WorldWideScience

Sample records for project engineering design

  1. Information Flows in Networked Engineering Design Projects

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Maier, Anja

    Complex engineering design projects need to manage simultaneously multiple information flows across design activities associated with different areas of the design process. Previous research on this area has mostly focused on either analysing the “required information flows” through activity...... networks at the project level or in studying the social networks that deliver the “actual information flow”. In this paper we propose and empirically test a model and method that integrates both social and activity networks into one compact representation, allowing to compare actual and required...... information flows between design spaces, and to assess the influence that these misalignments could have on the performance of engineering design projects....

  2. Design methodology and projects for space engineering

    Science.gov (United States)

    Nichols, S.; Kleespies, H.; Wood, K.; Crawford, R.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design course of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, consisting of a design methodology course and a capstone design course. The philosophical basis of this sequence is briefly summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper concludes with a description of the projects completed during the 1991-92 academic year and the ongoing projects for the Fall 1992 semester.

  3. Capstone Engineering Design Projects for Community Colleges

    Science.gov (United States)

    Walz, Kenneth A.; Christian, Jon R.

    2017-01-01

    Capstone engineering design courses have been a feature at research universities and four-year schools for many years. Although such classes are less common at two-year colleges, the experience is equally beneficial for this population of students. With this in mind, Madison College introduced a project-based Engineering Design course in 2007.…

  4. Systems design and engineering : facilitating multidisciplinary development projects

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Veenvliet, Karel; Broenink, Johannes F.

    2016-01-01

    As its name implies, the aim of Systems Design and Engineering: Facilitating Multidisciplinary Development Projects is to help systems engineers develop the skills and thought processes needed to successfully develop and implement engineered systems. Such expertise typically does not come through

  5. Project Portal User-Centered Design and Engineering Report

    Science.gov (United States)

    2016-06-01

    TECHNICAL REPORT 3013 June 2016 Project Portal User-Centered Design and Engineering Report Deborah Gill-Hesselgrave Veronica Higgins Sarah...Design and Engineering Branch Under authority of Chris Raney, Head Command and Control Technology and Experiments Division iii EXECUTIVE...navy.mil  Christian Szatkowski christian.szatkowski@navy.mil  Roni Higgins roni.higgins@navy.mil  Jake Viraldo jacob.viraldo@navy.mil B

  6. Fuel Cell Car Design Project for Freshman Engineering Courses

    Science.gov (United States)

    Duke, Steve R.; Davis, Virginia A.

    2014-01-01

    In the Samuel Ginn College of Engineering at Auburn University, we have integrated a semester long design project based on a toy fuel cell car into our freshman "Introduction to Chemical Engineering Class." The project provides the students a basic foundation in chemical reactions, energy, and dimensional analysis that facilitates…

  7. System Design and Engineering, lubricating multidisciplinary development projects

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Veenvliet, Karel; Broenink, Johannes F.

    This text book introduces systems engineering for designing systems in multidisciplinary projects. First an overview of the systems engineering process is given. Several systems thinking tracks are presented, to think about the system in a number of ways, its context, its user, its functionality,

  8. Various advanced design projects promoting engineering education

    Science.gov (United States)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  9. Development and Evaluation of an Undergraduate Multidisciplinary Project Activity in Engineering and Design

    Science.gov (United States)

    Smith, David R.; Cole, Joanne

    2012-01-01

    The School of Engineering and Design Multidisciplinary Project (MDP) at Brunel University is a one week long project based activity involving first year undergraduate students from across the School subject areas of Electronic and Computer Engineering, Mechanical Engineering, Civil Engineering and Design. This paper describes the main aims of the…

  10. Sensing and collecting radioactive materials as a project to teach engineering design

    International Nuclear Information System (INIS)

    Drake, D.; Majdi, T.; Strack, J.

    2015-01-01

    The remote detection and isolation of radioactive materials is both a challenging engineering design project and a relevant issue given modern nuclear circumstances. This project is used in the undergraduate capstone class of the Engineering Physics Department at McMaster University to teach students engineering design. This paper discusses the course outline and learning outcomes of the students who took the course over the 2014-2015 academic year. (author)

  11. Sensing and collecting radioactive materials as a project to teach engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Drake, D.; Majdi, T.; Strack, J., E-mail: draked2@mcmaster.ca [McMaster University, Hamiltion, ON (Canada); and others

    2015-07-01

    The remote detection and isolation of radioactive materials is both a challenging engineering design project and a relevant issue given modern nuclear circumstances. This project is used in the undergraduate capstone class of the Engineering Physics Department at McMaster University to teach students engineering design. This paper discusses the course outline and learning outcomes of the students who took the course over the 2014-2015 academic year. (author)

  12. Implementation of Effective Capstone Projects in Undergraduate Manufacturing Design Engineering Program

    Science.gov (United States)

    Viswanathan, Shekar

    2017-01-01

    Final program projects (capstone course) in manufacturing design engineering technology at National University are intensive experiences in critical thinking and analysis, designed to broaden students' perspectives and provide an opportunity for integration of coursework in the area of manufacturing design engineering. This paper focuses on three…

  13. Integration and the hold-up problem in the design organization for engineering projects

    NARCIS (Netherlands)

    Zerjav, Vedran; Hartmann, Timo; Javernick-Will, A.; Chinowsky, P.

    2012-01-01

    The paper presents a perspective of the design organization in engineering projects based on the economic concept of the hold-up problem. By integrating the economic theories on the boundaries of organizations into the existing knowledge on design in engineering projects, the paper hypothesizes a

  14. Design Fixation and Cooperative Learning in Elementary Engineering Design Project: A Case Study

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2015-09-01

    Full Text Available This paper presents a case study examining 3rd, 4th and 5th graders’ design fixation and cooperative learning in an engineering design project. A mixed methods instrument, the Cooperative Learning Observation Protocol (CLOP, was adapted to record frequency and class observation on cooperative learning engagement through detailed field notes. Students’ design journals and reflections were also analyzed for an inductive qualitative analysis. The findings indicate three major themes of design fixation: 1 fixation on common features of things; 2 fixation on popular teenage culture; 3 fixation on the first design idea. In the cooperative learning process of elementary engineering design project, although pupils had demonstrated some abilities to solve concrete problems in a logical fashion, the participants encountered a number of obstacles in the group. Dominance, social loafing, and other problems occurring in the group process might have offset certain benefits of cooperative learning. Implications of the findings are also discussed.

  15. Design fixation and cooperative learning in elementary engineering design project: A case study

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2015-09-01

    Full Text Available This paper presents a case study examining 3rd, 4th and 5th graders’ design fixation and cooperative learning in an engineering design project. A mixed methods instrument, the Cooperative Learning Observation Protocol (CLOP, was adapted to record frequency and class observation on cooperative learning engagement through detailed field notes. Students’ design journals and reflections were also analyzed for an inductive qualitative analysis. The findings indicate three major themes of design fixation: 1 fixation on common features of things; 2 fixation on popular teenage culture; 3 fixation on the first design idea. In the cooperative learning process of elementary engineering design project, although pupils had demonstrated some abilities to solve concrete problems in a logical fashion, the participants encountered a number of obstacles in the group. Dominance, social loafing, and other problems occurring in the group process might have offset certain benefits of cooperative learning. Implications of the findings are also discussed.

  16. A biotic game design project for integrated life science and engineering education.

    Science.gov (United States)

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  17. A web-based online collaboration platform for formulating engineering design projects

    Science.gov (United States)

    Varikuti, Sainath

    Effective communication and collaboration among students, faculty and industrial sponsors play a vital role while formulating and solving engineering design projects. With the advent in the web technology, online platforms and systems have been proposed to facilitate interactions and collaboration among different stakeholders in the context of senior design projects. However, there are noticeable gaps in the literature with respect to understanding the effects of online collaboration platforms for formulating engineering design projects. Most of the existing literature is focused on exploring the utility of online platforms on activities after the problem is defined and teams are formed. Also, there is a lack of mechanisms and tools to guide the project formation phase in senior design projects, which makes it challenging for students and faculty to collaboratively develop and refine project ideas and to establish appropriate teams. In this thesis a web-based online collaboration platform is designed and implemented to share, discuss and obtain feedback on project ideas and to facilitate collaboration among students and faculty prior to the start of the semester. The goal of this thesis is to understand the impact of an online collaboration platform for formulating engineering design projects, and how a web-based online collaboration platform affects the amount of interactions among stakeholders during the early phases of design process. A survey measuring the amount of interactions among students and faculty is administered. Initial findings show a marked improvement in the students' ability to share project ideas and form teams with other students and faculty. Students found the online platform simple to use. The suggestions for improving the tool generally included features that were not necessarily design specific, indicating that the underlying concept of this collaborative platform provides a strong basis and can be extended for future online platforms

  18. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik

    2010-01-01

    Reaction Engineering. In order to incorporate reactor design into process design in a meaningful way, the teachers of the respective courses need to collaborate (Standard 9 – Enhancement of Faculty CDIO skills). The students also see that different components of the chemical engineering curriculum relate......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...... of the CDIO standards – especially standard 3 – Integrated Curriculum - means that the course projects must draw on competences provided in other subjects which the students are taking in parallel with Process Design – specifically Process Control and Reaction Engineering. In each semester of the B...

  19. A biotic game design project for integrated life science and engineering education.

    Directory of Open Access Journals (Sweden)

    Nate J Cira

    2015-03-01

    Full Text Available Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course. We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  20. 13 CFR 305.4 - Projects for design and engineering work.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Projects for design and engineering work. 305.4 Section 305.4 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION... construction Project in a format and in sufficient quantity to permit advertisement and award of a construction...

  1. Rapid product development: project engineering joined to design engineering in a concurrent engineering context

    Science.gov (United States)

    Bernard, Alain; Ouazzani, A.; Chambolle, F.; Bocquet, Jean Claud

    1997-01-01

    Software tools for designers are mainly based on geometry. Today, many industrial modelers have been rebuilt with C++, or any other object oriented language. This paper proposes to locate the research topics, in order to develop a functional link between project management tools, technical data management and product models. The 'design process' aspect will also be justified through the need of capitalizing designer intent and design history. This is related to different research works of Mechanical Engineering and Logistics Laboratory of Ecole Centrale Paris, and especially two PhD topics.

  2. A New Project-Based Curriculum of Design Thinking with Systems Engineering Techniques

    NARCIS (Netherlands)

    Haruyama, S.; Kim, S.K.; Beiter, K.A.; Dijkema, G.P.J.; De Weck, O.L.

    2012-01-01

    We developed a new education curriculum called "ALPS" (Active Learning Project Sequence) at Keio University that emphasizes team project-based learning and design thinking with systems engineering techniques. ALPS is a 6 month course, in which students work as a team and design and propose

  3. Cultivation of students' engineering designing ability based on optoelectronic system course project

    Science.gov (United States)

    Cao, Danhua; Wu, Yubin; Li, Jingping

    2017-08-01

    We carry out teaching based on optoelectronic related course group, aiming at junior students majored in Optoelectronic Information Science and Engineering. " Optoelectronic System Course Project " is product-designing-oriented and lasts for a whole semester. It provides a chance for students to experience the whole process of product designing, and improve their abilities to search literature, proof schemes, design and implement their schemes. In teaching process, each project topic is carefully selected and repeatedly refined to guarantee the projects with the knowledge integrity, engineering meanings and enjoyment. Moreover, we set up a top team with professional and experienced teachers, and build up learning community. Meanwhile, the communication between students and teachers as well as the interaction among students are taken seriously in order to improve their team-work ability and communicational skills. Therefore, students are not only able to have a chance to review the knowledge hierarchy of optics, electronics, and computer sciences, but also are able to improve their engineering mindset and innovation consciousness.

  4. Design Fixation and Cooperative Learning in Elementary Engineering Design Project: A Case Study

    Science.gov (United States)

    Luo, Yi

    2015-01-01

    This paper presents a case study examining 3rd, 4th and 5th graders' design fixation and cooperative learning in an engineering design project. A mixed methods instrument, the Cooperative Learning Observation Protocol (CLOP), was adapted to record frequency and class observation on cooperative learning engagement through detailed field notes.…

  5. Design and implementation of a project-based active/cooperative engineering design course for freshmen

    Science.gov (United States)

    Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.

    2011-08-01

    A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long learning, realistic constraints and awareness of current domestic and global challenges. Throughout successive design reports and in-class assignments, the students are required by the end of the semester to communicate, clearly and concisely, the details of their design both orally and in writing through a functional artefact/prototype, a design notebook, an A0 project poster and a final oral presentation. In addition to these direct assessment tools, several indirect measures are used to ensure triangulation. Assignments are based on customer expectations using a detailed checklist. This paper shows the direct and indirect assessment tools that indicated a high level of achievement of course learning outcomes and a high level of student satisfaction.

  6. Implementation of a Project-Based Telecommunications Engineering Design Course

    Science.gov (United States)

    Aliakbarian, Hadi; Soh, Ping Jack; Farsi, Saeed; Xu, Hantao; Van Lil, Emmanuel H. E. M. J. C.; Nauwelaers, Bart K. J. C.; Vandenbosch, Guy A. E.; Schreurs, Dominique M. M.-P.

    2014-01-01

    This paper describes and discusses the implementation of a project-based graduate design course in telecommunications engineering. This course, which requires a combination of technical and soft skills for its completion, enables guided independent learning (GIL) and application of technical knowledge acquired from classroom learning. Its main…

  7. Advanced engineering environment collaboration project.

    Energy Technology Data Exchange (ETDEWEB)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  8. Advanced engineering environment collaboration project

    International Nuclear Information System (INIS)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-01-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications

  9. SEU blending project, concept to commercial operation, Part 4: engineering design

    International Nuclear Information System (INIS)

    Ingalls, D.G.; Ioffe, M.S.; Oliver, A.J.; Smith, T.P.; Ozberk, E.

    2005-01-01

    The process development test program for production of Slightly Enriched Uranium (SEU) dioxide powder and Blend of Dysprosium and Uranium (BDU) oxide powder was initiated almost simultaneously with the conceptual engineering study for the commercial plant in 2001. During the very early phases of the project it was recognized that meeting the challenging requirements would necessitate wide expertise from different departments within the Cameco operations as well as consultants from outside the Company. The project team formed reflected this recognition. The conceptual engineering study was the lead into preparation of the engineering design study in 2003, which provided the process description based on the research and development program being carried out at Cameco Technology Development (CTD), project description, and project cost estimates. The detailed engineering phase commenced in June 2004 and was in progress at the the time when this paper was presented. The detailed engineering phase is addressing all aspects of the commercial plant including all health and safety, environment and security related issues, nuclear safety, training program, all product quality assurance issues, quality management issues, powder and fuel bundle transportation issues, all regulatory requirements, establishing project execution plans and budget, and strategies to control the costs. At the end of the detailed engineering phase, construction packages will be ready for tender, and major pieces of equipment will be selected and procured. (author)

  10. Closed and Open Design Projects in the Education of Engineers

    DEFF Research Database (Denmark)

    Franksen, Ole Immanuel

    1965-01-01

    The two aspects of engineering education are the teaching of science and the teaching of design. By ``design'' is meant the procedure of selecting and combining distinct elements to create complete systems which will perform useful functions. In this paper, the author describes the application of...... of this concept of design teaching at The Technical University of Denmark, after a procedure which includes a sequence of closed and open design projects in both computational and experimental laboratories...

  11. Information Flow Through Stages of Complex Engineering Design Projects: A Dynamic Network Analysis Approach

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Eppinger, Steven D.; Maier, Anja

    2015-01-01

    The pattern of information flow through the network of interdependent design activities is thought to be an important determinant of engineering design process results. A previously unexplored aspect of such patterns relates to the temporal dynamics of information transfer between activities...... design process and thus support theory-building toward the evolution of information flows through systems engineering stages. Implications include guidance on how to analyze and predict information flows as well as better planning of information flows in engineering design projects according...

  12. PROJECT ENGINEERING DATA MANAGEMENT AT AUTOMATED PREPARATION OF DESIGN DOCUMENTATION

    Directory of Open Access Journals (Sweden)

    A. V. Guryanov

    2017-01-01

    Full Text Available We have developed and realized instrumental means for automated support of end-to-end design process for design documentation on a product at the programming level. The proposed decision is based on processing of the engineering project data that are contained in interdependent design documents: tactical technical characteristics of products, data on the valuable metals contained in them, the list of components applied in a product and others. Processing of engineering data is based on their conversion to the form provided by requirements of industry standards for design documentation preparation. The general graph of the design documentation developed on a product is provided. The description of the developed software product is given. Automated preparation process of interdependent design documents is shown on the example of preparation of purchased products list. Results of work can be used in case of research and development activities on creation of perspective samples of ADP equipment.

  13. Cam Design Projects in an Advanced CAD Course for Mechanical Engineers

    Science.gov (United States)

    Ault, H. K.

    2009-01-01

    The objective of this paper is to present applications of solid modeling aimed at modeling of complex geometries such as splines and blended surfaces in advanced CAD courses. These projects, in CAD-based Mechanical Engineering courses, are focused on the use of the CAD system to solve design problems for applications in machine design, namely the…

  14. Progress in IFMIF Engineering Validation and Engineering Design Activities

    International Nuclear Information System (INIS)

    Heidinger, R.; Knaster, J.; Matsumoto, H.; Sugimoto, M.; Mosnier, A.; Arbeiter, F.; Baluc, N.; Cara, P.; Chel, S.; Facco, A.; Favuzza, P.; Heinzel, V.; Ibarra, A.; Massaut, V.; Micciche, G.; Nitti, F.S.; Theile, J.

    2013-01-01

    Highlights: ► The IFMIF/EVEDA project has entered into the crucial phase of concluding the Interim IFMIF Engineering Design Report. ► The IFMIF plant configuration has been established with the definition of five IFMIF facilities and of their interfaces. ► Three major prototypes of the IFMIF main systems have been designed and are being manufactured, commissioned and operated. -- Abstract: The International Fusion Materials Irradiation Facility (IFMIF) Engineering Design and Engineering Validation Activities (EVEDA) are being developed in a joint project in the framework of the Broader Approach (BA) Agreement between EU and Japan. This project has now entered into a crucial phase as the engineering design of IFMIF is now being formulated in a series of 3 subsequent phases for delivering an Interim IFMIF Engineering Design Report (IIEDR) by mid of 2013. Content of these phases is explained, including the plant configuration detailing the 5 IFMIF facilities and their systems. Together with the Engineering Design Activities, prototyping sub-projects are pursued in the Engineering Validation Activities which consist of the design, manufacturing and testing of the following prototypical systems: Linear IFMIF Prototype Accelerator (LIPAc), EVEDA Lithium Test Loop (ELTL), and High Flux Test Module (HFTM) with the prototypical helium cooling loop (HELOKA). Highlights are described from recent experiments in the Engineering Validation Activities

  15. Case Study of a Project-Based Learning Course in Civil Engineering Design

    Science.gov (United States)

    Gavin, K.

    2011-01-01

    This paper describes the use of project-based learning to teach design skills to civil engineering students at University College Dublin (UCD). The paper first considers the development of problem-based leaning (PBL) as a tool in higher education. The general issues to be considered in the design of the curriculum for a PBL module are reviewed.…

  16. [Theories and methodologies of engineering designs on sustainable agricultural land consolidation project--a case study of Xuemeiyang land consolidation project in Changtai County, Fujian Province].

    Science.gov (United States)

    Ye, Yanmei; Wu, Cifang; Cheng, Chengbiao; Qiu, Lingzhang; Huang, Shengyu; Zheng, Ruihui

    2002-09-01

    The concept and characteristics of engineering designs on sustainable agricultural land consolidation project were discussed in this paper. Principles, basic methods and procedures of engineering designs on agricultural land consolidation project were put forward, which were successfully adopted for designing agricultural land consolidation in Xuemeiyang region of Changtai County, including diversity designs of sustainable land use, engineering designs of soil improvement, roads, ditches, and drains for protecting existent animal environments, and design of ecological shelter-forests in farmland. Moreover, from sustainable economic, ecological and social points, the results of these engineering designs were evaluated based on fouteen important indexes. After carrying out these engineeringdesigns, the eco-environments and agricultural production conditions were significantly improved, and the farm income was increased in planned regions.

  17. The Impact of Group Design Projects in Engineering on Achievement Goal Orientations and Academic Outcomes

    Science.gov (United States)

    Rambo-Hernandez, Karen E.; Atadero, Rebecca A.; Balgopal, Meena

    2017-01-01

    This study examined the impact of incorporating group design projects into a second-year engineering class on achievement goal orientations and two academic outcomes: concept inventory and final exam scores. In this study, two sections were taught using lecture format, but one section also completed three group design projects as part of their…

  18. Essentials of Project and Systems Engineering Management

    CERN Document Server

    Eisner, Howard S

    2008-01-01

    The Third Edition of Essentials of Project and Systems Engineering Management enables readers to manage the design, development, and engineering of systems effectively and efficiently. The book both defines and describes the essentials of project and systems engineering management and, moreover, shows the critical relationship and interconnection between project management and systems engineering. The author's comprehensive presentation has proven successful in enabling both engineers and project managers to understand their roles, collaborate, and quickly grasp and apply all the basic princip

  19. Engineering graphic modelling a workbook for design engineers

    CERN Document Server

    Tjalve, E; Frackmann Schmidt, F

    2013-01-01

    Engineering Graphic Modelling: A Practical Guide to Drawing and Design covers how engineering drawing relates to the design activity. The book describes modeled properties, such as the function, structure, form, material, dimension, and surface, as well as the coordinates, symbols, and types of projection of the drawing code. The text provides drawing techniques, such as freehand sketching, bold freehand drawing, drawing with a straightedge, a draughting machine or a plotter, and use of templates, and then describes the types of drawing. Graphic designers, design engineers, mechanical engine

  20. Integrating ergonomics knowledge into business-driven design projects: The shaping of resource constraints in engineering consultancy.

    Science.gov (United States)

    Hall-Andersen, Lene Bjerg; Neumann, Patrick; Broberg, Ole

    2016-10-17

    The integration of ergonomics knowledge into engineering projects leads to both healthier and more efficient workplaces. There is a lack of knowledge about integrating ergonomic knowledge into the design practice in engineering consultancies. This study explores how organizational resources can pose constraints for the integration of ergonomics knowledge into engineering design projects in a business-driven setting, and how ergonomists cope with these resource constraints. An exploratory case study in an engineering consultancy was conducted. A total of 27 participants were interviewed. Data were collected applying semi-structured interviews, observations, and documentary studies. Interviews were transcribed, coded, and categorized into themes. From the analysis five overall themes emerged as major constituents of resource constraints: 1) maximizing project revenue, 2) payment for ergonomics services, 3) value of ergonomic services, 4) role of the client, and 5) coping strategies to overcome resource constraints. We hypothesize that resource constraints were shaped due to sub-optimization of costs in design projects. The economical contribution of ergonomics measures was not evaluated in the entire life cycle of a designed workplace. Coping strategies included teaming up with engineering designers in the sales process or creating an alliance with ergonomists in the client organization.

  1. Students’ Perceptions of Humour and Creativity in Project-Organized Groups (POG) in Engineering Design Education in China

    DEFF Research Database (Denmark)

    Zhou, Chunfang

    2015-01-01

    This study explores engineering design students’ perceptions of humor in the experiences of creativity development in Project-Organized Groups (POGs). This study links theories including humor, learning, creativity, and engineering design in one framework. Empirically, this study carried out...

  2. Automotive Stirling Engine Development Project

    Science.gov (United States)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  3. Building international experiences into an engineering curriculum - a design project-based approach

    Science.gov (United States)

    Maldonado, Victor; Castillo, Luciano; Carbajal, Gerardo; Hajela, Prabhat

    2014-07-01

    This paper is a descriptive account of how short-term international and multicultural experiences can be integrated into early design experiences in an aerospace engineering curriculum. Such approaches are considered as important not only in fostering a student's interest in the engineering curriculum, but also exposing them to a multicultural setting that they are likely to encounter in their professional careers. In the broader sense, this programme is described as a model that can be duplicated in other engineering disciplines as a first-year experience. In this study, undergraduate students from Rensselaer Polytechnic Institute (RPI) and Universidad del Turabo (UT) in Puerto Rico collaborated on a substantial design project consisting of designing, fabricating, and flight-testing radio-controlled model aircraft as a capstone experience in a semester-long course on Fundamentals of Flight. The two-week long experience in Puerto Rico was organised into academic and cultural components designed with the following objectives: (i) to integrate students in a multicultural team-based academic and social environment, (ii) to practise team-building skills and develop students' critical thinking and analytical skills, and finally (iii) to excite students about their engineering major through practical applications of aeronautics and help them decide if it is a right fit for them.

  4. Molecular Cloning Designer Simulator (MCDS: All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects

    Directory of Open Access Journals (Sweden)

    Zhenyu Shi

    2016-12-01

    Full Text Available Molecular Cloning Designer Simulator (MCDS is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1 it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2 it can perform a user-defined workflow of cloning steps in a single execution of the software; (3 it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4 it includes experimental information to conveniently guide wet lab work; and (5 it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com. Keywords: BioCAD, Genetic engineering software, Molecular cloning software, Synthetic biology, Workflow simulation and management

  5. Savannah River Plant engineering, design, and construction history of ``S`` projects and other work, January 1961--December 1964. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1970-03-01

    The work described in this volume of ``S`` Projects History is an extension of the type of work described in Volume I. E.I. du Pont de flemours & Company had entered into Contract AT (07-2)-l with the United States Atomic Energy Commission to develop, design, construct, install, and operate facilities to produce heavy water, fissionable materials, and related products. Under this contract,, Du Pont constructed and operated the Savannah River Plant. The engineering, design, and construction for most of the larger ``S`` projects was performed by the Engineering DeDartment. For some of the large and many of the smaller projects the Engineering Department was responsible only for the construction because the Atomic Energy Division (AED) of the Explosives Department handled the other phases. The Engineering Department Costruction Division also performed the physical work for many of the plant work orders. This volume includes a general description of the Du Pont Engineering Department activities pertaining to the engineering, design, and construction of the ``S`` projects at the Savannah River Plant; brief summaries of the projects and principal work requests; and supplementary informaticn on a few subjects in Volume I for which final data was not available at the closing date. Projects and other plant engineering work which were handled entirely by the Explosives Department -- AED are not included in this history.

  6. Preliminary engineering cost trends for highway projects.

    Science.gov (United States)

    2011-10-21

    Preliminary engineering (PE) for a highway project encompasses two efforts: planning to minimize the physical, social, and human environmental impacts of projects and engineering design to deliver the best alternative. PE efforts begin years in advan...

  7. The Virtual Design Team: Designing Project Organizations as Engineers Design Bridges

    Directory of Open Access Journals (Sweden)

    Raymond E. Levitt

    2012-08-01

    Full Text Available This paper reports on a 20-year program of research intended to advance the theory and practice of organization design for projects from its current status as an art practiced by a handful of consultants worldwide, based on their intuition and tacit knowledge, to: (1 an “organizational engineering” craft, practiced by a new generation of organizational designers; and (2 an attractive and complementary platform for new modes of “virtual synthetic organization theory research.” The paper begins with a real-life scenario that provided the motivation for developing the Virtual Design Team (VDT, an agent-based project organizational simulation tool to help managers design the work processes and organization of project teams engaged in large, semi-routine but complex and fast-paced projects. The paper sets out the underlying philosophy, representation, reasoning, and validation of VDT, and it concludes with suggestions for future research on computational modeling for organization design to extend the frontiers of organizational micro-contingency theory and expand the range of applicability and usefulness of design tools for project organizations and supply-chain networks based on this theory.

  8. Integrating ergonomic knowledge into engineering design processes

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg

    Integrating ergonomic knowledge into engineering design processes has been shown to contribute to healthy and effective designs of workplaces. However, it is also well-recognized that, in practice, ergonomists often have difficulties gaining access to and impacting engineering design processes...... employed in the same company, constituted a supporting factor for the possibilities to integrate ergonomic knowledge into the engineering design processes. However, the integration activities remained discrete and only happened in some of the design projects. A major barrier was related to the business...... to the ergonomic ambitions of the clients. The ergonomists’ ability to navigate, act strategically, and compromise on ergonomic inputs is also important in relation to having an impact in the engineering design processes. Familiarity with the engineering design terminology and the setup of design projects seems...

  9. Linking First-Year and Senior Engineering Design Teams: Engaging Early Academic Career Students in Engineering Design

    Science.gov (United States)

    Fox, Garey A.; Weckler, Paul; Thomas, Dan

    2015-01-01

    In Biosystems Engineering at Oklahoma State University, senior design is a two semester course in which students work on real-world projects provided by clients. First-year (freshmen and trans­fer) students enroll in an introductory engineering course. Historically, these students worked on a team-based analysis project, and the engineering design…

  10. Advanced Engineering Environment FY09/10 pilot project.

    Energy Technology Data Exchange (ETDEWEB)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.; Dutra, Edward G.; Sego, Abraham L.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporate product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.

  11. Exploring the collaboration between industrial designers and engineering designers in a handover situation

    DEFF Research Database (Denmark)

    Laursen, Esben Skov

    This study focuses on handover situations between industrial designers and engineering designers in product development projects, on a ‘project level’. The handover situation creates a gap between the industrial designers and the engineering designers in the product development process which...

  12. Using Wikis to Investigate Communication, Collaboration and Engagement in Capstone Engineering Design Projects

    Science.gov (United States)

    Berthoud, L.; Gliddon, J.

    2018-01-01

    In today's global Aerospace industry, virtual workspaces are commonly used for collaboration between geographically distributed multidisciplinary teams. This study investigated the use of wikis to look at communication, collaboration and engagement in 'Capstone' team design projects at the end of an engineering degree. Wikis were set up for teams…

  13. Engineering and Project Management in the 1990s

    International Nuclear Information System (INIS)

    Leone, Donald L.; Presnak, Robert G.; Podczerwinski, Craig A.

    1992-01-01

    Over the past several years, the power and flexibility of computers has increased dramatically. As a result, computers are being used for more and more tasks in the engineering office. Today, computer applications span the full range of project control, engineering, design, and drafting. They facilitate project control, simplify design, permit earlier starts on critical tasks, allow more work to be done in parallel, and provide effective construction documentation. These add up to high-quality design on a timely schedule. As desktop computers and network technology continue to improve, we expect the power of engineering applications to increase in the years to come. The role of computers in engineering is dramatically changing as a result of continuing technology improvements. Over the last several years, the computer has evolved from a special purpose tool for complex analytical tasks and large-scale project control functions to a general purpose tool applied across the entire spectrum of engineering work. It has changed the look of engineering and design work in progress today. This paper presents a current overview of the subject as it relates to generating station design. Part 1 is a discussion of the concepts used to apply computers to engineering and design work and the trends they are following. Part 2 describes the application of the concepts to a new generating station design

  14. Molecular Cloning Designer Simulator (MCDS): All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects.

    Science.gov (United States)

    Shi, Zhenyu; Vickers, Claudia E

    2016-12-01

    Molecular Cloning Designer Simulator (MCDS) is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1) it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2) it can perform a user-defined workflow of cloning steps in a single execution of the software; (3) it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4) it includes experimental information to conveniently guide wet lab work; and (5) it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com.

