rainfall and hunting effort and success by management personnel were also tracked over the study period. Vegetation monitoring found a higher percentage of native plants in pig-free or low-pig areas compared to those with medium or high pig densities, with no significant change in the percent native plant species between the first and second monitoring periods. Differences between plots were strongly affected by location, with a higher percentage of native plants in western plots, where pig damage has historically been lower. Expansion of this survey with more plots would help improve the statistical power to detect differences in vegetation caused by pigs. Because of the limited vegetation sampling in this study, the results must be viewed as descriptive. We compare the vegetation within 30 x 30 m plots across three thresholds of historical pig density and show how pig densities can change in unanticipated directions within management units. While these results cannot be extrapolated to area-wide effects of pig activity, these data do contribute to a growing body of information on the impacts of feral pigs on Hawaiian plant communities.

  9. Native flora rescue program: GASENE project case study

    Energy Technology Data Exchange (ETDEWEB)

    Serricchio, Claudio; Caldas, Flaviana V [PETROBRAS, Rio de Janeiro, RJ (Brazil); Akahori, Lisa [Telsan, Rio de Janeiro, RJ (Brazil); Jacomelli, Junior, Jose Almir [AGF Engenharia, Araucaria, PR (Brazil)

    2009-07-01

    Concerning the surrounding flora, the implementation of pipelines may cause fragmentation and isolation of the remaining natural vegetation, possibly changing the forest structure; thus raising the border effect; modifying the ratio of species and life forms, decreasing the vegetal diversity and/or causing a lack of connectivity among the remaining indigenous forest resources. In the case of pipelines, the most important environmental measure intended to mitigate the damage caused to the flora is the adoption of Indigenous Flora Rescue Programs. This paper is aimed at analyzing the programs currently applied during the implementation of the GASENE project, by conducting a case study. The main targets of such program are obtaining seeds and fruits with a view to subsidize the potential production of sapling to be further employed in the recovery of areas impacted by the pipeline works; and then relocate the most significant samples of species rescued from the suppressed areas in order to comprise forest areas adjacent to the pipeline's right-of-way. The programs had little differences in their methodology while being implemented, however, we consider that up to the present moment the results obtained in the preservation of species of native flora have been satisfactory. (author)

  10. Native herbivore exerts contrasting effects on fire regime and vegetation structure

    Science.gov (United States)

    Jose L. Hierro; Kenneth L. Clark; Lyn C. Branch; Diego Villarreal

    2011-01-01

    Although native herbivores can alter fire regimes by consuming herbaceous vegetation that serves as fine fuel and, less commonly, accumulating fuel as nest material and other structures, simultaneous considerations of contrasting effects of herbivores on fire have scarcely been addressed. We proposed that a colonial rodent, vizcacha (Lagostomus maximus...

  11. Native flora rescue program: GASENE project case study

    Energy Technology Data Exchange (ETDEWEB)

    Serricchio, Claudio; Caldas, Flaviana V. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Akahori, Lisa [Telsan, Rio de Janeiro, RJ (Brazil); Jacomelli Junior, Jose Almir [AGF Engenharia, Araucaria, PR (Brazil)

    2009-07-01

    Concerning the surrounding flora, the implementation of pipelines may cause fragmentation and isolation of the remaining natural vegetation, possibly changing the forest structure; thus raising the border effect; modifying the ratio of species and life forms, decreasing the vegetal diversity and/or causing a lack of connectivity among the remaining indigenous forest resources. In the case of pipelines, the most important environmental measure intended to mitigate the damage caused to the flora is the adoption of Indigenous Flora Rescue Programs. This paper is aimed at analyzing the programs currently applied during the implementation of the GASENE project, by conducting a case study. The main targets of such program are obtaining seeds and fruits with a view to subsidize the potential production of sapling to be further employed in the recovery of areas impacted by the pipeline works; and then relocate the most significant samples of species rescued from the suppressed areas in order to comprise forest areas adjacent to the pipeline's right-of-way. The programs had little differences in their methodology while being implemented, however, we consider that up to the present moment the results obtained in the preservation of species of native flora have been satisfactory. (author)

  12. Kalispel Non-Native Fish Suppression Project 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wingert, Michele; Andersen, Todd [Kalispel Natural Resource Department

    2008-11-18

    Non-native salmonids are impacting native salmonid populations throughout the Pend Oreille Subbasin. Competition, hybridization, and predation by non-native fish have been identified as primary factors in the decline of some native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi) populations. In 2007, the Kalispel Natural Resource Department (KNRD) initiated the Kalispel Nonnative Fish Suppression Project. The goal of this project is to implement actions to suppress or eradicate non-native fish in areas where native populations are declining or have been extirpated. These projects have previously been identified as critical to recovering native bull trout and westslope cutthroat trout (WCT). Lower Graham Creek was invaded by non-native rainbow (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) after a small dam failed in 1991. By 2003, no genetically pure WCT remained in the lower 700 m of Graham Creek. Further invasion upstream is currently precluded by a relatively short section of steep, cascade-pool stepped channel section that will likely be breached in the near future. In 2008, a fish management structure (barrier) was constructed at the mouth of Graham Creek to preclude further invasion of non-native fish into Graham Creek. The construction of the barrier was preceded by intensive electrofishing in the lower 700 m to remove and relocate all captured fish. Westslope cutthroat trout have recently been extirpated in Cee Cee Ah Creek due to displacement by brook trout. We propose treating Cee Cee Ah Creek with a piscicide to eradicate brook trout. Once eradication is complete, cutthroat trout will be translocated from nearby watersheds. In 2004, the Washington Department of Fish and Wildlife (WDFW) proposed an antimycin treatment within the subbasin; the project encountered significant public opposition and was eventually abandoned. However, over the course of planning this 2004 project, little public

  13. An invasive plant alters phenotypic selection on the vegetative growth of a native congener.

    Science.gov (United States)

    Beans, Carolyn M; Roach, Deborah A

    2015-02-01

    The ecological consequences of plant competition have frequently been tested, but the evolutionary outcomes of these interactions have gone largely unexplored. The study of species invasions can make an important contribution to this field of research by allowing us to watch ecological and evolutionary processes unfold as a novel species is integrated into a plant community. We explored the ecological and evolutionary impact of an invasive jewelweed, Impatiens glandulifera, on a closely related native congener, I. capensis and asked: (1) Does the presence of the invasive jewelweed alter the fitness of native jewelweed populations? (2) Does the invasive jewelweed affect the vegetative growth of the native congener? and (3) Does the invasive jewelweed alter phenotypic selection on the vegetative traits of the native congener? We used a greenhouse competition experiment, an invasive species removal field experiment, and a survey of natural populations. We show that when the invasive jewelweed is present, phenotypic selection favors native jewelweed individuals investing less in rapid upward growth and more in branching and fruiting potential through the production of nodes. This research demonstrates that invasive plants have the potential to greatly alter natural selection on native competitors. Studies investigating altered selection in invaded communities can reveal the potential evolutionary impact of invasive competitors, while deepening our understanding of the more general role of competition in driving plant evolution and permitting species coexistence. © 2015 Botanical Society of America, Inc.

  14. Butterfly Assemblages Associated with Invasive Tamarisk (Tamarix spp.) Sites: Comparisons with Tamarisk Control and Native Vegetation Reference Sites

    OpenAIRE

    S. Mark Nelson; Rick Wydoski

    2013-01-01

    We studied butterfly assemblages at six types of riparian landscapes in five different watersheds in the southwestern United States (n=34 sites). Sites included exotic-invasive Tamarix ramosissima (tamarisk) dominated sites; sites where tamarisk was controlled, but not actively revegetated; sites revegetated with upland plants; sites where control was followed with riparian plant revegetation; native riparian vegetation sites; and sites that were a mixture of native and tamarisk vegetations. ...

  15. Native Roadside Vegetation that Enhances Soil Erosion Control in Boreal Scandinavia

    Directory of Open Access Journals (Sweden)

    Annika K. Jägerbrand

    2014-07-01

    Full Text Available This study focused on identifying vegetation characteristics associated with erosion control at nine roadside sites in mid-West Sweden. A number of vegetation characteristics such as cover, diversity, plant functional type, biomass and plant community structure were included. Significant difference in cover between eroded and non-eroded sub-sites was found in evergreen shrubs, total cover, and total above ground biomass. Thus, our results support the use of shrubs in order to stabilize vegetation and minimize erosion along roadsides. However, shrubs are disfavored by several natural and human imposed factors. This could have several impacts on the long-term management of roadsides in boreal regions. By both choosing and applying active management that supports native evergreen shrubs in boreal regions, several positive effects could be achieved along roadsides, such as lower erosion rate and secured long-term vegetation cover. This could also lead to lower costs for roadside maintenance as lower erosion rates would require less frequent stabilizing treatments and mowing could be kept to a minimum in order not to disfavor shrubs.

  16. Soil organic carbon stocks under native vegetation - revised estimates for use with the simple assessment option of the Carbon Benefits Project system

    NARCIS (Netherlands)

    Batjes, N.H.

    2011-01-01

    The Carbon Benefits Project (CBP) is developing a standardized system for sustainable land management projects to measure, model and report changes in carbon stocks and greenhouse gas (GHG) emissions for use at varying scales. A global framework of soil organic carbon (SOC) stocks under native

  17. M-X Environmental Technical Report. Environmental Characteristics of Alternative Designated Deployment Areas, Native Vegetation.

    Science.gov (United States)

    1980-12-22

    lotyabe MOunts’ns Area, evada, Wasmnn Journal of biology . Vol. 10. 02. 26 t 6 Table 3. Area in national forests in Utah - 1978. FOREST NUMBER OF ACRES...sulohee to reduce olnd a4d waner o.non . Chines tn downslop. atar spply. Plant suitable vegetation for wildlife habitat, erosion C0to.t o of .011...intrinsic value or intrinsic value or intrinsic value Native vegetation forms the basis of the food chain--all animal life, including human , is ultimately

  18. Invasive non-native species' provision of refugia for endangered native species.

    Science.gov (United States)

    Chiba, Satoshi

    2010-08-01

    The influence of non-native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non-native species may both harm and provide refugia for endangered native species. The invasive non-native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats [Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non-native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non-native species can be used to mitigate the impacts of other non-native species on native species.

  19. Microbial Communities in Cerrado Soils under Native Vegetation Subjected to Prescribed Fires and Under Pasture

    Science.gov (United States)

    The objective of this work was to evaluate the effects of fire regimes and vegetation cover on the structure and dynamics of soil microbial communities, through phospholipid fatty acid (PLFA) analysis. Comparisons were made between native areas with different woody covers ("cerra...

  20. Land use and vegetation cover on native symbionts and interactions with cowpea

    Directory of Open Access Journals (Sweden)

    Beatriz C. F. Rocha

    Full Text Available ABSTRACT Arbuscular mycorrhizal fungi and rhizobia are important components of agroecosystems and they respond to human interference. The objective of this study was to investigate native communities of those microorganisms in soil collected under the native forest, four pastures (Brachiaria brizantha, Panicum maximum, Arachis pintoi and Stylosanthes guianensis and a fallow soil after maize cultivation, in interaction with cowpea (Vigna unguculata. The cowpea grew in a greenhouse until flowering. They were randomly distributed depending on soil, in five replications. The lowest mycorrhizal fungi sporulation and mycorrhizal root colonization occurred under the Panicum and forest soil. In the soils under forest and Stylosanthes, the cowpea did not exhibit nodules and grew less. Among the anthropized areas, the effect was variable, with stimulus to the multiplication and symbiosis of these microorganisms, except in areas of Panicum and Stylosanthes. When the native vegetation is substituted by pasture or farming, the mycorrhizal fungi and rhizobia proliferation predominate. However, the effect and its magnitude depends on the grown plant species, with reflects on the plant species in succession, such as the cowpea.

  1. Vegetation (MCV / NVCS) Mapping Projects - California [ds515

    Data.gov (United States)

    California Natural Resource Agency — This metadata layer shows the footprint of vegetation mapping projects completed in California that have used the Manual California of Vegetation ( MCV 1st edition)...

  2. Vegetation Changes in a Native Forest Produced by Atta vollenweideri Forel 1893 (Hymenoptera: Formicidae) Nests.

    Science.gov (United States)

    Sabattini, J A; Sabattini, R A; Cian, J C; Sabattini, I A

    2018-02-01

    Herbivory is an important factor to generate spatial mosaics with variations in a plant community composition and organization. The objective of this work was to determine the impact of Atta vollenweideri Forel 1893 nests on herbaceous and shrub vegetation in a degraded native forest of the Espinal ecoregion. The study was carried out in the Protected Area and Multiple Use Nature Reserve called Estancia "El Carayá" (Entre Ríos, Argentina). Ten A. vollenweideri nests were selected by simple random sampling through internal roads, and two transects were drawn from the center of the nest (0 m) up to 60 m away in opposite directions. The line intercept method was used to quantify the percentage of vegetation cover of herbaceous and shrub species, while the floristic composition was estimated by the Canfield method. Afterwards, a nonparametric test between positions and a conglomerate analysis to evaluated distance were applied. Grass species, legumes, and sedges fell in the adjacent areas to nests, highlighting the bare soil at the crest and base of the nests. Fifteen plant species were identified, and two families correspond to monocotyledonous and dicotyledonous species. In conclusion, the nests of A. vollenweideri affect the community of herbaceous and shrub vegetation of the studied degraded native forest of the Espinal ecoregion since these ants perform a high selection of herbaceous species considered as pioneers of plant successions.

  3. Arthropods of native and exotic vegetation and their association with willow flycatchers and Wilson's warblers

    Science.gov (United States)

    Linda S. DeLay; Deborah M. Finch; Sandra Brantley; Richard Fagerlund; Michael D. Means; Jeffrey F. Kelly

    1999-01-01

    We compared abundance of migrating Willow Flycatchers and Wilson's Warblers to the abundance of arthropods in exotic and native vegetation at Bosque del Apache National Wildlife Refuge. We trapped arthropods using glue-boards in 1996 and 1997 in the same cottonwood, saltcedar, and willow habitats where we mist-netted birds during spring and fall migration. There...

  4. Baseline data of naturally occurring radionuclides in some native vegetables and fruits in Southern Thailand

    International Nuclear Information System (INIS)

    Kranrod, C.; Chanyotha, S.; Sriploy, P.; Pornnumpa, C.; Kritsananuwat, R.

    2015-01-01

    The aim of this study was to provide the baseline data information on natural radioactivities in vegetables and fruits produced and consumed locally in the areas of potential nuclear power plant sites in Thailand. Four provinces (Prajuab-Kirikhan, Chumphon, Surat-Thani and Nakhon-Si-thammarat) were selected for collection of native vegetables and fruits samples, together with their corresponding soils. The activities of 226 Ra, 228 Ra, 40 K and 210 Po were determined in all these samples. The obtained results for 226 Ra, 228 Ra, 40 K and 210 Po for all vegetable and fruit samples were in the range of 1-34, 1-108, 32-4392 and 0.2-47 Bq kg -1 , respectively, which were much lower than those obtained for their corresponding soils. (authors)

  5. Periphyton density is similar on native and non-native plant species

    NARCIS (Netherlands)

    Grutters, B.M.C.; Gross, Elisabeth M.; van Donk, E.; Bakker, E.S.

    2017-01-01

    Non-native plants increasingly dominate the vegetation in aquatic ecosystems and thrive in eutrophic conditions. In eutrophic conditions, submerged plants risk being overgrown by epiphytic algae; however, if non-native plants are less susceptible to periphyton than natives, this would contribute to

  6. Vegetational response to native seed treatment and biosolids application in the rehabilitation of a spoilpile at Cooranbong Colliery

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M.; Whitehead, J. [University of Newcastle, Callaghan, NSW (Australia). Dept. of Geography and Environmental Science

    1998-08-01

    This study addresses two challenges which the minerals industry faces in the rehabilitation of minespoils. The first is to re-establish a soil ecosystem that will sustainably support native vegetation. The second is to overcome seed dormancy mechanisms that often lead to the failure of native plant establishment on sites affected by mining. This paper outlines the results of the ongoing study on the rehabilitation of a coal stockpile at Cooranbong Colliery, Dora Creek, New South Wales. The trial was established to determine the benefits of utilising dewatered biosolids as a soil conditioner for the growth of native trees by direct seeding techniques, and also to investigate the effectiveness of seed treatments on seed germination rates. Two seed treatment techniques, new to attempts to re-establish native species on minespoils, were trialed using, in turn, hot water and smoke. 8 refs., 1 fig., 2 tabs.

  7. Differentiation in native as well as introduced ranges: germination reflects mean and variance in cover of surrounding vegetation.

    Science.gov (United States)

    Heger, Tina; Nikles, Gabriele; Jacobs, Brooke S

    2018-02-01

    Germination, a crucial phase in the life cycle of a plant, can be significantly influenced by competition and facilitation. The aim of this study was to test whether differences in cover of surrounding vegetation can lead to population differentiation in germination behaviour of an annual grassland species, and if so, whether such a differentiation can be found in the native as well as in the introduced range. We used maternal progeny of Erodium cicutarium previously propagated under uniform conditions that had been collected in multiple populations in the native and two introduced ranges, in populations representing extremes in terms of mean and variability of the cover of surrounding vegetation. In the first experiment, we tested the effect of germination temperature and mean cover at the source site on germination, and found interlinked effects of these factors. In seeds from one of the introduced ranges (California), we found indication for a 2-fold dormancy, hindering germination at high temperatures even if physical dormancy was broken and water was available. This behaviour was less strong in high cover populations, indicating cross-generational facilitating effects of dense vegetation. In the second experiment, we tested whether spatial variation in cover of surrounding vegetation has an effect on the proportion of dormant seeds. Contrary to our expectations, we found that across source regions, high variance in cover was associated with higher proportions of seeds germinating directly after storage. In all three regions, germination seemed to match the local environment in terms of climate and vegetation cover. We suggest that this is due to a combined effect of introduction of preadapted genotypes and local evolutionary processes.

  8. Effects of native perennial vegetation buffer strips on dissolved organic carbon in surface runoff from an agricultural landscape

    Science.gov (United States)

    Tomorra E. Smith; Randall K. Kolka; Xiaobo Zhou; Matthew J. Helmers; Richard M. Cruse; Mark D. Tomer

    2014-01-01

    Dissolved organic carbon (DOC) constitutes a small yet important part of a watershed's carbon budget because it is mobile and biologically active. Agricultural conservation practices such as native perennial vegetation (NPV) strips will influence carbon cycling of an upland agroecosystem, and could affect how much DOC enters streams in runoff, potentially...

  9. Use of vegetation sampling and analysis to detect a problem within a portion of a prairie restoration project.

    Science.gov (United States)

    Franson, Raymond; Scholes, Chad; Krabbe, Stephen

    2017-01-02

    In June 2005, the Department of Energy (DOE) began establishing the 60-ha Howell Prairie around the disposal cell at the DOE Weldon Spring Site (WSS). Prairies were historically present in the area of the site. Quantitative Cover sampling was used to quantify Total Cover, Native Grass Cover, Non-Native Grass Cover, Native Forb Cover, Non-Native Forb Cover, Warm Season (C 4 Grass), Cool Season (C 3 Grass), Perennial Cover and Annual Cover, Litter, and Bare Ground. Four permanent vegetation sampling plots were established. The first 4 years of vegetation measurements at Howell Prairie were made during above-average rainfall years on burned and unburned plots. The fifth-year (2012) vegetation measurements were made after below-average rainfall. Five years of results not only document the consistency of the restoration effort in three areas, but also demonstrate deficiencies in Grass Cover in a fourth area. The results are not only useful for Howell Prairie, but will be useful for restoration work throughout the region. Restoration work suffers from a lack of success monitoring and in this case from a lack of available reference areas. Floristic Quality Indices are used to make qualitative comparisons of the site to Konza Prairie sites.

  10. Projecting invasion risk of non-native watersnakes (Nerodia fasciata and Nerodia sipedon in the western United States.

    Directory of Open Access Journals (Sweden)

    Jonathan P Rose

    Full Text Available Species distribution models (SDMs are increasingly used to project the potential distribution of introduced species outside their native range. Such studies rarely explicitly evaluate potential conflicts with native species should the range of introduced species expand. Two snake species native to eastern North America, Nerodia fasciata and Nerodia sipedon, have been introduced to California where they represent a new stressor to declining native amphibians, fish, and reptiles. To project the potential distributions of these non-native watersnakes in western North America, we built ensemble SDMs using MaxEnt, Boosted Regression Trees, and Random Forests and habitat and climatic variables. We then compared the overlap between the projected distribution of invasive watersnakes and the distributions of imperiled native amphibians, fish, and reptiles that can serve as prey or competitors for the invaders, to estimate the risk to native species posed by non-native watersnakes. Large areas of western North America were projected to be climatically suitable for both species of Nerodia according to our ensemble SDMs, including much of central California. The potential distributions of both N. fasciata and N. sipedon overlap extensively with the federally threatened Giant Gartersnake, Thamnophis gigas, which inhabits a similar ecological niche. N. fasciata also poses risk to the federally threatened California Tiger Salamander, Ambystoma californiense, whereas N. sipedon poses risk to some amphibians of conservation concern, including the Foothill Yellow-legged Frog, Rana boylii. We conclude that non-native watersnakes in California can likely inhabit ranges of several native species of conservation concern that are expected to suffer as prey or competing species for these invaders. Action should be taken now to eradicate or control these invasions before detrimental impacts on native species are widespread. Our methods can be applied broadly to quantify

  11. Native Advertising: Trickery or Technique? An Ethics Project and Debate

    Science.gov (United States)

    Zarzosa, Jennifer; Fischbach, Sarah

    2017-01-01

    Sponsored content, in-feed ads, and advertorials are innovative ways to promote brands. However, there are limited resources on how to use these advertising techniques. The Native Advertising project and debate helps students (a) gain knowledge and experience with current advertising practices and (b) engage in deliberation regarding a promotional…

  12. 76 FR 69700 - Klamath National Forest; California; Pumice Vegetation Management Project

    Science.gov (United States)

    2011-11-09

    ... Management Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact.... Grantham, Forest Supervisor, Attn: Ben Haupt, Pumice Vegetation Management Project Team Leader, Goosenest... Management Project will recommend implementation of one of the following: (1) The proposed action; (2) an...

  13. Salish Kootenai College Project for Recruitment and Retention of Native Americans in Associate Degree Nursing. Final Report.

    Science.gov (United States)

    Dolberry, Jacque

    The purpose of the Salish Koontenai College (SKC) Project for Recruitment and Retention of Native Americans in Associate Degree Nursing was to increase the numbers of Native American registered nurses providing health care to the Native American population of Montana and the northwest mountain states. Recruitment and retention efforts targeted…

  14. componente vegetal

    Directory of Open Access Journals (Sweden)

    Fabio Moscovich

    2005-01-01

    Full Text Available In order to determine environmental impact, indicators based on vegetation characteristics that would generate the forestry monoculture with the adjacent native forest, 32 sample unit were installed in an area of LIPSIA private enterprise, Esperanza Department, Misiones with those characteristics. The plots of 100 m2 were distributed systematically every 25 meters. The vegetation was divided in stratum: superior (DBH ≥ 10 cm, middle (1,6 cm ≤ DBH > 10 cm and inferior (DBH< cm. There were installed 10 plots in a logged native forest, 10 plots in a 18 years old Pinus elliottii Engelm. with approximately 400 trees/ha., 6 plots in a 10 – 25 years old Araucaria angustifolia (Bertd. Kuntze limiting area with approximately 900 trees/ha., and 6 plots located in this plantation. In the studied area were identified 150 vegetation species. In the inferior stratum there were found differences as function of various floristic diversity indexes. In all the cases the native forest showed larger diversity than plantations, followed by Pinus elliottii, Araucaria plantation and Araucaria limiting area. All the studied forest fitted to a logarithmical series of species distributions, that would indicate the incidence of a environmental factor in this distribution.

  15. 76 FR 22075 - Divide Ranger District, Rio Grande National Forest; CO; Black Mesa Vegetation Management Project

    Science.gov (United States)

    2011-04-20

    ... Ranger District, Rio Grande National Forest; CO; Black Mesa Vegetation Management Project AGENCY: Forest... Web site http://www.fs.usda.gov/riogrande under ``Land & Resource Management'', then ``Projects'' on... need for the Black Mesa Vegetation Management Project is move toward achieving long-term desired...

  16. Native Fish Sanctuary Project - Sanctuary Development Phase, 2007 Annual Report

    Science.gov (United States)

    Mueller, Gordon A.

    2007-01-01

    Notable progress was made in 2007 toward the development of native fish facilities in the Lower Colorado River Basin. More than a dozen facilities are, or soon will be, online to benefit native fish. When this study began in 2005 no self-supporting communities of either bonytail or razorback sucker existed. Razorback suckers were removed from Rock Tank in 1997 and the communities at High Levee Pond had been compromised by largemouth bass in 2004. This project reversed that trend with the establishment of the Davis Cove native fish community in 2005. Bonytail and razorback sucker successfully produced young in Davis Cove in 2006. Bonytail successfully produced young in Parker Dam Pond in 2007, representing the first successful sanctuary established solely for bonytail. This past year, Three Fingers Lake received 135 large razorback suckers, and Federal and State agencies have agreed to develop a cooperative management approach dedicating a portion of that lake toward grow-out and (or) the establishment of another sanctuary. Two ponds at River's Edge Golf Course in Needles, California, were renovated in June and soon will be stocked with bonytail. Similar activities are taking place at Mohave Community College, Cerbat Cliffs Golf Course, Cibola High Levee Pond, Office Cove, Emerald Canyon Golf Course, and Bulkhead Cove. Recruitment can be expected as fish become sexually mature at these facilities. Flood-plain facilities have the potential to support 6,000 adult razorback suckers and nearly 20,000 bonytail if native fish management is aggressively pursued. This sanctuary project has assisted agencies in developing 15 native fish communities by identifying specific resource objectives for those sites, listing and prioritizing research opportunities and needs, and strategizing on management approaches through the use of resource-management plans. Such documents have been developed for Davis Cove, Cibola High Levee Pond, Parker Dam Pond, and Three Fingers Lake. We

  17. Native prairie revegetation on wellsites in southeastern Alberta

    International Nuclear Information System (INIS)

    Soulodre, E.; Naeth, A.; Hammermeister, A.

    1999-01-01

    The Native Prairie Revegetation Research Project (NPRRP) was initiated to address concerns about wellsite revegetation of native grassland. The objective was to determine the impact of alternative seeding treatments on soil and vegetation and to produce a quantifiable description of what constitutes successful revegetation of native prairie sites. Four wellsites, each site comprising four revegetation treatment plots and an undisturbed control plot, have been chosen for field study. The revegetation treatments included natural recovery without seeding; current mix dominated by native wheatgrass cultivars; simple mix seeding containing wheatgrasses plus other native grasses, and diverse mix seeding with a mixture of wheatgrasses, other grasses and thirteen perennial forbs. The plant communities were monitored for biomass production, species richness, species composition and a combination of factors which include density, frequency, canopy cover and basal cover, these collectively representing importance value. Nitrogen availability in the soil was also monitored. Results showed high importance values for wheatgrasses for all seeded treatments. Perennial non-wheatgrasses had low importance values in the seeded treatment but higher importance in the control plot. The dominance of wheatgrasses in the seeded treatments resulted in communities that differed significantly from both the control and natural recovery communities, probably due to suppression of the growth of other grasses

  18. Vegetation - McKenzie Preserve [ds703

    Data.gov (United States)

    California Natural Resource Agency — The California Native Plant Society (CNPS) Vegetation Program produced a vegetation map and classification for approximately 11,600 acres primarily within Millerton...

  19. Effects of Nitrogen and Phosphorus Fertilizer and Topsoil Amendment on Native Plant Cover in Roadside Revegetation Projects.

    Science.gov (United States)

    Hillhouse, Heidi L; Schacht, Walter H; Soper, Jonathan M; Wienhold, Carol E

    2018-01-01

    Establishing vegetation on roadsides following construction can be challenging, especially for relatively slow growing native species. Topsoil is generally removed during construction, and the surface soil following construction ("cut-slope soils") is often compacted and low in nutrients, providing poor growing conditions for vegetation. Nebraska Department of Transportation (NDOT) protocols have historically called for nitrogen (N) and phosphorus (P) fertilization when planting roadside vegetation following construction, but these recommendations were developed for cool-season grass plantings and most current plantings use slower-establishing, native warm-season grasses that may benefit less than expected from current planting protocols. We evaluated the effects of nitrogen and phosphorus fertilization, and also topsoil amendment, on the foliar cover of seeded and non-seeded species planted into two post-construction roadside sites in eastern Nebraska. We also examined soil movement to determine how planting protocols and plant growth may affect erosion potential. Three years after planting, we found no consistent effects of N or P fertilization on foliar cover. Plots receiving topsoil amendment had 14% greater cover of warm-season grasses, 10% greater total foliar cover, and 4-13% lower bare ground (depending on site) than plots without topsoil. None of the treatments consistently affected soil movement. We recommend that NDOT change their protocols to remove N and P fertilization and focus on stockpiling and spreading topsoil following construction.

  20. Effects of Nitrogen and Phosphorus Fertilizer and Topsoil Amendment on Native Plant Cover in Roadside Revegetation Projects

    Science.gov (United States)

    Hillhouse, Heidi L.; Schacht, Walter H.; Soper, Jonathan M.; Wienhold, Carol E.

    2018-01-01

    Establishing vegetation on roadsides following construction can be challenging, especially for relatively slow growing native species. Topsoil is generally removed during construction, and the surface soil following construction ("cut-slope soils") is often compacted and low in nutrients, providing poor growing conditions for vegetation. Nebraska Department of Transportation (NDOT) protocols have historically called for nitrogen (N) and phosphorus (P) fertilization when planting roadside vegetation following construction, but these recommendations were developed for cool-season grass plantings and most current plantings use slower-establishing, native warm-season grasses that may benefit less than expected from current planting protocols. We evaluated the effects of nitrogen and phosphorus fertilization, and also topsoil amendment, on the foliar cover of seeded and non-seeded species planted into two post-construction roadside sites in eastern Nebraska. We also examined soil movement to determine how planting protocols and plant growth may affect erosion potential. Three years after planting, we found no consistent effects of N or P fertilization on foliar cover. Plots receiving topsoil amendment had 14% greater cover of warm-season grasses, 10% greater total foliar cover, and 4-13% lower bare ground (depending on site) than plots without topsoil. None of the treatments consistently affected soil movement. We recommend that NDOT change their protocols to remove N and P fertilization and focus on stockpiling and spreading topsoil following construction.

  1. Vegetation response of a dry shrubland community to feral goat management on the island of Moloka‘i, Hawai‘i

    Science.gov (United States)

    Jacobi, James D.; Stock, Jonathan

    2017-12-14

    ) research project conducted between 2008 and 2014 to better understand the magnitude of, and factors responsible for, increased erosion on Moloka‘i. The upslope erosion has resulted in heavy sedimentation of the near-shore coral reef ecosystem on the leeward side of the island. The project area and adjacent lands are managed by the East Moloka‘i Watershed Partnership (EMoWP) to restore the vegetation and reduce erosion on the leeward side of the island.Specific questions addressed in this vegetation change study include:How does the vegetation composition, structure, and cover respond to different population levels of feral goats in this area?Are there plant species that can be used as indicators of different population levels of goats?Can native plants recover and become dominant again with the reduction or elimination of goats from this area?Are there invasive plant species that respond favorably to reduction of goat populations and could result in additional management threats to this area over time?How does the succession of vegetation following goat control relate to the original composition and structure of the plant communities that were formerly found in this area?

  2. Potential impacts of sea level rise on native plant communities and associated cultural sites in coastal areas of the main Hawaiian Islands

    Science.gov (United States)

    Jacobi, James D.; Warshauer, Frederick R.

    2017-01-01

    Hawaiian coastal vegetation is comprised of plant species that are adapted to growing in extremely harsh conditions (salt spray, wave wash, wind, and substrates with limited nutrients) found in this habitat zone. Prior to human colonization of Hawai‘i coastal vegetation extended as a continuous ring around each of the islands, broken only by stretches of recent lava flows or unstable cliff faces. However, since humans arrived in Hawai‘i many areas that originally supported native coastal plant communities have been highly altered or the native vegetation totally removed for agriculture, housing, or resort development, destroyed by fire, displaced by invasive plants, eaten by introduced mammals, or damaged by recreational use. This study was focused on identifying sites that still retain relatively intact and highly diverse native coastal plant communities throughout the main Hawaiian Islands that may be further impacted by projected sea level rise. Approximately 40 percent of Hawai‘i’s coastlines were found to still contain high quality native coastal plant communities. Most of these sites were located in areas where the coastal vegetation can still migrate inshore in response to rising sea level and associated inundation by waves. However, six sites with high-quality native coastal vegetation were found on low-lying offshore islets that will be totally inundated with a one meter increase in sea level and thirty sites were found to have some type of fixed barrier, such as a paved road or structure, which would restrict the plants from colonizing the adjacent inland areas. Many of these sites also have other cultural resources that are fixed in place and will definitely be impacted by rising sea level. The results of this study can help refine our understanding of Hawai‘i’s remaining native coastal vegetation and aid with the development of management and restoration strategies to ensure the long-term survival of these unique plant communities.

  3. Direct and Indirect Influence of Non-Native Neighbours on Pollination and Fruit Production of a Native Plant.

    Directory of Open Access Journals (Sweden)

    Ana Montero-Castaño

    Full Text Available Entomophilous non-native plants can directly affect the pollination and reproductive success of native plant species and also indirectly, by altering the composition and abundance of floral resources in the invaded community. Separating direct from indirect effects is critical for understanding the mechanisms underlying the impacts of non-native species on recipient communities.Our aims are: (a to explore both the direct effect of the non-native Hedysarum coronarium and its indirect effect, mediated by the alteration of floral diversity, on the pollinator visitation rate and fructification of the native Leopoldia comosa and (b to distinguish whether the effects of the non-native species were due to its floral display or to its vegetative interactions.We conducted field observations within a flower removal experimental setup (i.e. non-native species present, absent and with its inflorescences removed at the neighbourhood scale.Our study illustrates the complexity of mechanisms involved in the impacts of non-native species on native species. Overall, Hedysarum increased pollinator visitation rates to Leopoldia target plants as a result of direct and indirect effects acting in the same direction. Due to its floral display, Hedysarum exerted a direct magnet effect attracting visits to native target plants, especially those made by the honeybee. Indirectly, Hedysarum also increased the visitation rate of native target plants. Due to the competition for resources mediated by its vegetative parts, it decreased floral diversity in the neighbourhoods, which was negatively related to the visitation rate to native target plants. Hedysarum overall also increased the fructification of Leopoldia target plants, even though such an increase was the result of other indirect effects compensating for the observed negative indirect effect mediated by the decrease of floral diversity.

  4. Projected future vegetation changes for the northwest United States and southwest Canada at a fine spatial resolution using a dynamic global vegetation model.

    Science.gov (United States)

    Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  5. 76 FR 315 - Sisters Ranger District; Deschutes National Forest; Oregon; Popper Vegetation Management Project

    Science.gov (United States)

    2011-01-04

    ...; Oregon; Popper Vegetation Management Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to... submit to [email protected] . Please put ``Popper Vegetation... work to the local and regional economy; and reintroduce fire in fire dependent ecosystems in the Popper...

  6. 75 FR 9388 - Prescott National Forest, Bradshaw Ranger District; Arizona; Bradshaw Vegetation Management Project

    Science.gov (United States)

    2010-03-02

    ...; Arizona; Bradshaw Vegetation Management Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: This project is a proposal to improve the health of.... The project area encompasses about 55,554 acres. Within the project area, the proposal is to...

  7. Potential impacts of projected climate change on vegetation management in Hawai`i Volcanoes National Park

    Science.gov (United States)

    Camp, Richard J.; Loh, Rhonda; Berkowitz, S. Paul; Brinck, Kevin W.; Jacobi, James D.; Price, Jonathan; McDaniel, Sierra; Fortini, Lucas B.

    2018-01-01

    Climate change will likely alter the seasonal and annual patterns of rainfall and temperature in Hawai`i. This is a major concern for resource managers at Hawai`i Volcanoes National Park where intensely managed Special Ecological Areas (SEAs), focal sites for managing rare and endangered plants, may no longer provide suitable habitat under future climate. Expanding invasive species’ distributions also may pose a threat to areas where native plants currently predominate. We combine recent climate modeling efforts for the state of Hawai`i with plant species distribution models to forecast changes in biodiversity in SEAs under future climate conditions. Based on this bioclimatic envelope model, we generated projected species range maps for four snapshots in time (2000, 2040, 2070, and 2090) to assess whether the range of 39 native and invasive species of management interest are expected to contract, expand, or remain the same under a moderately warmer and more variable precipitation scenario. Approximately two-thirds of the modeled native species were projected to contract in range, while one-third were shown to increase. Most of the park’s SEAs were projected to lose a majority of the native species modeled. Nine of the 10 modeled invasive species were projected to contract within the park; this trend occurred in most SEAs, including those at low, middle, and high elevations. There was good congruence in the current (2000) distribution of species richness and SEA configuration; however, the congruence between species richness hotspots and SEAs diminished by the end of this century. Over time the projected species-rich hotspots increasingly occurred outside of current SEA boundaries. Our research brought together managers and scientists to increase understanding of potential climate change impacts, and provide needed information to address how plants may respond under future conditions relative to current managed areas.

  8. Effects of projected climate change on vegetation in the Blue Mountains ecoregion, USA

    Directory of Open Access Journals (Sweden)

    Becky K. Kerns

    2018-04-01

    Full Text Available We used autecological, paleoecological, and modeling information to explore the potential effects of climate change on vegetation in the Blue Mountains ecoregion, Oregon (USA. Although uncertainty exists about the exact nature of future vegetation change, we infer that the following are likely to occur by the end of the century: (1 dominance of ponderosa pine and sagebrush will increase in many locations, (2 the forest-steppe ecotone will move upward in latitude and elevation, (3 ponderosa pine will be distributed at higher elevations, (4 subalpine and alpine systems will be replaced by grass species, pine, and Douglas-fir, (5 moist forest types may increase under wetter scenarios, (6 the distribution and abundance of juniper woodlands may decrease if the frequency and extent of wildfire increase, and (7 grasslands and shrublands will increase at lower elevations. Tree growth in energy-limited landscapes (high elevations, north aspects will increase as the climate warms and snowpack decreases, whereas tree growth in water-limited landscapes (low elevations, south aspects will decrease. Ecological disturbances, including wildfire, insect outbreaks, and non-native species, which are expected to increase in a warmer climate, will affect species distribution, tree age, and vegetation structure, facilitating transitions to new combinations of species and vegetation patterns. In dry forests where fire has not occurred for several decades, crown fires may result in high tree mortality, and the interaction of multiple disturbances and stressors will probably exacerbate stress complexes. Increased disturbance will favor species with physiological and phenological traits that allow them to tolerate frequent disturbance. Keywords: Climate change, Disturbance, Vegetation, Wildfire

  9. Short-term vegetation response following mechanical control of saltcedar (Tamarix spp.) on the Virgin River, Nevada, USA

    Science.gov (United States)

    Ostoja, Steven M.; Brooks, Matthew L.; Dudley, Tom; Lee, Steven R.

    2014-01-01

    Tamarisk (a.k.a. saltcedar, Tamarix spp.) is an invasive plant species that occurs throughout western riparian and wetland ecosystems. It is implicated in alterations of ecosystem structure and function and is the subject of many local control projects, including removal using heavy equipment. We evaluated short-term vegetation responses to mechanical Tamarix spp. removal at sites ranging from 2 to 5 yr post-treatment along the Virgin River in Nevada, USA. Treatments resulted in lower density and cover (but not eradication) of Tamarix spp., increased cover of the native shrub Pluchea sericia (arrow weed), decreased density and cover of all woody species combined, increased density of both native annual forbs and the nonnative annual Salsola tragus (prickly Russian-thistle), and lower density of nonnative annual grasses. The treated plots had lower mean woody species richness, but greater herbaceous species richness and diversity. Among herbaceous species, native taxa increased in richness whereas nonnative species increased in both species richness and diversity. Thus, efforts to remove Tamarix,/i> spp. at the Virgin River reduced vegetative cover contributing to fuel loads and probability of fire, and resulted in positive effects for native plant diversity, with mixed effects on other nonnative species. However, absolute abundances of native species

  10. A work bibliography on native food consumption, demography and lifestyle. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Murray, C.E.; Lee, W.J.

    1992-12-01

    The purpose of this report is to provide a bibliography for the Native American tribe participants in the Hanford Environmental Dose Reconstruction (HEDR) Project to use. The HEDR Project`s primary objective is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s Hanford Site near Richland, Washington. Eight Native American tribes are responsible for estimating daily and seasonal consumption of traditional foods, demography, and other lifestyle factors that could have affected the radiation dose received by tribal members. This report provides a bibliography of recorded accounts that tribal researchers may use to verify their estimates. The bibliographic citations include references to information on the specific tribes, Columbia River plateau ethnobotany, infant feeding practices and milk consumption, nutritional studies and radiation, tribal economic and demographic characteristics (1940--1970), research methods, primary sources from the National Archives, regional archives, libraries, and museums.

  11. Vegetational stabilization of uranium spoil areas, grants, New Mexico

    International Nuclear Information System (INIS)

    Kelley, N.E.

    1979-01-01

    Factors that could be detrimental to vegetative stabilization of uranium mine and mill waste material were examined. Physical and chemical analyses of materials from an open-pit uranium mine and material from three inactive mill tailing piles in New Mexico were performed. Analyses for selected trace elements in mill tailing material and associated vegetation from piles in New Mexico, Colorado, and Utah were also performed. Field and laboratory experiments identified problems associated with establishing vegetation on spoil material. Problems of uptake and concentration of toxic elements by plants growing on specific spoil material were also identified. Ecological observations in conjunction with physical and chemical analyses of specific geologic units, which form the overburden and waste dumps at the open-pit mine, identified a specific geologic material that, if segregated and placed on the surface of the dumps, would pose the least set of problems for a revegetation program. A pilot revegetation project verified that segregation and use of specific geologic material in the overburden could be utilized successfully and economically for reestablishment of native vegetation on mine waste material

  12. Establishing native warm season grasses on Eastern Kentucky strip mines

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Forestry

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat.

  13. Establishing native warm season grasses on Eastern Kentucky strip mines

    International Nuclear Information System (INIS)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-01-01

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat

  14. Native plants for roadside revegetation : field evaluations and best practices identification.

    Science.gov (United States)

    2014-02-01

    Establishing native vegetation communities on roadsides can be a proactive approach to sustainable roadways. Revegetation : with native species is the preferred management practice on Idaho roadways. : The environmental and economic benefits of : inc...

  15. Landscape changes in a neotropical forest-savanna ecotone zone in central Brazil: The role of protected areas in the maintenance of native vegetation.

    Science.gov (United States)

    Garcia, Andrea S; Sawakuchi, Henrique O; Ferreira, Manuel Eduardo; Ballester, Maria Victoria R

    2017-02-01

    In the Amazon-savanna ecotone in northwest Brazil, the understudied Araguaia River Basin contains high biodiversity and seasonal wetlands. The region is representative of tropical humid-dry ecotone zones, which have experienced intense land use and land cover (LULC) conversions. Here we assessed the LULC changes for the last four decades in the central portion of the Araguaia River Basin to understand the temporal changes in the landscape composition and configuration outside and inside protected areas. We conducted these analyzes by LULC mapping and landscape metrics based on patch classes. During this period, native vegetation was reduced by 26%. Forests were the most threatened physiognomy, with significant areal reduction and fragmentation. Native vegetation cover was mainly replaced by croplands and pastures. Such replacement followed spatial and temporal trends related to the implementation of protected areas and increases in population cattle herds. The creation of most protected areas took place between 1996 and 2007, the same period during which the conversion of the landscape matrix from natural vegetation to agriculture occurred. We observed that protected areas mitigate fragmentation, but their roles differ according to their location and level of protection. Still, we argue that landscape characteristics, such as suitability for agriculture, also influence landscape conversions and should be considered when establishing protected areas. The information provided in this study can guide new research on species conservation and landscape planning, as well as improve the understanding of the impacts of landscape composition and configuration changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Overview of Opportunities for Co-Location of Solar Energy Technologies and Vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beatty, Brenda [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hill, Graham [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    Large-scale solar facilities have the potential to contribute significantly to national electricity production. Many solar installations are large-scale or utility-scale, with a capacity over 1 MW and connected directly to the electric grid. Large-scale solar facilities offer an opportunity to achieve economies of scale in solar deployment, yet there have been concerns about the amount of land required for solar projects and the impact of solar projects on local habitat. During the site preparation phase for utility-scale solar facilities, developers often grade land and remove all vegetation to minimize installation and operational costs, prevent plants from shading panels, and minimize potential fire or wildlife risks. However, the common site preparation practice of removing vegetation can be avoided in certain circumstances, and there have been successful examples where solar facilities have been co-located with agricultural operations or have native vegetation growing beneath the panels. In this study we outline some of the impacts that large-scale solar facilities can have on the local environment, provide examples of installations where impacts have been minimized through co-location with vegetation, characterize the types of co-location, and give an overview of the potential benefits from co-location of solar energy projects and vegetation. The varieties of co-location can be replicated or modified for site-specific use at other solar energy installations around the world. We conclude with opportunities to improve upon our understanding of ways to reduce the environmental impacts of large-scale solar installations.

  17. Vegetation - Lassen Foothills [ds564

    Data.gov (United States)

    California Natural Resource Agency — In 2007 Aerial Information Systems, Inc. (AIS) was contracted by the California Native Plant Society (CNPS) to produce a vegetation map for approximately 100,000...

  18. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Peace, Gerald (Jerry) L.; Goering, Timothy James (GRAM inc., Albuquerque, NM); Knight, Paul J. (Marron and Associates, Albuquerque, NM); Ashton, Thomas S. (Marron and Associates, Albuquerque, NM)

    2004-11-01

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant species is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.

  19. Non-native species impacts on pond occupancy by an anuran

    Science.gov (United States)

    Adams, Michael J.; Pearl, Christopher A.; Galvan, Stephanie; McCreary, Brome

    2011-01-01

    Non-native fish and bullfrogs (Lithobates catesbeianus; Rana catesbeiana) are frequently cited as factors contributing to the decline of ranid frogs in the western United States (Bradford 2005). This hypothesis is supported by studies showing competition with or predation by these introduced species (Kupferberg 1997, Kiesecker and Blaustein 1998, Lawler et al. 1999, Knapp et al. 2001) and studies suggesting a deficit of native frogs at sites occupied by bullfrogs or game fish (Hammerson 1982, Schwalbe and Rosen 1988, Fisher and Shaffer 1996, Adams 1999). Conversely, other studies failed to find a negative association between native ranids and bullfrogs and point out that presence of non-native species correlates with habitat alterations that could also contribute to declines of native species (Hayes and Jennings 1986; Adams 1999, 2000; Pearl et al. 2005). A criticism of these studies is that they may not detect an effect of non-native species if the process of displacement is at an early stage. We are not aware of any studies that have monitored a set of native frog populations to determine if non-native species predict population losses. Our objective was to study site occupancy trends in relation to non-native species for northern red-legged frogs (Rana aurora) on federal lands in the southern Willamette Valley, Oregon. We conducted a 5-yr monitoring study to answer the following questions about the status and trends of the northern red-legged frog: 1) What is the rate of local extinction (how often is a site that is occupied in year t unoccupied in year t+1) and what factors predict variation in local extinction? and 2) What is the rate of colonization (how often is a site that is unoccupied in year t occupied in year t+1) and what factors predict variation in colonization? The factors we hypothesized for local extinction were: 1) bullfrog presence, 2) bullfrogs mediated by wetland vegetation, 3) non-native fish (Centrarchidae), 4) non-native fish mediated by

  20. Potential impacts of projected climate change on vegetation-management strategies in Hawai‘i Volcanoes National Park

    Science.gov (United States)

    Camp, Richard J.; Berkowitz, S. Paul; Brink, Kevin W.; Jacobi, James D.; Loh, Rhonda; Price, Jonathan; Fortini, Lucas B.

    2018-06-05

    Climate change is expected to alter the seasonal and annual patterns of rainfall and temperature in the Hawaiian Islands. Land managers and other responsible agencies will need to know how plant-species habitats will change over the next century in order to manage these resources effectively. This issue is a major concern for resource managers at Hawai‘i Volcanoes National Park (HAVO), where currently managed Special Ecological Areas (SEAs) for important plant species and communities may no longer provide suitable habitats in the future as the climate changes. Expanding invasive-species distributions also may pose a threat to areas where native plants currently predominate.The objective of this project was to combine recent climate-modeling efforts for the state of Hawai‘i with existing models of plant-species distribution in order to forecast suitable habitat ranges under future climate conditions derived from the Coupled Model Intercomparison Project, phase 3 (CMIP3) global circulation model that was dynamically downscaled for the Hawaiian Islands by using the Hawai‘i Regional Climate Model (HRCM). The HRCM uses the A1B emission scenario (a median future climate projection) from the Special Report on Emissions Scenarios (SRES). On the basis of this model, maps showing projected plant-species ranges were generated for four years as snapshots in time (2000, 2040, 2070, 2090) and for three different trajectories of climate change (gradual, linear, rapid) between the present and future.We mapped probabilistic surfaces of suitable habitat for 39 plant species (both native and alien [nonnative]) identified as being of interest to HAVO resource managers. We displayed these surfaces in terms of change relative to present conditions, whether the range of a given plant species was expected to contract, expand, or remain the same in the future. Within HAVO, approximately two-thirds (18 of 29) of the modeled native plant species were projected to contract in range

  1. Small mammal use of native warm-season and non-native cool-season grass forage fields

    Science.gov (United States)

    Ryan L Klimstra,; Christopher E Moorman,; Converse, Sarah J.; Royle, J. Andrew; Craig A Harper,

    2015-01-01

    Recent emphasis has been put on establishing native warm-season grasses for forage production because it is thought native warm-season grasses provide higher quality wildlife habitat than do non-native cool-season grasses. However, it is not clear whether native warm-season grass fields provide better resources for small mammals than currently are available in non-native cool-season grass forage production fields. We developed a hierarchical spatially explicit capture-recapture model to compare abundance of hispid cotton rats (Sigmodon hispidus), white-footed mice (Peromyscus leucopus), and house mice (Mus musculus) among 4 hayed non-native cool-season grass fields, 4 hayed native warm-season grass fields, and 4 native warm-season grass-forb ("wildlife") fields managed for wildlife during 2 summer trapping periods in 2009 and 2010 of the western piedmont of North Carolina, USA. Cotton rat abundance estimates were greater in wildlife fields than in native warm-season grass and non-native cool-season grass fields and greater in native warm-season grass fields than in non-native cool-season grass fields. Abundances of white-footed mouse and house mouse populations were lower in wildlife fields than in native warm-season grass and non-native cool-season grass fields, but the abundances were not different between the native warm-season grass and non-native cool-season grass fields. Lack of cover following haying in non-native cool-season grass and native warm-season grass fields likely was the key factor limiting small mammal abundance, especially cotton rats, in forage fields. Retention of vegetation structure in managed forage production systems, either by alternately resting cool-season and warm-season grass forage fields or by leaving unharvested field borders, should provide refugia for small mammals during haying events.

  2. Native and non-native plants provide similar refuge to invertebrate prey, but less than artificial plants

    NARCIS (Netherlands)

    Grutters, Bart; Pollux, B.J.A.; Verberk, W.C.E.P.; Bakker, E.S.

    2015-01-01

    Non-native species introductions are widespread and can affect ecosystem functioning by altering the structure of food webs. Invading plants often modify habitat structure, which may affect the suitability of vegetation as refuge and could thus impact predator-prey dynamics. Yet little is known

  3. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    Science.gov (United States)

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  4. Monitoring temporal Vegetation changes in Lao tropical forests

    International Nuclear Information System (INIS)

    Phompila, Chittana; Lewis, Megan; Clarke, Kenneth; Ostendorf, Bertram

    2014-01-01

    Studies on changes in vegetation are essential for understanding the interaction between humans and the environment. These studies provide key information for land use assessment, terrestrial ecosystem monitoring, carbon flux modelling and impacts of global climate change. The primary purpose of this study was to detect temporal vegetation changes in tropical forests in the southern part of Lao PDR from 2001-2012. The study investigated the annual vegetation phenological response of dominant land cover types across the study area and relationships to seasonal precipitation and temperature. Improved understanding of intra-annual patterns of vegetation variation was useful to detect longer term changes in vegetation. The breaks for additive season and trend (BFAST) approach was implemented to detect changes in these land cover types throughout the 2001-2012 period. We used the enhanced vegetation index (EVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD13Q1 products) and monthly rainfall and temperature data obtained from the Meteorology and Hydrology Department, Ministry of Agriculture-Forestry, published by Lao National Statistical Centre in this research. EVI well documented the annual seasonal growth of vegetation and clearly distinguished the characteristic phenology of four different land use types; native forest, plantation, agriculture and mixed wooded/cleared area. Native forests maintained high EVI throughout the year, while plantations, wooded/cleared areas and agriculture showed greater inter-annual variation, with minimum EVI at the end of the dry season in April and maximum EVI in September-October, around two months after the wet season peak in rainfall. The BFAST analysis detected abrupt temporal changes in vegetation in the tropical forests, especially in a large conversion of mixed wooded/cleared area into plantation. Within the study area from 2001-2012 there has been an overall decreasing trend of vegetation cover for

  5. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass.

    Science.gov (United States)

    Roberts, David A; Cole, Andrew J; Paul, Nicholas A; de Nys, Rocky

    2015-09-15

    In most countries the mining industry is required to rehabilitate disturbed land with native vegetation. A typical approach is to stockpile soils during mining and then use this soil to recreate landforms after mining. Soil that has been stockpiled for an extended period typically contains little or no organic matter and nutrient, making soil rehabilitation a slow and difficult process. Here, we take freshwater macroalgae (Oedogonium) cultivated in waste water at a coal-fired power station and use it as a feedstock for the production of biochar, then use this biochar to enhance the rehabilitation of two types of stockpiled soil - a ferrosol and a sodosol - from the adjacent coal mine. While the biomass had relatively high concentrations of some metals, due to its cultivation in waste water, the resulting biochar did not leach metals into the pore water of soil-biochar mixtures. The biochar did, however, contribute essential trace elements (particularly K) to soil pore water. The biochar had very strong positive effects on the establishment and growth of a native plant (Kangaroo grass, Themeda australis) in both of the soils. The addition of the algal biochar to both soils at 10 t ha(-1) reduced the time to germination by the grass and increased the growth and production of plant biomass. Somewhat surprisingly, there was no beneficial effect of a higher application rate (25 t ha(-1)) of the biochar in the ferrosol, which highlights the importance of matching biochar application rates to the requirements of different types of soil. Nevertheless, we demonstrate that algal biochar can be produced from biomass cultivated in waste water and used at low application rates to improve the rehabilitation of a variety of soils typical of coal mines. This novel process links biomass production in waste water to end use of the biomass in land rehabilitation, simultaneously addressing two environmental issues associated with coal-mining and processing. Copyright © 2015

  6. Factors influencing non-native tree species distribution in urban landscapes

    Science.gov (United States)

    Wayne C. Zipperer

    2010-01-01

    Non-native species are presumed to be pervasive across the urban landscape. Yet, we actually know very little about their actual distribution. For this study, vegetation plot data from Syracuse, NY and Baltimore, MD were used to examine non-native tree species distribution in urban landscapes. Data were collected from remnant and emergent forest patches on upland sites...

  7. Projected future changes in vegetation in western North America in the 21st century

    Science.gov (United States)

    Xiaoyan, Jiang; Rauscher, Sara A.; Ringler, Todd D.; Lawrence, David M.; Williams, A. Park; Allen, Craig D.; Steiner, Allison L.; Cai, D. Michael; McDowell, Nate G.

    2013-01-01

    Rapid and broad-scale forest mortality associated with recent droughts, rising temperature, and insect outbreaks has been observed over western North America (NA). Climate models project additional future warming and increasing drought and water stress for this region. To assess future potential changes in vegetation distributions in western NA, the Community Earth System Model (CESM) coupled with its Dynamic Global Vegetation Model (DGVM) was used under the future A2 emissions scenario. To better span uncertainties in future climate, eight sea surface temperature (SST) projections provided by phase 3 of the Coupled Model Intercomparison Project (CMIP3) were employed as boundary conditions. There is a broad consensus among the simulations, despite differences in the simulated climate trajectories across the ensemble, that about half of the needleleaf evergreen tree coverage (from 24% to 11%) will disappear, coincident with a 14% (from 11% to 25%) increase in shrubs and grasses by the end of the twenty-first century in western NA, with most of the change occurring over the latter half of the twenty-first century. The net impact is a ~6 GtC or about 50% decrease in projected ecosystem carbon storage in this region. The findings suggest a potential for a widespread shift from tree-dominated landscapes to shrub and grass-dominated landscapes in western NA because of future warming and consequent increases in water deficits. These results highlight the need for improved process-based understanding of vegetation dynamics, particularly including mortality and the subsequent incorporation of these mechanisms into earth system models to better quantify the vulnerability of western NA forests under climate change.

  8. Fuel dynamics and fire behaviour in Australian mallee and heath vegetation

    Science.gov (United States)

    Juanita Myers; Jim Gould; Miguel Cruz; Meredith Henderson

    2007-01-01

    In southern Australia, shrubby heath vegetation together with woodlands dominated by multistemmed eucalypts (mallee) comprise areas of native vegetation with important biodiversity values. These vegetation types occur in semiarid and mediterranean climates and can experience large frequent fires. This study is investigating changes in the fuel complex with time, fuel...

  9. Status of biological control in vegetation management in forestry

    Science.gov (United States)

    George P. Markin; Donald E. Gardner

    1993-01-01

    Biological control traditionally depends upon importing the natural enemies of introduced weeds. Since vegetation management in forestry has primarily been aimed at protecting economic species of trees from competition from other native plants, biological control has been of little use in forestry. An alternative approach to controlling unwanted native plants,...

  10. Role of native and exotic woody vegetation in soil restoration in active gully systems (southern Ecuador)

    Science.gov (United States)

    Borja Ramon, Pablo; Alvarado Moncayo, Dario; Vanacker, Veerle; Cisneros, Pedro; Molina, Armando; Govers, Gerard

    2015-04-01

    Revegetation projects in degraded lands have the potential to recover essential soil functions. If vegetation restoration is combined with bioengineering techniques, such as the construction of retention dams in active gully systems, soil restoration could be enhanced. One important aspect of this process is the role of vegetation on restoration of soil chemical and physical properties. There is currently a lack of knowledge on the potential of soil restoration in active badland systems, as most studies have concentrated on the direct and visible effect of revegetation on erosion control. The aim of this study is to evaluate the role of revegetation and bioengineering works on the restoration of soil physical and chemical properties. The analyses are realized in a highly degraded area of 3 km2, located in the lower part of the Loreto catchment (Southern Ecuadorian Andes). First, the soil physical and/or chemical parameters that are most sensitive to track environmental change were evaluated. Second, the role of vegetation on soil restoration was quantified. . Soil samples were taken in sites with different vegetation cover, land use and physiographic position. The following physical and chemical parameters were measured: volumetric water content (θsat, θact), bulk density, pH, texture, organic matter, C and N content. Our first results do not show a clear relationship between volumetric water content at saturation (θsat), bulk density, or C content. The saturation water content does not vary significantly between different sites, or land use types. However, significant differences are found between sites at different stages of restoration; and this for most chemical and physical soil properties. Vegetation cover (%) appears to exert a strong control on the C content in the mineral soils. The highest C values are found in soils of forest plantations with Eucalyptus and Pinus species. These plantations are located in areas that were previously affected by active

  11. Short-Term Response of Native Flora to the Removal of Non-Native Shrubs in Mixed-Hardwood Forests of Indiana, USA

    Directory of Open Access Journals (Sweden)

    Joshua M. Shields

    2015-05-01

    Full Text Available While negative impacts of invasive species on native communities are well documented, less is known about how these communities respond to the removal of established populations of invasive species. With regard to invasive shrubs, studies examining native community response to removal at scales greater than experimental plots are lacking. We examined short-term effects of removing Lonicera maackii (Amur honeysuckle and other non-native shrubs on native plant taxa in six mixed-hardwood forests. Each study site contained two 0.64 ha sample areas—an area where all non-native shrubs were removed and a reference area where no treatment was implemented. We sampled vegetation in the spring and summer before and after non-native shrubs were removed. Cover and diversity of native species, and densities of native woody seedlings, increased after shrub removal. However, we also observed significant increases in L. maackii seedling densities and Alliaria petiolata (garlic mustard cover in removal areas. Changes in reference areas were less pronounced and mostly non-significant. Our results suggest that removing non-native shrubs allows short-term recovery of native communities across a range of invasion intensities. However, successful restoration will likely depend on renewed competition with invasive species that re-colonize treatment areas, the influence of herbivores, and subsequent control efforts.