  15. UMTRA Project value engineering plan

    International Nuclear Information System (INIS)

    1990-06-01

    The objective of value engineering (VE) on the Uranium MILL Tailings Remedial Action (UMTRA) Project is to ensure that remedial action at the UMTRA Project sites is performed to meet the US Environmental Protection Agency (EPA) standards for inactive uranium mill tailings sites at the lowest cost, while maintaining a high quality of work. Through review of designs and consideration of reasonable, less expensive alternatives, VE can be an effective cost reduction tool and a means to improve the design. The UMTRA Project products are the design and construction of stabilized tailings embankments

  16. The Design and Development of a Computerized Tool Support for Conducting Senior Projects in Software Engineering Education

    Science.gov (United States)

    Chen, Chung-Yang; Teng, Kao-Chiuan

    2011-01-01

    This paper presents a computerized tool support, the Meetings-Flow Project Collaboration System (MFS), for designing, directing and sustaining the collaborative teamwork required in senior projects in software engineering (SE) education. Among many schools' SE curricula, senior projects serve as a capstone course that provides comprehensive…

  17. NASA System Engineering Design Process

    Science.gov (United States)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  18. Advanced engineering environment pilot project.

    Energy Technology Data Exchange (ETDEWEB)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty (Parametric Technology Corporation, Needham, MA)

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  19. Contextual Shaping of Student Design Practices: The Role of Constraint in First-Year Engineering Design

    Science.gov (United States)

    Goncher, Andrea M.

    thResearch on engineering design is a core area of concern within engineering education, and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. This dissertation contributes to scholarship on engineering design by addressing a critical, but as yet underexplored, problem: how does the context in which students design shape their design practices? Using a qualitative study comprising of video data of design sessions, focus group interviews with students, and archives of their design work, this research explored how design decisions and actions are shaped by context, specifically the context of higher education. To develop a theoretical explanation for observed behavior, this study used the nested structuration. framework proposed by Perlow, Gittell, & Katz (2004). This framework explicated how teamwork is shaped by mutually reinforcing relationships at the individual, organizational, and institutional levels. I appropriated this framework to look specifically at how engineering students working on a course-related design project identify constraints that guide their design and how these constraints emerge as students interact while working on the project. I first identified and characterized the parameters associated with the design project from the student perspective and then, through multi-case studies of four design teams, I looked at the role these parameters play in student design practices. This qualitative investigation of first-year engineering student design teams revealed mutual and interconnected relationships between students and the organizations and institutions that they are a part of. In addition to contributing to research on engineering design, this work provides guidelines and practices to help design educators develop more effective design projects by incorporating constraints that enable effective design and learning. Moreover, I found

  20. A Unique Civil Engineering Capstone Design Course

    Directory of Open Access Journals (Sweden)

    G Padmanabhan

    2018-02-01

    Full Text Available The North Dakota State University, USA, capstone course was developed as a unique model in response to the effort of the Accreditation Board of Engineering and Technology, USA, to streamline and improve design instruction in the curriculum and has steadily evolved to keep pace with the ever-changing technology and the expectations of the profession and the society we serve. A capstone design course by definition should be a design experience for students in the final year before graduation integrating all major design concepts they have learned up until then in the program. Carefully chosen real world projects with design content in all sub-disciplines of civil engineering are assigned in this team-taught course. Faculty and practicing professionals make presentations on design process; project management; leadership in an engineering environment; and public policy; global perspectives in engineering; and professional career and licensure. Practicing professionals also critique the final student presentations. Students work in teams with number of faculty serving as technical consultants, and a faculty mentor for each team to provide non-technical guidance and direction. The course requires students to demonstrate mastery of the curriculum and to work with others in a team environment. Course assessment includes evaluation of the final design, presentations, written technical reports, project design schedule, a project design journal, and reaction papers.

  1. CDIO Projects in Civil Engineering Study Program at DTU

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Simonsen, Claus; Christensen, Jørgen Erik

    2011-01-01

    or a design build project on each of the first four semesters. In this paper the four projects in the civil engineering study program are described along with a brief description of the entire study program. The aim is to provide additional information and documentation to accompany an exposition where......In 2008 all Bachelor of engineering study programs at the Technical University of Denmark (DTU) have been adopted to the “Conceive – Design – Implement – Operate” approach. As part of the necessary changes it was decided that all seven study programs should have a cross disciplinary project...... students present their projects. Learning outcomes, training and assessment of personal, professional and social engineering skills are described from a project point of view. Progression of engineering skills is discussed from a study program perspective. The interrelation between the various elements...

  2. Using the Engineering Design Cycle to Develop Integrated Project Based Learning in Aerospace Engineering

    NARCIS (Netherlands)

    Saunders-Smits, G.N.; Roling, P.; Brügemann, V.; Timmer, N.; Melkert, J.

    2012-01-01

    Over the past four years the Faculty of Aerospace Engineering at Delft University of Technology in the Netherlands has redeveloped its BSc curriculum to mimic an engineering design cycle. Each semester represents a step in the design cycle: exploration; system design; sub-system design; test,

  3. Use Of Value Engineering For Engineering And Design Of Airport Grant Projects

    Science.gov (United States)

    1993-09-09

    This advisory circular (AC) provides guidance for the use of value engineering : (VE) in airport projects funded under the Federal Aviation Administration's : (FAA) Airport Grant Program. Department of Transportation (DOT) Order 1395.1, : Use of Valu...

  4. Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases

    Science.gov (United States)

    Moton, Tryshanda

    2016-01-01

    Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.

  5. Geothermal direct use engineering and design guidebook

    International Nuclear Information System (INIS)

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States

  6. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lunis, B.C. (eds.)

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  7. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  8. NPP-Nuclear Island Design. From conceptual design to Project execution

    International Nuclear Information System (INIS)

    Lanchet, Dominique

    2014-01-01

    The second day opened with the lecture of Dominique Lanchet, Design Senior Vice President at AREVA Engineering and Project. Dominique Lanchet gave us an overview of the steps of a Nuclear Island Design creation from the conceptual design to the project execution, giving the examples of the EPR and ATMEA1 TM nuclear reactors

  9. Educating engineering designers for a multidisciplinary future

    DEFF Research Database (Denmark)

    engineering design education. Educating engineering designers today significantly differs from traditional engineering education (McAloone, et.al., 2007). However, a broader view of design activities gains little attention. The project course Product/Service-Systems, which is coupled to the lecture based...... course Product life and Environmental issues at the Technical University of Denmark (DTU) and the master programme Product Development Processes at the Luleå University of Technology (LTU), Sweden, are both curriculums with a broader view than traditional (mechanical) engineering design. Based...... on these two representatives of a Scandinavian approach, the purpose in this presentation is to describe two ways of educating engineering designers to enable them to develop these broader competencies of socio-technical aspects of engineering design. Product Development Processes at LTU A process, called...

  10. Project No. 7 - Decommissioning unit at Ignalina NPP. (Engineering and project management)

    International Nuclear Information System (INIS)

    2000-01-01

    In order to manage decommissioning process at Ignalina NPP, a new unit should be established in the framework of the Ignalina NPP organizational structure. The on-site Engineering Project Management Unit (PMU) will adopt an integrated approach to project management , engineering design, planning, procurement, safety and licensing activities at Ignalina NPP site. The PMU will assist the Ignalina NPP management in the development of an integrated decommissioning and waste management strategy

  11. Mini-projects in Chemical Engineering Laboratory

    Directory of Open Access Journals (Sweden)

    Angeles Cancela

    2013-03-01

    Full Text Available Chemical engineering laboratory practices based in mini-projects were design and applied the students of forestry engineering in chemical subject. This way of practice reveals a more cooperative learning and a different style of experimentation. The stated goal was to design practices that motivate students and to enable them to develop different skills, including cross teamwork and communication. This paper describes how these practices were developed and the advantages and disadvantages of using this methodology of teaching.

  12. Engineering design and economic evaluation of a family-sized biogas project in Nigeria

    International Nuclear Information System (INIS)

    Adeoti, O.; Ilori, M.O.; Oyebisi, T.O.; Adekoya, L.O.

    2000-01-01

    To woo householders into harnessing the cooking energy potential of biogas in order to solve the perennial cooking energy problems at household level in Nigeria, this paper carried out the engineering design requirement, and used the discounted cash flow micro-economic assessments to evaluate the 6.0 m 3 family-sized biogas project in Nigeria. The project has an initial investment cost of 41,088 Naira, annual expenditure of 5909 Naira and an annual benefit of 13,347 Naira. The NPV, IRR, B/C and payback period of financial analysis are 0.050 million Naira, 17.52%, 2.26 and 6.6 years respectively. This shows that the 6.0 m 3 family-sized biogas project using cattle dung as substrate in Nigeria has a good economic potential. (author)

  13. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  14. Project-Based Laboratory Experiences in Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Narendra Sharma

    2011-12-01

    Full Text Available In this paper we describe project-based laboratories in Mechanical Engineering designed to provide semester-long team experiences which mimic the real life industrial processes of design, development, testing and optimization. The labs are focused on courses at the sophomore level and thus require special attention to constraints of student backgrounds and experience. This paper describes laboratory projects in Dynamics and Fluid Mechanics.

  15. 34 CFR 637.13 - What are design projects?

    Science.gov (United States)

    2010-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of Projects Does the Secretary Assist Under This Program? § 637.13 What are design projects? (a) Design... 34 Education 3 2010-07-01 2010-07-01 false What are design projects? 637.13 Section 637.13...

  16. Mapping and industrial IT project to a 2nd semester design-build project

    DEFF Research Database (Denmark)

    Nyborg, Mads; Høgh, Stig

    2010-01-01

    CDIO means bringing the engineer's daily life and working practice into the educational system. In our opinion this is best done by selecting an appropriate project from industry. In this paper we describe how we have mapped an industrial IT project to a 2nd semester design-build project in the D......CDIO means bringing the engineer's daily life and working practice into the educational system. In our opinion this is best done by selecting an appropriate project from industry. In this paper we describe how we have mapped an industrial IT project to a 2nd semester design-build project...... in the Diploma IT program at the Technical University of Denmark. The system in question is a weighing system operating in a LAN environment. The system is used in the medical industry for producing tablets. We present the design of a curriculum to support the development of major components of the weighing...... system. A simple teaching model for software engineering is presented which combines technical disciplines with disciplines from section 2-4 in the CDIO syllabus. The implementation of a joint project involving several courses supports the CDIO perspective. Already the traditional IT-diploma education...

  17. Lab-on-a-Chip Design-Build Project with a Nanotechnology Component in a Freshman Engineering Course

    Science.gov (United States)

    Allam, Yosef; Tomasko, David L.; Trott, Bruce; Schlosser, Phil; Yang, Yong; Wilson, Tiffany M.; Merrill, John

    2008-01-01

    A micromanufacturing lab-on-a-chip project with a nanotechnology component was introduced as an alternate laboratory in the required first-year engineering curriculum at The Ohio State University. Nanotechnology is introduced in related reading and laboratory tours as well as laboratory activities including a quarter-length design, build, and test…

  18. Tailoring engineering activities to D and D projects - 16056

    International Nuclear Information System (INIS)

    Negin, Charles A.; Urland, Charles S.; Szilagyi, Andrew P.; Collazo, Yvette T.; Santos, Joseph K.; Gladden, John B.

    2009-01-01

    Engineering is an important element of Deactivation and Decommissioning (D and D) project technical planning, scheduling, estimating, and execution. Understanding the scope of engineering and related design, deciding when in a project's schedule these activities should be conducted, and specifying the products to be generated from each engineering task are important management functions. These subjects are addressed in a guidance report developed by the U.S. Department of Energy (DOE) described in this paper. (authors)

  19. Systems approach for design control at Monitored Retrievable Storage Project

    International Nuclear Information System (INIS)

    Kumar, P.N.; Williams, J.R.

    1994-01-01

    This paper describes the systems approach in establishing design control for the Monitored Retrievable Storage Project design development. Key elements in design control are enumerated and systems engineering aspects are detailed. Application of lessons learned from the Yucca Mountain Project experience is addressed. An integrated approach combining quality assurance and systems engineering requirements is suggested to practice effective design control

  20. Children Designing & Engineering: Contextual Learning Units in Primary Design and Technology

    Science.gov (United States)

    Hutchinson, Patricia

    2002-01-01

    The Children Designing & Engineering (CD&E) Project at the College of New Jersey is a collaborative effort of the College's Center for Design and Technology and the New Jersey Chamber of Commerce. The Project, funded by the National Science Foundation (NSF), has been charged to develop instructional materials for grades K-5. The twelve…

  1. Structure and Management of an Engineering Senior Design Course.

    Science.gov (United States)

    Tanaka, Martin L; Fischer, Kenneth J

    2016-07-01

    The design of products and processes is an important area in engineering. Students in engineering schools learn fundamental principles in their courses but often lack an opportunity to apply these methods to real-world problems until their senior year. This article describes important elements that should be incorporated into a senior capstone design course. It includes a description of the general principles used in engineering design and a discussion of why students often have difficulty with application and revert to trial and error methods. The structure of a properly designed capstone course is dissected and its individual components are evaluated. Major components include assessing resources, identifying projects, establishing teams, understanding requirements, developing conceptual designs, creating detailed designs, building prototypes, testing performance, and final presentations. In addition to the course design, team management and effective mentoring are critical to success. This article includes suggested guidelines and tips for effective design team leadership, attention to detail, investment of time, and managing project scope. Furthermore, the importance of understanding business culture, displaying professionalism, and considerations of different types of senior projects is discussed. Through a well-designed course and proper mentoring, students will learn to apply their engineering skills and gain basic business knowledge that will prepare them for entry-level positions in industry.

  2. Sludge Treatment Project Engineered Container Retrieval And Transfer System Preliminary Design Hazard Analysis Supplement 1

    International Nuclear Information System (INIS)

    Franz, G.R.; Meichle, R.H.

    2011-01-01

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  3. Project-Based Learning and Design-Focused Projects to Motivate Secondary Mathematics Students

    Science.gov (United States)

    Remijan, Kelly W.

    2017-01-01

    This article illustrates how mathematics teachers can develop design-focused projects, related to project-based learning, to motivate secondary mathematics students. With first-hand experience as a secondary mathematics teacher, I provide a series of steps related to the engineering design process, which are helpful to teachers in developing…

  4. Engineering graphics theoretical foundations of engineering geometry for design

    CERN Document Server

    Brailov, Aleksandr Yurievich

    2016-01-01

    This professional treatise on engineering graphics emphasizes engineering geometry as the theoretical foundation for communication of design ideas with real world structures and products. It considers each theoretical notion of engineering geometry as a complex solution of direct- and inverse-problems of descriptive geometry and each solution of basic engineering problems presented is accompanied by construction of biunique two- and three-dimension models of geometrical images. The book explains the universal structure of formal algorithms of the solutions of positional, metric, and axonometric problems, as well as the solutions of problems of construction in developing a curvilinear surface. The book further characterizes and explains the added laws of projective connections to facilitate construction of geometrical images in any of eight octants. Laws of projective connections allow constructing the complex drawing of a geometrical image in the American system of measurement and the European system of measu...

  5. Visualizing Practices in Project-based Design

    DEFF Research Database (Denmark)

    Whyte, Jennifer; Tryggestad, Kjell; Comi, Alice

    2016-01-01

    Project-based design involves a variety of visual representations, which are evolved to make decisions and accomplish project objectives. Yet, such mediated and distributed ways of working are difficult to capture through ethnographies that examine situated design. A novel approach is developed t...... representations enabled participants in project-based design to develop and share understanding. The complexity of projects and their distributed and mediated nature makes this approach timely and important in addressing new research questions and practical challenges.......Project-based design involves a variety of visual representations, which are evolved to make decisions and accomplish project objectives. Yet, such mediated and distributed ways of working are difficult to capture through ethnographies that examine situated design. A novel approach is developed...... of situated design. This allows the researcher to be nimble, tracing connections across complex engineering projects; reconstructing practices through their visual representations; and observing their effects. Second, it articulates how, in these empirical cases, interaction with a cascade of visual...

  6. The Effect of Rubric Rating Scale on the Evaluation of Engineering Design Projects

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Clemmensen, Line Katrine Harder; Ahn, Beung-uk

    2013-01-01

    This paper explores the impact of the rubric rating scale on the evaluation of projects from a first year engineering design course.Asmall experiment was conducted in which twenty-one experienced graders scored five technical posters using one of four rating scales. All rating scales tested...... produced excellent results in terms of inter-rater reliability and validity. However, there were significant differences in the performance of each of the scales. Based on the experiment’s results and past experience, we conclude that increasing the opportunities for raters to deduct points results...

  7. Computer-aided engineering for Qinshan CANDU projects

    International Nuclear Information System (INIS)

    Huang Zhizhang; Goland, D.

    1999-01-01

    The author briefly describes AECL's work in applying computer-aided engineering tools to the Qinshan CANDU Project. The main emphases will be to introduce the major CADD software tools and their use in civil design, process design and EI and C design. Other special software tools and non-CADD tools and their applications are also briefly introduced

  8. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  9. Integrating design and purchasing [in nuclear engineering] with Ingecad

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Ingecad was developed by the Ingevision division of Framatome to overcome deficiencies in traditional computer-aided design. It was developed for nuclear power project engineering around the principle of the shared management of a common database, thus making it possible to integrate several engineering disciplines. The multiuser database is managed and accessed by the different application softwares, corresponding to particular aspects of the engineering task: electrical and process control schematics; plant piping design; pressurized equipment design etc. The use of a common database ensures coherence between the different engineering disciplines, particularly between the process engineering, the plant layout design, the piping, and the instrumentation and control engineering. (author)

  10. Introducing systems engineering to industrial design engineering students with hands-on experience

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Lutters-Weustink, Ilanit F.; van Houten, Frederikus J.A.M.; Selvaraj, H.; Muthukumar, V.

    2005-01-01

    The article presents an innovative educational project to introduce systems engineering to third year students in industrial design engineering at the University of Twente. In a short period the students are confronted with new technology, namely sensors and actuators. They have to apply this

  11. Engineering activities on New Built Projects

    International Nuclear Information System (INIS)

    Puravet, Guillaume

    2014-01-01

    Guillaume Puravet, Director of Operations at Assystem, described the engineering activities related to nuclear new builds. He presented the various competencies that Assystem can provide to its customers all along the construction phase of a new nuclear project from the conceptual design to its commissioning

  12. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.

  13. Training Engineering Disciplines and Skills through Robot Projects

    DEFF Research Database (Denmark)

    Friesel, Anna

    The popularity of robots in educational activities increased the last 10-15 years. Engineering education all over the world includes courses and projects involving design, use and programming of robots in a variety of programs at technical colleges and universities. At the same time there is a gr......The popularity of robots in educational activities increased the last 10-15 years. Engineering education all over the world includes courses and projects involving design, use and programming of robots in a variety of programs at technical colleges and universities. At the same time...... there is a growing interest to work with robots. Robotic skills are also highly requested in industrial companies. At the Technical University of Denmark, DTU Diplom, we have several projects involving building and programing robots in our bachelor programs in Electronics, Computer Science, IT and Mechanical...... Engineering. This presentation deals with our experience in robotic activities in different programs in order to enhance understanding of mathematics, physics and different technical disciplines in the named programs. We also observed the increased motivation for learning theory when we combine traditional...

  14. How Engineers Negotiate Domain Boundaries in a Complex, Interdisciplinary Engineering Project

    Science.gov (United States)

    Panther, Grace; Montfort, Devlin; Pirtle, Zachary

    2017-01-01

    Engineering educators have an essential role in preparing engineers to work in a complex, interdisciplinary workforce. While much engineering education focuses on teaching students to develop disciplinary expertise in specific engineering domains, there is a strong need to teach engineers about the knowledge that they develop or use in their work (Bucciarelli 1994, Allenby Sarewitz, 2011; Frodeman, 2013). The purpose of this research is to gain a better understanding of the knowledge systems of practicing engineers through observations of their practices such that the insights learned can guide future education efforts. Using an example from a complex and interdisciplinary engineering project, this paper presents a case study overviewing the types of epistemological (or knowledge-acquiring or using) complexities that engineers navigate. Specifically, we looked at a discussion of the thermal design of a CubeSat that occurred during an engineering review at NASA. We analyzed the review using a framework that we call 'peak events', or pointed discussions between reviewers, project engineers, and managers. We examined the dialog within peak events to identify the ways that knowledge was brought to bear, highlighting discussions of uncertainty and the boundaries of knowledge claims. We focus on one example discussion surrounding the thermal design of the CubeSat, which provides a particularly thorough example of a knowledge system since the engineers present explained, justified, negotiated, and defended knowledge within a social setting. Engineering students do not get much practice or instruction in explicitly negotiating knowledge systems and epistemic standards in this way. We highlight issues that should matter to engineering educators, such as the need to discuss what level of uncertainty is sufficient and the need to negotiate boundaries of system responsibility. Although this analysis is limited to a single discussion or 'peak event', our case shows that this

  15. Assessment and Development of Engineering Design Processes

    DEFF Research Database (Denmark)

    Ulrikkeholm, Jeppe Bjerrum

    , the engineering companies need to have efficient engineering design processes in place, so they can design customised product variants faster and more efficiently. It is however not an easy task to model and develop such processes. To conduct engineering design is often a highly iterative, illdefined and complex...... the process can be fully understood and eventually improved. Taking its starting point in this proposition, the outcome of the research is an operational 5-phased procedure for assessing and developing engineering design processes through integrated modelling of product and process, designated IPPM......, and eventually the results are discussed, overall conclusions are made and future research is proposed. The results produced throughout the research project are developed in close collaboration with the Marine Low Speed business unit within the company MAN Diesel & Turbo. The business unit is the world market...

  16. Evaluation of Embedded System Component Utilized in Delivery Integrated Design Project Course

    Science.gov (United States)

    Junid, Syed Abdul Mutalib Al; Hussaini, Yusnira; Nazmie Osman, Fairul; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2018-03-01

    This paper reports the evaluation of the embedded system component utilized in delivering the integrated electronic engineering design project course. The evaluation is conducted based on the report project submitted as to fulfil the assessment criteria for the integrated electronic engineering design project course named; engineering system design. Six projects were assessed in this evaluation. The evaluation covers the type of controller, programming language and the number of embedded component utilization as well. From the evaluation, the C-programming based language is the best solution preferred by the students which provide them flexibility in the programming. Moreover, the Analog to Digital converter is intensively used in the projects which include sensors in their proposed design. As a conclusion, in delivering the integrated design project course, the knowledge over the embedded system solution is very important since the high density of the knowledge acquired in accomplishing the project assigned.

  17. Reference Design Project Book: NUSEL-Homestake

    OpenAIRE

    Haxton, W. C.

    2003-01-01

    This submission includes the overview, science timeline, reference design, WBS, and mine status sections of the Homestake collaboration's Reference Design Project Book. The Project Book describes the specific plan for converting the Homestake Gold Mine into a facility for physics, earth science, and engineering. The proposed developments on the 7400- and 4850-ft levels are presented, along with the plans for adapting Homestake's existing infrastructure for science. The plan differs substantia...

  18. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  19. Establishing a `Centre for Engineering Experimentation and Design Simulation': a step towards restructuring engineering education in India

    Science.gov (United States)

    Venkateswarlu, P.

    2017-07-01

    Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with necessary skills to create and advance knowledge that meets global standards. To achieve this goal, this paper proposes establishing a central facility, 'Centre for Engineering Experimentation and Design Simulation' (CEEDS) in autonomous engineering colleges in India. The centre will be equipped with the most recent technology resources and computational facilities where students execute novel interdisciplinary product-oriented projects benefiting both industry and society. Students undertake two projects: a short-term project aimed at an engineering solution to a problem in energy, health and environment and the other a major industry-supported project devoted to a product that enhances innovation and creativity. The paper presents the current status, the theoretical and pedagogical foundation for the centre's relevance, an activity plan and its implementation in the centre for product-based learning with illustrative examples.

  20. Project management for engineers

    CERN Document Server

    Bennett, Michael J

    2014-01-01

    Project Management for Engineers, as the title suggests, is a direct attempt at addressing the ever-increasing and specific needs for better project management of engineering students, practicing engineers and managers in the industry. It aims not only to present the principles and techniques of Project Management, but also to discuss project management standards, processes and requirements, such as PMBOK, IEEE and PRINCE. Each chapter begins with the basics of the theme being developed at a level understandable to an undergraduate, before more complex topics are introduced at the end of each section that are suitable for graduate students. For the practicing professionals or managers in the industry, the book also provides many real illustrations of practical application of the principles of Project Management. Through a realistic blend of theory and practical examples, as well as an integration of the engineering technical issues with business issues, this book seeks to remove the veil of mystery that has...

  1. Ceramic Technology For Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

  2. An Undergraduate Two-Course Sequence in Biomedical Engineering Design: A Simulation of an Industrial Environment with Group and Individual Project Participation.

    Science.gov (United States)

    Jendrucko, Richard J.

    The first half of a Biomedical Engineering course at Texas A&M University is devoted to group projects that require design planning and a search of the literature. The second half requires each student to individually prepare a research proposal and conduct a research project. (MLH)

  3. Fusion Engineering Device. Volume II. Design description

    International Nuclear Information System (INIS)

    1981-10-01

    This volume summarizes the design of the FED. It includes a description of the major systems and subsystems, the supporting plasma design analysis, a projected device cost and associated construction schedule, and a description of the facilities to house and support the device. This effort represents the culmination of the FY81 studies conducted at the Fusion Engineering Design Center (FEDC). Unique in these design activities has been the collaborative involvement of the Design Center personnel and numerous resource physicists from the fusion community who have made significant contributions in the physics design analysis as well as the physics support of the engineering design of the major FED systems and components

  4. Development and Engineering Design in Support of "Rover Ranch": A K-12 Outreach Software Project

    Science.gov (United States)

    Pascali, Raresh

    2003-01-01

    A continuation of the initial development started in the summer of 1999, the body of work performed in support of 'ROVer Ranch' Project during the present fellowship dealt with the concrete concept implementation and resolution of the related issues. The original work performed last summer focused on the initial examination and articulation of the concept treatment strategy, audience and market analysis for the learning technologies software. The presented work focused on finalizing the set of parts to be made available for building an AERCam Sprint type robot and on defining, testing and implementing process necessary to convert the design engineering files to VRML files. Through reverse engineering, an initial set of mission critical systems was designed for beta testing in schools. The files were created in ProEngineer, exported to VRML 1.0 and converted to VRML 97 (VRML 2.0) for final integration in the software. Attributes for each part were assigned using an in-house developed JAVA based program. The final set of attributes for each system, their mutual interaction and the identification of the relevant ones to be tracked, still remain to be decided.

  5. Rube Goldbergineering: Lessons In Teaching Engineering Design To Future Engineers

    OpenAIRE

    Jordan, Shawn; Pereira, Nielsen

    2009-01-01

    Hands-on learning experiences and interactive learning environments can be effective in teaching K-12 students. Design, in essence, is an interactive, hands-on experience. Engineering design can be taught in the classroom using innovative hands-on projects, such as designing and building serve to teach design, promote creativity, and provide opportunities for hands-on problem solving, in addition to giving students experience working in cooperative teams. In turn, these experiences could enco...

  6. MODELS OF PROJECT REVERSE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Віктор Володимирович ІВАНОВ

    2017-03-01

    Full Text Available Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The modification model of Reverse engineering based on the model of РМВОК was developed. Our model includes two new phases: identification and transformation. At the identification phase, technical control is made. At the transformation phase, search heuristic idea of the new applied existing technical product was made. The model of execution phase that included heuristic methods, metrological equipment, and CAD/CAM/CAE program complex was created. The model that connected economic indicators of reverse engineering project was developed.

  7. Using Dedal to share and reuse distributed engineering design information

    Science.gov (United States)

    Baya, Vinod; Baudin, Catherine; Mabogunje, Ade; Das, Aseem; Cannon, David M.; Leifer, Larry J.

    1994-01-01

    The overall goal of the project is to facilitate the reuse of previous design experience for the maintenance, repair and redesign of artifacts in the electromechanical engineering domain. An engineering team creates information in the form of meeting summaries, project memos, progress reports, engineering notes, spreadsheet calculations and CAD drawings. Design information captured in these media is difficult to reuse because the way design concepts are referred to evolve over the life of a project and because decisions, requirements and structure are interrelated but rarely explicitly linked. Based on protocol analysis of the information seeking behavior of designer's, we defined a language to describe the content and the form of design records and implemented this language in Dedal, a tool for indexing, modeling and retrieving design information. We first describe the approach to indexing and retrieval in Dedal. Next we describe ongoing work in extending Dedal's capabilities to a distributed environment by integrating it with World Wide Web. This will enable members of a design team who are not co-located to share and reuse information.

  8. The role of a creative "joint assignment" project in biomedical engineering bachelor degree education.

    Science.gov (United States)

    Jiehui Jiang; Yuting Zhang; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan

    2017-07-01

    Biomedical Engineering (BME) bachelor education aims to train qualified engineers who devote themselves to addressing biological and medical problems by integrating the technological, medical and biological knowledge. Design thinking and teamwork with other disciplines are necessary for biomedical engineers. In the current biomedical engineering education system of Shanghai University (SHU), however, such design thinking and teamwork through a practical project is lacking. This paper describes a creative "joint assignment" project in Shanghai University, China, which has provided BME bachelor students a two-year practical experience to work with students from multidisciplinary departments including sociology, mechanics, computer sciences, business and art, etc. To test the feasibility of this project, a twenty-month pilot project has been carried out from May 2015 to December 2016. The results showed that this pilot project obviously enhanced competitive power of BME students in Shanghai University, both in the capabilities of design thinking and teamwork.

  9. High-End Computing Challenges in Aerospace Design and Engineering

    Science.gov (United States)

    Bailey, F. Ronald

    2004-01-01

    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  10. Systems engineering management plan for the Salt Repository Project

    International Nuclear Information System (INIS)

    Neff, J.O.