  12. Modeling invasive alien plant species in river systems: Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    Science.gov (United States)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G. W.; Egger, G.; Leuven, R. S. E. W.; Middelkoop, H.

    2017-08-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding interactions of invasive and native species and their combined effects on river dynamics is essential for developing cost-effective management strategies. However, numerical models for simulating long-term effects of these processes are lacking. This paper investigates how an invasive alien plant species affects native riparian vegetation and hydro-morphodynamics. A morphodynamic model has been coupled to a dynamic vegetation model that predicts establishment, growth and mortality of riparian trees. We introduced an invasive alien species with life-history traits based on Japanese Knotweed (Fallopia japonica), and investigated effects of low- and high propagule pressure on invasion speed, native vegetation and hydro-morphodynamic processes. Results show that high propagule pressure leads to a decline in native species cover due to competition and the creation of unfavorable native colonization sites. With low propagule pressure the invader facilitates native seedling survival by creating favorable hydro-morphodynamic conditions at colonization sites. With high invader abundance, water levels are raised and sediment transport is reduced during the growing season. In winter, when the above-ground invader biomass is gone, results are reversed and the floodplain is more prone to erosion. Invasion effects thus depend on seasonal above- and below ground dynamic vegetation properties and persistence of the invader, on the characteristics of native species it replaces, and the combined interactions with hydro-morphodynamics.

  13. Special study on vegetative covers

    International Nuclear Information System (INIS)

    1988-11-01

    This report describes the findings of a special study on the use of vegetative covers to stabilize tailings piles for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The principal rationale for using plants would be to establish a dynamic system for controlling water balance. Specifically, vegetation would be used to intercept and transpire precipitation to the atmosphere, rather than allowing water to drain into the tailings and mobilize contaminants. This would facilitate compliance with groundwater standards proposed for the UMTRA Project by the Environmental Protection Agency. The goals of the study were to evaluate the feasibility of using vegetative covers on UMTRA Project piles, define the advantages and disadvantages of vegetative covers, and develop general guidelines for their use when such use seems reasonable. The principal method for the study was to analyze and apply to the UMTRA Project the results of research programs on vegetative covers at other US Department of Energy (DOE) waste management facilities. The study also relied upon observations made of existing stabilized piles at UMTRA Project sites where natural vegetation is growing on the rock-covered surfaces. Water balance and erosion models were also used to quantify the long-term performance of vegetative covers planned for the topslopes of stabilized piles at Grand Junction and Durango, Colorado, two UMTRA Project sites where the decision was made during the course of this special study to use vegetative covers. Elements in the design and construction of the vegetative covers at these two sites are discussed in the report, with explanations of the differing features that reflect differing environmental conditions. 28 refs., 18 figs., 9 tabs

  14. Strong effects of a plantation with Pinus patula on Andean Subparamo vegetation: a case study from Columbia

    NARCIS (Netherlands)

    Wesenbeeck, van B.K.; Mourik, van T.A.; Duivenvoorden, J.F.; Cleef, A.M.

    2003-01-01

    The effect of a pine plantation on a native subparamo system in the Andes of Colombia (3 100 In above sea level) was studied. The vegetation of an 8 year-old plantation with Pinus patula was compared to that of the surrounding native subparamo. 59 plots made in the subparamo vegetation contained 121

  15. Final Project Report, Bristol Bay Native Corporation Wind and Hydroelectric Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Vaught, Douglas J.

    2007-03-31

    The Bristol Bay Native Corporation (BBNC) grant project focused on conducting nine wind resource studies in eight communities in the Bristol Bay region of southwest Alaska and was administered as a collaborative effort between BBNC, the Alaska Energy Authority, Alaska Village Electric Cooperative, Nushagak Electric Cooperative (NEC), Naknek Electric Association (NEA), and several individual village utilities in the region. BBNC’s technical contact and the project manager for this study was Douglas Vaught, P.E., of V3 Energy, LLC, in Eagle River, Alaska. The Bristol Bay region of Alaska is comprised of 29 communities ranging in size from the hub community of Dillingham with a population of approximately 3,000 people, to a few Native Alaska villages that have a few tens of residents. Communities chosen for inclusion in this project were Dillingham, Naknek, Togiak, New Stuyahok, Kokhanok, Perryville, Clark’s Point, and Koliganek. Selection criteria for conduction of wind resource assessments in these communities included population and commercial activity, utility interest, predicted Class 3 or better wind resource, absence of other sources of renewable energy, and geographical coverage of the region. Beginning with the first meteorological tower installation in October 2003, wind resource studies were completed at all sites with at least one year, and as much as two and a half years, of data. In general, the study results are very promising for wind power development in the region with Class 6 winds measured in Kokhanok; Class 4 winds in New Stuyahok, Clark’s Point, and Koliganek; Class 3 winds in Dillingham, Naknek, and Togiak; and Class 2 winds in Perryville. Measured annual average wind speeds and wind power densities at the 30 meter level varied from a high of 7.87 meters per second and 702 watts per square meter in Kokhanok (Class 6 winds), to a low of 4.60 meters per second and 185 watts per square meter in Perryville (Class 2 winds).

  16. Controls of vegetation structure and net primary production in restored grasslands

    Science.gov (United States)

    Munson, Seth M.; Lauenroth, William K.

    2014-01-01

    1. Vegetation structure and net primary production (NPP) are fundamental properties of ecosystems. Understanding how restoration practices following disturbance interact with environmental factors to control these properties can provide insight on how ecosystems recover and guide management efforts. 2. We assessed the relative contribution of environmental and restoration factors in controlling vegetation structure, above- and below-ground investment in production across a chronosequence of semiarid Conservation Reserve Program (CRP) fields recovering from dryland wheat cropping relative to undisturbed grassland. Importantly, we determined the role of plant diversity and how seeding either native or introduced perennial grasses influenced the recovery of vegetation properties. 3. Plant basal cover increased with field age and was highest in CRP fields seeded with native perennial grasses. In contrast, fields seeded with introduced perennial grasses had tall-growing plants with relatively low basal cover. These vegetation structural characteristics interacted with precipitation, but not soil characteristics, to influence above-ground NPP (ANPP). Fields enrolled in the CRP program for >7 years supported twice as much ANPP as undisturbed shortgrass steppe in the first wet year of the study, but all CRP fields converged on a common low amount of ANPP in the following dry year and invested less than half as much as the shortgrass steppe in below-ground biomass. 4. ANPP in CRP fields seeded with native perennial grasses for more than 7 years was positively related to species richness, whereas ANPP in CRP fields seeded with introduced perennial grasses were controlled more by dominant species. 5. Synthesis and applications. Seeding with introduced, instead of native, perennial grasses had a strong direct influence on vegetation structure, including species richness, which indirectly affected NPP through time. However, the effects of restoring either native or introduced

  17. Bioremediation of petroleum contaminated soil using vegetation--A technology transfer project

    International Nuclear Information System (INIS)

    Banks, M.K.; Schwab, A.P.; Govindaraju, R.S.; Chen, Z.

    1994-01-01

    A common environmental problem associated with the pumping and refining of crude oil is the disposal of petroleum sludge. Unfortunately, the biodegradation fate of more recalcitrant and potentially toxic contaminants, such as the polynuclear aromatic hydrocarbons (PNAs), is rapid at first but declines quickly. Biodegradation of these compounds is limited by their strong adsorption potential and low solubility. Recent research has suggested that vegetation may play an important role in the biodegradation of toxic organic chemicals, such as PNAs, in soil. The establishment of vegetation on hazardous waste sites may be an economic, effective, low maintenance approach to waste remediation and stabilization. Completed greenhouse studies have indicated that vegetative remediation is a feasible method for clean-up of surface soil contaminated with petroleum products. However, a field demonstration is needed to exhibit this new technology to the industrial community. In this project, several petroleum contaminated field sites will be chosen in collaboration with three industrial partners. These sites will be thoroughly characterized for chemical properties, physical properties, and initial PNA concentrations. A variety of plant species will be established on the sites, including warm and cool season grasses and alfalfa. Soil analyses for the target compounds over time will allow them to assess the efficiency and applicability of this remediation method

  18. Native plant recovery in study plots after fennel (Foeniculum vulgare) control on Santa Cruz Island

    Science.gov (United States)

    Power, Paula; Stanley, Thomas R.; Cowan, Clark; Robertson, James R.

    2014-01-01

    Santa Cruz Island is the largest of the California Channel Islands and supports a diverse and unique flora which includes 9 federally listed species. Sheep, cattle, and pigs, introduced to the island in the mid-1800s, disturbed the soil, browsed native vegetation, and facilitated the spread of exotic invasive plants. Recent removal of introduced herbivores on the island led to the release of invasive fennel (Foeniculum vulgare), which expanded to become the dominant vegetation in some areas and has impeded the recovery of some native plant communities. In 2007, Channel Islands National Park initiated a program to control fennel using triclopyr on the eastern 10% of the island. We established replicate paired plots (seeded and nonseeded) at Scorpion Anchorage and Smugglers Cove, where notably dense fennel infestations (>10% cover) occurred, to evaluate the effectiveness of native seed augmentation following fennel removal. Five years after fennel removal, vegetative cover increased as litter and bare ground cover decreased significantly (P species increased at Scorpion Anchorage in both seeded and nonseeded plots. At Smugglers Cove, exotic cover decreased significantly (P = 0.0001) as native cover comprised of Eriogonum arborescensand Leptosyne gigantea increased significantly (P < 0.0001) in seeded plots only. Nonseeded plots at Smugglers Cove were dominated by exotic annual grasses, primarily Avena barbata. The data indicate that seeding with appropriate native seed is a critical step in restoration following fennel control in areas where the native seed bank is depauperate.

  19. Sharing programming resources between Bio* projects through remote procedure call and native call stack strategies.

    Science.gov (United States)

    Prins, Pjotr; Goto, Naohisa; Yates, Andrew; Gautier, Laurent; Willis, Scooter; Fields, Christopher; Katayama, Toshiaki

    2012-01-01

    Open-source software (OSS) encourages computer programmers to reuse software components written by others. In evolutionary bioinformatics, OSS comes in a broad range of programming languages, including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times for different languages, it is possible to share components by bridging computer languages and Bio* projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor. In this chapter, we compare the two principal approaches for sharing software between different programming languages: either by remote procedure call (RPC) or by sharing a local call stack. RPC provides a language-independent protocol over a network interface; examples are RSOAP and Rserve. The local call stack provides a between-language mapping not over the network interface, but directly in computer memory; examples are R bindings, RPy, and languages sharing the Java Virtual Machine stack. This functionality provides strategies for sharing of software between Bio* projects, which can be exploited more often. Here, we present cross-language examples for sequence translation, and measure throughput of the different options. We compare calling into R through native R, RSOAP, Rserve, and RPy interfaces, with the performance of native BioPerl, Biopython, BioJava, and BioRuby implementations, and with call stack bindings to BioJava and the European Molecular Biology Open Software Suite. In general, call stack approaches outperform native Bio* implementations and these, in turn, outperform RPC-based approaches. To test and compare strategies, we provide a downloadable BioNode image with all examples, tools, and libraries included. The BioNode image can be run on VirtualBox-supported operating systems, including Windows, OSX, and Linux.

  20. Study protocol: a cluster randomised controlled trial of a school based fruit and vegetable intervention - Project Tomato.

    Science.gov (United States)

    Kitchen, Meaghan S; Ransley, Joan K; Greenwood, Darren C; Clarke, Graham P; Conner, Mark T; Jupp, Jennifer; Cade, Janet E

    2009-06-16

    The School Fruit and Vegetable Scheme (SFVS) is an important public health intervention. The aim of this scheme is to provide a free piece of fruit and/or vegetable every day for children in Reception to Year 2. When children are no longer eligible for the scheme (from Year 3) their overall fruit and vegetable consumption decreases back to baseline levels. This proposed study aims to design a flexible multi-component intervention for schools to support the maintenance of fruit and vegetable consumption for Year 3 children who are no longer eligible for the scheme. This study is a cluster randomised controlled trial of Year 2 classes from 54 primary schools across England. The schools will be randomly allocated into two groups to receive either an active intervention called Project Tomato, to support maintenance of fruit intake in Year 3 children, or a less active intervention (control group), consisting of a 5 A DAY booklet. Children's diets will be analysed using the Child And Diet Evaluation Tool (CADET), and height and weight measurements collected, at baseline (Year 2) and 18 month follow-up (Year 4). The primary outcome will be the ability of the intervention (Project Tomato) to maintain consumption of fruit and vegetable portions compared to the control group. A positive result will identify how fruit and vegetable consumption can be maintained in young children, and will be useful for policies supporting the SFVS. A negative result would be used to inform the research agenda and contribute to redefining future strategies for increasing children's fruit and vegetable consumption. Medical Research Council Registry code G0501297.

  1. De etiske journalister: Native Advertising

    OpenAIRE

    Holst, Asger Bach; Jeppesen, Annika; Turunen, Marcus

    2016-01-01

    This project investigates the opinions about Native Advertising, among RUC-students who study journalism. In qualitative interviews a number of students point out advantages and disadvantages of Native Advertising as they see them, as well as they reflect upon if they eventually can see themselves work with Native Advertising.A selection of their responds are analysed with the use of a pragmatic argument analysis. The outcome of the analysis is the base of a discussion, which also include the...

  2. Rescuing and Sharing Historical Vegetation Data for Ecological Analysis: The California Vegetation Type Mapping Project

    Directory of Open Access Journals (Sweden)

    Maggi Kelly

    2016-10-01

    Full Text Available Research efforts that synthesize historical and contemporary ecological data with modeling approaches improve our understanding of the complex response of species, communities, and landscapes to changing biophysical conditions through time and in space. Historical ecological data are particularly important in this respect. There are remaining barriers that limit such data synthesis, and technological improvements that make multiple diverse datasets more readily available for integration and synthesis are needed. This paper presents one case study of the Wieslander Vegetation Type Mapping project in California and highlights the importance of rescuing, digitizing and sharing historical datasets. We review the varied ecological uses of the historical collection: the vegetation maps have been used to understand legacies of land use change and plan for the future; the plot data have been used to examine changes to chaparral and forest communities around the state and to predict community structure and shifts under a changing climate; the photographs have been used to understand changing vegetation structure; and the voucher specimens in combination with other specimen collections have been used for large scale distribution modeling efforts. The digitization and sharing of the data via the web has broadened the scope and scale of the types of analysis performed. Yet, additional research avenues can be pursued using multiple types of VTM data, and by linking VTM data with contemporary data. The digital VTM collection is an example of a data infrastructure that expands the potential of large scale research through the integration and synthesis of data drawn from numerous data sources; its journey from analog to digital is a cautionary tale of the importance of finding historical data, digitizing it with best practices, linking it with other datasets, and sharing it with the research community.

  3. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    Science.gov (United States)

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .

  4. Presence and abundance of non-native plant species associated with recent energy development in the Williston Basin

    Science.gov (United States)

    Preston, Todd M.

    2015-01-01

    The Williston Basin, located in the Northern Great Plains, is experiencing rapid energy development with North Dakota and Montana being the epicenter of current and projected development in the USA. The average single-bore well pad is 5 acres with an estimated 58,485 wells in North Dakota alone. This landscape-level disturbance may provide a pathway for the establishment of non-native plants. To evaluate potential influences of energy development on the presence and abundance of non-native species, vegetation surveys were conducted at 30 oil well sites (14 ten-year-old and 16 five-year-old wells) and 14 control sites in native prairie environments across the Williston Basin. Non-native species richness and cover were recorded in four quadrats, located at equal distances, along four transects for a total of 16 quadrats per site. Non-natives were recorded at all 44 sites and ranged from 5 to 13 species, 7 to 15 species, and 2 to 8 species at the 10-year, 5-year, and control sites, respectively. Respective non-native cover ranged from 1 to 69, 16 to 76, and 2 to 82 %. Total, forb, and graminoid non-native species richness and non-native forb cover were significantly greater at oil well sites compared to control sites. At oil well sites, non-native species richness and forb cover were significantly greater adjacent to the well pads and decreased with distance to values similar to control sites. Finally, non-native species whose presence and/or abundance were significantly greater at oil well sites relative to control sites were identified to aid management efforts.

  5. Enhancing Pre- and Post-Wildfire Vegetation Recovery and Understanding Feedbacks of Cheatgrass invasion Using NASA Earth Observations

    Science.gov (United States)

    Olsen, N.; Counts, A.; Quistorff, C.; Ohr, C. A.; Toner, C.

    2017-12-01

    Increasing wildfire frequency and severity has emphasized the importance of post-wildfire recovery efforts in southern Idaho's sagebrush ecosystems. These changing fire regimes favor invasive grass species while hindering native sagebrush habitat regeneration, causing a positive feedback cycle of invasive growth - wildfires - invasive growth. Due to this undesirable process and anthropogenic influences, the sagebrush ecosystem is one of the most endangered in the US. In this project the NASA DEVELOP group of Pocatello, Idaho partnered with the Bureau of Land Management, Idaho Department of Fish and Game, and the US Department of Agriculture to characterize ecosystem recovery following the Crystal (2006), Henry Creek (2016), Jefferson (2010), and Soda (2015) wildfires. Determining vegetation cover heterogeneity and density can be time consuming and the factors affecting ecosystem recovery can be complex. In addition, restoration success is difficult to determine as vegetation composition is not often known prior to wildfire events and monitoring vegetation composition after restoration efforts can be resource intensive. These wildfires temporal monitoring consisted of 2001 to 2017 using NASA Earth observations such as Landsat 5 Thermal Mapper (TM), Landsat 8 Operational Land Imager (OLI), Terra Moderate Resolution Imaging Spectroradiometer (MODIS), and Shuttle Radar Topography Mission (SRTM) to determine the most significant factors of wildfire recovery and the influence targeted grazing could have for recovery. In addition, this project will include monitoring of invasive species propagation and whether spatial patterns or extents of the wildfire contribute to propagation. Understanding the key variables that made reseeding and natural recovery work in some areas, assessing why they failed in others, and identifying factors that made non-native propagation ideal are important issues for land managers in this region.

  6. Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties

    OpenAIRE

    Clause, J.; Forey, E.; Lortie, C. J.; Lambert, A. M.; Barot, Sébastien

    2015-01-01

    Earthworms can have strong direct effects on plant communities through consumption and digestion of seeds, however it is unclear how earthworms may influence the relative abundance and composition of plant communities invaded by non-native species. In this study, earthworms, seed banks, and the standing vegetation were sampled in a grassland of central California. Our objectives were i) to examine whether the abundances of non-native, invasive earthworm species and non-native grassland plant ...

  7. The environment of the Olympic Dam project

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The Olympic Dam uranium/copper/gold project at Roxby Downs, South Australia, has a harsh environment with high summer temperatures, low rainfall and poor quality soils. There are no natural water courses. The vegetation is dominated by annual grasses in summer and wildflowers in winter. Red kangaroos are the most commonly sighted native mammals. The Fat-tailed Dunnart a nocturnal carniverous marsupial, is found. Eighty three bird species have been recorded. Reptiles are numerous and one amphibian occurs. A vermin eradication program aimed at rabbit control is conducted. ills

  8. Vegetation growth patterns on six rock-covered UMTRA Project disposal cells

    International Nuclear Information System (INIS)

    1992-02-01

    This study assessed vegetation growth patterns, the potential impacts of vegetation growth on disposal cell cover integrity, and possible measures that could be taken to monitor and/or control plant growth, where necessary, on six Uranium Mill Tailings Remedial Action (UMTRA) Project rock-covered disposal cells. A large-scale invasion of volunteer plants was observed on the Shiprock and Burrell disposal cells. Plant growth at the South Clive, Green River, and Tuba City disposal cells was sparse except for the south rock apron and south slope of the Tuba City disposal cell, where windblown sand had filled up part of the rock cover and plant growth was observed. The rock-covered topslope of the Collins Ranch disposal cell was intentionally covered with topsoil and vegetated. Plant roots growing on the disposal cells are changing the characteristics of the cover by drying out the radon barrier, encouraging the establishment of soil-building processes in the bedding and radon barrier layers, creating channels in the radon barrier, and facilitating ecological succession, which could lead to the establishment of additional deep-rooted plants on the disposal cells. If left unchecked, plant roots would reach the tailings at the Burrell and Collins Ranch disposal cells within a few years, likely resulting in the transport of contaminants out of the cells

  9. Study protocol: a cluster randomised controlled trial of a school based fruit and vegetable intervention – Project Tomato

    Science.gov (United States)

    Kitchen, Meaghan S; Ransley, Joan K; Greenwood, Darren C; Clarke, Graham P; Conner, Mark T; Jupp, Jennifer; Cade, Janet E

    2009-01-01

    Background The School Fruit and Vegetable Scheme (SFVS) is an important public health intervention. The aim of this scheme is to provide a free piece of fruit and/or vegetable every day for children in Reception to Year 2. When children are no longer eligible for the scheme (from Year 3) their overall fruit and vegetable consumption decreases back to baseline levels. This proposed study aims to design a flexible multi-component intervention for schools to support the maintenance of fruit and vegetable consumption for Year 3 children who are no longer eligible for the scheme. Method This study is a cluster randomised controlled trial of Year 2 classes from 54 primary schools across England. The schools will be randomly allocated into two groups to receive either an active intervention called Project Tomato, to support maintenance of fruit intake in Year 3 children, or a less active intervention (control group), consisting of a 5 A DAY booklet. Children's diets will be analysed using the Child And Diet Evaluation Tool (CADET), and height and weight measurements collected, at baseline (Year 2) and 18 month follow-up (Year 4). The primary outcome will be the ability of the intervention (Project Tomato) to maintain consumption of fruit and vegetable portions compared to the control group. Discussion A positive result will identify how fruit and vegetable consumption can be maintained in young children, and will be useful for policies supporting the SFVS. A negative result would be used to inform the research agenda and contribute to redefining future strategies for increasing children's fruit and vegetable consumption. Trial registration Medical Research Council Registry code G0501297 PMID:19531246

  10. Study protocol: a cluster randomised controlled trial of a school based fruit and vegetable intervention – Project Tomato

    Directory of Open Access Journals (Sweden)

    Conner Mark T

    2009-06-01

    Full Text Available Abstract Background The School Fruit and Vegetable Scheme (SFVS is an important public health intervention. The aim of this scheme is to provide a free piece of fruit and/or vegetable every day for children in Reception to Year 2. When children are no longer eligible for the scheme (from Year 3 their overall fruit and vegetable consumption decreases back to baseline levels. This proposed study aims to design a flexible multi-component intervention for schools to support the maintenance of fruit and vegetable consumption for Year 3 children who are no longer eligible for the scheme. Method This study is a cluster randomised controlled trial of Year 2 classes from 54 primary schools across England. The schools will be randomly allocated into two groups to receive either an active intervention called Project Tomato, to support maintenance of fruit intake in Year 3 children, or a less active intervention (control group, consisting of a 5 A DAY booklet. Children's diets will be analysed using the Child And Diet Evaluation Tool (CADET, and height and weight measurements collected, at baseline (Year 2 and 18 month follow-up (Year 4. The primary outcome will be the ability of the intervention (Project Tomato to maintain consumption of fruit and vegetable portions compared to the control group. Discussion A positive result will identify how fruit and vegetable consumption can be maintained in young children, and will be useful for policies supporting the SFVS. A negative result would be used to inform the research agenda and contribute to redefining future strategies for increasing children's fruit and vegetable consumption. Trial registration Medical Research Council Registry code G0501297

  11. Downscaled Climate Change Projections for the Southern Colorado Plateau: Variability and Implications for Vegetation Changes

    Science.gov (United States)

    Garfin, G. M.; Eischeid, J. K.; Cole, K. L.; Ironside, K.; Cobb, N. S.

    2008-12-01

    Recent and rapid forest mortality in western North America and associated changes in fire frequency and area burned are among the chief concerns of ecosystem managers. These examples of climate change surprises demonstrate nonlinear and threshold ecosystem responses to increased temperatures and severe drought. A consistent management request from climate change adaptation workshops held during the last four years in the southwest U.S. is for region-specific estimates of climate and vegetation change, in order to provide guidance for management of federal and state forest, range, and riparian preserves and land holdings. Partly in response to these concerns, and partly in the interest of improving knowledge of potential ecosystem changes and their relationships with observed changes and changes demonstrated in the paleoecological record, we developed a set of integrated climate and ecosystem analyses. We selected five of twenty-two GCMs from the PCMDI archive of IPCC AR4 model runs, based on their approximations of observed critical seasonality for vegetation in the Southern Colorado Plateau (domain: 35°- 38°N, 114°-107°W), centered on the Four Corners states. We used three key seasons in our analysis, winter (November-March), pre-monsoon (May-June), and monsoon (July- September). Projections of monthly and seasonal temperature and precipitation from our five-model ensemble indicate steadily increasing temperatures in our region of interest during the twenty-first century. By 2050, the ensemble projects increases of 3.0°C during May and June, months critical for drought stress and tree mortality, and 4.5-5.0°C by 2090. Projected temperature changes for months during the heart of winter (December and January) are on the order of 2.5°C by 2050 and 3.0°C by 2090; such changes are likely to affect snow hydrology in middle to low elevations in the Southern Colorado Plateau. Summer temperature increases are on the order of 2.5°C (2050) and 4.0°C (2090). The

  12. European Vegetation Archive (EVA)

    NARCIS (Netherlands)

    Chytrý, Milan; Hennekens, S.M.; Jiménez-Alfaro, Borja; Schaminée, J.H.J.; Haveman, Rense; Janssen, J.A.M.

    2016-01-01

    The European Vegetation Archive (EVA) is a centralized database of European vegetation plots developed by the IAVS Working Group European Vegetation Survey. It has been in development since 2012 and first made available for use in research projects in 2014. It stores copies of national and

  13. Golden Gate National Recreation Area Vegetation Inventory Project

    Data.gov (United States)

    California Natural Resource Agency — High resolution vegetation polygons mapped by the National Park Service. The vegetation units of this map were determined through stereoscopic interpretation of...

  14. Temporary and space dynamics of the fragmentation of the native forest in the south of Chile

    International Nuclear Information System (INIS)

    Montenegro Calderon, Leyla M

    2001-01-01

    The degree of fragmentation of the remainders of native vegetation is evaluated in the hydro graphical basin of the River Damas, through the time. The native forests are had among the ecosystems bigger degree of fragmentation in the world environment. The fragmentation has been defined as the transformation of an originally continuous forest, in smaller varieties, generally anthropics that are hostile for they; These fragments behave as islands virtual immerses in an anthropic ocean and frequently they are analyzed in the context of the theory of the isolation bio geographic. The result of the fragmentation is a landscape in which they mix managed areas and transformed by the man with fragments of native vegetation, that is to say patches of different sizes and forms

  15. The Landscape Ecological Impact of Afforestation on the British Uplands and Some Initiatives to Restore Native Woodland Cover

    Directory of Open Access Journals (Sweden)

    Bunce Robert G. H.

    2014-11-01

    Full Text Available The majority of forest cover in the British Uplands had been lost by the beginning of the Nineteenth Century, because of felling followed by overgrazing by sheep and deer. The situation remained unchanged until a government policy of afforestation, mainly by exotic conifers, after the First World War up to the present day. This paper analyses the distribution of these predominantly coniferous plantations, and shows how they occupy specific parts of upland landscapes in different zones throughout Britain Whilst some landscapes are dominated by these new forests, elsewhere the blocks of trees are more localised. Although these forests virtually eliminate native ground vegetation, except in rides and unplanted land, the major negative impacts are at the landscape level. For example, drainage systems are altered and ancient cultural landscape patterns are destroyed. These impacts are summarised and possible ways of amelioration are discussed. By contrast, in recent years, a series of projects have been set up to restore native forest cover, as opposed to the extensive plantations of exotic species. Accordingly, the paper then provides three examples of such initiatives designed to restore native forests to otherwise bare landscapes, as well as setting them into a policy context. Whilst such projects cover a limited proportion of the British Uplands they nevertheless restore forest to landscapes at a local level.

  16. Vegetation assessment of forests of Pagan Island, Commonwealth of the Northern Mariana Islands

    Science.gov (United States)

    Pratt, Linda W.

    2011-01-01

    As part of the Marianas Expedition Wildlife Surveys-2010, the forest vegetation of the island of Pagan, Commonwealth of the Northern Mariana Islands (CNMI), was sampled with a series of systematic plots along 13 transects established for monitoring forest bird populations. Shrubland and grassland were also sampled in the northern half of the island. Data collected were woody plant density, tree diameter at breast height, woody plant density in height classes below 2 m, and ground cover measured with the point-intercept method. Coconut forests (Cocos nucifera) were generally found to have low native tree diversity, little regeneration of trees and shrubs in the forest understory, and little live ground cover. The sole exception was a coconut-dominated forest of the northeast side of the island that exhibited high native tree diversity and a large number of young native trees in the understory. Ironwood (Casuarina equisetifolia) forests on the northern half of the island were nearly monocultures with almost no trees other than ironwood in vegetation plots, few woody plants in the understory, and low ground cover dominated by native ferns. Mixed native forests of both northern and southern sections of the island had a diversity of native tree species in both the canopy and the sparse understory. Ground cover of native forests in the north had a mix of native and alien species, but that of the southern half of the island was dominated by native ferns and woody plants.

  17. Soil, Vegetation, and Seed Bank of a Sonoran Desert Ecosystem Along an Exotic Plant ( Pennisetum ciliare) Treatment Gradient

    Science.gov (United States)

    Abella, Scott R.; Chiquoine, Lindsay P.; Backer, Dana M.

    2013-10-01

    Ecological conditions following removal of exotic plants are a key part of comprehensive environmental management strategies to combat exotic plant invasions. We examined ecological conditions following removal of the management-priority buffelgrass ( Pennisetum ciliare) in Saguaro National Park of the North American Sonoran Desert. We assessed soil, vegetation, and soil seed banks on seven buffelgrass site types: five different frequencies of buffelgrass herbicide plus hand removal treatments (ranging from 5 years of annual treatment to a single year of treatment), untreated sites, and non-invaded sites, with three replicates for each of the seven site types. The 22 measured soil properties (e.g., pH) differed little among sites. Regarding vegetation, buffelgrass cover was low (≤1 % median cover), or absent, across all treated sites but was high (10-70 %) in untreated sites. Native vegetation cover, diversity, and composition were indistinguishable across site types. Species composition was dominated by native species (>93 % relative cover) across all sites except untreated buffelgrass sites. Most (38 species, 93 %) of the 41 species detected in soil seed banks were native, and native seed density did not differ significantly across sites. Results suggest that: (1) buffelgrass cover was minimal across treated sites; (2) aside from high buffelgrass cover in untreated sites, ecological conditions were largely indistinguishable across sites; (3) soil seed banks harbored ≥12 species that were frequent in the aboveground vegetation; and (4) native species dominated post-treatment vegetation composition, and removing buffelgrass did not result in replacement by other exotic species.

  18. NativeView: A Geospatial Curriculum for Native Nation Building

    Science.gov (United States)

    Rattling Leaf, J.

    2007-12-01

    In the spirit of collaboration and reciprocity, James Rattling Leaf of Sinte Gleska University on the Rosebud Reservation of South Dakota will present recent developments, experiences, insights and a vision for education in Indian Country. As a thirty-year young institution, Sinte Gleska University is founded by a strong vision of ancestral leadership and the values of the Lakota Way of Life. Sinte Gleska University (SGU) has initiated the development of a Geospatial Education Curriculum project. NativeView: A Geospatial Curriculum for Native Nation Building is a two-year project that entails a disciplined approach towards the development of a relevant Geospatial academic curriculum. This project is designed to meet the educational and land management needs of the Rosebud Lakota Tribe through the utilization of Geographic Information Systems (GIS), Remote Sensing (RS) and Global Positioning Systems (GPS). In conjunction with the strategy and progress of this academic project, a formal presentation and demonstration of the SGU based Geospatial software RezMapper software will exemplify an innovative example of state of the art information technology. RezMapper is an interactive CD software package focused toward the 21 Lakota communities on the Rosebud Reservation that utilizes an ingenious concept of multimedia mapping and state of the art data compression and presentation. This ongoing development utilizes geographic data, imagery from space, historical aerial photography and cultural features such as historic Lakota documents, language, song, video and historical photographs in a multimedia fashion. As a tangible product, RezMapper will be a project deliverable tool for use in the classroom and to a broad range of learners.

  19. Association between mapped vegetation and Quaternary geology on Santa Rosa Island, California

    Science.gov (United States)

    Cronkite-Ratcliff, C.; Corbett, S.; Schmidt, K. M.

    2017-12-01

    Vegetation and surficial geology are closely connected through the interface generally referred to as the critical zone. Not only do they influence each other, but they also provide clues into the effects of climate, topography, and hydrology on the earth's surface. This presentation describes quantitative analyses of the association between the recently compiled, independently generated vegetation and geologic map units on Santa Rosa Island, part of the Channel Islands National Park in Southern California. Santa Rosa Island was heavily grazed by sheep and cattle ranching for over one hundred years prior to its acquisition by the National Park Service. During this period, the island experienced significant erosion and spatial reduction and diversity of native plant species. Understanding the relationship between geology and vegetation is necessary for monitoring the recovery of native plant species, enhancing the viability of restoration sites, and understanding hydrologic conditions favorable for plant growth. Differences in grain size distribution and soil depth between geologic units support different plant communities through their influence on soil moisture, while differences in unit age reflect different degrees of pedogenic maturity. We find that unsupervised machine learning methods provide more informative insight into vegetation-geology associations than traditional measures such as Cramer's V and Goodman and Kruskal's lambda. Correspondence analysis shows that unique vegetation-geology patterns associated with beach/dune, grassland, hillslope/colluvial, and fluvial/wetland environments can be discerned from the data. By combining geology and vegetation with topographic variables, mixture models can be used to partition the landscape into multiple representative types, which then be compared with conceptual models of plant growth and succession over different landforms. Using this collection of methods, we show various ways that that Quaternary geology

  20. Performance Evaluation and Field Application of Porous Vegetation Concrete Made with By-Product Materials for Ecological Restoration Projects

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-03-01

    Full Text Available The purpose of this study was to evaluate the performance of porous vegetation concrete block made from blast furnace slag cement containing industrial by-products such as blast furnace slag aggregate and powder. The blocks were tested for void ratio, compressive strength and freeze-thaw resistance to determine the optimal mixing ratio for the porous vegetation block. An economic analysis of the mixing ratio showed that the economic efficiency increased when blast furnace slag aggregate and cement were used. Porous vegetation concrete blocks for river applications were designed and produced. Hydraulic safety, heavy metal elution and vegetation tests were completed after the blocks were applied in the field. The measured tractive force ranged between 7.0 kg/m2 for fascine revetment (vegetation revetment and 16.0 kg/m2 for stone pitching (hard revetment, which ensured sufficient hydraulic stability in the field. Plant growth was measured after the porous vegetation concrete block was placed in the field. Seeds began to sprout one week after seeding; after six weeks, the plant length exceeded 300 mm. The average coverage ratio reached as high as 90% after six weeks of vegetation. These results clearly indicated that the porous vegetation concrete block was suitable for environmental restoration projects.

  1. Native Speakers as Teachers in Turkey: Non-Native Pre-Service English Teachers' Reactions to a Nation-Wide Project

    Science.gov (United States)

    Coskun, Abdullah

    2013-01-01

    Although English is now a recognized international language and the concept of native speaker is becoming more doubtful every day, the empowerment of the native speakers of English as language teaching professionals is still continuing (McKay, 2002), especially in Asian countries like China and Japan. One of the latest examples showing the…

  2. Recovery of native prairie after pipeline construction in the Sand Hills region of Saskatchewan

    International Nuclear Information System (INIS)

    Walker, D.; Kremer, L.; Marshall, W.

    1996-01-01

    Land reclamation measures taken after construction of a large diameter natural gas pipeline in the Great Sand Hills region of southwestern Saskatchewan were detailed. Mitigation measures included modified construction procedures to minimize the size of the disturbance, worker educational programs to sensitize them to the prevailing fragile environment, dormant season construction, efforts to salvage topsoil seedbank, fertilizer application, straw bale wind barriers, brush mulch wind barriers, surface manipulation with the Hodder Gouger, fencing-out cattle, and the application of a seed mixture of agronomic legumes and native grasses. Vegetation and soil erosion were monitored over a period of four years. After four years the canopy cover was 88 per cent native species. On low-lying, protected sites vegetation was stable enough to support cattle grazing. Exposed sites will not reach this level of vegetation stability for some years to come due soil erosion by wind

  3. Pastures to Prairies to Pools: An Update on Natural Resource Damages Settlement Projects at the Fernald Preserve - 13198

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Jane [Fernald Preserve Site Manager, DOE Office of Legacy Management, Harrison, Ohio (United States); Schneider, Tom [Fernald Project Manager, Ohio Environmental Protection Agency, Dayton, Ohio (United States); Hertel, Bill [Project Manager, S.M. Stoller Corporation, Harrison, Ohio (United States); Homer, John [Environmental Scientist, S.M. Stoller Corporation, Harrison, Ohio (United States)

    2013-07-01

    The DOE Office of Legacy Management oversees implementation and monitoring of two ecological restoration projects at the Fernald Preserve, Fernald, Ohio, that are funded through a CERCLA natural resource damage settlement. Planning and implementation of on-property ecological restoration projects is one component of compensation for natural resource injury. The Paddys Run Tributary Project involves creation of vernal pool wetland habitat with adjacent forest restoration. The Triangle Area Project is a mesic tall-grass prairie establishment, similar to other efforts at the Fernald Preserve. The goal of the Fernald Natural Resource Trustees is to establish habitat for Ambystomatid salamander species, as well as grassland birds. Field implementation of these projects was completed in May 2012. Herbaceous cover and woody vegetation survival was determined in August and September 2012. Results show successful establishment of native vegetation. Additional monitoring will be needed to determine whether project goals have been met. As with the rest of the Fernald Preserve, ecological restoration has helped turn a DOE liability into a community asset. (authors)

  4. Pastures to Prairies to Pools: An Update on Natural Resource Damages Settlement Projects at the Fernald Preserve - 13198

    International Nuclear Information System (INIS)

    Powell, Jane; Schneider, Tom; Hertel, Bill; Homer, John

    2013-01-01

    The DOE Office of Legacy Management oversees implementation and monitoring of two ecological restoration projects at the Fernald Preserve, Fernald, Ohio, that are funded through a CERCLA natural resource damage settlement. Planning and implementation of on-property ecological restoration projects is one component of compensation for natural resource injury. The Paddys Run Tributary Project involves creation of vernal pool wetland habitat with adjacent forest restoration. The Triangle Area Project is a mesic tall-grass prairie establishment, similar to other efforts at the Fernald Preserve. The goal of the Fernald Natural Resource Trustees is to establish habitat for Ambystomatid salamander species, as well as grassland birds. Field implementation of these projects was completed in May 2012. Herbaceous cover and woody vegetation survival was determined in August and September 2012. Results show successful establishment of native vegetation. Additional monitoring will be needed to determine whether project goals have been met. As with the rest of the Fernald Preserve, ecological restoration has helped turn a DOE liability into a community asset. (authors)

  5. Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios

    Directory of Open Access Journals (Sweden)

    P. Sicard

    2017-10-01

    Full Text Available The impact of ground-level ozone (O3 on vegetation is largely under-investigated at the global scale despite large areas worldwide that are exposed to high surface O3 levels. To explore future potential impacts of O3 on vegetation, we compared historical and projected surface O3 concentrations simulated by six global atmospheric chemistry transport models on the basis of three representative concentration pathways emission scenarios (i.e. RCP2.6, 4.5, 8.5. To assess changes in the potential surface O3 threat to vegetation at the global scale, we used the AOT40 metric. Results point out a significant exceedance of AOT40 in comparison with the recommendations of UNECE for the protection of vegetation. In fact, many areas of the Northern Hemisphere show that AOT40-based critical levels will be exceeded by a factor of at least 10 under RCP8.5. Changes in surface O3 by 2100 worldwide range from about +4–5 ppb in the RCP8.5 scenario to reductions of about 2–10 ppb in the most optimistic scenario, RCP2.6. The risk of O3 injury for vegetation, through the potential O3 impact on photosynthetic assimilation, decreased by 61 and 47 % under RCP2.6 and RCP4.5, respectively, and increased by 70 % under RCP8.5. Key biodiversity areas in southern and northern Asia, central Africa and North America were identified as being at risk from high O3 concentrations.

  6. A study to explore the use of orbital remote sensing to determine native arid plant distribution. [Arizona Regional Ecological Test Site

    Science.gov (United States)

    Mcginnies, W. G. (Principal Investigator); Lepley, L. K.; Haase, E. F.; Conn, J. S.; Musick, H. B.; Foster, K. E.

    1974-01-01

    The author has identified the following significant results. It is possible to determine, from ERTS imagery, native arid plant distribution. Using techniques of multispectral masking and extensive fieldwork, three native vegetation communities were defined and mapped in the Avra Valley study area. A map was made of the Yuma area with the aid of ground truth correlations between areas of desert pavement visible on ERTS images and unique vegetation types. With the exception of the Yuma soil-vegetation correlation phenomena, only very gross differentiations of desert vegetation communities can be made from ERTS data. Vegetation communities with obvious vegetation density differences such as saguaro-paloverde, creosote bush, and riparian vegetation can be separated on the Avra Valley imagery while more similar communities such as creosote bush and saltbush could not be differentiated. It is suggested that large differences in vegetation density are needed before the signatures of two different vegetation types can be differentiated on ERTS imagery. This is due to the relatively insignificant contribution of vegetation to the total radiometric signature of a given desert scene. Where more detailed information concerning the vegetation of arid regions is required, large scale imagery is appropriate.

  7. Uranium-series radionuclides in native fruits and vegetables of northern Australia

    International Nuclear Information System (INIS)

    Ryan, B.; Martin, P.; Iles, M.

    2005-01-01

    Wild fruits and vegetables play an important part in a traditional Aboriginal diet in northern Australia. Radionuclide uptake by these foods is important for radiological impact assessment of uranium mining operations in the region, particularly after minesite rehabilitation. Data are presented for concentrations in several fruits and root vegetables, and associated soils. In terms of radiological dose, 210 Po, 226 Ra and, to a lesser extent, 210 Pb were found to be of greater importance than the uranium and thorium isotopes. Other important factors that have emerged include food preparation and consumption habits of Aboriginal people which could potentially affect radionuclide intake estimates. (author)

  8. Columbia Wind Farm number-sign 1 EIS: Botanical resources technical report for the Conservation and Renewable Energy System. Appendix B

    International Nuclear Information System (INIS)

    1995-01-01

    Jones and Stokes Associates conducted botanical investigations of the Conservation and Renewable Energy Systems (CARES) project site from April through July 1994. Presurvey investigations were conducted to gain information regarding potential special-status plant species and vegetation communities that might exist on the project area. Field surveys were conducted to determine the presence of special-status plant species, map and describe potential vegetation communities, and document the presence of other species onsite, including culturally important species. Field surveys also were used to identify possible mitigation measures as a means to reduce potential project impacts to botanical resources. Floristically, the project area is located in the Columbia Basin Province dominated by shrub-steppe grassland vegetation. Completion of the presurvey and field investigations documented that the project area is dominated by native bunchgrass communities. Field surveys also determined that no special-status plant species were found on the study area. Implementation of the project would result in moderately significant impacts to the vegetation resource. Impacts include the following direct impacts: removal or disturbance of approximately 38 hectares (95 acres) of vegetation, including 32 hectares (80 acres) of native, natural communities, from project construction and the initiation of development into relatively undisturbed native vegetation communities. Indirect impacts to vegetation are associated with impacts that could occur in the future. Ongoing activities that are required to maintain the site's function of producing wind power could result in vegetation trampling and removal of vegetation. This disturbance could create areas where invasive weeds could establish and provide a continual source of weed seed in the project area

  9. Facilitation of a native pest of rice, Stenotus rubrovittatus (Hemiptera: Miridae), by the non-native Lolium multiflorum (Cyperales: Poaceae) in an agricultural landscape.

    Science.gov (United States)

    Yoshioka, Akira; Takada, Mayura; Washitani, Izumi

    2011-10-01

    Source populations of polyphagous pests often occur on host plants other than the economically damaged crop. We evaluated the contribution of patches of a non-native meadow grass, Lolium multiflorum Lam. (Poaceae), and other weeds growing in fallow fields or meadows as source hosts of an important native pest of rice, Stenotus rubrovittatus (Matsumura) (Hemiptera: Miridae), in an agricultural landscape of northern Japan. Periodical censuses of this mirid bug by using the sweeping method, vegetation surveys, and statistical analysis revealed that L. multiflorum was the only plant species that was positively correlated with the density of adult S. rubrovittatus through two generations and thus may be the most stable and important host of the mirid bug early in the season before the colonization of rice paddies. The risk and cost of such an indirect negative effect on a crop plant through facilitation of a native pest by a non-native plant in the agricultural landscape should not be overlooked.

  10. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    International Nuclear Information System (INIS)

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference

  11. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.

  12. Native Prairie Adaptive Management: a multi region adaptive approach to invasive plant management on Fish and Wildlife Service owned native prairies

    Science.gov (United States)

    Gannon, Jill J.; Shaffer, Terry L.; Moore, Clinton T.

    2013-01-01

    Much of the native prairie managed by the U.S. Fish and Wildlife Service (FWS) in the Prairie Pothole Region (PPR) of the northern Great Plains is extensively invaded by the introduced cool-season grasses, smooth brome (Bromus inermis) and Kentucky bluegrass (Poa pratensis). Management to suppress these invasive plants has had poor to inconsistent success. The central challenge to managers is selecting appropriate management actions in the face of biological and environmental uncertainties. In partnership with the FWS, the U.S. Geological Survey (USGS) developed an adaptive decision support framework to assist managers in selecting management actions under uncertainty and maximizing learning from management outcomes. This joint partnership is known as the Native Prairie Adaptive Management (NPAM) initiative. The NPAM decision framework is built around practical constraints faced by FWS refuge managers and includes identification of the management objective and strategies, analysis of uncertainty and construction of competing decision models, monitoring, and mechanisms for model feedback and decision selection. Nineteen FWS field stations, spanning four states of the PPR, have participated in the initiative. These FWS cooperators share a common management objective, available management strategies, and biological uncertainties. Though the scope is broad, the initiative interfaces with individual land managers who provide site-specific information and receive updated decision guidance that incorporates understanding gained from the collective experience of all cooperators. We describe the technical components of this approach, how the components integrate and inform each other, how data feedback from individual cooperators serves to reduce uncertainty across the whole region, and how a successful adaptive management project is coordinated and maintained on a large scale. During an initial scoping workshop, FWS cooperators developed a consensus management objective

  13. SACRIFICING THE ECOLOGICAL RESOLUTION OF VEGETATION MAPS AT THE ALTAR OF THEMATIC ACCURACY: ASSESSED MAP ACCURACIES FOR HIERARCHICAL VEGETATION CLASSIFICATIONS IN THE EASTERN GREAT BASIN OF THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT (SW REGAP)

    Science.gov (United States)

    The Southwest Regional Gap Analysis Project (SW ReGAP) improves upon previous GAP projects conducted in Arizona, Colorado, Nevada, New Mexico, and Utah to provide a consistent, seamless vegetation map for this large and ecologically diverse geographic region. Nevada's compone...

  14. Vegetation Change in Blue Oak Woodlands in California

    Science.gov (United States)

    Barbara A. Holzman; Barbara H. Allen-Diaz

    1991-01-01

    A preliminary report of a statewide project investigating vegetation change in blue oak (Quercus douglasii) woodlands in California is presented. Vegetation plots taken in the 1930s, as part of a statewide vegetation mapping project, were relocated and surveyed. Species composition, cover and tree stand structure data from the earlier study were...

  15. Alaskan Native High School Dropouts: A Report Prepared for Project ANNA.

    Science.gov (United States)

    Jacobson, Desa

    Presented is a summary of the Alaskan Native high school dropouts. The data collected on 180 Native Alaskan high school dropouts was taken from the regional dormitories at Nome, Kodiak, Bethel and Boarding Home programs in Anchorage, Tok, Fairbanks, Dillingham, and Ketchikan. Students who terminated for academic reasons, failed to attend school,…

  16. Impacts of vegetation change on groundwater recharge

    Science.gov (United States)

    Bond, W. J.; Verburg, K.; Smith, C. J.

    2003-12-01

    Vegetation change is the accepted cause of increasing river salt concentrations and the salinisation of millions of hectares of farm land in Australia. Replacement of perennial native vegetation by annual crops and pastures following European settlement has altered the water balance causing increased groundwater recharge and mobilising the naturally saline groundwater. The Redesigning Agriculture for Australian Landscapes Program, of which the work described here is a part, was established to develop agricultural practices that are more attuned to the delicate water balance described above. Results of field measurements will be presented that contrast the water balance characteristics of native vegetation with those of conventional agricultural plants, and indicate the functional characteristics required of new agricultural practices to reduce recharge. New agricultural practices may comprise different management of current crops and pastures, or may involve introducing totally new species. In either case, long-term testing is required to examine their impact on recharge over a long enough climate record to encompass the natural variability of rainfall that is characteristic of most Australian farming regions. Field experimentation therefore needs to be complemented and extended by computer simulation. This requires a modelling approach that is more robust than conventional crop modelling because (a) it needs to be sensitive enough to predict small changes in the residual recharge term, (b) it needs to be able to simulate a variety of vegetation in different sequences, (c) it needs to be able to simulate continuously for several decades of input data, and (d) it therefore needs to be able to simulate the period between crops, which often has a critical impact on recharge. The APSIM simulation framework will be used to illustrate these issues and to explore the effect of different vegetation combinations on recharge.

  17. European Vegetation Archive (EVA): an integrated database of European vegetation plots

    DEFF Research Database (Denmark)

    Chytrý, M; Hennekens, S M; Jiménez-Alfaro, B

    2015-01-01

    vegetation- plot databases on a single software platform. Data storage in EVA does not affect on-going independent development of the contributing databases, which remain the property of the data contributors. EVA uses a prototype of the database management software TURBOVEG 3 developed for joint management......The European Vegetation Archive (EVA) is a centralized database of European vegetation plots developed by the IAVS Working Group European Vegetation Survey. It has been in development since 2012 and first made available for use in research projects in 2014. It stores copies of national and regional...... data source for large-scale analyses of European vegetation diversity both for fundamental research and nature conservation applications. Updated information on EVA is available online at http://euroveg.org/eva-database....

  18. Acceleration and Counteraction of Changes in Vegetation Seasonality and Patterns using CMIP5 Projections from Different ESMs.

    Science.gov (United States)

    Chavaillaz, Y.; Joussaume, S.; De Noblet-Decoudre, N.

    2017-12-01

    Most climatological studies characterize future climate change as the evolution between a fixed current baseline and the future. Considering the pace of future climate change is however of major importance, since it may strongly influence how we experience climate hazards. To complement previous work related to the pace of temperature and precipitation changes, we propose here to study how fast vegetation seasonality and patterns of climate change evolve in different future configurations according to CMIP5 simulations of several Earth system models. The pace is defined as the difference in relevant metrics between two successive 20-year periods, i.e. with a continually moving baseline. Shifts of vegetation groups and changes in the characteristics of the seasonal cycle are considered. Both accelerate in close relationship with the warming rate regardless of the selected scenario, but they balance each other out, especially for trees in northern mid- and high-latitudes. Efforts are nevertheless strongly needed to harmonize the representation of vegetation in new versions of model inter-comparison projects, in order to properly conduct multi-model analyses related to vegetation changes.

  19. Combined effects of climate change and forest clearing on the Amazon vegetation: Projections for 2080-2100

    Science.gov (United States)

    Cook, K. H.; Vizy, E. K.

    2007-05-01

    A regional climate model with resolution of 60 km coupled with a potential vegetation model is used to simulate future vegetation distributions over South America. The coupled model, which produces an accurate representation of today's climate and vegetation, is forced with increasing atmospheric CO2 concentrations, sea surface temperature from a global model, and scenarios of future land use practices to predict climate and vegetation distributions for the last 2 decades of the 21st century. When only climate change is considered, under a business-as-usual scenario for global emissions, the extent of the Amazon rainforest is reduced by about 70 per cent by the end of this century, and the shrubland (caatinga) vegetation of Brazil's Nordeste region spreads westward and southward. Reductions in annual mean precipitation are widespread and rainfall becomes insufficient to support the rainforest in these regions, but some areas receive more precipitation. The length of the dry season increases in the central and southern Amazon in association with changes in the large-scale tropical circulation. Without this change in seasonality, local refugia of Amazon vegetation would be preserved and the retreat of the rainforest would be somewhat less extensive. Including various projections of future land use practices in addition to climate change may accelerate the unrecoverable demise of the rainforest and feedback to modify climate on regional space scales. The portions of the rainforest that are most vulnerable to climate change are the same as those that are under the most pressure from human activity, presenting a remarkable competition.

  20. COSEE-AK Ocean Science Fairs: A Science Fair Model That Grounds Student Projects in Both Western Science and Traditional Native Knowledge

    Science.gov (United States)

    Dublin, Robin; Sigman, Marilyn; Anderson, Andrea; Barnhardt, Ray; Topkok, Sean Asiqluq

    2014-01-01

    We have developed the traditional science fair format into an ocean science fair model that promoted the integration of Western science and Alaska Native traditional knowledge in student projects focused on the ocean, aquatic environments, and climate change. The typical science fair judging criteria for the validity and presentation of the…

  1. Vegetation of the Hantam-Tanqua-Roggeveld subregion, South Africa Part 2: Succulent Karoo Biome related vegetation

    Directory of Open Access Journals (Sweden)

    Helga van der Merwe

    2009-03-01

    Full Text Available The Hantam-Tanqua-Roggeveld subregion lies within the Succulent Karoo Hotspot that stretches along the western side of the Republic of South Africa and Namibia. This project, carried out to document the botanical diversity in the Hantam-Tanqua-Roggeveld subregion, was part of a project identified as a priority during the SKEP (Succulent Karoo Ecosystem Programme initiative in this Hotspot. Botanical surveys were conducted in an area covering over three million hectares. Satellite images of the area and topocadastral, land type and geology maps were used to stratify the area into relatively homogeneous units. An analysis of the floristic data of 390 sample plots identified two major floristic units, i.e. the Fynbos Biome related vegetation and the Succulent Karoo Biome related vegetation. A description of the vegetation related to the Succulent Karoo Biome is presented in this article. Seven associations, 16 subassociations and several mosaic vegetation units, consisting of more than one vegetation unit, were identified and mapped. Various threats to the vegetation in the region were identified during the survey and are briefly discussed.

  2. Native plant community response to alien plant invasion and removal

    Directory of Open Access Journals (Sweden)

    Jara ANDREU

    2011-01-01

    Full Text Available Given the potential ecological impacts of invasive species, removal of alien plants has become an important management challenge and a high priority for environmental managers. To consider that a removal effort has been successful requires both, the effective elimination of alien plants and the restoration of the native plant community back to its historical composition and function. We present a conceptual framework based on observational and experimental data that compares invaded, non-invaded and removal sites to quantify invaders’ impacts and native plant recover after their removal. We also conduct a meta-analysis to quantitatively evaluate the impacts of plant invaders and the consequences of their removal on the native plant community, across a variety of ecosystems around the world. Our results that invasion by alien plants is responsible for a local decline in native species richness and abundance. Our analysis also provides evidence that after removal, the native vegetation has the potential to recover to a pre-invasion target state. Our review reveal that observational and experimental approaches are rarely used in concert, and that reference sites are scarcely employed to assess native species recovery after removal. However, we believe that comparing invaded, non-invaded and removal sites offer the opportunity to obtain scientific information with relevance for management.

  3. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    Science.gov (United States)

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F.

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the ‘intersection effect’). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear

  4. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    Science.gov (United States)

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the 'intersection effect'). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear

  5. Native fruit traits may mediate dispersal competition between native and non-native plants

    Directory of Open Access Journals (Sweden)

    Clare Aslan

    2012-02-01

    Full Text Available Seed disperser preferences may mediate the impact of invasive, non-native plant species on their new ecological communities. Significant seed disperser preference for invasives over native species could facilitate the spread of the invasives while impeding native plant dispersal. Such competition for dispersers could negatively impact the fitness of some native plants. Here, we review published literature to identify circumstances under which preference for non-native fruits occurs. The importance of fruit attraction is underscored by several studies demonstrating that invasive, fleshy-fruited plant species are particularly attractive to regional frugivores. A small set of studies directly compare frugivore preference for native vs. invasive species, and we find that different designs and goals within such studies frequently yield contrasting results. When similar native and non-native plant species have been compared, frugivores have tended to show preference for the non-natives. This preference appears to stem from enhanced feeding efficiency or accessibility associated with the non-native fruits. On the other hand, studies examining preference within existing suites of co-occurring species, with no attempt to maximize fruit similarity, show mixed results, with frugivores in most cases acting opportunistically or preferring native species. A simple, exploratory meta-analysis finds significant preference for native species when these studies are examined as a group. We illustrate the contrasting findings typical of these two approaches with results from two small-scale aviary experiments we conducted to determine preference by frugivorous bird species in northern California. In these case studies, native birds preferred the native fruit species as long as it was dissimilar from non-native fruits, while non-native European starlings preferred non-native fruit. However, native birds showed slight, non-significant preference for non-native fruit

  6. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance

    Science.gov (United States)

    Larson, D.L.; Anderson, P.J.; Newton, W.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  7. Evaluating Vegetation Potential for Wildfire Impacted Watershed Using a Bayesian Network Modeling Approach

    Science.gov (United States)

    Jaramillo, L. V.; Stone, M. C.; Morrison, R. R.

    2017-12-01

    Decision-making for natural resource management is complex especially for fire impacted watersheds in the Southwestern US because of the vital importance of water resources, exorbitant cost of fire management and restoration, and the risks of the wildland-urban interface (WUI). While riparian and terrestrial vegetation are extremely important to ecosystem health and provide ecosystem services, loss of vegetation due to wildfire, post-fire flooding, and debris flows can lead to further degradation of the watershed and increased vulnerability to erosion and debris flow. Land managers are charged with taking measures to mitigate degradation of the watershed effectively and efficiently with limited time, money, and data. For our study, a Bayesian network (BN) approach is implemented to understand vegetation potential for Kashe-Katuwe Tent Rocks National Monument in the fire-impacted Peralta Canyon Watershed, New Mexico, USA. We implement both two-dimensional hydrodynamic and Bayesian network modeling to incorporate spatial variability in the system. Our coupled modeling framework presents vegetation recruitment and succession potential for three representative plant types (native riparian, native terrestrial, and non-native) under several hydrologic scenarios and management actions. In our BN model, we use variables that address timing, hydrologic, and groundwater conditions as well as recruitment and succession constraints for the plant types based on expert knowledge and literature. Our approach allows us to utilize small and incomplete data, incorporate expert knowledge, and explicitly account for uncertainty in the system. Our findings can be used to help land managers and local decision-makers determine their plan of action to increase watershed health and resilience.

  8. Formalized classification of species-poor vegetation: a proposal of a consistent protocol for aquatic vegetation

    Czech Academy of Sciences Publication Activity Database

    Landucci, F.; Tichý, L.; Šumberová, Kateřina; Chytrý, M.

    2015-01-01

    Roč. 26, č. 4 (2015), s. 791-803 ISSN 1100-9233 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : vegetation classification * vegetation database * Coctail method Subject RIV: EF - Botanics Impact factor: 3.151, year: 2015

  9. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption

    Energy Technology Data Exchange (ETDEWEB)

    Awad, John [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Leeuwen, John van, E-mail: John.VanLeeuwen@unisa.edu.au [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); State Key Laboratory for Environmental Aquatic Chemistry, CAS, Beijing (China); Barbara Hardy Institute, University of South Australia, South Australia 5095 (Australia); Abate, Dawit [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Pichler, Markus; Bestland, Erick [School of the Environment, Flinders University, Bedford Park, South Australia 5042 (Australia); Chittleborough, David J. [School of Physical Sciences, University of Adelaide, North Terrace, South Australia 5005 (Australia); Fleming, Nigel [South Australian Research and Development Institute, P.O. Box 397, Adelaide, SA 5000 (Australia); Cohen, Jonathan; Liffner, Joel [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Drikas, Mary [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, South Australia 5000 (Australia); State Key Laboratory for Environmental Aquatic Chemistry, CAS, Beijing (China)

    2015-10-01

    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~ 30 cm and ~ 60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV–visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on

  10. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption

    International Nuclear Information System (INIS)

    Awad, John; Leeuwen, John van; Abate, Dawit; Pichler, Markus; Bestland, Erick; Chittleborough, David J.; Fleming, Nigel; Cohen, Jonathan; Liffner, Joel; Drikas, Mary

    2015-01-01

    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~ 30 cm and ~ 60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV–visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on

  11. Assessment of the Species Composition, Densities, and Distribution of Native Freshwater Mussels along the Benton County Shoreline of the Hanford Reach, Columbia River, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Robert P.; Tiller, Brett L.; Bleich, Matthew D.; Turner, Gerald; Welch, Ian D.

    2011-01-31

    The Hanford Reach of the Columbia River is the last unimpounded section of the river and contains substrate characteristics (cobble, gravel, sand/silt) suitable for many of the native freshwater mussels known to exist in the Pacific Northwest. Information concerning the native mussel species composition, densities, and distributions in the mainstem of the Columbia River is limited. Under funding from the U.S. Department of Energy Richland Operations Office (DOE-RL), Pacific Northwest National Laboratory conducted an assessment of the near-shore habitat on the Hanford Reach. Surveys conducted in 2004 as part of the Ecological Monitoring and Compliance project documented several species of native mussels inhabiting the near-shore habitat of the Hanford Reach. Findings reported here may be useful to resource biologists, ecologists, and DOE-RL to determine possible negative impacts to native mussels from ongoing near-shore remediation activities associated with Hanford Site cleanup. The objective of this study was to provide an initial assessment of the species composition, densities, and distribution of the freshwater mussels (Margaritiferidae and Unionidae families) that exist in the Hanford Reach. Researchers observed and measured 201 live native mussel specimens. Mussel density estimated from these surveys is summarized in this report with respect to near-shore habitat characteristics including substrate size, substrate embeddedness, relative abundance of aquatic vegetation, and large-scale geomorphic/hydrologic characteristics of the Hanford Reach.

  12. Effects of introduced and indigenous viruses on native plants: exploring their disease causing potential at the agro-ecological interface.

    Science.gov (United States)

    Vincent, Stuart J; Coutts, Brenda A; Jones, Roger A C

    2014-01-01

    The ever increasing movement of viruses around the world poses a major threat to plants growing in cultivated and natural ecosystems. Both generalist and specialist viruses move via trade in plants and plant products. Their potential to damage cultivated plants is well understood, but little attention has been given to the threat such viruses pose to plant biodiversity. To address this, we studied their impact, and that of indigenous viruses, on native plants from a global biodiversity hot spot in an isolated region where agriculture is very recent (viruses readily. To establish their potential to cause severe or mild systemic symptoms in different native plant species, we used introduced generalist and specialist viruses, and indigenous viruses, to inoculate plants of 15 native species belonging to eight families. We also measured resulting losses in biomass and reproductive ability for some host-virus combinations. In addition, we sampled native plants growing over a wide area to increase knowledge of natural infection with introduced viruses. The results suggest that generalist introduced viruses and indigenous viruses from other hosts pose a greater potential threat than introduced specialist viruses to populations of native plants encountered for the first time. Some introduced generalist viruses infected plants in more families than others and so pose a greater potential threat to biodiversity. The indigenous viruses tested were often surprisingly virulent when they infected native plant species they were not adapted to. These results are relevant to managing virus disease in new encounter scenarios at the agro-ecological interface between managed and natural vegetation, and within other disturbed natural vegetation situations. They are also relevant for establishing conservation policies for endangered plant species and avoiding spread of damaging viruses to undisturbed natural vegetation beyond the agro-ecological interface.

  13. Native Geoscience: Pathways to Knowledge

    Science.gov (United States)

    Bolman, J. R.; Seielstad, G.

    2006-12-01

    We are living in a definite time of change. Distinct changes are being experienced in our most sacred and natural environments. This is especially true on Native lands. Native people have lived for millennia in distinct and unique ways. The knowledge of balancing the needs of people with the needs of our natural environments is paramount in all tribal societies. This inherent accumulated knowledge has become the foundation on which to build a "blended" contemporary understanding of western science. The Dakota's and Northern California have embraced the critical need of understanding successful tribal strategies to engage educational systems (K-12 and higher education), to bring to prominence the professional development opportunities forged through working with tribal peoples and ensure the continued growth of Native earth and environmental scientists The presentation will highlight: 1) past and present philosophies on building and maintaining Native/Tribal students in earth and environmental sciences; 2) successful educational programs/activities in PreK-Ph.D. systems; 3) current Native leadership development in earth and environmental sciences; and 4) forward thinking for creating proaction collaborations addressing sustainable environmental, educational and social infrastructures for all people. Humboldt State University (HSU) and the University of North Dakota's Northern Great Plains Center for People and the Environment and the Upper Midwest Aerospace Consortium (UMAC) have been recognized nationally for their partnerships with Native communities. Unique collaborations are emerging "bridging" Native people across geographic areas in developing educational/research experiences which integrate the distinctive earth/environmental knowledge of tribal people. The presentation will highlight currently funded projects and initiatives as well as success stories of emerging Native earth system students and scientists.

  14. NIS occurrence - Non-native species impacts on threatened and endangered salmonids

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objectives of this project: a) Identify the distribution of non-natives in the Columbia River Basin b) Highlight the impacts of non-natives on salmonids c)...

  15. Can a native rodent species limit the invasive potential of a non-native rodent species in tropical agroforest habitats?

    Science.gov (United States)

    Stuart, Alexander M; Prescott, Colin V; Singleton, Grant R

    2016-06-01

    Little is known about native and non-native rodent species interactions in complex tropical agroecosystems. We hypothesised that the native non-pest rodent Rattus everetti may be competitively dominant over the invasive pest rodent Rattus tanezumi within agroforests. We tested this experimentally by using pulse removal for three consecutive months to reduce populations of R. everetti in agroforest habitat, and assessed over 6 months the response of R. tanezumi and other rodent species. Following removal, R. everetti individuals rapidly immigrated into removal sites. At the end of the study period, R. tanezumi were larger and there was a significant shift in their microhabitat use with respect to the use of ground vegetation cover following the perturbation of R. everetti. Irrespective of treatment, R. tanezumi selected microhabitat with less tree canopy cover, indicative of severely disturbed habitat, whereas R. everetti selected microhabitat with a dense canopy. Our results suggest that sustained habitat disturbance in agroforests favours R. tanezumi, while the regeneration of agroforests towards a more natural state would favour native species and may reduce pest pressure in adjacent crops. In addition, the rapid recolonisation of R. everetti suggests this species would be able to recover from non-target impacts of short-term rodent pest control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Rehabilitation of Degraded Rangeland in Drylands by Prickly Pear (Opuntia ficus-indica L. Plantations: Effect on Soil and Spontaneous Vegetation

    Directory of Open Access Journals (Sweden)

    Souad Neffar

    2013-12-01

    Full Text Available In arid and semi-arid lands, the spiny prickly pear (Opuntia ficus-indica is an outstanding plant for soil conservation and restoration. To determine the role of Opuntia ficus-indica on vegetation recovery process in desertified areas of Southern Tebessa (Northeast Algeria, we investigated the effect of prickly pear plantation age and some soil properties (grain size, pH, electrical conductivity, organic matter, total nitrogen, available phosphorus, and CaCO3 equivalents on native plant community. Vegetation cover and plant diversity were assessed by calculating the number of individual plants (N, species richness (S, their ratio (N/S, Shannon index, and Evenness in prickly pear plantation plots of different ages (control, 5 and 20 years. Even if surveyed soil parameters did not differ significantly among O. ficus-indica plantations, results of ANOVA testing the effect of Opuntia plantations on native vegetation traits revealed significant variation for plant abundance (P < 0.0001, N/S ratio (P = 0.003 and vegetation cover (P < 0.0001. Vegetation cover differed significantly with both prickly-pear plantation age (P = 0.031 and seasons (P = 0.019. Tukey's tests revealed that all vegetation traits were significantly higher on prickly pear plantations than in control plots. Multiple comparisons also showed that plant abundance, N/S ratio and vegetation cover were significantly different between both young and old plantations and the controls. Prickly pear cultures facilitated the colonization and development of herbaceous species by ameliorating the severe environmental conditions. In conclusion, the facilitative effect of O. ficus-indica has been clearly demonstrated for both abundance and cover of native vegetation.

  17. Competition, salinity, and clonal growth in native and introduced irises.

    Science.gov (United States)

    Mopper, Susan; Wiens, Karen C; Goranova, Greta A

    2016-09-01

    Iris pseudacorus spread rapidly into North America after introduction from Europe in the 1800s and now co-occurs with native I. hexagona in freshwater Louisiana wetlands. Native irises support and interact with multiple trophic levels, whereas I. pseudacorus is classified an invasive pest because it grows aggressively, reduces biodiversity, and displaces native vegetation. Salinity levels are increasing in coastal wetlands worldwide. We examined how salt-stress affects competitive interactions between these conspecifics. We established a three-way full-factorial common-garden experiment that included species (I. pseudacorus, I. hexagona), competition (no competition, intraspecific competition, and interspecific competition), and salinity (0, 4, 8 parts per thousand NaCl), with six replicates per treatment. After 18 mo, Iris pseudacorus produced much more biomass than the native species did (F1, 92 = 71.5, P Interspecific competition did not affect the introduced iris, but biomass of the native was strongly reduced (competition × species interaction: F2, 95 = 76.7, P = 0.002). Salinity significantly reduced biomass of both species (F2, 92 = 21.8, P competitive advantage over the native, regardless of environmental salinity levels. Based on patterns in clonal reproduction, the introduced iris could potentially threaten native iris populations. We are currently investigating seed production and mortality during competition and stress because both clonal and sexual reproduction must be considered when predicting long-term population dynamics. © 2016 Botanical Society of America.

  18. Loblolly pine seedling response to competition from exotic vs. native plants

    Science.gov (United States)

    Pedram Daneshgar; Shibu Jose; Craig Ramsey; Robin Collins

    2006-01-01

    A field study was conducted in Santa Rosa County, FL to test the hypothesis that an exotic understory would exert a higher degree of competition on tree seedling establishment and growth than native vegetation. The study site was a 60 ha cutover area infested with the invasive exotic cogongrass [Imperata cylindrica (L.) Raeusch.]. A completely...

  19. Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape.

    Science.gov (United States)

    Chynoweth, Mark W; Lepczyk, Christopher A; Litton, Creighton M; Hess, Steven C; Kellner, James R; Cordell, Susan

    2015-01-01

    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world's most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities.

  20. Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape

    Science.gov (United States)

    Chynoweth, Mark W.; Lepczyk, Christopher A.; Litton, Creighton M.; Hess, Steve; Kellner, James; Cordell, Susan

    2015-01-01

    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world’s most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities.

  1. Ecosystem response to removal of exotic riparian shrubs and a transition to upland vegetation

    Science.gov (United States)

    Reynolds, Lindsay V.; Cooper, David J.

    2011-01-01

    Understanding plant community change over time is essential for managing important ecosystems such as riparian areas. This study analyzed historic vegetation using soil seed banks and the effects of riparian shrub removal treatments and channel incision on ecosystem and plant community dynamics in Canyon de Chelly National Monument, Arizona. We focused on how seeds, nutrients, and ground water influence the floristic composition of post-treatment vegetation and addressed three questions: (1) How does pre-treatment soil seed bank composition reflect post-treatment vegetation composition? (2) How does shrub removal affect post-treatment riparian vegetation composition, seed rain inputs, and ground water dynamics? and (3) Is available soil nitrogen increased near dead Russian olive plants following removal and does this influence post-treatment vegetation? We analyzed seed bank composition across the study area, analyzed differences in vegetation, ground water levels, and seed rain between control, cut-stump and whole-plant removal areas, and compared soil nitrogen and vegetation near removed Russian olive to areas lacking Russian olive. The soil seed bank contained more riparian plants, more native and fewer exotic plants than the extant vegetation. Both shrub removal methods decreased exotic plant cover, decreased tamarisk and Russian olive seed inputs, and increased native plant cover after 2 years. Neither method increased ground water levels. Soil near dead Russian olive trees indicated a short-term increase in soil nitrogen following plant removal but did not influence vegetation composition compared to areas without Russian olive. Following tamarisk and Russian olive removal, our study sites were colonized by upland plant species. Many western North American rivers have tamarisk and Russian olive on floodplains abandoned by channel incision, river regulation or both. Our results are widely applicable to sites where drying has occurred and vegetation

  2. Vegetation resurvey is robust to plot location uncertainty

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Martin; Macek, Martin

    2015-01-01

    Roč. 21, č. 3 (2015), s. 322-330 ISSN 1366-9516 R&D Projects: GA MŠk(CZ) EE2.3.20.0267 EU Projects: European Commission(XE) 278065 - LONGWOOD Institutional support: RVO:67985939 Keywords : vegetation change * vegetation resurvey * pseudoturnover Subject RIV: EF - Botanics Impact factor: 4.566, year: 2015

  3. Non-Native & Native English Teachers

    Directory of Open Access Journals (Sweden)

    İrfan Tosuncuoglu

    2017-12-01

    Full Text Available In many countries the primary (mother tongue language is not English but there is a great demand for English language teachers all over the world. The demand in this field is try to be filled largely by non-native English speaking teachers who have learned English in the country or abroad, or from another non native English peaking teachers. In some countries, particularly those where English speaking is a a sign of status, the students prefer to learn English from a native English speaker. The perception is that a non-native English speaking teacher is a less authentic teacher than a native English speaker and their instruction is not satifactory in some ways. This paper will try to examine the literature to explore whether there is a difference in instructional effectiveness between NNESTs and native English teachers.

  4. Apparent competition and native consumers exacerbate the strong competitive effect of an exotic plant species.

    Science.gov (United States)

    Orrock, John L; Dutra, Humberto P; Marquis, Robert J; Barber, Nicholas

    2015-04-01

    Direct and indirect effects can play a key role in invasions, but experiments evaluating both are rare. We examined the roles of direct competition and apparent competition by exotic Amur honeysuckle (Lonicera maackii) by manipulating (1) L. maackii vegetation, (2) presence of L. maackii fruits, and (3) access to plants by small mammals and deer. Direct competition with L. maackii reduced the abundance and richness of native and exotic species, and native consumers significantly reduced the abundance and richness of native species. Although effects of direct competition and consumption were more pervasive, richness of native plants was also reduced through apparent competition, as small-mammal consumers reduced richness only when L. maackii fruits were present. Our experiment reveals the multiple, interactive pathways that affect the success and impact of an invasive exotic plant: exotic plants may directly benefit from reduced attack by native consumers, may directly exert strong competitive effects on native plants, and may also benefit from apparent competition.

  5. Projected effects of vegetation feedbacks on drought characteristics with SPEI over West Africa using the RegCM-CLM-CN-DV

    Science.gov (United States)

    Jaehyeong, L.; Kim, Y.; Erfanian, A.; Wang, G.; Um, M. J.

    2017-12-01

    This study utilizes the Standardized Precipitation-Evapotranspiration Index (SPEI) to investigate the projected effect of vegetation feedbacks on drought in West Africa using the Regional Climate Model coupled to the NCAR Community Land Model with both the Carbon and Nitrogen module (CN) and Dynamic Vegetation module (DV) activated (RegCM-CLM-CN-DV). The role of vegetation feedbacks is examined based on simulations with and without dynamic vegetation. The four different future climate scenarios from CCSM, GFDL, MIROC and MPI are used as the boundary conditions of RegCM for two historical and future periods, i.e., for 1981 to 2000 and for 2081 to 2100, respectively. Using SPEI, the duration, frequency, severity and spatial extents are quantified over West Africa and analyzed for two regions of the Sahel and the Gulf of Guinea. In this study, we find that the estimated annual SPEIs clearly indicate that the projected future droughts over the Sahel are enhanced and prolonged when DV is activated. The opposite is shown over the Gulf of Guinea in general. AcknowledgementsThis work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800), by the Korea Meteorological Administration R&D Program under Grant KMIPA 2015-6180 and by the Yonsei University Future-leading Research Initiative of 2015(2016-22-0061).

  6. Propagation and Establishment of Native Plants for Vegetative Restoration of Aquatic Ecosystems

    Science.gov (United States)

    2013-06-01

    ERDC/EL TR-13-9 ii Abstract Aquatic plants are a vital, but often missing, component of shallow, freshwater systems. Manmade systems, such as... water quality problems; development of noxious algal blooms; and, often, susceptibility to invasion by harmful, non-native, aquatic weeds. If...emergent aquatic plants that we have successfully used in founder colony establishment in US water bodies. ............................................. 7

  7. Vegetated Riprap Installation Techniques for Steambank Protection, Fish and Wildlife Habitat Creation

    Science.gov (United States)

    Raymond, Pierre

    2014-05-01

    Vegetated riprap is a cost effective alternative to conventional riprap erosion protection. Terra Erosion Control has experimented with the vegetation of riprap over the past ten years. As a result we have adapted a technique that can successfully establish vegetation during the installation of riprap structures. This presentation will demonstrate innovative ways of installing vegetated riprap for the protection of access roads on industrial sites and urban infrastructure such as storm water outfalls, bridge approaches and pedestrian pathways within public areas. This vegetation will provide additional bank protection, soften the rock appearance and enhance fish, wildlife and urban habitat along the shoreline. Vegetated riprap incorporates a combination of rock and native vegetation in the form of live cuttings. These are planted in conjunction with the placement of rock used to armour the banks of watercourses. Establishment of native vegetation will improve fish habitat by creating shade, cover and an input of small organic debris to stream banks. In most cases it will negate the need for the regulator (Canadian Department of Fisheries and Oceans) to require habitat alteration compensation. It will also provide added bank protection through the development of root mass. Adding vegetation to riprap provides a softer, more natural appearance to the installed rocks. This presentation will detail the processes involved in the installation of vegetated riprap such as the harvesting and soaking of live material, site preparation of the stream bank, placement of riprap in conjunction with live material and the use of burlap/coir fabric and soil amendments. It will also discuss the innovative method of using wooden boards to protect live cuttings during construction and to direct precipitation and/or irrigation water to the root zone during the establishment phase of the vegetation. These boards will eventually biodegrade within the rock. This approach was applied over

  8. Freihoelser Forst Local Training Area Demonstration Project: Prescription development and installation

    International Nuclear Information System (INIS)

    Hinchman, R.R.; Zellmer, S.D.; Brent, J.J.

    1989-04-01

    The Freiholser Forst Local Training Area (LTA) Rehabilitation Demonstration Project is part of the Integrated Training Area Management program being developed by the US Army Corps of Engineers' Construction Engineering Research Laboratory for the Seventh Army Training Command of the US Army in Europe. The rehabilitation demonstration project was begun in 1987 to develop and demonstrate rapid, cost-effective methods to stabilize the LTA's barren, eroding maneuver areas and make training conditions more realistic. The sandy, infertile, and acidic soils at the LTA are considered the major factor limiting rehabilitation efforts there. The project involves the evaluation of three procedures to revegetate the soils, each incorporating identical methods for preparing the seedbed and a single seed mixture consisting of adapted, native species but using different soil amendments. All three treatments have satisfactorily reestablished vegetation and controlled erosion on the demonstration plots at the LTA, but their costs have varied widely

  9. Effects of Introduced and Indigenous Viruses on Native Plants: Exploring Their Disease Causing Potential at the Agro-Ecological Interface

    Science.gov (United States)

    Vincent, Stuart J.; Coutts, Brenda A.; Jones, Roger A. C.

    2014-01-01

    The ever increasing movement of viruses around the world poses a major threat to plants growing in cultivated and natural ecosystems. Both generalist and specialist viruses move via trade in plants and plant products. Their potential to damage cultivated plants is well understood, but little attention has been given to the threat such viruses pose to plant biodiversity. To address this, we studied their impact, and that of indigenous viruses, on native plants from a global biodiversity hot spot in an isolated region where agriculture is very recent (plant species, we used introduced generalist and specialist viruses, and indigenous viruses, to inoculate plants of 15 native species belonging to eight families. We also measured resulting losses in biomass and reproductive ability for some host–virus combinations. In addition, we sampled native plants growing over a wide area to increase knowledge of natural infection with introduced viruses. The results suggest that generalist introduced viruses and indigenous viruses from other hosts pose a greater potential threat than introduced specialist viruses to populations of native plants encountered for the first time. Some introduced generalist viruses infected plants in more families than others and so pose a greater potential threat to biodiversity. The indigenous viruses tested were often surprisingly virulent when they infected native plant species they were not adapted to. These results are relevant to managing virus disease in new encounter scenarios at the agro-ecological interface between managed and natural vegetation, and within other disturbed natural vegetation situations. They are also relevant for establishing conservation policies for endangered plant species and avoiding spread of damaging viruses to undisturbed natural vegetation beyond the agro-ecological interface. PMID:24621926

  10. Comparison of the ability to flourish and the increment of native species of the cerrado region in different soils, aiming at recuperating the degraded soils in the Abadia de Goias State Park

    International Nuclear Information System (INIS)

    Motta, Max Lima e; Antunes, Erides Campos; Benvenutti, Romeu Davi; Ferreira, Gislene Auxiliadora; Braga, Marcio

    1997-01-01

    The project of botanical recuperation was carried out in order to re vegetate the degraded soils of the areas which surround the radioactive deposit of Cesium 137, within the State Park of Abadia de Goias. An analysis of the park area reveals different stages of degradation, from an absolute stage of degradation, with the C horizon exposed, to other areas of well-preserved forest. On the occasion of the installation of the deposit of radioactive waste, the EIA-RIMA Report determined that the areas should be recuperated in order to re-establish the previous existing forests and cerrado vegetation. A plan for planting 199,366 native trees was then carried out. The present long term project, aims to monitoring the growth of the several species, in different substrates, with the general objective of determining which would better adapt to such substrates. The objective is to provide subsidies for developing appropriate methodology for recuperating degraded areas. (author)

  11. The impact of geoengineering on vegetation in experiment G1 of the Geoengineering Model Intercomparison Project

    Science.gov (United States)

    Irvine, Peter; Glienke, Susanne; Lawrence, Mark

    2015-04-01

    Solar Radiation Management (SRM) has been proposed as a means to partly counteract global warming. The Geoengineering Model Intercomparison Project (GeoMIP) simulated the climate consequences of a number of SRM techniques, but the effects on vegetation have not yet been thoroughly studied. Here, the vegetation response to the idealized GeoMIP G1 experiment is analyzed, in which a reduction of the solar constant counterbalances the radiative effects of quadrupled atmospheric CO2 concentrations; the results from eight fully coupled earth system models (ESMs) are included. For most models and regions, changes in net primary productivity (NPP) are dominated by the increase in CO2, via the CO2 fertilization effect. As SRM will lower temperatures, in high latitudes this will reverse gains in NPP from the lifting of temperature limitations. In low latitudes this cooling relative to the 4xCO2 simulation decreases plant respiration whilst having little effect on gross primary productivity, increasing NPP. Despite reductions in precipitation in most regions in response to SRM, runoff and NPP increase in many regions including those previously highlighted as potentially being at risk of drought under SRM. This is due to simultaneous reductions in evaporation and increases in water use efficiency by plants due to higher CO2 concentrations. The relative differences between models in the vegetation response are substantially larger than the differences in their climate responses. The largest differences between models are for those with and without a nitrogen-cycle, with a much smaller CO2 fertilization effect for the former. These results suggest that until key vegetation processes are integrated into ESM predictions, the vegetation response to SRM will remain highly uncertain.

  12. Deer browsing delays succession by altering aboveground vegetation and belowground seed banks.

    Directory of Open Access Journals (Sweden)

    Antonio DiTommaso

    Full Text Available Soil seed bank composition is important to the recovery of natural and semi-natural areas from disturbance and serves as a safeguard against environmental catastrophe. White-tailed deer (Odocoileus virginianus populations have increased dramatically in eastern North America over the past century and can have strong impacts on aboveground vegetation, but their impacts on seed bank dynamics are less known. To document the long-term effects of deer browsing on plant successional dynamics, we studied the impacts of deer on both aboveground vegetation and seed bank composition in plant communities following agricultural abandonment. In 2005, we established six 15 × 15 m fenced enclosures and paired open plots in recently followed agricultural fields near Ithaca, NY, USA. In late October of each of six years (2005-2010, we collected soil from each plot and conducted seed germination cycles in a greenhouse to document seed bank composition. These data were compared to measurements of aboveground plant cover (2005-2008 and tree density (2005-2012. The impacts of deer browsing on aboveground vegetation were severe and immediate, resulting in significantly more bare soil, reduced plant biomass, reduced recruitment of woody species, and relatively fewer native species. These impacts persisted throughout the experiment. The impacts of browsing were even stronger on seed bank dynamics. Browsing resulted in significantly decreased overall species richness (but higher diversity, reduced seed bank abundance, relatively more short-lived species (annuals and biennials, and fewer native species. Both seed bank richness and the relative abundance of annuals/biennials were mirrored in the aboveground vegetation. Thus, deer browsing has long-term and potentially reinforcing impacts on secondary succession, slowing succession by selectively consuming native perennials and woody species and favoring the persistence of short-lived, introduced species that continually

  13. Examining Vegetation of Built Landscapes and Their Relationship to Existing Ecosystems

    Directory of Open Access Journals (Sweden)

    Margaret Livingston

    2004-06-01

    Full Text Available An understanding of the various influences of urbanisation on plant communities is critical for planning a sustainable future for the planet. For example, landscape practices and sense of place driven by aesthetic influences often dominate in the design of built landscapes, resulting in strikingly different vegetation communities from that of the surrounding communities. Furthermore, these built landscapes in metropolitan areas often markedly influence an inhabitant's impressions of a region's biotic foundation and sense of place. Inhabitants may not consider or understand the ecological impacts of practices that are typically dominated by contemporary cultural aesthetics. Do these cultural aesthetic drivers result in relatively similar landscapes in terms of appearance, regardless of region? The purpose of this study was to document general trends in landscape structure and composition from two distinct, different regions. Specifically, we addressed the questions: how do these built landscapes deviate from their surrounding natural communities and are these built landscapes from the two regions similar in structure and composition? This paper characterised landscape vegetation patterns of typical residential areas in two cities with relatively diverse climatic regions, Tucson, Arizona and Atlanta, Georgia. Comparisons were done on data for plant diversity, density, life form (tree, shrub, groundcover, and vines and species origin (native versus non-native from sites within typical residential subdivisions throughout the two cities. Results were compared with the composition of local typology in order to determine what differences and similarities existed in relation to native biotic communities. In both cities, residential landscapes converged on savannah-type landscapes, emphasising scattered overstory and minimal understory that were more compositionally diverse than the native biotic communities because of the introduction of non-native

  14. Post-wildfire recovery of riparian vegetation during a period of water scarcity in the southwestern USA

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch; Christian Gunning; Roy Jemison; Jeffrey F. Kelly

    2009-01-01

    Wildland fires occur with increasing frequency in southwestern riparian forests, yet little is known about the effects of fire on populations of native and exotic vegetation. From 2003 to 2006, we monitored recovering woody vegetation in wildfire sites in the bosque (riparian forest) along the Middle Rio Grande of central New Mexico, USA. To examine recovery potential...

  15. Restoration of areas disturbed by site studies for a mined commercial radioactive waste repository: The Basalt Waste Isolation Project [BWIP

    International Nuclear Information System (INIS)

    Brandt, C.A.; Rickard, W.H. Jr.; Biehert, R.W.; Newell, R.L.; Page, T.L.

    1989-01-01

    The Basalt Waste Isolation Project (BWIP) was undertaken to environmentally characterize a portion of the US Department of Energy's Hanford Site in Washington State as a potential host for the nation's first mined commercial nuclear waste repository. Studies were terminated by Congress in 1987. Between 1976 and 1987, 72 areas located across the Hanford Site were disturbed by the BWIP. These areas include borehole pads, a large Exploratory Shaft Facility, and the Near Surface Test Facility. Most boreholes were cleared of vegetation, leveled, and stabilized with a thick layer of compacted pit-run gravel and sand. The Near Surface Test Facility consists of three mined adits, a rock-spoils bench, and numerous support facilities. Restoration began in 1988 with the objective of returning sites to pre-existing conditions using native species. The Hanford Site retains some of the last remnants of the shrub-steppe ecosystem in Washington. The primary constraints to restoring native vegetation at Hanford are low precipitation and the presence of cheatgrass, an extremely capable alien competitor. 5 figs

  16. Biota - 2009 Vegetation Inventory - Lake Ashtabula, ND

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — 2009 Vegetation Classification for Lake Ashtabula, ND Vegetation Project Report, OMBIL Environmental Stewardship - Level 1 Inventory, U.S. Army Corps of Engineers...

  17. Biota - 2011 Vegetation Inventory - Marsh Lake, MN

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — 2011 Vegetation Classification for Marsh Lake, MN Vegetation Project Report, OMBIL Environmental Stewardship - Level 1 Inventory. Marsh Lake is located on the...

  18. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Non-agricultural Introduced Managed Vegetation

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the percent of non-agriculatural, non-native vegetation based on LANDFIRE existing vegetation type (EVT) for a 30-m grid cell within...

  19. Man-influenced vegetation of North Korea

    Czech Academy of Sciences Publication Activity Database

    Kolbek, Jiří; Jarolímek, I.

    2008-01-01

    Roč. 40, č. 1 (2008), s. 381-404 ISSN 0253-116X R&D Projects: GA ČR(CZ) GA206/05/0119 Institutional research plan: CEZ:AV0Z60050516 Keywords : vegetation classification * weed communities * man-depending vegetation Subject RIV: EF - Botanics

  20. Native Vegetation Performance under a Solar PV Array at the National Wind Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, Brenda [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCall, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Braus, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buckner, David [ESCO Associates Inc., Boulder, CO (United States)

    2017-05-16

    Construction activities at most large-scale ground installations of photovoltaic (PV) arrays are preceded by land clearing and re-grading to uniform slope and smooth surface conditions to facilitate convenient construction access and facility operations. The impact to original vegetation is usually total eradication followed by installation of a gravel cover kept clear of vegetation by use of herbicides. The degree to which that total loss can be mitigated by some form of revegetation is a subject in its infancy, and most vegetation studies at PV development sites only address weed control and the impact of tall plants on the efficiency of the solar collectors from shading.This study seeks to address this void, advancing the state of knowledge of how constructed PV arrays affect ground-level environments, and to what degree plant cover, having acceptable characteristics within engineering constraints, can be re-established.

  1. Application of a Coupled Vegetation Competition and Groundwater Simulation Model to Study Effects of Sea Level Rise and Storm Surges on Coastal Vegetation

    Directory of Open Access Journals (Sweden)

    Su Yean Teh

    2015-09-01

    Full Text Available Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM is integrated into the USGS groundwater model (SUTRA to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.

  2. [Ritual use of Anadenanthera seeds among South America natives].

    Science.gov (United States)

    Carod-Artal, F J; Vázquez Cabrera, C B

    2007-01-01

    Several South-American native societies snuff psychoactive seeds in magic-religious rituals since ancient times. To describe archeological, historical and ethnographical evidences regarding the ritual use of vilca or yopo (Anadenanthera sp). Anadenanthera seeds were used in South America 3,000 years ago. Archeological studies found vilca seeds in funerary tombs from 1,000 BC in the north of Chile and Argentina; ceramics and snuff tubes were found in San Pedro de Atacama archeological sites from the same data, and in Tiwanaku ceremonial center in Bolivian Altiplano. Today, Anadenanthera sp is used by several native groups in Orinoco basin, where is known as yopo, and in the Brazilian and Colombian Amazon. Hallucinogenic effect is due to the presence of methyl-tryptamine derivatives. Most snuff is prepared from the roasted and powdered seeds, vegetable ash and/or lime obtained from shells. Archeological and ethnographical data suggest that vilca was used and is still used by native shamans as a sacred seed in South America, due to its hallucinogenic effects.

  3. Renewable energy for federal facilities serving native Americans: preprint

    International Nuclear Information System (INIS)

    Eiffert, P.; Sprunt Crawley, A.; Bartow, K.

    2000-01-01

    The Federal Energy Management Program (FEMP) in the U.S. Department of Energy (DOE) is targeting Federal facilities serving Native American populations for cost-effective renewable energy projects. These projects not only save energy and money, they also provide economic opportunities for the Native Americans who assist in producing, installing, operating, or maintaining the renewable energy systems obtained for the facilities. The systems include solar heating, solar electric (photovoltaic or PV), wind, biomass, and geothermal energy systems. In fiscal years 1998 and 1999, FEMP co-funded seven such projects, working with the Indian Health Service in the U.S. Department of Health and Human Services, the Bureau of Indian Affairs in the U.S. Department of the Interior, and their project partners. The new renewable energy systems are helping to save money that would otherwise be spent on conventional energy and reduce the greenhouse gases associated with burning fossil fuels

  4. Deforestation and benthic indicators: how much vegetation cover is needed to sustain healthy Andean streams?

    Science.gov (United States)

    Iñiguez-Armijos, Carlos; Leiva, Adrián; Frede, Hans-Georg; Hampel, Henrietta; Breuer, Lutz

    2014-01-01

    Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.

  5. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption.

    Science.gov (United States)

    Awad, John; van Leeuwen, John; Abate, Dawit; Pichler, Markus; Bestland, Erick; Chittleborough, David J; Fleming, Nigel; Cohen, Jonathan; Liffner, Joel; Drikas, Mary

    2015-10-01

    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~30 cm and ~60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV-visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on the

  6. Selection and Vegetative Propagation of Native Woody Plants for Water-Wise Landscaping

    OpenAIRE

    Rupp, Larry A; Varga, William A; Anderson, David

    2011-01-01

    Native woody plants with ornamental characteristics such as brilliant fall color, dwarf form, or glossy leaves have potential for use in water conserving urban landscapes. Individual accessions with one or more of these unique characteristics were identified based on the recommendations of a wide range of plant enthusiasts (both professional and amateur). Documentation of these accessions has been done through locating plants on-site where possible and then developing a record based on digita...

  7. Assessment of Native Salmonids Above Hells Canyon Dam, Idaho; 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Kevin A. (Idaho Department of Fish and Game, Boise, ID)

    1999-03-01

    Native resident salmonids in the western United States are in decline throughout much of their range. The purpose of the multi-phased project is to restore native salmonids in the upper Snake River basin to self-sustaining, harvestable levels.

  8. Propagation of Native Tree Species to Restore Subtropical Evergreen Broad-Leaved Forests in SW China

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2016-01-01

    Full Text Available Subtropical evergreen broad-leaved forest (EBLF is a widespread vegetation type throughout East Asia that has suffered extensive deforestation and fragmentation. Selection and successful propagation of native tree species are important for improving ecological restoration of these forests. We carried out a series of experiments to study the propagation requirements of indigenous subtropical tree species in Southwest China. Seeds of 21 tree species collected from the natural forest were materials for the experiment. This paper examines the seed germination and seedling growth performance of these species in a nursery environment. Germination percentages ranged from 41% to 96% and were ≥50% for 19 species. The median length of germination time (MLG ranged from 24 days for Padus wilsonii to 144 days for Ilex polyneura. Fifteen species can reach the transplant size (≥15 cm in height within 12 months of seed collection. Nursery-grown seedlings for each species were planted in degraded site. Two years after planting, the seedling survival rate was >50% in 18 species and >80% in 12 species. Based on these results, 17 species were recommended as appropriate species for nursery production in forest restoration projects. Our study contributes additional knowledge regarding the propagation techniques for various native subtropical tree species in nurseries for forest restoration.

  9. Monitoring of vegetation dynamics and assessing vegetation response to drought in the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Haro, F. J.; Moreno, A.; Perez-Hoyos, A.; Gilabert, M. A.; Melia, J.; Belda, F.; Poquet, D.; Martinez, B.; Verger, A.

    2009-07-01

    Monitoring the vegetation activity over long time-scales is necessary to discern ecosystem response to climate variability. Spatial and temporally consistent estimates of the biophysical variables such as fractional vegetation cover (FVC) and leaf area index (LAI) have been obtained in the context of DULCINEA Project. We used long-term monthly climate statistics to build simple climatic indices (SPI, moisture index) at different time scales. From these indices, we estimated that the climatic disturbances affected both the growing season and the total amount of vegetation. This implies that the anomaly of vegetation cover is a good indicator of moisture condition and can be an important data source when used for detecting an monitoring drought in the Iberian Peninsula. The impact of climate variability on the vegetation dynamics has shown not to be the same for every region. We concluded that the relationships between vegetation anomaly and moisture availability are significant for the arid and semiarid areas. (Author) 6 refs.

  10. Monitoring of vegetation dynamics and assessing vegetation response to drought in the Iberian Peninsula

    International Nuclear Information System (INIS)

    Garcia-Haro, F. J.; Moreno, A.; Perez-Hoyos, A.; Gilabert, M. A.; Melia, J.; Belda, F.; Poquet, D.; Martinez, B.; Verger, A.

    2009-01-01

    Monitoring the vegetation activity over long time-scales is necessary to discern ecosystem response to climate variability. Spatial and temporally consistent estimates of the biophysical variables such as fractional vegetation cover (FVC) and leaf area index (LAI) have been obtained in the context of DULCINEA Project. We used long-term monthly climate statistics to build simple climatic indices (SPI, moisture index) at different time scales. From these indices, we estimated that the climatic disturbances affected both the growing season and the total amount of vegetation. This implies that the anomaly of vegetation cover is a good indicator of moisture condition and can be an important data source when used for detecting an monitoring drought in the Iberian Peninsula. The impact of climate variability on the vegetation dynamics has shown not to be the same for every region. We concluded that the relationships between vegetation anomaly and moisture availability are significant for the arid and semiarid areas. (Author) 6 refs.

  11. Conversion of native terrestrial ecosystems in Hawai‘i to novel grazing systems: a review

    Science.gov (United States)

    Leopold, Christina R.; Hess, Steven C.

    2017-01-01

    The remote oceanic islands of Hawai‘i exemplify the transformative effects that non-native herbivorous mammals can bring to isolated terrestrial ecosystems. We reviewed published literature containing systematically collected, analyzed, and peer-reviewed original data specifically addressing direct effects of non-native hoofed mammals (ungulates) on terrestrial ecosystems, and indirect effects and interactions on ecosystem processes in Hawai‘i. The effects of ungulates on native vegetation and ecosystems were addressed in 58 original studies and mostly showed strong short-term regeneration of dominant native trees and understory ferns after ungulate removal, but unassisted recovery was dependent on the extent of previous degradation. Ungulates were associated with herbivory, bark-stripping, disturbance by hoof action, soil erosion, enhanced nutrient cycling from the interaction of herbivory and grasses, and increased pyrogenicity and competition between native plants and pasture grasses. No studies demonstrated that ungulates benefitted native ecosystems except in short-term fire-risk reduction. However, non-native plants became problematic and continued to proliferate after release from herbivory, including at least 11 species of non-native pasture grasses that had become established prior to ungulate removal. Competition from non-native grasses inhibited native species regeneration where degradation was extensive. These processes have created novel grazing systems which, in some cases, have irreversibly altered Hawaii’s terrestrial ecology. Non-native plant control and outplanting of rarer native species will be necessary for recovery where degradation has been extensive. Lack of unassisted recovery in some locations should not be construed as a reason to not attempt restoration of other ecosystems.

  12. Herbivory more limiting than competition on early and established native plants in an invaded meadow.

    Science.gov (United States)

    Gonzales, Emily K; Arcese, Peter

    2008-12-01

    The dominance of nonnative plants coupled with declines of native plants suggests that competitive displacement drives extinctions, yet empirical examples are rare. Herbivores, however, can alter vegetation structure and reduce diversity when abundant. Herbivores may act on mature, reproductive life stages whereas some of the strongest competitive effects might occur at early life stages that are difficult to observe. For example, competition by perennial nonnative grasses can interfere with the establishment of native seeds. We contrasted the effects of ungulate herbivory and competition by neighboring plants on the performance of native plant species at early and established life stages in invaded oak meadows. We recorded growth, survival, and flowering in two native species transplanted as established plants, six native species grown from seed, and five extant lily species as part of two 2 x 2 factorial experiments that manipulated herbivory and competition. Herbivory reduced the performance of nearly all focal native species at early and established life stages, whereas competition had few measurable effects. Our results suggest that herbivory has a greater local influence on native plant species than competition and that reducing herbivore impacts will be required to successfully restore endangered oak meadows where ungulates are now abundant.

  13. Apology Strategy in English By Native Speaker

    Directory of Open Access Journals (Sweden)

    Mezia Kemala Sari

    2016-05-01

    Full Text Available This research discussed apology strategies in English by native speaker. This descriptive study was presented within the framework of Pragmatics based on the forms of strategies due to the coding manual as found in CCSARP (Cross-Cultural Speech Acts Realization Project.The goals of this study were to describe the apology strategies in English by native speaker and identify the influencing factors of it. Data were collected through the use of the questionnaire in the form of Discourse Completion Test, which was distributed to 30 native speakers. Data were classified based on the degree of familiarity and the social distance between speaker and hearer and then the data of native will be separated and classified by the type of strategies in coding manual. The results of this study are the pattern of apology strategies of native speaker brief with the pattern that potentially occurs IFID plus Offer of repair plus Taking on responsibility. While Alerters, Explanation and Downgrading appear with less number of percentage. Then, the factors that influence the apology utterance by native speakers are the social situation, the degree of familiarity and degree of the offence which more complicated the mistake tend to produce the most complex utterances by the speaker.

  14. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments Riparian Buffer (Version 2.1) for the Conterminous United States: Non-agricultural Introduced Managed Vegetation

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the percent of non-agriculatural, non-native vegetation based on LANDFIRE existing vegetation type (EVT) for a 30-m grid cell within...

  15. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems

    Science.gov (United States)

    Knutson, Kevin C.; Pyke, David A.; Wirth, Troy A.; Arkle, Robert S.; Pilliod, David S.; Brooks, Matthew L.; Chambers, Jeanne C.; Grace, James B.

    2014-01-01

    1. Invasive annual grasses alter fire regimes in shrubland ecosystems of the western USA, threatening ecosystem function and fragmenting habitats necessary for shrub-obligate species such as greater sage-grouse. Post-fire stabilization and rehabilitation treatments have been administered to stabilize soils, reduce invasive species spread and restore or establish sustainable ecosystems in which native species are well represented. Long-term effectiveness of these treatments has rarely been evaluated. 2. We studied vegetation at 88 sites where aerial or drill seeding was implemented following fires between 1990 and 2003 in Great Basin (USA) shrublands. We examined sites on loamy soils that burned only once since 1970 to eliminate confounding effects of recurrent fire and to assess soils most conducive to establishment of seeded species. We evaluated whether seeding provided greater cover of perennial seeded species than burned–unseeded and unburned–unseeded sites, while also accounting for environmental variation. 3. Post-fire seeding of native perennial grasses generally did not increase cover relative to burned–unseeded areas. Native perennial grass cover did, however, increase after drill seeding when competitive non-natives were not included in mixes. Seeding non-native perennial grasses and the shrub Bassia prostrata resulted in more vegetative cover in aerial and drill seeding, with non-native perennial grass cover increasing with annual precipitation. Seeding native shrubs, particularly Artemisia tridentata, did not increase shrub cover or density in burned areas. Cover of undesirable, non-native annual grasses was lower in drill seeded relative to unseeded areas, but only at higher elevations. 4. Synthesis and applications. Management objectives are more likely to be met in high-elevation or precipitation locations where establishment of perennial grasses occurred. On lower and drier sites, management objectives are unlikely to be met with seeding alone

  16. Parental eating behaviours, home food environment and adolescent intakes of fruits, vegetables and dairy foods: longitudinal findings from Project EAT.

    Science.gov (United States)

    Arcan, Chrisa; Neumark-Sztainer, Dianne; Hannan, Peter; van den Berg, Patricia; Story, Mary; Larson, Nicole

    2007-11-01

    To examine longitudinal associations of parental report of household food availability and parent intakes of fruits, vegetables and dairy foods with adolescent intakes of the same foods. This study expands upon the limited research of longitudinal studies examining the role of parents and household food availability in adolescent dietary intakes. Longitudinal study. Project EAT-II followed an ethnically and socio-economically diverse sample of adolescents from 1999 (time 1) to 2004 (time 2). In addition to the Project EAT survey, adolescents completed the Youth Adolescent Food-Frequency Questionnaire in both time periods, and parents of adolescents completed a telephone survey at time 1. General linear modelling was used to examine the relationship between parent intake and home availability and adolescent intake, adjusting for time 1 adolescent intakes. Associations were examined separately for the high school and young adult cohorts and separately for males and females in combined cohorts. The sample included 509 pairs of parents/guardians and adolescents. Vegetables served at dinner significantly predicted adolescent intakes of vegetables for males (P = 0.037), females (P = 0.009), high school (P = 0.033) and young adults (P = 0.05) at 5-year follow-up. Among young adults, serving milk at dinner predicted dairy intake (P = 0.002). Time 1 parental intakes significantly predicted intakes of young adults for fruit (P = 0.044), vegetables (P = 0.041) and dairy foods (P = 0.008). Parental intake predicted intake of dairy for females (P = 0.02). The findings suggest the importance of providing parents of adolescents with knowledge and skills to enhance the home food environment and improve their own eating behaviours.

  17. Herbicides: an unexpected ally for native plants in the war against invasive species

    Science.gov (United States)

    Andrea Watts; Tim Harrington; Dave Peter

    2015-01-01

    Herbicides are primarily used for protecting agricultural crops from weeds and controlling vegetation competition in newly planted forest stands. Yet for over 40 years, they have also proven useful in controlling invasive plant species in natural areas. Nonnative invasive plant species, if not controlled, can displace native species and disrupt an ecosystem by changing...

  18. Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties

    Science.gov (United States)

    Clause, Julia; Forey, Estelle; Lortie, Christopher J.; Lambert, Adam M.; Barot, Sébastien

    2015-04-01

    Earthworms can have strong direct effects on plant communities through consumption and digestion of seeds, however it is unclear how earthworms may influence the relative abundance and composition of plant communities invaded by non-native species. In this study, earthworms, seed banks, and the standing vegetation were sampled in a grassland of central California. Our objectives were i) to examine whether the abundances of non-native, invasive earthworm species and non-native grassland plant species are correlated, and ii) to test whether seed ingestion by these worms alters the soil seed bank by evaluating the composition of seeds in casts relative to uningested soil. Sampling locations were selected based on historical land-use practices, including presence or absence of tilling, and revegetation by seed using Phalaris aquatica. Only non-native earthworm species were found, dominated by the invasive European species Aporrectodea trapezoides. Earthworm abundance was significantly higher in the grassland blocks dominated by non-native plant species, and these sites had higher carbon and moisture contents. Earthworm abundance was also positively related to increased emergence of non-native seedlings, but had no effect on that of native seedlings. Plant species richness and total seedling emergence were higher in casts than in uningested soils. This study suggests that there is a potential effect of non-native earthworms in promoting non-native and likely invasive plant species within grasslands, due to seed-plant-earthworm interactions via soil modification or to seed ingestion by earthworms and subsequent cast effects on grassland dynamics. This study supports a growing body of literature for earthworms as ecosystem engineers but highlights the relative importance of considering non-native-native interactions with the associated plant community.

  19. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands.

    Science.gov (United States)

    Tietjen, Britta; Schlaepfer, Daniel R; Bradford, John B; Lauenroth, William K; Hall, Sonia A; Duniway, Michael C; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M; Pyke, David A; Wilson, Scott D

    2017-07-01

    Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change-induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water

  20. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands

    Science.gov (United States)

    Tietjen, Britta; Schlaepfer, Daniel R.; Bradford, John B.; Laurenroth, William K.; Hall, Sonia A.; Duniway, Michael C.; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M.; Pyke, David A.; Wilson, Scott D.

    2017-01-01

    Drylands occur world-wide and are particularly vulnerable to climate change since dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability, and also change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding.We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation.Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, i.e. leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water

  1. Determination of nutritional value of native prairie José Manuel Pando Province, Municipality of Santiago de Machaca

    Directory of Open Access Journals (Sweden)

    Instituto de Investigación en Ciencia Animal y Tecnología (IICAT

    2015-10-01

    Full Text Available This research work was conducted in the municipality of Santiago de Machaca which is the first section of the province, José Manuel Pando, it is located at the southeast of the Department of La Paz, at a distance of 205 km, from the city of La Paz. The objectives of this research were to: determine the biomass and floristic composition according to vegetative site, the stocking of native grasslands and the chemical composition of native prairie. The results were the following: the biomass composition and floristic composition is diverse, (35 native forrage species were identified in the vegetative site pampa, Marsh (11, hillside (18 and Hill (33. The capacity of stocking ability of (DC a stocking of native grasslands, Urtica flabellata (Itapallu (2.46; Bromus catharticus (bromus (1.26; Trifolium pratensis (Layulayu (1.38; Iberis sp. (tears of Virgin (1.55 and Hordium muticum (tail of mouse (1.64. Regarding chemical composition, the forage species with higher crude protein content of (% is Urtica flabellata (Itapallu, Bromus catharticus (bromus, 181,66 is 25.77%, forage species with higher energy content Kcal100/g Kcal100/g. and forage specie with higher content of iron mg / 100 g was Iberis sp. (Tears of Virgin, 20,97 mg / 100g. These identified species should be preserved and disseminated, since they showed greater amount of production and quality in content of nutrients required by animals. The conservation of these native species identified improve weight gain, consumption of native forage throughout the year, the chemical content, these native species studied, improve quality and cover the requirements from consumption of dry matter and nutrients required by animals. Finally this condition will positively affect the economy of the producers. It is recommended that these native species should be preserved and disseminated on the Prairies, since they showed greater amount of production and quality in content of nutrients required by animals.

  2. Biota - 2011 Vegetation Inventory - Mud Lake, MN/SD

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — 2011 Vegetation Classification for Mud Lake, MN/SD Vegetation Project Report, OMBIL Environmental Stewardship - Level 1 Inventory. Mud Lake, located on the Minnesota...

  3. Language Preservation: the Language of Science as a bridge to the Native American Community

    Science.gov (United States)

    Alexander, C. J.; Martin, M.; Grant, G.

    2009-12-01

    Many Native American communities recognize that the retention of their language, and the need to make the language relevant to the technological age we live in, represents one of their largest and most urgent challenges. Almost 70 percent of Navajos speak their tribal language in the home, and 25 per cent do not know English very well. In contrast, only 30 percent of Native Americans as a whole speak their own tribal language in the home. For the Cherokee and the Chippewa, less than 10 percent speak the native language in the home. And for the Navajo, the number of first graders who solely speak English is almost four times higher than it was in 1970. The U.S. Rosetta Project is the NASA contribution to the International Rosetta Mission. The Rosetta stone is the inspiration for the mission’s name. As outlined by the European Space Agency, Rosetta is expected to provide the keys to the primordial solar system the way the original Rosetta Stone provided a key to ancient language. The concept of ancient language as a key provides a theme for this NASA project’s outreach to Native American communities anxious for ways to enhance and improve the numbers of native speakers. In this talk we will present a concept for building on native language as it relates to STEM concepts. In 2009, a student from the Dine Nation interpreted 28 NASA terms for his senior project at Chinle High School in Chinle, AZ. These terms included such words as space telescope, weather satellite, space suit, and the planets including Neptune and Uranus. This work represents a foundation for continued work between NASA and the Navajo Nation. Following approval by the tribal elders, the U.S. Rosetta project would host the newly translated Navajo words on a web-site, and provide translation into both Navajo and English. A clickable map would allow the user to move through all the words, see Native artwork related to the word, and hear audio translation. Extension to very remote teachers in the

  4. STOVE: Seed treatments for organic vegetable production

    NARCIS (Netherlands)

    Schmitt, A.; Jahn, M.; Kromphardt, C.; Krauthausen, H.J.; Roberts, S.J.; Wright, S.A.I.; Amein, T.; Forsberg, G.; Tinivella, F.; Gullino, M.L.; Wikström, M.; Wolf, van der J.M.; Groot, S.P.C.; Werner, S.; Koch, E.

    2008-01-01

    The aim of the EU-financed research project „STOVE“ (Seed Treatments for Organic Vegetable Production) is to evaluate different methods potentially suited for seed treatment of vegetables in organic farming regarding their efficacy, to optimise these methods, and where feasible to combine them with

  5. Consequences of buffelgrass pasture development for primary productivity, perennial plant richness, and vegetation structure in the drylands of Sonora, Mexico.

    Science.gov (United States)

    Franklin, Kimberly; Molina-Freaner, Francisco

    2010-12-01

    In large parts of northern Mexico native plant communities are being converted to non-native buffelgrass (Pennisetum ciliare) pastures, and this conversion could fundamentally alter primary productivity and species richness. In Sonora, Mexico land conversion is occurring at a regional scale along a rainfall-driven gradient of primary productivity, across which native plant communities transition from desert scrub to thorn scrub. We used a paired sampling design to compare a satellite-derived index of primary productivity, richness of perennial plant species, and canopy-height profiles of native plant communities with buffelgrass pastures. We sampled species richness across a gradient of primary productivity in desert scrub and thorn scrub vegetation to examine the influence of site productivity on the outcomes of land conversion. We also examined the influence of pasture age on species richness of perennial plants. Index values of primary productivity were lower in buffelgrass pastures than in native vegetation, which suggests a reduction in primary productivity. Land conversion reduced species richness by approximately 50% at local and regional scales, reduced tree and shrub cover by 78%, and reduced canopy height. Land conversion disproportionately reduced shrub species richness, which reflects the common practice among Sonoran ranchers of conserving certain tree and cactus species. Site productivity did not affect the outcomes of land conversion. The age of a buffelgrass pasture was unrelated to species richness within the pasture, which suggests that passive recovery of species richness to preconversion levels is unlikely. Our findings demonstrate that land conversion can result in large losses of plant species richness at local and regional scales and in substantial changes to primary productivity and vegetation structure, which casts doubt on the feasibility of restoring native plant communities without active intervention on the part of land managers.

  6. Assessment of native salmonids above Hells Canyon Dam, Idaho; 1998 annual progress report

    International Nuclear Information System (INIS)

    Meyer, Kevin A.

    1999-01-01

    Native resident salmonids in the western United States are in decline throughout much of their range. The purpose of the multi-phased project is to restore native salmonids in the upper Snake River basin to self-sustaining, harvestable levels

  7. Ecohydrological consequences of non-native riparian vegetation in the southwestern United States: A review from an ecophysiological perspective

    Science.gov (United States)

    Hultine, K. R.; Bush, S. E.

    2011-07-01

    Protecting water resources for expanding human enterprise while conserving valued natural habitat is among the greatest challenges of the 21st century. Global change processes such as climate change and intensive land use pose significant threats to water resources, particularly in arid regions where potential evapotranspiration far exceeds annual rainfall. Potentially compounding these shortages is the progressive expansion of non-native plant species in riparian areas along streams, canals and rivers in geographically arid regions. This paper sets out to identify when and where non-native riparian plant species are likely to have the highest potential impact on hydrologic fluxes of arid and semiarid river systems. We develop an ecophysiological framework that focuses on two main criteria: (1) examination of the physiological traits that promote non-native species establishment and persistence across environmental gradients, and (2) assessment of where and to what extent hydrologic fluxes are potentially altered by the establishment of introduced species at varying scales from individual plants, to small river reaches, to entire river basins. We highlight three non-native plant species that currently dominate southwestern United States riparian forests. These include tamarisk (Tamarix spp.), Russian olive (Eleagnus angustifolia), and Russian knapweed (Acroptilon repens). As with other recent reviews, we suspect that in many cases the removal of these, and other non-native species will have little or no impact on either streamflow volume or groundwater levels. However, we identify potential exceptions where the expansion of non-native plant species could have significant impact on ecohydrologic processes associated with southwestern United States river systems. Future research needs are outlined that will ultimately assist land managers and policy makers with restoration and conservation priorities to preserve water resources and valued riparian habitat given

  8. Woody vegetation of the Upper Verde River: 1996-2007 [Chapter 6

    Science.gov (United States)

    Alvin L. Medina

    2012-01-01

    Streamside vegetation is an integral component of a stable riparian ecosystem, providing benefits to both terrestrial and aquatic fauna (Brown and others 1977; National Research Council 2002) as well as Native Americans (Betancourt and Van Devender 1981). On the UVR, stable streambanks are a desirable management goal to attain channel stability for a variety of...

  9. Florar Project: a forest proposal to PETROBRAS-TRANSPETRO; Projeto Florar: uma proposta florestal para a PETROBRAS-TRANSPETRO

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Anibal Jose Constantino; Melo Neto, Joao Evangelista de; Martini, Andrea Dietrich; Ozorio, Tarcisio Faria; Lima, Silvia Ferreira de [PETROBRAS Transporte S. A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This work presents for discussion a proposal of a forest project idealized to be implemented, in form of a linear forest, in the long of TRANSPETRO pipeway, from north to south of the country. The initial goals, restricted to the State of Sao Paulo, presume the forest fomentation of 1,000 kilometers of path, covering an area of approximately 10,000 hectares, where can be possible to realize native and exotic species plantation, considering the legal restrictions. The proposal presumes also a fund to the special nature reserve creation in the cities crossed by TRANSPETRO pipeways. The pilot proposed in this work could take place at 'Plano Diretor de Dutos de Sao Paulo', which involves 27 cities, incorporating the environmental recuperation programs from native vegetation suppression and intervention in permanent preservation area in terms of forest law. (author)

  10. Simulating vegetation response to climate change in the Blue Mountains with MC2 dynamic global vegetation model

    Directory of Open Access Journals (Sweden)

    John B. Kim

    2018-04-01

    Full Text Available Warming temperatures are projected to greatly alter many forests in the Pacific Northwest. MC2 is a dynamic global vegetation model, a climate-aware, process-based, and gridded vegetation model. We calibrated and ran MC2 simulations for the Blue Mountains Ecoregion, Oregon, USA, at 30 arc-second spatial resolution. We calibrated MC2 using the best available spatial datasets from land managers. We ran future simulations using climate projections from four global circulation models (GCM under representative concentration pathway 8.5. Under this scenario, forest productivity is projected to increase as the growing season lengthens, and fire occurrence is projected to increase steeply throughout the century, with burned area peaking early- to mid-century. Subalpine forests are projected to disappear, and the coniferous forests to contract by 32.8%. Large portions of the dry and mesic forests are projected to convert to woodlands, unless precipitation were to increase. Low levels of change are projected for the Umatilla National Forest consistently across the four GCM’s. For the Wallowa-Whitman and the Malheur National Forest, forest conversions are projected to vary more across the four GCM-based simulations, reflecting high levels of uncertainty arising from climate. For simulations based on three of the four GCMs, sharply increased fire activity results in decreases in forest carbon stocks by the mid-century, and the fire activity catalyzes widespread biome shift across the study area. We document the full cycle of a structured approach to calibrating and running MC2 for transparency and to serve as a template for applications of MC2. Keywords: Climate change, Regional change, Simulation, Calibration, Forests, Fire, Dynamic global vegetation model

  11. Assessing plant community composition fails to capture impacts of white-tailed deer on native and invasive plant species.