    1986-08-01

    This document presents the plan for using systems engineering in conducting and managing the technical work of the Salt Repository Project (SRP) of the US Department of Energy's Civilian Radioactive Waste Management Program. The need for preparing a Systems Engineering Management Plan (SEMP) is traced back to relevant DOE directives. These directives are interpreted as SRP requirements in the context of the Mined Geologic Disposal System. The strategy for conducting systems engineering on the SRP, including the role of the systems engineering process, is then described. The SEMP also designates who in the project organization will be responsible for carrying out the activities. Finally, the management tools that are used to implement the systems engineering process, including associated documentation on the SRP, are described

  11. Main engineering features driving design concept and engineering design constraints

    International Nuclear Information System (INIS)

    Saito, Ryusei; Kobayashi, Takeshi; Yamada, Masao

    1987-09-01

    Major engineering design philosophies are described, which are essential bases for an engineering design and may have significant impacts on a reactor design concept. Those design philosophies are classified into two groups, engineering design drivers and engineering design constraints. The design drivers are featured by the fact that a designer is free to choose and the choice may be guided by his opinion, such as coil system, a mechanical configuration, a tritium breeding scenario, etc.. The design constraints may follow a natural law or engineering limit, such as material strength, coil current density, and so on. (author)

  12. Civil Engineering & Design Standards Manual

    OpenAIRE

    Vänttinen, Eetu

    2014-01-01

    Civil Discipline Engineering department in Foster Wheeler Energia Oy takes care of the construction of foundation, steel frame, platforms, cladding/roofing, HVAC, elevator, hoist and central vacuum system of the boiler building. The goal of the thesis was to compile a design manual for the department to ease up the startup of the design of a new project and standardize the design. Main objective was to gather together all the existing guidelines, standards and directives regarding the des...

  13. Reverse engineering by design: using history to teach.

    Science.gov (United States)

    Fagette, Paul

    2013-01-01

    Engineering students rarely have an opportunity to delve into the historic antecedents of design in their craft, and this is especially true for biomedical devices. The teaching emphasis is always on the new, the innovative, and the future. Even so, over the last decade, I have coupled a research agenda with engineering special projects into a successful format that allows young biomedical engineering students to understand aspects of their history and learn the complexities of design. There is value in having knowledge of historic engineering achievements, not just for an appreciation of these accomplishments but also for understanding exactly how engineers and clinicians of the day executed their feats-in other words, how the design process works. Ultimately, this particular educational odyssey confirms that history and engineering education are not only compatible but mutually supportive.

  14. The future of computer-aided design and engineering at CERN

    CERN Document Server

    Høimyr, Nils-Joar

    2004-01-01

    This working note discusses design and engineering processes at CERN and Computer Aided Design and Engineering tools. The main focus of this note is Mechanical design and CAE activities and how to share and organize the data produced by CAD/CAE tools. These issues cannot be addressed without taking a global view of the engineering activities at CERN. As more and more of the detailed design work is done by external suppliers, the design processes at CERN change. Traditional design work where draftsmen are producing drawings on the request from engineers is replaced by conceptual design work done by domain specialists and engineers. Furthermore CAD and FEM tools have evolved from specialist tools to mainstream utilities mastered by most engineers. Design activities nowadays can now be carried out directly by the project engineer without the use of a design (drawing) office. This environment poses different requirements for design- and engineering support activities as well as the selection of CAE-tools. Design ...

  15. Computer-integrated design and information management for nuclear projects

    International Nuclear Information System (INIS)

    Gonzalez, A.; Martin-Guirado, L.; Nebrera, F.

    1987-01-01

    Over the past seven years, Empresarios Agrupados has been developing a comprehensive, computer-integrated system to perform the majority of the engineering, design, procurement and construction management activities in nuclear, fossil-fired as well as hydro power plant projects. This system, which is already in a production environment, comprises a large number of computer programs and data bases designed using a modular approach. Each software module, dedicated to meeting the needs of a particular design group or project discipline, facilitates the performance of functional tasks characteristic of the power plant engineering process

  16. Project based learning for reactor engineering education

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Tsuji, Masashi; Shimazu, Yoichiro

    2009-01-01

    Trial in education of nuclear engineering in Hokkaido University has proved to be quite attractive for students. It is an education system called Project Based Learning (PBL), which is not based on education by lecture only but based mostly on practice of students in the classroom. The system was adopted four years ago. In the actual class, we separated the student into several groups of the size about 6 students. In the beginning of each class room time, a brief explanations of the related theory or technical bases. Then the students discuss in their own group how to precede their design calculations and do the required calculation and evaluation. The target reactor type of each group was selected by the group members for themselves at the beginning of the semester as the first step of the project. The reactor types range from a small in house type to that for a nuclear ship. At the end of the semester, each group presents the final design. The presentation experience gives students a kind of fresh sensation. Nowadays the evaluation results of the subject by the students rank in the highest in the faculty of engineering. Based on the considerations above, we designed the framework of our PBL for reactor engineering. In this paper, we will present some lessons learned in this PBL education system from the educational points of view. The PBL education program is supported by IAE/METI in Japan for Nuclear Engineering Education. (author)

  17. Senior Design in Agricultural Engineering--Progress and Pitfalls.

    Science.gov (United States)

    Holmes, R. G.; Rohrbach, R. P.

    1979-01-01

    Describes a specific senior design course and its objectives. Explains the basic deficiencies and problems for design education in agricultural engineering. Also stresses the effect the project advisor has on students' attitudes toward design and the applications of the course. (SMB)

  18. Tools and Methods for Risk Management in Multi-Site Engineering Projects

    Science.gov (United States)

    Zhou, Mingwei; Nemes, Laszlo; Reidsema, Carl; Ahmed, Ammar; Kayis, Berman

    In today's highly global business environment, engineering and manufacturing projects often involve two or more geographically dispersed units or departments, research centers or companies. This paper attempts to identify the requirements for risk management in a multi-site engineering project environment, and presents a review of the state-of-the-art tools and methods that can be used to manage risks in multi-site engineering projects. This leads to the development of a risk management roadmap, which will underpin the design and implementation of an intelligent risk mapping system.

  19. Course Content for Life Cycle Engineering and EcoDesign

    DEFF Research Database (Denmark)

    Jerswiet, Jack; Duflou, Joost; Dewulf, Wim

    2007-01-01

    There is a need to create an awareness of Life Cycle Engineering and EcoDesign in Engineering students. Topics covered in an LCE/EcoDesign course will create an awareness of environmental impacts, especially in other design course projects. This paper suggests that an awareness of product impact...... upon the environment must be created at an early stage in undergraduate education. Deciding what to include in an LCE/EcoDesign Course can be difficult because there are many different views on the subject. However, there are more similarities than differences. All LCE/ EcoDesign Engineering courses...

  20. SNF Project Engineering Process Improvement Plan

    International Nuclear Information System (INIS)

    DESAI, S.P.

    2000-01-01

    This plan documents the SNF Project activities and plans to support its engineering process. It describes five SNF Project Engineering initiatives: new engineering procedures, qualification cards process; configuration management, engineering self assessments, and integrated schedule for engineering activities

  1. The participation of Industry in the ITER engineering design activities

    International Nuclear Information System (INIS)

    Bogusch, E.

    2005-01-01

    Since the beginning of the ITER Engineering Design Activities in 1992 the participation of industry in the European contribution to the ITER project has increased continuously. A major boost resulted from a framework contract between the European Commission acting through EFDA and the European industry grouping EFET EWIV regarding the industry contribution for the ITER engineering design. The members of EFET include Ansaldo (Italy), Belgatom (Belgium), Fortum (Finland), the AREVA companies Framatome ANP GmbH (Germany) and Framatome ANP SAS (France), IBERTEF (Spain) and NNC (United Kingdom). Together with other special European engineering companies and manufacturers EFET contributed significantly to ITER Engineering Design Activities. In 1996 a list of qualified competitive companies was established which could bid for the manufacturing of prototype components in initially 15, later 17 Technologies considered essential for ITER construction preparation. In total, contracts of about 70 Mio Euro have been awarded to industry during the period 1993 to 2004. In addition to engineering design and prototype manufacturing, industry participated in various assessments of the ITER project and ITER siting investigations. Furthermore, industry has been invited by the European Commission to introduce its proposals for the promotion of the ITER project in Europe and abroad and later for the organization and management of ITER construction. (orig.)

  2. Student design projects in applied acoustics.

    Science.gov (United States)

    Bös, Joachim; Moritz, Karsten; Skowronek, Adam; Thyes, Christian; Tschesche, Johannes; Hanselka, Holger

    2012-03-01

    This paper describes a series of student projects which are intended to complement theoretical education in acoustics and engineering noise control with practical experience. The projects are also intended to enhance the students' ability to work in a team, to manage a project, and to present their results. The projects are carried out in close cooperation with industrial partners so that the students can get a taste of the professional life of noise control engineers. The organization of such a project, its execution, and some of the results from the most recent student project are presented as a demonstrative example. This latest project involved the creation of noise maps of a production hall, the acoustic analysis of a packaging machine, and the acoustic analysis of a spiral vibratory conveyor. Upon completion of the analysis, students then designed, applied, and verified some simple preliminary noise reduction measures to demonstrate the potential of these techniques. © 2012 Acoustical Society of America

  3. Incorporating Gaming in Software Engineering Projects: Case of RMU Monopoly

    Directory of Open Access Journals (Sweden)

    Sushil Acharya

    2009-02-01

    Full Text Available A major challenge in engineering education is retaining student interest in the engineering discipline. Active student involvement in engineering projects is one way of retaining student interest. Such involvement can only be realized if project inception comes entirely from the student. This paper presents a software game, RMU Monopoly, developed as a project requirement for a software engineering course and describes the challenges and gains of implementing such a project. The RMU Monopoly was proposed by three junior software engineering students. The game is a multi-platform software program that allows up to eight players and implements the rules of the Monopoly board game. To ensure agility the game was developed using the spiral software development model. The Software Requirements Specification (SRS document was finalized through an iterative procedure. Standard Unified Modeling Language (UML diagrams were used for product design. A Risk Mitigation, Monitoring, and Management Plan (RMMM was developed to ensure proactive risk management. Gantt chart, weekly progress meetings and weekly scrum meetings were used to track project progress. C# and Sub- Version were used in a client-server architecture to develop the software. The project was successful in retaining student interest in the software engineering discipline

  4. EDF EPR project: operating principles validation and human factor engineering program

    International Nuclear Information System (INIS)

    Lefebvre, B.; Berard, E.; Arpino, J.-M.

    2005-01-01

    This article describes the specificities of the operating principles chosen by EDF for the EPR project as a result of an extensive Human Factor Engineering program successfully implemented in an industrial project context. The design process and its achievements benefit of the EDF experience feedback not only in term of NPP operation - including the fully computerized control room of the N4-serie - but also in term of NPP designer. The elements exposed hereafter correspond to the basic design phase of EPR HMI which has been completed and successfully validated by the end of 2003. The article aims to remind the context of the project which basically consists in designing a modern and efficient HMI taking into account the operating needs while relying on proven and reliable technologies. The Human Factor Engineering program implemented merges these both aspects by : 1) being fully integrated within the project activities and scheduling; 2) efficiently taking into account the users needs as well as the feasibility constraints by relying on a multidisciplinary design team including HF specialists, I and C specialists, Process specialists and experienced operator representatives. The resulting design process makes a wide use of experience feedback and experienced operator knowledge to complete largely the existing standards for providing a fully useable and successful design method in an industrial context. The article underlines the design process highlights that largely contribute to the successful implementation of a Human Factor Engineering program for EPR. (authors)

  5. Controlling engineering project changes for multi-unit, multi-site standardized nuclear power plants

    International Nuclear Information System (INIS)

    Randall, E.; Boddeker, G.; McGugin, H.; Strother, E.; Waggoner, G.

    1978-01-01

    Multibillioin dollar multiple nuclear power plant projects have numerous potential sources of engineering changes. The majority of these are internally generated changes, client generated changes, and changes from construction, procurement, other engineering organizations, and regulatory organizations. For multiunit, multisite projects, the use of a standardized design is cost effective. Engineering changes can then be controlled for a single standardized design, and the unit or site unique changes can be treated as deviations. Once an effective change procedure is established for change control of the standardized design, the same procedures can be used for control of unit or site unique changes

  6. A real CDIO mechanical engineering project in 4th semester

    DEFF Research Database (Denmark)

    Lauritsen, Aage Birkkjær

    In the past 6 years at the mechanical engineering study at the Engineering College of Aarhus we have been practicing project work on 4th Semester in the design of energy technology systems. In my presentation, I will give a description of the project, and the thoughts behind; pedagogic......-6 students, and will partly support the general theory being taught in the courses, but will also provide students with skills in teamwork, project work and system building. The pedagogical considerations behind the development of the project are quite simply that students learn best through active work...

  7. NTRCI Legacy Engine Research and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Holbert, Connie [National Transportation Research Center, Inc., Knoxville, TN (United States); Petrolino, Joseph [National Transportation Research Center, Inc., Knoxville, TN (United States); Watkins, Bart [Power Source Technologies Inc., Corvallis, OR (United States); Irick, David [Power Source Technologies Inc., Corvallis, OR (United States)

    2011-12-31

    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine's commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector

  8. Wolsong 2, 3, and 4 quarterly progress review report on NSSS design and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung Hoon; Kim, Sun Kee; Park, Tae Keun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    This is the Quarterly Progress Review Report for Wolsong NPP 2, 3 and 4 NSSS Design and Engineering which evaluates the performance of the project and describes the project highlight, manpower loading status, design and engineering and project related meetings by quarterly basis. 29 figs., 16 tabs. (Author).

  9. Methodological classification of innovative engineering projects

    NARCIS (Netherlands)

    Zwart, S.D.; de Vries, M.J.; Franssen, M.; Vermaas, P.E.; Kroes, P.; Meijers, A.W.M.

    2016-01-01

    In this chapter we report on and discuss our empirical classification of innovative engineering projects. Basic innovative engineering projects are characterized by their overall goal and accompanying method. On the basis of this goal and method, we classify engineering projects as all falling in

  10. The Engineering Project as Story and Narrative

    DEFF Research Database (Denmark)

    Henriksen, Lars Bo

    2012-01-01

    that the traditional project management tools are not always sufficient when it comes to managing engineering projects. In this chapter, an engineering project is examined, and it turns out that the language, the stories, and the narratives connected to the project is of greater importance to the engineers than...... the formal project management tools that were offered to the engineers. It also turns out that the term “project” could itself be a problem when it comes to fulfilling the project goals. Therefore, it is concluded that when working on engineering projects, language, stories, and narratives are just...

  11. Integrating Innovation Skills in an Introductory Engineering Design-Build Course

    Science.gov (United States)

    Liebenberg, Leon; Mathews, Edward Henry

    2012-01-01

    Modern engineering curricula have started to emphasize design, mostly in the form of design-build experiences. Apart from instilling important problem-solving skills, such pedagogical frameworks address the critical social skill aspects of engineering education due to their team-based, project-based nature. However, it is required of the…

  12. Failure is an option: Reactions to failure in elementary engineering design projects

    Science.gov (United States)

    Johnson, Matthew M.

    Recent reform documents in science education have called for teachers to use epistemic practices of science and engineering researchers to teach disciplinary content (NRC, 2007; NRC, 2012; NGSS Lead States, 2013). Although this creates challenges for classroom teachers unfamiliar with engineering, it has created a need for high quality research about how students and teachers engage in engineering activities to improve curriculum development and teaching pedagogy. While framers of the Next Generation Science Standards (NRC, 2012; NGSS Lead States 2013) focused on the similarities of the practices of science researchers and engineering designers, some have proposed that engineering has a unique set of epistemic practices, including improving from failure (Cunningham & Carlsen, 2014; Cunningham & Kelly, in review). While no one will deny failures occur in science, failure in engineering is thought of in fundamentally different ways. In the study presented here, video data from eight classes of elementary students engaged in one of two civil engineering units were analyzed using methods borrowed from psychology, anthropology, and sociolinguistics to investigate: 1) the nature of failure in elementary engineering design; 2) the ways in which teachers react to failure; and 3) how the collective actions of students and teachers support or constrain improvement in engineering design. I propose new ways of considering the types and causes of failure, and note three teacher reactions to failure: the manager, the cheerleader, and the strategic partner. Because the goal of iteration in engineering is improvement, I also studied improvement. Students only systematically improve when they have the opportunity, productive strategies, and fair comparisons between prototypes. I then investigate the use of student engineering journals to assess learning from the process of improvement after failure. After discussion, I consider implications from this work as well as future research

  13. SNF project engineering process improvement plan

    International Nuclear Information System (INIS)

    KELMENSON, R.L.

    1999-01-01

    This Engineering Process Improvement Plan documents the activities and plans to be taken by the SNF Project (the Project) to support its engineering process and to produce a consolidated set of engineering procedures that are fully compliant with the requirements of HNF-PRO-1819 (1819). These requirements are imposed on all engineering activities performed for the Project and apply to all life-cycle stages of the Project's systems, structures and components (SSCs). This Plan describes the steps that will be taken by the Project during the transition period to ensure that new procedures are effectively integrated into the Project's work process as these procedures are issued. The consolidated procedures will be issued and implemented by September 30, 1999

  14. MULTIDISCIPLINARY PROJECTS FOR SECOND YEAR CHEMICAL AND MECHANICAL ENGINEERING STUDENTS

    Directory of Open Access Journals (Sweden)

    MARWAN M. SHAMEL

    2013-04-01

    Full Text Available In the second semester of the second year of a Mechanical Engineering course, students are supposed to take a Module Outside the Main Discipline (MOMD. This module is chosen to be “Product Design Exercise” a module that is offered to Chemical Engineering students at the same stage. The aim was to expose students from both disciplines to an environment in which they are encouraged to interact with and engage team members with a relatively different background. The students were divided into eight groups all comprised of Chemical and Mechanical Engineering students, and they were offered different open-ended projects that were selected to exploit the knowledge developed by the students thus far and they were slightly skewed towards Chemical Engineering. The students demonstrated a high level of cooperation and motivation throughout the period of the project. Effective communication and closing of knowledge gaps were prevalent. At the end of the project period, students produced a journal paper in lieu of the project report.

  15. Environmental Restoration Project - Systems Engineering Management Plan

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1998-06-01

    This Environmental Restoration (ER) Project Systems Engineering Management Plan (SEMP) describes relevant Environmental Restoration Contractor (ERC) management processes and shows how they implement systems engineering. The objective of this SEMP is to explain and demonstrate how systems engineering is being approached and implemented in the ER Project. The application of systems engineering appropriate to the general nature and scope of the project is summarized in Section 2.0. The basic ER Project management approach is described in Section 3.0. The interrelation and integration of project practices and systems engineering are outlined in Section 4.0. Integration with sitewide systems engineering under the Project Hanford Management Contract is described in Section 5.0

  16. Multidisplinary Engineering, Project, and Production Management

    OpenAIRE

    Chien-Ho Ko

    2012-01-01

    Journal of Engineering, Project, and Production Management (EPPM-Journal) reflect the journal’s multidisciplinary approach to management research and can be categorized as belonging to three general topics: Project Management, Engineering and Project Management, and Project and Production Management.

  17. Managing your engineering consultants: Steps for simultaneously improving operations, project implementation, and your bottom line

    International Nuclear Information System (INIS)

    Kirchen, E.R.; Perilloux, B.L.

    1997-01-01

    The domestic oil and gas industry has responded to depleting reserves and increasing operating costs by downsizing the overhead required to maintain production and processing facilities. For many companies this downsizing has resulted in a reduced in-house engineering staff and a greater reliance on consulting engineering services. To get the most benefit from consulting engineering companies, the partnership between consultants and the oil and gas company needs to be carefully considered. Unfortunately, these partnerships are often developed at the home office with visionary goals in mind, only to be implemented reluctantly on a local level. A better strategy is to implement partnering tools on the local level and allow these partnerships to develop naturally, and at times, uniquely, at each location. The following such tools detailed in this paper are: manpower leveraging -- using field-trained consulting engineers to address project design/implementation and field/construction support so that the operating company's engineers may focus on management and detailed development of high-return projects; enhanced project scope and design review -- developing and reviewing project scope(s) and preliminary engineering designs to minimize engineering/construction costs as well as optimize the operability and constructability of the project; and consulting rate standardization -- understanding and structuring the consultant's rates so that neither side is exploited and so that the project is staffed in the interest of project execution and not maximum profits for the consultant

  18. Geomatics engineering a practical guide to project design

    CERN Document Server

    Ogaja, Clement A

    2010-01-01

    OVERVIEWProject Design ProcessUnderstanding Project RequirementsInformation GatheringDesign ApproachesScheduling and Cost EstimatingWriting ProposalsBibliographyExercises CONTEMPORARY ISSUESStandards and SpecificationsDefinitionsApplication Modes of a StandardUnits of MeasureAccuracy versus PrecisionEquipment SpecificationsLimits of ClosureLeast Squares AnalysisMapping and GIS StandardsClassical Surveying StandardsGPS Surveying StandardsOther StandardsBibliography ExercisesProfessional and Ethical ResponsibilitiesKnow What You DoEthics and Professional Conduct Individual and Team Responsibilit

  19. Engineering design knowledge recycling in near-real-time

    Science.gov (United States)

    Leifer, Larry; Baya, Vinod; Toye, George; Baudin, Catherine; Underwood, Jody Gevins

    1994-01-01

    It is hypothesized that the capture and reuse of machine readable design records is cost beneficial. This informal engineering notebook design knowledge can be used to model the artifact and the design process. Design rationale is, in part, preserved and available for examination. Redesign cycle time is significantly reduced (Baya et al, 1992). These factors contribute to making it less costly to capture and reuse knowledge than to recreate comparable knowledge (current practice). To test the hypothesis, we have focused on validation of the concept and tools in two 'real design' projects this past year: (1) a short (8 month) turnaround project for NASA life science bioreactor researchers was done by a team of three mechanical engineering graduate students at Stanford University (in a class, ME210abc 'Mechatronic Systems Design and Methodology' taught by one of the authors, Leifer); and (2) a long range (8 to 20 year) international consortium project for NASA's Space Science program (STEP: satellite test of the equivalence principle). Design knowledge capture was supported this year by assigning the use of a Team-Design PowerBook. Design records were cataloged in near-real time. These records were used to qualitatively model the artifact design as it evolved. Dedal, an 'intelligent librarian' developed at NASA-ARC, was used to navigate and retrieve captured knowledge for reuse.

  20. Multidisplinary Engineering, Project, and Production Management

    Directory of Open Access Journals (Sweden)

    Chien-Ho Ko

    2012-01-01

    Full Text Available Journal of Engineering, Project, and Production Management (EPPM-Journal reflect the journal’s multidisciplinary approach to management research and can be categorized as belonging to three general topics: Project Management, Engineering and Project Management, and Project and Production Management.

  1. Industrial Sponsor Perspective on Leveraging Capstone Design Projects to Enhance Their Business

    Science.gov (United States)

    Weissbach, Robert S.; Snyder, Joseph W.; Evans, Edward R., Jr.; Carucci, James R., Jr.

    2017-01-01

    Capstone design projects have become commonplace among engineering and engineering technology programs. These projects are valuable tools when assessing students, as they require students to work in teams, communicate effectively, and demonstrate technical competency. The use of industrial sponsors enhances these projects by giving these projects…

  2. Patent Information Use in Engineering Technology Design: An Analysis of Student Work

    Science.gov (United States)

    Phillips, Margaret; Zwicky, Dave

    2017-01-01

    How might engineering technology students make use of patent information in the engineering design process? Librarians analyzed team project reports and personal reflections created by students in an undergraduate mechanical engineering technology design course, revealing that the students used patents to consider the patentability of their ideas,…

  3. Analyzing Team Based Engineering Design Process in Computer Supported Collaborative Learning

    Science.gov (United States)

    Lee, Dong-Kuk; Lee, Eun-Sang

    2016-01-01

    The engineering design process has been largely implemented in a collaborative project format. Recently, technological advancement has helped collaborative problem solving processes such as engineering design to have efficient implementation using computers or online technology. In this study, we investigated college students' interaction and…

  4. A Typology of Engineering Designs in Problem-Based Projects

    DEFF Research Database (Denmark)

    Larsen, Samuel Brüning; Bigum, Per Valentin

    include a set of general characteristics of great engineering solutions and a typology of three solution archetypes. The study labels these archetypes as 1) the adapted solution, 2) the “either/or”-solution, and 3) the multiple-elements solution. For each archetype, the paper specifies the corresponding...... class of problems that the archetype can logically address. In addition, the paper delineates (1) how each archetype relates to a project’s analysis and (2) how each archetype is evaluated, implemented and operated. The typology aids both students and project supervisors in conducting reports...

  5. A Return to Innovative Engineering Design, Critical Thinking and Systems Engineering

    Science.gov (United States)

    Camarda, Charles J.

    2007-01-01

    I believe we are facing a critical time where innovative engineering design is of paramount importance to the success of our aerospace industry. However, the very qualities and attributes necessary for enhancing, educating, and mentoring a creative spirit are in decline in important areas. The importance of creativity and innovation in this country was emphasized by a special edition of the Harvard Business Review OnPoint entitled: "The Creative Company" which compiled a series of past and present articles on the subject of creativity and innovation and stressed its importance to our national economy. There is also a recognition of a lack of engineering, critical thinking and problem-solving skills in our education systems and a trend toward trying to enhance those skills by developing K-12 educational programs such as Project Lead the Way, "Science for All Americans", Benchmarks 2061 , etc. In addition, with respect to spacecraft development, we have a growing need for young to mid-level engineers with appropriate experience and skills in spacecraft design, development, analysis, testing, and systems engineering. As the Director of Engineering at NASA's Johnson Space Center, I realized that sustaining engineering support of an operational human spacecraft such as the Space Shuttle is decidedly different than engineering design and development skills necessary for designing a new spacecraft such as the Crew Exploration Vehicle of the Constellation Program. We learned a very important lesson post Columbia in that the Space Shuttle is truly an experimental and not an operational vehicle and the strict adherence to developed rules and processes and chains of command of an inherently bureaucratic organizational structure will not protect us from a host of known unknowns let alone unknown unknowns. There are no strict rules, processes, or procedures for understanding anomalous results of an experiment, anomalies with an experimental spacecraft like Shuttle, or in the

  6. INTEGRATED DESIGN AND ENGINEERING USING BUILDING INFORMATION MODELLING: A PILOT PROJECT OF SMALL-SCALE HOUSING DEVELOPMENT IN THE NETHERLANDS

    Directory of Open Access Journals (Sweden)

    Rizal Sebastian

    2010-11-01

    Full Text Available During the design phase, decisions are made that affect, on average, 70% of the life-cycle cost of a building. Therefore, collaborative design relying on multidisciplinary knowledge of the building life cycle is essential. Building information modelling (BIM makes it possible to integrate knowledge from various project participants that traditionally work in different phases of the building process. BIM has been applied in a number of large-scale projects in the industrial real estate and infrastructure sectors in different countries, including The Netherlands. The projects in the housing sector, however, are predominantly small scale and carried out by small and medium enterprises (SMEs. These SMEs are looking for practical and affordable BIM solutions for housing projects. This article reports a pilot project of small-scale housing development using BIM in the province of Zeeland, The Netherlands. The conceptual knowledge derived from European and national research projects is disseminated to the SMEs through a series of experimental working sessions. Action learning protocols within a pilot project are developed to ensure direct impacts in terms of cost reduction and quality improvement. The project shows that BIM can be applied without radical changes to the SMEs' information and communication technology systems or to their business organizations. DOI: 10.3763/aedm.2010.0116 Source: Architectural Engineering and Design Management, Volume 6, Number 2, 2010 , pp. 103-110(8

  7. Engineering Design of a Drift Tube for PEFP DTL II

    International Nuclear Information System (INIS)

    Kim, Yong Hwan; Kwon, Heok Jung; Kim, Kui Young; Kim, Han Sung; Seol, Keong Tae; Song, Young Gi; Jang, Ji Ho; Hong, In Seok; Choi, Hyun Mi; Han, Sang Hyo; Cho, Yong Sub

    2005-01-01

    As the second stage of the PEFP(Proton Engineering Frontier Project) whose final goal is to develop 100MeV, 20mA proton accelerator, Engineering design of the DTL(Drift Tube Linac) II is in proceeding. In this paper, the details of design of the DT(Drift Tube) and EQM(Electro-Quadrupole Magnet) will be reported

  8. 25 CFR 173.2 - Project engineer's authority.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Project engineer's authority. 173.2 Section 173.2 Indians... LANDS WITHDRAWN OR ACQUIRED IN CONNECTION WITH INDIAN IRRIGATION PROJECTS § 173.2 Project engineer's authority. The project engineer is the official charged with the responsibility for the enforcement of this...

  9. Bi-project management in engineering complex industrial construction projects

    NARCIS (Netherlands)

    Velde, Robert R. van der; Donk, Dirk Pieter van

    2000-01-01

    Engineering large industrial construction projects is usually a complex task with several co-operating actors. This paper investigates such projects, characterised by two main actors: the owner of the installation (the client organisation) responsible for the engineering of the production process,

  10. Foundations for a new type of Design-Engineers

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Brodersen, Søsser; Lindegaard, Hanne

    2011-01-01

    almost equally in the curriculum: natural and technical sciences, design synthesis and socio-technical analysis. Combined with an integration and co-ordination of disciplines, a series of projects providing a progression of challenges to the students⿿ learning, and a focus on the outcomes of the learning...... processes of competences needed in design engineering, the curriculum represents a radical innovation in engineering curriculum. The paper describes the background as well as the foundational elements constituting the educational program and presents an assessment of the key factors that has made it attract......Since 2002 a new design-engineering education has been organized at the Technical University of Denmark. It fulfils most of the requirements in the CDIO concept but builds in addition on a change in what is considered core disciplines in engineering as three fields of knowledge are represented...

  11. Design review plan for Multi-Function Waste Tank Facility (Project W-236A)

    International Nuclear Information System (INIS)

    Renfro, G.G.

    1994-01-01

    This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices

  12. Design considerations for the Yucca Mountain project exploratory shaft facility

    International Nuclear Information System (INIS)

    Bullock, R.L. Sr.

    1990-01-01

    This paper reports on the regulatory/requirements challenges of this project which exist because this is the first facility of its kind to ever be planned, characterized, designed, and built under the purview of a U.S. Nuclear Regulatory Agency. The regulations and requirements that flow down to the Architect/Engineer (A/E) for development of the Exploratory Shaft Facility (ESF) design are voluminous and unique to this project. The subsurface design and construction of the ESF underground facility may eventually become a part of the future repository facility and, if so, will require licensing by the Nuclear Regulatory Commission (NRC). The Fenix and Scisson of Nevada-Yucca Mountain Project (FSN-YMP) group believes that all of the UMP design and construction related activities, with good design/construct control, can be performed to meet all engineering requirements, while following a strict quality assurance program that will also meet regulatory requirements

  13. Developing Systems Engineering Skills Through NASA Summer Intern Project

    Science.gov (United States)

    Bhasin, Kul; Barritt, Brian; Golden, Bert; Knoblock, Eric; Matthews, Seth; Warner, Joe

    2010-01-01

    During the Formulation phases of the NASA Project Life Cycle, communication systems engineers are responsible for designing space communication links and analyzing their performance to ensure that the proposed communication architecture is capable of satisfying high-level mission requirements. Senior engineers with extensive experience in communications systems perform these activities. However, the increasing complexity of space systems coupled with the current shortage of communications systems engineers has led to an urgent need for expedited training of new systems engineers. A pilot program, in which college-bound high school and undergraduate students studying various engineering disciplines are immersed in NASA s systems engineering practices, was conceived out of this need. This rapid summerlong training approach is feasible because of the availability of advanced software and technology tools and the students inherent ability to operate such tools. During this pilot internship program, a team of college-level and recently-hired engineers configured and utilized various software applications in the design and analysis of communication links for a plausible lunar sortie mission. The approach taken was to first design the direct-to-Earth communication links for the lunar mission elements, then to design the links between lunar surface and lunar orbital elements. Based on the data obtained from these software applications, an integrated communication system design was realized and the students gained valuable systems engineering knowledge. This paper describes this approach to rapidly training college-bound high school and undergraduate engineering students from various disciplines in NASA s systems engineering practices and tools. A summary of the potential use of NASA s emerging systems engineering internship program in broader applications is also described.