    Science.gov (United States)

    Nuzzo, Victoria; Dávalos, Andrea; Blossey, Bernd

    2017-07-01

    Excessive herbivory can have transformative effects on forest understory vegetation, converting diverse communities into depauperate ones, often with increased abundance of non-native plants. White-tailed deer are a problematic herbivore throughout much of eastern North America and alter forest understory community structure. Reducing (by culling) or eliminating (by fencing) deer herbivory is expected to return understory vegetation to a previously diverse condition. We examined this assumption from 1992 to 2006 at Fermilab (Batavia, IL) where a cull reduced white-tailed deer ( Odocoileus virginianus ) abundance in 1998/1999 by 90 % from 24.6 to 2.5/km 2 , and at West Point, NY, where we assessed interactive effects of deer, earthworms, and invasive plants using 30 × 30 m paired fenced and open plots in 12 different forests from 2009 to 2012. We recorded not only plant community responses (species presence and cover) within 1 m 2 quadrats, but also responses of select individual species (growth, reproduction). At Fermilab, introduced Alliaria petiolata abundance initially increased as deer density increased, but then declined after deer reduction. The understory community responded to the deer cull by increased cover, species richness and height, and community composition changed but was dominated by early successional native forbs. At West Point plant community composition was affected by introduced earthworm density but not deer exclusion. Native plant cover increased and non-native plant cover decreased in fenced plots, thus keeping overall plant cover similar. At both sites native forb cover increased in response to deer reduction, but the anticipated response of understory vegetation failed to materialize at the community level. Deer-favoured forbs ( Eurybia divaricata , Maianthemum racemosum , Polygonatum pubescens and Trillium recurvatum ) grew taller and flowering probability increased in the absence of deer. Plant community monitoring fails to capture

  12. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands.

    Science.gov (United States)

    J.M. Wunderle Jr.

    1997-01-01

    this paper reviews the characteristicas of animal seed dispersal. relevant to tropical forest restoration efforts and discusses their managment implication. In many tropical regions seed dispersal by animals is the predominant form of dissemination of propagules and has a potential to facilitate recolonization of native vegetation on degraded sites.

  13. U.S. Geological Survey Activities Related to American Indians and Alaska Natives: Fiscal Year 2005

    Science.gov (United States)

    Marcus, Susan M.

    2007-01-01

    Introduction This report describes the activities that the U.S. Geological Survey (USGS) conducted with American Indian and Alaska Native governments, educational institutions, and individuals during Federal fiscal year (FY) 2005. Most of these USGS activities were collaborations with Tribes, Tribal organizations, or professional societies. Others were conducted cooperatively with the Bureau of Indian Affairs (BIA) or other Federal entities. The USGS is the earth and natural science bureau within the U.S. Department of the Interior (DOI). The USGS does not have regulatory or land management responsibilities. As described in this report, there are many USGS activities that are directly relevant to American Indians, Alaska Natives, and to Native lands. A USGS website, dedicated to making USGS more accessible to American Indians, Alaska Natives, their governments, and institutions, is available at www.usgs.gov/indian. This website includes information on how to contact USGS American Indian/Alaska Native Liaisons, training opportunities, and links to other information resources. This report and previous editions are also available through the website. The USGS realizes that Native knowledge and cultural traditions of living in harmony with nature result in unique Native perspectives that enrich USGS studies. USGS seeks to increase the sensitivity and openness of its scientists to the breadth of Native knowledge, expanding the information on which their research is based. USGS scientific studies include data collection, mapping, natural resource modeling, and research projects. These projects typically last 2 or 3 years, although some are parts of longer-term activities. Some projects are funded cooperatively, with USGS funds matched or supplemented by individual Tribal governments, or by the BIA. These projects may also receive funding from the U.S. Environmental Protection Agency (USEPA), the Indian Health Service (part of the Department of Health and Human Services

  14. An Invasive Clonal Plant Benefits from Clonal Integration More than a Co-Occurring Native Plant in Nutrient-Patchy and Competitive Environments

    Science.gov (United States)

    You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua

    2014-01-01

    Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits

  15. Alien plant invasion in mixed-grass prairie: effects of vegetation type, stochiasticity, and anthropogenic disturbance in two park units

    Science.gov (United States)

    Larson, Diane L.; Anderson, Patrick J.; Newton, Wesley E.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  16. Kā-HOLO Project: a protocol for a randomized controlled trial of a native cultural dance program for cardiovascular disease prevention in Native Hawaiians

    Directory of Open Access Journals (Sweden)

    Joseph Keawe‘aimoku Kaholokula

    2017-04-01

    Full Text Available Abstract Background As a major risk factor for cardiovascular and cerebrovascular disease (CVD, hypertension affects 33% of U.S. adults. Relative to other US races and ethnicities, Native Hawaiians have a high prevalence of hypertension and are 3 to 4 times more likely to have CVD. Effective, culturally-relevant interventions are needed to address CVD risk in this population. Investigators of the Kā-HOLO Project developed a study design to test the efficacy of an intervention that uses hula, a traditional Hawaiian dance, to increase physical activity and reduce CVD risk. Methods A 2-arm randomized controlled trial with a wait-list control design will be implemented to test a 6-month intervention based on hula to manage blood pressure and reduce CVD risk in 250 adult Native Hawaiians with diagnosed hypertension. Half of the sample will be randomized to each arm, stratified across multiple study sites. Primary outcomes are reduction in systolic blood pressure and improvement in CVD risk as measured by the Framingham Risk Score. Other psychosocial and sociocultural measures will be included to determine mediators of intervention effects on primary outcomes. Assessments will be conducted at baseline, 3 months, and 6 months for all participants, and at 12 months for intervention participants only. Discussion This trial will elucidate the efficacy of a novel hypertension management program designed to reduce CVD risk in an indigenous population by using a cultural dance form as its physical activity component. The results of this culturally-based intervention will have implications for other indigenous populations globally and will offer a sustainable, culturally-relevant means of addressing CVD disparities. Trial registration ClinicalTrials.gov: NCT02620709 , registration date November 23, 2015.

  17. Invasive Impatiens parviflora has negative impact on native vegetation in oak-hornbeam forests

    Czech Academy of Sciences Publication Activity Database

    Florianová, Anna; Münzbergová, Zuzana

    2017-01-01

    Roč. 226, Jan 2017 (2017), s. 10-16 ISSN 0367-2530 Institutional support: RVO:67985939 Keywords : small balsam * impact of invasive plant on vegetation * removal experiment Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 1.125, year: 2016

  18. The influence of ungulates on non-native plant invasions in forests and rangelands: a review.

    Science.gov (United States)

    Catherine G. Parks; Michael J. Wisdom; John G. Kie

    2005-01-01

    Herbivory by wild and domestic ungulates can strongly influence vegetation composition and productivity in forest and range ecosystems. However, the role of ungulates as contributors to the establishment and spread of non-native invasive plants is not well known. Ungulates spread seeds through endozoochory (passing through an animal's digestive tract) or...

  19. Adaptive restoration of river terrace vegetation through iterative experiments

    Science.gov (United States)

    Dela Cruz, Michelle P.; Beauchamp, Vanessa B.; Shafroth, Patrick B.; Decker, Cheryl E.; O’Neil, Aviva

    2014-01-01

    Restoration projects can involve a high degree of uncertainty and risk, which can ultimately result in failure. An adaptive restoration approach can reduce uncertainty through controlled, replicated experiments designed to test specific hypotheses and alternative management approaches. Key components of adaptive restoration include willingness of project managers to accept the risk inherent in experimentation, interest of researchers, availability of funding for experimentation and monitoring, and ability to restore sites as iterative experiments where results from early efforts can inform the design of later phases. This paper highlights an ongoing adaptive restoration project at Zion National Park (ZNP), aimed at reducing the cover of exotic annual Bromus on riparian terraces, and revegetating these areas with native plant species. Rather than using a trial-and-error approach, ZNP staff partnered with academic, government, and private-sector collaborators to conduct small-scale experiments to explicitly address uncertainties concerning biomass removal of annual bromes, herbicide application rates and timing, and effective seeding methods for native species. Adaptive restoration has succeeded at ZNP because managers accept the risk inherent in experimentation and ZNP personnel are committed to continue these projects over a several-year period. Techniques that result in exotic annual Bromus removal and restoration of native plant species at ZNP can be used as a starting point for adaptive restoration projects elsewhere in the region.

  20. DEVELOPMENT OF AN INDEX OF ALIEN SPECIES INVASIVENESS: AN AID TO ASSESSING RIPARIAN VEGETATION CONDITION

    Science.gov (United States)

    Many riparian areas are invaded by alien plant species that negatively affect native species composition, community dynamics and ecosystem properties. We sampled vegetation along reaches of 31 low order streams in eastern Oregon, and characterized species assemblages at patch an...

  1. Vegetation-Induced Roughness in Low-Reynold's Number Flows

    Science.gov (United States)

    Piercy, C. D.; Wynn, T. M.

    2008-12-01

    Wetlands are important ecosystems, providing habitat for wildlife and fish and shellfish production, water storage, erosion control, and water quality improvement and preservation. Models to estimate hydraulic resistance due to vegetation in emergent wetlands are crucial to good wetland design and analysis. The goal of this project is to improve modeling of emergent wetlands by linking properties of the vegetation to flow. Existing resistance equations such as Hoffmann (2004), Kadlec (1990), Moghadam and Kouwen (1997), Nepf (1999), and Stone and Shen (2002) were evaluated. A large outdoor vegetated flume was constructed at the Price's Fork Research Center near Blacksburg, Virginia to measure flow and water surface slope through woolgrass (Scirpus cyperinus), a common native emergent wetland plant. Measurements of clump and stem density, diameter, and volume, blockage factor, and stiffness were made after each set of flume runs. Flow rates through the flume were low (3-4 L/s) resulting in very low stem-Reynold's numbers (15-102). Since experimental flow conditions were in the laminar to transitional range, most of the models considered did not predict velocity or stage accurately except for conditions in which the stem-Reynold's number approached 100. At low stem-Reynold's numbers (drag coefficient is inversely proportional to the Reynold's number and can vary greatly with flow conditions. Most of the models considered assumed a stem-Reynold's number in the 100-105 range in which the drag coefficient is relatively constant and as a result did not predict velocity or stage accurately except for conditions in which the stem-Reynold's number approached 100. The only model that accurately predicted stem layer velocity was the Kadlec (1990) model since it does not make assumptions about flow regime; instead, the parameters are adjusted according to the site conditions. Future work includes relating the parameters used to fit the Kadlec (1990) model to measured vegetation

  2. Goods and services provided by native plants in desert ecosystems: Examples from the northwestern coastal desert of Egypt

    Directory of Open Access Journals (Sweden)

    Laila M. Bidak

    2015-01-01

    Full Text Available About one third of the earth’s land surface is covered by deserts that have low and variable rainfall, nutrient-poor soils, and little vegetation cover. Here, we focus on the goods and services offered by desert ecosystems using the northwestern coastal desert of Egypt extending from Burg El-Arab to El-Salloum as an example. We conducted field surveys and collected other data to identify the goods services and provided by native plant species. A total of 322 native plant species were compiled. The direct services provided by these native plants included sources of food, medicine, and energy; indirect vegetation services included promotion of biodiversity, water storage, and soil fertility. The plant diversity in this ecosystem provided economic service benefits, such as sources of fodder, fuel-wood, and traditional medicinal plants. Changes in land use and recent ill-managed human activities may influence the availability of these services and strongly impact biodiversity and habitat availability. Although deserts are fragile and support low levels of productivity, they provide a variety of goods and services whose continuing availability is contingent upon the adoption of rational land management practices.

  3. Projecting the Dependence of Sage-steppe Vegetation on Redistributed Snow in a Warming Climate.

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.

    2015-12-01

    In mountainous regions, the redistribution of snow by wind can increase the effective precipitation available to vegetation. Moisture subsidies caused by drifting snow may be critical to plant productivity in semi-arid ecosystems. However, with increasing temperatures, the distribution of precipitation is becoming more uniform as rain replaces drifting snow. Understanding the ecohydrological interactions between sagebrush steppe vegetation communities and the heterogeneous distribution of soil moisture is essential for predicting and mitigating future losses in ecosystem diversity and productivity in regions characterized by snow dominated precipitation regimes. To address the dependence of vegetation productivity on redistributed snow, we simulated the net primary production (NPP) of aspen, sagebrush, and C3 grass plant functional types spanning a precipitation phase (rain:snow) gradient in the Reynolds Creek Experimental Watershed and Critical Zone Observatory (RCEW-CZO). The biogeochemical process model Biome-BGC was used to simulate NPP at three sites located directly below snowdrifts that provide melt water late into the spring. To assess climate change impacts on future plant productivity, mid-century (2046-2065) NPP was simulated using the average temperature increase from the Multivariate Adaptive Constructed Analogs (MACA) data set under the RCP 8.5 emission scenario. At the driest site, mid-century projections of decreased snow cover and increased growing season evaporative demand resulted in limiting soil moisture up to 30 and 40 days earlier for aspen and sage respectively. While spring green up for aspen occurred an average of 13 days earlier under climate change scenarios, NPP remained negative up to 40 days longer during the growing season. These results indicate that the loss of the soil moisture subsidy stemming from prolonged redistributed snow water resources can directly influence ecosystem productivity in the rain:snow transition zone.

  4. Probing RNA native conformational ensembles with structural constraints

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; van den Bedem, Henry; Bernauer, Julie

    2016-01-01

    substates, which are difficult to characterize experimentally and computationally. Here, we present an innovative, entirely kinematic computational procedure to efficiently explore the native ensemble of RNA molecules. Our procedure projects degrees of freedom onto a subspace of conformation space defined...

  5. Using a dynamic vegetation model for future projections of crop yields: application to Belgium in the framework of the VOTES and MASC projects

    Science.gov (United States)

    Jacquemin, Ingrid; Henrot, Alexandra-Jane; Fontaine, Corentin M.; Dendoncker, Nicolas; Beckers, Veronique; Debusscher, Bos; Tychon, Bernard; Hambuckers, Alain; François, Louis

    2016-04-01

    Dynamic vegetation models (DVM) were initially designed to describe the dynamics of natural ecosystems as a function of climate and soil, to study the role of the vegetation in the carbon cycle. These models are now directly coupled with climate models in order to evaluate feedbacks between vegetation and climate. But DVM characteristics allow numerous other applications, leading to amelioration of some of their modules (e.g., evaluating sensitivity of the hydrological module to land surface changes) and developments (e.g., coupling with other models like agent-based models), to be used in ecosystem management and land use planning studies. It is in this dynamic context about DVMs that we have adapted the CARAIB (CARbon Assimilation In the Biosphere) model. One of the main improvements is the implementation of a crop module, allowing the assessment of climate change impacts on crop yields. We try to validate this module at different scales: - from the plot level, with the use of eddy-covariance data from agricultural sites in the FLUXNET network, such as Lonzée (Belgium) or other Western European sites (Grignon, Dijkgraaf,…), - to the country level, for which we compare the crop yield calculated by CARAIB to the crop yield statistics for Belgium and for different agricultural regions of the country. Another challenge for the CARAIB DVM was to deal with the landscape dynamics, which is not directly possible due to the lack of consideration of anthropogenic factors in the system. In the framework of the VOTES and the MASC projects, CARAIB is coupled with an agent-based model (ABM), representing the societal component of the system. This coupled module allows the use of climate and socio-economic scenarios, particularly interesting for studies which aim at ensuring a sustainable approach. This module has particularly been exploited in the VOTES project, where the objective was to provide a social, biophysical and economic assessment of the ecosystem services in

  6. Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina).

    Science.gov (United States)

    Florencia, Ferreira María; Carolina, Torres; Enzo, Bracamonte; Leonardo, Galetto

    2017-10-01

    Agriculture based on transgenic crops has expanded in Argentina into areas formerly occupied by Chaco forest. Even though glyphosate is the herbicide most widely used in the world, increasing evidence indicates severe ecotoxicological effects on non-target organisms as native plants. The aim of this work is to determine glyphosate effects on 23 native species present in the remaining Chaco forests immersed in agricultural matrices. This is a laboratory/greenhouse approach studying acute effects on seedlings after 21 days. A gradient of glyphosate rates (525, 1050, 2100, 4200, and 8400g ai/Ha; recommended field application rate (RFAR) = 2100g ai/Ha) was applied on four-week seedlings cultivated in a greenhouse and response variables (phytotoxicity, growth reduction, and sensitivity to the herbicide) were measured. This gradient of herbicide rates covers realistic rates of glyphosate applications in the crop field and also those that can reach vegetation of forest relicts by off-target drift and overspray. Testing was performed following guidelines for vegetative vigour (post-germination spray). All species showed lethal or sublethal effects after the application of the 25% of RFAR (50% of species showed severe phytotoxicity or death and 70% of species showed growth reduction). The results showed a gradient of sensitivity to glyphosate by which some of the studied species are very sensitive to glyphosate and seedlings died with 25% of RFAR while other species can be classified as herbicide-tolerant. Thus, the vegetation present in the forest relicts could be strongly affected by glyphosate application on crops. Lethal and sublethal effects of glyphosate on non-target plants could promote both the loss of biodiversity in native forest relicts immersed in the agroecosystems and the selection of new crop weeds considering that some biotypes are continuously exposed to low doses of glyphosate. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Climate change effects on vegetation in the Pacific Northwest: a review and synthesis of the scientific literature and simulation model projections

    Science.gov (United States)

    David W. Peterson; Becky K. Kerns; Erich Kyle Dodson

    2014-01-01

    The purpose of this study was to review scientifi c knowledge and model projections on vegetation vulnerability to climatic and other environmental changes in the Pacifi c Northwest, with emphasis on fi ve major biome types: subalpine forests and alpine meadows, maritime coniferous forests, dry coniferous forests, savannas and woodlands (oak and juniper), and interior...

  8. Resurveying historical vegetation data – opportunities and challenges

    Czech Academy of Sciences Publication Activity Database

    Kapfer, J.; Hédl, Radim; Jurasinski, G.; Kopecký, Martin; Schei, F. H.; Grytnes, J.-A.

    2017-01-01

    Roč. 20, č. 2 (2017), s. 164-171 ISSN 1402-2001 EU Projects: European Commission(XE) 278065 - LONGWOOD Institutional support: RVO:67985939 Keywords : environmental change * long-term vegetation dynamics * vegetation resampling Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 2.474, year: 2016

  9. Aquatic macroinvertebrate responses to native and non-native predators

    Directory of Open Access Journals (Sweden)

    Haddaway N. R.

    2014-01-01

    Full Text Available Non-native species can profoundly affect native ecosystems through trophic interactions with native species. Native prey may respond differently to non-native versus native predators since they lack prior experience. Here we investigate antipredator responses of two common freshwater macroinvertebrates, Gammarus pulex and Potamopyrgus jenkinsi, to olfactory cues from three predators; sympatric native fish (Gasterosteus aculeatus, sympatric native crayfish (Austropotamobius pallipes, and novel invasive crayfish (Pacifastacus leniusculus. G. pulex responded differently to fish and crayfish; showing enhanced locomotion in response to fish, but a preference for the dark over the light in response to the crayfish. P.jenkinsi showed increased vertical migration in response to all three predator cues relative to controls. These different responses to fish and crayfish are hypothesised to reflect the predators’ differing predation types; benthic for crayfish and pelagic for fish. However, we found no difference in response to native versus invasive crayfish, indicating that prey naiveté is unlikely to drive the impacts of invasive crayfish. The Predator Recognition Continuum Hypothesis proposes that benefits of generalisable predator recognition outweigh costs when predators are diverse. Generalised responses of prey as observed here will be adaptive in the presence of an invader, and may reduce novel predators’ potential impacts.

  10. The French, German, and Spanish sound of eating fresh fruits and vegetables.

    Science.gov (United States)

    Arboleda, Ana M; Arce-Lopera, Carlos

    2017-12-01

    A set of onomatopoeic expressions for eating fruits and vegetables is compared across subjects whose native language is Spanish, French, or German. Subjects chose the onomatopoeia that best represented the sound of eating a fruit or vegetable (celery, banana, strawberry, passion fruit, mango, apple, orange, and tomato). Results show there are onomatopoeias that have a higher frequency of response in one language compared to the others. Thus, it is possible to assume that depending on the language there is a better way to express haptic and auditory information associated to fruit and vegetable consumption. Moreover, and considering the three languages, results show there are three categories of responses based on the relative strength of the material (strong and medium strength, and soft). Thus, there is some consistency in the onomatopoeias that represent the sound of eating a fruit or a vegetable. To conclude, results differ by language, but they are consistent within a category of sound. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Using Species Distribution Models to Predict Potential Landscape Restoration Effects on Puma Conservation.

    Science.gov (United States)

    Angelieri, Cintia Camila Silva; Adams-Hosking, Christine; Ferraz, Katia Maria Paschoaletto Micchi de Barros; de Souza, Marcelo Pereira; McAlpine, Clive Alexander

    2016-01-01

    A mosaic of intact native and human-modified vegetation use can provide important habitat for top predators such as the puma (Puma concolor), avoiding negative effects on other species and ecological processes due to cascade trophic interactions. This study investigates the effects of restoration scenarios on the puma's habitat suitability in the most developed Brazilian region (São Paulo State). Species Distribution Models incorporating restoration scenarios were developed using the species' occurrence information to (1) map habitat suitability of pumas in São Paulo State, Southeast, Brazil; (2) test the relative contribution of environmental variables ecologically relevant to the species habitat suitability and (3) project the predicted habitat suitability to future native vegetation restoration scenarios. The Maximum Entropy algorithm was used (Test AUC of 0.84 ± 0.0228) based on seven environmental non-correlated variables and non-autocorrelated presence-only records (n = 342). The percentage of native vegetation (positive influence), elevation (positive influence) and density of roads (negative influence) were considered the most important environmental variables to the model. Model projections to restoration scenarios reflected the high positive relationship between pumas and native vegetation. These projections identified new high suitability areas for pumas (probability of presence >0.5) in highly deforested regions. High suitability areas were increased from 5.3% to 8.5% of the total State extension when the landscapes were restored for ≥ the minimum native vegetation cover rule (20%) established by the Brazilian Forest Code in private lands. This study highlights the importance of a landscape planning approach to improve the conservation outlook for pumas and other species, including not only the establishment and management of protected areas, but also the habitat restoration on private lands. Importantly, the results may inform environmental

  12. Arthropod assemblages on native and nonnative plant species of a coastal reserve in California.

    Science.gov (United States)

    Fork, Susanne K

    2010-06-01

    Biological invasions by nonnative plant species are a widespread phenomenon. Many studies have shown strong ecological impacts of plant invasions on native plant communities and ecosystem processes. Far fewer studies have examined effects on associated animal communities. From the perspective of a reserve's land management, I addressed the question of whether arthropod assemblages on two nonnative plant species of concern were impoverished compared with those assemblages associated with two predominant native plant species of that reserve. If the nonnative plant species, Conium maculatum L., and Phalaris aquatica L., supported highly depauperate arthropod assemblages compared with the native plant species, Baccharis pilularis De Candolle and Leymus triticoides (Buckley) Pilger, this finding would provide additional support for prioritizing removal of nonnatives and restoration of natives. I assessed invertebrate assemblages at the taxonomic levels of arthropod orders, Coleoptera families, and Formicidae species, using univariate analyses to examine community attributes (richness and abundance) and multivariate techniques to assess arthropod assemblage community composition differences among plant species. Arthropod richness estimates by taxonomic level between native and nonnative vegetation showed varying results. Overall, arthropod richness of the selected nonnative plants, examined at higher taxonomic resolution, was not necessarily less diverse than two of common native plants found on the reserve, although differences were found among plant species. Impacts of certain nonnative plant species on arthropod assemblages may be more difficult to elucidate than those impacts shown on native plants and ecosystem processes.

  13. Stable isotopes of C and N reveal habitat dependent dietary overlap between native and introduced turtles Pseudemys rubriventris and Trachemys scripta.

    Science.gov (United States)

    Pearson, Steven H; Avery, Harold W; Kilham, Susan S; Velinsky, David J; Spotila, James R

    2013-01-01

    Habitat degradation and species introductions are two of the leading causes of species declines on a global scale. Invasive species negatively impact native species through predation and competition for limited resources. The impacts of invasive species may be increased in habitats where habitat degradation is higher due to reductions of prey abundance and distribution. Using stable isotope analyses and extensive measurements of resource availability we determined how resource availability impacts the long term carbon and nitrogen assimilation of the invasive red-eared slider turtle (Trachemys scripta elegans) and a native, threatened species, the red-bellied turtle (Pseudemys rubriventris) at two different freshwater wetland complexes in Pennsylvania, USA. At a larger wetland complex with greater vegetative species richness and diversity, our stable isotope analyses showed dietary niche partitioning between species, whereas analyses from a smaller wetland complex with lower vegetative species richness and diversity showed significant dietary niche overlap. Determining the potential for competition between these two turtle species is important to understanding the ecological impacts of red-eared slider turtles in wetland habitats. In smaller wetlands with increased potential for competition between native turtles and invasive red-eared slider turtles we expect that when shared resources become limited, red-eared slider turtles will negatively impact native turtle species leading to long term population declines. Protection of intact wetland complexes and the reduction of introduced species populations are paramount to preserving populations of native species.

  14. Stable isotopes of C and N reveal habitat dependent dietary overlap between native and introduced turtles Pseudemys rubriventris and Trachemys scripta.

    Directory of Open Access Journals (Sweden)

    Steven H Pearson

    Full Text Available Habitat degradation and species introductions are two of the leading causes of species declines on a global scale. Invasive species negatively impact native species through predation and competition for limited resources. The impacts of invasive species may be increased in habitats where habitat degradation is higher due to reductions of prey abundance and distribution. Using stable isotope analyses and extensive measurements of resource availability we determined how resource availability impacts the long term carbon and nitrogen assimilation of the invasive red-eared slider turtle (Trachemys scripta elegans and a native, threatened species, the red-bellied turtle (Pseudemys rubriventris at two different freshwater wetland complexes in Pennsylvania, USA. At a larger wetland complex with greater vegetative species richness and diversity, our stable isotope analyses showed dietary niche partitioning between species, whereas analyses from a smaller wetland complex with lower vegetative species richness and diversity showed significant dietary niche overlap. Determining the potential for competition between these two turtle species is important to understanding the ecological impacts of red-eared slider turtles in wetland habitats. In smaller wetlands with increased potential for competition between native turtles and invasive red-eared slider turtles we expect that when shared resources become limited, red-eared slider turtles will negatively impact native turtle species leading to long term population declines. Protection of intact wetland complexes and the reduction of introduced species populations are paramount to preserving populations of native species.

  15. Vegetation composition and structure of southern coastal plain pine forests: An ecological comparison

    Science.gov (United States)

    Hedman, C.W.; Grace, S.L.; King, S.E.

    2000-01-01

    Longleaf pine (Pinus palustris) ecosystems are characterized by a diverse community of native groundcover species. Critics of plantation forestry claim that loblolly (Pinus taeda) and slash pine (Pinus elliottii) forests are devoid of native groundcover due to associated management practices. As a result of these practices, some believe that ecosystem functions characteristic of longleaf pine are lost under loblolly and slash pine plantation management. Our objective was to quantify and compare vegetation composition and structure of longleaf, loblolly, and slash pine forests of differing ages, management strategies, and land-use histories. Information from this study will further our understanding and lead to inferences about functional differences among pine cover types. Vegetation and environmental data were collected in 49 overstory plots across Southlands Experiment Forest in Bainbridge, GA. Nested plots, i.e. midstory, understory, and herbaceous, were replicated four times within each overstory plot. Over 400 species were identified. Herbaceous species richness was variable for all three pine cover types. Herbaceous richness for longleaf, slash, and loblolly pine averaged 15, 13, and 12 species per m2, respectively. Longleaf pine plots had significantly more (p < 0.029) herbaceous species and greater herbaceous cover (p < 0.001) than loblolly or slash pine plots. Longleaf and slash pine plots were otherwise similar in species richness and stand structure, both having lower overstory density, midstory density, and midstory cover than loblolly pine plots. Multivariate analyses provided additional perspectives on vegetation patterns. Ordination and classification procedures consistently placed herbaceous plots into two groups which we refer to as longleaf pine benchmark (34 plots) and non-benchmark (15 plots). Benchmark plots typically contained numerous herbaceous species characteristic of relic longleaf pine/wiregrass communities found in the area. Conversely

  16. Evaluation of Minerals, Phytochemical Compounds and Antioxidant Activity of Mexican, Central American, and African Green Leafy Vegetables.

    Science.gov (United States)

    Jiménez-Aguilar, Dulce M; Grusak, Michael A

    2015-12-01

    The green leafy vegetables Cnidoscolus aconitifolius and Crotalaria longirostrata are native to Mexico and Central America, while Solanum scabrum and Gynandropsis gynandra are native to Africa. They are consumed in both rural and urban areas in those places as a main food, food ingredient or traditional medicine. Currently, there is limited information about their nutritional and phytochemical composition. Therefore, mineral, vitamin C, phenolic and flavonoid concentration, and antioxidant activity were evaluated in multiple accessions of these leafy vegetables, and their mineral and vitamin C contribution per serving was calculated. The concentrations of Ca, K, Mg and P in these leafy vegetables were 0.82-2.32, 1.61-7.29, 0.61-1.48 and 0.27-1.44 mg/g fresh weight (FW), respectively. The flavonoid concentration in S. scabrum accessions was up to 1413 μg catechin equivalents/g FW, while the highest antioxidant activities were obtained in C. longirostrata accessions (52-60 μmol Trolox equivalents/g FW). According to guidelines established by the US Food and Drug Administration, a serving size (30 g FW) of C. longirostrata would be considered an excellent source of Mo (20 % or more of the daily value), and a serving of any of these green leafy vegetables would be an excellent source of vitamin C. Considering the importance of the minerals, phytochemicals and antioxidants in human health and their presence in these indigenous green leafy vegetables, efforts to promote their consumption should be implemented.

  17. Integrating Vegetation Classification, Mapping, and Strategic Inventory for Forest Management

    Science.gov (United States)

    C. K. Brewer; R. Bush; D. Berglund; J. A. Barber; S. R. Brown

    2006-01-01

    Many of the analyses needed to address multiple resource issues are focused on vegetation pattern and process relationships and most rely on the data models produced from vegetation classification, mapping, and/or inventory. The Northern Region Vegetation Mapping Project (R1-VMP) data models are based on these three integrally related, yet separate processes. This...

  18. Vegetation - Suisun Marsh 2000 [ds161

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  19. Vegetation - Suisun Marsh 1999 [ds160

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  20. Vegetation - Suisun Marsh 2003 [ds162

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  1. Coastal Culture Area. Native American Curriculum Series.

    Science.gov (United States)

    Ross, Cathy; Fernandes, Roger

    Background information, legends, games, illustrations, and art projects are provided in this booklet introducing elementary students to the history and culture of Indian tribes of the North Pacific Coast and Pacific Northwest. One in a series of Native American instructional materials, the booklet provides an overview of the coastal culture area,…

  2. Language of Science as a Bridge to Native American Educators and Students

    Science.gov (United States)

    Alexander, C. J.; Angrum, A.; Martin, M.; Ali, N.; Kingfisher, J.; Treuer, A.; Grant, G.; Ciotti, J.

    2010-12-01

    In the Western tradition, words and vocabulary encapsulate much of how knowledge enters the public discourse, and is passed from one generation to the next. Much of Native American knowledge is passed along in an oral tradition. Chants and ceremonies contain context and long-baseline data on the environment (geology, climate, and astronomy) that may even surpasses the lifespan of a single individual. For Native American students and researchers, the concept of ‘modern research and science education’ may be wrapped up into the conundrum of assimilation and loss of cultural identification and traditional way of life. That conundrum is also associated with the lack of language and vocabulary with which to discuss 'modern research.' Native Americans emphasize the need to know themselves and their own culture when teaching their students. Many Native American communities recognize that the retention of their language - and need to make the language relevant to the technological age we live in, represents one of their largest and most urgent challenges. One strategy for making science education relevant to Native American learners is identifying appropriate terms that cross the cultural divide. More than just words and vocabulary, the thought processes and word/concept relationships can be quite different in the native cultures. The U.S. Rosetta Project has worked to identify words associated with Western 'STEM' concepts in three Native American communities: Navajo, Hawaiian, and Ojibwe. The U.S. Rosetta Project is NASA’s contribution to the International Rosetta Mission. The Rosetta stone, inspiration for the mission’s name, is expected to provide the keys to the primordial solar system the way the original Rosetta Stone provided a key to ancient language. Steps taken so far include identification and presentation of online astronomy, geology, and physical science vocabulary terms in the native language, identification of teachers and classrooms - often in

  3. Understory vegetation response to mechanical mastication and other fuels treatments in a ponderosa pine forest

    Science.gov (United States)

    Jeffrey M. Kane; J. Morgan Varner; Eric E. Knapp

    2010-01-01

    Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non-native species density in a secondgrowth ponderosa pine forest....

  4. Native excellence

    International Nuclear Information System (INIS)

    Bower, T.

    1992-01-01

    Syncrude Canada Ltd., operator of the oil sands mine and processing plant near Fort McMurray, Alberta, produces 11% of Canada's crude oil and is the country's largest private-sector employer of native Canadians. Syncrude has the goal of employing about 10% native Canadians, which is about the percentage of natives in the regional population. Examples are presented of successful native employment and entrepreneurship at Syncrude. Doreen Janvier, once employed at Syncrude's mine wash bays, was challenged to form her own company to contract out labor services. Her company, DJM Enterprises, now has a 2-year contract to operate three highly sophisticated wash bays used to clean mining equipment, and is looking to bid on other labor contracts. Mabel Laviolette serves as liaison between the oil containment and recovery team, who recover oil skimmed off Syncrude's tailings basin, and the area manager. The team approach and the seasonal nature of the employment fit in well with native cultural patterns. The excellence of native teamwork is also illustrated in the mine rescue team, one unit of which is entirely native Canadian. Part of Syncrude's aboriginal policy is to encourage development of aboriginal enterprises, such as native-owned Clearwater Welding and Fabricating Ltd., which has held welding and fabricating contracts with most major companies in the region and is a major supplier of skilled tradesmen to Syncrude. Syncrude also provides employment and training, encourages natives to continue their education, and promotes local community development. 4 figs

  5. National Park Service Vegetation Inventory Program, Cuyahoga Valley National Park, Ohio

    Science.gov (United States)

    Hop, Kevin D.; Drake, J.; Strassman, Andrew C.; Hoy, Erin E.; Menard, Shannon; Jakusz, J.W.; Dieck, J.J.

    2013-01-01

    information systems (GIS). The interpreted data were digitally and spatially referenced, thus making the spatial database layers usable in GIS. Polygon units were mapped to either a 0.5 ha or 0.25 ha minimum mapping unit, depending on vegetation type.A geodatabase containing various feature-class layers and tables shows the locations of vegetation types and general land cover (vegetation map), vegetation plot samples, verification sites, AA sites, project boundary extent, and aerial photographic centers. The feature-class layer and relate tables for the CUVA vegetation map provides 4,640 polygons of detailed attribute data covering 13,288.4 ha, with an average polygon size of 2.9 ha.Summary reports generated from the vegetation map layer show map classes representing natural/semi-natural types in the NVCS apply to 4,151 polygons (89.4% of polygons) and cover 11,225.0 ha (84.5%) of the map extent. Of these polygons, the map layer shows CUVA to be 74.4% forest (9,888.8 ha), 2.5% shrubland (329.7 ha), and 7.6% herbaceous vegetation cover (1,006.5 ha). Map classes representing cultural types in the NVCS apply to 435 polygons (9.4% of polygons) and cover 1,825.7 ha (13.7%) of the map extent. Map classes representing non-NVCS units (open water) apply to 54 polygons (1.2% of polygons) and cover 237.7 ha (1.8%) of the map extent.A thematic AA study was conducted of map classes representing natural/semi-natural types in the NVCS. Results present an overall accuracy of 80.7% (kappa index of 79.5%) based on data from 643 of the 647 AA sites. Most individual map-class themes exceed the NPS VIP standard of 80% with a 90% confidence interval.The CUVA vegetation mapping project delivers many geospatial and vegetation data products in hardcopy and/or digital formats. These products consist of an in-depth project report discussing methods and results, which include descriptions and a dichotomous key to vegetation types, map classification and map-class descriptions, and a contingency table

  6. Vulnerability of freshwater native biodiversity to non-native ...

    Science.gov (United States)

    Background/Question/Methods Non-native species pose one of the greatest threats to native biodiversity. The literature provides plentiful empirical and anecdotal evidence of this phenomenon; however, such evidence is limited to local or regional scales. Employing geospatial analyses, we investigate the potential threat of non-native species to threatened and endangered aquatic animal taxa inhabiting unprotected areas across the continental US. We compiled distribution information from existing publicly available databases at the watershed scale (12-digit hydrologic unit code). We mapped non-native aquatic plant and animal species richness, and an index of cumulative invasion pressure, which weights non-native richness by the time since invasion of each species. These distributions were compared to the distributions of native aquatic taxa (fish, amphibians, mollusks, and decapods) from the International Union for the Conservation of Nature (IUCN) database. We mapped the proportion of species listed by IUCN as threatened and endangered, and a species rarity index per watershed. An overlay analysis identified watersheds experiencing high pressure from non-native species and also containing high proportions of threatened and endangered species or exhibiting high species rarity. Conservation priorities were identified by generating priority indices from these overlays and mapping them relative to the distribution of protected areas across the US. Results/Conclusion

  7. Future vegetation ecosystem response to warming climate over the Tibetan Plateau

    Science.gov (United States)

    Bao, Y.; Gao, Y.; Wang, Y.

    2017-12-01

    The amplified vegetation response to climate variability has been found over the Tibetan Plateau (TP) in recent decades. In this study, the potential impacts of 21st century climate change on the vegetation ecosystem over the TP are assessed based on the dynamic vegetation outputs of models from Coupled Model Intercomparison Project Phase 5 (CMIP5), and the sensitivity of the TP vegetation in response to warming climate was investigated. Models project a continuous and accelerating greening in future, especially in the eastern TP, which closely associates with the plant type upgrade due to the pronouncing warming in growing season.Vegetation leaf area index (LAI) increase well follows the global warming, suggesting the warming climate instead of co2 fertilization controlls the future TP plant growth. The warming spring may advance the start of green-up day and extend the growing season length. More carbon accumulation in vegetation and soil will intensify the TP carbon cycle and will keep it as a carbon sink in future. Keywords: Leaf Area Index (LAI), Climate Change, Global Dynamic Vegetation Models (DGVMs), CMIP5, Tibetan Plateau (TP)

  8. Assessment of hydrological regimes for vegetation on riparian wetlands in Han River Basin, Korea

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2017-01-01

    Full Text Available Hydrological regimes are regarded as one of the major determinants for wetland ecosystems, for they influence species composition, succession, productivity, and stability of vegetation communities. Since Korea launched the Four Major River Restoration Project in 2007, the water regimes of many of the riparian wetlands have changed, that is potentially affecting vegetation properties. For ecological conservation and management, it is important to connect hydrological characteristics and vegetation properties. The objective of this study is to investigate the influence of hydrological regimes on vegetation community, and develop a methodology that can connect them. Inundated exceedance probability (IEP and its district concept are suggested to gain insights into hydrological regimes on the Binae wetland that is rehabilitated by the Restoration Project in 2012 and belong to the riparian zone. Results of this study indicate that the areas with P = 0.08 or lower IEPs should have the disturbance for vegetation communities, or could be changed to a hydrophilic vegetation in the study area, and it should be considered in the restoration and rehabilitation project to conserve legally protected or endangered vegetation.

  9. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages.

    Science.gov (United States)

    Fierro, Pablo; Bertrán, Carlos; Tapia, Jaime; Hauenstein, Enrique; Peña-Cortés, Fernando; Vergara, Carolina; Cerna, Cindy; Vargas-Chacoff, Luis

    2017-12-31

    Land-use change is a principal factor affecting riparian vegetation and river biodiversity. In Chile, land-use change has drastically intensified over the last decade, with native forests converted to exotic forest plantations and agricultural land. However, the effects thereof on aquatic ecosystems are not well understood. Closing this knowledge gap first requires understanding how human perturbations affect riparian and stream biota. Identified biological indicators could then be applied to determine the health of fluvial ecosystems. Therefore, this study investigated the effects of land-use change on the health of riparian and aquatic ecosystems by assessing riparian vegetation, water quality, benthic macroinvertebrate assemblages, and functional feeding groups. Twenty-one sites in catchment areas with different land-uses (i.e. pristine forests, native forests, exotic forest plantations, and agricultural land) were selected and sampled during the 2010 to 2012 dry seasons. Riparian vegetation quality was highest in pristine forests. Per the modified Macroinvertebrate Family Biotic Index for Chilean species, the best conditions existed in native forests and the worst in agricultural catchments. Water quality and macroinvertebrate assemblages significantly varied across land-use areas, with forest plantations and agricultural land having high nutrient concentrations, conductivity, suspended solids, and apparent color. Macroinvertebrate assemblage diversity was lowest for agricultural and exotic forest plantation catchments, with notable non-insect representation. Collector-gatherers were the most abundant functional feeding group, suggesting importance independent of land-use. Land-use areas showed no significant differences in functional feeding groups. In conclusion, anthropogenic land-use changes were detectable through riparian quality, water quality, and macroinvertebrate assemblages, but not through functional feeding groups. These data, particularly the

  10. Credibility of native and non-native speakers of English revisited: Do non-native listeners feel the same?

    OpenAIRE

    Hanzlíková, Dagmar; Skarnitzl, Radek

    2017-01-01

    This study reports on research stimulated by Lev-Ari and Keysar (2010) who showed that native listeners find statements delivered by foreign-accented speakers to be less true than those read by native speakers. Our objective was to replicate the study with non-native listeners to see whether this effect is also relevant in international communication contexts. The same set of statements from the original study was recorded by 6 native and 6 nonnative speakers of English. 121 non-native listen...

  11. Levantamento de espécies de cobertura vegetal nativas e exóticas encontradas no campus oeste da Universidade Federal Rural do Semi-Árido

    Directory of Open Access Journals (Sweden)

    L. V. Sousa

    2015-12-01

    Full Text Available Desmatamento é o processo de desaparecimento de massas florestais, fundamentalmente causadas pela atividade humana, com a retirada da cobertura vegetal em determinada área para utilização comercial de madeira, implantação de projetos agropecuários e também na expansão urbana. Como em qualquer área que necessite de uma cobertura vegetal, a UFERSA também enfrenta uma problemática frequente, a replantação de árvores exóticas invasoras, ao invés de nativas da região. Dessa forma o presente trabalho tem como objetivo não somente avaliar e mapear a densidade da flora do local, mas também evidenciar possíveis problemas e disponibilizar soluções. Procurou-se dividir a vegetação em dois grupos: as nativas e as exóticas. Foi realizada a demarcação dos pontos de acordo com a localização das espécies, com a finalidade de identificar e quantificar as espécies de plantas nativas e exóticas. Dentre todas as espécies amostradas, 24 espécies (25,3% são representantes de espécies nativas e 71 espécies (74,7% são exóticas. A arborização da UFERSA segue o padrão observado na maioria das áreas verdes públicas das cidades brasileiras, com grande número de espécies exóticas em relação às nativas. Em vista de uma melhor estrutura física fica evidente a necessidade de uma maior arborização, tendo como incentivo o plantio de espécies nativas, que proporcionem sombra, alimento e sirvam de abrigo para a fauna local, não apenas na UFERSA, mas em toda a região que vem perdendo sua flora natural em favor de plantas exóticas. Survey of species of native and exotic vegetation coverage found in the campus of Federal Rural University west of the Semi-arid regionAbstract: Deforestation is the process of disappearance of forest masses, basically caused by human activity, with the withdrawal of the vegetation cover in particular area for commercial use of wood, deployment of agricultural projects and also in urban expansion

  12. Glyphosate (Ab)sorption by Shoots and Rhizomes of Native versus Hybrid Cattail (Typha).

    Science.gov (United States)

    Zheng, Tianye; Sutton, Nora B; de Jager, Pim; Grosshans, Richard; Munira, Sirajum; Farenhorst, Annemieke

    2017-11-01

    Wetlands in the Prairie Pothole Region of North America are integrated with farmland and contain mixtures of herbicide contaminants. Passive nonfacilitated diffusion is how most herbicides can move across plant membranes, making this perhaps an important process by which herbicide contaminants are absorbed by wetland vegetation. Prairie wetlands are dominated by native cattail (Typha latifolia) and hybrid cattail (Typha x glauca). The objective of this batch equilibrium study was to compare glyphosate absorption by the shoots and rhizomes of native versus hybrid cattails. Although it has been previously reported for some pesticides that passive diffusion is greater for rhizome than shoot components, this is the first study to demonstrate that the absorption capacity of rhizomes is species dependent, with the glyphosate absorption being significantly greater for rhizomes than shoots in case of native cattails, but with no significant differences in glyphosate absorption between rhizomes and shoots in case of hybrid cattails. Most importantly, glyphosate absorption by native rhizomes far exceeded that of the absorption occurring for hybrid rhizomes, native shoots and hybrid shoots. Glyphosate has long been used to manage invasive hybrid cattails in wetlands in North America, but hybrid cattail expansions continue to occur. Since our results showed limited glyphosate absorption by hybrid shoots and rhizomes, this lack of sorption may partially explain the poorer ability of glyphosate to control hybrid cattails in wetlands.

  13. ‘Imi Hale – The Native Hawaiian Cancer Awareness, Research, and Training Network: Second-Year Status Report

    Science.gov (United States)

    Braun, Kathryn L.; Tsark, JoAnn; Ann Santos, Lorrie; Abrigo, Lehua

    2010-01-01

    Purpose The purpose of this paper is to describe ‘Imi Hale, a program developed and managed by Native Hawaiians to increase cancer awareness and research capacity among Native Hawaiians. This US subgroup of indigenous people of the Hawaiian islands has disproportionately high rates of cancer mortality and low rates of participation in health and research careers. Methods As a community-based research project, ‘Imi Hale spent its first year gathering data from Native Hawaiians about their cancer awareness and research priorities. These findings guide ‘Imi Hale’s community and scientific advisors, a community-based Institutional Review Board, Na Liko Noelo (budding researchers), and staff in developing and carrying out projects that address these priority areas. Emphasis is placed on transferring skills and resources to Native Hawaiians through training, technical assistance, and mentorship. A biennial survey assesses the extent to which community-based participatory research principles are being followed. Principal Findings By the end of the second year, statewide and island-specific awareness plans were produced, and 9 funded awareness projects are supporting the development and dissemination of Hawaiian health education materials. Research accomplishments include the enrollment of 42 Native Hawaiian Na Liko Noelo (budding researchers), 22 of which are involved in 14 funded research projects. The biennial evaluation survey found that 92% of our advisors felt that ‘Imi Hale was promoting scientifically rigorous research that was culturally appropriate and respectful of Native Hawaiian beliefs, and 96% felt that ‘Imi Hale was following its own principles of community-based participatory research. Conclusion ‘Imi Hale’s community-based approach to promoting cancer awareness will result in a sustainable infrastructure for reducing the cancer burden on Native Hawaiians. PMID:15352771

  14. Predicting gender differences in liking for vegetables and preference for a variety of vegetables among 11-year-old children.

    Science.gov (United States)

    Lehto, Elviira; Ray, Carola; Haukkala, Ari; Yngve, Agneta; Thorsdottir, Inga; Roos, Eva

    2015-12-01

    We studied the factors that predict liking for vegetables and preference for a variety of vegetables among schoolchildren. Additionally, we examined if there were gender differences in the predictors that explain the hypothesized higher scores in liking vegetables and preferences among girls. The data from the PRO GREENS project included 424 Finnish children (response rate 77%) aged 11 to 12. The children completed validated measures about social and environmental factors related to their liking for vegetables and preferences both at baseline 2009 and follow-up 2010. The associations were examined with regression and mediation analyses. The strongest predictors of both girls' and boys' liking and preferences were higher levels of eating vegetables together with the family, previous vegetable intake and a lower level of perceived barriers. Liking was additionally predicted by a lower level of parental demand that their child should eat vegetables. Girls reported higher levels of liking and preferences in the follow-up. This gender difference was mainly explained by girls' lower level of perceived barriers related to vegetable intake and girls' higher previous vegetable intake. Interventions that aim to increase the low vegetable intake among boys by increasing their liking for vegetables and preference for a variety of vegetables could benefit from targeting perceived barriers, namely boys' perception and values concerning the consumption of vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. NATIVE VS NON-NATIVE ENGLISH TEACHERS

    Directory of Open Access Journals (Sweden)

    Masrizal Masrizal

    2013-02-01

    Full Text Available Although the majority of English language teachers worldwide are non-native English speakers (NNS, no research was conducted on these teachers until recently. A pioneer research by Peter Medgyes in 1994 took quite a long time until the other researchers found their interests in this issue. There is a widespread stereotype that a native speaker (NS is by nature the best person to teach his/her foreign language. In regard to this assumption, we then see a very limited room and opportunities for a non native teacher to teach language that is not his/hers. The aim of this article is to analyze the differences among these teachers in order to prove that non-native teachers have equal advantages that should be taken into account. The writer expects that the result of this short article could be a valuable input to the area of teaching English as a foreign language in Indonesia.

  16. Native and introduced gastropods in laurel forests on Tenerife, Canary Islands

    Science.gov (United States)

    Kappes, Heike; Delgado, Juan D.; Alonso, María R.; Ibáñez, Miguel

    2009-09-01

    The introduction of non-native gastropods on islands has repetitively been related to a decline of the endemic fauna. So far, no quantitative information is available even for the native gastropod fauna from the laurel forests (the so-called Laurisilva) of the Canary Islands. Much of the original laurel forest has been logged in recent centuries. Based on vegetation studies, we hypothesized that densities and the number of introduced species decline with the age of the regrowth forests. We sampled 27 sites from which we collected thirty native and seven introduced species. Two introduced species, Milax nigricans and Oxychilus alliarius, were previously not reported from the Canary Islands. Assemblage composition was mainly structured by disturbance history and altitude. Overall species richness was correlated with slope inclination, prevalence of rocky outcrops, amounts of woody debris and leaf litter depth. Densities were correlated with the depth of the litter layer and the extent of herb layer cover and laurel canopy cover. Introduced species occurred in 22 sites but were neither related to native species richness nor to the time that elapsed since forest regrowth. One introduced slug, Lehmannia valentiana, is already wide-spread, with densities strongly related to herb cover. Overall species richness seemed to be the outcome of invasibility, thus factors enhancing species richness likely also enhance invasibility. Although at present introduced species contribute to diversity, the potential competition between introduced slugs and the rich native semi-slug fauna, and the effects of introduced predatory snails ( Oxychilus spp. and Testacella maugei) warrant further monitoring.

  17. Vegetation classification and distribution mapping report Mesa Verde National Park

    Science.gov (United States)

    Thomas, Kathryn A.; McTeague, Monica L.; Ogden, Lindsay; Floyd, M. Lisa; Schulz, Keith; Friesen, Beverly A.; Fancher, Tammy; Waltermire, Robert G.; Cully, Anne

    2009-01-01

    The classification and distribution mapping of the vegetation of Mesa Verde National Park (MEVE) and surrounding environment was achieved through a multi-agency effort between 2004 and 2007. The National Park Service’s Southern Colorado Plateau Network facilitated the team that conducted the work, which comprised the U.S. Geological Survey’s Southwest Biological Science Center, Fort Collins Research Center, and Rocky Mountain Geographic Science Center; Northern Arizona University; Prescott College; and NatureServe. The project team described 47 plant communities for MEVE, 34 of which were described from quantitative classification based on f eld-relevé data collected in 1993 and 2004. The team derived 13 additional plant communities from field observations during the photointerpretation phase of the project. The National Vegetation Classification Standard served as a framework for classifying these plant communities to the alliance and association level. Eleven of the 47 plant communities were classified as “park specials;” that is, plant communities with insufficient data to describe them as new alliances or associations. The project team also developed a spatial vegetation map database representing MEVE, with three different map-class schemas: base, group, and management map classes. The base map classes represent the fi nest level of spatial detail. Initial polygons were developed using Definiens Professional (at the time of our use, this software was called eCognition), assisted by interpretation of 1:12,000 true-color digital orthophoto quarter quadrangles (DOQQs). These polygons (base map classes) were labeled using manual photo interpretation of the DOQQs and 1:12,000 true-color aerial photography. Field visits verified interpretation concepts. The vegetation map database includes 46 base map classes, which consist of associations, alliances, and park specials classified with quantitative analysis, additional associations and park specials noted

  18. Habitat Evaluation Procedures (HEP) Report; Iskuulpa Wildlife Mitigation and Watershed Project, Technical Report 1998-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Quaempts, Eric

    2003-01-01

    U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to evaluate lands acquired and leased in Eskuulpa Watershed, a Confederated Tribes of the Umatilla Indian Reservation watershed and wildlife mitigation project. The project is designed to partially credit habitat losses incurred by BPA for the construction of the John Day and McNary hydroelectric facilities on the Columbia River. Upland and riparian forest, upland and riparian shrub, and grasslands cover types were included in the evaluation. Indicator species included downy woodpecker (Picuides puhescens), black-capped chickadee (Pams atricopillus), blue grouse (Beadragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petschia), mink (Mustela vison), and Western meadowlark (Sturnello neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 55,500 feet of transects, 678 m2 plots, and 243 one-tenth-acre plots. Between 123.9 and f 0,794.4 acres were evaluated for each indicator species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total habitat units credited to BPA for the Iskuulpa Watershed Project and its seven indicator species is 4,567.8 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest, which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing or implementation of restoration grazing schemes, road de-commissioning, reforestation, large woody debris additions to floodplains, control of competing and unwanted vegetation, reestablishing displaced or reduced native vegetation species

  19. Monitoring post-fire vegetation rehabilitation projects: A common approach for non-forested ecosystems

    Science.gov (United States)

    Wirth, Troy A.; Pyke, David A.

    2007-01-01

    Emergency Stabilization and Rehabilitation (ES&R) and Burned Area Emergency Response (BAER) treatments are short-term, high-intensity treatments designed to mitigate the adverse effects of wildfire on public lands. The federal government expends significant resources implementing ES&R and BAER treatments after wildfires; however, recent reviews have found that existing data from monitoring and research are insufficient to evaluate the effects of these activities. The purpose of this report is to: (1) document what monitoring methods are generally used by personnel in the field; (2) describe approaches and methods for post-fire vegetation and soil monitoring documented in agency manuals; (3) determine the common elements of monitoring programs recommended in these manuals; and (4) describe a common monitoring approach to determine the effectiveness of future ES&R and BAER treatments in non-forested regions. Both qualitative and quantitative methods to measure effectiveness of ES&R treatments are used by federal land management agencies. Quantitative methods are used in the field depending on factors such as funding, personnel, and time constraints. There are seven vegetation monitoring manuals produced by the federal government that address monitoring methods for (primarily) vegetation and soil attributes. These methods vary in their objectivity and repeatability. The most repeatable methods are point-intercept, quadrat-based density measurements, gap intercepts, and direct measurement of soil erosion. Additionally, these manuals recommend approaches for designing monitoring programs for the state of ecosystems or the effect of management actions. The elements of a defensible monitoring program applicable to ES&R and BAER projects that most of these manuals have in common are objectives, stratification, control areas, random sampling, data quality, and statistical analysis. The effectiveness of treatments can be determined more accurately if data are gathered using

  20. An assessment of a proposal to eradicate non-native fish from ...

    African Journals Online (AJOL)

    African Journal of Aquatic Science ... A pilot project to evaluate the use of the piscicide rotenone to eradicate non-native fish from selected reaches in four rivers has been proposed by CapeNature, the conservation ... It is expected that the project will be successful while having minimal impact on other aquatic fauna.

  1. Native Geosciences: Strengthening the Future Through Tribal Traditions

    Science.gov (United States)

    Bolman, J. R.; Quigley, I.; Douville, V.; Hollow Horn Bear, D.

    2008-12-01

    communities and a return to traditional ways of supporting the development of our "story" or purpose for being. The opportunities include residential summer field experiences, interdisciplinary curriculums and development of Tribally-driven Native research experiences. The National Science Foundation, University of North Dakota's Northern Great Plains Center for People and the Environment, Upper Midwest Aerospace Consortium (UMAC), and Tribes have provided funding to support the development of Native geosciences. The presentation will focus on current projects: NSF OEDG "He Sapa Bloketu Woecun; Geosciences at the Heart of Everything That Is", NSF S-STEM "Scientific Leadership Scholars" and the NSF BPC "Coalition of American Indians in Computing". The expressed goal of future initiatives is to connect Tribal communities across the Midwest and West in developing a Native Geosciences Pathway. This pathway supports the identification and support of Tribal students with an interest or "story" connected to geosciences ensuring a future Native geosciences workforce.

  2. Terrestrial Feedbacks Incorporated in Global Vegetation Models through Observed Trait-Environment Responses

    Science.gov (United States)

    Bodegom, P. V.

    2015-12-01

    Most global vegetation models used to evaluate climate change impacts rely on plant functional types to describe vegetation responses to environmental stresses. In a traditional set-up in which vegetation characteristics are considered constant within a vegetation type, the possibility to implement and infer feedback mechanisms are limited as feedback mechanisms will likely involve a changing expression of community trait values. Based on community assembly concepts, we implemented functional trait-environment relationships into a global dynamic vegetation model to quantitatively assess this feature. For the current climate, a different global vegetation distribution was calculated with and without the inclusion of trait variation, emphasizing the importance of feedbacks -in interaction with competitive processes- for the prevailing global patterns. These trait-environmental responses do, however, not necessarily imply adaptive responses of vegetation to changing conditions and may locally lead to a faster turnover in vegetation upon climate change. Indeed, when running climate projections, simulations with trait variation did not yield a more stable or resilient vegetation than those without. Through the different feedback expressions, global and regional carbon and water fluxes were -however- strongly altered. At a global scale, model projections suggest an increased productivity and hence an increased carbon sink in the next decades to come, when including trait variation. However, by the end of the century, a reduced carbon sink is projected. This effect is due to a downregulation of photosynthesis rates, particularly in the tropical regions, even when accounting for CO2-fertilization effects. Altogether, the various global model simulations suggest the critical importance of including vegetation functional responses to changing environmental conditions to grasp terrestrial feedback mechanisms at global scales in the light of climate change.

  3. Nativity, Chronic Health Conditions, and Health Behaviors in Filipino Americans.

    Science.gov (United States)

    Bayog, Maria L G; Waters, Catherine M

    2018-05-01

    Nearly half of Americans have a chronic health condition related to unhealthful behavior. One in four Americans is an immigrant; yet immigrants' health has been studied little, particularly among Asian American subpopulations. Years lived in United States, hypertension, diabetes, smoking, walking, adiposity, and fruit/vegetable variables in the 2011-2012 California Health Interview Survey were analyzed to examine the influence of nativity on chronic health conditions and health behaviors in 555 adult Filipinos, the second largest Asian American immigrant subpopulation. Recent and long-term immigrant Filipinos had higher odds of having hypertension and diabetes, but lower odds of smoking and overweight/obesity compared with second-generation Filipinos. Being born in the United States may be protective against chronic health conditions, but not for healthful behaviors among Filipinos. Chronic disease prevention and health promotion strategies should consider nativity/length of residence, which may be a more consequential health determinant than other immigration and acculturation characteristics.

  4. Introduced brown trout alter native acanthocephalan infections in native fish.

    Science.gov (United States)

    Paterson, Rachel A; Townsend, Colin R; Poulin, Robert; Tompkins, Daniel M

    2011-09-01

    1. Native parasite acquisition provides introduced species with the potential to modify native host-parasite dynamics by acting as parasite reservoirs (with the 'spillback' of infection increasing the parasite burdens of native hosts) or sinks (with the 'dilution' of infection decreasing the parasite burdens of native hosts) of infection. 2. In New Zealand, negative correlations between the presence of introduced brown trout (Salmo trutta) and native parasite burdens of the native roundhead galaxias (Galaxias anomalus) have been observed, suggesting that parasite dilution is occurring. 3. We used a multiple-scale approach combining field observations, experimental infections and dynamic population modelling to investigate whether native Acanthocephalus galaxii acquisition by brown trout alters host-parasite dynamics in native roundhead galaxias. 4. Field observations demonstrated higher infection intensity in introduced trout than in native galaxias, but only small, immature A. galaxii were present in trout. Experimental infections also demonstrated that A. galaxii does not mature in trout, although parasite establishment and initial growth were similar in the two hosts. Taken together, these results support the hypothesis that trout may serve as an infection sink for the native parasite. 5. However, dynamic population modelling predicts that A. galaxii infections in native galaxias should at most only be slightly reduced by dilution in the presence of trout. Rather, model exploration indicates parasite densities in galaxias are highly sensitive to galaxias predation on infected amphipods, and to relative abundances of galaxias and trout. Hence, trout presence may instead reduce parasite burdens in galaxias by either reducing galaxias density or by altering galaxias foraging behaviour. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  5. The Ethiopian Flora Project

    DEFF Research Database (Denmark)

    Demissew, Sebsebe; Brochmann, Christian; Kelbessa, Ensermu

    2011-01-01

    The account reviews and analyses the scietific projects derived from activities in connection with the Ethiopian Flora Project, including the [Ethiopian] Monocot Project, the Afro-alpine "Sky-island" project, the Vegetation and Ecological Conditions of Plantations Project, the Fire Ecology Projec...