  14. Knowledge management in an integrated design and engineering environment

    NARCIS (Netherlands)

    Reefman, R.J.B.; Van Nederveen, G.A.

    2012-01-01

    Organisations and / or disciplines in Building and Construction projects are usually working in their own design and engineering environments and using their own Building Information Models (BIM). The discipline models are merged into a project BIM which is mainly used to check for interferences or

  15. An Engineering Educator's Decision Support Tool for Improving Innovation in Student Design Projects

    Science.gov (United States)

    Ozaltin, Nur Ozge; Besterfield-Sacre, Mary; Clark, Renee M.

    2015-01-01

    Learning how to design innovatively is a critical process skill for undergraduate engineers in the 21st century. To this end, our paper discusses the development and validation of a Bayesian network decision support tool that can be used by engineering educators to make recommendations that positively impact the innovativeness of product designs.…

  16. An optimized outlier detection algorithm for jury-based grading of engineering design projects

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Espensen, Christina; Clemmensen, Line Katrine Harder

    2016-01-01

    This work characterizes and optimizes an outlier detection algorithm to identify potentially invalid scores produced by jury members while grading engineering design projects. The paper describes the original algorithm and the associated adjudication process in detail. The impact of the various...... (the base rule and the three additional conditions) play a role in the algorithm's performance and should be included in the algorithm. Because there is significant interaction between the base rule and the additional conditions, many acceptable combinations that balance the FPR and FNR can be found......, but no true optimum seems to exist. The performance of the best optimizations and the original algorithm are similar. Therefore, it should be possible to choose new coefficient values for jury populations in other cultures and contexts logically and empirically without a full optimization as long...

  17. Surviving the Lead Reliability Engineer Role in High Unit Value Projects

    Science.gov (United States)

    Perez, Reinaldo J.

    2011-01-01

    A project with a very high unit value within a company is defined as a project where a) the project constitutes one of a kind (or two-of-a-kind) national asset type of project, b) very large cost, and c) a mission failure would be a very public event that will hurt the company's image. The Lead Reliability engineer in a high visibility project is by default involved in all phases of the project, from conceptual design to manufacture and testing. This paper explores a series of lessons learned, over a period of ten years of practical industrial experience by a Lead Reliability Engineer. We expand on the concepts outlined by these lessons learned via examples. The lessons learned are applicable to all industries.

  18. Sustainable Design and Renewable Energy in the Engineering Curriculum

    DEFF Research Database (Denmark)

    Stachowicz, M.S.; Kofoed, Lise B.

    2011-01-01

    This paper describes a Design Workshop course offered at the Electrical and Computer Engineering Department (ECE) at the University of Minnesota Duluth (UMD). The workshop course is one mechanism by which students completing the ECE program at UMD can satisfy the requirement for a senior design...... project. The design workshop topic for the fall 2010 was the use of fuzzy logic to control comfort in solar home. The workshop is described. The project work is evaluated during the process as well as the final results using principle based on Problem Based and Project Organized Learning (PBL...

  19. Alternatives for Jet Engine Control. Volume 1: Modelling and Control Design with Jet Engine Data

    Science.gov (United States)

    Sain, M. K.

    1985-01-01

    This document compiles a comprehensive list of publications supported by, or related to, National Aeronautics and Space Administration Grant NSG-3048, entitled "Alternatives for Jet Engine Control". Dr. Kurt Seldner was the original Technical Officer for the grant, at Lewis Research Center. Dr. Bruce Lehtinen was the final Technical Officer. At the University of Notre Dame, Drs. Michael K. Sain and R. Jeffrey Leake were the original Project Directors, with Dr. Sain becoming the final Project Director. Publications cover work over a ten-year period. The Final Report is divided into two parts. Volume i, "Modelling and Control Design with Jet Engine Data", follows in this report. Volume 2, "Modelling and Control Design with Tensors", has been bound separately.

  20. Model Wind Turbine Design in a Project-Based Middle School Engineering Curriculum Built on State Frameworks

    Science.gov (United States)

    Cogger, Steven D.; Miley, Daniel H.

    2012-01-01

    This paper proposes that project-based active learning is a key part of engineering education at the middle school level. One project from a comprehensive middle school engineering curriculum developed by the authors is described to show how active learning and state frameworks can coexist. The theoretical basis for learning and assessment in a…

  1. Design Factors Influencing Quality of Building Projects in Nigeria: Consultants' Perception

    Directory of Open Access Journals (Sweden)

    Lukumon Oyedele

    2012-11-01

    Full Text Available Various factors identified from the literature that caninfluence quality of building projects in Nigeria have beenstudied by means of questionnaire survey sent to architects,engineers and quantity surveyors in the industry. From atotal response of 107 consultants, the importance of eachfactor was obtained via severity and frequency responsesof the factors. Data analysis includes comparisons ofranking among consultants using severity, frequency andimportance indexes, correlation analysis, and percentagerank agreement factor (PRAF to measure the agreement inthe importance ranking among the consultants.Correlation results between the professionals are architects/quantity surveyors (0.75, architects/engineers (0.21 ,and engineers/quantity surveyors (0.24. The percentagerank agreement factor (PRAF shows that the five mostimportant factors affecting quality are 'design changes'(78.9%; 'inadequate involvement of other professionalsduring the design stage' (78.9%; 'insufficient andunrealistic constraints of project cost' (71.1 %; 'poor levelof commitment to quality improvement among designprofessionals' (63.2%; and 'making design decisions oncost and not value of work' (55.3%. The results of this studywould provide feedback for the clients, project and qualitymangers and all the consultants in the industry, so thateffective management of quality can be ensured from theconceptual-design stage of the project.

  2. Savannah River Plant - Project 8980 engineering and design history. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    This volume provides an engineering and design history of the 100 area of the Savannah River Plant. This site consisted of five separate production reactor sites, 100-R, P, L, K, and C. The document summarizes work on design of the reactors, support facilities, buildings, siting, etc. for these areas.

  3. Design of a projection display screen with vanishing color shift for rear-projection HDTV

    Science.gov (United States)

    Liu, Xiu; Zhu, Jin-lin

    1996-09-01

    Using bi-convex cylinder lens with matrix structure, the transmissive projection display screen with high contrast and wider viewing angle has been widely used in large rear projection TV and video projectors, it obtained a inhere color shift and puzzled the designer of display screen for RGB projection tube in-line adjustment. Based on the method of light beam racing, the general software of designing projection display screen has been developed and the computer model of vanishing color shift for rear projection HDTV has bee completed. This paper discussed the practical designing method to vanish the defect of color shift and mentioned the relations between the primary optical parameters of display screen and relative geometry sizes of lens' surface. The distributions of optical gain to viewing angle and the influences on engineering design are briefly analyzed.

  4. Fermilab HEPCloud Facility Decision Engine Design

    Energy Technology Data Exchange (ETDEWEB)

    Tiradani, Tiradani,Anthony [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Altunay, Mine [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dagenhart, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kowalkowski, Jim [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Litvintsev, Dmitry [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lu, Qiming [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mhashilkar, Parag [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Moibenko, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Paterno, Marc [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Timm, Steven [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-05-23

    The Decision Engine is a critical component of the HEP Cloud Facility. It provides the functionality of resource scheduling for disparate resource providers, including those which may have a cost or a restricted allocation of cycles. Along with the architecture, design, and requirements for the Decision Engine, this document will provide the rationale and explanations for various design decisions. In some cases, requirements and interfaces for a limited subset of external services will be included in this document. This document is intended to be a high level design. The design represented in this document is not complete and does not break everything down in detail. The class structures and pseudo-code exist for example purposes to illustrate desired behaviors, and as such, should not be taken literally. The protocols and behaviors are the important items to take from this document. This project is still in prototyping mode so flaws and inconsistencies may exist and should be noted and treated as failures.

  5. Mechatronic Control Engineering: A Problem Oriented And Project Based Learning Curriculum In Mechatronic

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2008-01-01

    Mechatronics is a field of multidisciplinary engineering that not only requires knowledge about different technical areas, but also insight into how to combine technologies optimally, to design efficient products and systems.This paper addresses the group project based and problem-oriented learning...... the well established methods from control engineering form very powerful techniques in both analysis and synthesis of mechatronic systems. The necessary skills for mechatronic engineers are outlined followed up by a discussion on how problem oriented project based learning is implemented. A complete...... curriculum named Mechatronic Control Engineering is presented, which is started at Aalborg University, Denmark, and the content of the semesters and projects are described. The projects are all characterized by the use of simulation and control for the purpose of analyzing and designing complex commercial...

  6. Professional development for design-based learning in engineering education: a case study

    Science.gov (United States)

    Gómez Puente, Sonia M.; van Eijck, Michiel; Jochems, Wim

    2015-01-01

    Design-based learning (DBL) is an educational approach in which students gather and apply theoretical knowledge to solve design problems. In this study, we examined how critical DBL dimensions (project characteristics, design elements, the teacher's role, assessment, and social context) are applied by teachers in the redesign of DBL projects. We conducted an intervention for the professional development of the DBL teachers in the Mechanical Engineering and the Electrical Engineering departments. We used the Experiential Learning Cycle as an educational model for the professionalisation programme. The findings show that the programme encouraged teachers to apply the DBL theoretical framework. However, there are some limitations with regard to specific project characteristics. Further research into supporting teachers to develop open-ended and multidisciplinary activities in the projects that support learning is recommended.

  7. Group Design Problems in Engineering Design Graphics.

    Science.gov (United States)

    Kelley, David

    2001-01-01

    Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)

  8. Bridging the Design-Science Gap with Tools: Science Learning and Design Behaviors in a Simulated Environment for Engineering Design

    Science.gov (United States)

    Chao, Jie; Xie, Charles; Nourian, Saeid; Chen, Guanhua; Bailey, Siobhan; Goldstein, Molly H.; Purzer, Senay; Adams, Robin S.; Tutwiler, M. Shane

    2017-01-01

    Many pedagogical innovations aim to integrate engineering design and science learning. However, students frequently show little attempt or have difficulties in connecting their design projects with the underlying science. Drawing upon the Cultural-Historical Activity Theory, we argue that the design tools available in a learning environment…

  9. Software engineering beyond the project

    DEFF Research Database (Denmark)

    Dittrich, Yvonne

    2014-01-01

    Context The main part of software engineering methods, tools and technologies has developed around projects as the central organisational form of software development. A project organisation depends on clear bounds regarding scope, participants, development effort and lead-time. What happens when...... of traditional software engineering, but makes perfect sense, considering that the frame of reference for product development is not a project but continuous innovation across the respective ecosystem. The article provides a number of concrete points for further research....

  10. Outsourced design services lessons learned from LHC civil engineering

    CERN Document Server

    Watson, T

    2003-01-01

    In April 1996 CERN awarded three contracts for the provision of civil engineering design and site supervision services associated with the LHC Project. These three contracts with an average value at signature of 12MCHF were placed using the “two envelope” award system. Eight firms from six member states were integrated into three Joint Ventures. For Projects prior to the LHC, CERN would have carried out the design and supervision using in-house staff. The change to out-sourced services represented a major step for CERN. After seven years, the contracts are now coming to their conclusion. This paper aims to discuss the reasons why these contracts were originally implemented, the lessons than have been learnt over the last seven years and conclusions on how CERN could approach the need for civil engineering design services in the future.

  11. Complex approach in telecommunication engineering education: develop engineering skills by a team project

    Directory of Open Access Journals (Sweden)

    Scripcariu Luminița

    2017-01-01

    Full Text Available This paper provides an overview of the educational process of telecommunication engineering students by presenting the preparation of a team project focused on information security. Our educational approach combines basic knowledge such as mathematics with specialized engineering notions and various skills. The project theme is to design, implement and test an encryption algorithm. Students are provided with online courses, specific software programs and Internet access. They have to choose an encryption algorithm, to study its details and to write the script of the encryption algorithm in MATLAB program. The algorithm is implemented in C/C++ programming language and tested. Finally, a concurrent team tries to break the algorithm by finding the decryption key. It is an interactive approach which combines various education methods including gaming concepts. The covered topics provide students professional outcomes such as knowledge and use of specific mathematical tools and software environments (C/C ++ programming languages, MATLAB, abilities to design, develop, implement and test software algorithms. The project also provides transversal outcomes such as ability to team work, skills of computer use and information technology and capability to take responsibilities. Creativity is also encouraged by extending the algorithm to other encryption key lengths than the usual ones.

  12. The engineering design evolution of IFMIF: From CDR to EDA phase

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Mario, E-mail: mario.perez@ifmif.org

    2015-10-15

    Highlights: • Brief description of International Fusion Materials Irradiation Facility (IFMIF), its background and scope its Engineering Design and Validation Activities (EVEDA) phase. • Description and justification of the main design evolutions from previous phases; and in particular from the baseline described in the “Comprehensive Design Report” (CDR). - Abstract: The International Fusion Materials Irradiation Facility (IFMIF), presently in its Engineering Design and Engineering Validation Activities (EVEDA) phase, started in 2007 under the framework of the Broader Approach (BA) Agreement between Japanese Government and EURATOM. The mandate assigned was to develop an integrated engineering design of IFMIF together with accompanying sub-projects to validate the major technological challenges that included the construction of either full scale prototypes or cleverly devised scaled down facilities, which are essential to reliably face the construction of IFMIF on schedule and cost. The Engineering Design Activities were accomplished on-schedule with the release of its “Intermediate Engineering Design Report (IIEDR)” in June 2013 compliant with our mandate. This paper highlights the design improvements implemented from the previous Conceptual Design Phase.

  13. 18th International Congress on Project Management and Engineering

    CERN Document Server

    Blanco, José; Capuz-Rizo, Salvador

    2016-01-01

    This volume features papers from the 18th International Congress on Project Management and Engineering, held by the University of Zaragoza in collaboration with the Spanish Association of Project Management and Engineering (AEIPRO). It illustrates the state of the art in this emerging area. Readers will discover ways to increase the effectiveness of project engineering as well as the efficiency of project management. The papers, written by international researchers and professionals, cover civil engineering and urban planning, product and process engineering, environmental engineering, energy efficiency and renewable energies, rural development, safety, labor risks and ergonomics, and training in project engineering. Overall, this book contributes to the improvement of project engineering research and enhances the transfer of results to the job of project engineers and project managers around the world. It will appeal to all professionals in the field as well as researchers and teachers involved in the traini...

  14. Site quality management of engineering projects

    International Nuclear Information System (INIS)

    Jiang Yiqun

    2008-01-01

    Site quality management of an engineering project of NPIC was introduced in this paper. Requirements on organization and management, interfaces, and management of interior and exterior communication were put forward, by description of quality planning, process management, process monitoring and summarizing for the engineering projects. By the management of personnel, specifications and procedures, and the control of equipment, material and work surroundings, not only the safety is ensured, but also the quality and schedule of the engineering project were guaranteed, and so the expected quality goals were achieved. (author)

  15. INFUSING INDUSTRY PRACTICES INTO AN ENGINEERING CAPTSONE PROJECT: A LEARNING OUTCOME ATTAINMENT CASE STUDY

    Directory of Open Access Journals (Sweden)

    SATESH NAMASIVAYAM

    2016-04-01

    Full Text Available A capstone project in current engineering education is often introduced to enable the holistic attainment of engineering knowledge by an engineering undergraduate. Essentially project-based in nature, there exists a need to ensure that part of the attainment process involves key industry practices – such practices being necessary in attaining the status of a professional engineer. Herein lies the synergy that can be made use of between industry and academia. By exposing engineering undergraduates to a project which addresses an engineering challenge and providing them with the opportunity to learn from professional engineers who are experts in the fields of safety, sustainability, quality management, ethics and project management, this culminates in the implementation of a prototype design which incorporates the amalgamation of knowledge from industry and academia. This paper presents the unique curriculum developed in a capstone project module, incorporating learning sessions from professional engineers in the five (5 key areas of industry practice highlighted above and how these have contributed to significantly enhancing the learning outcome and hence programme outcome attainment of the engineering undergraduates who have experienced the module.

  16. System engineering and science projects: lessons from MeerKAT

    Science.gov (United States)

    Kapp, Francois

    2016-08-01

    The Square Kilometre Array (SKA) is a large science project planning to commence construction of the world's largest Radio Telescope after 2018. MeerKAT is one of the precursor projects to the SKA, based on the same site that will host the SKA Mid array in the central Karoo area of South Africa. From the perspective of signal processing hardware development, we analyse the challenges that MeerKAT encountered and extrapolate them to SKA in order to prepare the System Engineering and Project Management methods that could contribute to a successful completion of SKA. Using the MeerKAT Digitiser, Correlator/Beamformer and Time and Frequency Reference Systems as an example, we will trace the risk profile and subtle differences in engineering approaches of these systems over time and show the effects of varying levels of System Engineering rigour on the evolution of their risk profiles. It will be shown that the most rigorous application of System Engineering discipline resulted in the most substantial reduction in risk over time. Since the challenges faced by SKA are not limited to that of MeerKAT, we also look into how that translates to a system development where there is substantial complexity in both the created system as well as the creating system. Since the SKA will be designed and constructed by consortia made up from the ten member countries, there are many additional complexities to the organisation creating the system - a challenge the MeerKAT project did not encounter. Factors outside of engineering, for instance procurement models and political interests, also play a more significant role, and add to the project risks of SKA when compared to MeerKAT.

  17. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    Science.gov (United States)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  18. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    Science.gov (United States)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  19. The Company Approach to Software Engineering Project Courses

    Science.gov (United States)

    Broman, D.; Sandahl, K.; Abu Baker, M.

    2012-01-01

    Teaching larger software engineering project courses at the end of a computing curriculum is a way for students to learn some aspects of real-world jobs in industry. Such courses, often referred to as capstone courses, are effective for learning how to apply the skills they have acquired in, for example, design, test, and configuration management.…

  20. Teaching the Next Generation of Scientists and Engineers the NASA Design Process

    Science.gov (United States)

    Caruso, Pamela W.; Benfield, Michael P. J.; Justice, Stefanie H.

    2011-01-01

    The Integrated Product Team (IPT) program, led by The University of Alabama in Huntsville (UAH), is a multidisciplinary, multi-university, multi-level program whose goal is to provide opportunities for high school and undergraduate scientists and engineers to translate stakeholder needs and requirements into viable engineering design solutions via a distributed multidisciplinary team environment. The current program supports three projects. The core of the program is the two-semester senior design experience where science, engineering, and liberal arts undergraduate students from UAH, the College of Charleston, Southern University at Baton Rouge, and Ecole Suprieure des Techniques Aronautiques et de Construction Automobile (ESTACA) in Paris, France form multidisciplinary competitive teams to develop system concepts of interest to the local aerospace community. External review boards form to provide guidance and feedback throughout the semester and to ultimately choose a winner from the competing teams. The other two projects, the Innovative Student Project for the Increased Recruitment of Engineering and Science Students (InSPIRESS) Level I and Level II focus exclusively on high school students. InSPIRESS Level I allows high schools to develop a payload to be accommodated on the system being developed by senior design experience teams. InSPIRESS Level II provides local high school students first-hand experience in the senior design experience by allowing them to develop a subsystem or component of the UAH-led system over the two semesters. This program provides a model for NASA centers to engage the local community to become more involved in design projects.

  1. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  2. The European Project Semester at ISEP: The Challenge of Educating Global Engineers

    Science.gov (United States)

    Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo

    2015-01-01

    Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European…

  3. Case Studies in Application of System Engineering Practices to Capstone Projects

    Science.gov (United States)

    Murphy, Gloria; vanSusante, Paul; Carmen, Christina; Morris, Tommy; Schmidt, Peter; Zalewski, Janusz

    2011-01-01

    The Exploration Systems Mission Directorate (ESMD) of the National Aeronautics and Space Administration (NASA) sponsors a faculty fellowship program that engages researchers with interests aligned with current ESMD development programs. The faculty-members are committed to run a capstone senior design project based- on the materials and experience gained during the fellowship. For the 2010 - 2011 academic year, 5 projects were approved. These projects are in the areas of mechanical and electrical hardware design and optimization, fault prediction and extra planetary civil site preparation. This work summarizes the projects, describes the student teams performing the work, and comments on the integration of Systems Engineering principles into the projects, as well as the affected course curriculums.

  4. Systems engineering management and implementation plan for Project W-464, immobilized high-level waste storage

    International Nuclear Information System (INIS)

    Wecks, M.D.

    1998-01-01

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-46 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan. (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented

  5. Systems engineering management and implementation plan for Project W-465, immobilized low-activity waste storage

    International Nuclear Information System (INIS)

    Kaspar, J.R.; Latray, D.A.

    1998-01-01

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-465 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented

  6. 19th International Congress on Project Management and Engineering

    CERN Document Server

    Blanco, José; Capuz-Rizo, Salvador

    2017-01-01

    This book gathers the best papers presented at the 19th International Congress on Project Management and Engineering, which was held in Granada, Spain in July 2015. It covers a range of project management and engineering contexts, including: civil engineering and urban planning, product and process engineering, environmental engineering, energy efficiency and renewable energies, rural development, information and communication technologies, safety, labour risks and ergonomics, and training in project engineering. Project management and engineering is taking on increasing importance as projects continue to grow in size, more stakeholders become involved, and environmental, organisational and technological issues become more complex. As such, this book offers a valuable resource for all professionals seeking the latest material on the changing face of project management.

  7. Lifecycle management for nuclear engineering project documents

    International Nuclear Information System (INIS)

    Zhang Li; Zhang Ming; Zhang Ling

    2010-01-01

    The nuclear engineering project documents with great quantity and various types of data, in which the relationships of each document are complex, the edition of document update frequently, are managed difficultly. While the safety of project even the nuclear safety is threatened seriously by the false documents and mistakes. In order to ensure the integrality, veracity and validity of project documents, the lifecycle theory of document is applied to build documents center, record center, structure and database of document lifecycle management system. And the lifecycle management is used to the documents of nuclear engineering projects from the production to pigeonhole, to satisfy the quality requirement of nuclear engineering projects. (authors)

  8. Spent Nuclear Fuel project systems engineering management plan

    International Nuclear Information System (INIS)

    Womack, J.C.

    1995-01-01

    The purpose of the WHC Systems Engineering Management Plan (SEMP) is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices to enhance the WHC engineering management of the SNF Project. The scope of the SEMP encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project. This implementation applies to, and is tailored to the needs of the SNF project and all its subprojects, including all current and future subprojects

  9. Participatory ergonomics in industrial engineering projects: The case of a new cheese packaging line work system

    DEFF Research Database (Denmark)

    Souza da Conceição, Carolina; Broberg, Ole; Aldrich, Per

    2014-01-01

    The aim of this study is to explore and conceptualize the challenges that ergonomists meet when seeking to introduce PE methods into an industrial engineering design project in order to optimize the new work system.......The aim of this study is to explore and conceptualize the challenges that ergonomists meet when seeking to introduce PE methods into an industrial engineering design project in order to optimize the new work system....

  10. Techniques for Analysing Problems in Engineering Projects

    DEFF Research Database (Denmark)

    Thorsteinsson, Uffe

    1998-01-01

    Description of how CPM network can be used for analysing complex problems in engineering projects.......Description of how CPM network can be used for analysing complex problems in engineering projects....

  11. Collaborative engineering-design support system

    Science.gov (United States)

    Lee, Dong HO; Decker, D. Richard

    1994-01-01

    Designing engineering objects requires many engineers' knowledge from different domains. There needs to be cooperative work among engineering designers to complete a design. Revisions of a design are time consuming, especially if designers work at a distance and with different design description formats. In order to reduce the design cycle, there needs to be a sharable design describing the engineering community, which can be electronically transportable. Design is a process of integrating that is not easy to define definitively. This paper presents Design Script which is a generic engineering design knowledge representation scheme that can be applied in any engineering domain. The Design Script is developed through encapsulation of common design activities and basic design components based on problem decomposition. It is implemented using CLIPS with a Windows NT graphical user interface. The physical relationships between engineering objects and their subparts can be constructed in a hierarchical manner. The same design process is repeatedly applied at each given level of hierarchy and recursively into lower levels of the hierarchy. Each class of the structure can be represented using the Design Script.

  12. Problem Decomposition and Recomposition in Engineering Design: A Comparison of Design Behavior between Professional Engineers, Engineering Seniors, and Engineering Freshmen

    Science.gov (United States)

    Song, Ting; Becker, Kurt; Gero, John; DeBerard, Scott; DeBerard, Oenardi; Reeve, Edward

    2016-01-01

    The authors investigated the differences in using problem decomposition and problem recomposition between dyads of engineering experts, engineering seniors, and engineering freshmen. Participants worked in dyads to complete an engineering design challenge within 1 hour. The entire design process was video and audio recorded. After the design…

  13. The Complex Dynamics of Student Engagement in Novel Engineering Design Activities

    Science.gov (United States)

    McCormick, Mary

    In engineering design, making sense of "messy," design situations is at the heart of the discipline (Schon, 1983); engineers in practice bring structure to design situations by organizing, negotiating, and coordinating multiple aspects (Bucciarelli, 1994; Stevens, Johri, & O'Connor, 2014). In classroom settings, however, students are more often given well-defined, content-focused engineering tasks (Jonassen, 2014). These tasks are based on the assumption that elementary students are unable to grapple with the complexity or open-endedness of engineering design (Crismond & Adams, 2012). The data I present in this dissertation suggest the opposite. I show that students are not only able to make sense of, or frame (Goffman, 1974), complex design situations, but that their framings dynamically involve their nascent abilities for engineering design. The context of this work is Novel Engineering, a larger research project that explores using children's literature as an access point for engineering design. Novel Engineering activities are inherently messy: there are characters with needs, settings with implicit constraints, and rich design situations. In a series of three studies, I show how students' framings of Novel Engineering design activities involve their reasoning and acting as beginning engineers. In the first study, I show two students whose caring for the story characters contributes to their stability in framing the task: they identify the needs of their fictional clients and iteratively design a solution to meet their clients' needs. In the second, I show how students' shifting and negotiating framings influence their engineering assumptions and evaluation criteria. In the third, I show how students' coordinating framings involve navigating a design process to meet clients' needs, classroom expectations, and technical requirements. Collectively, these studies contribute to literature by documenting students' productive beginnings in engineering design. The

  14. Systems engineering agile design methodologies

    CERN Document Server

    Crowder, James A

    2013-01-01

    This book examines the paradigm of the engineering design process. The authors discuss agile systems and engineering design. The book captures the entire design process (functionbases), context, and requirements to affect real reuse. It provides a methodology for an engineering design process foundation for modern and future systems design. This book captures design patterns with context for actual Systems Engineering Design Reuse and contains a new paradigm in Design Knowledge Management.

  15. The future of the Canadian oil sands: Engineering and project management advances

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Peter; Morawski, Jacek

    2010-09-15

    Production technology and project management developments in Canada's oil sands industry, in the context of AMEC's experience as EPCM service provider, are discussed. Effective project management systems and workfront planning are critical to achieve cost and schedule targets and optimum construction execution. Construction Work Packages divide work into discrete pieces and Construction Work Execution Plans influence scheduling of engineering and procurement deliverables. AMEC's Engineering Data Warehouse works with intelligent engineering design tools to ensure information related to a piece of equipment is consistent across all systems. HSSE systems are proactively developed and AMEC's progressive improvement in safety performance is demonstrated.

  16. Teaching engineering design research

    DEFF Research Database (Denmark)

    Blessing, Lucienne; Andreasen, Mogens Myrup

    2005-01-01

    The importance og engineering design as an industrial activity, and the increasingly complex and dynamic context in which it takes place, has led to the wish to improve the effectiveness and efficiency of engineering design in practice as well as in education. Although attempts have been made...... to improve design for centuries, it was not until well in the second half of the 20th century that engineering design became a research topic (see pahl and Beitz (1996), Heymann (2004) for historical overviews). Engineering research, such as research into thermodynamics, mechanics and materials, has a much...... by PhD students. This has created the demand for a clear, efficient way of learning the crafmanship of doing design research, a demand which is in strong contrast to the state of design research in general. This article reflects the authors' efforts in running a summer school om engineering design...

  17. Tinkering self-efficacy and team interaction on freshman engineering design teams

    Science.gov (United States)

    Richardson, Arlisa Labrie

    This study utilizes Bandura's theory of self-efficacy as a framework to examine the development of tinkering skills white working on a freshman engineering design team. The four sources of self-efficacy were analyzed in the context of tinkering within the design team. The research question, 'Does tinkering self-efficacy change for female students during the Freshman Engineering Design class while working on mixed sex teams?', was addressed using quantitative data collection and field observations. Approximately 41 students enrolled in a freshman engineering design class at a public university in the southwest participated by providing self-reports about their tinkering involvement during each design project. In addition, three mixed-sex student teams were observed while working to complete the course design projects. An observation protocol based on Bandura's sources of self efficacy, was used to document tinkering interactions within the three observed teams. The results revealed that Bandura's sources of self-efficacy influenced tinkering involvement. The self-efficacy source, performance accomplishment measured through prior tinkering experience, was the most influential on tinkering involvement. Unlike Bandura's ranking of influence, verbal persuasion was shown to correlate with more tinkering behaviors than the observation of others. The number of females on a team had no impact on tinkering involvement. Tinkering involvement did not change as students progressed from one project to another. However, the competitive nature of the design project appeared to have a negative impact on tinkering involvement and the division of tasks within the team. In addition, a difference was found in the female students' perception of their tinkering involvement and observation of their tinkering involvement. The findings suggest that effective implementation of teamwork including teamwork preparation, more emphasis on the design process and the elimination of competition

  18. Application of value engineering technique in construction project

    International Nuclear Information System (INIS)

    Chen Changbing

    2003-01-01

    The author introduces how to apply the theories and methods of the value engineering in construction project. In the construction of a test device of the thermal hydrodynamic process, the authors have greatly reduced the construction cost and shortened the construction period by using the value engineering analyzing method. The application of value engineering in the project management is innovative. This practice indicates that the value engineering is important in many construction projects

  19. SE Capstone Project: Building Systems Engineering Education and Workforce Capacity

    Science.gov (United States)

    2012-04-01

    This project developed a system to improve fuel efficiency by means of regenerative braking . The team designed a simple system that allows "bolt-on...air traffic control, social networking, credit/debit cards, and anti-lock brakes are only a few functions enabled by complex systems of systems . We...Building Systems Engineering Education and Workforce Capacity SE Capstone Project APRIL 2012 Report Documentation Page Form ApprovedOMB No. 0704

  20. Systems engineering real estate development projects

    Science.gov (United States)

    Gusakova, Elena; Titarenko, Boris; Stepanov, Vitaliy

    2017-10-01

    In recent years, real estate development has accumulated a wealth of experience in implementing major projects, which requires comprehension and systematization. The scientific instrument of system engineering is studied in the article and is substantively interpreted with reference to real estate development projects. The most perspective approaches and models are substantiated, allowing strategically to plan the life cycle of the project as a whole, and also to solve the engineering butt problems of the project. The relevance of further scientific studies of regularities and specifics of the life cycle of real estate development projects conducted at the Moscow State University of Economics and Management at the ISTA department is shown.