  6. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds

    Science.gov (United States)

    Merritt, D.M.; Scott, M.L.; Leroy, Poff N.; Auble, G.T.; Lytle, D.A.

    2010-01-01

    Riparian vegetation composition, structure and abundance are governed to a large degree by river flow regime and flow-mediated fluvial processes. Streamflow regime exerts selective pressures on riparian vegetation, resulting in adaptations (trait syndromes) to specific flow attributes. Widespread modification of flow regimes by humans has resulted in extensive alteration of riparian vegetation communities. Some of the negative effects of altered flow regimes on vegetation may be reversed by restoring components of the natural flow regime. 2. Models have been developed that quantitatively relate components of the flow regime to attributes of riparian vegetation at the individual, population and community levels. Predictive models range from simple statistical relationships, to more complex stochastic matrix population models and dynamic simulation models. Of the dozens of predictive models reviewed here, most treat one or a few species, have many simplifying assumptions such as stable channel form, and do not specify the time-scale of response. In many cases, these models are very effective in developing alternative streamflow management plans for specific river reaches or segments but are not directly transferable to other rivers or other regions. 3. A primary goal in riparian ecology is to develop general frameworks for prediction of vegetation response to changing environmental conditions. The development of riparian vegetation-flow response guilds offers a framework for transferring information from rivers where flow standards have been developed to maintain desirable vegetation attributes, to rivers with little or no existing information. 4. We propose to organise riparian plants into non-phylogenetic groupings of species with shared traits that are related to components of hydrologic regime: life history, reproductive strategy, morphology, adaptations to fluvial disturbance and adaptations to water availability. Plants from any river or region may be grouped

  7. 中国现当代小说中的故乡构建初探 (Literary Nativism, the Native Place and Modern Chinese Fiction

    Directory of Open Access Journals (Sweden)

    Yiyan Wang

    2007-01-01

    Full Text Available Although the importance of the native place in Chinese life is beyond dispute and it has been a significant preoccupation of Chinese authors throughout history, literary representations of the native place still remain to be studied systematically. This paper attempts to examine the construction of the native place in modern Chinese fiction and its role in literary representations of China. Until the beginning of the twentieth century, the native place in Chinese literature remained an abstract notion without specific geographical locations and the narrative focus was on the ‘native-place sentiment’ (Bryna Goodman 1995. It is a modern phenomenon that the native place appears as a local cultural space with ethnographic details and is closely related to the need for narrating China, although it can still be abstract and symbolic. The construction of the native place is crucial in the project of national narration for modern Chinese fiction, as it is often created as the nation’s cultural origin and authentication. However, the relationship between the native place and national representation in Chinese fiction is paradoxical, because, on the one hand the native place necessarily differs in origin, and on the other hand, many Chinese authors are devoted to China as a cultural totality. This paper will focus on the paradoxical relationship between the authors’ nativist aspirations to create distinctive local cultural identities and their commitment to the abstract idea of a single Chinese nation. Furthermore, both the native place and national narration are intricately associated with the tendency of literary nativism, i.e. the belief and the practice that literary writing should focus on constructing the native place and that the narrative style should continue and develop the indigenous narrative traditions. In other words, poetics is part of the politics in the configuration of the native place. The initial questions I shall try to

  8. Leaf gas exchange and water status responses of a native and non-native grass to precipitation across contrasting soil surfaces in the Sonoran Desert.

    Science.gov (United States)

    Ignace, Danielle D; Huxman, Travis E; Weltzin, Jake F; Williams, David G

    2007-06-01

    Arid and semi-arid ecosystems of the southwestern US are undergoing changes in vegetation composition and are predicted to experience shifts in climate. To understand implications of these current and predicted changes, we conducted a precipitation manipulation experiment on the Santa Rita Experimental Range in southeastern Arizona. The objectives of our study were to determine how soil surface and seasonal timing of rainfall events mediate the dynamics of leaf-level photosynthesis and plant water status of a native and non-native grass species in response to precipitation pulse events. We followed a simulated precipitation event (pulse) that occurred prior to the onset of the North American monsoon (in June) and at the peak of the monsoon (in August) for 2002 and 2003. We measured responses of pre-dawn water potential, photosynthetic rate, and stomatal conductance of native (Heteropogon contortus) and non-native (Eragrostis lehmanniana) C(4) bunchgrasses on sandy and clay-rich soil surfaces. Soil surface did not always amplify differences in plant response to a pulse event. A June pulse event lead to an increase in plant water status and photosynthesis. Whereas the August pulse did not lead to an increase in plant water status and photosynthesis, due to favorable soil moisture conditions facilitating high plant performance during this period. E. lehmanniana did not demonstrate heightened photosynthetic performance over the native species in response to pulses across both soil surfaces. Overall accumulated leaf-level CO(2) response to a pulse event was dependent on antecedent soil moisture during the August pulse event, but not during the June pulse event. This work highlights the need to understand how desert species respond to pulse events across contrasting soil surfaces in water-limited systems that are predicted to experience changes in climate.

  9. Developing the Guidelines for Reclamation to Forest Vegetation in the Athabasca Oil Sands Region

    Energy Technology Data Exchange (ETDEWEB)

    Straker, J. [Integral Ecology Group Ltd., Victoria, BC (Canada); Cumulative Environmental Management Association, Fort McMurray, AB (Canada). Reclamation Working Group, Terrestrial Subgroup; Donald, G. [Donald Functional and Applied Ecology Inc., Victoria, BC (Canada); Cumulative Environmental Management Association, Fort McMurray, AB (Canada). Reclamation Working Group, Terrestrial Subgroup

    2010-07-01

    This paper discussed the development process behind and the structure of the Guidelines for Reclamation to Forest Vegetation in the Athabasca Oil Sands Region. The advances present in the second edition, published in 2010, were described relative to the first edition, which was published in 1998. Oils sands mining companies are mandated to use the manual under the Alberta Environmental Protection and Enhancement Act. The paper provided an overview of the structure of the second edition and presented the process used to develop the second edition. It also described the planning approaches for revegetative treatments and the planning guidance of overstory and understory species selection. The methods for evaluating revegetative success were also described with particular reference to plant community composition and soil salinity indicators as examples of indicator development. The goal of the manual is to provide guidance on re-establishing the vegetation component of upland ecosystems on reclaimed landscapes and on evaluating the success of the re-establishment, assuming that the reclaimed plant communities should have species characteristic of native plant communities in the region, that the trends of vegetation community and structure development on reclaimed land should be similar to native plant communities in the region, and that the reclaimed ecosystems should have development trajectories that satisfy land-use objectives and provide resilience against natural disturbances. 15 refs., 1 tab., 1 fig.

  10. Carbon Dioxide Emission Evaluation of Porous Vegetation Concrete Blocks for Ecological Restoration Projects

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2017-02-01

    Full Text Available The purpose of this study is to determine the mix proportions that can minimize CO2 emissions while satisfying the target performance of porous vegetation concrete. The target performance of porous vegetation concrete was selected as compressive strength (>15 MPa and void ratio (>25%. This study considered the use of reinforcing fiber and styrene butadiene (SB latex to improve the strength of porous vegetation concrete, as well as the use of blast furnace slag aggregate to improve the CO2 emissions-reducing effect, and analyzed and evaluated the influence of fiber reinforcing, SB latex, and blast furnace slag aggregate on the compressive strength and CO2 emissions of porous vegetation concrete. The CO2 emissions of the raw materials were highest for cement, followed by aggregate, SB latex, and fiber. Blast furnace slag aggregate showed a 30% or more CO2 emissions-reducing effect versus crushed aggregate, and blast furnace slag cement showed a 78% CO2 emissions-reducing effect versus Portland cement. The CO2 emissions analyses for each raw material showed that the CO2 emissions during transportation were highest for the aggregate. Regarding CO2 emissions in each production stage, the materials stage produced the highest CO2 emissions, while the proportion of CO2 emissions in the transportation stage for each raw material, excluding fiber, were below 3% of total emissions. Use of blast furnace slag aggregate in porous vegetation concrete produced CO2 emissions-reducing effects, but decreased its compressive strength. Use of latex in porous vegetation concrete improved its compressive strength, but also increased CO2 emissions. Thus, it is appropriate to use latex in porous vegetation concrete to improve its strength and void ratio, and to use a blast furnace slag aggregate replacement ratio of 40% or less.

  11. Cardiovascular health: associations with race-ethnicity, nativity, and education in a diverse, population-based sample of Californians.

    Science.gov (United States)

    Bostean, Georgiana; Roberts, Christian K; Crespi, Catherine M; Prelip, Michael; Peters, Anne; Belin, Thomas R; McCarthy, William J

    2013-07-01

    This study examined how race-ethnicity, nativity, and education interact to influence disparities in cardiovascular (CV) health, a new concept defined by the American Heart Association. We assessed whether race-ethnicity and nativity disparities in CV health vary by education and whether the foreign-born differ in CV health from their U.S.-born race-ethnic counterparts with comparable education. We used data from the 2009 California Health Interview Survey to determine the prevalence of optimal CV health metrics (based on selected American Heart Association guidelines) among adults ages 25 and older (n = 42,014). We examined the interaction between education and ethnicity-nativity, comparing predicted probabilities of each CV health measure between U.S.-born and foreign-born White, Asian, and Latino respondents. All groups were at high risk of suboptimal physical activity levels, fruit and vegetable and fast food consumption, and overweight/obesity. Those with greater education were generally better off except among Asian respondents. Ethnicity-nativity differences were more pronounced among those with less than a college degree. The foreign-born respondents exhibited both advantages and disadvantages in CV health compared with their U.S.-born counterparts that varied by ethnicity-nativity. Education influences ethnicity-nativity disparities in CV health, with most race-ethnic and nativity differences occurring among the less educated. Studies of nativity differences in CV health should stratify by education in order to adequately address SES differences. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation, 1945--1947. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Mart, E.I.; Denham, D.H.; Thiede, M.E.

    1993-12-01

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project whose goal is to estimate the radiation dose that individuals could have received from emissions since 1944 at the U.S. Department of Energy`s (DOE) Hanford Site near Richland, Washington. The HEDR Project is conducted by Battelle, Pacific Northwest Laboratories (BNW). One of the radionuclides emitted that would affect the radiation dose was iodine-131. This report describes in detail the reconstructed conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation which was collected from the beginning of October 1945 through the end of December 1947.

  13. Native Seed Supply and the Restoration Species Pool.

    Science.gov (United States)

    Ladouceur, Emma; Jiménez-Alfaro, Borja; Marin, Maria; De Vitis, Marcello; Abbandonato, Holly; Iannetta, Pietro P M; Bonomi, Costantino; Pritchard, Hugh W

    2018-01-01

    Globally, annual expenditure on ecological restoration of degraded areas for habitat improvement and biodiversity conservation is approximately $18bn. Seed farming of native plant species is crucial to meet restoration goals, but may be stymied by the disconnection of academic research in seed science and the lack of effective policies that regulate native seed production/supply. To illustrate this problem, we identified 1,122 plant species important for European grasslands of conservation concern and found that only 32% have both fundamental seed germination data available and can be purchased as seed. The " restoration species pool," or set of species available in practice, acts as a significant biodiversity selection filter for species use in restoration projects. For improvement, we propose: (1) substantial expansion of research and development on native seed quality, viability, and production; (2) open-source knowledge transfer between sectors; and (3) creation of supportive policy intended to stimulate demand for biodiverse seed.

  14. Stylized Figures: Inspired by Native American Art

    Science.gov (United States)

    Jensen, Susie B.

    2013-01-01

    Teaching elementary-level art in the Pacific Northwest makes it natural for the author to develop a lesson based on Native American art of the area. The designs of the Northwest Indians can sometimes be a bit too sophisticated for the students to grasp, however, and it can be frustrating when developing such a project. Over a Labor Day weekend,…

  15. Psychosocial Predictors of Weight Loss among American Indian and Alaska Native Participants in a Diabetes Prevention Translational Project

    Directory of Open Access Journals (Sweden)

    Edward J. Dill

    2016-01-01

    Full Text Available The association of psychosocial factors (psychological distress, coping skills, family support, trauma exposure, and spirituality with initial weight and weight loss among American Indians and Alaska Natives (AI/ANs in a diabetes prevention translational project was investigated. Participants (n=3,135 were confirmed as prediabetic and subsequently enrolled in the Special Diabetes Program for Indians Diabetes Prevention (SDPI-DP demonstration project implemented at 36 Indian health care programs. Measures were obtained at baseline and after completing a 16-session educational curriculum focusing on weight loss through behavioral changes. At baseline, psychological distress and negative family support were linked to greater weight, whereas cultural spirituality was correlated with lower weight. Furthermore, psychological distress and negative family support predicted less weight loss, and positive family support predicted greater weight loss, over the course of the intervention. These bivariate relationships between psychosocial factors and weight remained statistically significant within a multivariate model, after controlling for sociodemographic characteristics. Conversely, coping skills and trauma exposure were not significantly associated with baseline weight or change in weight. These findings demonstrate the influence of psychosocial factors on weight loss in AI/AN communities and have substantial implications for incorporating adjunctive intervention components.

  16. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges

    Science.gov (United States)

    Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map’s coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions. PMID:27618445

  17. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges.

    Directory of Open Access Journals (Sweden)

    Marina Zanin

    Full Text Available Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map's coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions.

  18. Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape

    Science.gov (United States)

    Mark W. Chynoweth; Christopher A. Lepczyk; Creighton M. Litton; Steven C. Hess; James R. Kellner; Susan Cordell; Lalit Kumar

    2015-01-01

    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the...

  19. Effects of invasive alien kahili ginger (Hedychium gardnerianum) on native plant species regeneration in a Hawaiian rainforest

    Science.gov (United States)

    Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.

    2010-01-01

    Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.

  20. Seasonal Differences in Climatic Controls of Vegetation Growth in the Beijing-Tianjin Sand Source Region of China.

    Science.gov (United States)

    Wang, H.

    2017-12-01

    Seasonal differences in climatic controls of vegetation growth in the Beijing-Tianjin Sand Source Region of China Bin He1 , Haiyan Wan11 State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China Corresponding author: Bin He, email addresses: hebin@bnu.edu.cnPhone:+861058806506, Address: Beijing Normal University, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China. Email addresses of co-authors: wanghaiyan@mail.bnu.edu.cnABSTRACTLaunched in 2000, the Beiing-Tainjin Sand Source Controlling Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in vegetation growth in the BTSSCP region since the initiation of the project. Precipitation and related soil moisture conditions typically are considered to be the main drivers of vegetation growth in this arid region. However, by investigating the relationships between vegetation growth and corresponding climatic factors, we identified seasonal variation in the climatic constraints of vegetation growth. In spring, vegetation growth is stimulated mainly by elevated temperature, whereas precipitation is the lead driver of summer greening. In autumn, positive effects of both temperature and precipitation on vegetation growth were observed. Furthermore, strong biosphere-atmosphere interactions were observed in this region. Spring warming promotes vegetation growth, but also reduces soil moisture. Summer greening has a strong cooling effect on land surface temperature. These results indicate that 1) precipitation-based projections of vegetation growth may be misleading; and 2) the ecological and environment consequences of ecological projects should be comprehensively evaluated. KEYWORDS: vegetation growth, climatic drivers, seasonal variation, BTSSCP

  1. HABITAT USE BY NATIVE AND STOCKED TROUT (SALMO TRUTTA L. IN TWO NORTHEAST STREAMS, PORTUGAL

    Directory of Open Access Journals (Sweden)

    TEIXEIRA A.

    2006-04-01

    Full Text Available Habitat use by stocked and native brown trout (Salmo trutta L. was assessed in two headwater streams of North-eastern Portugal. Underwater observations were made during the summer season in three successive years to evaluate the effect of supplemental trout stocking. Multivariate analysis techniques applied to data sets on microhabitat use were exploited to identify the focal elevation (distance of fish from the bottom, total depth and cover as the variables that contribute most to the discrimination between stocked and native trout. Preference curves computed for native and stocked trout of the same age (1+, showed a distinct pattern in their ability to explore the available microhabitat resources. Stocked trout tended to occupy deeper pools (total depth > 100 cm vs. 60-100 cm for native trout, holding higher focal elevations (140-160 cm vs. 22.5 cm and cover (combination of boulders and overhanging vegetation or undercut banks. Furthermore, a high poststocking movement of 80% hatchery-reared fish was verified just one month after their release, suggesting that stocking did not contribute to the sustainable populations in either stream, and is far from being an adequate management technique.

  2. Late Holocene fire and vegetation reconstruction from the western Klamath Mountains, California, USA: a multi-disciplinary approach for examining potential human land-use impacts

    Science.gov (United States)

    J. N. Crawford; S. A. Mensing; Frank Lake; S. R. Zimmerman

    2015-01-01

    The influence of Native American land-use practices on vegetation composition and structure has long been a subject of significant debate. This is particularly true in portions of the western United States where tribal hunter-gatherers did not use agriculture to meet subsistence and other cultural needs. Climate has been viewed as the dominant determinant of vegetation...

  3. Rooting Characteristics of Vegetation near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dennis J. Hansen and W. Kent Ostler

    2003-01-01

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, (3) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies

  4. Parents'/Carers' Perceptions and Experiences of Growing, Preparing and Eating Their Own Fruit and Vegetables as Part of the "Field to Fork" Project

    Science.gov (United States)

    Burton, Diana M.; May, Stephanie

    2016-01-01

    This paper reports research into a project to encourage KS1 and KS2 pupils to eat more healthily by supporting their families to grow their own fruit and vegetables at home. Participants were recruited through a Primary School Trust comprising four primary schools in the North West of England. They were given practical support to enable them to…

  5. Classification of inland Bolboschoenus-dominated vegetation in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Hroudová, Zdenka; Hrivnák, R.; Chytrý, M.

    2009-01-01

    Roč. 39, č. 2 (2009), s. 205-215 ISSN 0340-269X R&D Projects: GA AV ČR IAA6005905; GA ČR GA521/04/0997 Institutional research plan: CEZ:AV0Z60050516 Keywords : vegetation classification * saline vegetation * freshwater inland communities Subject RIV: EF - Botanics Impact factor: 0.674, year: 2009

  6. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  7. Vegetation description, rare plant inventory, and vegetation monitoring for Craig Mountain, Idaho

    International Nuclear Information System (INIS)

    Mancuso, M.; Moseley, R.

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals

  8. Vegetation studies on Vandenberg Air Force Base, California

    Science.gov (United States)

    Schmalzer, Paul A.; Hickson, Diana E.; Hinkle, C. Ross

    1988-01-01

    Vandenburg Air Force Base, located in coastal central California with an area of 98,400 ac, contains resources of considerable biological significance. Available information on the vegetation and flora of Vandenburg is summarized and new data collected in this project are presented. A bibliography of 621 references dealing with vegetation and related topics related to Vanderburg was compiled from computer and manual literature searches and a review of past studies of the base. A preliminary floristic list of 642 taxa representing 311 genera and 80 families was compiled from past studies and plants identified in the vegetation sampling conducted in this project. Fifty-two special interest plant species are known to occur or were suggested to occur. Vegetation was sampled using permanent plots and transects in all major plant communities including chaparral, Bishop pine forest, tanbark oak forest, annual grassland, oak woodland, coastal sage scrub, purple sage scrub, coastal dune scrub, coastal dunes, box elder riparian woodland, will riparian woodland, freshwater marsh, salt marsh, and seasonal wetlands. Comparison of the new vegetation data to the compostie San Diego State University data does not indicate major changes in most communities since the original study. Recommendations are made for additional studies needed to maintain and extend the environmental data base and for management actions to improve resource protection.

  9. Zur Flora und Vegetation des Jeschkenkammes

    Czech Academy of Sciences Publication Activity Database

    Petřík, Petr; Višňák, R.

    2006-01-01

    Roč. 14, - (2006), s. 127-140 ISSN 0941-0627 R&D Projects: GA AV ČR IAA6005202 Institutional research plan: CEZ:AV0Z60050516 Keywords : phytogeography * potential natural vegetation * nature conservation Subject RIV: EF - Botanics

  10. Do native brown trout and non-native brook trout interact reproductively?

    Science.gov (United States)

    Cucherousset, J.; Aymes, J. C.; Poulet, N.; Santoul, F.; Céréghino, R.

    2008-07-01

    Reproductive interactions between native and non-native species of fish have received little attention compared to other types of interactions such as predation or competition for food and habitat. We studied the reproductive interactions between non-native brook trout ( Salvelinus fontinalis) and native brown trout ( Salmo trutta) in a Pyrenees Mountain stream (SW France). We found evidence of significant interspecific interactions owing to consistent spatial and temporal overlap in redd localizations and spawning periods. We observed mixed spawning groups composed of the two species, interspecific subordinate males, and presence of natural hybrids (tiger trout). These reproductive interactions could be detrimental to the reproduction success of both species. Our study shows that non-native species might have detrimental effects on native species via subtle hybridization behavior.

  11. Evaporative cooling over the Tibetan Plateau induced by vegetation growth

    Science.gov (United States)

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z. X.; Li, Yue; Myneni, Ranga B.; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-01-01

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system. PMID:26170316

  12. Solos e vegetação nativa remanescente no Município de Campinas Soil and native vegetation remnant in Campinas, SP, Brazil

    Directory of Open Access Journals (Sweden)

    Ivan Carlos de Moraes Ferreira

    2007-09-01

    Full Text Available O objetivo deste trabalho foi identificar atributos e classes de solos associados à ocorrência de remanescentes de cerrado e de floresta nativa em Campinas, SP, e identificar espécies indicadoras desses ambientes. Vinte e sete fragmentos de vegetação nativa foram estudados. Foi realizada a caracterização morfológica, classificação e coleta do solo para análises, bem como o levantamento florístico-fitossociológico do estrato arbóreo. A análise de correspondência canônica identificou as variáveis mais bem correlacionadas com a distribuição das espécies e identificou 15 variáveis que explicaram 31% da variância nos dois primeiros eixos. A classificação dos solos discriminou as fitofisionomias estudadas, Argissolos associados às matas e Latossolos aos cerrados, indício de que baixa fertilidade, baixa retenção de água e drenagem acentuada do solo favorecem o estabelecimento de cerrado. Parâmetro "n" da curva de retenção de água, densidade, H+Al, Ca, Al, K e Mg trocáveis, macroporos e matéria orgânica do solo foram os atributos dos solos mais efetivos nessa diferenciação fitofisionômica. A barreira química imposta pelo excesso de Al e deficiência de Ca no horizonte B e a baixa retenção de água nos solos sob cerrado favorecem as espécies Luehea grandiflora, Persea willdenovii, Xylopia aromatica e Erythroxylum daphnites, abundantes e exclusivamente encontradas nos fragmentos de cerrado.The objective of this work was to identify soil attributes and classes associated to the occurrence of forest and tropical savannah remnants in Campinas, SP, Brazil. Twenty seven native vegetation fragments were studied. Soil morphological, chemical, and physical characterization were carried out, along with floristic-phytosociological survey of the tree stratum. Canonic correspondence analysis identified variables better correlated with plant species distribution. Fifteen environment variables explained 31% of the variance of

  13. UNMANNED AERIAL VEHICLE (UAV) HYPERSPECTRAL REMOTE SENSING FOR DRYLAND VEGETATION MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Nancy F. Glenn; Jessica J. Mitchell; Matthew O. Anderson; Ryan C. Hruska

    2012-06-01

    UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus) and cheatgrass (Bromus tectorum).

  14. Effects of seeding ryegrass (Lolium multiflorum) on vegetation recovery following fire in a ponderosa pine (Pinus ponderosa) forest

    Science.gov (United States)

    Barclay, Angela D.; Betancourt, Julio L.; Allen, Craig D.

    2004-01-01

    Forty-nine vegetation transects were measured in 1997 and 1998 to determine the impact of grass seeding after the 1996 Dome Fire, which burned almost 6900 ha of ponderosa pine (Pinus ponderosa Lawson) forest in the Jemez Mountains of north-central New Mexico. High- and moderate-burned areas in Santa Fe National Forest were seeded with a mixture that included the exotic ryegrass (Lolium multiflorum Lam.). Adjacent burned areas of Bandelier National Monument were not seeded, and were used as a control in the post-seeding study. On the seeded plots, foliar cover of ryegrass declined from 1997 to 1998 due to self-inhibition and/or reduced precipitation from 1997 to 1998. Foliar cover and diversity of native forbs were greater in 1997 than 1998, probably due to a wet growing season in 1997. Cover, species richness, and diversity of native forbs were highest in non-seeded areas of moderate- and high-burn intensities. Regeneration and survivorship of conifer seedlings decreased as ryegrass cover increased, particularly in areas of high-burn intensity. Exotic plant cover, mostly horseweed [Conyza canadensis (L.) Cronq.], increased from 1997 to 1998 in non-seeded areas of moderate- and high-burn intensity. Both the initial success of seeding and the eventual impacts on native vegetation were strongly modulated by climate variability.

  15. ALIEN SPECIES IMPORTANTANCE IN NATIVE VEGETATION ALONG WADEABLE STREAMS, JOHN DAY RIVER BASIN, OREGON, USA

    Science.gov (United States)

    We evaluated the importance of alien species in existing vegetation along wadeable streams of a large, topographically diverse river basin in eastern Oregon, USA; sampling 165 plots (30 × 30 m) across 29 randomly selected 1-km stream reaches. Plots represented eight streamside co...

  16. Multiscale influence of woody riparian vegetation on fluvial topography quantified with ground-based and airborne lidar

    Science.gov (United States)

    Bywater-Reyes, Sharon; Wilcox, Andrew C.; Diehl, Rebecca M.

    2017-06-01

    Coupling between riparian vegetation and river processes can result in the coevolution of plant communities and channel morphology. Quantifying biotic-abiotic interactions remains difficult because of the challenges in making and analyzing appropriately scaled observations. We measure the influence of woody vegetation on channel topography at the patch and reach scales in a sand bed, dryland river system (Santa Maria River, Arizona) with native Populus and invasive Tamarix. At the patch scale, we use ground-based lidar to relate plant morphology to "tail bars" formed in the lee of vegetation. We find vegetation roughness density (λf) to most influence tail-bar shape and size, suggesting coherent flow structures associated with roughness density are responsible for sediment deposition at this scale. Using airborne lidar, we test whether relationships between topography and vegetation morphology observed at the patch scale are persistent at the reach scale. We find that elevation of the channel (relative to the local mean) covaries with a metric of vegetation density, indicating analogous influences of vegetation density on topography across spatial scales. While these results are expected, our approach provides insight regarding interactions between woody riparian vegetation and channel topography at multiple scales, and a means to quantify such interactions for use in other field settings.

  17. Napa River Salt Marsh Restoration Project. Volume 1: Environmental Impact Statement

    Science.gov (United States)

    2004-06-01

    Spartina alternifolia), which outcompetes and hybridizes with the native California cord grass. Coon Island, however, immediately adjacent to ponds in...sweet fennel (Foeniculum vulgare), and prickly lettuce . Urban Urban vegetation is dominated by landscaped grasses, flowers, shrubs, and trees, both

  18. THE USE OF DOCUMENTARY ÍNDIO CIDADÃO? IN A CULTURE PROJECT FOR THE REFLECTION ON THE RIGHTS OF BRAZILIAN NATIVE PEOPLE

    Directory of Open Access Journals (Sweden)

    Giselda Siqueira da Silva Schneider

    2015-12-01

    Full Text Available This article is about the use of film source, which one has been worked in a culture project, that was approved and it has going on in the law school of the Universidade Federal do Rio Grande  FURG. In this study, the methodology used is descriptive during the case study of culture project named I Ciclo de Estudos   Discutindo Direitos Históricos a partir do Documentário Índio Cidadão?, in that the film narrative, the documental research, and the bibliographic review are analyzed. It is discussed about the Brazilian native people rights which were declared by the Brazilian State since the Brasilian Constituent of 1987. It is reflected on the use of the film supply in the research and how it can be used in a specific way for the law study relating to the cultural projects. In relation to cultural project referred, it is questioned about the possible contributions that those actions can have in order to develop an awareness of academic society, including the acceptance and coexistence with cultural diversity at the University. It is concluded that the film source can contribute through cultural projects during the academic activities to promote the debate about the historical construction of rights and their effectiveness.

  19. In Situ Biogeochemical Treatment Demonstration: Lessons Learned from ESTCP Project ER 201124

    Science.gov (United States)

    2015-12-09

    native soil from the site amended with iron oxides at 3% concentration, electron donors, and sulfate (1,000 mg/L) to simulate an injection strategy...for biogeochemical transformation. Reactor # 2 (Abiotic Mulch) contained sand, mulch, vegetable oil (1%), iron oxides (3%), and sulfate (to simulate ...vegetable oil fermentation to volatile fatty acids (VFA) also likely reduced the pH and this change could have reduced the FeS reactivity. 2.3.5

  20. Invasive Alien Species of Terrestrial Vegetation of North-Eastern Uttar Pradesh

    Directory of Open Access Journals (Sweden)

    Sumit Srivastava

    2014-01-01

    Full Text Available The vegetational landscape of north-eastern Terai region at the foot hills of Central Himalayas is a mosaic of grassland, old-field, wasteland, and forest ecosystems. Like many other parts of the country, this region is also infested with alien intruders which not only interfere with the growth and production of food crops but also exercise adverse effects on the biodiversity of native species. The present study attempts to catalogue the invasive alien species of the terrestrial vegetation of north-eastern Uttar Pradesh especially with reference to their habit, taxonomic position, and nativity. A total of 1135 plant species within 580 genera under 119 families are so far known to occur in the region. Of these, only 149 species within 100 genera under 41 families have been found to be invasive aliens as evident from their center of origin, past history, nature of aggregation, and invasion observed under field conditions. About 80% of these invaders have been introduced from neotropics. Out of 173 invasive plants across India, this region shares 149 species, out of which 66% of species have come from Tropical America, 14% from African continent, and the rest from other countries. A better planning in the form of early identification and reporting of infestation and spread of noxious weeds is needed for their control.

  1. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model

    Science.gov (United States)

    King, David A.; Bachelet, Dominique M.; Symstad, Amy J.

    2013-01-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions

  2. Climate change and fire effects on a prairie–woodland ecotone: projecting species range shifts with a dynamic global vegetation model

    Science.gov (United States)

    King, David A; Bachelet, Dominique M; Symstad, Amy J

    2013-01-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions

  3. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model.

    Science.gov (United States)

    King, David A; Bachelet, Dominique M; Symstad, Amy J

    2013-12-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine-prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and

  4. Predicting landscape vegetation dynamics using state-and-transition simulation models

    Science.gov (United States)

    Colin J. Daniel; Leonardo. Frid

    2012-01-01

    This paper outlines how state-and-transition simulation models (STSMs) can be used to project changes in vegetation over time across a landscape. STSMs are stochastic, empirical simulation models that use an adapted Markov chain approach to predict how vegetation will transition between states over time, typically in response to interactions between succession,...

  5. Uncovering effects of climate variables on global vegetation

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to understand the causal relationships of how ecosystem dynamics, mostly characterized by vegetation changes, in different...

  6. Diversity and biomass of native macrophytes are negatively related to dominance of an invasive Poaceae in Brazilian sub-tropical streams

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Gonçalves Fernandes

    2013-06-01

    Full Text Available Besides exacerbated exploitation, pollution, flow alteration and habitats degradation, freshwater biodiversity is also threatened by biological invasions. This paper addresses how native aquatic macrophyte communities are affected by the non-native species Urochloa arrecta, a current successful invader in Brazilian freshwater systems. We compared the native macrophytes colonizing patches dominated and non-dominated by this invader species. We surveyed eight streams in Northwest Paraná State (Brazil. In each stream, we recorded native macrophytes' richness and biomass in sites where U. arrecta was dominant and in sites where it was not dominant or absent. No native species were found in seven, out of the eight investigated sites where U. arrecta was dominant. Thus, we found higher native species richness, Shannon index and native biomass values in sites without dominance of U. arrecta than in sites dominated by this invader. Although difficult to conclude about causes of such differences, we infer that the elevated biomass production by this grass might be the primary reason for alterations in invaded environments and for the consequent impacts on macrophytes' native communities. However, biotic resistance offered by native richer sites could be an alternative explanation for our results. To mitigate potential impacts and to prevent future environmental perturbations, we propose mechanical removal of the invasive species and maintenance or restoration of riparian vegetation, for freshwater ecosystems have vital importance for the maintenance of ecological services and biodiversity and should be preserved.

  7. Native and Non-native English Teachers' Perceptions of their Professional Identity: Convergent or Divergent?

    Directory of Open Access Journals (Sweden)

    Zia Tajeddin

    2016-10-01

    Full Text Available There is still a preference for native speaker teachers in the language teaching profession, which is supposed to influence the self-perceptions of native and nonnative teachers. However, the status of English as a globalized language is changing the legitimacy of native/nonnative teacher dichotomy. This study sought to investigate native and nonnative English-speaking teachers’ perceptions about native and nonnative teachers’ status and the advantages and disadvantages of being a native or nonnative teacher. Data were collected by means of a questionnaire and a semi-structured interview. A total of 200 native and nonnative teachers of English from the UK and the US, i.e. the inner circle, and Turkey and Iran, the expanding circle, participated in this study. A significant majority of nonnative teachers believed that native speaker teachers have better speaking proficiency, better pronunciation, and greater self-confidence. The findings also showed nonnative teachers’ lack of self-confidence and awareness of their role and status compared with native-speaker teachers, which could be the result of existing inequities between native and nonnative English-speaking teachers in ELT. The findings also revealed that native teachers disagreed more strongly with the concept of native teachers’ superiority over nonnative teachers. Native teachers argued that nonnative teachers have a good understanding of teaching methodology whereas native teachers are more competent in correct language. It can be concluded that teacher education programs in the expanding-circle countries should include materials for teachers to raise their awareness of their own professional status and role and to remove their misconception about native speaker fallacy.

  8. Past and future effects of climate change on spatially heterogeneous vegetation activity in China

    Science.gov (United States)

    Gao, Jiangbo; Jiao, Kewei; Wu, Shaohong; Ma, Danyang; Zhao, Dongsheng; Yin, Yunhe; Dai, Erfu

    2017-07-01

    Climate change is a major driver of vegetation activity but its complex ecological relationships impede research efforts. In this study, the spatial distribution and dynamic characteristics of climate change effects on vegetation activity in China from the 1980s to the 2010s and from 2021 to 2050 were investigated using a geographically weighted regression (GWR) model. The GWR model was based on combined datasets of satellite vegetation index, climate observation and projection, and future vegetation productivity simulation. Our results revealed that the significantly positive precipitation-vegetation relationship was and will be mostly distributed in North China. However, the regions with temperature-dominated distribution of vegetation activity were and will be mainly located in South China. Due to the varying climate features and vegetation cover, the spatial correlation between vegetation activity and climate change may be altered. There will be different dominant climatic factors for vegetation activity distribution in some regions such as Northwest China, and even opposite correlations in Northeast China. Additionally, the response of vegetation activity to precipitation will move southward in the next three decades. In contrast, although the high warming rate will restrain the vegetation activity, precipitation variability could modify hydrothermal conditions for vegetation activity. This observation is exemplified in the projected future enhancement of vegetation activity in the Tibetan Plateau and weakened vegetation activity in East and Middle China. Furthermore, the vegetation in most parts of North China may adapt to an arid environment, whereas in many southern areas, vegetation will be repressed by water shortage in the future.

  9. Debunking the "Digital Native": Beyond Digital Apartheid, towards Digital Democracy

    Science.gov (United States)

    Brown, C.; Czerniewicz, L.

    2010-01-01

    This paper interrogates the currently pervasive discourse of the "net generation" finding the concept of the "digital native" especially problematic, both empirically and conceptually. We draw on a research project of South African higher education students' access to and use of Information and Communication Technologies (ICTs)…

  10. Environmental conditions and vegetation recovery at abandoned drilling mud sumps in the Mackenzie Delta region, Northwest Territories, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, J.F. [Saskatchewan Univ., Regina, SK (Canada). Dept. of Biology

    2008-06-15

    Decadal scale impacts of exploratory oil and gas drilling activities on native plant communities in the lower Arctic tundra were investigated. The study used historical data from oil and gas exploration activities in the Mackenzie River Delta to assess changes in vegetation composition and environmental gradients at 7 drilling mud sumps located in the Kendall Island Bird Sanctuary. Over a period of 3 decades, the sumps had developed vegetation coverage equivalent in mass to vegetation in undisturbed areas. However, bare soil was observed at ponded sites where salt crusts had formed. The vegetation was composed of forbs, grasses, and tall shrubs that were distinct from surrounding low shrub communities. The area of vegetation around the sump was larger in upland and saline environments. Water around the sumps was associated with thaw subsidence that occurred after construction activities. Changes in drainage, surface salt concentrations, and active-layer depths were seen as the most significant factors in the resulting plant communities. 31 refs., 4 tabs., 7 figs.

  11. Regeneration of vegetation on wetland crossings for gas pipeline rights-of-way one year after construction

    International Nuclear Information System (INIS)

    Shem, L.M.; Zimmerman, R.E.; Zellmer, S.D.; Van Dyke, G.D.; Rastorfer, J.R.

    1993-01-01

    Four wetland crossings of gas pipeline rights-of-way (ROWs), located in Florida, Michigan, New Jersey, and New York, were surveyed for generation of vegetation roughly one year after pipeline construction was completed. Conventional trench-and-fill construction techniques were employed for all four sites. Estimated areal coverage of each species by vegetative strata within transect plots was recorded for plots on the ROW and in immediately adjacent wetlands undisturbed by construction activities. Relative success of regeneration was measured by percent exposed soil, species diversity, presence of native and introduced species, and hydric characteristics of the vegetation. Variable site factors included separation and replacement of topsoil, final grading of the soil, application of seed and fertilizer, and human disturbance unrelated to construction. Successful regeneration exhibited greater dependency on the first three factors listed

  12. Reanalysis and semantic persistence in native and non-native garden-path recovery.

    Science.gov (United States)

    Jacob, Gunnar; Felser, Claudia

    2016-01-01

    We report the results from an eye-movement monitoring study investigating how native and non-native speakers of English process temporarily ambiguous sentences such as While the gentleman was eating the burgers were still being reheated in the microwave, in which an initially plausible direct-object analysis is first ruled out by a syntactic disambiguation (were) and also later on by semantic information (being reheated). Both participant groups showed garden-path effects at the syntactic disambiguation, with native speakers showing significantly stronger effects of ambiguity than non-native speakers in later eye-movement measures but equally strong effects in first-pass reading times. Ambiguity effects at the semantic disambiguation and in participants' end-of-trial responses revealed that for both participant groups, the incorrect direct-object analysis was frequently maintained beyond the syntactic disambiguation. The non-native group showed weaker reanalysis effects at the syntactic disambiguation and was more likely to misinterpret the experimental sentences than the native group. Our results suggest that native language (L1) and non-native language (L2) parsing are similar with regard to sensitivity to syntactic and semantic error signals, but different with regard to processes of reanalysis.

  13. A work bibliography on native food consumption, demography and lifestyle

    International Nuclear Information System (INIS)

    Murray, C.E.; Lee, W.J.

    1992-12-01

    The purpose of this report is to provide a bibliography for the Native American tribe participants in the Hanford Environmental Dose Reconstruction (HEDR) Project to use. The HEDR Project's primary objective is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy's Hanford Site near Richland, Washington. Eight Native American tribes are responsible for estimating daily and seasonal consumption of traditional foods, demography, and other lifestyle factors that could have affected the radiation dose received by tribal members. This report provides a bibliography of recorded accounts that tribal researchers may use to verify their estimates. The bibliographic citations include references to information on the specific tribes, Columbia River plateau ethnobotany, infant feeding practices and milk consumption, nutritional studies and radiation, tribal economic and demographic characteristics (1940--1970), research methods, primary sources from the National Archives, regional archives, libraries, and museums

  14. A work bibliography on native food consumption, demography and lifestyle

    Energy Technology Data Exchange (ETDEWEB)

    Murray, C.E.; Lee, W.J.

    1992-12-01

    The purpose of this report is to provide a bibliography for the Native American tribe participants in the Hanford Environmental Dose Reconstruction (HEDR) Project to use. The HEDR Project's primary objective is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy's Hanford Site near Richland, Washington. Eight Native American tribes are responsible for estimating daily and seasonal consumption of traditional foods, demography, and other lifestyle factors that could have affected the radiation dose received by tribal members. This report provides a bibliography of recorded accounts that tribal researchers may use to verify their estimates. The bibliographic citations include references to information on the specific tribes, Columbia River plateau ethnobotany, infant feeding practices and milk consumption, nutritional studies and radiation, tribal economic and demographic characteristics (1940--1970), research methods, primary sources from the National Archives, regional archives, libraries, and museums.

  15. Uptake of uranium by native aquatic plants: potential for bioindication and phytoremediation

    Directory of Open Access Journals (Sweden)

    Favas P. J. C.

    2013-04-01

    Full Text Available The work presented here is a part the on going study on the uraniferous geochemical province of Central Portugal in which, the use of aquatic plants as indicators of uranium contamination is being probed using aquatic plants emphasizing their potential use in the emerging phytotechnologies. Even though we have observed very low concentration of U in the fresh waters of the studied sites we found a set of vegetable species with the ability to accumulate U in concentrations which are orders of magnitude higher than the surrounding environment. We have observed that Apium nodiflorum, Callitriche stagnalis, Lemna minor and Fontinalis antipyretica accumulated significant amounts of uranium, whereas Oenanthe crocata excluded U. These results indicate substantial scope for proper radiophytoremediation and phytosociological investigation exploiting the native flora. These species show great potential for phytoremediation because they are endemic and easy to grow in their native conditions. A. nodiflorum and C. stagnalis have high bioproductivity and yield good biomass.

  16. Modelling the Congo basin ecosystems with a dynamic vegetation model

    Science.gov (United States)

    Dury, Marie; Hambuckers, Alain; Trolliet, Franck; Huynen, Marie-Claude; Haineaux, Damien; Fontaine, Corentin M.; Fayolle, Adeline; François, Louis

    2014-05-01

    The scarcity of field observations in some parts of the world makes difficult a deep understanding of some ecosystems such as humid tropical forests in Central Africa. Therefore, modelling tools are interesting alternatives to study those regions even if the lack of data often prevents sharp calibration and validation of the model projections. Dynamic vegetation models (DVMs) are process-based models that simulate shifts in potential vegetation and its associated biogeochemical and hydrological cycles in response to climate. Initially run at the global scale, DVMs can be run at any spatial scale provided that climate and soil data are available. In the framework of the BIOSERF project ("Sustainability of tropical forest biodiversity and services under climate and human pressure"), we use and adapt the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) to study the Congo basin vegetation dynamics. The field campaigns have notably allowed the refinement of the vegetation representation from plant functional types (PFTs) to individual species through the collection of parameters such as the specific leaf area or the leaf C:N ratio of common tropical tree species and the location of their present-day occurrences from literature and available database. Here, we test the model ability to reproduce the present spatial and temporal variations of carbon stocks (e.g. biomass, soil carbon) and fluxes (e.g. gross and net primary productivities (GPP and NPP), net ecosystem production (NEP)) as well as the observed distribution of the studied species over the Congo basin. In the lack of abundant and long-term measurements, we compare model results with time series of remote sensing products (e.g. vegetation leaf area index (LAI), GPP and NPP). Several sensitivity tests are presented: we assess consecutively the impacts of the level at which the vegetation is simulated (PFTs or species), the spatial resolution and the initial land

  17. Research on the Vegetation Structure of the Pastures in Silvan District, Diyarbakır

    Directory of Open Access Journals (Sweden)

    Seyithan SEYDOŞOĞLU

    2015-03-01

    Full Text Available This research was conducted to determine the vegetation structures of the native pastures in the six villages of district Silvan, Diyarbakır, in the year of 2014 .Vegetations of the pastures were studied by the Loop Method. In each pasture 400 loop measurements in 4 lines were made. Plant-covered area rate, botanical composition in the plant covered area was calculated from the loop measurements. 43 plant species of 35 genus from 11 families were determined on the vegetation of the pastures. Plant cover percentages varied between 46.2% to 72.0% and botanical composition rate of grasses, legumes and other family plants in the total plant cover varied between 30.81%, and 72.92%, 16.89%, and 48.25%, 10.19%, and 39.74%, respectively, as depending on the pastures. From the results of the research, it was concluded that vegetations of the pastures were generally composed of invader plants. Therefore the pastures have poor condition. The research on the determination of proper improvement methods for the pastures must be conducted.

  18. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Koteen, Laura E; Harte, John [Energy and Resources Group, 310 Barrows Hall, University of California, Berkeley, CA 94720 (United States); Baldocchi, Dennis D, E-mail: lkoteen@berkeley.edu [Department of Environmental Science, Policy and Management, 137 Mulford Hall, University of California, Berkeley, CA 94720 (United States)

    2011-10-15

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  19. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    International Nuclear Information System (INIS)

    Koteen, Laura E; Harte, John; Baldocchi, Dennis D

    2011-01-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  20. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Science.gov (United States)

    Koteen, Laura E.; Baldocchi, Dennis D.; Harte, John

    2011-10-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  1. Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen

    2003-09-30

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies.

  2. Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1

    International Nuclear Information System (INIS)

    Hansen, D.J.

    2003-01-01

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies

  3. Impacts of recreation and tourism on plant biodiversity and vegetation in protected areas in Australia.

    Science.gov (United States)

    Pickering, Catherine Marina; Hill, Wendy

    2007-12-01

    This paper reviews recent research into the impact of recreation and tourism in protected areas on plant biodiversity and vegetation communities in Australia. Despite the international significance of the Australian flora and increasing visitation to protected areas there has been limited research on recreational and tourism impacts in Australia. As overseas, there are obvious direct impacts of recreation and tourism such as clearing of vegetation for infrastructure or damage from trampling, horse riding, mountain biking and off road vehicles. As well, there are less obvious but potentially more severe indirect impacts. This includes self-propagating impacts associated with the spread of some weeds from trails and roads. It also includes the severe impact on native vegetation, including many rare and threatened plants, from spread of the root rot fungus Phytopthora cinnamomi. This review highlights the need for more recreational ecology research in Australia.

  4. Community-level plant-soil feedbacks explain landscape distribution of native and non-native plants.

    Science.gov (United States)

    Kulmatiski, Andrew

    2018-02-01

    Plant-soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short-term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non-native species, or a mixed plant community in different plots in a common-garden experiment. After 4 years, plants were removed and one native and one non-native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non-native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non-native, Centaurea diffusa , and non-native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata . Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common-garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non-native plant community on non-native soils. In contrast, when PSF effects were removed, the model predicted that non-native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank-order abundance of native and non-native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors

  5. Native Speakers' Perception of Non-Native English Speech

    Science.gov (United States)

    Jaber, Maysa; Hussein, Riyad F.

    2011-01-01

    This study is aimed at investigating the rating and intelligibility of different non-native varieties of English, namely French English, Japanese English and Jordanian English by native English speakers and their attitudes towards these foreign accents. To achieve the goals of this study, the researchers used a web-based questionnaire which…

  6. Short-term responses of reptile assemblages to fire in native and weedy tropical savannah

    Directory of Open Access Journals (Sweden)

    Rickard Abom

    2016-04-01

    Full Text Available Fire is frequently used as a management tool to reduce the cover of weeds, to reduce the amount of fuel available for future fires, and to create succession mosaics that may enhance biodiversity. We determined the influence of fire on wildlife, by quantifying reptile assemblage composition in response to fire in a weedy environment characterised by very short-term fire return intervals (<2 years. We used reptiles because they are often understudied, and are only moderately vagile compared to other vertebrates, and they respond strongly to changes in vegetation structure. We repeatedly sampled 24 replicate sampling sites after they had been unburned for two years, just prior to burning (pre-burnt, just after burning (post-burnt, and up to 15 months after burning (revegetated and monitored vegetation structure and reptile richness, abundance and assemblage composition. Our sites were not spatially auto-correlated, and were covered by native kangaroo grass (Themeda triandra, black spear grass (Heteropogon contortus, or an invasive weed (grader grass, Themeda quadrivalvis. Reptile abundance and richness were highest when sites had been unburned for 2 years, and greatly reduced in all areas post burning. The lowest reptile abundances occurred in sites dominated by the weed. Reptile abundance and richness had recovered in all grass types 15 months after burning, but assemblage composition changed. Some species were present only in before our focus fire in native grass, and their populations did not recover even 15 months post-burning. Even in fire-prone, often-burnt habitats such as our study sites, in which faunal richness and abundance were not strongly influenced by fire, reptile assemblage composition was altered. To maintain faunal biodiversity in fire-prone systems, we suggest reducing the frequency of prescribed fires, and (if possible excluding fire from weedy invasions if it allows native grasses to return.

  7. Modification of a Community Garden to Attract Native Bee Pollinators in Urban San Luis Obispo, California

    Directory of Open Access Journals (Sweden)

    Robbin W. Thorp

    2009-01-01

    Full Text Available Gardens have become increasingly important places for growing nutritional food, for conserving biodiversity, for biological and ecological research and education, and for community gathering. Gardens can also be designed with the goal of attracting specific wildlife, like birds and butterflies, but pollinators, like bees, can also be drawn to specially planned and modified gardens. A community garden in San Luis Obispo, California provided the setting for modification with the goal of attracting native bee pollinators by planting known bee-attractive plants. The local gardeners participated in a survey questionnaire and focused interviews to provide their input and interest in such a project. Presentations on our work with native bees in urban environments and gardening to attract bees were also given to interested gardeners. Work of this type also benefited from a lead gardener who managed donated bee plants and kept up momentum of the project. Modification of the garden and monitoring of native bees started in 2007 and continued through the growing season of 2009. Diversity of collected and observed native bees has increased each year since 2007. To date, 40 species in 17 genera of mostly native bees has been recorded from the garden, and this number is expected to increase through time.

  8. Release from native root herbivores and biotic resistance by soil pathogens in a new habitat both affect the alien Ammophila arenaria in South Africa

    NARCIS (Netherlands)

    Knevel, IC; Lans, T; Menting, FBJ; Hertling, UM; van der Putten, WH

    2004-01-01

    Many native communities contain exotic plants that pose a major threat to indigenous vegetation and ecosystem functioning. Therefore the enemy release hypothesis (ERH) and biotic resistance hypothesis (BRH) were examined in relation to the invasiveness of the introduced dune grass Ammophila arenaria

  9. Vegetation response to invasive Tamarix control in southwestern U.S. rivers: a collaborative study including 416 sites.

    Science.gov (United States)

    González, Eduardo; Sher, Anna A; Anderson, Robert M; Bay, Robin F; Bean, Daniel W; Bissonnete, Gabriel J; Bourgeois, Bérenger; Cooper, David J; Dohrenwend, Kara; Eichhorst, Kim D; El Waer, Hisham; Kennard, Deborah K; Harms-Weissinger, Rebecca; Henry, Annie L; Makarick, Lori J; Ostoja, Steven M; Reynolds, Lindsay V; Robinson, W Wright; Shafroth, Patrick B

    2017-09-01

    Most studies assessing vegetation response following control of invasive Tamarix trees along southwestern U.S. rivers have been small in scale (e.g., river reach), or at a regional scale but with poor spatial-temporal replication, and most have not included testing the effects of a now widely used biological control. We monitored plant composition following Tamarix control along hydrologic, soil, and climatic gradients in 244 treated and 172 reference sites across six U.S. states. This represents the largest comprehensive assessment to date on the vegetation response to the four most common Tamarix control treatments. Biocontrol by a defoliating beetle (treatment 1) reduced the abundance of Tamarix less than active removal by mechanically using hand and chain-saws (2), heavy machinery (3) or burning (4). Tamarix abundance also decreased with lower temperatures, higher precipitation, and follow-up treatments for Tamarix resprouting. Native cover generally increased over time in active Tamarix removal sites, however, the increases observed were small and was not consistently increased by active revegetation. Overall, native cover was correlated to permanent stream flow, lower grazing pressure, lower soil salinity and temperatures, and higher precipitation. Species diversity also increased where Tamarix was removed. However, Tamarix treatments, especially those generating the highest disturbance (burning and heavy machinery), also often promoted secondary invasions of exotic forbs. The abundance of hydrophytic species was much lower in treated than in reference sites, suggesting that management of southwestern U.S. rivers has focused too much on weed control, overlooking restoration of fluvial processes that provide habitat for hydrophytic and floodplain vegetation. These results can help inform future management of Tamarix-infested rivers to restore hydrogeomorphic processes, increase native biodiversity and reduce abundance of noxious species. © 2017 by the

  10. Decomposing the uncertainty in climate impact projections of Dynamic Vegetation Models: a test with the forest models LANDCLIM and FORCLIM

    Science.gov (United States)

    Cailleret, Maxime; Snell, Rebecca; von Waldow, Harald; Kotlarski, Sven; Bugmann, Harald

    2015-04-01

    Different levels of uncertainty should be considered in climate impact projections by Dynamic Vegetation Models (DVMs), particularly when it comes to managing climate risks. Such information is useful to detect the key processes and uncertainties in the climate model - impact model chain and may be used to support recommendations for future improvements in the simulation of both climate and biological systems. In addition, determining which uncertainty source is dominant is an important aspect to recognize the limitations of climate impact projections by a multi-model ensemble mean approach. However, to date, few studies have clarified how each uncertainty source (baseline climate data, greenhouse gas emission scenario, climate model, and DVM) affects the projection of ecosystem properties. Focusing on one greenhouse gas emission scenario, we assessed the uncertainty in the projections of a forest landscape model (LANDCLIM) and a stand-scale forest gap model (FORCLIM) that is caused by linking climate data with an impact model. LANDCLIM was used to assess the uncertainty in future landscape properties of the Visp valley in Switzerland that is due to (i) the use of different 'baseline' climate data (gridded data vs. data from weather stations), and (ii) differences in climate projections among 10 GCM-RCM chains. This latter point was also considered for the projections of future forest properties by FORCLIM at several sites along an environmental gradient in Switzerland (14 GCM-RCM chains), for which we also quantified the uncertainty caused by (iii) the model chain specific statistical properties of the climate time-series, and (iv) the stochasticity of the demographic processes included in the model, e.g., the annual number of saplings that establish, or tree mortality. Using methods of variance decomposition analysis, we found that (i) The use of different baseline climate data strongly impacts the prediction of forest properties at the lowest and highest, but

  11. Integrated task plans for the Hanford Environmental Dose Reconstruction Project, June 1992 through May 1994

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1993-09-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to representative individuals. The primary objective of work to be performed through May 1994 is to determine the project's appropriate scope: space, time, radionuclides, pathways and representative individuals; determine the project's appropriate level of accuracy/level of uncertainty in dose estimates; complete model and data development; and estimate doses for the Hanford Thyroid Disease Study and representative individuals. A major objective of the HEDR Project is to estimate doses to the thyroid of individuals who were exposed to iodine-131. A principal pathway for many of these individuals was milk from cows that ate vegetation contaminated by iodine-131 released into the air from Hanford facilities. The plan for June 1992 through May 1994 has been prepared based on activities and budgets approved by the Technical Steering Panel (TSP) at its meetings on January 7--9, 1993 and February 25--26, 1993. The activities can be divided into three broad categories: (1) computer code and data development activities, (2) calculation of doses, and (3) technical and communication support to the TSP and the TSP Native American Working Group (NAWG). The following activities will be conducted to accomplish project objectives through May 1994

  12. Hydraulic and Vegetative Models of Historic Environmental Conditions Isolate the Role of Riparian Vegetation in Inducing Channel Change

    Science.gov (United States)

    Manners, R.; Schmidt, J. C.; Wheaton, J. M.

    2011-12-01

    An enduring question in geomorphology is the role of riparian vegetation in inducing or exacerbating channel narrowing. It is typically difficult to isolate the role of vegetation in causing channel narrowing, because narrowing typically occurs where there are changes in stream flow, sediment supply, the invasion of non-native vegetation, and sometimes climate change. Therefore, linkages between changes in vegetation communities and changes in channel form are often difficult to identify. We took a mechanistic approach to isolate the role of the invasive riparian shrub tamarisk (Tamarix spp) in influencing channel narrowing in the Colorado River basin. Detailed geomorphic reconstructions of two sites on the Yampa and Green Rivers, respectively, in Dinosaur National Monument show that channel narrowing has been progressive and that tamarisk encroachment has also occurred; at the same time, dams have been constructed, diversions increased, and spring snowmelt runoff has been occurring earlier in spring. We simulated hydraulic and sediment transport conditions during the two largest floods of record -- 1984 and 2011. Two-dimensional hydraulic models were built to reflect these conditions and allowed us to perform sensitivity tests to determine the dominant determinants of the observed patterns of erosion and deposition. Channel and floodplain topography were constrained through detailed stratigraphic analysis, including precise dating of deposits based on dating of buried tamarisk plants in a series of floodplain trenches and pits. We also used historical air photos to establish past channel topography. To parameterize the influence of riparian vegetation, we developed a model that links detailed terrestrial laser scan (TLS) measurements of stand structure and its corresponding hydraulic roughness at the patch scale to reach-scale riparian vegetation patterns determined from airborne LiDaR (ALS). This model, in conjunction with maps of the ages and establishment

  13. Restoration treatments in urban park forests drive long-term changes in vegetation trajectories.

    Science.gov (United States)

    Johnson, Lea R; Handel, Steven N

    2016-04-01

    Municipalities are turning to ecological restoration of urban forests as a measure to improve air quality, ameliorate urban heat island effects, improve storm water infiltration, and provide other social and ecological benefits. However, community dynamics following urban forest restoration treatments are poorly documented. This study examines the long-term effects of ecological restoration undertaken in New York City, New York, USA, to restore native forest in urban park natural areas invaded by woody non-native plants that are regional problems. In 2009 and 2010, we sampled vegetation in 30 invaded sites in three large public parks that were restored 1988-1993, and 30 sites in three large parks that were similarly invaded but had not been restored. Data from these matched plots reveal that the restoration treatment achieved its central goals. After 15-20 years, invasive species removal followed by native tree planting resulted in persistent structural and compositional shifts, significantly lower invasive species abundance, a more complex forest structure, and greater native tree recruitment. Together, these findings indicate that successional trajectories of vegetation dynamics have diverged between restored forests and invaded forests that were not restored. In addition, the data suggest that future composition of these urban forest patches will be novel assemblages. Restored and untreated sites shared a suite of shade-intolerant, quickly-growing tree species that colonize disturbed sites, indicating that restoration treatments created sites hospitable for germination and growth of species adapted to high light conditions and disturbed soils. These findings yield an urban perspective on the use of succession theory in ecological restoration. Models of ecological restoration developed in more pristine environments must be modified for use in cities. By anticipating both urban disturbances and ecological succession, management of urban forest patches can be

  14. Native American nurse leadership.

    Science.gov (United States)

    Nichols, Lee A

    2004-07-01

    To identify which characteristics, wisdom, and skills are essential in becoming an effective Native American nurse leader. This will lead to the development of a curriculum suitable for Native American nurses. A qualitative, descriptive design was used for this study. Focus groups were conducted in Polson, Montana. A total of 67 Native and non-Native nurses participated. Sixty-seven percent of them were members of Indian tribes. Data were content analyzed using Spradley's ethnographic methodology. Three domains of analysis emerged: point of reference for the leader (individual, family, community), what a leader is (self-actualized, wise, experienced, political, bicultural, recognized, quiet presence, humble, spiritual, and visionary), and what a leader does (mentors, role models, communicates, listens, demonstrates values, mobilizes, and inspires). Native nurse leaders lead differently. Thus, a leadership curriculum suitable for Native nurses may lead to increased work productivity and therefore improved patient care for Native Americans.

  15. Recovery of Vegetation Cover and Soil after the Removal of Sheep in Socorro Island, Mexico

    Directory of Open Access Journals (Sweden)

    Antonio Ortíz-Alcaraz

    2016-04-01

    Full Text Available For over 140 years, the habitat of Socorro Island in the Mexican Pacific has been altered by the presence of exotic sheep. Overgrazing, jointly with tropical storms, has caused soil erosion, and more than 2000 hectares of native vegetation have been lost. Sheep eradication was conducted from 2009 to 2012. Since then, the vegetation has begun to recover passively, modifying soil properties. The objective of our study was to verify that this island was resilient enough to be recovered and in a relatively short time scale. To confirm our hypothesis, we analyzed changes in the physical-chemical properties of the soil and vegetation cover, the last one in different times and habitats after sheep eradication. The change in vegetation cover was estimated by comparing the normalized difference vegetation index (NDVI between 2008 and 2013. In sites altered by feral sheep, soil compaction was assessed, and soil samples were taken, analyzing pH, electrical conductivity, organic carbon, total nitrogen, phosphorus, calcium, and magnesium. After a year of total sheep eradication, clear indications in the recovery of vegetation cover and improvement of soil quality parameters were observed and confirmed, specifically compaction and nitrogen, organic carbon, phosphorus, and calcium. The results seem to support our hypothesis.

  16. Negative effect of litter of invasive weed Lantana camara on structure and composition of vegetation in the lower Siwalik Hills, northern India.

    Science.gov (United States)

    Singh, Harminder Pal; Batish, Daizy R; Dogra, Kuldip Singh; Kaur, Shalinder; Kohli, Ravinder Kumar; Negi, Anjana

    2014-06-01

    Lantana camara, an aromatic shrub, native to tropical America, was introduced into India for ornamental hedging, but later escaped and became a serious invasive weed. This study assessed the quantitative and qualitative status of plant community richness and diversity in areas invaded by L. camara in the Siwalik Hills (Himachal Pradesh, India), and explored allelopathy as a possible mechanism of interference. We measured species diversity, richness and evenness of the vegetation in areas invaded and uninvaded by L. camara. Allelopathic effects of L. camara rhizosphere soil and litter were assessed against two native plants-Achyranthes aspera (a herb) and Albizia lebbeck (a tree). Density, biomass and indices of diversity, richness and evenness were reduced by L. camara, indicating a significant alteration in composition and structure of native communities. Seedling growth of the test species was reduced in L. camara rhizosphere- and litter-amended soil. The inhibitory effect was ameliorated by the addition of activated charcoal, indicating the presence of organic inhibitors (quantified as phenolics) in the soil. Lantana invasion greatly reduces the density and diversity of the vegetation in the invaded area, and chemical interference of its litter plays an important role in invasion.

  17. Assessing the Impact of Spectral Resolution on Classification of Lowland Native Grassland Communities Based on Field Spectroscopy in Tasmania, Australia

    Directory of Open Access Journals (Sweden)

    Bethany Melville

    2018-02-01

    Full Text Available This paper presents a case study for the analysis of endangered lowland native grassland communities in the Tasmanian Midlands region using field spectroscopy and spectral convolution techniques. The aim of the study was to determine whether there was significant improvement in classification accuracy for lowland native grasslands and other vegetation communities based on hyperspectral resolution datasets over multispectral equivalents. A spectral dataset was collected using an ASD Handheld-2 spectroradiometer at Tunbridge Township Lagoon. The study then employed a k-fold cross-validation approach for repeated classification of a full hyperspectral dataset, a reduced hyperspectral dataset, and two convoluted multispectral datasets. Classification was performed on each of the four datasets a total of 30 times, based on two different class configurations. The classes analysed were Themeda triandra grassland, Danthonia/Poa grassland, Wilsonia rotundifolia/Selliera radicans, saltpan, and a simplified C3 vegetation class. The results of the classifications were then tested for statistically significant differences using ANOVA and Tukey’s post-hoc comparisons. The results of the study indicated that hyperspectral resolution provides small but statistically significant increases in classification accuracy for Themeda and Danthonia grasslands. For other classes, differences in classification accuracy for all datasets were not statistically significant. The results obtained here indicate that there is some potential for enhanced detection of major lowland native grassland community types using hyperspectral resolution datasets, and that future analysis should prioritise good performance in these classes over others. This study presents a method for identification of optimal spectral resolution across multiple datasets, and constitutes an important case study for lowland native grassland mapping in Tasmania.

  18. Bonneville - Hood River Vegetation Management Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1998-08-01

    To maintain the reliability of its electrical system, BPA, in cooperation with the U.S. Forest Service, needs to expand the range of vegetation management options used to clear unwanted vegetation on about 20 miles of BPA transmission line right-of-way between Bonneville Dam and Hood River; Oregon, within the Columbia Gorge National Scenic Area (NSA). We propose to continue controlling undesirable vegetation using a program of Integrated Vegetation Management (IVM) which includes manual, biological and chemical treatment methods. BPA has prepared an Environmental Assessment (EA) (DOE/EA-1257) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  19. Facilitation and interference of seedling establishment by a native legume before and after wildfire.

    Science.gov (United States)

    Goergen, Erin; Chambers, Jeanne C

    2012-01-01

    In semi-arid ecosystems, heterogeneous resources can lead to variable seedling recruitment. Existing vegetation can influence seedling establishment by modifying the resource and physical environment. We asked how a native legume, Lupinus argenteus, modifies microenvironments in unburned and burned sagebrush steppe, and if L. argenteus presence facilitates seedling establishment of native species and the non-native annual grass, Bromus tectorum. Field treatments examined mechanisms by which L. argenteus likely influences establishment: (1) live L. argenteus; (2) dead L. argenteus; (3) no L. argenteus; (4) no L. argenteus with L. argenteus litter; (5) no L. argenteus with inert litter; and (6) mock L. argenteus. Response variables included soil nitrogen, moisture, temperature, solar radiation, and seedling establishment of the natives Elymus multisetus and Eriogonum umbellatum, and non-native B. tectorum. In both unburned and burned communities, there was higher spring soil moisture, increased shade and reduced maximum temperatures under L. argenteus canopies. Adult L. argenteus resulted in greater amounts of soil nitrogen (N) only in burned sagebrush steppe, but L. argenteus litter increased soil N under both unburned and burned conditions. Although L. argenteus negatively affected emergence and survival of B. tectorum overall, its presence increased B. tectorum biomass and reproduction in unburned plots. However, L. argenteus had positive facilitative effects on size and survival of E. multisetus in both unburned and burned plots. Our study indicates that L. argenteus can facilitate seedling establishment in semi-arid systems, but net effects depend on the species examined, traits measured, and level of abiotic stress.

  20. 77 FR 59163 - Andrew Pickens Ranger District; South Carolina; AP Loblolly Pine Removal and Restoration Project

    Science.gov (United States)

    2012-09-26

    ..., dogwood, and sourwood. Stand density is high, typically ranging from 120 to 160 square feet of basal area... native forest vegetation. This change in condition would improve ecosystem [[Page 59164

  1. Health promoting compounds in vegetables and fruits:

    DEFF Research Database (Denmark)

    Brandt, K.; Christensen, L.P.; Hansen-Møller, J.

    2004-01-01

    Vegetables contain unknown compounds with important health promoting effect. The described project defined and tested a two-step screening procedure for identification of such compounds. Step 1 is initial screening according to three criteria: 1.1, chemically reactive functional groups; 1...

  2. Non-native gobies facilitate the transmission of Bucephalus polymorphus (Trematoda)

    Czech Academy of Sciences Publication Activity Database

    Ondračková, Markéta; Hudcová, Iveta; Dávidová, Martina; Adámek, Zdeněk; Kašný, M.; Jurajda, Pavel

    2015-01-01

    Roč. 8, č. 1 (2015), s. 382 ISSN 1756-3305 R&D Projects: GA ČR(CZ) GAP505/12/2569 Institutional support: RVO:68081766 Keywords : Bucephalus polymorphus * Complex life cycle * Goby * Infectivity * Intermediate host * Non-native species * Trematode Subject RIV: EH - Ecology, Behaviour Impact factor: 3.234, year: 2015

  3. Influence of shrub cover vegetal and slope length on soil bulk density

    International Nuclear Information System (INIS)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-01-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  4. Native listeners

    NARCIS (Netherlands)

    Cutler, A.

    2002-01-01

    Becoming a native listener is the necessary precursor to becoming a native speaker. Babies in the first year of life undertake a remarkable amount of work; by the time they begin to speak, they have perceptually mastered the phonological repertoire and phoneme co-occurrence probabilities of the

  5. Non-native fish control below Glen Canyon Dam - Report from a structured decision-making project

    Science.gov (United States)

    Runge, Michael C.; Bean, Ellen; Smith, David; Kokos, Sonja

    2011-01-01

    This report describes the results of a structured decision-making project by the U.S. Geological Survey to provide substantive input to the Bureau of Reclamation (Reclamation) for use in the preparation of an Environmental Assessment concerning control of non-native fish below Glen Canyon Dam. A forum was created to allow the diverse cooperating agencies and Tribes to discuss, expand, and articulate their respective values; to develop and evaluate a broad set of potential control alternatives using the best available science; and to define individual preferences of each group on how to manage the inherent trade-offs in this non-native fish control problem. This project consisted of two face-to-face workshops, held in Mesa, Arizona, October 18-20 and November 8-10, 2010. At the first workshop, a diverse set of objectives was discussed, which represented the range of concerns of those agencies and Tribes present. A set of non-native fish control alternatives ('hybrid portfolios') was also developed. Over the 2-week period between the two workshops, four assessment teams worked to evaluate the control alternatives against the array of objectives. At the second workshop, the results of the assessment teams were presented. Multi-criteria decision analysis methods were used to examine the trade-offs inherent in the problem, and allowed the participating agencies and Tribes to express their individual judgments about how those trade-offs should best be managed in Reclamation`s selection of a preferred alternative. A broad array of objectives was identified and defined, and an effort was made to understand how these objectives are likely to be achieved by a variety of strategies. In general, the objectives reflected desired future conditions over 30 years. A rich set of alternative approaches was developed, and the complex structure of those alternatives was documented. Multi-criteria decision analysis methods allowed the evaluation of those alternatives against the array

  6. O PAPEL DA COBERTURA VEGETAL NOS AMBIENTES URBANOS E SUA INFLUÊNCIA NA QUALIDADE DE VIDA NAS CIDADES

    Directory of Open Access Journals (Sweden)

    Taíse Ernestina Prestes Duarte

    2017-01-01

    Full Text Available HE ROLE OF VEGETATION IN URBAN ENVIRONMENTS AND THEIR INFLUENCE ON QUALITY OF LIFE IN CITIES This study aimed to understand the benefits of the vegetation cover for the quality of urban life, setting as this quality is measured and, reflecting on the handling of the native vegetation in the process of formation and expansion of urban spaces. This study also sought, address aspects of urban vegetation in Rondonópolis – MT, while a medium-sized municipality, which experiences a process of accelerated growth from the 1970s to understand the influence of vegetation on the quality of life in cities and its function in urban environments, this study proposes a critical reflection on the role of vegetation in urban ecosystems, through a narrative review based on scientific articles, books, theses and dissertations on the subject. This narrative review addressed the urban ecosystems against the intense urban growth and its consequent deterioration of environmental quality provided the urban population. Thus, this narrative review has allowed a better understanding of the influence of vegetation on the quality of life in cities, establishing the vegetation exerts specific ecosystem functions, which in large part, are completely ignored by urban planning. Still, the analysis of local studies on the vegetation cover in Rondonópolis allowed understand how this city booming, organizes and maintains the vegetation in its urban space.

  7. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    Science.gov (United States)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    our hypothesis. That is, the change of vegetation in space and time may be better understood when modelling vegetation change as both a dynamic and multivariate process. Therefore, future research will focus on a multivariate dynamical spatio-temporal modelling approach. This ongoing research is performed within the context of the project "Global impacts of hydrological and climatic extremes on vegetation" (project acronym: SAT-EX) which is part of the Belgian research programme for Earth Observation Stereo III.

  8. Determinants of success in native and non-native listening comprehension: an individual differences approach

    NARCIS (Netherlands)

    Andringa, S.; Olsthoorn, N.; van Beuningen, C.; Schoonen, R.; Hulstijn, J.

    2012-01-01

    The goal of this study was to explain individual differences in both native and non-native listening comprehension; 121 native and 113 non-native speakers of Dutch were tested on various linguistic and nonlinguistic cognitive skills thought to underlie listening comprehension. Structural equation

  9. Native Americans with Diabetes

    Science.gov (United States)

    ... Read the MMWR Science Clips Native Americans with Diabetes Better diabetes care can decrease kidney failure Language: ... between 1996 and 2013. Problem Kidney failure from diabetes was highest among Native Americans. Native Americans are ...

  10. Effects of land conversion from native shrub to pistachio orchard on soil erodibility in an arid region.

    Science.gov (United States)

    Yakupoglu, Tugrul; Gundogan, Recep; Dindaroglu, Turgay; Kara, Zekeriya

    2017-10-29

    Land-use change through degrading natural vegetation for agricultural production adversely affects many of soil properties particularly organic carbon content of soils. The native shrub land and grassland of Gaziantep-Adiyaman plateau that is an important pistachio growing eco-region have been cleared to convert into pistachio orchard for the last 50 to 60 years. In this study, the effects of conversion of natural vegetation into agricultural uses on soil erodibility have been investigated. Soil samples were collected from surface of agricultural fields and adjacent natural vegetation areas, and samples were analyzed for some soil erodibility indices such as dispersion ratio (DR), erosion ratio (ER), structural stability index (SSI), Henin's instability index (I s ), and aggregate size distribution after wet sieving (AggSD). According to the statistical evaluation, these two areas were found as different from each other in terms of erosion indices except for I s index (P < 0.001 for DR and ER or P < 0.01 for SSI). In addition, native shrub land and converted land to agriculture were found different in terms of AggSD in all aggregate size groups. As a contrary to expectations, correlation tests showed that there were no any interaction between soil organic carbon and measured erodibility indices in two areas. In addition, significant relationships were determined between measured variables and soil textural fractions as statistical. These obtaining findings were attributed to changing of textural component distribution and initial aggregate size distribution results from land-use change in the study area. Study results were explained about hierarchical aggregate formation mechanism.

  11. Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment

    Directory of Open Access Journals (Sweden)

    K. Edmaier

    2011-05-01

    Full Text Available The establishment of riparian pioneer vegetation is of crucial importance within river restoration projects. After germination or vegetative reproduction on river bars juvenile plants are often exposed to mortality by uprooting caused by floods. At later stages of root development vegetation uprooting by flow is seen to occur as a consequence of a marked erosion gradually exposing the root system and accordingly reducing the mechanical anchoring. How time scales of flow-induced uprooting do depend on vegetation stages growing in alluvial non-cohesive sediment is currently an open question that we conceptually address in this work. After reviewing vegetation root issues in relation to morphodynamic processes, we then propose two modelling mechanisms (Type I and Type II, respectively concerning the uprooting time scales of early germinated and of mature vegetation. Type I is a purely flow-induced drag mechanism, which causes alone a nearly instantaneous uprooting when exceeding root resistance. Type II arises as a combination of substantial sediment erosion exposing the root system and resulting in a decreased anchoring resistance, eventually degenerating into a Type I mechanism. We support our conceptual models with some preliminary experimental data and discuss the importance of better understanding such mechanisms in order to formulate sounding mathematical models that are suitable to plan and to manage river restoration projects.

  12. Diurnal and Seasonal Variations of Eddy-Covariance Carbon Dioxide Fluxes Above an Urban Wetland, Partitioned by Vegetation Cover

    Science.gov (United States)

    Schafer, K. V.; Duman, T.

    2017-12-01

    The New Jersey Meadowlands are an urban brackish marsh with a long history of human activity causing disturbances and alterations. Carbon emissions were measured from two sites in the Meadowlands, a natural site and a restored site, using eddy-covariance (EC) from 2014 to 2016. At each site, the EC towers were placed at the interface of two vegetation covers, allowing capturing this aspect of the wetland's heterogeneity. Using footprint modeling and light response curves we were able to partition measured fluxes between vegetation cover types and compare CO2 fluxes from patches of invasive versus native wetland vegetation communities. We show that further separating the data into seasonal and diurnal fluxes reveals patterns in CO2 fluxes that allow determining the nature of each vegetation cover as a source or sink for CO2. Our results also show that CO2 emissions from the restored wetland are significantly higher than the natural wetland. Areas of invasive Phragmites australis at the natural site had the lowest CO2 release rates during winter. These were consistently lower in magnitude than summer daytime uptake, therefore making this part of the wetland a CO2 sink. Areas planted with native Spartina alterniflora at the restored site had the largest uptake during daytime, therefore seemingly justifying restoration activities. However, they also had the highest emission rates during summer nighttime, and therefore the daily summer net uptake was not the highest compared with other vegetation covers. Furthermore, emissions from the restored site during winter were larger compared to the natural site, indicating that restoration activities might have led to a significant increase of carbon release from the wetland. Thus, during the study period the restored wetland acted as a carbon source.

  13. Vegetation - Suisun Marsh, Change 1999 to 2000 [ds163

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  14. Vegetation - Suisun Marsh, Change 1999 to 2003 [ds164

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  15. Effects of climate change on forest vegetation in the Northern Rockies Region [Chapter 6

    Science.gov (United States)

    Keane, Robert E.; Mahalovich, Mary Frances; Bollenbacher, Barry L.; Manning, Mary E.; Loehman, Rachel A.; Jain, Terrie B.; Holsinger, Lisa M.; Larson, Andrew J.; Webster, Meredith M.

    2018-01-01

    The projected rapid changes in climate will affect the unique vegetation assemblages of the Northern Rockies region in myriad ways, both directly through shifts in vegetation growth, mortality, and regeneration, and indirectly through changes in disturbance regimes and interactions with changes in other ecosystem processes, such as hydrology, snow dynamics, and exotic invasions (Bonan 2008; Hansen and Phillips 2015; Hansen et al. 2001; Notaro et al. 2007). These impacts, taken collectively, could change the way vegetation is managed by public land agencies in this area. Some species may be in danger of rapid decreases in abundance, while others may undergo range expansion (Landhäusser et al. 2010). New vegetation communities may form, while historical vegetation complexes may simply shift to other areas of the landscape or become rare. Juxtaposed with climate change concerns are the consequences of other land management policies and past activities, such as fire exclusion, fuels treatments, and grazing. A thorough assessment of the responses of vegetation to projected climate change is needed, along with an evaluation of the vulnerability of important species, communities, and vegetation-related resources that may be influenced by the effects, both direct and indirect, of climate change. This assessment must also account for past management actions and current vegetation conditions and their interactions with future climates.

  16. Building Family Capacity for Native Hawaiian Women with Breast Cancer

    Science.gov (United States)

    Mokuau, Noreen; Braun, Kathryn L.; Daniggelis, Ephrosine

    2012-01-01

    Native Hawaiian women have the highest breast cancer incidence and mortality rates when compared with other large ethnic groups in Hawai'i. Like other women, they rely on the support of their families as co-survivors. This project explored the feasibility and effects of a culturally tailored educational intervention designed to build family…

  17. Relationships between soil parameters and vegetation in abandoned terrace fields vs. non-terraced fields in arid lands (Lanzarote, Spain): An opportunity for restoration

    Science.gov (United States)

    Arévalo, José Ramón; Fernández-Lugo, Silvia; Reyes-Betancort, J. Alfredo; Tejedor, Marisa; Jiménez, Concepción; Díaz, Francisco J.

    2017-11-01

    Over 90% of terraced fields have been abandoned on the island of Lanzarote in the last 40 years. The present work analyses the effects of abandonment on the soil and vegetation recovery of terraced field agroecosystems by comparing them with adjacent non-terraced fields in Lanzarote, Canary Islands (Spain). This information is necessary to take the appropriate management actions to achieve goals such as soil protection and biodiversity conservation. Results indicate that terraced fields display better soil quality than non-terraced ones, as shown by the significant differences found in parameters such as SAR, exchangeable Na, CaCO3, B content, moisture content or soil depth. Moreover, the terraced fields' plant community has more species similarities with the native plant community when compared with non-terraced areas. Owing to characteristics such as deeper soils, more water capacity, lower salinity and less sodic soils, terraced soils provide better conditions for passive restoration of both soil and vegetation. Therefore, the recovery and maintenance of wall structures and revegetation with native/endemic species are proposed to promote the restoration of native systems and preserve a landscape with cultural and aesthetic value.

  18. Effects of high fire frequency in creosote bush scrub vegetation of the Mojave Desert

    Science.gov (United States)

    Brooks, M.L.

    2012-01-01

    Plant invasions can increase fire frequency in desert ecosystems where fires were historically infrequent. Although there are many resource management concerns associated with high frequency fire in deserts, fundamental effects on plant community characteristics remain largely unstudied. Here I describe the effects of fire frequency on creosote bush scrub vegetation in the Mojave Desert, USA. Biomass of the invasive annual grass Bromus rubens L. increased following fire, but did not increase further with additional fires. In contrast, density, cover and species richness of native perennial plants each decreased following fire and continued to decrease with subsequent fires, although not as dramatically as after the initial fire. Responses were similar 5 and 14 years post-fire, except that cover of Hymenoclea salsola Torr. & A. Gray and Achnatherum speciosa Trin. & Rupr. both increased in areas burnt once. These results suggest that control of B. rubens may be equally warranted after one, two or three fires, but revegetation of native perennial plants is most warranted following multiple fires. These results are valid within the scope of this study, which is defined as relatively short term vegetation responses (???14 years) to short fire return intervals (6.3 and 7.3 years for the two and three fire frequency levels) within creosote bush scrub of the Mojave Desert. ?? 2012 IAWF.

  19. NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Summer 2007

    Energy Technology Data Exchange (ETDEWEB)

    2007-06-01

    DOE's Wind Powering America program has initiated a quarterly NAWIG newsletter to present Native American wind information, including projects, interviews with pioneers, issues, WPA activities, and related events.

  20. Native plants fare better against an introduced competitor with native microbes and lower nitrogen availability.

    Science.gov (United States)

    Gaya Shivega, W; Aldrich-Wolfe, Laura

    2017-01-24

    While the soil environment is generally acknowledged as playing a role in plant competition, the relative importance of soil resources and soil microbes in determining outcomes of competition between native and exotic plants has rarely been tested. Resilience of plant communities to invasion by exotic species may depend on the extent to which native and exotic plant performance are mediated by abiotic and biotic components of the soil. We used a greenhouse experiment to compare performance of two native prairie plant species and one exotic species, when grown in intraspecific competition and when each native was grown in interspecific competition with the exotic species, in the presence and absence of a native prairie soil community, and when nitrogen availability was elevated or was maintained at native prairie levels. We found that elevated nitrogen availability was beneficial to the exotic species and had no effect on or was detrimental to the native plant species, that the native microbial community was beneficial to the native plant species and either had no effect or was detrimental to the exotic species, and that intraspecific competition was stronger than interspecific competition for the exotic plant species and vice-versa for the natives. Our results demonstrate that soil nitrogen availability and the soil microbial community can mediate the strength of competition between native and exotic plant species. We found no evidence for native microbes enhancing the performance of the exotic plant species. Instead, loss of the native soil microbial community appears to reinforce the negative effects of elevated N on native plant communities and its benefits to exotic invasive species. Resilience of plant communities to invasion by exotic plant species is facilitated by the presence of an intact native soil microbial community and weakened by anthropogenic inputs of nitrogen. Published by Oxford University Press on behalf of the Annals of Botany Company.

  1. Determinants of Success in Native and Non-Native Listening Comprehension: An Individual Differences Approach

    Science.gov (United States)

    Andringa, Sible; Olsthoorn, Nomi; van Beuningen, Catherine; Schoonen, Rob; Hulstijn, Jan

    2012-01-01

    The goal of this study was to explain individual differences in both native and non-native listening comprehension; 121 native and 113 non-native speakers of Dutch were tested on various linguistic and nonlinguistic cognitive skills thought to underlie listening comprehension. Structural equation modeling was used to identify the predictors of…

  2. Influence of shrub cover vegetal and slope length on soil bulk density; Influencia de la cubierta vegetal arbustiva y la longitud de la ladera sobre la densidad aparente del suelo

    Energy Technology Data Exchange (ETDEWEB)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-07-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  3. Germination responses of an invasive species in native and non-native ranges

    Science.gov (United States)

    Jose L. Hierro; Ozkan Eren; Liana Khetsuriani; Alecu Diaconu; Katalin Torok; Daniel Montesinos; Krikor Andonian; David Kikodze; Levan Janoian; Diego Villarreal; Maria Estanga-Mollica; Ragan M. Callaway

    2009-01-01

    Studying germination in the native and non-native range of a species can provide unique insights into processes of range expansion and adaptation; however, traits related to germination have rarely been compared between native and nonnative populations. In a series of common garden experiments, we explored whether differences in the seasonality of precipitation,...

  4. Semantic and phonetic enhancements for speech-in-noise recognition by native and non-native listeners.

    Science.gov (United States)

    Bradlow, Ann R; Alexander, Jennifer A

    2007-04-01

    Previous research has shown that speech recognition differences between native and proficient non-native listeners emerge under suboptimal conditions. Current evidence has suggested that the key deficit that underlies this disproportionate effect of unfavorable listening conditions for non-native listeners is their less effective use of compensatory information at higher levels of processing to recover from information loss at the phoneme identification level. The present study investigated whether this non-native disadvantage could be overcome if enhancements at various levels of processing were presented in combination. Native and non-native listeners were presented with English sentences in which the final word varied in predictability and which were produced in either plain or clear speech. Results showed that, relative to the low-predictability-plain-speech baseline condition, non-native listener final word recognition improved only when both semantic and acoustic enhancements were available (high-predictability-clear-speech). In contrast, the native listeners benefited from each source of enhancement separately and in combination. These results suggests that native and non-native listeners apply similar strategies for speech-in-noise perception: The crucial difference is in the signal clarity required for contextual information to be effective, rather than in an inability of non-native listeners to take advantage of this contextual information per se.

  5. Chinese College Students' Views on Native English and Non-Native English in EFL Classrooms

    Science.gov (United States)

    Qian, Yang; Jingxia, Liu

    2016-01-01

    With the development of globalization, English is clearly spoken by many more non-native than native speakers, which raises the discussion of English varieties and the debate regarding the conformity to Standard English. Although a large number of studies have shown scholars' attitudes towards native English and non-native English, little research…

  6. Linking Native and Invader Traits Explains Native Spider Population Responses to Plant Invasion.

    Directory of Open Access Journals (Sweden)

    Jennifer N Smith

    Full Text Available Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe stems to determine if native spiders' web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe's architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations.

  7. Changes in vegetation and biological soil crust communities on sand dunes stabilizing after a century of grazing on San Miguel Island, Channel Island National Park, California

    Science.gov (United States)

    Zellman, Kristine L.

    2014-01-01

    San Miguel Island is the westernmost of the California Channel Islands and one of the windiest areas on the west coast of North America. The majority of the island is covered by coastal sand dunes, which were stripped of vegetation and subsequently mobilized due to droughts and sheep ranching during the late 19th century and early 20th century. Since the removal of grazing animals, vegetation and biological soil crusts have once again stabilized many of the island's dunes. In this study, historical aerial photographs and field surveys were used to develop a chronosequence of the pattern of change in vegetation communities and biological soil crust levels of development (LOD) along a gradient of dune stabilization. Historical aerial photographs from 1929, 1954, 1977, and 2009 were georeferenced and used to delineate changes in vegetation canopy cover and active (unvegetated) dune extent among 5 historical periods (pre-1929, 1929–1954, 1954–1977, 1977–2009, and 2009–2011). During fieldwork, vegetation and biological soil crust communities were mapped along transects distributed throughout San Miguel Island's central dune field on land forms that had stabilized during the 5 time periods of interest. Analyses in a geographic information system (GIS) quantified the pattern of changes that vegetation and biological soil crust communities have exhibited on the San Miguel Island dunes over the past 80 years. Results revealed that a continuing increase in total vegetation cover and a complex pattern of change in vegetation communities have taken place on the San Miguel Island dunes since the removal of grazing animals. The highly specialized native vascular vegetation (sea rocket, dunedelion, beach-bur, and locoweed) are the pioneer stabilizers of the dunes. This pioneer community is replaced in later stages by communities that are dominated by native shrubs (coastal goldenbush, silver lupine, coyote-brush, and giant coreopsis), with apparently overlapping or

  8. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy

    International Nuclear Information System (INIS)

    Fantozzi, L.; Ferrara, R.; Dini, F.; Tamburello, L.; Pirrone, N.; Sprovieri, F.

    2013-01-01

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m −2 h −1 ) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m −2 h −1 ) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m −2 h −1 , which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ► Mercury air/surface exchange from grass covered soil is

  9. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy

    Energy Technology Data Exchange (ETDEWEB)

    Fantozzi, L., E-mail: l.fantozzi@iia.cnr.it [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy); Ferrara, R., E-mail: romano.ferrara@pi.ibf.cnr.it [CNR-Institute of Biophysics, San Cataldo Research Area, Via G. Moruzzi 1, 56124 Pisa (Italy); Dini, F., E-mail: fdiniprotisti@gmail.com [University of Pisa, Department of Biology, Via A. Volta 4, 56126 Pisa (Italy); Tamburello, L., E-mail: ltamburello@biologia.unipi.it [University of Pisa, Department of Biology, Via Derna 1, I-56126 Pisa (Italy); Pirrone, N.; Sprovieri, F. [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy)

    2013-08-15

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m{sup −2} h{sup −1}) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m{sup −2} h{sup −1}) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m{sup −2} h{sup −1}, which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ► Mercury air/surface exchange

  10. Propagation and conservation of native forest genetic resources of medicinal use by means of in vitro and ex vitro techniques.

    Science.gov (United States)

    Sharry, Sandra; Adema, Marina; Basiglio Cordal, María A; Villarreal, Blanca; Nikoloff, Noelia; Briones, Valentina; Abedini, Walter

    2011-07-01

    In Argentina, there are numerous native species which are an important source of natural products and which are traditionally used in medicinal applications. Some of these species are going through an intense extraction process in their natural habitat which may affect their genetic diversity. The aim of this study was to establish vegetative propagation systems for three native forestal species of medicinal interest. This will allow the rapid obtainment of plants to preserve the germplasm. This study included the following species which are widely used in folk medicine and its applications: Erythrina crista-galli or "seibo" (astringent, used for its cicatrizant properties and for bronchiolitic problems); Acacia caven or "espinillo" (antirheumatic, digestive, diuretic and with cicatrizant properties) and Salix humboldtiana or "sauce criollo" (antipyretic, sedative, antispasmodic, astringent). The methodology included the micropropagation of seibo, macro and micropropagation of Salix humboldtiana and the somatic embryogenesis of Acacia caven. The protocol for seibo regeneration was adjusted from nodal sections of seedlings which were obtained from seeds germinated in vitro. The macropropagation through rooted cuttings of "sauce criollo" was achieved and complete plants of this same species were obtained through both direct and indirect organogenesis using in vitro cultures. The somatic embryogenesis for Acacia caven was optimized and this led to obtain a high percentage of embryos in different stages of development. We are able to support the conservation of native forest resources of medicinal use by means of vegetative propagation techniques.

  11. Monitoring riparian-vegetation composition and cover along the Colorado River downstream of Glen Canyon Dam, Arizona

    Science.gov (United States)

    Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel A.; Johnson, Taylor C.

    2018-06-05

    Vegetation in the riparian zone (the area immediately adjacent to streams, such as stream banks) along the Colorado River downstream of Glen Canyon Dam, Arizona, supports many ecosystem and societal functions. In both Glen Canyon and Grand Canyon, this ecosystem has changed over time in response to flow alterations, invasive species, and recreational use. Riparian-vegetation cover and composition are likely to continue to change as these pressures persist and new ones emerge. Because this system is a valuable resource that is known to change in response to flow regime and other disturbances, a long-term monitoring protocol has been designed with three primary objectives:Annually measure and summarize the status (composition and cover) of native and non-native vascular-plant species within the riparian zone of the Colorado River between Glen Canyon Dam and Lake Mead.At 5-year intervals, assess change in vegetation composition and cover in the riparian zone, as related to geomorphic setting and dam operations, particularly flow regime.Collect data in a manner that can be used by multiple stakeholders, particularly the basinwide monitoring program overseen by the National Park Service’s Northern Colorado Plateau Network Inventory and Monitoring program.A protocol for the long-term monitoring of riparian vegetation is described in detail and standard operating procedures are included herein for all tasks. Visual estimates of foliar and ground covers are collected in conjunction with environmental measurements to assess correlations of foliar cover with abiotic and flow variables. Sample quadrats are stratified by frequency of inundation, geomorphic feature, and by river segment to account for differences in vegetation type. Photographs of sites are also taken to illustrate qualitative characteristics of the site at the time of sampling. Procedures for field preparation, generating random samples, data collection, data management, collecting and managing unknown

  12. Exploring Native and Non-Native Intuitions of Word Frequency.

    Science.gov (United States)

    Schmitt, Norbert; Dunham, Bruce

    1999-01-01

    Asked native and nonnative speakers to give judgments of frequency for near synonyms in second-language lexical sets and compared those responses to modern corpus word counts. Native speakers were able to discern the core word in lexical sets either 77% or 85%, and nonnative speakers at 71% or 79%. (Author/VWL)

  13. A pollen-based quantitative reconstruction of the Holocene vegetation updates a perspective on the natural vegetation in the Czech Republic and Slovakia

    Czech Academy of Sciences Publication Activity Database

    Abraham, V.; Kuneš, Petr; Petr, L.; Svitavská-Svobodová, Helena; Kozáková, Radka; Jamrichová, Eva; Švarcová, Markéta Gabriela; Pokorný, P.

    2016-01-01

    Roč. 88, č. 4 (2016), s. 409-434 ISSN 0032-7786 R&D Projects: GA ČR(CZ) GAP504/12/0649 EU Projects: European Commission(XE) 278065 - LONGWOOD Institutional support: RVO:67985939 ; RVO:67985912 Keywords : quantitative reconstruction * pollen * vegetation * Holocene * Czech Republic * Slovakia Subject RIV: EF - Botanics; AC - Archeology, Anthropology, Ethnology (ARU-G) Impact factor: 3.000, year: 2016

  14. Astronomy and Geology Vocabulary, I.e. "NASA Words" in Native American Languages

    Science.gov (United States)

    Angrum, A.; Alexander, C. J.; Martin, M.

    2014-12-01

    The US Rosetta Project has developed a program in Native American communities in which contemporary STEM vocabulary is taught alongside the same vocabulary in Navajo. NASA images and science are used and described in the native language, alongside both lay English, and scientific English. Additionally, science curriculum (geology/chemistry/botany/physics) elements drawn from the reservation environment, including geomorphology, geochemistry, soil physics, are included and discussed in the native language as much as possible — with their analogs in other planetary environments (such as Mars). The program began with a student defining 30 Navajo words to describe what he called 'NASA' words, such as: cell phone, astronaut, space suit, computer, and planets not visible to the naked eye. The use of NASA material and imagery have a positive impact on the accessibility of the overall STEM material but community involvement, and buy-in, is criti! cal to the success of the program. The US Rosetta Project modified its goals, and curriculum, to accommodate the programmatic desires of teachers in the district, and the capabilities of the medicine men that agreed to participate. In this presentation we will report on lessons learned, as well as metrics and successes associated with our most recent Summer Science Academy [2014].

  15. Ecophysiological responses of native and invasive grasses to simulated warming and drought

    Science.gov (United States)

    Ravi, S.; Law, D. J.; Wiede, A.; Barron-Gafford, G. A.; Breshears, D. D.; Dontsova, K.; Huxman, T. E.

    2011-12-01

    Climate models predict that many arid regions around the world - including the North American deserts - may become affected more frequently by recurrent droughts. At the same time, these regions are experiencing rapid vegetation transformations such as invasion by exotic grasses. Thus, understanding the ecophysiological processes accompanying exotic grass invasion in the context of rising temperatures and recurrent droughts is fundamental to global change research. Under ambient and warmer (+ 4° C) conditions inside the Biosphere 2 facility, we compared the ecophysiological responses (e.g. photosynthesis, stomatal conductance, pre-dawn leaf water potential, light & CO2 response functions, biomass) of a native grass - Heteropogan contortus (Tangle head) and an invasive grass - Pennisetum ciliare (Buffel grass) growing in single and mixed communities. Further, we monitored the physiological responses and mortality of these plant communities under moisture stress conditions, simulating a global change-type-drought. The results indicate that the predicted warming scenarios may enhance the invasibility of desert landscapes by exotic grasses. In this study, buffel grass assimilated more CO2 per unit leaf area and out-competed native grasses more efficiently in a warmer environment. However, scenarios involving a combination of drought and warming proved disastrous to both the native and invasive grasses, with drought-induced grass mortality occurring at much shorter time scales under warmer conditions.

  16. Simulated Vegetation Response to Climate Change in California: The Importance of Seasonal Production Patterns

    Science.gov (United States)

    Kim, J. B.; Pitts, B.

    2013-12-01

    MC1 dynamic global vegetation model simulates vegetation response to climate change by simulating vegetation production, soil biogeochemistry, plant biogeography and fire. It has been applied at a wide range of spatial scales, yet the spatio-temporal patterns of simulated vegetation production, which drives the model's response to climate change, has not been examined in detail. We ran MC1 for California at a relatively fine scale, 30 arc-seconds, for the historical period (1895-2006) and for the future (2007-2100), using downscaled data from four CMIP3-based climate projections: A2 and B1 GHG emissions scenarios simulated by PCM and GFDL GCMs. The use of these four climate projections aligns our work with a body of climate change research work commissioned by the California Public Interest Energy Research (PIER) Program. The four climate projections vary not only in terms of changes in their annual means, but in the seasonality of projected climate change. We calibrated MC1 using MODIS NPP data for 2000-2011 as a guide, and adapting a published technique for adjusting simulated vegetation production by increasing the simulated plant rooting depths. We evaluated the simulation results by comparing the model output for the historical period with several benchmark datasets, summarizing by EPA Level 3 Ecoregions. Multi-year summary statistics of model predictions compare moderately well with Kuchler's potential natural vegetation map, National Biomass and Carbon Dataset, Leenhouts' compilation of fire return intervals, and, of course, the MODIS NPP data for 2000-2011. When we compared MC1's monthly NPP values with MODIS monthly GPP data (2000-2011), however, the seasonal patterns compared very poorly, with NPP/GPP ratio for spring (Mar-Apr-May) often exceeding 1, and the NPP/GPP ratio for summer (Jun-Jul-Aug) often flattening to zero. This suggests MC1's vegetation production algorithms are overly biased for spring production at the cost of summer production. We

  17. Utilization of immobilized lipases as catalysts in the transesterification of non-edible vegetable oils with ethanol

    Directory of Open Access Journals (Sweden)

    P. C. Tiosso

    2014-12-01

    Full Text Available This work reports the use of commercially available immobilized lipase preparations (Novozym® 435 and Lipozyme TL IM, both from Novozymes, and Lipase PS IM from Amano as catalysts in the transesterification reaction of different alkyl-chain triglycerides with ethanol. The ethanolysis of native oils from Brazilian Amazon plants andiroba (Carapa guianensis, babassu (Orbignya sp., jatropa (Jatropha curcas, and palm (Elaeis sp. was studied in a solvent-free system. In a typical reaction, the immobilized preparations were added to the mixture of vegetable oil-to-ethanol in a molar ratio of 1:9. The reactions were performed at 50 ºC for a maximum period of 48 h. Under the conditions used, all the immobilized lipase preparations were able to generate the main esters of fatty acids present in the tested feedstocks, and both the reaction rate and ester yield were dependent on the source of lipase and vegetable oil. The viscosity values for the samples obtained in each reaction displayed a consistent reduction in relation to their original feedstocks, which also confirms the high conversion of triglycerides to ethyl esters (99.8-74.0%. The best performances were obtained with Amano PS IM and Novozym® 435, with the biodiesel samples from the babassu and jatropha oils exhibiting viscosity values in accordance with those predicted by the technical standards of ASTM D6751 (1.9-6.0 mm²/s. Lipozyme TL IM displayed an unsatisfactory performance, indicating that the conditions of the transesterification reaction should be improved. This comparative study using different catalysts and several vegetable oil sources with varying fatty acid compositions is particularly important for all tropical countries with a diversity of native vegetable oil sources.

  18. The assessment of radiation exposures in native American communities from nuclear weapons testing in Nevada

    International Nuclear Information System (INIS)

    Frohmberg, E.; Goble, R.; Sanchez, V.; Quigley, D.

    2000-01-01

    Native Americans residing in a broad region downwind from the Nevada Test Site during the 1950s and 1960s received significant radiation exposures from nuclear weapons testing. Because of differences in diet, activities, and housing, their radiation exposures are only very imperfectly represented in the Department of Energy dose reconstructions. There are important missing pathways, including exposures to radioactive iodine from eating small game. The dose reconstruction model assumptions about cattle feeding practices across a year are unlikely to apply to the native communities as are other model assumptions about diet. Thus exposures from drinking milk and eating vegetables have not yet been properly estimated for these communities. Through consultations with members of the affected communities, these deficiencies could be corrected and the dose reconstruction extended to Native Americans. An illustration of the feasibility of extending the dose reconstruction is provided by a sample calculation to estimate radiation exposures to the thyroid from eating radio-iodine-contaminated rabbit thyroids after the Dedan test. The illustration is continued with a discussion of how the calculation results may be used to make estimates for other tests and other locations

  19. Within-category variance and lexical tone discrimination in native and non-native speakers

    NARCIS (Netherlands)

    Hoffmann, C.W.G.; Sadakata, M.; Chen, A.; Desain, P.W.M.; McQueen, J.M.; Gussenhove, C.; Chen, Y.; Dediu, D.

    2014-01-01

    In this paper, we show how acoustic variance within lexical tones in disyllabic Mandarin Chinese pseudowords affects discrimination abilities in both native and non-native speakers of Mandarin Chinese. Within-category acoustic variance did not hinder native speakers in discriminating between lexical

  20. Epistemologies in the Text of Children's Books: Native- and non-Native-authored books

    Science.gov (United States)

    Dehghani, Morteza; Bang, Megan; Medin, Douglas; Marin, Ananda; Leddon, Erin; Waxman, Sandra

    2013-09-01

    An examination of artifacts provides insights into the goals, practices, and orientations of the persons and cultures who created them. Here, we analyze storybook texts, artifacts that are a part of many children's lives. We examine the stories in books targeted for 4-8-year-old children, contrasting the texts generated by Native American authors versus popular non-Native authors. We focus specifically on the implicit and explicit 'epistemological orientations' associated with relations between human beings and the rest of nature. Native authors were significantly more likely than non-Native authors to describe humans and the rest of nature as psychologically close and embedded in relationships. This pattern converges well with evidence from a behavioral task in which we probed Native (from urban inter-tribal and rural communities) and non-Native children's and adults' attention to ecological relations. We discuss the implications of these differences for environmental cognition and science learning.

  1. Native Knowledge in the Americas.

    Science.gov (United States)

    Kidwell, Clara Sue

    1985-01-01

    Native American science is defined as activities of native peoples of the New World in observing physical phenomena and attempting to explain and control them. Problems in studying native science, ethnoscience and native science, archaeostronomy and ethnoastronomy, ethnobotany, agriculture, technology, and future directions are discussed. (JN)

  2. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    2013-11-01

    Full Text Available We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons.

  3. Hemisphericity and information processing in North American Native (Ojibwa) and non-native adolescents.

    Science.gov (United States)

    Morton, L L; Allen, J D; Williams, N H

    1994-04-01

    Thirty-two male and female adolescents of native ancestry (Ojibwa) and 32 controls were tested using (1) four WISC-R subtests and (2) two dichotic listening tasks which employed a focused-attention paradigm for processing consonant-vowel combinations (CVs) and musical melodies. On the WISC-R, natives scored higher than controls on Block Design and Picture Completion subtests but lower on Vocabulary and Similarities subtests. On laterality measures more native males showed a left ear advantage on the CV task and the melody task. For CVs the left ear advantage was due to native males' lower right ear (i.e., left hemisphere) involvement. For melodies, the laterality index pointed to less left hemisphere involvement for native males, however, the raw scores showed that natives were performing lower overall. The findings are consistent with culturally-based strategy differences, possibly linked to "hemisphericity," but additional clarifying research regarding the cause and extent of such differences is warranted. Thus, implications for education are premature but a focus on teaching "left hemisphere type" strategies to all individuals not utilizing such skills, including many native males, may prove beneficial.

  4. Effects of drought on birds and riparian vegetation in the Colorado River Delta, Mexico

    Science.gov (United States)

    Hinojosa-Huerta, Osvel; Nagler, Pamela L.; Carrillo-Guererro, Yamilett K.; Glenn, Edward P.

    2013-01-01

    The riparian corridor in the delta of the Colorado River in Mexico supports internationally important bird habitat. The vegetation is maintained by surface flows from the U.S. and Mexico and by a high, non-saline aquifer into which the dominant phreatophytic shrubs and trees are rooted. We studied the effects of a regional drought on riparian vegetation and avian abundance and diversity from 2002 to 2007, during which time surface flows were markedly reduced compared to the period from 1995 to 2002. Reduced surface flows led to a reduction in native tree cover but an increase in shrub cover, mostly due to an increase in Tamarix spp., an introduced halophytic shrub, and a reduction in Populus fremontii and Salix gooddingii trees. However, overall vegetation cover was unchanged at about 70%. Overall bird density and diversity were also unchanged, but riparian-obligate species tended to decrease in abundance, and generalist species increased. Although reduction in surface flows reduced habitat value and negatively impacted riparian-obligate bird species, portions of the riparian zone exhibited resilience. Surface flows are required to reduce soil salt levels and germinate new cohorts of native trees, but the main source of water supporting this ecosystem is the aquifer, derived from underflows from irrigated fields in the U.S. and Mexico. The long-term prospects for delta riparian habitats are uncertain due to expected reduced flows of river water from climate change, and land use practices that will reduce underflows to the riparian aquifer and increase salinity levels. Active restoration programs would be needed if these habitats are to be preserved for the future.

  5. Heavy Metals Levels in Soil and Vegetables in Different Growing Systems

    Directory of Open Access Journals (Sweden)

    Hura C.

    2013-04-01

    Full Text Available The current project deals with an issue of actuality and scientific/technical necessity and aims to assess the factors contributing to the vulnerability of ecological systems and therefore endangering/compromising food safety. The goals of this ongoing study are to address the main risk factors on ecological system with particular regards to fresh growing vegetables and to establish technical monitoring system(s with a view to increase food safety. Herein, the authors present the research results obtained in 2011 in SIECOLEG Project regarding the assessment of some heavy metals (mainly lead, cadmium, cooper, and manganese of 80 samples soils and 25 samples vegetables from some ecological system. The concentrations of heavy metals were measured by Atomic absorption spectrometer (AAS Schimadzu 6300 - with graphite furnace atomizer and autosampler. In soil: lead and cadmium concentrations ranged from 4.51 to 6.58 mg/kg and from 0.14 to 0.4 mg/kg, respectively. Cooper and manganese concentrations ranged from 20.73 to 6.58 mg/kg and from 218.1 to 298.3 mg/kg, respectively. In vegetables (tomatoes, cucumber, peppers, eggplant, cabbage: lead concentrations ranged from 0.0 (tomatoes to 4.35 mg/kg (cabbage; cooper concentrations ranged from 0.2 mg/kg (cucumber to 0.80 mg/kg (eggplant; manganese concentrations ranged from 0.0 mg/kg (tomatoes to 0.60 mg/kg (eggplant. Cadmium was not detected in any of analysed vegetable samples. Under these circumstances, the project intends to demonstrate the extent of this vulnerability and to elaborate measures for controlling and diminishing the effects of the involved factors in order to increase food safety and security for ecological fresh vegetables

  6. The effect of native and introduced biofuel crops on the composition of soil biota communities

    Science.gov (United States)

    Frouz, Jan; Hedenec, Petr

    2016-04-01

    Biofuel crops are an accepted alternative to fossil fuels, but little is known about the ecological impact of their production. The aim of this contribution is to study the effect of native (Salix viminalis and Phalaris arundinacea) and introduced (Helianthus tuberosus, Reynoutria sachalinensis and Silphium perfoliatum) biofuel crop plantations on the soil biota in comparison with cultural meadow vegetation used as control. The study was performed as part of a split plot field experiment of the Crop Research Institute in the city of Chomutov (Czech Republic). The composition of the soil meso- and macrofauna community, composition of the cultivable fraction of the soil fungal community, cellulose decomposition (using litter bags), microbial biomass, basal soil respiration and PLFA composition (incl. F/B ratio) were studied in each site. The C:N ratio and content of polyphenols differed among plant species, but these results could not be considered significant between introduced and native plant species. Abundance of the soil meso- and macrofauna was higher in field sites planted with S. viminalis and P. arundinacea than those planted with S. perfoliatum, H. tuberosus and R. sachalinensis. RDA and Monte Carlo Permutation Test showed that the composition of the faunal community differed significantly between various native and introduced plants. Significantly different basal soil respiration was found in sites planted with various energy crops; however, this difference was not significant between native and introduced species. Microbial biomass carbon and cellulose decomposition did not exhibit any statistical differences among the biofuel crops. The largest statistically significant difference we found was in the content of actinobacterial and bacterial (bacteria, G+ bacteria and G- bacteria) PLFA in sites overgrown by P. arundinacea compared to introduced as well as native biofuel crops. In conclusion, certain parameters significantly differ between various native

  7. Effects of native forest restoration on soil hydraulic properties, Auwahi, Maui, Hawaiian Islands

    Science.gov (United States)

    Perkins, Kimberlie S.; Nimmo, John R.; Medeiros, Arthur C.

    2012-01-01

    Over historic time Hawai'i's dryland forests have been largely replaced by grasslands for grazing livestock. On-going efforts have been undertaken to restore dryland forests to bring back native species and reduce erosion. The reestablishment of native ecosystems on land severely degraded by long-term alternative use requires reversal of the impacts of erosion, organic-matter loss, and soil structural damage on soil hydraulic properties. This issue is perhaps especially critical in dryland forests where the soil must facilitate native plants' optimal use of limited water. These reforestation efforts depend on restoring soil ecological function, including soil hydraulic properties. We hypothesized that reforestation can measurably change soil hydraulic properties over restoration timescales. At a site on the island of Maui (Hawai'i, USA), we measured infiltration capacity, hydrophobicity, and abundance of preferential flow channels in a deforested grassland and in an adjacent area where active reforestation has been going on for fourteen years. Compared to the nearby deforested rangeland, mean field-saturated hydraulic conductivity in the newly restored forest measured by 55 infiltrometer tests was greater by a factor of 2.0. Hydrophobicity on an 8-point scale increased from average category 6.0 to 6.9. A 4-point empirical categorization of preferentiality in subsurface wetting patterns increased from an average 1.3 in grasslands to 2.6 in the restored forest. All of these changes act to distribute infiltrated water faster and deeper, as appropriate for native plant needs. This study indicates that vegetation restoration can lead to ecohydrologically important changes in soil hydraulic properties over decadal time scales.

  8. Predation by crustaceans on native and non-native Baltic clams

    NARCIS (Netherlands)

    Ejdung, G.; Flach, E.; Byrén, L.; Hummel, H.

    2009-01-01

    We studied the effect of crustacean predators on native/non-native Macoma balthica bivalves in aquarium experiments. North Sea M. balthica (NS Macoma) were recently observed in the southern Baltic Sea. They differ genetically and in terms of morphology, behaviour and evolutionary history from Baltic

  9. The online application of binding condition B in native and non-native pronoun resolution

    Directory of Open Access Journals (Sweden)

    Clare ePatterson

    2014-02-01

    Full Text Available Previous research has shown that anaphor resolution in a non-native language may be more vulnerable to interference from structurally inappropriate antecedents compared to native anaphor resolution. To test whether previous findings on reflexive anaphors generalise to non-reflexive pronouns, we carried out an eye-movement monitoring study investigating the application of binding condition B during native and non-native sentence processing. In two online reading experiments we examined when during processing local and/or non-local antecedents for pronouns were considered in different types of syntactic environment. Our results demonstrate that both native English speakers and native German-speaking learners of English showed online sensitivity to binding condition B in that they did not consider syntactically inappropriate antecedents. For pronouns thought to be exempt from condition B (so-called 'short-distance pronouns', the native readers showed a weak preference for the local antecedent during processing. The non-native readers, on the other hand, showed a preference for the matrix subject even where local coreference was permitted, and despite demonstrating awareness of short-distance pronouns' referential ambiguity in a complementary offline task. This indicates that non-native comprehenders are less sensitive during processing to structural cues that render pronouns exempt from condition B, and prefer to link a pronoun to a salient subject antecedent instead.

  10. Comparison of the ability to flourish and the increment of native species of the cerrado region in different soils, aiming at recuperating the degraded soils in the Abadia de Goias State Park; Comparacao de pegamentos e incrementos de especies nativas do cerrado em diferentes solos para recuperacao de areas degradadas no Parque Estadual de Abadia de Goias

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Max Lima e; Antunes, Erides Campos; Benvenutti, Romeu Davi [CONFLORA, Consultoria, Planejamento e Assessoria Florestal, GO (Brazil); Ferreira, Gislene Auxiliadora; Braga, Marcio

    1997-12-31

    The project of botanical recuperation was carried out in order to re vegetate the degraded soils of the areas which surround the radioactive deposit of Cesium 137, within the State Park of Abadia de Goias. An analysis of the park area reveals different stages of degradation, from an absolute stage of degradation, with the C horizon exposed, to other areas of well-preserved forest. On the occasion of the installation of the deposit of radioactive waste, the EIA-RIMA Report determined that the areas should be recuperated in order to re-establish the previous existing forests and cerrado vegetation. A plan for planting 199,366 native trees was then carried out. The present long term project, aims to monitoring the growth of the several species, in different substrates, with the general objective of determining which would better adapt to such substrates. The objective is to provide subsidies for developing appropriate methodology for recuperating degraded areas. (author) 12 refs., 4 figs., 3 tabs.; e-mail: conflora at netgo.com.br

  11. Socio spatial adaptation as a resilience form of native unplanned settlement in confrontation with new planned settlement development pressure (case study: enclave native settlement in Serpong, Tangerang)

    Science.gov (United States)

    Ischak, Mohammad; Setioko, Bambang; Nurgandarum, Dedes

    2017-12-01

    Urban growth refers to expansion of a metropolitan into sub urban areas as the surrounding environment, with no exception of Jakarta city due to limited availability and high price of land within the city. The city of Jakarta, as a metropolitan, carries of expansion in its surrounding environment including Tangerang. Privat developers may an important role in this urban growth through their large scale of new settlement development project. The formation of establishment of enclave native unplanned sub urban settlement scattered within planned new settlement in Tangerang is to be an consequence of Jakarta urban growth. This fenomena could be comprehended as a form of resilience native settlement in confrontation with the new planned settlement pressure. The aim of this research, presented in this paper is to understand the socio-spatial concept of those enclave native settlement as an adaptation form to the new planned settlement pressure. Through descriptive qualitative research method, with indepth interview as a main research instrument, this research could depict or uncover the facts that there are various form of socio-spatial adaptation as the main theme of resilience native suburban settlement formation.

  12. Restoring coastal wetlands that were ditched for mosquito control: a preliminary assessment of hydro-leveling as a restoration technique

    Science.gov (United States)

    Smith, Thomas J.; Tiling, Ginger; Leasure, Pamela S.

    2007-01-01

    The wetlands surrounding Tampa Bay, Florida were extensively ditched for mosquito control in the 1950s. Spoil from ditch construction was placed adjacent to the wetlands ditches creating mound-like features (spoil-mounds). These mounds represent a loss of 14% of the wetland area in Tampa Bay. Spoil mounds interfere with tidal flow and are locations for non-native plants to colonize (e.g., Schinus terebinthifolius). Removal of the spoil mounds to eliminate exotic plants, restore native vegetation, and re-establish natural hydrology is a restoration priority for environmental managers. Hydro-leveling, a new technique, was tested in a mangrove forest restoration project in 2004. Hydro-leveling uses a high pressure stream of water to wash sediment from the spoil mound into the adjacent wetland and ditch. To assess the effectiveness of this technique, we conducted vegetation surveys in areas that were hydro-leveled and in non-hydro-leveled areas 3 years post-project. Adult Schinus were reduced but not eliminated from hydro-leveled mounds. Schinus seedlings however were absent from hydro-leveled sites. Colonization by native species was sparse. Mangrove seedlings were essentially absent (≈2 m−2) from the centers of hydro-leveled mounds and were in low density on their edges (17 m−2) in comparison to surrounding mangrove forests (105 m−2). Hydro-leveling resulted in mortality of mangroves adjacent to the mounds being leveled. This was probably caused by burial of pneumatophores during the hydro-leveling process. For hydro-leveling to be a useful and successful restoration technique several requirements must be met. Spoil mounds must be lowered to the level of the surrounding wetlands. Spoil must be distributed further into the adjacent wetland to prevent burial of nearby native vegetation. Finally, native species may need to be planted on hydro-leveled areas to speed up the re-vegetation process.

  13. Determination of the spatial structure of vegetation on the repository of the mine “Fryderyk” in Tarnowskie Góry, based on airborne laser scanning from the ISOK project and digital orthophotomaps

    Directory of Open Access Journals (Sweden)

    Szostak Marta

    2015-06-01

    Full Text Available The purpose of this study was to determine the spatial structure of vegetation on the repository of the mine “Fryderyk” in Tarnowskie Góry. Tested area was located in the Upper Silesian Industrial Region (a large industrial region in Poland. It was a unique refuge habitat – Natura2000; PLH240008. The main aspect of this elaboration was to investigate the possible use of geotechniques and generally available geodata for mapping LULC changes and determining the spatial structure of vegetation. The presented study focuses on the analysis of a spatial structure of vegetation in the research area. This exploration was based on aerial images and orthophotomaps from 1947, 1998, 2003, 2009, 2011 and airborne laser scanning data (2011, ISOK project. Forest succession changes which occurred between 1947 and 2011 were analysed. The selected features of vegetation overgrowing spoil heap “Fryderyk” was determined.

  14. Potential nitrogen critical loads for northern Great Plains grassland vegetation

    Science.gov (United States)

    Symstad, Amy J.; Smith, Anine T.; Newton, Wesley E.; Knapp, Alan K.

    2015-01-01

    The National Park Service is concerned that increasing atmospheric nitrogen deposition caused by fossil fuel combustion and agricultural activities could adversely affect the northern Great Plains (NGP) ecosystems in its trust. The critical load concept facilitates communication between scientists and policy makers or land managers by translating the complex effects of air pollution on ecosystems into concrete numbers that can be used to inform air quality targets. A critical load is the exposure level below which significant harmful effects on sensitive elements of the environment do not occur. A recent review of the literature suggested that the nitrogen critical load for Great Plains vegetation is 10-25 kg N/ha/yr. For comparison, current atmospheric nitrogen deposition in NGP National Park Service (NPS) units ranges from ~4 kg N/ha/yr in the west to ~13 kg N/ha/yr in the east. The suggested critical load, however, was derived from studies far outside of the NGP, and from experiments investigating nitrogen loads substantially higher than current atmospheric deposition in the region.Therefore, to better determine the nitrogen critical load for sensitive elements in NGP parks, we conducted a four-year field experiment in three northern Great Plains vegetation types at Badlands and Wind Cave National Parks. The vegetation types were chosen because of their importance in NGP parks, their expected sensitivity to nitrogen addition, and to span a range of natural fertility. In the experiment, we added nitrogen at rates ranging from below current atmospheric deposition (2.5 kg N/ha/yr) to far above those levels but commensurate with earlier experiments (100 kg N/ha/yr). We measured the response of a variety of vegetation and soil characteristics shown to be sensitive to nitrogen addition in other studies, including plant biomass production, plant tissue nitrogen concentration, plant species richness and composition, non-native species abundance, and soil inorganic

  15. Mentoring in Native American Communities using STEM Concepts

    Science.gov (United States)

    Angrum, A.; Alexander, C. J.; Martin, M.