  1. Project-Based Learning in Engineering Design in Bulgaria: Expectations, Experiments and Results

    Science.gov (United States)

    Raycheva, Regina Pavlova; Angelova, Desislava Ivanova; Vodenova, Pavlina Minkova

    2017-01-01

    Using a students' workshop as a laboratory, this article summarises the observation of three years' implementation of a new study module for a Bachelor Program in Engineering Design (Interior and Furniture Design) at the University of Forestry, Sofia, Bulgaria. The article offers an analysis of group dynamics and the difficulties and issues…

  2. Managing nuclear projects: a design agency experience in the design-build of waste management facilities in Canada

    International Nuclear Information System (INIS)

    Brewer, R.; Calzolari, L.

    2006-01-01

    Quality Assurance guarantees the quality of a product; it does not guarantee that it is a quality product. As procedures develop to satisfy QA programs and regulatory needs it is necessary to find ways to ensure that procedural management reinforces project management and does not detract from it. CANATOM NPM's experience in bidding for and executing the design or design and construction of nuclear waste management facilities demonstrates how design excellence and innovation can still be achieved while successfully managing the challenge of technical administration. The sourcing of expertise, the intricacies of design definition and the coordinating efforts required in the execution of the projects (one fully completed, the other into its engineering phase) will provide a valuable insight into the role and activities of an engineering company engaged in a 'Design Agency' (DA) role. (author)

  3. Vehicular engine design

    CERN Document Server

    Hoag, Kevin

    2016-01-01

    This book provides an introduction to the design and mechanical development of reciprocating piston engines for vehicular applications. Beginning from the determination of required displacement and performance, coverage moves into engine configuration and architecture. Critical layout dimensions and design trade-offs are then presented for pistons, crankshafts, engine blocks, camshafts, valves, and manifolds.  Coverage continues with material strength and casting process selection for the cylinder block and cylinder heads. Each major engine component and sub-system is then taken up in turn, from lubrication system, to cooling system, to intake and exhaust systems, to NVH. For this second edition latest findings and design practices are included, with the addition of over sixty new pictures and many new equations.

  4. Kuwaiti engineers' perspectives of the engineering senior design (Capstone) course as related to their professional experiences

    Science.gov (United States)

    Alsagheer, Abdullah

    This study looks into transfer of learning and its application in the actual employment of engineering students after graduation. At Kuwait University, a capstone course is being offered that aims to ensure that students amalgamate all kinds of engineering skills to apply to their work. Within a basic interpretive, qualitative study-design methodology, I interviewed 12 engineers who have recently experienced the senior design course at Kuwait University and are presently working in industry. From the analysis, four basic themes emerged that further delineate the focus of the entire study. The themes are 1) need for the capstone course, 2) applicability of and problems with the capstone course, 3) industry problems with training, and 4) students' attitudes toward the capstone course. The study concludes that participants are not transferring engineering skills; rather, they are transferring all types of instructions they have been given during their course of study at the university. A frequent statement is that the capstone course should be improved and specifically that it is necessary to improve upon the timing, schedule, teachers' behavior, contents, and format. The study concludes that Kuwaiti engineers on the whole face problems with time management and management support. The study includes some implications for Kuwait University and recommendations that can provide significant support for the development of the Senior Design (Capstone) Course. For examples: the project must be divided into phases to ensure timely completion of deliverables. In order to motivate students for hard work and to achieve true transfer of learning, Kuwait University is required to communicate with certain organizations to place its students at their research centers for capstone projects. All universities, including Kuwait University, should hire faculty specifically to run the capstone course. In conclusion, the study includes some suggestions for further research studies focused

  5. Design of management information system for nuclear industry architectural project costs

    International Nuclear Information System (INIS)

    Zhang Xingzhi; Li Wei

    1996-01-01

    Management Information System (MIS) for nuclear industry architectural project is analysed and designed in detail base on quota management and engineering budget management of nuclear industry in respect of the practice of Qinshan Second Phase 2 x 600 MW Project

  6. Mechanical Engineering Senior Design Project Final Presentations | College

    Science.gov (United States)

    Engineering Research Computational Mechanics Laboratory Environmental Engineering Laboratory Geotechnical of Engineering & Applied Science A B C D E F G H I J K L M N O P Q R S T U V W X Y Z D2L Programs Concentration in Biomedical Engineering Concentration on Ergonomics M.S. Program in Computer

  7. Redeveloping Nicosia International Airport: an extroverting Y2 group design project

    Science.gov (United States)

    Yiatros, S.

    2017-11-01

    This article follows the timeline of the 'Nicosia International Airport: The Return' Integrated Design Project which was undertaken by Year 2 students of Civil Engineering and Geomatics at the Cyprus University of Technology in Cyprus. The Nicosia International Airport was the first and main airport of the Republic of Cyprus since its independence from the British Empire in 1960. The airport remains closed since the Turkish invasion of 1974 and is located in the buffer zone administered by the United Nations Peace-keeping Force in Cyprus. In this work, the innovative aspects of a project to inspire and train engineering students are highlighted, while special attention is given to the dissemination and outreach of the project through the social media. The attracted attention of national media and the project's impact on the local society had a cyclical effect, further inspiring students to work hard and act as responsible professional engineers. 'Nicosia International Airport: The Return' is a case study of how an academic engineering project can have societal impact, by inspiring students, engaging practitioners from a wide spectrum of disciplines, captivating the general public and raising the profile of Civil Engineering in the society.

  8. FACTORS AFFECTING EFFICIENT CONSTRUCTION PROJECT DESIGN DEVELOPMENT: A PERSPECTIVE FROM INDIA

    Directory of Open Access Journals (Sweden)

    Devanshu Pandit

    2015-12-01

    Full Text Available Internationally projects exhibit time and cost overrun. It is observed that problems during design development contribute significantly to delays. In India, projects undertaken by government were largely planned and designed by departmental planners and engineers. However, after globalization, projects have increased in number resulting in design outsourcing, but with attendant challenges. The paper is aimed at identifying and analysing factors in the design development phase that can have impact on project success. 30 factors related to design development were identified through two separate brainstorming sessions. A questionnaire was then administered to determine importance ranking of these factors. Relative importance index (RII was used to prioritise these factors. Top ten factors in design development identified using RII include structural design parameters, soil investigations, design quality control, topographic survey, and architectural design parameters. The results can help firms improve their design development practices by prioritising activities that could have more impact on project performance.

  9. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  10. Incorporating Solid Modeling and Team-Based Design into Freshman Engineering Graphics.

    Science.gov (United States)

    Buchal, Ralph O.

    2001-01-01

    Describes the integration of these topics through a major team-based design and computer aided design (CAD) modeling project in freshman engineering graphics at the University of Western Ontario. Involves n=250 students working in teams of four to design and document an original Lego toy. Includes 12 references. (Author/YDS)

  11. The Engineering Design of Man-Machine Interface for RTS

    International Nuclear Information System (INIS)

    Yenn, T.-C.

    2002-01-01

    The purpose of this paper is to present the engineering design of the advanced Man-Machine Interface (MMI) of the Integrated system for Radwaste Treatment and Storage (RTS) facility in Institute of Nuclear Energy Research (INER) Taiwan, ROC. To build the RTS, a multi-function radwaste facility with a total storage of about 10,000 drums, is a five-year project starting in 2000 including intermediate activity waste treatment and combustible waste storage. The completed engineering design of the MMI is based on proven technologies and digital control systems, enhancing the radwaste management efficiency and reliability of operator's performance as well as assuring the dose exposure of personnel meeting the regulation standard. Over past few years, INER has accumulated extensive experience in the area of radwaste treatment and storage. Therefore, we are confident that we will complete this project with fulfillment of the requirements of RTS

  12. Management of engineering design information

    International Nuclear Information System (INIS)

    Gray, J.A.

    1991-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) purchased a Design Management software package called SHERPA for use on the $1 billion Special Isotope Separation Project Sherpa is a customizable software shell that provides for the administrative management of the design function including production, approval, distribution and configuration control of project information. This project information can be either electronic or the traditional paper hardcopy. The use of this computerized system resulted in enhanced productivity and quality performance for the management, engineering, and administrative personnel on the project. The software currently runs on an HP9000 model 835 using the HP-UX operating system. The software had been completely customized to meet specific project needs. Existing databases were converted or left in tact to be accessed through the Sherpa software. Access to the system is available through IBM PCs. Dec terminals, Sun work stations, HP terminals, and X-windows terminals, in short most existing WINCO workstations. The software and hardware were delivered in February of 1990, and the system was on-line with all necessary data converted by the end of ApriL Through the use of the electronic approval function and the highly sophisticated query capabilities of the software, a cost savings of over 1500 personnel hours were realized during the closeout of the Project. The software has since been modified for use in the management of WINCO Environmental Compliance Information including Permits, NEPA, and RECRA documentation and records. Use of this software and hardware has resulted in an increase in quality and a large cost savings to WINCO

  13. Connecting Urban Students with Engineering Design: Community-Focused, Student-Driven Projects

    Science.gov (United States)

    Parker, Carolyn; Kruchten, Catherine; Moshfeghian, Audrey

    2017-01-01

    The STEM Achievement in Baltimore Elementary Schools (SABES) program is a community partnership initiative that includes both in-school and afterschool STEM education for grades 3-5. It was designed to broaden participation and achievement in STEM education by bringing science and engineering to the lives of low-income urban elementary school…

  14. Ceramic technology for advanced heat engines project. Semiannual progress report, April-September 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, new concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.

  15. Digital VLSI systems design a design manual for implementation of projects on FPGAs and ASICs using Verilog

    CERN Document Server

    Ramachandran, S

    2007-01-01

    Digital VLSI Systems Design is written for an advanced level course using Verilog and is meant for undergraduates, graduates and research scholars of Electrical, Electronics, Embedded Systems, Computer Engineering and interdisciplinary departments such as Bio Medical, Mechanical, Information Technology, Physics, etc. It serves as a reference design manual for practicing engineers and researchers as well. Diligent freelance readers and consultants may also start using this book with ease. The book presents new material and theory as well as synthesis of recent work with complete Project Designs

  16. Power system engineering planning, design, and operation of power systems and equipment

    CERN Document Server

    Schlabbach, Juergen

    2014-01-01

    With its focus on the requirements and procedures of tendering and project contracting, this book enables the reader to adapt the basics of power systems and equipment design to special tasks and engineering projects, e.g. the integration of renewable energy sources.

  17. Sharing the design intent between industrial designers and engineering designers

    DEFF Research Database (Denmark)

    Laursen, Esben Skov; Møller, Louise

    2016-01-01

    The aim of the paper is to understand the challenges sharing the product frame between industrial designers with the engineering designers. The study is based on six case studies. The analysis showed correspondence between industrial designers and engineering designers in their understanding...... of the key elements of the context and concept. However the analysis also showed a lack of correspondence between the industrial designers and engineering designers in regards to the product framing and thereby how the different elements of the product frame is connected and interrelated....

  18. Engineering Design for Engineering Design: Benefits, Models, and Examples from Practice

    Science.gov (United States)

    Turner, Ken L., Jr.; Kirby, Melissa; Bober, Sue

    2016-01-01

    Engineering design, a framework for studying and solving societal problems, is a key component of STEM education. It is also the area of greatest challenge within the Next Generation Science Standards, NGSS. Many teachers feel underprepared to teach or create activities that feature engineering design, and integrating a lesson plan of core content…

  19. Scheduling in Engineering, Project, and Production Management

    OpenAIRE

    Chien-Ho Ko

    2015-01-01

    This issue presents five papers selected from the 2013 (4th) International Conference on Engineering, Project, and Production Management (EPPM2013) held in Bangkok, Thailand. Three of the papers deal with scheduling problems faced in project and production management, while the remaining two focus on engineering management issues.

  20. Requirements in engineering projects

    CERN Document Server

    Fernandes, João M

    2016-01-01

    This book focuses on various topics related to engineering and management of requirements, in particular elicitation, negotiation, prioritisation, and documentation (whether with natural languages or with graphical models). The book provides methods and techniques that help to characterise, in a systematic manner, the requirements of the intended engineering system.  It was written with the goal of being adopted as the main text for courses on requirements engineering, or as a strong reference to the topics of requirements in courses with a broader scope. It can also be used in vocational courses, for professionals interested in the software and information systems domain.   Readers who have finished this book will be able to: - establish and plan a requirements engineering process within the development of complex engineering systems; - define and identify the types of relevant requirements in engineering projects; - choose and apply the most appropriate techniques to elicit the requirements of a giv...

  1. Mechanical Design Engineering Enabler Project wheel and wheel drives

    Science.gov (United States)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.

    1992-01-01

    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  2. Engineering Encounters: Designing Healthy Ice Pops. A STEM Enrichment Project for Second Graders Incorporates Nutrition and Design Principles

    Science.gov (United States)

    Bubnick, Laura; Enneking, Katie; Egbers, Julie

    2016-01-01

    Science, technology, engineering, and math (STEM) education piques students' innate curiosity and opens their eyes to hundreds of career possibilities. This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about a STEM enrichment project for second graders that incorporates nutrition and…

  3. Control Design for an Advanced Geared Turbofan Engine

    Science.gov (United States)

    Chapman, Jeffryes W.; Litt, Jonathan S.

    2017-01-01

    This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 lbf thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 ft and from 0 to 0.8 Mach. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller integrated with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding system operational limits.

  4. Preconceptual engineering design for the APT 3He Target/Blanket concept

    International Nuclear Information System (INIS)

    Mensink, D.L.

    1994-01-01

    A preconceptual engineering design has been developed for the 3 He Target/Blanket (T/B) System for the Accelerator Production of Tritium Project. This concept uses an array of pressure tubes containing tungsten rods for the neutron spallation source and 3 He gas contained in a metal tank and blanket tubes as the tritium production material. The engineering design is based on a physics model optimized for efficient tritium production. Principle engineering consideration were: provisions for cooling all materials including the 3 He gas; containment of the gas and radionuclides; remote handling; material compatibility; minimization of 3 He, D 2 O, and activated waste; modularity; and manufacturability. The design provides a basis for estimating the cost to implement the system

  5. Quiet engine program flight engine design study

    Science.gov (United States)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  6. Management and integration of engineering and construction activities: Lessons learned from the AP1000R nuclear power plant China project

    International Nuclear Information System (INIS)

    McCullough, M. C.; Ebeling-Koning, D.; Evans, M. C.

    2012-01-01

    The lessons learned during the early phase of design engineering and construction activities for the AP1000 China Project can be applied to any project involving multiple disciplines and multiple organizations. Implementation of a first-of-a-kind design to directly support construction activities utilizing resources assigned to design development and design delivery creates challenges with prioritization of activities, successful closure of issues, and communication between site organizations and the home office. To ensure successful implementation, teams were assigned and developed to directly support construction activities including prioritization of activities, site communication and ensuring closure of site emergent issues. By developing these teams, the organization is better suited to meet the demands of the construction schedule while continuing with design evolution of a standard plant and engineering delivery for multiple projects. For a successful project, proper resource utilization and prioritization are key for overcoming obstacles and ensuring success of the engineering organization. (authors)

  7. Empirical Research In Engineering Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2007-01-01

    Increasingly engineering design research involves the use of empirical studies that are conducted within an industrial environment [Ahmed, 2001; Court 1995; Hales 1987]. Research into the use of information by designers or understanding how engineers build up experience are examples of research...... of research issues. This paper describes case studies of empirical research carried out within industry in engineering design focusing upon information, knowledge and experience in engineering design. The paper describes the research methods employed, their suitability for the particular research aims...

  8. Procurement and quality control of components important to safety in nuclear engineering projects

    International Nuclear Information System (INIS)

    Zhang Zhihua; Zhang Yiyun

    2006-01-01

    The procurement and quality control of components is a very important work in the nuclear engineering. This paper introduces the project management techniques, such as how to make a plan of components purchase in nuclear engineering. This paper discussed the classification of components, evaluation of the potential suppliers, invitation of bids, exchange of design details with the suppliers, quality assurance and quality assurance audit, and the equipment checks before acceptance and some engineering experiences. (authors)

  9. Teaching design in the first years of a traditional mechanical engineering degree: methods, issues and future perspectives

    Science.gov (United States)

    Silva, Arlindo; Fontul, Mihail; Henriques, Elsa

    2015-01-01

    Engineering design is known as an answer to an ill-defined problem. As any answer to an ill-defined problem, it can never be completely right or absolutely wrong. The methods that universities use to teach engineering design, as a consequence of this, suffer from the same fate. However, the accumulated experience with the 'chalk and talk' teaching tradition has led to a reality in which the employers of fresh graduates are not happy with the engineers they are getting. Part of their complaints are related with the inability of recently graduate engineers to work in problems where the boundaries are not well defined, are interdisciplinary, require the use of effective communication and integrate non-technical issues. These skills are mostly absent from traditional engineering curricula. This paper demonstrates the implementation of engineering design perspectives enhancing some of the aforementioned skills in a traditional mechanical engineering curriculum. It emphasises in particular a design project that is tackled in a sequence of conventional courses with a focus that depends on the course objectives and disciplinary domain. This transdisciplinary design project conveys the idea (and effectively implements it concurrently) that design is multidisciplinary.

  10. Comparison of Problem Solving from Engineering Design to Software Design

    DEFF Research Database (Denmark)

    Ahmed-Kristensen, Saeema; Babar, Muhammad Ali

    2012-01-01

    Observational studies of engineering design activities can inform the research community on the problem solving models that are employed by professional engineers. Design is defined as an ill-defined problem which includes both engineering design and software design, hence understanding problem...... solving models from other design domains is of interest to the engineering design community. For this paper an observational study of two software design sessions performed for the workshop on “Studying professional Software Design” is compared to analysis from engineering design. These findings provide...... useful insights of how software designers move from a problem domain to a solution domain and the commonalities between software designers’ and engineering designers’ design activities. The software designers were found to move quickly to a detailed design phase, employ co-.evolution and adopt...

  11. Comparison of Problem Solving from Engineering Design to Software Design

    DEFF Research Database (Denmark)

    Ahmed-Kristensen, Saeema; Babar, Muhammad Ali

    2012-01-01

    solving models from other design domains is of interest to the engineering design community. For this paper an observational study of two software design sessions performed for the workshop on “Studying professional Software Design” is compared to analysis from engineering design. These findings provide......Observational studies of engineering design activities can inform the research community on the problem solving models that are employed by professional engineers. Design is defined as an ill-defined problem which includes both engineering design and software design, hence understanding problem...... useful insights of how software designers move from a problem domain to a solution domain and the commonalities between software designers’ and engineering designers’ design activities. The software designers were found to move quickly to a detailed design phase, employ co-.evolution and adopt...

  12. A Project-Based Cornerstone Course in Civil Engineering: Student Perceptions and Identity Development

    Science.gov (United States)

    Marshall, Jill; Bhasin, Amit; Boyles, Stephen; David, Bernard; James, Rachel; Patrick, Anita

    2018-01-01

    Our study used a natural experiment to compare a project-based cornerstone course with the traditionally-taught introductory course in civil engineering. During the study, two sections of the course were organized around an overarching project, the design of an event center, and the remaining sections used guest lectures, a textbook, and…

  13. Feasibility, Design and Construction of a Small Hydroelectric Power Generation Station as a Student Design Project.

    Science.gov (United States)

    Peterson, James N.; Hess, Herbert L.

    An undergraduate capstone engineering design project now provides hydroelectric power to a remote wilderness location. Students investigated the feasibility of designing, building, and installing a 4kW hydroelectric system to satisfy the need for electric power to support the research and teaching functions of Taylor Ranch, a university facility…

  14. Six Aerospace design projects to learn how to engineer

    NARCIS (Netherlands)

    Kamp, A.

    2013-01-01

    Tomorrow’s engineers are required to have a good balance of deep working knowledge of engineering sciences and engineering skills. In the Bachelor in Aerospace Engineering at TU Delft, students are educated to master these competences so that they are ready to engineer when they graduate. The

  15. SNF project engineering process improvement plan

    International Nuclear Information System (INIS)

    DESAI, S.P.

    1999-01-01

    This Engineering Process Improvement Plan documents the activities and plans to be taken by the SNF Project to support its engineering process and to produce a consolidated set of engineering procedures that are fully compliant with the requirements of HNF-PRO-1819. All new procedures will be issued and implemented by September 30, 1999

  16. Shedding Light on Engineering Design

    Science.gov (United States)

    Capobianco, Brenda M.; Nyquist, Chell; Tyrie, Nancy

    2013-01-01

    This article describes the steps incorporated to teach an engineering design process in a fifth-grade science classroom. The engineering design-based activity was an existing scientific inquiry activity using UV light--detecting beads and purposefully creating a series of engineering design-based challenges around the investigation. The…

  17. ORGANIZATION OF FUTURE ENGINEERS' PROJECT-BASED LEARNING WHEN STUDYING THE PROJECT MANAGEMENT METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Halyna V. Lutsenko

    2015-02-01

    Full Text Available The peculiarities of modern world experience of implementation of project-based learning in engineering education have been considered. The potential role and place of projects in learning activity have been analyzed. The methodology of organization of project-based activity of engineering students when studying the project management methodology and computer systems of project management has been proposed. The requirements to documentation and actual results of students' projects have been described in detail. The requirements to computer-aided systems of project management developed by using Microsoft Project in the scope of diary scheduling and resources planning have been formulated.

  18. The Application of Concurrent Engineering Tools and Design Structure Matrix in Designing Tire

    Science.gov (United States)

    Ginting, Rosnani; Fachrozi Fitra Ramadhan, T.

    2016-02-01

    The development of automobile industry in Indonesia is growing rapidly. This phenomenon causes companies related to the automobile industry such as tire industry must develop products based on customers’ needs and considering the timeliness of delivering the product to the customer. It could be reached by applying strategic planning in developing an integrated concept of product development. This research was held in PT. XYZ that applied the sequential approach in designing and developing products. The need to improve in one stage of product development could occur re-designing that needs longer time in developing a new product. This research is intended to get an integrated product design concept of tire pertaining to the customer's needs using Concurrent Engineering Tools by implementing the two-phased of product development. The implementation of Concurrent Engineering approach results in applying the stage of project planning, conceptual design, and product modules. The product modules consist of four modules that using Product Architecture - Design Structure Matrix to ease the designing process of new product development.

  19. Fifth Graders' Learning about Simple Machines through Engineering Design-Based Instruction Using LEGO™ Materials

    Science.gov (United States)

    Marulcu, Ismail; Barnett, Mike

    2013-01-01

    This study is part of a 5-year National Science Foundation-funded project, Transforming Elementary Science Learning Through LEGO™ Engineering Design. In this study, we report on the successes and challenges of implementing an engineering design-based and LEGO™-oriented unit in an urban classroom setting and we focus on the impact of the unit on…

  20. Engineering Design vs. Artistic Design: Some Educational Consequences

    Science.gov (United States)

    Eder, Wolfgang Ernst

    2013-01-01

    "Design" can be a noun, or a verb. Six paths for research into engineering design (as verb) are identified, they must be coordinated for internal consistency and plausibility. Design research tries to clarify design processes and their underlying theories--for designing in general, and for particular forms, e.g., design engineering. Theories are a…

  1. Engineering Encounters: Identifying an Engineering Design Problem

    Science.gov (United States)

    Chizek, Lisa; VanMeeteren, Beth; McDermott, Mark; Uhlenberg, Jill

    2018-01-01

    Engineering is an intriguing way for students to connect the design process with their knowledge of science (NRC 2012). This article describes the "Engineering a Pancake Recipe" design process which was created to make the structure and properties of matter more meaningful for fifth grade students. The whole pancake recipe engineering…

  2. Stirling engine design manual

    Science.gov (United States)

    Martini, W. R.

    1978-01-01

    This manual is intended to serve both as an introduction to Stirling engine analysis methods and as a key to the open literature on Stirling engines. Over 800 references are listed and these are cross referenced by date of publication, author and subject. Engine analysis is treated starting from elementary principles and working through cycles analysis. Analysis methodologies are classified as first, second or third order depending upon degree of complexity and probable application; first order for preliminary engine studies, second order for performance prediction and engine optimization, and third order for detailed hardware evaluation and engine research. A few comparisons between theory and experiment are made. A second order design procedure is documented step by step with calculation sheets and a worked out example to follow. Current high power engines are briefly described and a directory of companies and individuals who are active in Stirling engine development is included. Much remains to be done. Some of the more complicated and potentially very useful design procedures are now only referred to. Future support will enable a more thorough job of comparing all available design procedures against experimental data which should soon be available.

  3. Iteration in Early-Elementary Engineering Design

    Science.gov (United States)

    McFarland Kendall, Amber Leigh

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.

  4. Fusion Engineering Device design description

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  5. Fusion engineering device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  6. Fusion engineering device design description

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  7. Team- and project work in engineering practices

    DEFF Research Database (Denmark)

    Buch, Anders; Andersen, Vibeke

    2015-01-01

    in teamwork practices, and, thirdly, how team- and project work affect engineering professionalism and collaborative work practices. A practice theoretical framework informs the analysis. Teamwork is investigated as a phenomenon enacted through the sayings, doings and relatings of practitioners in landscapes......In this paper we investigate teamwork amongst professionals in engineering consultancy companies in order to discern how teamwork affects the collaboration and work practices of the professionals. The paper investigates how professional engineering practices are enacted in two engineering...... consultancy companies in Denmark where teamwork has been or is an ideal for organizing work. Through a practice-based lens the article sets out to investigate, firstly, how discourses about teamand project work affect engineering work practices, secondly, how technology-mediated management is reconciled...

  8. Designed by Engineers: An analysis of interactionaries with engineering students

    Directory of Open Access Journals (Sweden)

    Henrik Artman

    2014-12-01

    Full Text Available The aim of this study is to describe and analyze learning taking place in a collaborative design exercise involving engineering students. The students perform a time-constrained, open-ended, complex interaction design task, an “interactionary”. A multimodal learning perspective is used. We have performed detailed analyses of video recordings of the engineering students, including classifying aspects of interaction. Our results show that the engineering students carry out and articulate their design work using a technology-centred approach and focus more on the function of their designs than on aspects of interaction. The engineering students mainly make use of ephemeral communication strategies (gestures and speech rather than sketching in physical materials. We conclude that the interactionary may be an educational format that can help engineering students learn the messiness of design work. We further identify several constraints to the engineering students’ design learning and propose useful interventions that a teacher could make during an interactionary. We especially emphasize interventions that help engineering students-retain aspects of human-centered design throughout the design process. This study partially replicates a previous study which involved interaction design students.

  9. Integrating Project Management, Product Design with Industry Sponsored Projects provides Stimulating Senior Capstone Experiences

    Directory of Open Access Journals (Sweden)

    Phillip A. Sanger

    2011-07-01

    Full Text Available

    Abstract ¾ Many students are uncomfortable with real world engineering problems where needs and requirements must be concretely defined and the selection of design solutions is not black and white. This paper describes a two semester, multi-disciplinary senior capstone project for students from three Engineering and Technology Department programs (electrical engineering, electrical and computer engineering technology, and engineering technology that brings together the tools of project management and the creative product development process into industry sponsored projects.  The projects are fully integrated with the Center for Rapid Product Realization with its dual goals of economic development and enhanced learning.  The stage/gate development process is used with six formal reviews covering the development of the proposal through to the fabrication and testing of the project’s output.  Over the past four years thirty five (35 projects have been undertaken with students getting an exciting

  10. Progress in waste package and engineered barrier system performance assessment and design

    International Nuclear Information System (INIS)

    Van Luik, A.; Stahl, D.; Harrison, D.

    1993-01-01

    As part of the U.S. Department of Energy's evaluation of site suitability for a potential high-level radioactive waste repository, long-term interactions between the engineered barrier system and the site must be determined. This requires a waste-package/engineered-system design, a description of the environment around the emplacement zone, and models that simulate operative processes describing these engineered/natural systems interactions. Candidate designs are being evaluated, including a more robust, multi-barrier waste package, and a drift emplacement mode. Tools for evaluating designs, and emplacement mode are the currently available waste-package/engineered-system performance assessment codes development for the project. For assessments that support site suitability, environmental impact, or licensing decisions, more capable codes are needed. Code capability requirements are being written, and existing codes are to be evaluated against those requirements. Recommendations are being made to focus waste-packaging/engineered-system code-development

  11. 18-months fuel cycle engineering and its project management of the Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Fu Xiangang; Jiao Ping; Liu Yong; Wu Zhiming

    2002-01-01

    The author introduces aspects related to the performing of 18-months fuel cycle engineering evaluation to the Daya Bay nuclear power plant, including the assessment on proposed technical solutions, appointment to the contractors, breaking down and implementation of project, experience on the project management and risk control, and etc. And it also briefs the prompting to the localization of the long fuel cycle engineering technology and AFA 3G fuel manufacturing and design technology via adequate technology transferring of this project

  12. Implementation of a project-based engineering school: increasing student motivation and relevant learning

    Science.gov (United States)

    Terrón-López, María-José; García-García, María-José; Velasco-Quintana, Paloma-Julia; Ocampo, Jared; Vigil Montaño, María-Reyes; Gaya-López, María-Cruz

    2017-11-01

    The School of Engineering at Universidad Europea de Madrid (UEM) implemented, starting in the 2012-2013 period, a unified academic model based on project-based learning as the methodology used throughout the entire School. This model expects that every year, in each grade, all the students should participate in a capstone project integrating the contents and competencies of several courses. This paper presents the academic context under which this experience has been implemented, and a summary of the work done to design and implement the Project-Based Engineering School at the UEM. The steps followed, the structure used, some sample projects, as well as the difficulties and benefits of implementing the programme are discussed in this paper. The results are encouraging as students are more motivated and the initial set objectives were accomplished.