    2011-12-01

    In this paper we will present a concept for mentoring built on STEM principles, and applied to the Native American community in Chinle, AZ. Effective mentoring includes being sensitive, listening to, and advising mentees based upon a 'correct' appreciation not only of their needs but also of the desires of the community they come from. Our project is an outreach effort on the part of NASA's contribution to the International Rosetta mission. Our initial program design incorporated ambitious STEM materials developed by NASA/JPL for other communities that excite and engage future generations in geoscience careers, to be re-packaged and brought to the Navajo community in Chinle. We were cognizant of the communities' emphasis on the need to know themselves and their own culture when teaching their students. Recognizing that one of the most important near-term problems in Native American communities across the country is preservation of aboriginal language, a first step in our program involved defining STEM vocabulary. Community participation was required to identify existing words, write a STEM thesaurus, and also define contemporary words (what we called 'NASA words') that have no equivalent in the native tongue. This step critically involved obtaining approval of new words from tribal Elders. Finally, our objective was to put this newly defined STEM vocabulary to work, helping the kids to learn STEM curriculum in their own language. The communities' response to our approach was guarded interest, an invitation to return for further work, and finally a request that we co-sponsor a Summer Science Academy that was not focused on the subjects of space exploration originally envisioned by the project. Thus a first lesson learned was that ambitious material might not be the first step to a sustained educational program on the reservation. Understanding the end-users' environment, requirements and constraints is a major component to sustainability. After several months of

  16. Wild and native plants and mushrooms sold in the open-air markets of south-eastern Poland.

    Science.gov (United States)

    Kasper-Pakosz, Renata; Pietras, Marcin; Łuczaj, Łukasz

    2016-10-07

    The study of plants and fungi sold in open-air markets is an important part of ethnobotanical enquiry. Only few such studies were carried out in Europe. Four of the largest open-air markets of south-eastern Poland were visited regularly, and the plants sold in them were recorded between 2013 and 2015. The aim of the study was to record native and/or wild species sold in the markets. All the plants sold in the markets were photographed regularly. In each market, 25 sellers were interviewed. Voucher specimens were collected and fungi were identified using DNA barcoding. Altogether, 468 species of plants were recorded, 117 of them native to south-eastern Poland - 19 only collected from the wild and 11 both wild and cultivated. Seventeen of the species are under legal protection. Most protected plants were sold from cultivation, although proper authorization procedures had not been performed. Thirty-two species of fungi were sold (including two cultivated species), all of them for culinary purposes. Two species (Lactarius quieticolor, Leccinum schistophilum) are new to the mycobiota of Poland. Ornamental plants constituted a large section of the market, and they dominated the group of native species. Food plants dominated among wild-collected plants and were sold mainly as fruits for jams, juices and alcoholic drinks, or as culinary herbs. Very few medicinal or green vegetable plants were sold. An interesting feature of the markets was the sale of Ledum palustre as an insect repellent. Finding two species of fungi which are new to Poland highlights the importance of DNA barcoding in ethnomycological studies. Most items in the markets are ornamental plants, or edible fruits and mushrooms. Very few medicinal plants and green vegetables are sold, which differentiates the markets from southern European ones. Such a pattern is probably the model for most central European markets.

  17. Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants

    NARCIS (Netherlands)

    Grutters, Bart M.C.; Saccomanno, Benedetta; Gross, Elisabeth M.; Van de Waal, Dedmer B.; van Donk, Ellen; Bakker, Elisabeth S.

    2017-01-01

    Secondary compounds can contribute to the success of non-native plant species if they reduce damage by native herbivores or inhibit the growth of native plant competitors. However, there is opposing evidence on whether the secondary com- pounds of non-native plant species are stronger than those of

  18. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    Science.gov (United States)

    Nguyen, Uyen

    Index (NDVI) average values in the adjacent uplands also decreased over thirty years and were correlated with the previous year's annual precipitation. Hence an increase in ET in the uplands did not appear to be responsible for the decrease in river flows in this study, leaving increased regional groundwater pumping as a feasible alternative explanation for decreased flows and deterioration of the riparian forest. The second research objective was to develop a new method of classification using very high-resolution aerial photo to map riparian vegetation at the species level in the Colorado River Ecosystem, Grand Canyon area, Arizona. Ground surveys have showed an obvious trend in which non-native saltcedar (Tamarix spp.) has replaced native vegetation over time. Our goal was to develop a quantitative mapping procedure to detect changes in vegetation as the ecosystem continues to respond to hydrological and climate changes. Vegetation mapping for the Colorado River Ecosystem needed an updated database map of the area covered by riparian vegetation and an indicator of species composition in the river corridor. The objective of this research was to generate a new riparian vegetation map at species level using a supervised image classification technique for the purpose of patch and landscape change detection. A new classification approach using multispectral images allowed us to successfully identify and map riparian species coverage the over whole Colorado River Ecosystem, Grand Canyon area. The new map was an improvement over the initial 2002 map since it reduced fragmentation from mixed riparian vegetation areas. The most dominant tree species in the study areas is saltcedar (Tamarix spp.). The overall accuracy is 93.48% and the kappa coefficient is 0.88. The reference initial inventory map was created using 2002 images to compare and detect changes through 2009. The third objective of my research focused on using multiplatform of remote sensing and ground calibration

  19. Nitrate reductase activity (NRA in the invasive alien Fallopia japonica: seasonal variation, differences among habitats types, and comparison with native species

    Directory of Open Access Journals (Sweden)

    Damian Chmura

    2016-09-01

    Full Text Available Nitrate reductase activity (NRA was studied in the invasive alien plant F. japonica (Japanese knotweed during the vegetation season and among natural, semi-natural, and human-made habitats and compared with NRA in selected native species. NRA was measured directly in the field from the beginning of May until the beginning of October. NRA was much higher than in the plant’s native range, i.e., East Asia, and showed a high degree of variation over time with the highest values being reached at the stage of fast vegetative growth and at the beginning of fruiting. NRA was highest on dumping sites probably due to the high nitrogen input into soils and near traffic and the emission of NOx by vehicles. A comparison of the enzyme activity in four selected native plant species indicated that NRA in F. japonica was the highest with the exception of Urtica dioica, which exhibited a similar activity of the enzyme. A detailed comparison with this species showed that differences between these species on particular dates were influenced by differences in the phenology of both plants. The initial results that were obtained suggest that nitrogen pollution in an environment can contribute to habitat invasibility and a high level of NRA, which in addition to the many plant traits that are commonly accepted as characteristic of invasiveness features, may be an important factor that enhances invasion success.

  20. Nigerian women reap benefits from indigenous vegetables

    International Development Research Centre (IDRC) Digital Library (Canada)

    Working in four administrative states in south- western Nigeria, the Sustainable Production and Utilization of Underutilized Nigerian. Vegetables to Enhance Rural .... children's school fees and health care needs of the family. This will continue to sustain their use of improved production and cultivation once the project has ...

  1. Dose construction for vegetable ingestion exposure in Hong Kong

    International Nuclear Information System (INIS)

    Lui, W.S.; Walton, A.; Yeung, M.R.

    1997-01-01

    The author presents the mathematical model TERRA used for the construction of ingestion doses resulting from the consumption of contaminated vegetables during a nuclear accident in Hong Kong. Using the ground surface deposited radionuclide densities as input, TERRA calculates the concentrations of 54 radionuclides on the surfaces and within the tissue of vegetables as a function of time and the radiation doses delivered to the various vital organs following their consumption by humans. The present model provides a convenient tool to determine the time histories of 54 radionuclides in vegetables and to back track or project the ingestion dose after a major accident such that more appropriate and timely countermeasures can be implemented

  2. Ecological impacts of non-native species

    Science.gov (United States)

    Wilkinson, John W.

    2012-01-01

    Non-native species are considered one of the greatest threats to freshwater biodiversity worldwide (Drake et al. 1989; Allen and Flecker 1993; Dudgeon et al. 2005). Some of the first hypotheses proposed to explain global patterns of amphibian declines included the effects of non-native species (Barinaga 1990; Blaustein and Wake 1990; Wake and Morowitz 1991). Evidence for the impact of non-native species on amphibians stems (1) from correlative research that relates the distribution or abundance of a species to that of a putative non-native species, and (2) from experimental tests of the effects of a non-native species on survival, growth, development or behaviour of a target species (Kats and Ferrer 2003). Over the past two decades, research on the effects of non-native species on amphibians has mostly focused on introduced aquatic predators, particularly fish. Recent research has shifted to more complex ecological relationships such as influences of sub-lethal stressors (e.g. contaminants) on the effects of non-native species (Linder et al. 2003; Sih et al. 2004), non-native species as vectors of disease (Daszak et al. 2004; Garner et al. 2006), hybridization between non-natives and native congeners (Riley et al. 2003; Storfer et al. 2004), and the alteration of food-webs by non-native species (Nystrom et al. 2001). Other research has examined the interaction of non-native species in terms of facilitation (i.e. one non-native enabling another to become established or spread) or the synergistic effects of multiple non-native species on native amphibians, the so-called invasional meltdown hypothesis (Simerloff and Von Holle 1999). Although there is evidence that some non-native species may interact (Ricciardi 2001), there has yet to be convincing evidence that such interactions have led to an accelerated increase in the number of non-native species and cumulative impacts are still uncertain (Simberloff 2006). Applied research on the control, eradication, and

  3. Species composition and diversity of non-forest woody vegetation along roads in the agricultural landscape

    Directory of Open Access Journals (Sweden)

    Tóth Attila

    2016-03-01

    Full Text Available Non-forest woody vegetation represents an important component of green infrastructure in the agricultural landscape, where natural and semi-natural forest cover has only a low land use proportion. This paper focuses on linear woody vegetation structures along roads in the agricultural landscape and analyses them in three study areas in the Nitra Region, Slovakia. We evaluate species composition and diversity, species occurrence frequency or spatial distribution, their structure according to relatively achievable age and origin. For the evaluation of occurrence frequency, a Frequency Factor was proposed and applied. This factor allows a better comparison of different study areas and results in more representative findings. The study areas were divided into sectors based on visual landscape features, which are easily identifiable in the field, such as intersections and curves in roads, and intersections of roads with other features, such as cadastral or land boundaries, watercourses, etc. Based on the species abundance, woody plants present within the sectors were categorised into 1 predominant, 2 complementary and 3 mixed-in species; and with regard to their origin into 1 autochthonous and 2 allochthonous. Further, trees were categorised into 1 long-lived, 2 medium-lived and 3 short-lived tree species. The main finding is that among trees, mainly allochthonous species dominated. Robinia pseudoacacia L. was the predominant tree species in all three study areas. It was up to 4 times more frequent than other predominant tree species. Introduced tree species prevailed also among complementary and mixed-in species. Among shrubs, mainly native species dominated, while non-native species had a significantly lower proportion and spatial distribution. Based on these findings, several measures have been proposed to improve the overall ecological stability, the proportion and spatial distribution of native woody plant species. The recommendations and

  4. Proceedings from the U.S. Army Corps of Engineers (USACE) and the National Oceanic and Atmospheric Administration (NOAA) Natural and Nature-Based Features Workshop

    Science.gov (United States)

    2016-03-01

    settings. Those examples included, but were not limited to vegetation plantings on dredged material placement areas and dunes; ecosystem restoration...tools with sanctuaries , estuarine reserves, marine protected areas, and other assets located in coastal areas around the nation. These places and...9. Vegetation on Dredged Material Placement Areas: This proposed project would use native plants as engineering materials for developing NNBF in

  5. Soil and vegetation influence in plants natural radionuclides uptake at a uranium mining site

    Science.gov (United States)

    Charro, E.; Moyano, A.

    2017-12-01

    The main objective of this work is to investigate the uptake of several radionuclides by the vegetation characteristic of a dehesa ecosystem in uranium mining-impacted soils in Central-West of Spain. The activity concentration for 238U, 226Ra, 210Pb, 232Th, and 224Ra was measured in soil and vegetation samples using a Canberra n-type HPGe gamma-ray spectrometer. Transfer factors of natural radionuclides in different tissues (leaves, branches, twigs, and others) of native plants were evaluated. From these data, the influence of the mine, the physicochemical parameters of the soils and the type of vegetation were analyzed in order to explain the accumulation of radionuclides in the vegetation. A preferential uptake of 210Pb and 226Ra by plants, particularly by trees of the Quercus species (Quercus pyrenaica and Quercus ilex rotundifolia), has been observed, being the transfer factors for 226Ra and 210Pb in these tree species higher than those for other plants (like Pinus pinaster, Rubur ulmifolius and Populus sp.). The analysis of radionuclide contents and transfer factors in the vegetation showed no evidence of influence of the radionuclide concentration in soils, although it could be explained in terms of the type of plants and, in particular, of the tree's species, with special attention to the tree's rate of growth, being higher in slow growing species.

  6. ESTRUTUTURA DA COMUNIDADE VEGETAL ARBÓREO-ARBUSTIVA DE UM SISTEMA AGROSSILVIPASTORIL, EM SOBRAL - CE

    Directory of Open Access Journals (Sweden)

    MÔNICA MATOSO CAMPANHA

    2011-01-01

    Full Text Available "Caatinga", dominant vegetation in Brazilian semiarid, has suffered severe degradation process, triggered, among other reasons, by the traditional agricultural and extractive activities. The need to conserve the environment and natural resources in agricultural and forestry activities, led to search for alternatives to conventional production. In this context, agroforestry systems, that integrate trees with crops and livestock, are an alternative operating sustainably. With the aim of studying the potential for preservation tree species of the "Caatinga" in an agrosilvopasture system in semiarid, in Sobral-CE, was evaluated the relatives density, frequency and dominance, the importance value index and the Shannon e Wiener index, of the woody component of this system. It was found that the vegetation management practices of trees and shrubs used in the system decrease density, and interfered in height and diameter distribution of individuals in relation to the original vegetation of the Caatinga. However, these practices were effective in preserving the wealth of flora species of trees and shrubs, similar to the area of native vegetation reserve. Cordia oncocalyx was the species with the highest number of individuals in the system, also showing highest importance value, followed by Mimosa caesalpiniifolia. The family Leguminosae was the most representative. The Shannon index shows that this agrosilvopasture system has the potential to promote an intermediate level of conservation among the "Caatinga" vegetation remnants and disturbed areas in this biome.

  7. Native grass hydroseed development : establishment protocols for three native Hawaiian plants on roadside areas.

    Science.gov (United States)

    2012-08-01

    The biggest mistake with using native plants on Hawaiis roadways is to assume that native plants do not require : nutrient enhancement or supplemental water to establish on these sites. The establishment of native plants will : require a detailed ...

  8. DNA Damage, Fruits and Vegetables and Breast Cancer Prevention

    National Research Council Canada - National Science Library

    Thompson, Henry

    2002-01-01

    The purpose of this project is to evaluate the effect(s) of increasing fruit and vegetable intake on oxidative DNA damage and lipid peroxidation in a population of women at elevated risk for breast cancer...

  9. DNA Damage, Fruits and Vegetables and Breast Cancer Prevention

    National Research Council Canada - National Science Library

    Thompson, Henry

    2001-01-01

    The purpose of this project is to evaluate the effect(s) of increasing fruit and vegetable intake on oxidative DNA damage and lipid peroxidation in a population of women at elevated risk for breast cancer...

  10. DNA Damage, Fruits and Vegetables and Breast Cancer Prevention

    National Research Council Canada - National Science Library

    Thompson, Henry

    2003-01-01

    The purpose of this project was to evaluate the effect(s) of increasing fruit and vegetable intake on oxidative DNA damage and lipid peroxidation in a population of women at elevated risk for breast cancer...

  11. DNA Damage, Fruits and Vegetables and Breast Cancer Prevention

    National Research Council Canada - National Science Library

    Thompson, Henry

    2000-01-01

    The purpose of this project is to evaluate the effect(s) of increasing fruit and vegetable intake on oxidative DNA damage and lipid peroxidation in a population of women at elevated risk for breast cancer...

  12. 76 FR 3120 - Native American and Alaska Native Children in School Program; Office of English Language...

    Science.gov (United States)

    2011-01-19

    ... DEPARTMENT OF EDUCATION Native American and Alaska Native Children in School Program; Office of English Language Acquisition, Language Enhancement, and Academic Achievement for Limited English Proficient Students; Overview Information; Native American and Alaska Native Children in School Program...

  13. Relationships between vegetation dynamics and hydroclimatic drivers in the northern high-latitude uplands

    Science.gov (United States)

    Wang, H.; Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; McNamara, J. P.; Soulsby, C.; Spence, C.

    2015-12-01

    IPCC projections show that climate warming will be particularly high in northern high-latitude regions, which has profound ecohydrological implications: a small rise of temperature may result in lower water availability in summer due to less rainfall and more evapotranspiration, increase flooding risks by accelerating melting rates in spring, and more rain rather than snow in winter, etc. These impacts will affect vegetation communities by altering timing of the spring "green-up" and fall "senescence". Change in vegetation water use will feedback to atmospheric and hydrological cycles. Here, we report results from the PLATO "Plant-water interlinkages in northern uplands - mediation of climate change?" project where we investigate water uptake by plants and consequent water availability in northern regions along a cross-regional climate gradient to understand future responses to change in high-latitude uplands. Six sites in Sweden (Krycklan), Canada (Wolf Creek; Baker Creek; Dorset), Scotland (Girnock) and the USA (Dry Creek) span moisture and energy gradients found at high-latitudes. We are presenting preliminary results of vegetation phenology changes from 2000 to 2014 by analysing remote sensing vegetation indices. The relationship between vegetation phenology and climatic drivers (temperature and precipitation) is also investigated.

  14. Growth rate differences between resident native brook trout and non-native brown trout

    Science.gov (United States)

    Carlson, S.M.; Hendry, A.P.; Letcher, B.H.

    2007-01-01

    Between species and across season variation in growth was examined by tagging and recapturing individual brook trout Salvelinus fontinalis and brown trout Salmo trutta across seasons in a small stream (West Brook, Massachusetts, U.S.A.). Detailed information on body size and growth are presented to (1) test whether the two species differed in growth within seasons and (2) characterize the seasonal growth patterns for two age classes of each species. Growth differed between species in nearly half of the season- and age-specific comparisons. When growth differed, non-native brown trout grew faster than native brook trout in all but one comparison. Moreover, species differences were most pronounced when overall growth was high during the spring and early summer. These growth differences resulted in size asymmetries that were sustained over the duration of the study. A literature survey also indicated that non-native salmonids typically grow faster than native salmonids when the two occur in sympatry. Taken together, these results suggest that differences in growth are not uncommon for coexisting native and non-native salmonids. ?? 2007 The Authors.

  15. The market for vegetables in North Vietnam

    NARCIS (Netherlands)

    Wijk, S.; Everaarts, A.P.

    2007-01-01

    The purpose of this project is first to develop the technical oppertunities for vegetable cultivation in the Hoa Binh highlands, and later to establish the ways and means for marketing of the product. To get some first insights in the marketing possibilities, a desk study was carried out of the

  16. Effects of sulfur dioxide on vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, G S

    1939-11-11

    A discussion is presented on the effects of sulfur dioxide on vegetation as observed at Trail, British Columbia. The investigation was carried out over a period of eight years, 1929 to 1937. The concentration of sulfur dioxide at the United States border was carefully determined throughout the crop season at a point 16 miles from the source of sulfur dioxide. Maximum and average concentrations in part per million are given. The sulfur content of vegetation was determined and was found to diminish as the distance from the smelter increased. It was determined that the sulfur content may rise to four times the normal amount without injurious effect. This is particularly so with prolonged low concentration. The effect on the soil was determined by measuring soluble sulfate, pH and exchangeable bases. The soil near the plant was affected, but this fell off rapidly with increase in distance so that eight miles from the smelter the soil was substantially normal. No effect on water supplies was found. An appreciable retardation in growth, as determined by annular rings, was noted for trees exposed to the sulfur dioxide. This effect was lost following installation of sulfur dioxide control at Trail. Conifers were found more susceptible during periods of active growth than when dormant. Also, transplanted conifers were more severly affected than native trees. Seedlings were less resistant that older trees.

  17. Non- chemical methods of seed treatment for control of seed- borne pathogens on vegetables

    NARCIS (Netherlands)

    Amein, T.; Wright, S.A.I.; Wickstrom, M.; Schmitt, A.; Koch, E.; Wolf, van der J.M.; Groot, S.P.C.; Werner, S.; Jahn, M.

    2006-01-01

    The aim of EU-project "Seed Treatments for Organic Vegetable Production" (STOVE) was to evaluate non-chemical methods for control of seed-borne pathogens in organic vegetable production. Physical (hot air, hot water and electron) and biologi-cal (microorganisms and different agents of natural

  18. Native American youth and justice

    Directory of Open Access Journals (Sweden)

    Dr.Sc. Laurence A. French

    2012-12-01

    Full Text Available Youth and delinquency issues have long been problematic among Native Americans groups both on- and off-reservation. This phenomenon is further complicated by the cultural diversity among American Indians and Alaska Natives scattered across the United States. In address these issues, the paper begins with a historical overview of Native American youth. This history presents the long tradition of federal policies that, how well intended, have resulted in discriminatory practices with the most damages attacks being those directed toward the destruction of viable cultural attributes – the same attributes that make Native Americans unique within United States society. Following the historical material, the authors contrast the pervasive Native American aboriginal ethos of harmony with that of Protestant Ethic that dominates the ethos of the larger United States society. In addition to providing general information on Native American crime and delinquency, the paper also provides a case study of Native American justice within the Navajo Nation, the largest tribe, in both size and population, in the United States. The paper concludes with a discussion of issues specific to Native American youth and efforts to address these problems.

  19. Research projects lead by the USDA Cranberry Entomology Laboratory (CEL)

    Science.gov (United States)

    1. Newly discovered native nematode species represent bio-insecticides (grad student project) a. Problems being addressed: Issues over flea beetle control; unresolved questions over pesticide use during bloom. b. Discoveries: at least two native nematodes species new to science have been discovered ...

  20. Evolution of the vegetation system in the Heihe River basin in the last 2000 years

    Directory of Open Access Journals (Sweden)

    S. Li

    2017-08-01

    Full Text Available The response of vegetation systems to the long-term changes in climate, hydrology, and social–economic conditions in river basins is critical for sustainable river basin management. This study aims to investigate the evolution of natural and crop vegetation systems in the Heihe River basin (HRB over the past 2000 years. Archived Landsat images, historical land use maps and hydrological records were introduced to derive the long-term spatial distribution of natural and crop vegetation and the corresponding biomass levels. The major findings are that (1 both natural and crop vegetation experienced three development stages: a pre-development stage (before the Republic of China, a rapid development stage (Republic of China – 2000, and a post-development stage (after 2000. Climate and hydrological conditions did not show significant impacts over crop vegetation, while streamflow presented synchronous changes with natural vegetation in the first stage. For the second stage, warmer temperature and increasing streamflow were found to be important factors for the increase in both natural and crop vegetation in the middle reaches of the HRB. For the third stage, positive climate and hydrological conditions, together with policy interventions, supported the overall vegetation increase in both the middle and lower HRB; (2 there was a significantly faster increase in crop biomass than that of native vegetation since 1949, which could be explained by the technological development; and (3 the ratio of natural vegetation to crop vegetation decreased from 16 during the Yuan Dynasty to about 2.2 since 2005. This ratio reflects the reaction of land and water development to a changing climate and altering social–economic conditions at the river basin level; therefore, it could be used as an indicator of water and land management at river basins.

  1. Decoding speech perception by native and non-native speakers using single-trial electrophysiological data.

    Directory of Open Access Journals (Sweden)

    Alex Brandmeyer

    Full Text Available Brain-computer interfaces (BCIs are systems that use real-time analysis of neuroimaging data to determine the mental state of their user for purposes such as providing neurofeedback. Here, we investigate the feasibility of a BCI based on speech perception. Multivariate pattern classification methods were applied to single-trial EEG data collected during speech perception by native and non-native speakers. Two principal questions were asked: 1 Can differences in the perceived categories of pairs of phonemes be decoded at the single-trial level? 2 Can these same categorical differences be decoded across participants, within or between native-language groups? Results indicated that classification performance progressively increased with respect to the categorical status (within, boundary or across of the stimulus contrast, and was also influenced by the native language of individual participants. Classifier performance showed strong relationships with traditional event-related potential measures and behavioral responses. The results of the cross-participant analysis indicated an overall increase in average classifier performance when trained on data from all participants (native and non-native. A second cross-participant classifier trained only on data from native speakers led to an overall improvement in performance for native speakers, but a reduction in performance for non-native speakers. We also found that the native language of a given participant could be decoded on the basis of EEG data with accuracy above 80%. These results indicate that electrophysiological responses underlying speech perception can be decoded at the single-trial level, and that decoding performance systematically reflects graded changes in the responses related to the phonological status of the stimuli. This approach could be used in extensions of the BCI paradigm to support perceptual learning during second language acquisition.

  2. Two sides of a coin: Effects of climate change on the native and non-native distribution of Colossoma macropomum in South America.

    Science.gov (United States)

    Lopes, Taise M; Bailly, Dayani; Almeida, Bia A; Santos, Natália C L; Gimenez, Barbara C G; Landgraf, Guilherme O; Sales, Paulo C L; Lima-Ribeiro, Matheus S; Cassemiro, Fernanda A S; Rangel, Thiago F; Diniz-Filho, José A F; Agostinho, Angelo A; Gomes, Luiz C

    2017-01-01

    Climate change and species invasions interact in nature, disrupting biological communities. Based on this knowledge, we simultaneously assessed the effects of climate change on the native distribution of the Amazonian fish Colossoma macropomum as well as on its invasiveness across river basins of South America, using ecological niche modeling. We used six niche models within the ensemble forecast context to predict the geographical distribution of C. macropomum for the present time, 2050 and 2080. Given that this species has been continuously introduced into non-native South American basins by fish farming activities, we added the locations of C. macropomum farms into the modeling process to obtain a more realistic scenario of its invasive potential. Based on modelling outputs we mapped climate refuge areas at different times. Our results showed that a plenty of climatically suitable areas for the occurrence of C. macropomum occurrence are located outside the original basins at the present time and that its invasive potential is greatly amplified by fish farms. Simulations of future geographic ranges revealed drastic range contraction in the native region, implying concerns not only with respect to the species conservation but also from a socio-economic perspective since the species is a cornerstone of artisanal and commercial fisheries in the Amazon. Although the invasive potential is projected to decrease in the face of climate change, climate refugia will concentrate in Paraná River, Southeast Atlantic and East Atlantic basins, putting intense, negative pressures on the native fish fauna these regions. Our findings show that short and long-term management actions are required for: i) the conservation of natural stocks of C. macropomum in the Amazon, and ii) protecting native fish fauna in the climate refuges of the invaded regions.

  3. Two sides of a coin: Effects of climate change on the native and non-native distribution of Colossoma macropomum in South America.

    Directory of Open Access Journals (Sweden)

    Taise M Lopes

    Full Text Available Climate change and species invasions interact in nature, disrupting biological communities. Based on this knowledge, we simultaneously assessed the effects of climate change on the native distribution of the Amazonian fish Colossoma macropomum as well as on its invasiveness across river basins of South America, using ecological niche modeling. We used six niche models within the ensemble forecast context to predict the geographical distribution of C. macropomum for the present time, 2050 and 2080. Given that this species has been continuously introduced into non-native South American basins by fish farming activities, we added the locations of C. macropomum farms into the modeling process to obtain a more realistic scenario of its invasive potential. Based on modelling outputs we mapped climate refuge areas at different times. Our results showed that a plenty of climatically suitable areas for the occurrence of C. macropomum occurrence are located outside the original basins at the present time and that its invasive potential is greatly amplified by fish farms. Simulations of future geographic ranges revealed drastic range contraction in the native region, implying concerns not only with respect to the species conservation but also from a socio-economic perspective since the species is a cornerstone of artisanal and commercial fisheries in the Amazon. Although the invasive potential is projected to decrease in the face of climate change, climate refugia will concentrate in Paraná River, Southeast Atlantic and East Atlantic basins, putting intense, negative pressures on the native fish fauna these regions. Our findings show that short and long-term management actions are required for: i the conservation of natural stocks of C. macropomum in the Amazon, and ii protecting native fish fauna in the climate refuges of the invaded regions.

  4. Student perceptions of native and non-native speaker language instructors: A comparison of ESL and Spanish

    Directory of Open Access Journals (Sweden)

    Laura Callahan

    2006-12-01

    Full Text Available The question of the native vs. non-native speaker status of second and foreign language instructors has been investigated chiefly from the perspective of the teacher. Anecdotal evidence suggests that students have strong opinions on the relative qualities of instruction by native and non-native speakers. Most research focuses on students of English as a foreign or second language. This paper reports on data gathered through a questionnaire administered to 55 university students: 31 students of Spanish as FL and 24 students of English as SL. Qualitative results show what strengths students believe each type of instructor has, and quantitative results confirm that any gap students may perceive between the abilities of native and non-native instructors is not so wide as one might expect based on popular notions of the issue. ESL students showed a stronger preference for native-speaker instructors overall, and were at variance with the SFL students' ratings of native-speaker instructors' performance on a number of aspects. There was a significant correlation in both groups between having a family member who is a native speaker of the target language and student preference for and self-identification with a native speaker as instructor. (English text

  5. Native SAD is maturing.

    Science.gov (United States)

    Rose, John P; Wang, Bi-Cheng; Weiss, Manfred S

    2015-07-01

    Native SAD phasing uses the anomalous scattering signal of light atoms in the crystalline, native samples of macromolecules collected from single-wavelength X-ray diffraction experiments. These atoms include sodium, magnesium, phosphorus, sulfur, chlorine, potassium and calcium. Native SAD phasing is challenging and is critically dependent on the collection of accurate data. Over the past five years, advances in diffraction hardware, crystallographic software, data-collection methods and strategies, and the use of data statistics have been witnessed which allow 'highly accurate data' to be routinely collected. Today, native SAD sits on the verge of becoming a 'first-choice' method for both de novo and molecular-replacement structure determination. This article will focus on advances that have caught the attention of the community over the past five years. It will also highlight both de novo native SAD structures and recent structures that were key to methods development.

  6. Asthma and American Indians/Alaska Natives

    Science.gov (United States)

    ... Minority Population Profiles > American Indian/Alaska Native > Asthma Asthma and American Indians/Alaska Natives In 2015, 240, ... Native American adults reported that they currently have asthma. American Indian/Alaska Native children are 60% more ...

  7. Statistical Models for Inferring Vegetation Composition from Fossil Pollen

    Science.gov (United States)

    Paciorek, C.; McLachlan, J. S.; Shang, Z.

    2011-12-01

    Fossil pollen provide information about vegetation composition that can be used to help understand how vegetation has changed over the past. However, these data have not traditionally been analyzed in a way that allows for statistical inference about spatio-temporal patterns and trends. We build a Bayesian hierarchical model called STEPPS (Spatio-Temporal Empirical Prediction from Pollen in Sediments) that predicts forest composition in southern New England, USA, over the last two millenia based on fossil pollen. The critical relationships between abundances of tree taxa in the pollen record and abundances in actual vegetation are estimated using modern (Forest Inventory Analysis) data and (witness tree) data from colonial records. This gives us two time points at which both pollen and direct vegetation data are available. Based on these relationships, and incorporating our uncertainty about them, we predict forest composition using fossil pollen. We estimate the spatial distribution and relative abundances of tree species and draw inference about how these patterns have changed over time. Finally, we describe ongoing work to extend the modeling to the upper Midwest of the U.S., including an approach to infer tree density and thereby estimate the prairie-forest boundary in Minnesota and Wisconsin. This work is part of the PalEON project, which brings together a team of ecosystem modelers, paleoecologists, and statisticians with the goal of reconstructing vegetation responses to climate during the last two millenia in the northeastern and midwestern United States. The estimates from the statistical modeling will be used to assess and calibrate ecosystem models that are used to project ecological changes in response to global change.

  8. Biodiesel in Belgium. From rapeseed oil to used vegetable oils

    International Nuclear Information System (INIS)

    Pelkmans, L.

    1997-01-01

    There are two motives for the search for alternative motor fuels: reducing the growing pressure of traffic on environment, and looking for a replacement for petrol and diesel oil that are bound to be worn-out in a few decades. A promising alternative motor fuel is biodiesel. The author's institute is involved in its second biodiesel demonstration project. In the first project RME (rapeseed methyl ester) was used undiluted in five passenger cars for two years. There were no technical problems and a clear environmental advantage was noticed. However, the price remains a problem. The use of waste vegetable oils for the production of biodiesel could help to overcome this problem. Therefore, a second biodiesel demonstration project was started in which UVOME (used vegetable oil methyl ester) is used. The preliminary results show a great similarity with the RME results and no technical problems in real life use. 1 fig., 1 tab., 5 refs

  9. Energy budgets and resistances to energy transport in sparsely vegetated rangeland

    Science.gov (United States)

    Nichols, W.D.

    1992-01-01

    Partitioning available energy between plants and bare soil in sparsely vegetated rangelands will allow hydrologists and others to gain a greater understanding of water use by native vegetation, especially phreatophytes. Standard methods of conducting energy budget studies result in measurements of latent and sensible heat fluxes above the plant canopy which therefore include the energy fluxes from both the canopy and the soil. One-dimensional theoretical numerical models have been proposed recently for the partitioning of energy in sparse crops. Bowen ratio and other micrometeorological data collected over phreatophytes growing in areas of shallow ground water in central Nevada were used to evaluate the feasibility of using these models, which are based on surface and within-canopy aerodynamic resistances, to determine heat and water vapor transport in sparsely vegetated rangelands. The models appear to provide reasonably good estimates of sensible heat flux from the soil and latent heat flux from the canopy. Estimates of latent heat flux from the soil were less satisfactory. Sensible heat flux from the canopy was not well predicted by the present resistance formulations. Also, estimates of total above-canopy fluxes were not satisfactory when using a single value for above-canopy bulk aerodynamic resistance. ?? 1992.

  10. Relationships between the normalised difference vegetation index and temperature fluctuations in post-mining sites

    Czech Academy of Sciences Publication Activity Database

    Bujalský, L.; Jirka, V.; Zemek, František; Frouz, J.

    2018-01-01

    Roč. 32, č. 4 (2018), s. 254-263 ISSN 1748-0930 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : temperature * normalised difference * vegetation index (NDVI) * vegetation cover * remote sensing Subject RIV: DF - Soil Science Impact factor: 1.078, year: 2016

  11. Vegetation of Paektu Mt. alpine tundra and changes of species composition in its ecotone

    Czech Academy of Sciences Publication Activity Database

    Kolbek, Jiří; Jarolímek, I.

    2007-01-01

    Roč. 39, č. 2 (2007), s. 707-725 ISSN 0253-116X R&D Projects: GA ČR(CZ) GA206/05/0119 Institutional research plan: CEZ:AV0Z60050516 Keywords : High mountain vegetation * hypsometric vegetation transect * Korean-Chinese boundary Subject RIV: EF - Botanics

  12. Spatial patterns and natural recruitment of native shrubs in a semi-arid sandy land.

    Science.gov (United States)

    Wu, Bo; Yang, Hongxiao

    2013-01-01

    Passive restoration depending on native shrubs is an attractive approach for restoring desertified landscapes in semi-arid sandy regions. We sought to understand the relationships between spatial patterns of native shrubs and their survival ability in sandy environments. Furthermore, we applied our results to better understand whether passive restoration is feasible for desertified landscapes in semi-arid sandy regions. The study was conducted in the semi-arid Mu Us sandy land of northern China with the native shrub Artemisia ordosica. We analyzed population structures and patterns of A. ordosica at the edges and centers of land patches where sand was stabilized by A. ordosica-dominated vegetation. Saplings were more aggregated than adults, and both were more aggregated at the patch edges than at the patch centers. At the patch edges, spatial association of the saplings with the adults was mostly positive at distances 0.3-6.6 m, and turned from positive to neutral, and even negative, at other distances. At the patch centers, the saplings were spaced almost randomly around the adults, and their distances from the adults did not seem to affect their locations. A greater number of A. ordosica individuals emerged at the patch edges than at the patch centers. Such patterns may have resulted from their integrative adjustment to specific conditions of soil water supply and sand drift intensity. These findings suggest that in semi-arid sandy regions, native shrubs that are well-adapted to local environments may serve as low-cost and competent ecological engineers that can promote the passive restoration of surrounding patches of mobile sandy land.

  13. Potential population and assemblage influences of non-native trout on native nongame fish in Nebraska headwater streams

    Science.gov (United States)

    Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.; Schainost, Steve

    2014-01-01

    Non-native trout are currently stocked to support recreational fisheries in headwater streams throughout Nebraska. The influence of non-native trout introductions on native fish populations and their role in structuring fish assemblages in these systems is unknown. The objectives of this study were to determine (i) if the size structure or relative abundance of native fish differs in the presence and absence of non-native trout, (ii) if native fish-assemblage structure differs in the presence and absence of non-native trout and (iii) if native fish-assemblage structure differs across a gradient in abundances of non-native trout. Longnose dace Rhinichthys cataractae were larger in the presence of brown trout Salmo trutta and smaller in the presence of rainbow trout Oncorhynchus mykiss compared to sites without trout. There was also a greater proportion of larger white suckers Catostomus commersonii in the presence of brown trout. Creek chub Semotilus atromaculatus and fathead minnow Pimephales promelas size structures were similar in the presence and absence of trout. Relative abundances of longnose dace, white sucker, creek chub and fathead minnow were similar in the presence and absence of trout, but there was greater distinction in native fish-assemblage structure between sites with trout compared to sites without trout as trout abundances increased. These results suggest increased risk to native fish assemblages in sites with high abundances of trout. However, more research is needed to determine the role of non-native trout in structuring native fish assemblages in streams, and the mechanisms through which introduced trout may influence native fish populations.

  14. Native plant development and restoration program for the Great Basin, USA

    Science.gov (United States)

    N. L. Shaw; M. Pellant; P. Olweli; S. L. Jensen; E. D. McArthur

    2008-01-01

    The Great Basin Native Plant Selection and Increase Project, organized by the USDA Bureau of Land Management, Great Basin Restoration Initiative and the USDA Forest Service, Rocky Mountain Research Station in 2000 as a multi-agency collaborative program (http://www.fs.fed.us/rm/boise/research/shrub/greatbasin.shtml), has the objective of improving the availability of...

  15. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India.

    Science.gov (United States)

    Nithya, Angamuthu; Babu, Subramanian

    2017-03-14

    The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.

  16. 75 FR 8930 - Office of Elementary and Secondary Education Overview Information; Native Hawaiian Education...

    Science.gov (United States)

    2010-02-26

    ... DEPARTMENT OF EDUCATION Office of Elementary and Secondary Education Overview Information; Native Hawaiian Education Program--Competition for Novice Applicants Notice inviting applications for new awards... Hawaiian Education program is to support innovative projects that enhance the educational services provided...

  17. Categories of fruit and vegetables: Attributes and definitions in Serbian

    Directory of Open Access Journals (Sweden)

    Dilparić Branislava M.

    2011-01-01

    Full Text Available According to the results of an empirical investigation performed by E. Rosch and K. Mervis (1975, the prototype structures of the categories FRUIT and VEGETABLES, the two superordinate and neighbouring categories with no clear-cut boundaries between them, are formed by family resemblances. Each category has only two attributes ('(part of a plant' and 'edible' which are common to all its members and yet not sufficient to define the category and separate it from other categories of edible (parts of plants. Through the analysis and comparison of a number of definitions for FRUIT and VEGETABLES (obtained in a questionnaire-based survey from a hundred native speakers of Serbian; taken from Lexicography and Conceptual Analysis by A. Wierzbicka; taken from five general dictionaries of the Serbian language, the author of this paper attempts to determine the group of attributes that could play a key role in differentiating the observed categories and to search for the most appropriate way to define the two categories in Serbian which would hopefully be acceptable to both modern (prototype semantics and practical lexicography.

  18. Function of the vegetative elements in contemporaneous interpretation of the architectonic work

    Directory of Open Access Journals (Sweden)

    Markéta Krejčí

    2008-01-01

    Full Text Available The creative process during which a vegetation element finds itself in the position of a fundamental part of material design of the building can be found in the field of modern architectural production. Along with other building materials, it has its own task to participate in the composition of architectural space. This represents an authentic approach of the current production where the do­mi­na­ting position of the vegetation material determines the unique character of the final work. In these exis­ting factors of practice, the vegetation material is treated, according to the three branches of purposefulness after Friedrich Schinkel, as fundamental part of structural composition of the architectural work. In considered cases, when the vegetation material is removed, the building loses its functional qualities or basic value of expression. Studied cases have proved the existing application of vegetation motives and their combinations the garden art has worked with for centuries. However, mo­dern architectural production adapts them to fields of application that are completely new. It develops these original sources of inspiration that lead modern architecture to totally inventive and new results. The above-mentioned factors are the subject of this paper the purpose of which is to provide basic determination of real applicability of the green mass in the materials applied in the building construction and give examples of current leading finished examples. On the one hand, ar­chi­tec­tu­ral objects restore, with the application of vegetation elements, natural form of greenery in urban interior on the individual level of human dimension. On the other hand, with their help, when siting a project in open space you can also prevent building of a totalitarian wall in the form of a building mass. Thus contextuality of the executed project is achieved in relation to its surroundings. In the presented architectural initiatives the vegetation

  19. Evaluation of salvage and replanted native plants on ADOT projects.

    Science.gov (United States)

    2012-06-01

    ADOT has transplanted thousands of saguaros during the construction of roadway projects, and although : the projects are typically tracked for two years, the long-term survivability of saguaros has never been : documented. The purpose of this study i...

  20. Hydro power projects- boon or bane for the rural communities of Western Himalayas

    Directory of Open Access Journals (Sweden)

    Jolli Virat

    2017-06-01

    Full Text Available A survey based questionnaire research was conducted in Sainj Valley, Himachal Pradesh. The survey was conducted in June-July 2015 in an area affected due to hydro power projects (HPPs. A total of 48 individuals participated in the survey. Based on survey questionnaire, it was found that native rural people perceived that HPPs had significantly brought positive change in life of native people and were therefore in favour of HPPs. However, large section of native people had not been benefited of HPPs. The decline in agriculture production, change in cropping pattern and poor access of water to native people were some of the negative implications of these projects. The dependence of native people on forest resources has not declined much and still number of local individuals depends on forest resources to supplement their income. Though, in current scenario people has benefited from such projects, however it is not known if it will be sustained for long time due to current unsustainable agriculture practices and limited employment opportunities. Moreover, Government should provide adequate compensation to the affected individuals by either providing a suitable land for agriculture or employment under various rural sector schemes.

  1. Differences in the Metacognitive Awareness of Reading Strategies among Native and Non-Native Readers.

    Science.gov (United States)

    Sheorey, R.; Mokhtari, K.

    2001-01-01

    Examines the differences in the reported use of reading strategies of native and non-native English speakers when reading academic materials. Participants were native English speaking and English-as-a-Second-Language college students who completed a survey of reading strategies aimed at discerning the strategies readers report using when coping…

  2. Projecting the impact of climate change on phenology of winter wheat in northern Lithuania.

    Science.gov (United States)

    Juknys, Romualdas; Velička, Rimantas; Kanapickas, Arvydas; Kriaučiūnienė, Zita; Masilionytė, Laura; Vagusevičienė, Ilona; Pupalienė, Rita; Klepeckas, Martynas; Sujetovienė, Gintarė

    2017-10-01

    Climate warming and a shift in the timing of phenological phases, which lead to changes in the duration of the vegetation period may have an essential impact on the productivity of winter crops. The main purpose of this study is to examine climate change-related long-term (1961-2015) changes in the duration of both initial (pre-winter) and main (post-winter) winter wheat vegetation seasons and to present the projection of future phenological changes until the end of this century. Delay and shortening of pre-winter vegetation period, as well as the advancement and slight extension of the post-winter vegetation period, resulted in the reduction of whole winter wheat vegetation period by more than 1 week over the investigated 55 years. Projected changes in the timing of phenological phases which define limits of a main vegetation period differ essentially from the observed period. According to pessimistic (Representative Concentration Pathways 8.5) scenario, the advancement of winter wheat maturity phase by almost 30 days and the shortening of post-winter vegetation season by 15 days are foreseen for a far (2071-2100) projection. An increase in the available chilling amount is specific not only to the investigated historical period (1960-2015) but also to the projected period according to the climate change scenarios of climate warming for all three projection periods. Consequently, the projected climate warming does not pose a threat of plant vernalization shortage in the investigated geographical latitudes.

  3. Vegetation change: a reunifying concept in plant ecology

    Czech Academy of Sciences Publication Activity Database

    Davis, M. A.; Pergl, Jan; Truscott, A.; Kollmann, J.; Bakker, J. P.; Domenech, R.; Prach, Karel; Prieur-Richard, A.; Veeneklaas, R. M.; Pyšek, Petr; del Moral, R.; Hobbs, R. J.; Collins, S. L.; Pickett, S. T. A.; Reich, P. B.

    2005-01-01

    Roč. 7, - (2005), s. 69-76 ISSN 1433-8319 R&D Projects: GA ČR(CZ) GA206/02/0617 Institutional research plan: CEZ:AV0Z60050516 Keywords : vegetation succession * climate change * plant invasions Subject RIV: EF - Botanics Impact factor: 3.053, year: 2005

  4. Global vegetation change predicted by the modified Budyko model

    Energy Technology Data Exchange (ETDEWEB)

    Monserud, R.A.; Tchebakova, N.M.; Leemans, R. (US Department of Agriculture, Moscow, ID (United States). Intermountain Research Station, Forest Service)

    1993-09-01

    A modified Budyko global vegetation model is used to predict changes in global vegetation patterns resulting from climate change (CO[sub 2] doubling). Vegetation patterns are predicted using a model based on a dryness index and potential evaporation determined by solving radiation balance equations. Climate change scenarios are derived from predictions from four General Circulation Models (GCM's) of the atmosphere (GFDL, GISS, OSU, and UKMO). All four GCM scenarios show similar trends in vegetation shifts and in areas that remain stable, although the UKMO scenario predicts greater warming than the others. Climate change maps produced by all four GCM scenarios show good agreement with the current climate vegetation map for the globe as a whole, although over half of the vegetation classes show only poor to fair agreement. The most stable areas are Desert and Ice/Polar Desert. Because most of the predicted warming is concentrated in the Boreal and Temperate zones, vegetation there is predicted to undergo the greatest change. Most vegetation classes in the Subtropics and Tropics are predicted to expand. Any shift in the Tropics favouring either Forest over Savanna, or vice versa, will be determined by the magnitude of the increased precipitation accompanying global warming. Although the model predicts equilibrium conditions to which many plant species cannot adjust (through migration or microevolution) in the 50-100 y needed for CO[sub 2] doubling, it is not clear if projected global warming will result in drastic or benign vegetation change. 72 refs., 3 figs., 3 tabs.

  5. Factors mediating co-occurrence of an economically valuable introduced fish and its native frog prey.

    Science.gov (United States)

    Hartman, Rosemary; Pope, Karen; Lawler, Sharon

    2014-06-01

    Habitat characteristics mediate predator-prey coexistence in many ecological systems but are seldom considered in species introductions. When economically important introduced predators are stocked despite known negative impacts on native species, understanding the role of refuges, landscape configurations, and community interactions can inform habitat management plans. We measured these factors in basins with introduced trout (Salmonidae) and the Cascades frog (Rana cascadae) to determine, which are responsible for observed patterns of co-occurrence of this economically important predator and its native prey. Large, vegetated shallows were strongly correlated to co-occurrence, and R. cascadae larvae occur in shallower water when fish are present, presumably to escape predation. The number of nearby breeding sites of R. cascadae was also correlated to co-occurrence, but only when the western toad (Anaxyrus boreas) was present. Because A. boreas larvae are unpalatable to fish and resemble R. cascadae, they may provide protection from trout via Batesian mimicry. Although rescue-effect dispersal from nearby populations may maintain co-occurrence, within-lake factors proved more important for predicting co-occurrence. Learning which factors allow co-occurrence between economically important introduced species and their native prey enables managers to make better-informed stocking decisions. © 2013 Society for Conservation Biology.

  6. Response and Resiliency of Wildlife and Vegetation to Large-Scale Wildfires and Climate Change in the North Cascades

    Science.gov (United States)

    Bartowitz, K.; Morrison, P.; Romain-Bondi, K.; Smith, C. W.; Warne, L.; McGill, D.

    2016-12-01

    Changing climatic patterns have affected the western US in a variety of ways: decreases in precipitation and snowpack, earlier spring snowmelt, and increased lightning strikes have created a drier, more fire-prone system, despite variability in these characteristics. Wildfires are a natural phenomenon, but have been suppressed for much of the past century. Effects of this evolving fire regime on native vegetation and wildlife are not well understood. Increased frequency and intensity of fires coupled with subsequent drought and extreme heat may inhibit or alter recovery of native ecosystems. We are currently investigating how a mega-fire has affected presence of western gray squirrels (Sciurus griseus, WGS) in the North Cascades, and the mortality, survival, and recovery of vegetation following these fires and extreme drought. The Methow Valley in WA experienced a record-breaking wildfire in 2014, which disturbed nearly 50% of priority habitat of the North Cascades population of WGS. WGS were studied at the same pre and post-fire plots. WGS were present at over half of the post-burn plots (58%). There was a significant difference in the number of WGS hair samples collected in different levels of remaining vegetation: the most in moderate, few in low, and none in high. Vegetation recovery was assessed through field data, and a chronosequence of satellite images and aerial photography. 75% of the 2014 fire burned non-forested vegetation. Ponderosa pine forests comprised the rest. The forests experienced about 70% initial mortality. Recovery of the forest appears slower than in the shrub-steppe. First year seedling survival was poor due to an extremely hot, dry summer, while second year survival appears higher due to a cool, moist spring and summer. One year after a large, multi-severity fire we found WGS may be more resilient to disturbance such as fires than previously thought. Future studies of WGS will help elucidate long-term response to large-scale fires, and

  7. Word Durations in Non-Native English

    Science.gov (United States)

    Baker, Rachel E.; Baese-Berk, Melissa; Bonnasse-Gahot, Laurent; Kim, Midam; Van Engen, Kristin J.; Bradlow, Ann R.

    2010-01-01

    In this study, we compare the effects of English lexical features on word duration for native and non-native English speakers and for non-native speakers with different L1s and a range of L2 experience. We also examine whether non-native word durations lead to judgments of a stronger foreign accent. We measured word durations in English paragraphs read by 12 American English (AE), 20 Korean, and 20 Chinese speakers. We also had AE listeners rate the `accentedness' of these non-native speakers. AE speech had shorter durations, greater within-speaker word duration variance, greater reduction of function words, and less between-speaker variance than non-native speech. However, both AE and non-native speakers showed sensitivity to lexical predictability by reducing second mentions and high frequency words. Non-native speakers with more native-like word durations, greater within-speaker word duration variance, and greater function word reduction were perceived as less accented. Overall, these findings identify word duration as an important and complex feature of foreign-accented English. PMID:21516172

  8. Recycling of waste vegetable oil biodiesel and glycerine : social enterprise feasibility study

    International Nuclear Information System (INIS)

    2005-12-01

    This study examined the feasibility of recycling waste vegetable oil into biodiesel fuel as part of a social enterprise spearheaded by the Centre de sante communautaire in Sudbury. The enterprise proposed the collection of waste vegetable oil from local restaurants for refinement into biodiesel fuel as well as glycerine byproducts. The study included reviews of legal issues related to the project as well as details of community consultation processes. Target participants were also identified. The biodiesel industry was briefly reviewed along with details of the biodiesel manufacturing process. The study determined that 2 permanent employees will be required to run the biodiesel project. Initial staffing for the first year of the project was estimated at 4 full-time equivalent participants. Equipment and capital purchases for the first year of operation were estimated at $75,000. Total funds for startup of the project were estimated at $140,000. Budgets were supplied to the year 2009. 34 refs., 2 tabs., 5 figs

  9. Baseline survey for rare plant species and native plant communities within the Kamehameha Schools 'Lupea Safe Harbor Planning Project Area, North Kona District, Island of Hawai'i

    Science.gov (United States)

    Jacobi, James; Warshauer, F. R.; Price, Jonathan

    2010-01-01

    Kamehameha Schools, in conjunction with several federal, state, and private organizations, has proposed to conduct conservation management on approximately 5,340 ha (~13,200 acres) of land they own in the vicinity of Kīpukalupea in the North Kona District on the island of Hawai'i. The goal of this program is to restore and enhance the habitat to benefit native plant and animal populations that are currently, or were formerly, found in this site. The initial phase of this project has been focused on various activities including conducting baseline surveys for bird and plant species so Kamehameha Schools could develop a Safe Harbor Agreement (SHA) for the proposed project lands relative to the habitat management and species reintroduction efforts they would like to conduct in the Lupea Project area. This report summarizes methods that were used to collect field data on plant species and communities within the project area, and the results of that initial survey. The information was used to calculate baseline values for all listed threatened or endangered plant species found, or expected to be found, within the project area, and to design a monitoring program to assess changes in plant communities and rare plant species relative to management activities over the duration of the SHA.

  10. Fine and Coarse-Scale Patterns of Vegetation Diversity on Reclaimed Surface Mine-land Over a 40-Year Chronosequence.

    Science.gov (United States)

    Bohrer, Stefanie L; Limb, Ryan F; Daigh, Aaron L; Volk, Jay M; Wick, Abbey F

    2017-03-01

    Rangelands are described as heterogeneous, due to patterning in species assemblages and productivity that arise from species dispersal and interactions with environmental gradients and disturbances across multiple scales. The objectives of rangeland reclamation are typically vegetation establishment, plant community productivity, and soil stability. However, while fine-scale diversity is often promoted through species-rich seed mixes, landscape heterogeneity and coarse-scale diversity are largely overlooked. Our objectives were to evaluate fine and coarse-scale vegetation patterns across a 40-year reclamation chronosequence on reclaimed surface coalmine lands. We hypothesized that both α-diversity and β-diversity would increase and community patch size and species dissimilarity to reference sites would decrease on independent sites over 40 years. Plant communities were surveyed on 19 post-coalmine reclaimed sites and four intact native reference sites in central North Dakota mixed-grass prairie. Our results showed no differences in α or β-diversity and plant community patch size over the 40-year chronosequence. However, both α-diversity and β-diversity on reclaimed sites was similar to reference sites. Native species establishment was limited due to the presence of non-native species such as Kentucky bluegrass (Poa pratensis) on both the reclaimed and reference sites. Species composition was different between reclaimed and reference sites and community dissimilarity increased on reclaimed sites over the 40-year chronosequence. Plant communities resulting from reclamation followed non-equilibrium succession, even with consistent seeds mixes established across all reclaimed years. This suggests post-reclamation management strategies influence species composition outcomes and land management strategies applied uniformly may not increase landscape-level diversity.

  11. Vegetation fire proneness in Europe

    Science.gov (United States)

    Pereira, Mário; Aranha, José; Amraoui, Malik

    2015-04-01

    Fire selectivity has been studied for vegetation classes in terms of fire frequency and fire size in a few European regions. This analysis is often performed along with other landscape variables such as topography, distance to roads and towns. These studies aims to assess the landscape sensitivity to forest fires in peri-urban areas and land cover changes, to define landscape management guidelines and policies based on the relationships between landscape and fires in the Mediterranean region. Therefore, the objectives of this study includes the: (i) analysis of the spatial and temporal variability statistics within Europe; and, (ii) the identification and characterization of the vegetated land cover classes affected by fires; and, (iii) to propose a fire proneness index. The datasets used in the present study comprises: Corine Land Cover (CLC) maps for 2000 and 2006 (CLC2000, CLC2006) and burned area (BA) perimeters, from 2000 to 2013 in Europe, provided by the European Forest Fire Information System (EFFIS). The CLC is a part of the European Commission programme to COoRdinate INformation on the Environment (Corine) and it provides consistent, reliable and comparable information on land cover across Europe. Both the CLC and EFFIS datasets were combined using geostatistics and Geographical Information System (GIS) techniques to access the spatial and temporal evolution of the types of shrubs and forest affected by fires. Obtained results confirms the usefulness and efficiency of the land cover classification scheme and fire proneness index which allows to quantify and to compare the propensity of vegetation classes and countries to fire. As expected, differences between northern and southern Europe are notorious in what concern to land cover distribution, fire incidence and fire proneness of vegetation cover classes. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by

  12. Understory plant diversity in mixed and pure plantations of jatropha curcas vs. native vegetation in the lower-middle reaches of the lancang-meikong river watershed, china

    International Nuclear Information System (INIS)

    Ou, G.L.; Ma, H.C.; Tang, J.R.

    2015-01-01

    22 plots at the Xiaoheijiang base, located in the lower-middle reaches of the Lancang-Meikong River in China, were investigated to analyze the understory biodiversity of Jatropha curcas plantations. Two kinds of mixed modes of J. curcas (mixed plantation with Macadamia integrifolia and mixed plantation with shrub species) and a pure plantation of J. curcas were planted, while the native vegetation served as a control. The plots were distributed along the gradients of forest management, succession and elevation by CCA analysis. Species richness was not significantly different for the different types of plantation, but the evenness of species could be affected, especially for the total community and the understory by planting J. curcas. The diversity and evenness indices of species were affected for the mixed plantation with different proportions of M. integrifolia, especially for the shrub layer, the Shannon diversity index and Pilou evenness index showed significant differences. And for the different mixed shrub species, only the Shannon diversity index and Pilou evenness index were significantly different. Finally, from the perspective of biological diversity, J.curcas plantation with shrub species would be a recommended planting model for ecological restoration in a dry-hot valley area, while J. curcas plantation with M. integrifolia would be an effective planting model to balance crop yield and food security. (author)

  13. Nativization Processes in L1 Esperanto.

    Science.gov (United States)

    Bergen, Benjamin K.

    2001-01-01

    Describes characteristics of the Native Esperanto of eight speakers, ranging from age 6 to 14 years. Found bilingualism and nativization effects, differentiating native from non-native Esperanto speech. Among these effects are loss or modification of the accusative case, phonological reduction, attrition of tense/aspect system, and pronominal…

  14. Native birds and insects, and introduced honey bees visiting Echium wildpretii (Boraginaceae) in the Canary Islands

    Science.gov (United States)

    Valido, Alfredo; Dupont, Yoko L.; Hansen, Dennis M.

    2002-12-01

    In this paper, we report observations of flower visitors of the endemic Echium wildpretii in Tenerife, Canary Islands. This plant inhabits the high altitudinal sub-alpine zone, which is characterized by a harsh climate, low species diversity and a short growing season. Echium wildpretii is a monocarpic perennial, producing a 2-3 m column-shaped, red-flowered, nectar-rich inflorescence. Although these floral traits have previously been suggested as being typical of ornithophilous flowers, this is the first study reporting observations of native birds ( Phylloscopus collybita and Serinus canarius) in addition to insects visiting the flowers for nectar. The purposes of this study were firstly to investigate levels of visitation by native birds, native insects, and introduced honey bees. Secondly, we studied the influence of floral display (plant height and number of flowers), nearest neighbours (distance and size) and local vegetation structure on visitation rate. Finally, we discuss the evolution of ornithophily in an otherwise entomophilous plant lineage. We found that the level of bird visitation was relatively high early in the flowering season, but decreased in mid/late season, while the opposite pattern was found for introduced honey bees. For native insects, the frequency of visits was similar in early and late season. Bird visits were correlated with floral display. In the early season, visitation rates of honey bees and the two most common native bee species were correlated with size of the plant or its nearest neighbours, consistent with preference patterns for larger resource patches. Since only insects visit the flowers of other species in the Echium clade, E. wildpretii appears to have evolved from a truly insect-pollinated lineage.

  15. NativeProtector: Protecting Android Applications by Isolating and Intercepting Third-Party Native Libraries

    OpenAIRE

    Hong , Yu-Yang; Wang , Yu-Ping; Yin , Jie

    2016-01-01

    Part 9: Software Security; International audience; An increasing number of Android developers are incorporating third-party native libraries in their applications for code reuse, CPU-intensive tasks and other purposes. However current Android security mechanism can not regulate the native code in applications well. Many approaches have been proposed to enforce security of Android applications, but few of them involve security of the native libraries in Android applications.In this paper, we p...

  16. Tribal Recommendations for Designing Culturally Appropriate Technology-Based Sexual Health Interventions Targeting Native Youth in the Pacific Northwest

    Science.gov (United States)

    Rushing, Stephanie Craig; Stephens, David

    2012-01-01

    Media technologies, including the Internet, cell phones, and video games, offer new avenues to reach Native youth on sensitive health topics. Project Red Talon, a sexually transmitted disease (STD)/HIV prevention project that serves the 43 federally recognized tribes in Oregon, Washington, and Idaho, used community-based participatory research…

  17. 10 Years of Native Seed Certification in Germany - a Summary.