  13. Engine design optimization for running on ethanol with low emissions

    Energy Technology Data Exchange (ETDEWEB)

    Gjirja, S [Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Thermo- and Fluid Dynamics

    1996-05-01

    The aim of this project was to optimize the Volvo AH10A245 engine design parameters for ethanol fuel with Beraid (Trade mark of the ignition improver manufactured by the Akzo Nobel Surface Chemistry AB). The method used was engine testing with variation of design, performance, and other functional parameters, which affect the engine thermodynamics, and exhaust gas composition. The first design parameter, which was tested and optimized was the compression ratio, which was optimized at the ratio of 23:1. In order to prevail the fuel spray impingement, which might affect the unburned or partially burned emissions (CO), the combustion chamber was redesigned to a straight-side wall bowl in piston. Furthermore, the injector position was optimized by means of lifting or descending it few millimeters. The best emission levels was achieved with the injector lift of 1.00 mm. The inlet air temperature was optimized for lower emissions by removing the intercooler thermostat. Injector nozzles with different cross section areas of holes were tested, and the 6 holes injector nozzles with smaller cross sectional area, compared with base nozzles, were selected. The engine performance was maintained for lower engine rated speed 2000 (instead of 2200 rpm for conventional engine) and lower intermediate speed 1250 (instead of 1320 rpm for conventional engine). Such engine performance optimization was followed by the improved specific fuel consumption, and lower emissions compared with conventional speeds. The backpressure governor, desperately needed during the first phase of engine design optimization was, finally avoided. It can only be used as in the conventional diesel engine. 7 refs, 26 figs, 18 tabs, 7 appendices

  14. Management and integration of engineering and construction activities: Lessons learned from the AP1000{sup R} nuclear power plant China project

    Energy Technology Data Exchange (ETDEWEB)

    McCullough, M. C.; Ebeling-Koning, D.; Evans, M. C. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The lessons learned during the early phase of design engineering and construction activities for the AP1000 China Project can be applied to any project involving multiple disciplines and multiple organizations. Implementation of a first-of-a-kind design to directly support construction activities utilizing resources assigned to design development and design delivery creates challenges with prioritization of activities, successful closure of issues, and communication between site organizations and the home office. To ensure successful implementation, teams were assigned and developed to directly support construction activities including prioritization of activities, site communication and ensuring closure of site emergent issues. By developing these teams, the organization is better suited to meet the demands of the construction schedule while continuing with design evolution of a standard plant and engineering delivery for multiple projects. For a successful project, proper resource utilization and prioritization are key for overcoming obstacles and ensuring success of the engineering organization. (authors)

  15. Sharing best practices in teaching biomedical engineering design.

    Science.gov (United States)

    Allen, R H; Acharya, S; Jancuk, C; Shoukas, A A

    2013-09-01

    In an effort to share best practices in undergraduate engineering design education, we describe the origin, evolution and the current status of the undergraduate biomedical engineering design team program at Johns Hopkins University. Specifically, we describe the program and judge the quality of the pedagogy by relating it to sponsor feedback, project outcomes, external recognition and student satisfaction. The general pedagogic practices, some of which are unique to Hopkins, that have worked best include: (1) having a hierarchical team structure, selecting team leaders the Spring semester prior to the academic year, and empowering them to develop and manage their teams, (2) incorporating a longitudinal component that incudes freshmen as part of the team, (3) having each team choose from among pre-screened clinical problems, (4) developing relationships and fostering medical faculty, industry and government to allow students access to engineers, clinicians and clinical environments as needed, (5) providing didactic sessions on topics related to requirements for the next presentation, (6) employing judges from engineering, medicine, industry and government to evaluate designs and provide constructive criticisms approximately once every 3-4 weeks and (7) requiring students to test the efficacy of their designs. Institutional support and resources are crucial for the design program to flourish. Most importantly, our willingness and flexibility to change the program each year based on feedback from students, sponsors, outcomes and judges provides a mechanism for us to test new approaches and continue or modify those that work well, and eliminate those that did not.

  16. Tri-State Synfuels Project Review: Volume 12. Fluor project status. [Proposed Henderson, Kentucky coal to gasoline plant; engineering

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    The purpose of this report is to document and summarize activities associated with Fluor's efforts on the Tri-State Synfuels Project. The proposed facility was to be coal-to-transport fuels facility located in Henderson, Kentucky. Tri-State Synfuels Company was participating in the project as a partner of the US Department of Energy per terms of a Cooperative Agreement resulting from DOE's synfuel's program solicitation. Fluor's initial work plan called for preliminary engineering and procurement services to the point of commitment for construction for a Sasol Fischer-Tropsch plant. Work proceeded as planned until October 1981 when results of alternative coal-to-methanol studies revealed the economic disadvantage of the Synthol design for US markets. A number of alternative process studies followed to determine the best process configuration. In January 1982 Tri-State officially announced a change from Synthol to a Methanol to Gasoline (MTG) design basis. Further evaluation and cost estimates for the MTG facility eventually led to the conclusion that, given the depressed economic outlook for alternative fuels development, the project should be terminated. Official announcement of cancellation was made on April 13, 1982. At the time of project cancellation, Fluor had completed significant portions of the preliminary engineering effort. Included in this report are descriptions and summaries of Fluor's work during this project. In addition location of key project data and materials is identified and status reports for each operation are presented.

  17. NASA Space Engineering Research Center for VLSI systems design

    Science.gov (United States)

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  18. Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate

    Science.gov (United States)

    Samaras, C.; Cook, L.

    2015-12-01

    Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.

  19. Error begat error: design error analysis and prevention in social infrastructure projects.

    Science.gov (United States)

    Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M

    2012-09-01

    Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.

  20. Towards characterising design-based learning in engineering education : a review of the literature

    NARCIS (Netherlands)

    Gomez Puente, S.M.; Eijck, van M.W.; Jochems, W.M.G.

    2011-01-01

    Design-based learning is a teaching approach akin to problem-based learning but one to which the design of artefacts, systems and solutions in project-based settings is central. Although design-based learning has been employed in the practice of higher engineering education, it has hardly been

  1. Engineering Design of the ITER AC/DC Power Supplies

    International Nuclear Information System (INIS)

    Oh, B. H.; Lee, K. W.; Hwang, C. K.; Jin, J. T.; Chang, D. S.; Kim, T. S.

    2009-02-01

    To design high power pulse power supplies, especially in huge power supplies have not designed till now, it is necessary to analyze a system's characteristics and relations with another systems as well as to know high voltage, high current control technologies. Contents of this project are; - Study for the engineering designs changed recently by ITER Organization(IO) and writing specifications for the power supplies to reduce project risk. - Detailed analysis of the AC/DC Converters and writing subtask reports on the Task Agreement. - Study for thyristor numbers, DCR's specifications for Korea-China sharing meetings. - Study for the grounding systems of the ITER power supply system. The results may used as one of reference for practical designs of the high power coil power supplies and also may used in various field such as electroplating, plasma arc furnaces, electric furnaces

  2. Flat-plate solar array project. Volume 6: Engineering sciences and reliability

    Science.gov (United States)

    Ross, R. G., Jr.; Smokler, M. I.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety, and reliability requirements of large scale terrestrial photovoltaic systems applications are reported. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis of define design shortfalls and, thus, areas requiring additional research and development. A summary of the approach and technical outcome of these activities are provided along with a complete bibliography of the published documentation covering the detailed accomplishments and technologies developed.

  3. The Effect of STEM Learning through the Project of Designing Boat Model toward Student STEM Literacy

    Science.gov (United States)

    Tati, T.; Firman, H.; Riandi, R.

    2017-09-01

    STEM Learning focusses on development of STEM-literate society, the research about implementation of STEM learning to develope students’ STEM literacy is still limited. This study is aimed to examine the effect of implementation STEM learning through the project of designing boat model on students STEM literacy in energy topic. The method of this study was a quasi-experiment with non-randomized pretest-posttest control group design. There were two classes involved, the experiment class used Project Based Learning with STEM approach and control class used Project-Based Learning without STEM approach. A STEM Literacy test instrument was developed to measure students STEM literacy which consists of science literacy, mathematics literacy, and technology-engineering literacy. The analysis showed that there were significant differences on improvement science literacy, mathematics technology-engineering between experiment class and control class with effect size more than 0.8 (large effect). The difference of improvement of STEM literacy between experiment class and control class is caused by the existence of design engineering activity which required students to apply the knowledge from every field of STEM. The challenge that was faced in STEM learning through design engineering activity was how to give the students practice to integrate STEM field in solving the problems. In additional, most of the students gave positive response toward implementation of STEM learning through design boat model project.

  4. Managing project complexity : A study into adapting early project phases to improve project performance in large engineering projects

    NARCIS (Netherlands)

    Bosch-Rekveldt, M.G.C.

    2011-01-01

    Engineering projects become increasingly more complex and project complexity is assumed to be one of the causes for projects being delivered late and over budget. However, what this project complexity actually comprised of was unclear. To improve the overall project performance, this study focuses

  5. MANAGING CONFLICT IN ENGINEERING PROJECTS: NEW ZEALAND EXPERIENCES

    Directory of Open Access Journals (Sweden)

    Nicola Naismith

    2016-07-01

    Full Text Available There is a wealth of knowledge concerning conflict management and its resolution in the workplace, however there is a dearth of information relating to conflict management and its resolution in engineering project management. This paper set out to examine the reality of conflict management in engineering project management in New Zealand. This was achieved through a review of credible literature sources and the completion of a pilot study to gain subject matter expert perspectives. The research suggests that conflicts can be destructive, resulting in anxiety and strong emotional responses leading to reflexive reactions including avoidance, aggression, fight, hostility and a breakdown in communications and relationships. Findings indicate that managing a project structure is synonymous with handling conflict and these disagreements can be detrimental to the success of a project. The initial results suggest that a number of factors act as drivers of conflict in engineering projects in New Zealand. These drivers are: power, personality, group dynamics and organisation culture. The conflict resolution tools cited as being widely used for engineering projects are collaboration and negotiation. The paper also offers recommendations for future research.

  6. Instructional design considerations promoting engineering design self-efficacy

    Science.gov (United States)

    Jackson, Andrew M.

    Engineering design activities are frequently included in technology and engineering classrooms. These activities provide an open-ended context for practicing critical thinking, problem solving, creativity, and innovation---collectively part of the 21st Century Skills which are increasingly needed for success in the workplace. Self-efficacy is a perceptual belief that impacts learning and behavior. It has been shown to directly impact each of these 21st Century Skills but its relation to engineering design is only recently being studied. The purpose of this study was to examine how instructional considerations made when implementing engineering design activities might affect student self-efficacy outcomes in a middle school engineering classroom. Student responses to two self-efficacy inventories related to design, the Engineering Design Self-Efficacy Instrument and Creative Thinking Self-Efficacy Inventory, were collected before and after participation in an engineering design curriculum. Students were also answered questions on specific factors of their experience during the curriculum which teachers may exhibit control over: teamwork and feedback. Results were analyzed using Pearson's correlation coefficients, paired and independent t-tests, and structural equation modeling to better understand patterns for self-efficacy beliefs in students. Results suggested that design self-efficacy and creative thinking self-efficacy are significantly correlated, r(1541) = .783, p classroom strategies for increasing self-efficacy and given specific recommendations related to teamwork and feedback to support students. Finally, although there were weaknesses in the study related to the survey administration, future research opportunities are presented which may build from this work.

  7. Global engineering teams - a programme promoting teamwork in engineering design and manufacturing

    Science.gov (United States)

    Oladiran, M. T.; Uziak, J.; Eisenberg, M.; Scheffer, C.

    2011-05-01

    Engineering graduates are expected to possess various competencies categorised into hard and soft skills. The hard skills are acquired through specific coursework, but the soft skills are often treated perfunctorily. Global Engineering Teams (GET) is a programme that promotes project-oriented tasks in virtual student teams working in collaboration with industry partners. Teamwork is a major success factor for GET as students always work in groups of varying sizes. A questionnaire-based survey of the 2008 cohort of GET students was conducted to assess teamwork, communication and conflict resolution among group members. The results confirmed that deliverables are readily achieved in teams and communication was open. A challenge of using virtual teams is the availability of high-speed Internet access. The GET programme shows that it is possible to deliver engineering design and manufacturing via industry/university collaboration. The programme also facilitates multidisciplinary teamwork at an international level.

  8. Modular Engineering Concept at Novo Nordisk Engineering

    DEFF Research Database (Denmark)

    Moelgaard, Gert; Miller, Thomas Dedenroth

    1997-01-01

    This report describes the concept of a new engineering method at Novo Nordisk Engineering: Modular Engineering (ME). Three tools are designed to support project phases with different levels of detailing and abstraction. ME supports a standard, cross-functional breakdown of projects that facilitates...

  9. A Dynamic Intelligent Decision Approach to Dependency Modeling of Project Tasks in Complex Engineering System Optimization

    Directory of Open Access Journals (Sweden)

    Tinggui Chen

    2013-01-01

    Full Text Available Complex engineering system optimization usually involves multiple projects or tasks. On the one hand, dependency modeling among projects or tasks highlights structures in systems and their environments which can help to understand the implications of connectivity on different aspects of system performance and also assist in designing, optimizing, and maintaining complex systems. On the other hand, multiple projects or tasks are either happening at the same time or scheduled into a sequence in order to use common resources. In this paper, we propose a dynamic intelligent decision approach to dependency modeling of project tasks in complex engineering system optimization. The approach takes this decision process as a two-stage decision-making problem. In the first stage, a task clustering approach based on modularization is proposed so as to find out a suitable decomposition scheme for a large-scale project. In the second stage, according to the decomposition result, a discrete artificial bee colony (ABC algorithm inspired by the intelligent foraging behavior of honeybees is developed for the resource constrained multiproject scheduling problem. Finally, a certain case from an engineering design of a chemical processing system is utilized to help to understand the proposed approach.

  10. Deconstructing Engineering Education Programmes: The DEEP Project to Reform the Mechanical Engineering Curriculum

    Science.gov (United States)

    Busch-Vishniac, Ilene; Kibler, Tom; Campbell, Patricia B.; Patterson, Eann; Guillaume, Darrell; Jarosz, Jeffrey; Chassapis, Constantin; Emery, Ashley; Ellis, Glenn; Whitworth, Horace; Metz, Susan; Brainard, Suzanne; Ray, Pradosh

    2011-01-01

    The goal of the Deconstructing Engineering Education Programmes project is to revise the mechanical engineering undergraduate curriculum to make the discipline more able to attract and retain a diverse community of students. The project seeks to reduce and reorder the prerequisite structure linking courses to offer greater flexibility for…

  11. IPAD project overview

    Science.gov (United States)

    Fulton, R. E.

    1980-01-01

    To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace-Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of technology and associated software for integrated company-wide management of engineering information. The project has been underway since 1976 under the guidance of an Industry Technical Advisory Board (ITAB) composed of representatives of major engineering and computer companies and in close collaboration with the Air Force Integrated Computer-Aided Manufacturing (ICAM) program. Results to date on the IPAD project include an in-depth documentation of a representative design process for a large engineering project, the definition and design of computer-aided design software needed to support that process, and the release of prototype software to integrate selected design functions. Ongoing work concentrates on development of prototype software to manage engineering information, and initial software is nearing release.

  12. Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Project Status

    Science.gov (United States)

    Gromski, J.; Majamaki, A. N.; Chianese, S. G.; Weinstock, V. D.; Kim, T.

    2010-01-01

    NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of the Exploration Initiative, with a particular focus on the needs of the Altair Project. To meet Altair requirements, several technical challenges need to be overcome, one of which is the ability for the lunar descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202, a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two phases of pintle injector testing. The first phase of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at several power levels across the designed 10:1 throttle range. The second phase of testing was performed on a calorimeter chamber and demonstrated injector performance at various power levels (75%, 50%, 25%, 10%, and 7.5%) across the throttle range as well as chamber heat flux to show that the engine can close an expander cycle design across the throttle range. This paper provides an overview of the TR202 program. It describes the different phases of the program with the key milestones of each phase. It then shows when those milestones were met. Next, it describes how the test data was used to update the conceptual design and how the test data has created a database for deep throttling cryogenic pintle technology that is readily scaleable and can be used to again update the design once the Altair program's requirements are firm. The final section of the paper describes the path forward, which includes

  13. Project-Based Approach in a First-Year Engineering Course to Promote Project Management and Sustainability

    Directory of Open Access Journals (Sweden)

    Pooya Taheri

    2018-05-01

    Full Text Available To safeguard the environment and satisfy the energy needs of the present, without compromising the ability of future generations to do the same, sustainable energy development is urgently needed. This complex task is riddled with social, political, scientific, technical, and environmental challenges. Education is essential if we are to meet the energy demands of the world in the most sustainable manner available to us. Langara College offers a first-year engineering course that is meant to introduce students to engineering design and case studies, in addition to providing a brief glance on the history, ethics, and the different disciplines of engineering (APSC 1010. Using a project-based learning approach that promotes teamwork and research, this course uses a variety of instructional methods including lectures, class discussions, and guest appearances by experts in their fields. Introductions to technical concepts, such as soldering, 3D printing, and microcontroller, are also addressed in this course. This paper demonstrates how this, or similar courses, are optimized to raise awareness of the sustainability issues this planet is facing. Learning outcomes are evaluated using an anonymous student survey which demonstrates how the students’ project-management and presentation skills have improved.

  14. Applying systems engineering in the civil engineering industry : an analysis of systems engineering projects of a Dutch water board

    NARCIS (Netherlands)

    de Graaf, R. S. (Robin); Vromen, R. M.(Rick); Boes, J. (Hans)

    2017-01-01

    The past decade, practice and literature have shown an increasing interest in Systems Engineering (SE) in the civil engineering industry. The aim of this study is to analyse to what extent SE is applied in six civil engineering SE projects of a Dutch water board. The projects were analysed using a

  15. CENTAR gas centrifuge enrichment project: economics and engineering considerations

    International Nuclear Information System (INIS)

    Fishman, A.M.

    1977-01-01

    Description of some economic and engineering considerations of the CENTAR Associates' 3000000 SWU/yr gas centrifuge uranium enrichment plant project. The need for uranium enrichment facilities is discussed, and the advantages of using the centrifuge process rather than the presently used gaseous diffusion process are reviewed. A description of the CENTAR plant is given, highlighting the major features of the facility. Since the centiruges to be used in the plant account for approximately 50% of the capital cost of the project, the philosophy of their manufacture and procurement is discussed. Various design considerations which bear upon process economics are presented to give the reader an appreciation of the subtleties of the technology and the flexibility possible in plant design. Special attention is given to meeting the needs of the utility customer at the lowest possible cost

  16. Implementing and Assessing a Flipped Classroom Model for First-Year Engineering Design

    Science.gov (United States)

    Saterbak, Ann; Volz, Tracy; Wettergreen, Matthew

    2016-01-01

    Faculty at Rice University are creating instructional resources to support teaching first-year engineering design using a flipped classroom model. This implementation of flipped pedagogy is unusual because content-driven, lecture courses are usually targeted for flipping, not project-based design courses that already incorporate an abundance of…

  17. Diagnostic framework and health check tool for engineering and technology projects

    Directory of Open Access Journals (Sweden)

    Simon P Philbin

    2014-10-01

    Full Text Available Purpose: Development of a practitioner oriented diagnostic framework and health check tool to support the robust assessment of engineering and technology projects.Design/methodology/approach: The research is based on a literature review that draws together insights on project assessment and critical success factors to establish an integrated systems view of projects. This is extended to allow a comprehensive diagnostic framework to be developed along with a high-level health check tool that can be readily deployed on projects. The utility of the diagnostic framework and health check tool are explored through three illustrative case studies, with two from Canada and one from the United Kingdom. Findings andOriginality/value: The performance of engineering and technology projects can be viewed through a systems perspective and being a function of six sub-systems that are: process, technology, resources, impact, knowledge and culture. The diagnostic framework that is developed through this research integrates these sub-systems to provide a comprehensive assessment methodology for projects, which is linked to existing best practice for project reviews, performance management and maturity models. The case studies provide managerial insights that are related to the diagnostic framework but crucially also position the approach in the context of industrial applications for construction engineering and technology management.Research limitations/implications: The case study approach includes two case studies from the construction and facilities development sector with the third case study from the research and technology sector. Further work is required to investigate the use of the diagnostic framework and health check tool in other sectors.Practical implications: The health check tool will be of practical benefit to new projects managers that require access to a robust and convenient project review methodology for assessing the status and health of a

  18. Collaboration between Industrial Designers and Design Engineers - Comparing the Understanding of Design Intent.

    Science.gov (United States)

    Laursen, Esben Skov; Møller, Louise

    2015-01-01

    This paper describes a case study comparing the understanding of design intent between industrial designers and design engineers. The study is based on the hypothesis that it is not all aspects of the design intent that are equally difficult to share between industrial designers and design engineers in the product development process. The study builds on five semi-structured interviews, where two industrial designers and three design engineers were interviewed about different aspects of the design intent. Based on our results, there seem to be indications that the more complex and abstract elements of industrial design knowledge such as the meaning, semantics, values, emotions and social aspects of the product are less shared by the design engineers. Moreover, the results also indicate that the different aspects of the design intent are perceived separately, rather than as part of a whole by the design engineers. The connection between the different aspects of the design intent is not shared between the industrial designer and design engineer making the shared knowledge less meaningful to the design engineers. The results of this study cannot be claimed to be conclusive due to the limited empirical material. Further investigation and analytically richer data are required in order to verify and broaden the findings. More case studies have therefore been planned in order to understand the area better.

  19. Decision-Based Design Integrating Consumer Preferences into Engineering Design

    CERN Document Server

    Chen, Wei; Wassenaar, Henk Jan

    2013-01-01

    Building upon the fundamental principles of decision theory, Decision-Based Design: Integrating Consumer Preferences into Engineering Design presents an analytical approach to enterprise-driven Decision-Based Design (DBD) as a rigorous framework for decision making in engineering design.  Once the related fundamentals of decision theory, economic analysis, and econometrics modelling are established, the remaining chapters describe the entire process, the associated analytical techniques, and the design case studies for integrating consumer preference modeling into the enterprise-driven DBD framework. Methods for identifying key attributes, optimal design of human appraisal experiments, data collection, data analysis, and demand model estimation are presented and illustrated using engineering design case studies. The scope of the chapters also provides: •A rigorous framework of integrating the interests from both producer and consumers in engineering design, •Analytical techniques of consumer choice model...

  20. Engineering and design skills

    DEFF Research Database (Denmark)

    Schrøder, Anne Lise

    2006-01-01

    In various branches of society there is focus on the need for design skills and innovation potential as a means of communicating and handling constant change. In this context, the traditional idea of the engineer as a poly-technician inventing solutions by understanding the laws of nature...... concept of diagrammatic reasoning to some extent incarnates the very method of engineering and design. On this background, it is argued how the work field and techniques of the engineer and the engineering scientist could be characterized in a broader creative context of learning and communication....... This leads to considering the fundamental skills of the engineering practice as basic abilities to see the structures and dynamics of the world, to model it, and to create new solutions concerning practical as well as theoretical matters. Finally, it is assumed that the essence of engineering “bildung...

  1. Supplmental design requirements document enhanced radioactive and mixed waste storage: Phase 5, Project W-113

    International Nuclear Information System (INIS)

    Ocampo, V.P.

    1994-11-01

    This Supplemental Design Requirements Document (SDRD) is used to communicate Project W-113 specific plant design information from Westinghouse Hanford Company (WHC) to the United States Department of Energy (DOE) and the cognizant Architect Engineer (A/E). The SDRD is prepared after the completion of the project Conceptual Design report (CDR) and prior to the initiation of definitive design. Information in the SDRD serves two purposes: to convey design requirements that are too detailed for inclusion in the Functional Design Criteria (FDC) report and to serve as a means of change control for design commitments in the Title I and Title II design. The Solid Waste Retrieval Project (W-113) SDRD has been restructured from the equipment based outline used in previous SDRDs to a functional systems outline. This was done to facilitate identification of deficiencies in the information provided in the initial draft SDRD and aid design confirmation. The format and content of this SDRD adhere as closely as practicable to the requirements of WHC-CM-6-1, Standard Engineering Practices for Functional Design Criteria

  2. Engineers: Designers--No Alibis.

    Science.gov (United States)

    Stevens, Susan A. R.; Wilkins, Linda C.

    Engineering is the science, art, and business of designing and getting things done; engineers are required to make things happen through interpersonal relationships. At Monash University (Australia), a new course, Management for Engineers, was set up in 1990 to encourage a more holistic approach to the process of engineering. The course included…

  3. Evolutionary, Unconscious Design Support for the Architectural, Engineering and Construction Industry

    NARCIS (Netherlands)

    Van de Ruitenbeek, H.K.M.

    2012-01-01

    The Architecture, Engineering and Construction (AEC) industry is a complex system in which carpenters, structural designers, architects, modellers, cost estimators, planners, politicians and many others act apart together in project-specific virtual enterprises. There is a large amount of actors, an

  4. Evolutionary, Unconscious Design Support for the Architectural, Engineering and Construction Industry

    OpenAIRE

    Van de Ruitenbeek, H.K.M.

    2012-01-01

    The Architecture, Engineering and Construction (AEC) industry is a complex system in which carpenters, structural designers, architects, modellers, cost estimators, planners, politicians and many others act apart together in project-specific virtual enterprises. There is a large amount of actors, an overwhelming number of ongoing processes, distributed, decentralised organisations and a variety of projects. This complicates efficient communication and supply chain integration which, according...

  5. Documenting the Engineering Design Process

    Science.gov (United States)

    Hollers, Brent

    2017-01-01

    Documentation of ideas and the engineering design process is a critical, daily component of a professional engineer's job. While patent protection is often cited as the primary rationale for documentation, it can also benefit the engineer, the team, company, and stakeholders through creating a more rigorously designed and purposeful solution.…

  6. Engineering Encounters: Minding Design Missteps

    Science.gov (United States)

    Crismond, David; Gellert, Laura; Cain, Ryan; Wright, Shequana

    2013-01-01

    The "Next Generation Science Standards" (NGSS) (Achieve Inc. 2013) asks teachers to give engineering design equal standing with scientific inquiry in their science lessons. This article asks the following questions: What do engineering design practices look like, and how do you assess them? How similar and different is engineering design…

  7. A Project-Based Learning Approach to Programmable Logic Design and Computer Architecture

    Science.gov (United States)

    Kellett, C. M.

    2012-01-01

    This paper describes a course in programmable logic design and computer architecture as it is taught at the University of Newcastle, Australia. The course is designed around a major design project and has two supplemental assessment tasks that are also described. The context of the Computer Engineering degree program within which the course is…

  8. ANP applied to electronics engineering project selection

    International Nuclear Information System (INIS)

    Habib, M.

    2010-01-01

    Project selection in Electronics engineering is a complex decision-making process. This research paper illustrates an application of ANP/AHP process. The AHP (Analytic Hierarchy Process) is employed to break down large unstructured decision problems into manageable and measureable components. The ANP, as the general form of AHP, is powerful to deal with complex decisions where interdependence exists in a decision model. The research paper discusses the use of the ANP, a general form of Saaty's analytic Network process, as a model to evaluate the value of competing Electronics projects. The research paper concludes with a case study describing the implementation of this model at an engineering college, including data based on the actual use of the decision making model. The case study helps to verify that AHP is an effective and efficient decision-making tool. A major contribution of this work is to provide a methodology for assessing the best project. Despite a number of publications applying AHP in project selection, this is probably the first time that an attempt has been made to apply AHP in an electronics project selection in an engineering university environment. (author)

  9. Team and Project Work in Engineering Practices

    Directory of Open Access Journals (Sweden)

    Anders Buch

    2015-11-01

    Full Text Available In this article, we investigate teamwork amongst professionals in engineering consultancy companies in order to discern how teamwork affects the collaboration and work practices of the professionals. The article investigates how professional engineering practices are enacted in two engineering consultancy companies in Denmark where teamwork has been or is an ideal for organizing work. Through a practice-based lens, the article sets out to investigate, firstly, how discourses about team and project work affect engineering work practices; secondly, how technologymediated management is reconciled in teamwork practices; and thirdly, how team and project work affect engineering professionalism and collaborative work practices. A practice theoretical framework informs the analysis. Teamwork is investigated as a phenomenon enacted through the sayings, doings and relatings of practitioners in landscapes of practices and the interconnectedness of the practices is traced through the setup of specific ecologies in the sites.

  10. openSE: a Systems Engineering Framework Particularly Suited to Particle Accelerator Studies and Development Projects

    Energy Technology Data Exchange (ETDEWEB)

    Bonnal, P. [CERN; Féral, B. [CERN; Kershaw, K. [CERN; Nicquevert, B. [CERN; Baudin, M. [Ecole Normale Superieure; Lari, L. [ESS, Lund; Le Cardinal, J. [Chatenay-Malabry, Ecole Centrale

    2016-07-15

    Particle accelerator projects share many characteristics with industrial projects. However, experience has shown that best practice of industrial project management is not always well suited to particle accelerator projects. Major differences include the number and complexity of technologies involved, the importance of collaborative work, development phases that can last more than a decade, and the importance of telerobotics and remote handling to address future preventive and corrective maintenance requirements due to induced radioactivity, to cite just a few. The openSE framework it is a systems engineering and project management framework specifically designed for scientific facilities’ systems and equipment studies and development projects. Best practices in project management, in systems and requirements engineering, in telerobotics and remote handling and in radiation safety management were used as sources of inspiration, together with analysis of current practices surveyed at CERN, GSI and ESS.

  11. Large-scale visualization projects for teaching software engineering.

    Science.gov (United States)

    Müller, Christoph; Reina, Guido; Burch, Michael; Weiskopf, Daniel

    2012-01-01

    The University of Stuttgart's software engineering major complements the traditional computer science major with more practice-oriented education. Two-semester software projects in various application areas offered by the university's different computer science institutes are a successful building block in the curriculum. With this realistic, complex project setting, students experience the practice of software engineering, including software development processes, technologies, and soft skills. In particular, visualization-based projects are popular with students. Such projects offer them the opportunity to gain profound knowledge that would hardly be possible with only regular lectures and homework assignments.

  12. Manufacturing and Design Engineering Students St. Mary's Hospital, Phoenix Park.

    OpenAIRE

    Mitchell, Leah

    2012-01-01

    Poster with details of project to improve ease of movement for Kirton Stirling chairs in St. Mary's Hospital, Phoenix Park, Dublin. Third year students in the B Eng (Honours) Manufacturing and Design Engineering course at Bolton St. completed a project in conjunction with St. Mary‟s Hospital, Phoenix Park. The staff in St Mary‟s were experiencing difficulty in moving the Kirton Stirling chairs (pictured above). These chairs are used to transport elderly patients from one location to another. ...

  13. Optimized application of systems engineering to nuclear waste repository projects

    International Nuclear Information System (INIS)

    Miskimin, P.A.; Shepard, M.