    Science.gov (United States)

    Mainz, Ann Kareen; Wieden, Markus

    2018-06-21

    Many renaturation projects and compensation areas are based on the use of seeds from regional indigenous wild plants, in the following: native or regional seeds. Despite this, such seeds make up only a small proportion of the total number of seeds used for greening projects - in Germany, for example, it is only around 1% (= 200 t/yr). Although the market for regional seeds is small, it is highly competitive. High-priced native seeds compete with flower mixes of unspecified origin and can only be differentiated from them by reliable quality seals. A quality assurance system based on seed legislation (EU Directive 2010/60, preservation mixtures) has been developed in a few European countries. However, quality assurance ends with the sale of the seeds. Thus, seed use remains unmonitored and often unsuitable material, or material foreign to the region, is planted in restoration areas. Unfortunately, nature conservation has not made seed-based restoration one of its key issues, neither at the European, nor at the national level. Currently there are many different local and regional standards, methods and private certificates that are confusing for users and which provide little continuity and predictability for producers. We recommend the establishment of an EU directive or a broadly agreed recommendation to the EU member states, spearheaded by nature conservation, which would define the standards for producing and using native seeds (e.g. harmonized regions that cross national borders, quality regulations). At the same time, wild plant interest groups should combine existing structures in order to strengthen seed-based restoration through international cooperation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Environmental niche separation between native and non-native benthic invertebrate species: Case study of the northern Baltic Sea.

    Science.gov (United States)

    Jänes, Holger; Herkül, Kristjan; Kotta, Jonne

    2017-10-01

    Knowledge and understanding of geographic distributions of species is crucial for many aspects in ecology, conservation, policy making and management. In order to reach such an understanding, it is important to know abiotic variables that impact and drive distributions of native and non-native species. We used an existing long-term macrobenthos database for species presence-absence information and biomass estimates at different environmental gradients in the northern Baltic Sea. Region specific abiotic variables (e.g. salinity, depth) were derived from previously constructed bathymetric and hydrodynamic models. Multidimensional ordination techniques were then applied to investigate potential niche space separation between all native and non-native invertebrates in the northern Baltic Sea. Such an approach allowed to obtain data rich and robust estimates of the current native and non-native species distributions and outline important abiotic parameters influencing the observed pattern. The results showed clear niche space separation between native and non-native species. Non-native species were situated in an environmental space characterized by reduced salinity, high temperatures, high proportion of soft seabed and decreased depth and wave exposure whereas native species displayed an opposite pattern. Different placement of native and non-native species along the studied environmental niche space is likely to be explained by the differences in their evolutionary history, human mediated activities and geological youth of the Baltic Sea. The results of this study can provide early warnings and effectively outline coastal areas in the northern Baltic Sea that are prone to further range expansion of non-native species as climate change is expected to significantly reduce salinity and increase temperature in wide coastal areas, both supporting the disappearance of native and appearance of non-native species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Morphodynamic effects of riparian vegetation growth after stream restoration

    NARCIS (Netherlands)

    Vargas-Luna, Andrés; Crosato, Alessandra; Anders, Niels; Hoitink, Antonius J.F.; Keesstra, Saskia D.; Uijttewaal, Wim S.J.

    2018-01-01

    The prediction of the morphological evolution of renaturalized streams is important for the success of restoration projects. Riparian vegetation is a key component of the riverine landscape and is therefore essential for the natural rehabilitation of rivers. This complicates the design of

  20. Staphylococcus caprae native mitral valve infective endocarditis.

    Science.gov (United States)

    Kwok, T'ng Choong; Poyner, Jennifer; Olson, Ewan; Henriksen, Peter; Koch, Oliver

    2016-10-01

    Staphylococcus caprae is a rare cause of infective endocarditis. Here, we report a case involving the native mitral valve in the absence of an implantable cardiac electronic device. A 76-year-old man presented with a 2 week history of confusion and pyrexia. His past medical history included an open reduction and internal fixation of a humeral fracture 17 years previously, which remained non-united despite further revision 4 years later. There was no history of immunocompromise or farm-animal contact. Two sets of blood culture bottles, more than 12 h apart, were positive for S. caprae . Trans-thoracic echocardiography revealed a 1×1.2 cm vegetation on the mitral valve, with moderate mitral regurgitation. Due to ongoing confusion, he had a magnetic resonance imaging brain scan, which showed a subacute small vessel infarct consistent with a thromboembolic source. A humeral SPECT-CT (single-photon emission computerized tomography-computerized tomography) scan showed no clear evidence of acute osteomyelitis. Surgical vegetectomy and mitral-valve repair were considered to reduce the risk of further systemic embolism and progressive valve infection. However, the potential risks of surgery to this patient led to a decision to pursue a cure with antibiotic therapy alone. He remained well 3 months after discharge, with repeat echocardiography demonstrating a reduction in the size of the vegetation (0.9 cm). Management of this infection was challenging due to its rarity and its unclear progression, complicated by the dilemma surrounding surgical intervention in a patient with a complex medical background.

  1. Digital Natives or Digital Tribes?

    Science.gov (United States)

    Watson, Ian Robert

    2013-01-01

    This research builds upon the discourse surrounding digital natives. A literature review into the digital native phenomena was undertaken and found that researchers are beginning to identify the digital native as not one cohesive group but of individuals influenced by other factors. Primary research by means of questionnaire survey of technologies…

  2. Native Health Research Database

    Science.gov (United States)

    ... Indian Health Board) Welcome to the Native Health Database. Please enter your search terms. Basic Search Advanced ... To learn more about searching the Native Health Database, click here. Tutorial Video The NHD has made ...

  3. Mental health status in pregnancy among native and non-native Swedish-speaking women

    DEFF Research Database (Denmark)

    Wangel, Anne-Marie; Schei, Berit; Ryding, Elsa Lena

    2012-01-01

    OBJECTIVES: To describe mental health status in native and non-native Swedish-speaking pregnant women and explore risk factors of depression and posttraumatic stress (PTS) symptoms. DESIGN AND SETTING: A cross-sectional questionnaire study was conducted at midwife-based antenatal clinics in South......OBJECTIVES: To describe mental health status in native and non-native Swedish-speaking pregnant women and explore risk factors of depression and posttraumatic stress (PTS) symptoms. DESIGN AND SETTING: A cross-sectional questionnaire study was conducted at midwife-based antenatal clinics...... in Southern Sweden. SAMPLE: A non-selected group of women in mid-pregnancy. METHODS: Participants completed a questionnaire covering background characteristics, social support, life events, mental health variables and the short Edinburgh Depression Scale. MAIN OUTCOME MEASURES: Depressive symptoms during...... the past week and PTS symptoms during the past year. RESULTS: Out of 1003 women, 21.4% reported another language than Swedish as their mother tongue and were defined as non-native. These women were more likely to be younger, have fewer years of education, potential financial problems, and lack of social...

  4. The Impact of CO2-Driven Vegetation Changes on Wildfire Risk

    Science.gov (United States)

    Skinner, C. B.; Poulsen, C. J.

    2017-12-01

    While wildfires are a key component of natural ecological restoration and succession, they also pose tremendous risks to human life, health, and property. Wildfire frequency is expected to increase in many regions as the radiative effects of elevated CO2 drive warmer surface air temperatures, earlier spring snow melt, and more frequent meteorological drought. However, high CO2 concentrations will also directly impact vegetation growth and physiology, potentially altering wildfire characteristics through changes in fuel amount and surface hydrology. Depending on the biome and time of year, these vegetation-driven responses may mitigate or enhance radiative-driven wildfire changes. In this study, we use a suite of earth system models from the Coupled Model Intercomparison Project 5 with active biogeophysics and biogeochemistry to understand how the vegetation response to high CO2 (CO2 quadrupling) contributes to future changes in wildfire risk across the globe. Across the models, projected CO2 fertilization enhances aboveground biomass (about a 30% leaf area index (LAI) increase averaged across the globe) during the spring and summer months, increasing the availability of wildfire fuel across all biomes. Despite greater LAI, models robustly project widespread reductions in summer season transpiration (about -15% averaged across the globe) in response to reduced stomatal conductance from CO2 physiological forcing. Reduced transpiration warms summer season near surface temperatures and lowers relative humidity across vegetated regions of the mid-to-high latitudes, heightening the risk of wildfire occurrence. However, as transpiration goes down in response to greater plant water use efficiency, a larger fraction of soil water remains in the soil, potentially halting the spread of wildfires in some regions. Given the myriad ways in which the vegetation response to CO2 may alter wildfire risk, and the robustness of the responses across models, an explicit simulation of

  5. Preparing Net Gen pre-service teachers for digital native classrooms

    Directory of Open Access Journals (Sweden)

    Valentin Ekiaka Nzai

    2014-09-01

    Full Text Available This paper explored Net Gen Bilingual pre-service teachers’ perspectives future digital native classrooms based on the National Education Technology Plan (2010 postulates. Participants were Seven Net Gen bilingual future teachers enrolled at a semester – long laboratory of practices project for Literacy Development for English Language Learners. Data were collected using Ginsburg’s (1989 narrative strategy, which consisted of analyzing information from participants’ life stories produced during two audiotaped focus group conversations. Findings showed that pre-service teachers had positive perceptions and beliefs toward the laboratory of practices built upon the experimental cyberlearning workstation frame designed by the authors. The hands-on experiences helped them enhance their digital native-like citizenship in order to meet future students’ individual abilities and learning styles, and stimulate teaching with digital technologies. Some recommendations and limitations are also addressed.

  6. Seed rain under native and non-native tree species in the Cabo Rojo National Wildlife Refuge, Puerto Rico.

    Science.gov (United States)

    Arias Garcia, Andrea; Chinea, J Danilo

    2014-09-01

    Seed dispersal is a fundamental process in plant ecology and is of critical importance for the restoration of tropical communities. The lands of the Cabo Rojo National Wildlife Refuge (CRNWR), formerly under agriculture, were abandoned in the 1970s and colonized mainly by non-native tree species of degraded pastures. Here we described the seed rain under the most common native and non-native trees in the refuge in an attempt to determine if focal tree geographic origin (native versus non-native) influences seed dispersal. For this, seed rain was sampled for one year under the canopies of four native and four non-native tree species common in this refuge using 40 seed traps. No significant differences were found for the abundance of seeds, or their diversity, dispersing under native versus non-native focal tree species, nor under the different tree species. A significantly different seed species composition was observed reaching native versus non-native focal species. However, this last result could be more easily explained as a function of distance of the closest adults of the two most abundantly dispersed plant species to the seed traps than as a function of the geographic origin of the focal species. We suggest to continue the practice of planting native tree species, not only as a way to restore the community to a condition similar to the original one, but also to reduce the distances needed for effective dispersal.

  7. Social impacts of IPM-FFS on urban and peri-urban vegetable ...

    African Journals Online (AJOL)

    social relations, social empowerment and sharing of IPM information, and sustainability and institutionalization of IPM) for vegetable producers in an integrated pest management (IPM) project using farmer field schools (FFS) in Cotonou.

  8. Simulations of Vegetation Impacts on Arctic Climate

    Science.gov (United States)

    Bonfils, C.; Phillips, T. J.; Riley, W. J.; Post, W. M.; Torn, M. S.

    2009-12-01

    Because global warming disproportionately influences high-latitude climate, changes in arctic vegetation are in progress. These land-cover changes include redistribution of local vegetation types as well as northward migration of lower-latitude species in response to the increasing warming. The resulting displacement of low-lying tundra vegetation by shrubs and trees darkens the surface, thus accelerating regional warming. As participants in the U.S. Department of Energy IMPACTS Project, we are investigating the potential for abrupt arctic climatic change resulting from such variations in vegetation, among other mechanisms. To estimate the relative magnitudes of effects to be expected from changes in high-latitude land cover, we are conducting several numerical experiments with the Community Climate System Model (CCSM). These experiments include: 1) A “present-day-climate” control experiment with current atmospheric greenhouse-gas concentrations and climatological monthly sea surface temperatures and sea ice extents prescribed, and with “standard” CLM plant functional types (PFTs) specified; 2) A “changed-vegetation-type” experiment that is the same as 1), except that the “standard” PFTs are augmented by additional vegetation types (forbs, sedges, shrubs, mosses, and lichens) that are not presently represented in CLM. This experiment will require information on the location, fractional cover, and physiological parameterizations of these new PFTs. 3) A “changed-vegetation-extent experiment” that is the same as 2), except that the spatial extents of selected PFTs (e.g. shrubs or boreal forest PFTs) are shifted northward from their present locations in the CLM. We will report on the atmospheric climate and land-surface feedbacks associated with these vegetation changes, with emphasis on local and regional surface energy and moisture fluxes and near-surface temperature, humidity, and clouds. Acknowledgments This work was performed under the auspices

  9. Feedbacks among Floods, Pioneer Woody Vegetation, and Channel Change in Sand-Bed Rivers: Insights from Field Studies of Controlled Flood Releases and Models

    Science.gov (United States)

    Wilcox, A. C.; Shafroth, P. B.; Lightbody, A.; Stella, J. C.; Bywater-Reyes, S.; Kiu, L.; Skorko, K.

    2012-04-01

    To investigate feedbacks between flow, geomorphic processes, and pioneer riparian vegetation in sand-bed rivers, we are combining field, hydraulic modeling, and laboratory simulations. Field studies have examined the response of woody riparian seedlings and channel morphology to prescribed dam-released floods that have been designed in part to maintain a native riparian woodland system on the Bill Williams River, Arizona, USA. Through monitoring of floods over a 7-year period, we have observed temporal and spatial variations in channel response. Floods have produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach with greater sediment supply. We also have observed that as vegetation grows beyond the seedling stage, its stabilizing effect on bars and its drag effect on flow progressively increases, such that floods of similar sizes but at different times may produce markedly different downstream responses as a function of vegetation characteristics. We also observed greater mortality among nonnative Tamarix spp. (tamarisk) seedlings than among native Salix gooddingii (Goodding's willow) seedlings, likely as a result of the greater first-year growth of willow relative to tamarisk. Combining field observations with modeling predictions of local hydraulics for the flood events we have studied is being used to draw linkages between hydraulics, channel change, and plant response at the patch and bar scale. In addition, mechanistic linkages are being examined using a field-scale laboratory stream channel, where seedlings of Tamarix spp. (tamarisk) and Populus fremontii (cottonwood) were planted and subjected to floods with varying sediment feed rate and plant configurations. The floods conveyed by our model channel were generally insufficient to scour the woody seedlings we planted, but changes in bar size and

  10. Phytophagous insects on native and non-native host plants: combining the community approach and the biogeographical approach.

    Directory of Open Access Journals (Sweden)

    Kim Meijer

    Full Text Available During the past centuries, humans have introduced many plant species in areas where they do not naturally occur. Some of these species establish populations and in some cases become invasive, causing economic and ecological damage. Which factors determine the success of non-native plants is still incompletely understood, but the absence of natural enemies in the invaded area (Enemy Release Hypothesis; ERH is one of the most popular explanations. One of the predictions of the ERH, a reduced herbivore load on non-native plants compared with native ones, has been repeatedly tested. However, many studies have either used a community approach (sampling from native and non-native species in the same community or a biogeographical approach (sampling from the same plant species in areas where it is native and where it is non-native. Either method can sometimes lead to inconclusive results. To resolve this, we here add to the small number of studies that combine both approaches. We do so in a single study of insect herbivory on 47 woody plant species (trees, shrubs, and vines in the Netherlands and Japan. We find higher herbivore diversity, higher herbivore load and more herbivory on native plants than on non-native plants, generating support for the enemy release hypothesis.

  11. Remote sensing analysis of vegetation at the San Carlos Apache Reservation, Arizona and surrounding area

    Science.gov (United States)

    Norman, Laura M.; Middleton, Barry R.; Wilson, Natalie R.

    2018-01-01

    Mapping of vegetation types is of great importance to the San Carlos Apache Tribe and their management of forestry and fire fuels. Various remote sensing techniques were applied to classify multitemporal Landsat 8 satellite data, vegetation index, and digital elevation model data. A multitiered unsupervised classification generated over 900 classes that were then recoded to one of the 16 generalized vegetation/land cover classes using the Southwest Regional Gap Analysis Project (SWReGAP) map as a guide. A supervised classification was also run using field data collected in the SWReGAP project and our field campaign. Field data were gathered and accuracy assessments were generated to compare outputs. Our hypothesis was that a resulting map would update and potentially improve upon the vegetation/land cover class distributions of the older SWReGAP map over the 24,000  km2 study area. The estimated overall accuracies ranged between 43% and 75%, depending on which method and field dataset were used. The findings demonstrate the complexity of vegetation mapping, the importance of recent, high-quality-field data, and the potential for misleading results when insufficient field data are collected.

  12. Interaction of historical and nonhistorical disturbances maintains native plant communities.

    Science.gov (United States)

    Davies, K W; Svejcar, T J; Bates, J D

    2009-09-01

    Historical disturbance regimes are often considered a critical element in maintaining native plant communities. However, the response of plant communities to disturbance may be fundamentally altered as a consequence of invasive plants, climate change, or prior disturbances. The appropriateness of historical disturbance patterns under modern conditions and the interactions among disturbances are issues that ecologists must address to protect and restore native plant communities. We evaluated the response of Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh plant communities to their historical disturbance regime compared to other disturbance regimes. The historical disturbance regime of these plant communities was periodic fires with minimal grazing by large herbivores. We also investigated the influence of prior disturbance (grazing) on the response of these communities to subsequent disturbance (burning). Treatments were: (1) ungrazed (livestock grazing excluded since 1936) and unburned, (2) grazed and unburned, (3) ungrazed and burned (burned in 1993), and (4) grazed and burned. The ungrazed-burned treatment emulated the historical disturbance regime. Vegetation cover, density, and biomass production were measured the 12th, 13th, and 14th year post-burning. Prior to burning the presence of Bromus tectorum L., an exotic annual grass, was minimal (resilience to more severe disturbances. Modern deviations from historical conditions can alter ecosystem response to disturbances, thus restoring the historical disturbance regime may not be an appropriate strategy for all ecosystems.

  13. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  14. Obesity and Native Hawaiians/Pacific Islanders

    Science.gov (United States)

    ... Population Profiles > Native Hawaiian/Other Pacific Islander > Obesity Obesity and Native Hawaiians/Pacific Islanders Native Hawaiians/Pacific ... youthonline . [Accessed 08/18/2017] HEALTH IMPACT OF OBESITY People who are overweight are more likely to ...

  15. Comparison of root-associated communities of native and non-native ectomycorrhizal hosts in an urban landscape.

    Science.gov (United States)

    Lothamer, K; Brown, S P; Mattox, J D; Jumpponen, A

    2014-05-01

    Non-native tree species are often used as ornamentals in urban landscapes. However, their root-associated fungal communities remain yet to be examined in detail. Here, we compared richness, diversity and community composition of ectomycorrhizosphere fungi in general and ectomycorrhizal (EcM) fungi in particular between a non-native Pinus nigra and a native Quercus macrocarpa across a growing season in urban parks using 454-pyrosequencing. Our data show that, while the ectomycorrhizosphere community richness and diversity did not differ between the two host, the EcM communities associated with the native host were often more species rich and included more exclusive members than those of the non-native hosts. In contrast, the ectomycorrhizosphere communities of the two hosts were compositionally clearly distinct in nonmetric multidimensional ordination analyses, whereas the EcM communities were only marginally so. Taken together, our data suggest EcM communities with broad host compatibilities and with a limited numbers of taxa with preference to the non-native host. Furthermore, many common fungi in the non-native Pinus were not EcM taxa, suggesting that the fungal communities of the non-native host may be enriched in non-mycorrhizal fungi at the cost of the EcM taxa. Finally, while our colonization estimates did not suggest a shortage in EcM inoculum for either host in urban parks, the differences in the fungi associated with the two hosts emphasize the importance of using native hosts in urban environments as a tool to conserve endemic fungal diversity and richness in man-made systems.

  16. i-LOVE: ISS-JEM lidar for observation of vegetation environment

    Science.gov (United States)

    Asai, Kazuhiro; Sawada, Haruo; Sugimoto, Nobuo; Mizutani, Kohei; Ishii, Shoken; Nishizawa, Tomoaki; Shimoda, Haruhisa; Honda, Yoshiaki; Kajiwara, Koji; Takao, Gen; Hirata, Yasumasa; Saigusa, Nobuko; Hayashi, Masatomo; Oguma, Hiroyuki; Saito, Hideki; Awaya, Yoshio; Endo, Takahiro; Imai, Tadashi; Murooka, Jumpei; Kobatashi, Takashi; Suzuki, Keiko; Sato, Ryota

    2012-11-01

    It is very important to watch the spatial distribution of vegetation biomass and changes in biomass over time, representing invaluable information to improve present assessments and future projections of the terrestrial carbon cycle. A space lidar is well known as a powerful remote sensing technology for measuring the canopy height accurately. This paper describes the ISS(International Space Station)-JEM(Japanese Experimental Module)-EF(Exposed Facility) borne vegetation lidar using a two dimensional array detector in order to reduce the root mean square error (RMSE) of tree height due to sloped surface.

  17. Canopy Modeling of Aquatic Vegetation: Construction of Submerged Vegetation Index

    Science.gov (United States)

    Ma, Z.; Zhou, G.

    2018-04-01

    The unique spectral characteristics of submerged vegetation in wetlands determine that the conventional terrestrial vegetation index cannot be directly employed to species identification and parameter inversion of submerged vegetation. Based on the Aquatic Vegetation Radiative Transfer model (AVRT), this paper attempts to construct an index suitable for submerged vegetation, the model simulated data and a scene of Sentinel-2A image in Taihu Lake, China are utilized for assessing the performance of the newly constructed indices and the existent vegetation indices. The results show that the angle index composed by 525 nm, 555 nm and 670 nm can resist the effects of water columns and is more sensitive to vegetation parameters such as LAI. Furthermore, it makes a well discrimination between submerged vegetation and water bodies in the satellite data. We hope that the new index will provide a theoretical basis for future research.

  18. MONITORING PHENOLOGY OF FLOODPLAIN GRASSLAND AND HERBACEOUS VEGETATION WITH UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    W. K. van Iersel

    2016-06-01

    Full Text Available River restoration projects, which aim at improved flood safety and increased ecological value, have resulted in more heterogeneous vegetation. However, they also resulted in increasing hydraulic roughness, which leads to higher flood water levels during peak discharges. Due to allowance of vegetation development and succession, both ecological and hydraulic characteristics of the floodplain change more rapidly over time. Monitoring of floodplain vegetation has become essential to document and evaluate the changing floodplain characteristics and associated functioning. Extraction of characteristics of low vegetation using single-epoch remote sensing data, however, remains challenging. The aim of this study was to (1 evaluate the performance of multi-temporal, high-spatial-resolution UAV imagery for extracting temporal vegetation height profiles of grassland and herbaceous vegetation in floodplains and (2 to assess the relation between height development and NDVI changes. Vegetation height was measured six times during one year in 28 field plots within a single floodplain. UAV true-colour and false-colour imagery of the floodplain were recorded coincidently with each field survey. We found that: (1 the vertical accuracy of UAV normalized digital surface models (nDSMs is sufficiently high to obtain temporal height profiles of low vegetation over a growing season, (2 vegetation height can be estimated from the time series of nDSMs, with the highest accuracy found for combined imagery from February and November (RMSE = 29-42 cm, (3 temporal relations between NDVI and observed vegetation height show different hysteresis behaviour for grassland and herbaceous vegetation. These results show the high potential of using UAV imagery for increasing grassland and herbaceous vegetation classification accuracy.

  19. Will a warmer and wetter future cause extinction of native Hawaiian forest birds?

    Science.gov (United States)

    Liao, Wei; Timm, Oliver Elison; Zhang, Chunxi; Atkinson, Carter T.; LaPointe, Dennis; Samuel, Michael D.

    2015-01-01

    Isolation of the Hawaiian archipelago produced a highly endemic and unique avifauna. Avian malaria (Plasmodium relictum), an introduced mosquito-borne pathogen, is a primary cause of extinctions and declines of these endemic honeycreepers. Our research assesses how global climate change will affect future malaria risk and native bird populations. We used an epidemiological model to evaluate future bird-mosquito-malaria dynamics in response to alternative climate projections from the Coupled Model Intercomparison Project (CMIP). Climate changes during the second half of the century accelerate malaria transmission and cause a dramatic decline in bird abundance. Different temperature and precipitation patterns produce divergent trajectories where native birds persist with low malaria infection under a warmer and dryer projection (RCP4.5), but suffer high malaria infection and severe reductions under hot and dry (RCP8.5) or warm and wet (A1B) futures. We conclude that future global climate change will cause significant decreases in the abundance and diversity of remaining Hawaiian bird communities. Because these effects appear unlikely before mid-century, natural resource managers have time to implement conservation strategies to protect this unique avifauna from further decimation. Similar climatic drivers for avian and human malaria suggest that mitigation strategies for Hawai'i have broad application to human health.

  20. Transmission System Vegetation Management Program. Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1999-01-01

    Bonneville is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations in a region of diverse vegetation. This vegetation can interfere with electric power flow, pose safety problems for Bonneville and the public, and interfere with their ability to maintain these facilities. They need to (1) keep vegetation away from the electric facilities; (2) increase their program efficiency and consistency; (3) review herbicide use (under increased public scrutiny); and (4) maximize the range of tools they can use while minimizing environmental impact (Integrated Vegetation Management). This DEIS establishes Planning Steps for managing vegetation for specific projects (to be tiered to this EIS). In addition to No Action (current practice), alternatives are presented for Rights-of-way, Electric Yards, and Non-electric Facilities (landscaping, work yards). Four vegetation control methods are analyzed: manual, mechanical, herbicide, and biological. Also evaluated are 24 herbicide active ingredients and 4 herbicide application techniques (spot, localized, broadcast, and aerial). For rights-of-way, they consider three sets of alternatives: alternative management approaches (time-driven or establishing low-growing plant communities); alternative method packages; and, if herbicides are in a methods package, alternative vegetation selections (noxious weeds, deciduous, or any vegetation). For electric yards, one herbicide-use alternative is considered. For non-electric facilities, two method package alternatives are considered. For rights-of-way, the environmentally preferred alternative(s) would use manual, mechanical, and biological control methods, as well as spot and localized herbicide applications for noxious and deciduous plant species; the BPA-preferred alternative(s) would add broadcast and aerial herbicide applications, and would use herbicides on any vegetation. Both would favor a management

  1. The interactive effects of climate change, riparian management, and a non-native predators on stream-rearing salmon

    Science.gov (United States)

    Lawrence, David J.; Stewart-Koster, Ben; Olden, Julian D.; Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Butcher, Don P.; Crown, Julia K.

    2014-01-01

    Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory non-native smallmouth bass have also been introduced into many northwestern streams and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and non-native species on stream-rearing salmon, and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin; we compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing Chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of Chinook salmon rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing Chinook salmon and potentially predatory bass in the early summer (2-4-fold increase) and greater abundance of bass. We

  2. Vegetation change and pollen geochronology from the Atlantic Coast of the United States during the last Millennium

    Science.gov (United States)

    Christie, M.; Bernhardt, C. E.; Clear, J.; Corbett, D. R.; Horton, B.

    2017-12-01

    Vegetation changes related to anthropogenic and climatic change have been reconstructed at many locations. Synthesizing observations from multiple locations improves our understanding of the regionality of these impacts and drivers. Human alterations to the plant communities vary spatially in timing and impact. For example, deforestation occurred at different times, rates, and magnitudes along the Atlantic Coast of the United States, while of the introduction of non-native plants into ecosystems varies by region. Gradual climate shifts cause the appearance of migration in sensitive plants, so climate-related transitions can be traced from one location to another. Here, we combine new and published pollen data from Florida to Connecticut to produce a regional synthesis of vegetation changes for the last 1000 years. We have produced detailed reconstructions of vegetation changes in response to anthropogenic and climatic forcing. Our database contains pollen assemblages from more than 10 locations along the Atlantic coast of the United States, including new reconstructions from the Florida Keys, Delaware Estuary, and northern New Jersey. All pollen assemblages are placed in a geochronological framework with as fine as decadal resolution using composite chronologies of radiocarbon, pollution histories and cesium isotopes. Anthropogenic impacts, including deforestation from European settlement and the introduction of non-native plants, are observed in the pollen record and serve as useful markers of time. For example, the abrupt increase in Ambrosia pollen in the mid-Atlantic corresponds to 18th Century deforestation. Climate transitions that can be seen in the pollen record during the last millennium include the Medieval Climate Optimum, Little Ice Age, and human-induced warming following industrialization in the 20th century. Plant communities of the United States Atlantic Coast adapted to the evolving climate. For example, Picea and Tsuga are indicative of cooler

  3. Fast matrix treatment of 3-D radiative transfer in vegetation canopies: SPARTACUS-Vegetation 1.1

    Science.gov (United States)

    Hogan, Robin J.; Quaife, Tristan; Braghiere, Renato

    2018-01-01

    A fast scheme is described to compute the 3-D interaction of solar radiation with vegetation canopies. The canopy is split in the horizontal plane into one clear region and one or more vegetated regions, and the two-stream equations are used for each, but with additional terms representing lateral exchange of radiation between regions that are proportional to the area of the interface between them. The resulting coupled set of ordinary differential equations is solved using the matrix-exponential method. The scheme is compared to solar Monte Carlo calculations for idealized scenes from the RAMI4PILPS intercomparison project, for open forest canopies and shrublands both with and without snow on the ground. Agreement is good in both the visible and infrared: for the cases compared, the root-mean-squared difference in reflectance, transmittance and canopy absorptance is 0.020, 0.038 and 0.033, respectively. The technique has potential application to weather and climate modelling.

  4. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  5. Modulation of legume defense signaling pathways by native and non-native pea aphid clones

    Directory of Open Access Journals (Sweden)

    Carlos Sanchez-Arcos

    2016-12-01

    Full Text Available The pea aphid (Acyrthosiphon pisum is a complex of at least 15 genetically different host races that are native to specific legume plants, but can all develop on the universal host plant Vicia faba. Despite much research it is still unclear why pea aphid host races (biotypes are able to colonize their native hosts while other host races are not. All aphids penetrate the plant and salivate into plant cells when they test plant suitability. Thus plants might react differently to the various pea aphid host races. To find out whether legume species vary in their defense responses to different pea aphid host races, we measured the amounts of salicylic acid (SA, the jasmonic acid-isoleucine conjugate (JA-Ile, other jasmonate precursors and derivatives, and abscisic acid (ABA in four different species (Medicago sativa, Trifolium pratense, Pisum sativum, V. faba after infestation by native and non-native pea aphid clones of various host races. Additionally, we assessed the performance of the clones on the four plant species. On M. sativa and T. pratense, non-native clones that were barely able to survive or reproduce, triggered a strong SA and JA-Ile response, whereas infestation with native clones led to lower levels of both phytohormones. On P. sativum, non-native clones, which survived or reproduced to a certain extent, induced fluctuating SA and JA-Ile levels, whereas the native clone triggered only a weak SA and JA-Ile response. On the universal host V. faba all aphid clones triggered only low SA levels initially, but induced clone-specific patterns of SA and JA-Ile later on. The levels of the active JA-Ile conjugate and of the other JA-pathway metabolites measured showed in many cases similar patterns, suggesting that the reduction in JA signaling was due to an effect upstream of OPDA. ABA levels were downregulated in all aphid clone-plant combinations and were therefore probably not decisive factors for aphid-plant compatibility. Our results

  6. Engaging Digital Natives through Social Learning

    Directory of Open Access Journals (Sweden)

    Nina Sarkar

    2017-04-01

    Full Text Available Digital natives account for a substantial portion of the total enrollment in higher education. This calls for significant educational reforms because traditional education systems do not cater to the needs and interests of digital natives. The most effective way that both students and instructors can benefit from this paradigm shift is to integrate technology that is appropriate to the cognitive learning patterns of the digital natives into the curriculum. This paper builds upon previous research in technology/personality theory and specifically attempts to provide examples of technology that will address the instructional needs of digital natives. Further this paper provides empirical evidence of the impact of technology integration on the learning outcomes of digital natives. In this study, the authors explored the impact of targeted technology on academic performance in three businesses courses. Three functional technologies were used by the authors to build engaging course content, efficiently manage course content, and to interact with digital native students. This study found that these technologies can assist digital natives in the learning process and lead to better academic performance.

  7. Higher dropout rate in non-native patients than in native patients in rehabilitation in The Netherlands

    NARCIS (Netherlands)

    Sloots, Maurits; Scheppers, Emmanuel F.; van de Weg, Frans B.; Bartels, Edien A.; Geertzen, Jan H.; Dekker, Joost; Dekker, Jaap

    Dropout from a rehabilitation programme often occurs in patients with chronic nonspecific low back pain of non-native origin. However, the exact dropout rate is not known. The objective of this study was to determine the difference in dropout rate between native and non-native patients with chronic

  8. Vegetation Variability And Its Effect On Monsoon Rainfall Over South East Asia: Observational and Modeling Results

    Science.gov (United States)

    Sarkar, S.; Peters-Lidard, C.; Chiu, L.; Kafatos, M.

    2005-12-01

    Increasing population and urbanization have created stress on developing nations. The quickly shifting patterns of vegetation change in different parts of the world have given rise to the pertinent question of feedback on the climate prevailing on local to regional scales. It is now known with some certainty, that vegetation changes can affect the climate by influencing the heat and water balance. The hydrological cycle particularly is susceptible to changes in vegetation. The Monsoon rainfall forms a vital link in the hydrological cycle prevailing over South East Asia This work examines the variability of vegetation over South East Asia and assesses its impact on the monsoon rainfall. We explain the role of changing vegetation and show how this change has affected the heat and energy balance. We demonstrate the role of vegetation one season earlier in influencing rainfall intensity over specific areas in South East Asia and show the ramification of vegetation change on the summer rainfall behavior. The vegetation variability study specifically focuses on India and China, two of the largest and most populous nations. We have done an assessment to find out the key meteorological and human induced parameters affecting vegetation over the study area through a spatial analysis of monthly NDVI values. This study highlights the role of monsoon rainfall, regional climate dynamics and large scale human induced pollution to be the crucial factors governing the vegetation and vegetation distribution. The vegetation is seen to follow distinct spatial patterns that have been found to be crucial in its eventual impact on monsoon rainfall. We have carried out a series of sensitivity experiments using a land surface hydrologic modeling scheme. The vital energy and water balance parameters are identified and the daily climatological cycles are examined for possible change in behavior for different boundary conditions. It is found that the change from native deciduous forest

  9. Earlier vegetation green-up has reduced spring dust storms.

    Science.gov (United States)

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-10-24

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = -0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world.

  10. An ecohydrological model for studying groundwater-vegetation interactions in wetlands

    Science.gov (United States)

    Chui, Ting Fong May; Low, Swee Yang; Liong, Shie-Yui

    2011-10-01

    SummaryDespite their importance to the natural environment, wetlands worldwide face drastic degradation from changes in land use and climatic patterns. To help preservation efforts and guide conservation strategies, a clear understanding of the dynamic relationship between coupled hydrology and vegetation systems in wetlands, and their responses to engineering works and climate change, is needed. An ecohydrological model was developed in this study to address this issue. The model combines a hydrology component based on the Richards' equation for characterizing variably saturated groundwater flow, with a vegetation component described by Lotka-Volterra equations tailored for plant growth. Vegetation is represented by two characteristic wetland herbaceous plant types which differ in their flood and drought resistances. Validation of the model on a study site in the Everglades demonstrated the capability of the model in capturing field-measured water table and transpiration dynamics. The model was next applied on a section of the Nee Soon swamp forest, a tropical wetland in Singapore, for studying the impact of possible drainage works on the groundwater hydrology and native vegetation. Drainage of 10 m downstream of the wetland resulted in a localized zone of influence within half a kilometer from the drainage site with significant adverse impacts on groundwater and biomass levels, indicating a strong need for conservation. Simulated water table-plant biomass relationships demonstrated the capability of the model in capturing the time-lag in biomass response to water table changes. To test the significance of taking plant growth into consideration, the performance of the model was compared to one that substituted the vegetation component with a pre-specified evapotranspiration rate. Unlike its revised counterpart, the original ecohydrological model explicitly accounted for the drainage-induced plant biomass decrease and translated the resulting reduced transpiration

  11. Complete mitochondrial genome sequences of Korean native horse from Jeju Island: uncovering the spatio-temporal dynamics.

    Science.gov (United States)

    Yoon, Sook Hee; Kim, Jaemin; Shin, Donghyun; Cho, Seoae; Kwak, Woori; Lee, Hak-Kyo; Park, Kyoung-Do; Kim, Heebal

    2017-04-01

    The Korean native horse (Jeju horse) is one of the most important animals in Korean historical, cultural, and economical viewpoints. In the early 1980s, the Jeju horse was close to extinction. The aim of this study is to explore the phylogenomics of Korean native horse focusing on spatio-temporal dynamics. We determined complete mitochondrial genome sequences for the first Korean native (n = 6) and additional Mongolian (n = 2) horses. Those sequences were analyzed together with 143 published ones using Bayesian coalescent approach as well as three different phylogenetic analysis methods, Bayesian inference, maximum likelihood, and neighbor-joining methods. The phylogenomic trees revealed that the Korean native horses had multiple origins and clustered together with some horses from four European and one Middle Eastern breeds. Our phylogenomic analyses also supported that there was no apparent association between breed or geographic location and the evolution of global horses. Time of the most recent common ancestor of the Korean native horse was approximately 13,200-63,200 years, which was much younger than 0.696 My of modern horses. Additionally, our results showed that all global horse lineages including Korean native horse existed prior to their domestication events occurred in about 6000-10,000 years ago. This is the first study on phylogenomics of the Korean native horse focusing on spatio-temporal dynamics. Our findings increase our understanding of the domestication history of the Korean native horses, and could provide useful information for horse conservation projects as well as for horse genomics, emergence, and the geographical distribution.

  12. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China.

    Science.gov (United States)

    Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt

    2015-01-01

    Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water

  13. Vegetation dynamics and dynamic vegetation science

    NARCIS (Netherlands)

    Van der Maarel, E

    1996-01-01

    his contribution presents a review of the development of the study of vegetation dynamics since 1979, in the framework of a jubilee meeting on progress in the study of vegetation. However, an exhaustive review is both impossible and unnecessary. It is impossible within the few pages available

  14. Vegetation survey: a new focus for Applied Vegetation Science

    NARCIS (Netherlands)

    Chytry, M.; Schaminee, J.H.J.; Schwabe, A.

    2011-01-01

    Vegetation survey is an important research agenda in vegetation science. It defines vegetation types and helps understand differences among them, which is essential for both basic ecological research and applications in biodiversity conservation and environmental monitoring. In this editorial, we

  15. Native American medicine.

    Science.gov (United States)

    Cohen, K

    1998-11-01

    This article summarizes common principles, practices, and ethics of Native American healing, the traditional medicine of North America. Native American healing, spirituality, culture, and, in modern times, political, social, and economic concerns are closely intertwined. Intuition and spiritual awareness are a healer's most essential diagnostic tools. Therapeutic methods include prayer, music, ritual purification, herbalism, massage, ceremony, and personal innovations of individual healers. A community of friends, family, and helpers often participate in the healing intervention and help to alleviate the alienation caused by disease. A healthy patient has a healthy relationship with his or her community and, ultimately, with the greater community of nature known as "All Relations." The goal of Native American healing is to find wholeness, balance, harmony, beauty, and meaning. "Healing," making whole, is as important as curing disease; at times they are identical.

  16. Aurora Mine project - historical resources baseline study

    International Nuclear Information System (INIS)

    Reeves, B.

    1996-01-01

    This volume contains the results of a base line archaeological study of the Aurora Mine Project local study area. It was compiled in support of Syncrude Canada's application to the Alberta Energy and Utilities Board (AEUB) and Alberta Environmental Protection to construct and operate it new Aurora Mine, located northeast of Fort McMurray, Alberta. The objective of this study was to compile, consolidate, review and analyze the reports for the area compiled over the past 22 years in and adjacent to the local study area (LSA), particularly those of now existing and Syncrude projects, and previously proposed Alsands and OSLO projects. The report is a summary of the human history in the area including pre-contact native archaeological sites, past archaeological studies, the Hinterland site pattern, post-contact native traditional sites, oil sands exploration/development related sites and paleontological sites in the subject area, and areas adjacent to it. 150 refs., 5 tabs., 43 figs

  17. Opportunities and constraints in the subsistence production and marketing of indigenous vegetables in East and Central Africa

    OpenAIRE

    Schippers, Rudy; Fereday, Nicholas

    1998-01-01

    This report summarises the results of market and production surveys carried out in both the dry and wet seasons in Cameroon and Uganda during 1997/98 as part of the DFID fimded project "Opportunities and constraints in the subsistence production and marketing of indigenous vegetables in East and Central Africa (A0699)". The main objective of the study was to establish the socio-economic significance of indigenous vegetables compared to exotic ones. This project is a follow up to the strategy ...

  18. NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Fall 2008, Wind & Hydropower Technologies Program (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2008-09-01

    As part of its Native American outreach, DOE?s Wind Powering America program produces a newsletter to present Native American wind information, including projects, interviews with pioneers, issues, WPA activities, and related events. This issue features an interview with Dave Danz, a tribal planner for the Grand Portage Band of Chippewa in northeastern Minnesota, and a feature on the new turbine that powers the KILI radio station on the Pine Ridge Reservation.

  19. 77 FR 30512 - Native American Career and Technical Education Program; Final Waivers and Extension of Project...

    Science.gov (United States)

    2012-05-23

    ... DEPARTMENT OF EDUCATION Native American Career and Technical Education Program; Final Waivers and... American Career and Technical Education Program Catalog of Federal Domestic Assistance (CFDA) Number: 84... and Technical Education Program (NACTEP), the Secretary waives 34 CFR 75.250 and 75.261(c)(2) in order...

  20. Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees.

    Science.gov (United States)

    Trocha, Lidia K; Kałucka, Izabela; Stasińska, Małgorzata; Nowak, Witold; Dabert, Mirosława; Leski, Tomasz; Rudawska, Maria; Oleksyn, Jacek

    2012-02-01

    Non-native tree species have been widely planted or have become naturalized in most forested landscapes. It is not clear if native trees species collectively differ in ectomycorrhizal fungal (EMF) diversity and communities from that of non-native tree species. Alternatively, EMF species community similarity may be more determined by host plant phylogeny than by whether the plant is native or non-native. We examined these unknowns by comparing two genera, native and non-native Quercus robur and Quercus rubra and native and non-native Pinus sylvestris and Pinus nigra in a 35-year-old common garden in Poland. Using molecular and morphological approaches, we identified EMF species from ectomycorrhizal root tips and sporocarps collected in the monoculture tree plots. A total of 69 EMF species were found, with 38 species collected only as sporocarps, 18 only as ectomycorrhizas, and 13 both as ectomycorrhizas and sporocarps. The EMF species observed were all native and commonly associated with a Holarctic range in distribution. We found that native Q. robur had ca. 120% higher total EMF species richness than the non-native Q. rubra, while native P. sylvestris had ca. 25% lower total EMF species richness than non-native P. nigra. Thus, across genera, there was no evidence that native species have higher EMF species diversity than exotic species. In addition, we found a higher similarity in EMF communities between the two Pinus species than between the two Quercus species. These results support the naturalization of non-native trees by means of mutualistic associations with cosmopolitan and novel fungi.

  1. Vegetation diversity of salt-rich grasslands in Southeast Europe

    Czech Academy of Sciences Publication Activity Database

    Eliáš, P. Jr.; Sopotlieva, D.; Dítě, D.; Hájková, Petra; Apostolova, I.; Senko, D.; Melečková, Z.; Hájek, Michal

    2013-01-01

    Roč. 16, č. 3 (2013), s. 521-537 ISSN 1402-2001 R&D Projects: GA ČR GA206/09/0329 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : salt marshes * vegetation survey * grasslands Subject RIV: EF - Botanics Impact factor: 2.416, year: 2013

  2. Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR.

    Science.gov (United States)

    Gordon, Christopher E; Price, Owen F; Tasker, Elizabeth M

    2017-07-01

    that native vegetation are responsive and resilient to high-severity fire, and show the usefulness of remote sensing tools such as LiDAR to monitor post-fire vegetation recovery over large areas in situ. © 2017 by the Ecological Society of America.

  3. Terrestrial biosphere carbon storage under alternative climate projections

    Energy Technology Data Exchange (ETDEWEB)

    Schaphoff, S.; Lucht, W.; Gerten, D.; Sitch, S.; Cramer, W. [Potsdam Institute for Climate Impact Research, P.O. Box 601203, D-14412 Potsdam (Germany); Prentice, I.C. [QUEST, Department of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol, BS8 1RJ (United Kingdom)

    2006-01-15

    This study investigates commonalities and differences in projected land biosphere carbon storage among climate change projections derived from one emission scenario by five different general circulation models (GCMs). Carbon storage is studied using a global biogeochemical process model of vegetation and soil that includes dynamic treatment of changes in vegetation composition, a recently enhanced version of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Uncertainty in future terrestrial carbon storage due to differences in the climate projections is large. Changes by the end of the century range from -106 to +201 PgC, thus, even the sign of the response whether source or sink, is uncertain. Three out of five climate projections produce a land carbon source by the year 2100, one is approximately neutral and one a sink. A regional breakdown shows some robust qualitative features. Large areas of the boreal forest are shown as a future CO2 source, while a sink appears in the arctic. The sign of the response in tropical and sub-tropical ecosystems differs among models, due to the large variations in simulated precipitation patterns. The largest uncertainty is in the response of tropical rainforests of South America and Central Africa.

  4. Terrestrial biosphere carbon storage under alternative climate projections

    International Nuclear Information System (INIS)

    Schaphoff, S.; Lucht, W.; Gerten, D.; Sitch, S.; Cramer, W.; Prentice, I.C.

    2006-01-01

    This study investigates commonalities and differences in projected land biosphere carbon storage among climate change projections derived from one emission scenario by five different general circulation models (GCMs). Carbon storage is studied using a global biogeochemical process model of vegetation and soil that includes dynamic treatment of changes in vegetation composition, a recently enhanced version of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Uncertainty in future terrestrial carbon storage due to differences in the climate projections is large. Changes by the end of the century range from -106 to +201 PgC, thus, even the sign of the response whether source or sink, is uncertain. Three out of five climate projections produce a land carbon source by the year 2100, one is approximately neutral and one a sink. A regional breakdown shows some robust qualitative features. Large areas of the boreal forest are shown as a future CO2 source, while a sink appears in the arctic. The sign of the response in tropical and sub-tropical ecosystems differs among models, due to the large variations in simulated precipitation patterns. The largest uncertainty is in the response of tropical rainforests of South America and Central Africa

  5. Evaluation of the behavior of water in soil under eucalipto and native forest covers

    Directory of Open Access Journals (Sweden)

    Geberson Ricardo de Paula

    2013-12-01

    Full Text Available Areas occupied by grasslands have been replaced by eucalyptus plantations, which modifies the landscape, the regional economy, and water dynamics in soils. Thus, this study aimed to evaluate the behavior of water in Oxisol in two vegetation land covers, a six years old eucalyptus plantation, and a native forest in regeneration process for twenty years. The study was developed in the Una River Basin from June 2009 to April 2011. Ninety six moisture sensors were installed (Watermark™ at depths of 20, 60, and 120 cm. It was observed that, upon the occurrence of rainfall, the superficial and intermediate layers had increased humidity, which did not occur in the deepest layer. It was found that there were differences in soil moisture measured in the areas of eucalyptus and native forest and throughout the study period humidity was maintained between field capacity and permanent wilting point, with no water restriction. Canopy temperature of the eucalyptus plantation remained lower, indicating that its evapotranspiration was higher than in the forest area. The differences in moisture can be explained by the difference between the physical properties of soils in the study areas, because although they have the same slope, receive the same insolation and are close to each other, soil covered by eucalyptus presented a water storage capacity 63% above the area with native forest. It was also observed that all rainfall reaching the soil surface infiltrated and there was no runoff in the two areas studied. It was concluded that the results of this research provide important insights about differences in the behavior of water in the soil when covered by eucalyptus or native forest. For this reason, we suggest further studies with greater geographic reach in paired areas with different slopes, aspects and soil types.

  6. Ecosystem and Community Responses to Rainfall Manipulations in Shrublands Depends on Dominant Vegetation Cover

    Science.gov (United States)

    Esch, E. H.; Lipson, D.; Kim, J. B.; Cleland, E. E.

    2014-12-01

    Southern California is predicted to face decreasing precipitation with increased interannual variability in the coming century. Native shrublands in this area are increasingly invaded by exotic annual grasses, though invasion dynamics can vary by rainfall scenario, with wet years generally associated with high invasion pressure. Interplay between rainfall and invasion scenarios can influence carbon stocks and community composition. Here we asked how invasion alters ecosystem and community responses in drought versus high rainfall scenarios, as quantified by community identity, biomass production, and the normalized difference vegetation index (NDVI). To do this, we performed a rainfall manipulation experiment with paired plots dominated either by native shrubs or exotic herbaceous species, subjected to treatments of 50%, 100%, or 150% of ambient rainfall. The study site was located in a coastal sage scrub ecosystem, with patches dominated by native shrubs and exotic grasses located in San Diego County, USA. During two growing seasons, we found that native, herbaceous biomass production was significantly affected by rainfall treatment (p<0.05 for both years), though was not affected by dominant community composition. Photosynthetic biomass production of shrub species also varied by treatment (p=0.035). Exotic biomass production showed a significant interaction between dominant community composition and rainfall treatment, and both individual effects (p<0.001 for all). NDVI showed similar results, but also indicated the importance of rainfall timing on overall biomass production between years. Community composition data showed certain species, of both native and exotic identities, segregating by treatment. These results indicate that exotic species are more sensitive to rainfall, and that increased rainfall may promote greater carbon storage in annual dominated communities when compared to shrub dominated communities in high rainfall years, but with drought, this

  7. Case management to reduce cardiovascular disease risk in American Indians and Alaska Natives with diabetes: results from the Special Diabetes Program for Indians Healthy Heart Demonstration Project.

    Science.gov (United States)

    Moore, Kelly; Jiang, Luohua; Manson, Spero M; Beals, Janette; Henderson, William; Pratte, Katherine; Acton, Kelly J; Roubideaux, Yvette

    2014-11-01

    We evaluated cardiovascular disease (CVD) risk factors in American Indians/Alaska Natives (AI/ANs) with diabetes in the Special Diabetes Program for Indians Healthy Heart (SDPI-HH) Demonstration Project. Multidisciplinary teams implemented an intensive case management intervention among 30 health care programs serving 138 tribes. The project recruited 3373 participants, with and without current CVD, between 2006 and 2009. We examined data collected at baseline and 1 year later to determine whether improvements occurred in CVD risk factors and in Framingham coronary heart disease (CHD) risk scores, aspirin use, and smoking status. A1c levels decreased an average of 0.2% (P risk scores also decreased significantly. Aspirin therapy increased significantly, and smoking decreased. Participants with more case management visits had significantly greater reductions in LDL cholesterol and A1c values. SDPI-HH successfully translated an intensive case management intervention. Creative retention strategies and an improved understanding of organizational challenges are needed for future Indian health translational efforts.

  8. Native American Women: Living with Landscape.

    Science.gov (United States)

    Bales, Rebecca

    1997-01-01

    Discusses the role of Native American women in the spiritual and cultural life of American Indians. Native American spirituality is deeply connected to the land through daily use, ritual, and respect for sacred space. Often Native American women act as conduits and keepers of this knowledge. (MJP)

  9. Ecological impacts of non-native species: Chapter 2

    Science.gov (United States)

    Pilliod, David S.; Griffiths, R.A.; Kuzmin, S.L.; Heatwole, Harold; Wilkinson, John W.

    2012-01-01

    Non-native species are considered one of the greatest threats to freshwater biodiversity worldwide (Drake et al. 1989; Allen and Flecker 1993; Dudgeon et al. 2005). Some of the first hypotheses proposed to explain global patterns of amphibian declines included the effects of non-native species (Barinaga 1990; Blaustein and Wake 1990; Wake and Morowitz 1991). Evidence for the impact of non-native species on amphibians stems (1) from correlative research that relates the distribution or abundance of a species to that of a putative non-native species, and (2) from experimental tests of the effects of a non-native species on survival, growth, development or behaviour of a target species (Kats and Ferrer 2003). Over the past two decades, research on the effects of non-native species on amphibians has mostly focused on introduced aquatic predators, particularly fish. Recent research has shifted to more complex ecological relationships such as influences of sub-lethal stressors (e.g. contaminants) on the effects of non-native species (Linder et al. 2003; Sih et al. 2004), non-native species as vectors of disease (Daszak et al. 2004; Garner et al. 2006), hybridization between non-natives and native congeners (Riley et al. 2003; Storfer et al. 2004), and the alteration of food-webs by non-native species (Nystrom et al. 2001). Other research has examined the interaction of non-native species in terms of facilitation (i.e. one non-native enabling another to become established or spread) or the synergistic effects of multiple non-native species on native amphibians, the so-called invasional meltdown hypothesis (Simerloff and Von Holle 1999). Although there is evidence that some non-native species may interact (Ricciardi 2001), there has yet to be convincing evidence that such interactions have led to an accelerated increase in the number of non-native species and cumulative impacts are still uncertain (Simberloff 2006). Applied research on the control, eradication, and

  10. Recruiting Native Journalists: The New Storytellers.

    Science.gov (United States)

    Hamilton, Candy

    1996-01-01

    In an effort to increase the number of Native American journalists, summer programs at the University of North Dakota and the University of Wisconsin give Native American high school students hands-on, culturally relevant journalism experience. The Native American Journalists Association offers college scholarships in journalism for American…

  11. LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment

    Science.gov (United States)

    Rollins, Matthew G.

    2009-01-01

    LANDFIRE is a 5-year, multipartner project producing consistent and comprehensive maps and data describing vegetation, wildland fuel, fire regimes and ecological departure from historical conditions across the United States. It is a shared project between the wildland fire management and research and development programs of the US Department of Agriculture Forest Service and US Department of the Interior. LANDFIRE meets agency and partner needs for comprehensive, integrated data to support landscape-level fire management planning and prioritization, community and firefighter protection, effective resource allocation, and collaboration between agencies and the public. The LANDFIRE data production framework is interdisciplinary, science-based and fully repeatable, and integrates many geospatial technologies including biophysical gradient analyses, remote sensing, vegetation modelling, ecological simulation, and landscape disturbance and successional modelling. LANDFIRE data products are created as 30-m raster grids and are available over the internet at www.landfire.gov, accessed 22 April 2009. The data products are produced at scales that may be useful for prioritizing and planning individual hazardous fuel reduction and ecosystem restoration projects; however, the applicability of data products varies by location and specific use, and products may need to be adjusted by local users.

  12. Serving vegetables first: A strategy to increase vegetable consumption in elementary school cafeterias.

    Science.gov (United States)

    Elsbernd, S L; Reicks, M M; Mann, T L; Redden, J P; Mykerezi, E; Vickers, Z M

    2016-01-01

    Vegetable consumption in the United States is low despite the wealth of evidence that vegetables play an important role in reducing risk of various chronic diseases. Because eating patterns developed in childhood continue through adulthood, we need to form healthy eating habits in children. The objective of this study was to determine if offering vegetables before other meal components would increase the overall consumption of vegetables at school lunch. We served kindergarten through fifth-grade students a small portion (26-33 g) of a raw vegetable (red and yellow bell peppers) while they waited in line to receive the rest of their lunch meal. They then had the options to take more of the bell peppers, a different vegetable, or no vegetable from the lunch line. We measured the amount of each vegetable consumed by each child. Serving vegetables first greatly increased the number of students eating vegetables. On intervention days most of the vegetables consumed came from the vegetables-first portions. Total vegetable intake per student eating lunch was low because most students chose to not eat vegetables, but the intervention significantly increased this value. Serving vegetables first is a viable strategy to increase vegetable consumption in elementary schools. Long-term implementation of this strategy may have an important impact on healthy eating habits, vegetable consumption, and the health consequences of vegetable intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Listening to the Community: Guidance from Native Community Members for Emerging Culturally Responsive Educators

    Science.gov (United States)

    Rogers, Christine A.; Jaime, Angela M.

    2010-01-01

    Critical race theory (CRT) emphasizes the importance of listening to the counter-narratives of people from marginalized groups. However, the applicability of CRT in practical settings often remains unclear for educators and scholars. This project offers not only a place for Native community members to share their experiences and ideas, it also…

  14. Defining "Native Speaker" in Multilingual Settings: English as a Native Language in Asia

    Science.gov (United States)

    Hansen Edwards, Jette G.

    2017-01-01

    The current study examines how and why speakers of English from multilingual contexts in Asia are identifying as native speakers of English. Eighteen participants from different contexts in Asia, including Singapore, Malaysia, India, Taiwan, and The Philippines, who self-identified as native speakers of English participated in hour-long interviews…

  15. 34 CFR 300.29 - Native language.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Native language. 300.29 Section 300.29 Education... DISABILITIES General Definitions Used in This Part § 300.29 Native language. (a) Native language, when used with respect to an individual who is limited English proficient, means the following: (1) The language...

  16. The potential conservation value of unmowed powerline strips for native bees

    Science.gov (United States)

    Russell, K.N.; Ikerd, H.; Droege, S.

    2005-01-01

    The land area covered by powerline easements in the United States exceeds the area of almost all national parks, including Yellowstone. In parts of Europe and the US, electric companies have altered their land management practices from periodic mowing to extraction of tall vegetation combined with the use of selective herbicides. To investigate whether this alternate management practice might produce higher quality habitat for native bees, we compared the bee fauna collected in unmowed powerline corridors and in nearby mowed grassy fields at the Patuxent Wildlife Research Center (MD). Powerline sites had more spatially and numerically rare species and a richer bee community than the grassy fields, although the difference was less pronounced than we expected. Powerline sites also had more parasitic species and more cavitynesting bees. Bee communities changed progressively through the season, but differences between the site types were persistent. The surrounding, nongrassland landscape likely has a strong influence on the bee species collected at the grassland sites, as some bees may be foraging in the grasslands but nesting elsewhere. Improving habitat for native bees will help ameliorate the loss of pollination services caused by the collapse of wild and managed honeybee populations. This study suggests that powerline strips have the potential to provide five million acres of bee-friendly habitat in the US if utilities more generally adopt appropriate management practices.

  17. NDVI-Based analysis on the influence of human activities on vegetation variation on Hainan Island

    Science.gov (United States)

    Luo, Hongxia; Dai, Shengpei; Xie, Zhenghui; Fang, Jihua

    2018-02-01

    Using the Moderate Resolution Imaging Spectroradiometer-normalized difference vegetation index (NDVI) dataset, we analyzed the predicted NDVI values variation and the influence of human activities on vegetation on Hainan Island during 2001-2015. We investigated the roles of human activities in vegetation variation, particularly from 2002 when implemented the Grain-for-Greenprogram on Hainan Island. The trend analysis, linear regression model and residual analysis were used to analyze the data. The results of the study showed that (1) The predicted vegetation on Hainan Island showed an general upward trend with a linear growth rate of 0.0025/10y (phuman activities. (3) In general, human activities had played a positive role in the vegetation increase on Hainan Island, and the residual NDVI trend of this region showed positive outcomes for vegetation variation after implementing ecological engineering projects. However, it indicated a growing risk of vegetation degradation in the coastal region of Hainan Island as a result of rapid urbanization, land reclamation.

  18. 75 FR 23253 - Notice of Intent To Prepare a Draft Environmental Impact Statement (EIS) for the Central Palm...

    Science.gov (United States)

    2010-05-03

    ... reach. The County has nourished the project area dune toes on several occasions and has planted native dune vegetation at several locations. Due to the narrow beach profile, much of this effort has been... nourishment and dune restoration through filling activities, groins, segmented submerged breakwaters, upland...

  19. Fleshy fruit removal and nutritional composition of winter-fruiting plants: a comparison of non-native invasive and native species

    Science.gov (United States)

    Cathryn H. Greenberg; Scott T. Walter

    2010-01-01

    Invasive, non-native plants threaten forest ecosystems by reducing native plant species richness and potentially altering ecosystem processes. Seed dispersal is critical for successful invasion and range expansion by non-native plants; dispersal is likely to be enhanced if they can successfully compete with native plants for disperser services. Fruit production by non-...

  20. Listen to the Natives

    Science.gov (United States)

    Prensky, Marc

    2006-01-01

    "Digital natives" refer to today's students because they are native speakers of technology, fluent in the digital language of computers, video games, and the Internet. Those who were not born into the digital world are referred to as digital immigrants. Educators, considered digital immigrants, have slid into the 21st century--and into the digital…