    1986-01-01

    The purpose of this presentation is to describe a fully optimized application of systems engineering methods and philosophy to the management of a large nuclear waste repository project. Knowledge gained from actual experience with the use of the systems approach on two repository projects is incorporated in the material presented. The projects are currently evaluating the isolation performance of different geologic settings and are in different phases of maturity. Systems engineering methods were applied by the principal author at the Waste Isolation Pilot Plant (WIPP) in the form of a functional analysis. At the Basalt Waste Isolation Project (BWIP), the authors assisted the intergrating contractor with the development and application of systems engineering methods. Based on this experience and that acquired from other waste management projects, an optimized plan for applying systems engineering techniques was developed. The plan encompasses the following aspects: project organization, developing and defining requirements, assigning work responsibilities, evaluating system performance, quality assurance, controlling changes, enhancing licensability, optimizing project performance, and addressing regulatory issues. This information is presented in the form of a roadmap for the practical application of system engineering principles to a nuclear waste repository project

  14. Sludge Treatment Project Engineered Container Retrieval And Transfer System Prelminary Design Hazard And Operability Study

    International Nuclear Information System (INIS)

    Carro, C.A.

    2011-01-01

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m 3 of KW Basin floor and pit sludge, 18.4 m 3 of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m 3 of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected. The sand

  15. Designing “Theory of Machines and Mechanisms” course on Project Based Learning approach

    DEFF Research Database (Denmark)

    Shinde, Vikas

    2013-01-01

    by the industry and the learning outcomes specified by the National Board of Accreditation (NBA), India; this course is restructured on Project Based Learning approach. A mini project is designed to suit course objectives. An objective of this paper is to discuss the rationale of this course design......Theory of Machines and Mechanisms course is one of the essential courses of Mechanical Engineering undergraduate curriculum practiced at Indian Institute. Previously, this course was taught by traditional instruction based pedagogy. In order to achieve profession specific skills demanded...... and the process followed to design a project which meets diverse objectives....

  16. Engineering design: A cognitive process approach

    Science.gov (United States)

    Strimel, Greg Joseph

    The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the

  17. Spent Nuclear Fuel (SNF) Project Design Verification and Validation Process

    International Nuclear Information System (INIS)

    OLGUIN, L.J.

    2000-01-01

    This document provides a description of design verification and validation activities implemented by the Spent Nuclear Fuel (SNF) Project. During the execution of early design verification, a management assessment (Bergman, 1999) and external assessments on configuration management (Augustenburg, 1999) and testing (Loscoe, 2000) were conducted and identified potential uncertainties in the verification process. This led the SNF Chief Engineer to implement corrective actions to improve process and design products. This included Design Verification Reports (DVRs) for each subproject, validation assessments for testing, and verification of the safety function of systems and components identified in the Safety Equipment List to ensure that the design outputs were compliant with the SNF Technical Requirements. Although some activities are still in progress, the results of the DVR and associated validation assessments indicate that Project requirements for design verification are being effectively implemented. These results have been documented in subproject-specific technical documents (Table 2). Identified punch-list items are being dispositioned by the Project. As these remaining items are closed, the technical reports (Table 2) will be revised and reissued to document the results of this work

  18. A proposed framework for conducting pollution prevention design assessments (P2DAs) on U.S. Department of Energy design projects

    International Nuclear Information System (INIS)

    Dorsey, J.A.

    1995-03-01

    The purpose of this manual is to provide a framework for project managers, engineers, and designers to integrate pollution prevention principles and features into DOE design projects. The framework suggested is referred to as the pollution prevention design assessment (P2DA). The P2DA is based on DOE's method for conducting pollution prevention opportunity assessments (PPOAs) on existing waste-generating operations, but the P2DA is modified because the facility or process it assesses does not physically exist during design. Before the P2DA framework is introduced in the manual, recommendations for establishing the P2DA team and budget are provided. Specific pollution prevention requirements and opportunities for each design stage as delineated in DOE Order 4700.1 Project Management System are also discussed and a sample format for drafting a P2DA report is provided in the appendix. The scope of this manual includes not only the P2DA framework, but also a background discussion of pollution prevention and related topics; the regulatory requirements mandating design for pollution prevention; the benefits and barriers of designing for pollution prevention; and the impact that pollution prevention and related environmental avoidance concepts have had on the engineering profession

  19. Design of a 2000 lbf LOX/LCH4 Throttleable Rocket Engine for a Vertical Lander

    Science.gov (United States)

    Lopez, Israel

    Liquid oxygen (LOX) and liquid methane (LCH4) has been recognized as an attractive rocket propellant combination because of its in-situ resource utilization (ISRU) capabilities, namely in Mars. ISRU would allow launch vehicles to carry greater payloads and promote missions to Mars. This has led to an increasing interest to develop spacecraft technologies that employ this propellant combination. The UTEP Center for Space Exploration and Technology Research (cSETR) has focused part of its research efforts to developing LOX/LCH4 systems. One of those projects includes the development of a vertical takeoff and landing vehicle called JANUS. This vehicle will employ a LOX/LCH 4 propulsion system. The main propulsion engine is called CROME-X and is currently being developed as part of this project. This rocket engine will employ LOX/LCH4 propellants and is intended to operate from 2000-500 lbf thrust range. This thesis describes the design and development of CROME-X. Specifically, it describes the design process for the main engine components, the design criteria for each, and plans for future engine development.

  20. Generation After Next Propulsor Research: Robust Design for Embedded Engine Systems

    Science.gov (United States)

    Arend, David J.; Tillman, Gregory; O'Brien, Walter F.

    2012-01-01

    The National Aeronautics and Space Administration, United Technologies Research Center and Virginia Polytechnic and State University have contracted to pursue multi-disciplinary research into boundary layer ingesting (BLI) propulsors for generation after next environmentally responsible subsonic fixed wing aircraft. This Robust Design for Embedded Engine Systems project first conducted a high-level vehicle system study based on a large commercial transport class hybrid wing body aircraft, which determined that a 3 to 5 percent reduction in fuel burn could be achieved over a 7,500 nanometer mission. Both pylon-mounted baseline and BLI propulsion systems were based on a low-pressure-ratio fan (1.35) in an ultra-high-bypass ratio engine (16), consistent with the next generation of advanced commercial turbofans. An optimized, coupled BLI inlet and fan system was subsequently designed to achieve performance targets identified in the system study. The resulting system possesses an inlet with total pressure losses less than 0.5%, and a fan stage with an efficiency debit of less than 1.5 percent relative to the pylon-mounted, clean-inflow baseline. The subject research project has identified tools and methodologies necessary for the design of next-generation, highly-airframe-integrated propulsion systems. These tools will be validated in future large-scale testing of the BLI inlet / fan system in NASA's 8 foot x 6 foot transonic wind tunnel. In addition, fan unsteady response to screen-generated total pressure distortion is being characterized experimentally in a JT15D engine test rig. These data will document engine sensitivities to distortion magnitude and spatial distribution, providing early insight into key physical processes that will control BLI propulsor design.

  1. Educating engineering practice in six design projects in a row

    NARCIS (Netherlands)

    Kamp, A.

    2013-01-01

    Tomorrow’s engineers are required to have a good balance between deep working knowledge of engineering sciences and engineering skills. In the Bachelor in Aerospace Engineering at TU Delft, students are educated to master these competences so that they are ready to engineer when they graduate. The

  2. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  3. Integrating design and communication in engineering education: a collaboration between Northwestern University and the Rehabilitation Institute of Chicago.

    Science.gov (United States)

    Hirsch, Penny L; Yarnoff, Charles

    2011-01-01

    The required course for freshmen in Northwestern University's engineering school - a 2-quarter sequence called Engineering Design and Communication (EDC) - is noteworthy not only for its project-based focus on user-centered design, but also for its innovative integrated approach to teaching communication, teamwork, and ethics. Thanks to the collaboration between EDC faculty and staff at the Rehabilitation Institute of Chicago, EDC students, at the beginning of their education, experience the excitement of solving problems for real clients and users. At the same time, these authentic design projects offer an ideal setting for teaching students how to communicate effectively to different audiences and perform productively as team members and future leaders in engineering.

  4. Implementing ergonomics in large-scale engineering design. Communicating and negotiating requirements in an organizational context

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, Ingrid Anette

    1997-12-31

    This thesis investigates under what conditions ergonomic criteria are being adhered to in engineering design. Specifically, the thesis discusses (1) the ergonomic criteria implementation process, (2) designer recognition of ergonomic requirements and the organization of ergonomics, (3) issues important for the implementation of ergonomic requirements, (4) how different means for experience transfer in design and operation are evaluated by the designers, (5) how designers ensure usability of offshore work places, and (6) how project members experience and cope with the large amount of documentation in large-scale engineering. 84 refs., 11 figs., 18 tabs.

  5. Protein design for pathway engineering.

    Science.gov (United States)

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Information Technology in Engineering and Project Management

    Directory of Open Access Journals (Sweden)

    Chien-Ho Ko

    2017-01-01

    Full Text Available Information Technology (IT can be regarded as the use of computers to store, analyze, and manipulate data (Daintith, 2009. With the rapid development of personal computers, IT has been widely applied in nearly every field (Davenport, 2013. This issue presents five papers covering engineering and project management, three of which focus on the application of IT to solve engineering and project management issues, while one presents research into public private partnerships, and another into cash flow forecasting.

  7. Transport fire safety engineering in the European Union - project TRANSFEU

    Directory of Open Access Journals (Sweden)

    Jolanta Maria RADZISZEWSKA-WOLIŃSKA

    2011-01-01

    Full Text Available Article presents European Research project (of FP7-SST-2008-RTD-1 for Surface transportation TRANSFEU. Projects undertakes to deliver both a reliable toxicity measurement methodology and a holistic fire safety approach for all kind of surface transport. It bases on a harmonized Fire Safety Engineering methodology which link passive fire security with active fire security mode. This all embracing system is the key to attain optimum design solutions in respect to fire safety objectives as an alternative to the prescriptive approach. It will help in the development of innovative solutions (design and products used for the building of the surface transport which will better respect the environment.In order to reach these objectives new toxicity measurement methodology and related classification of materials, new numerical fire simulation tools, fire test methodology (laboratory and full scale and a decisive tool to optimize or explore new design in accordance to the fire safety requirements will be developed.

  8. International Linear Collider Project and civil engineering technology

    International Nuclear Information System (INIS)

    2007-01-01

    The objectives, activities and members of the Linear Collider Subcommittee of Japan Society of Civil Engineers (LC subcommittee) are described. The LC subcommittee consisted of five working groups such as the working group on planning and project and management, working group on geological survey, test, and environmental design, working group on structural and environmental design, working group on construction and maintenance and working group on information investigation of ILC. The policy of activities, work schedule, and report of each working group are described. Construction of ILC research facilities, standard cross section of tunnel, measurement results of long-term displacement of large underground cavities, the tunnel damages by earthquake in the south part of Hyogo prefecture in Japan, TBM method, collection of information are reported. (S.Y.)

  9. Concentrating Solar Power Projects - Dish/Engine Projects | Concentrating

    Science.gov (United States)

    Solar Power | NREL Dish/Engine Projects Photo of several flat, octagonal panels arranged together to form a dish-shaped structure. The receiver is supported above the panels by an arm-like of the panels. These dish/Stirling units are being tested at Sandia National Laboratories in

  10. Developing Design and Management Skills for Senior Industrial Engineering Students

    Science.gov (United States)

    Urbanic, R. J.

    2011-01-01

    In Canadian engineering institutions, a significant design experience must occur in the final year of study. In the Department of Industrial and Manufacturing Systems at the University of Windsor, unsolved, open ended projects sponsored by industrial partners from a variety of sectors are provided to the student teams in order for them to apply…

  11. Mechanical design engineering handbook

    CERN Document Server

    Childs, Peter R N

    2013-01-01

    Mechanical Design Engineering Handbook is a straight-talking and forward-thinking reference covering the design, specification, selection, use and integration of machine elements fundamental to a wide range of engineering applications. Develop or refresh your mechanical design skills in the areas of bearings, shafts, gears, seals, belts and chains, clutches and brakes, springs, fasteners, pneumatics and hydraulics, amongst other core mechanical elements, and dip in for principles, data and calculations as needed to inform and evaluate your on-the-job decisions. Covering the full spectrum

  12. Implementing Large Projects in Software Engineering Courses

    Science.gov (United States)

    Coppit, David

    2006-01-01

    In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that…

  13. Learning Based on the Project Entitled "Design and Construction of a Wooden Bridge"

    Science.gov (United States)

    Barris, Cristina; Torres, Lluís; Simon, Enric

    2016-01-01

    This article presents the results of a case involving the application of project-based learning carried out with students in the Mechanical Engineering degree program at the University of Girona. The project, entitled "Design and construction of a wooden bridge", was conducted at the Polytechnic School in the third-year Structures…

  14. Designing the owner's nuclear project management organization

    International Nuclear Information System (INIS)

    Cooke, T.C.; Peck, B.H.

    1976-01-01

    Few decisions are more important to an electric utility company than the one to build a nuclear generating facility. This decision will require continuous management attention to the nuclear project for periods of up to ten years on the part of the utility. Effective management of such a large, complex project requires an owner's organization skilled in such areas as engineering, heavy construction, procurement, and project control. The paper describes a method for designing the owner's nuclear organization. Factors considered include the identification of milestone events and phases of the project and identification of key organizational groups and their degree of involvement. A series of important decision milestones is also identified for structuring the organization. A step-by-step analysis involving a set of evaluation criteria results in a recommended organization that can be staffed by the owner according to the degree of involvement desired. This technique of analysis could also be performed using different evaluation criteria resulting in other options for the owner's organization

  15. Issues and measures in the design process from the perspective of risk management of construction projects. study of power plant construction projects accident cases

    International Nuclear Information System (INIS)

    Iwahara, Hirohiko; Shiraki, Wataru; Inomo, Hitoshi; Hasegawa, Syuichi

    2015-01-01

    Construction of power plants, foundation work, consisting of a wide variety of construction work, such as plant equipment work. And, civil engineering, technician electrical such as different engineering field, is a comprehensive construction project that works for the design conditions of the structure. However, if the cooperation design conditions is not sufficient, as a construction project, the optimal structures may not be said to have been built. As a result, total cost or increased, including the initial cost of the end construction projects, it is be a cause of the accident. Previous studies, plant equipment construction, is related to safety management and risk of foundation work such as individual construction were many. In this paper, as an example the power plant construction, and performs the following discussion from the point of view of risk management of large-scale construction projects that these individual construction work together with each other. The importance of design conditions cooperation, (1) 'Challenges and countermeasures of ordering method of construction projects', to verify from the (2) 'actually happened substation foundation displacement accident'. And on whether or not the construction project order institutions can be involved in the design from the site preparation stage, we study (3) for 'construction work scope and risk control the construction project ordering institutions to implement' the risk to the natural disaster (earthquake). From these, we describe the challenges and measures in the construction project of the design process. (author)

  16. Engineering design of vertical test stand cryostat

    International Nuclear Information System (INIS)

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.

    2011-01-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN 2 ) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B and PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface 2 shield has been performed to check the effectiveness of LN 2 cooling and for compliance with ASME piping code allowable stresses.

  17. Renovation of a Mechanical Engineering Senior Design Class to an Industry-Tied and Team-Oriented Course

    Science.gov (United States)

    Liu, Yucheng

    2017-01-01

    In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became…

  18. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    Science.gov (United States)

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  19. Airborne remote sensors applied to engineering geology and civil works design investigations

    Science.gov (United States)

    Gelnett, R. H.

    1975-01-01

    The usefulness of various airborne remote sensing systems in the detection and identification of regional and specific geologic structural features that may affect the design and location of engineering structures on major civil works projects is evaluated. The Butler Valley Dam and Blue Lake Project in northern California was selected as a demonstration site. Findings derived from the interpretation of various kinds of imagery used are given.

  20. Project-based learning in a high school engineering program: A case study

    Science.gov (United States)

    France, Todd

    Generating greater student interest in science, technology, engineering, and mathematics (STEM) has been a major topic of discussion among educators, policymakers, and researchers in recent years, as increasing the number of graduates in these fields is widely considered a necessary step for sustaining the progress of today's society. Fostering this interest must occur before students reach college, and substantial efforts have been made to engage students at K-12 levels in STEM-focused learning. Attempts to involve students in engineering, a vital and growing profession, yet one in which students often have little experience, have frequently emphasized the design and construction of physical products, a practice supported by project-based learning. This thesis examines the environment of an engineering high school course that employed the project-based model. The course is part of a dedicated curricular program which aims to provide students with positive experiences in engineering-related activities while also preparing them for the rigors of college. A case study was conducted to provide insight into the benefits and drawbacks of the learning model. The study's outcomes are intended to provide guidance to educators participating in the design and/or facilitation of project-based activities, particularly those involved with engineering education. The research was performed using a qualitative approach. Long-term engagement with course participants was deemed critical to gaining a comprehensive understanding of the interactions and events that transpired on a daily basis. Nine educators involved with the program were interviewed, as were nineteen of the course's thirty-nine students. A wealth of other relevant data -- including surveys, field notes, and evaluations of student work -- was compiled for analysis as well. The study findings suggest that experiences in problem solving and teamwork were the central benefits of the course. Limitations existed due to a

  1. RFID Student Educational Experiences at the UNT College of Engineering: A Sequential Approach to Creating a Project-Based RFID Course

    Science.gov (United States)

    Vaidyanathan, V. V.; Varanasi, M. R.; Kougianos, E.; Wang, Shuping; Raman, H.

    2009-01-01

    This paper describes radio frequency identification (RFID) projects, designed and implemented by students in the College of Engineering at the University of North Texas, as part of their senior-design project requirement. The paper also describes an RFID-based project implemented at Rice Middle School in Plano, TX, which went on to win multiple…

  2. Tailoring Enterprise Systems Engineering Policy for Project Scale and Complexity

    Science.gov (United States)

    Cox, Renee I.; Thomas, L. Dale

    2014-01-01

    Space systems are characterized by varying degrees of scale and complexity. Accordingly, cost-effective implementation of systems engineering also varies depending on scale and complexity. Recognizing that systems engineering and integration happen everywhere and at all levels of a given system and that the life cycle is an integrated process necessary to mature a design, the National Aeronautic and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) has developed a suite of customized implementation approaches based on project scale and complexity. While it may be argued that a top-level system engineering process is common to and indeed desirable across an enterprise for all space systems, implementation of that top-level process and the associated products developed as a result differ from system to system. The implementation approaches used for developing a scientific instrument necessarily differ from those used for a space station. .

  3. Development of a virtual tool for learning basic organisation and planning in rural engineering projects

    Science.gov (United States)

    Redel-Macías, María Dolores; Castillo, Carlos; Aguilar Porro, Cristina; Polo, María; Taguas, Encarnación V.

    2014-09-01

    This paper presents a virtual lab for the contents of an Engineering project, for designing an agro-industrial building, which is also useful for a range of different transversal courses in Engineering sciences. The aims of this tool are to analyse the most important contents of a project-document (calculation, regulations, drawings and budgets), as well as their relationship with the activities which make up the work and the schedule. The design criteria we considered were: its online applications and their compatibility with Moodle; the inclusion of different learning approaches, such as exploratory learning and inquiry-based learning; its interactivity, and the use of multimedia elements for visualisation and direct analysis on material common to Engineering subjects. The students' perceptions of the improvements brought by the virtual lab were analysed statistically through a series of questions over two academic years. The results of the questionnaires suggested that most of those who had used the e-learning tool valued positively its overall suitability for reaching the objectives in their subject as well as the way it improved the working methodology. The practical knowledge acquired by the students was also highly valued. In addition, the lack of constraints commonly related to field trips (expenses, time and complexity) illustrates the utility of self-access learning tools in key transversal disciplines such as Engineering projects.

  4. Development of an Industrial Engineering Project

    Science.gov (United States)

    Moreno, Lorenzo; Gonzalez, Evelio; Acosta, Leopoldo; Toledo, Jonay; Marichal, Nicolas; Hamilton, Alberto; Sigut, Marta; Mendez, J. Albino; Hernandez, Sergio; Torres, Santiago

    2005-01-01

    This paper presents a teaching strategy of the scheduling and developmental phase of an Industrial Engineering computer project. It is based on a real project which has been carried out by our department in collaboration with a local company. The classroom setting provides an environment where students can experience firsthand all phases of the…

  5. New Project System for Undergraduate Electronic Engineering

    Science.gov (United States)

    Chiu, Dirk M.; Chiu, Shen Y.

    2005-01-01

    A new approach to projects for undergraduate electronic engineering in an Australian university has been applied successfully for over 10 years. This approach has a number of projects running over three year period. Feedback from past graduates and their managers has confirmed that these projects train the students well, giving them the ability…

  6. System design projects for undergraduate design education

    Science.gov (United States)

    Batill, S. M.; Pinkelman, J.

    1993-01-01

    Design education has received considerable in the recent past. This paper is intended to address one aspect of undergraduate design education and that is the selection and development of the design project for a capstone design course. Specific goals for a capstone design course are presented and their influence on the project selection are discussed. The evolution of a series of projects based upon the design of remotely piloted aircraft is presented along with students' perspective on the capstone experience.

  7. Engineering test facility design center

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This section describes the status of this design

  8. Developing Engineering and Science Process Skills Using Design Software in an Elementary Education

    Science.gov (United States)

    Fusco, Christopher

    This paper examines the development of process skills through an engineering design approach to instruction in an elementary lesson that combines Science, Technology, Engineering, and Math (STEM). The study took place with 25 fifth graders in a public, suburban school district. Students worked in groups of five to design and construct model bridges based on research involving bridge building design software. The assessment was framed around individual student success as well as overall group processing skills. These skills were assessed through an engineering design packet rubric (student work), student surveys of learning gains, observation field notes, and pre- and post-assessment data. The results indicate that students can successfully utilize design software to inform constructions of model bridges, develop science process skills through problem based learning, and understand academic concepts through a design project. The final result of this study shows that design engineering is effective for developing cooperative learning skills. The study suggests that an engineering program offered as an elective or as part of the mandatory curriculum could be beneficial for developing students' critical thinking, inter- and intra-personal skills, along with an increased their understanding and awareness for scientific phenomena. In conclusion, combining a design approach to instruction with STEM can increase efficiency in these areas, generate meaningful learning, and influence student attitudes throughout their education.

  9. Definitive design status of the SP-100 Ground Engineering System Test Site

    International Nuclear Information System (INIS)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper

  10. Definitive design status of the SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper.

  11. Sustainable Product Design, Engineering and Management Education for Industrial Design Engineering

    NARCIS (Netherlands)

    Boks, C.; Diehl, J.C.; Wever, R.

    2006-01-01

    Developments in the field of sustainable product design are manifold, which means that education in this field is rapidly evolving as well. In this paper, the continuously evolving portfolio of courses offered at Delft University of Technology’s Industrial Design Engineering faculty is

  12. Hydrostatic Pressure Project: Linked-Class Problem-Based Learning in Engineering

    Science.gov (United States)

    Davis, Freddie J.; Lockwood-Cooke, Pamela; Hunt, Emily M.

    2011-01-01

    Over the last few years, WTAMU Mathematics, Engineering and Science faculty has used interdisciplinary projects as the basis for implementation of a linked-class approach to Problem-Based Learning (PBL). A project that has significant relevance to engineering statics, fluid mechanics, and calculus is the Hydrostatic Pressure Project. This project…

  13. Cummins Engine Company B5.9 Propane Engine Development, Certification, and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    The ADEPT Group, Inc. (Los Angeles, California)

    1998-12-18

    The objective of this project was to successfuly develop and certify an LPG-dedicated medium-duty original equipment manufacturer (OEM) engine that could be put into production. The engine was launched into production in 1994, and more than 800 B5.9G engines are now in service in the United States and abroad. This engine is now offered by more than 30 bus and truck OEMs.

  14. The MYRRHA ADS Project in Belgium Enters the Front End Engineering Phase

    International Nuclear Information System (INIS)

    De Bruyn, D.; Ait Abderrahim, H.; Baeten, P.; Leysen, P.

    2015-01-01

    The MYRRHA project started in 1998 by SCK.CEN. MYRRHA is a MTR, based on the ADS concept, for material and fuel research, for studying the feasibility of transmutation of minor actinides and long-lived fission products arising from radioactive waste reprocessing and finally for demonstrating at a reasonable power scale the principle of the ADS. The MYRRHA design has progressed through various framework programmes of the European Commission in the context of Partitioning and Transmutation. The design has now entered into the Front End Engineering Phase (FEED) covering the period 2012- 2015. The engineering company, which will handle this phase, has been selected and the works have begun in the late 2013. In the meantime we have made some refinements in both primary systems and plant layout, including reactor building design. In this paper, we present the most recent developments of the MYRRHA design in terms of reactor building and plant layout as existing today. (authors)

  15. The Investigation on Using Unity3D Game Engine in Urban Design Study

    Directory of Open Access Journals (Sweden)

    Aswin Indraprastha

    2009-05-01

    Full Text Available Developing a virtual 3D environment by using game engine is a strategy to incorporate various multimedia data into one platform. The characteristic of game engine that is preinstalled with interactive and navigation tools allows users to explore and engage with the game objects. However, most CAD and GIS applications are not equipped with 3D tools and navigation systems intended to the user experience. In particular, 3D game engines provide standard 3D navigation tools as well as any programmable view to create engaging navigation thorough the virtual environment. By using a game engine, it is possible to create other interaction such as object manipulation, non playing character (NPC interaction with player and/or environment. We conducted analysis on previous game engines and experiment on urban design project with Unity3D game engine for visualization and interactivity. At the end, we present the advantages and limitations using game technology as visual representation tool for architecture and urban design studies.

  16. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    Science.gov (United States)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  17. Current status of International Linear Collider Project in Technical Design stage and activities of Japan Society of Civil Engineers

    International Nuclear Information System (INIS)

    2008-01-01

    In order to invite the International Linear Collider (ILC) in Japan, Japan Society of Civil Engineers (JSCE) established the Linear Collider Subcommittee of JSCE (LC subcommittee) in April, 2006. Abstracts of the activities and objects of LC subcommittee are stated. The LC subcommittee consists of five working groups. Each working group investigated the previous reports of 2006 and 2007 and reported some important notices. The working group on planning and project and management reported the site conditions of Japan, tunnels and facilities. The working group on geological survey, test and environmental design stated the earthquake, fault, ground water, water quality, long-term displacement and survey methods. The working group on structural and environmental design described the tunnel design in fault and fracture zone, hollow, beam tunnel and service tunnel. The working group on construction and maintenance reported some examples of troubles in granite zone, survey for steering, shaft and inclined shaft. The working group on information investigation of ILC described analysis of reference materials, construction of LHC, beam tunnel and some points under consideration. (S.Y.)

  18. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY

    Energy Technology Data Exchange (ETDEWEB)

    CARRO CA

    2011-07-15

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is

  19. Engineering Design Thinking

    Science.gov (United States)

    Lammi, Matthew; Becker, Kurt

    2013-01-01

    Engineering design thinking is "a complex cognitive process" including divergence-convergence, a systems perspective, ambiguity, and collaboration (Dym, Agogino, Eris, Frey, & Leifer, 2005, p. 104). Design is often complex, involving multiple levels of interacting components within a system that may be nested within or connected to other systems.…

  20. Engineering design skills coverage in K-12 engineering program curriculum materials in the USA

    Science.gov (United States)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-11-01

    The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.

  1. Iteration in Early-Elementary Engineering Design

    Science.gov (United States)

    McFarland Kendall, Amber Leigh

    2017-01-01

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect…

  2. [An object-oriented intelligent engineering design approach for lake pollution control].

    Science.gov (United States)

    Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng

    2013-03-01

    Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.

  3. 34 CFR 637.41 - What are the cost restrictions on design project grants?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What are the cost restrictions on design project grants...) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Conditions Must be Met by a Grantee? § 637.41 What are the cost restrictions on design...

  4. Mechanical Engineering Practice – using a simple Stirling engine as case

    DEFF Research Database (Denmark)

    Meyer, Knud Erik

    2011-01-01

    The first technical course that students in mechanical engineering take at the Technical University of Denmark is called “Mechanical Engineering Practice”. We have used a simple Stirling engine as a design-implement project. Students were asked to design and build a heat engine using materials....... The Stirling engine worked well in the drawing assignments. The Stirling engine also served as illustration of coming courses in mechanical engineering. The resulting engines had large variations in their design and most groups succeeded in building a functioning engine. However, achieved efficiencies were...... obtained by their own means and were competing on achieving the highest efficiency. We added an extra dimension to the project by making detailed measurements of the pressure variation to check simple thermodynamic models of the engine. The course had integrated lessons in sketching and technical drawing...

  5. Procurement of Architectural and Engineering Services for Sustainable Buildings: A Guide for Federal Project Managers

    Energy Technology Data Exchange (ETDEWEB)

    2004-06-01

    This guide was prepared to be a resource for federal construction project managers and others who want to integrate the principles of sustainable design into the procurement of professional building design and consulting services. To economize on energy costs and improve the safety, comfort, and health of building occupants, building design teams can incorporate daylighting, energy efficiency, renewable energy, and passive solar design into all projects in which these elements are technically and economically feasible. The information presented here will help project leaders begin the process and manage the inclusion of sustainable design in the procurement process. The section on establishing selection criteria contains key elements to consider before selecting an architectural and engineering (A/E) firm. The section on preparing the statement of work discusses the broad spectrum of sustainable design services that an A/E firm can provide. Several helpful checklists are included.

  6. External Economies Evaluation of Wind Power Engineering Project Based on Analytic Hierarchy Process and Matter-Element Extension Model

    Directory of Open Access Journals (Sweden)

    Hong-ze Li

    2013-01-01

    Full Text Available The external economies of wind power engineering project may affect the operational efficiency of wind power enterprises and sustainable development of wind power industry. In order to ensure that the wind power engineering project is constructed and developed in a scientific manner, a reasonable external economies evaluation needs to be performed. Considering the interaction relationship of the evaluation indices and the ambiguity and uncertainty inherent, a hybrid model of external economies evaluation designed to be applied to wind power engineering project was put forward based on the analytic hierarchy process (AHP and matter-element extension model in this paper. The AHP was used to determine the weights of indices, and the matter-element extension model was used to deduce final ranking. Taking a wind power engineering project in Inner Mongolia city as an example, the external economies evaluation is performed by employing this hybrid model. The result shows that the external economies of this wind power engineering project are belonged to the “strongest” level, and “the degree of increasing region GDP,” “the degree of reducing pollution gas emissions,” and “the degree of energy conservation” are the sensitive indices.

  7. Multidisciplinary systems engineering architecting the design process

    CERN Document Server

    Crowder, James A; Demijohn, Russell

    2016-01-01

    This book presents Systems Engineering from a modern, multidisciplinary engineering approach, providing the understanding that all aspects of systems design, systems, software, test, security, maintenance and the full life-cycle must be factored in to any large-scale system design; up front, not factored in later. It lays out a step-by-step approach to systems-of-systems architectural design, describing in detail the documentation flow throughout the systems engineering design process. It provides a straightforward look and the entire systems engineering process, providing realistic case studies, examples, and design problems that will enable students to gain a firm grasp on the fundamentals of modern systems engineering.  Included is a comprehensive design problem that weaves throughout the entire text book, concluding with a complete top-level systems architecture for a real-world design problem.

  8. Advanced engineering design program at the University of Illinois for the 1987-1988 academic year

    Science.gov (United States)

    Sivier, Kenneth R.; Lembeck, Michael F.

    1988-01-01

    The participation of the University of Illinois at Urbana-Champaign in the NASA/USRA Universities Advanced Engineering Design Program (Space) is reviewed for the 1987 to 88 academic year. The University's design project was the Manned Marsplane and Delivery System. In the spring of 1988 semester, 107 students were enrolled in the Aeronautical and Astronautical Engineering Departments' undergraduate Aerospace Vehicle Design course. These students were divided into an aircraft section (responsible for the Marsplane design), and a spacecraft section (responsible for the Delivery System Design). The design results are presented in Final Design Reports, copies of which are attached. In addition, five students presented a summary of the design results at the Program's Summer Conference.

  9. Project KEWL: Kinect Engineering With Learning

    Science.gov (United States)

    Norris, Jeff; Goza, Sharon; Shores, David

    2011-01-01

    Project KEWL is a joint project between NASA/JPL and NASA/JSC to stimulate interest of children in Science, Technology, Engineering and Math (STEM) and bring the NASA space exploration experience to the classroom, museum and ultimately the living room. Using the Kinect game controller KEWL allows children to engage in NASA s missions in a fundamentally new way. KEWL allows children to experiment with gravity on Mars and the Moon; navigate through the International Space Station; fix a torn solar array on the ISS; drive a robot on Mars; visit an Asteroid; learn about the differences in gravity on different planets and control Robonaut 2 using their body as the input device. Project KEWL complements NASA s outreach investments in television, mobile platforms and the web by engaging the public through the rapidly expanding medium of console gaming. In 2008, 97% of teenagers played video games and 86% played on a home gaming console. (source: http://pewresearch.org/pubs/953/) As of March 2011, there have been more than 10 million Kinects sold. (source: http://www.itproportal.com/2011/03/10/kinect-record-breaking-sales-figures-top-10-million/) Project KEWL interacts with children on a platform on which they spend much of their time and teaches them information about NASA while they are having fun. Project KEWL progressed from completely custom C++ code written in house to using a commercial game engine. The art work and 3D geometry models come from existing engineering work or are created by the KEWL development team. Six different KEWL applications have been demonstrated at nine different venues including schools, museums, conferences, and NASA outreach events. These demonstrations have allowed the developers the chance to interact with players and observe the gameplay mechanics in action. The lessons learned were then incorporated into the subsequent versions of the applications.

  10. Making room in engineering design practices

    DEFF Research Database (Denmark)

    Petersen, Rikke Premer; Buch, Anders

    2016-01-01

    This article aims to explore the challenges that occur from a practice perspective when a new approach to engineering design enters an existing ecology of professional practices in a workplace. Using four empirical episodes, the article illustrates a concrete effort to challenge what counts...... as ‘real engineering’ or what is recognized as part of the engineering expertise. Using an ethnographic, case-studybased research design the article documentshowholistically minded professionals do engineering design ‘by other means’, in ways that strive to promote user experience approaches. The article...... aims to show how engineering practices do not exist in isolation within an organization and how ambitions to transform professional engineering work practices require a change in the very ecologies of practices that exist across an organization...

  11. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  12. Teaching Power Electronics with a Design-Oriented, Project-Based Learning Method at the Technical University of Denmark

    Science.gov (United States)

    Zhang, Zhe; Hansen, Claus Thorp; Andersen, Michael A. E.

    2016-01-01

    Power electronics is a fast-developing technology within the electrical engineering field. This paper presents the results and experiences gained from applying design-oriented project-based learning to switch-mode power supply design in a power electronics course at the Technical University of Denmark (DTU). Project-based learning (PBL) is known…

  13. Experiences with Designing a Team Project Module for Teaching Teamwork to Students

    OpenAIRE

    Bieliková, Mária

    2005-01-01

    Team projects play an important role in the education of engineers. This paper describes a team project module (called Team project) that is part of a postgraduate course in Informatics. Its main objective is to give students a hands-on experience with different aspects of working in team on a problem. We discuss several aspects that should be considered in designing such module as a part of a curriculum: team formation, team communication, team assessment, problem statement and assignment, d...

  14. Stirling engine design manual, 2nd edition

    Science.gov (United States)

    Martini, W. R.

    1983-01-01

    This manual is intended to serve as an introduction to Stirling cycle heat engines, as a key to the available literature on Stirling engines and to identify nonproprietary Stirling engine design methodologies. Two different fully described Stirling engines are discussed. Engine design methods are categorized as first order, second order, and third order with increased order number indicating increased complexity. FORTRAN programs are listed for both an isothermal second order design program and an adiabatic second order design program. Third order methods are explained and enumerated. In this second edition of the manual the references are updated. A revised personal and corporate author index is given and an expanded directory lists over 80 individuals and companies active in Stirling engines.

  15. Engineering design aspects of the heat-pipe power system

    Science.gov (United States)

    Capell, B. M.; Houts, M. G.; Poston, D. I.; Berte, M.

    1997-01-01

    The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.

  16. Engineering design aspects of the heat-pipe power system

    International Nuclear Information System (INIS)

    Capell, B.M.; Houts, M.G.; Poston, D.I.; Berte, M.

    1997-10-01

    The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations

  17. Incorporating Engineering Design Challenges into STEM Courses

    OpenAIRE

    Householder, Daniel L.; Hailey, Christine E.

    2012-01-01

    Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American youth. In most instances, these experiences in engineering design are infused into instruction programs in standards-based courses in science, technol...

  18. DESIGN QUALITY IN MECHANICAL ENGINEERING APPLICATION

    Directory of Open Access Journals (Sweden)

    Ayşegül Akdogan Eker

    2010-09-01

    Full Text Available There is a close relationship between material chose and quality in mechanical engineering application like there is in all the other engineering applications. If this relation is balanced then engineering success increases. Material chose comes to fore in the design process most of the time. The two most important responsibilities of the design engineer in here is to chose suitable material and to know the production processes about design. The chose of material of a design that will fulfill the needs all through its life has great importance. It is needed to limit the material applicants by choosing the most suitable ones among variable material. Choosing materials that were examined before and whose behavior is well known provides the designer to feel confident. However since using highly successful materials would increase the competitive power of the designs; designers should follow the developments in materials and know the features of new materials. The description of these features can be interpreted within quality. Quality from the point of engineer is the total fulfillment of expectations.Engineer today are faced with very important problems such as fast technological innovations, a dynamic socio-economical environment, global rivalry. One of the life buoys they stick while trying to solve these problems is total method of quality control. Total Quality model which can provide higher competitive power compared to classical management model brings success only when applied with its whole components. "Approach toward prevention" and "measurement and statistics" have an important place among these elements. The first step of the approach toward prevention composes of design quality and Quality Function Deployment (QFD, or in other words The House of Quality method that will provide this. In this paper; considering the quality function deployment, how the chose of material are done in mechanical engineering applications will be explained.

  19. Learning through projects in the training of biomedical engineers: an application experience

    Science.gov (United States)

    Gambi, José Antonio Li; Peme, Carmen

    2011-09-01

    Learning through Projects in the curriculum consists of both the identification and analysis of a problem, and the design of solution, execution and evaluation strategies, with teams of students. The project is conceived as the creation of a set of strategies articulated and developed during a certain amount of time to solve a problem contextualized in situations continually changing, where the constant evaluation provides feedback to make adjustments. In 2009, Learning through Projects was applied on the subject Hospital Facilities and three intervention projects were developed in health centers. This first stage is restricted to the analysis of the aspects that are considered to be basic to the professional training: a) Context knowledge: The future biomedical engineers must be familiarized with the complex health system where they will develop their profession; b) Team work: This is one of the essential skills in the training of students, since Biomedical Engineering connects the knowledge of sciences of life with the knowledge of exact sciences and technology; c) Regulations: The activities related to the profession require the implementation of regulations; therefore, to be aware of and to apply these regulations is a fundamental aspect to be analyzed in this stage; d) Project evaluation: It refers to the elaboration and studying of co-evaluation reports, which helps to find out if Learning through Projects contributes to the training. This new line of investigation has the purpose of discovering if the application of this learning strategy makes changes in the training of students in relation to their future professional career. The findings of this ongoing investigation will allow for the analysis of the possibility of extending its application. Key words: engineering, biomedical, learning, projects, strategies.

  20. University of Colorado CubeSat Student Projects as Successful Model for Teaching Students about Engineering Practices

    Science.gov (United States)

    Palo, S. E.; Li, X.; Woods, T. N.; Kohnert, R.

    2014-12-01

    There is a long history of cooperation between students at the University of Colorado, Boulder and professional engineers and scientists at LASP, which has led to many successful space missions with direct student involvement. The recent student-led missions include the Student Nitric Oxide Explorer (SNOE, 1998 - 2002), the Student Dust Counter (SDC) on New Horizons (2006 - present), the Colorado Student Space Weather Experiment (CSSWE), being a very successful NSF CubeSat that launched in September 2012, and the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat (launch will be in early 2015). Students are involved in all aspects of the design, and they experience the full scope of the mission process from concept, to fabrication and test, and mission operations. A significant part of the student involvement in the CubeSat projects is gained by using the CubeSat development as a focal point for an existing two-semester course sequence in CU's Aerospace Engineering Sciences (AES) Department: the Space Hardware Design section of Graduate Projects I & II (ASEN 5018 & ASEN 6028). The goal of these courses is to teach graduate students how to design and build systems using a requirement-based approach and fundamental systems engineering practices. The two-semester sequence takes teams of about 15 students from requirements definition and preliminary design through manufacturing, integration, and testing. In addition to the design process, students learn key professional skills such as working effectively in groups, finding solutions to open-ended problems, and actually building a system to their own set of specifications. The partnership between AES and LASP allows us to include engineering professionals in the mix, thus more effectively training science and engineering students for future roles in the civilian or commercial space industry. The mentoring process with LASP engineers helps to mitigate risk of the inexperience of the students and ensures consistent

  1. Research on engineering-oriented constraints conflict detection in collaborative design of wire harness technology

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaoping; HE Honglin; XU Benzhu

    2012-01-01

    Engineering-oriented constraint of harness technology has much information and project information presents progressive changes along with the design. Therefore, how to handle conflict resolution quickly is a problem to be solved. Process model of con- flict detection is put forward according to characteristics of harness technology design engineering-oriented constraint, and then two problems of how to conduct conflict positioning and judgment of constraint rules are introduced in this paper. Afterwards in this pa- per, constraint information directed acyclic graph is established by classified project constraint information to solve the conflict posi- tioning problem; solution of constraint satisfaction problem is applied to realize judgment problem of constraint rules. Finally, exam- ple is used to analyze the method in this paper to further verify the correctness and effectiveness of this method.

  2. Design of automotive engine coolant hoses

    Directory of Open Access Journals (Sweden)

    Hrishikesh D BACHCHHAV

    2018-03-01

    Full Text Available In this paper, we are present the performance of engine coolant hoses (radiator hoses used in passenger cars by checking various physical behaviours such as hose leakage, hose burst, hose collapse or any mechanical damage as studied-thru design guidelines, CFD analysis and product validation testing and also check pressure drop of the hoses when engine will be running. The design term is more likely used for technical part modelling using CAD tool. Later on, we will focus on the transformation of the part design to process design. The process design term is more likely used for "tooling design" for manufacturing of the product using CAD Tool. Then inlet hose carries coolant from engine to radiator inlet tank, then coolant circulated in radiator and passed through radiator outlet tank to water pump of engine with the help of outlet hose. After that …nding any leakage, Burst, damage or collapse of hose and pressure drop of the hose with the help of design checklist, CFD Analysis and product validation testing.

  3. Developing engineering design core competences through analysis of industrial products

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Lenau, Torben Anker

    2011-01-01

    Most product development work carried out in industrial practice is characterised by being incremental, i.e. the industrial company has had a product in production and on the market for some time, and now time has come to design a new and upgraded variant. This type of redesign project requires...... that the engineering designers have core design competences to carry through an analysis of the existing product encompassing both a user-oriented side and a technical side, as well as to synthesise solution proposals for the new and upgraded product. The authors of this paper see an educational challenge in staging...... a course module, in which students develop knowledge, understanding and skills, which will prepare them for being able to participate in and contribute to redesign projects in industrial practice. In the course module Product Analysis and Redesign that has run for 8 years we have developed and refined...

  4. Analysis of projects development of enterprises in engineering industries in Khmelnytskyi region

    OpenAIRE

    SHKODA M.S.

    2012-01-01

    This article analyzes the use of development projects in the engineering industry of Khmelnitsky region. The current state of engineering field. Solves warehouse development projects engineering enterprises and activities to enhance their implementation.

  5. The IAHR project CCHE-Climate Change impact on the Hydrological cycle, water management and Engineering: an overview and preliminary results

    Science.gov (United States)

    Ranzi, Roberto; Kojiri, T.; Mynett, A.; Barontini, S.; van de Giesen, N.; Kolokytha, E.; Ngo, L. A.; Oreamuno, R.; Renard, B.; Sighomnou, D.; Vizina, A.

    2010-05-01

    IAHR, the International Association for Hydro-Environment Engineering and Research launched a research Project called Climate Change impact on the Hydrological cycle, water management and Engineering (IAHR CCHE Project). It was motivated by the fact that, although it is now well accepted that, in the light of the recent IPCC reports the vast majority of members of the scientific community are convinced that the climate is changing or at least will experience a significant fluctuation already during the current century, it is perceived that some hydrologists, water experts and hydraulic engineers are not yet ready to incorporate climate change scenarios in their designs for such projects as: - flood protection and river training, - dam rehabilitation, - water resources management under water scarcity and changes in the hydrological regimes. The objective of the project is to encourage a close co-operation between the scientific and engineering communities in taking appropriate and timely action in response to the impact of climate change on the hydrological regime and on water resource projects. The project aims at reporting on (a) the current state of knowledge as regards the impact of projected climate change on the hydrological regime in different regions of the world, where these regions are defined not just in geographic terms but also on the basis of their level of economic and water resources development; (b) the extent to which these impacts are recognized and taken into account by national water authorities, engineering organizations and other regulating bodies in setting their standard practices and procedures for the planning, design and operation of water works. These adaptation measures will include both "hard" responses, such as the construction or enlargement of engineering structures, and "soft" responses, such as changes in legislation or the operating rules of existing structures. An overview of the project and preliminary results extracted from of

  6. Supplier Alliances for Engineered Equipment in Capital Projects

    National Research Council Canada - National Science Library

    Harper, Douglas

    2003-01-01

    .... Managing the engineered equipment is important during all phases of the project not only because of their high dollar value but also because the long manufacturing lead times often drive the overall project schedules...

  7. Product design engineering - a global education trend in multidisciplinary training for creative product design

    Science.gov (United States)

    de Vere, Ian; Melles, Gavin; Kapoor, Ajay

    2010-03-01

    Product design is the convergence point for engineering and design thinking and practices. Until recently, product design has been taught either as a component of mechanical engineering or as a subject within design schools but increasingly there is global recognition of the need for greater synergies between industrial design and engineering training. Product design engineering (PDE) is a new interdisciplinary programme combining the strengths of the industrial design and engineering. This paper examines the emergence of PDE in an environment of critique of conventional engineering education and exemplifies the current spread of programmes endorsing a hybrid programme of design and engineering skills. The paper exemplifies PDE with the analysis of the programme offered at Swinburne University of Technology (Australia), showing how the teaching of 'designerly' thinking to engineers produces a new graduate particularly suited to the current and future environment of produce design practice. The paper concludes with reflections on the significance of this innovative curriculum model for the field of product design and for engineering design in general.

  8. Design and fabrication of a meso-scale stirling engine and combustor.

    Energy Technology Data Exchange (ETDEWEB)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid

  9. Hybrid vehicle system studies and optimized hydrogen engine design

    Science.gov (United States)

    Smith, J. R.; Aceves, S.

    1995-04-01

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO(x) emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO(x). Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today's gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  10. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT and M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    International Nuclear Information System (INIS)

    RYAN GW

    2008-01-01

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized

  11. Incorporating Sustainability and Green Design Concepts into Engineering and Technology Curricula

    Directory of Open Access Journals (Sweden)

    Radian G. Belu

    2016-05-01

    Full Text Available Human society is facing an uncertain future due to the present day unsustainable use of natural resources and the growing imbalance with our natural environment. Sustainability is an endeavour with uncertain outcomes requiring collaboration, teamwork, and abilities to work with respect and learn from other disciplines and professions, as well as with governments, local communities, political and civic organizations. The creation of a sustainable society is a complex and multi-stage endeavour that will dominate twenty first century.  Sustainability has four basic aspects: environment, technology, economy, and societal organization. Schools with undergraduate engineering or engineering technology programs are working to include sustainability and green design concepts into their curricula. Teaching sustainability and green design has increasingly become an essential feature of the present day engineering education. It applies to all of engineering, as all engineered systems interact with the environment in complex and important ways. Our project main goals are to provide the students with multiple and comprehensive exposures, to what it mean to have a sustainable mindset and to facilitate the development of the passion and the skills to integrate sustainable practices into engineering tools and methods. In this study we are describing our approaches to incorporating sustainability and green design into our undergraduate curricula and to list a variety of existing resources that can easily be adopted or adapted by our faculty for this purpose. Our approaches are: (1 redesigning existing courses through development of new curricular materials that still meet the objectives of the original course and (2 developing upper division elective courses that address specific topics related to sustainability, green design, green manufacturing and life-cycle assessment. 

  12. Automotive Stirling engine: Mod 2 design report

    Science.gov (United States)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  13. LHCb Upgraded RICH 2 Engineering Design Review Report

    CERN Document Server

    Garsed, Philip John; Cardinale, Roberta; Petrolini, Alessandro; Benettoni, Massimo; Simi, Gabriele; Zago, M; Easo, Sajan; D'Ambrosio, Carmelo; Frei, Christoph; He, Jibo; Piedigrossi, Didier

    2016-01-01

    During the Long Shutdown 2 of the LHC, the LHCb experiment and, specifically, its two Ring Imaging Cherenkov (RICH) detectors will undergo a major upgrade. RICH 2 will be refurbished with new photon detectors and their associated electronics, with the capability of up to 40 MHz sustained acquisition rate. A new support and cooling system has been developed for the two photodetector arrays, retaining the vessel, gas and optical systems unchanged. This document describes their new mechanical arrangement, its engineering design, installation and alignment. A summary of the project schedule and Institute responsibilities is provided.

  14. Defining project scenarios for the agile requirements engineering product-line development questionnaire

    OpenAIRE

    Feng, Kunwu; Lempert, Meli; Tang, Yan; Tian, Kun; Cooper, Kendra M.L.; Franch Gutiérrez, Javier

    2007-01-01

    Current agile methods are focused on practices of small, rapid developing and iteration, more people oriented, less documentation projects, and the use of the methods in large, product line projects are somehow difficult. UTD and GESSI have started a project to develop an expert system that can assist a requirements enginer in selecting a requirements engineering process that is well suited for their project, in particular with respect to the use of agile and product line engineering methods....

  15. The design explorer project

    DEFF Research Database (Denmark)

    Pejtersen, Annelise Mark; Sonnenwald, Diane H.; Buur, Jacob

    1997-01-01

    the 'Design Explorer' research project whose goal is to specify requirements for an information system that will effectively help design team members from different domains and organizational cultures to locate and utilize diverse information sources and interact more effectively throughout the design process....... The project introduces a new approach to support of design; instead of design guidelines, support is given by creating a transparent information environment in which designers can navigate freely according to their individual preferences. The project is based on a framework that structures the dimensions......, or categories, of domain information which need to be available for a system or product designer/design team in order to determine the characteristics of the artefact, or object of design. These dimensions include information about the different work domains in which the product plays a role during its lifetime...

  16. Biomedical engineering education through global engineering teams.

    Science.gov (United States)

    Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M

    2012-01-01

    Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.

  17. Kemper County IGCC (tm) Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Matt; Rush, Randall; Madden, Diane; Pinkston, Tim; Lunsford, Landon

    2012-07-01

    The Kemper County IGCC Project is an advanced coal technology project that is being developed by Mississippi Power Company (MPC). The project is a lignite-fueled 2-on-1 Integrated Gasification Combined-Cycle (IGCC) facility incorporating the air-blown Transport Integrated Gasification (TRIG™) technology jointly developed by Southern Company; Kellogg, Brown, and Root (KBR); and the United States Department of Energy (DOE) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. The estimated nameplate capacity of the plant will be 830 MW with a peak net output capability of 582 MW. As a result of advanced emissions control equipment, the facility will produce marketable byproducts of ammonia, sulfuric acid, and carbon dioxide. 65 percent of the carbon dioxide (CO{sub 2}) will be captured and used for enhanced oil recovery (EOR), making the Kemper County facility’s carbon emissions comparable to those of a natural-gas-fired combined cycle power plant. The commercial operation date (COD) of the Kemper County IGCC plant will be May 2014. This report describes the basic design and function of the plant as determined at the end of the Front End Engineering Design (FEED) phase of the project.

  18. Teaching ethics to engineers: ethical decision making parallels the engineering design process.

    Science.gov (United States)

    Bero, Bridget; Kuhlman, Alana

    2011-09-01

    In order to fulfill ABET requirements, Northern Arizona University's Civil and Environmental engineering programs incorporate professional ethics in several of its engineering courses. This paper discusses an ethics module in a 3rd year engineering design course that focuses on the design process and technical writing. Engineering students early in their student careers generally possess good black/white critical thinking skills on technical issues. Engineering design is the first time students are exposed to "grey" or multiple possible solution technical problems. To identify and solve these problems, the engineering design process is used. Ethical problems are also "grey" problems and present similar challenges to students. Students need a practical tool for solving these ethical problems. The step-wise engineering design process was used as a model to demonstrate a similar process for ethical situations. The ethical decision making process of Martin and Schinzinger was adapted for parallelism to the design process and presented to students as a step-wise technique for identification of the pertinent ethical issues, relevant moral theories, possible outcomes and a final decision. Students had greatest difficulty identifying the broader, global issues presented in an ethical situation, but by the end of the module, were better able to not only identify the broader issues, but also to more comprehensively assess specific issues, generate solutions and a desired response to the issue.

  19. THE USING OF GRAPHICAL EDITOR IN THE ENGINEERING GRAPHICS AND THE COURSE DESIGNING

    Directory of Open Access Journals (Sweden)

    KARPYUK L. V.

    2016-08-01

    Full Text Available The problems of learning students of the engineering and computer graphics of the course on the base of computer-aided design (CAD were described in the article. The examples of training tasks for acquiring knowledge of work in the environment of graphical editor of AutoCAD were shown. These examples are needed to perform drawings on The Engineering Graphics, and also for a graphic part of Course Projects for students of mechanical specialties.

  20. Engineering Design of KSTAR tokamak main structure

    International Nuclear Information System (INIS)

    Im, K.H.; Cho, S.; Her, N.I.

    2001-01-01

    The main components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak including vacuum vessel, plasma facing components, cryostat, thermal shield and magnet supporting structure are in the final stage of engineering design. Hundai Heavy Industries (HHI) has been involved in the engineering design of these components. The current configuration and the final engineering design results for the KSTAR main structure are presented. (author)

  1. Advanced Control Considerations for Turbofan Engine Design

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy

    2016-01-01

    This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.

  2. Coolant Design System for Liquid Propellant Aerospike Engines

    Science.gov (United States)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  3. Design and delivery of the diamond double double bend achromat project

    International Nuclear Information System (INIS)

    Kay, J.; Hammond, N. P.; Thomson, A.

    2016-01-01

    A major project is underway at Diamond Light Source to remove one of the 24 Double Bend Achromat (DBA) Storage Ring cells and replace it with a Double Double Bend Achromat (DDBA). In this way a new Insertion Device (ID) straight can be created and so ID light can be produced and delivered to a beamline previously only capable of receiving Bending Magnet (BM) radiation. This project is in support of the micro-focus Protein Crystallography (MX) beamline VMX-m which is scheduled to take users towards the end of 2017. This paper describes the Engineering Design of the DDBA project in more detail and gives the current status of the project.

  4. Design and delivery of the diamond double double bend achromat project

    Energy Technology Data Exchange (ETDEWEB)

    Kay, J., E-mail: jim.kay@diamond.ac.uk; Hammond, N. P.; Thomson, A. [Diamond Light Source, Didcot, Oxfordshire, UK, OX11 0DE (United Kingdom)

    2016-07-27

    A major project is underway at Diamond Light Source to remove one of the 24 Double Bend Achromat (DBA) Storage Ring cells and replace it with a Double Double Bend Achromat (DDBA). In this way a new Insertion Device (ID) straight can be created and so ID light can be produced and delivered to a beamline previously only capable of receiving Bending Magnet (BM) radiation. This project is in support of the micro-focus Protein Crystallography (MX) beamline VMX-m which is scheduled to take users towards the end of 2017. This paper describes the Engineering Design of the DDBA project in more detail and gives the current status of the project.

  5. Integrating Industry in Project Organized Problem Based Learning for Engineering Educations

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.

    2006-01-01

    This abstract deals with the challenge of establishing engineering student projects in collaboration with industry. Based on empirical results a set of advices for industrial collaboration in project oriented problem based learning are formulated......This abstract deals with the challenge of establishing engineering student projects in collaboration with industry. Based on empirical results a set of advices for industrial collaboration in project oriented problem based learning are formulated...

  6. STRATEGY FOR IMPROVEMENT OF SAFETY AND EFFICIENCY OF COMPUTER-AIDED DESIGN ANALYSIS OF CIVIL ENGINEERING STRUCTURES ON THE BASIS OF THE SYSTEM APPROACH

    Directory of Open Access Journals (Sweden)

    Zaikin Vladimir Genrikhovich

    2012-12-01

    Full Text Available The authors highlight three problems of the age of information technologies and proposes the strategy for their resolution in relation to the computer-aided design of civil engineering structures. The authors express their concerns in respect of globalization of software programmes designated for the analysis of civil engineering structures and employed outside of Russia. The problem of the poor quality of the input data has reached Russia. Lately, the rate of accidents of buildings and structures has been growing not only in Russia. Control over efficiency of design projects is hardly performed. This attitude should be changed. Development and introduction of CAD along with the application the efficient methods of projection of behaviour of building structures are in demand. Computer-aided calculations have the function of a logical nucleus, and they need proper control. The system approach to computer-aided calculations and technologies designated for the projection of accidents is formulated by the authors. Two tasks of the system approach and fundamentals of the strategy for its implementation are formulated. The study of cases of negative results of computer-aided design of engineering structures was performed and multi-component design patterns were developed. Conclusions concerning the results of researches aimed at regular and wide-scale implementation of the strategy fundamentals are formulated. Organizational and innovative actions concerning the projected behaviour of civil engineering structures proposed in the strategy are to facilitate: safety and reliability improvement of buildings and structures; saving of building materials and resources; improvement of labour efficiency of designers; modernization and improvement of accuracy of projected behaviour of buildings and building standards; closer ties between civil and building engineering researchers and construction companies; development of competitive environment to boost

  7. Risk-informed ranking of engineering projects

    International Nuclear Information System (INIS)

    Jyrkama, M.; Pandey, M.

    2011-01-01

    Refurbishment planning requires prudent investment decisions with respect to the various systems and components at the station. These decisions are influenced by many factors, including engineering, safety, regulatory, economic, and political constraints. From an engineering perspective, the concept of cost-benefit analysis is a common way to allocate capital among various projects. Naturally, the 'best' or optimal project should have the lowest cost and the highest benefit. In the context of risk-informed decision making (RIDM), a process that has been widely embraced by the global nuclear community, the costs and benefits must further be 'weighted' by probabilities to estimate the underlying risk associated with the various planning alternatives. The main purpose of this study is to illustrate how risk and reliability information can be integrated into the refurbishment planning process to facilitate more objective and transparent investment decisions. The methodology is based on the concept of generation risk assessment (GRA) which provides a systematic approach for balancing investment costs with the reduction in overall financial risk. In addition to reliability predictions, the model provides estimates for the level of risk reduction associated with each system/project and also the break-even point for investment. This information is vital for project ranking, and helps to address the key question of whether capital investment should be made in the most risk critical systems, or in systems that reduce the overall risk the most. The application of the proposed methodology requires only basic information regarding the current reliability of each engineering system, which should be readily available from plant records and routine condition assessments. Because the methodology can be readily implemented in a Microsoft Excel spreadsheet, all plausible (e.g., bounding) planning scenarios, with or without investment, can also be generated quickly and easily, while

  8. Incorporating Engineering Design Challenges into STEM Courses

    Science.gov (United States)

    Householder, Daniel L., Ed.; Hailey, Christine E., Ed.

    2012-01-01

    Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American…

  9. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    Science.gov (United States)

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  10. Benefits of co-design in service design projects

    NARCIS (Netherlands)

    Steen, M.; Manschot, M.A.J.; De Koning, N.

    2011-01-01

    In many service design projects, co-design is seen as critical to success and a range of benefits are attributed to co-design. In this paper, we present an overview of benefits of co-design in service design projects, in order to help the people involved to articulate more precisely and

  11. Benefits of Co-design in Service Design Projects

    NARCIS (Netherlands)

    Steen, M.G.D.; Manschot, M.; Koning, N. de

    2011-01-01

    In many service design projects, co-design is seen as critical to success and a range of benefits are attributed to co-design. In this paper, we present an overview of benefits of co-design in service design projects, in order to help the people involved to articulate more precisely and

  12. The Use of Engineering Design Scenarios to Assess Student Knowledge of Global, Societal, Economic, and Environmental Contexts

    Science.gov (United States)

    McKenna, Ann F.; Hynes, Morgan M.; Johnson, Amy M.; Carberry, Adam R.

    2016-01-01

    Product archaeology as an educational approach asks engineering students to consider and explore the broader societal and global impacts of a product's manufacturing, distribution, use, and disposal on people, economics, and the environment. This study examined the impact of product archaeology in a project-based engineering design course on…

  13. Product design and development engineering

    International Nuclear Information System (INIS)

    Lee, Kookhwan

    2008-01-01

    This book gives design of molded plastics, design of press product, design of die casting products, the application of communication terminal design, application and design of machine elements(screw, spring, bearing, gear, retaining ridge, drawing standards, KS and JIS material marks list), 3D CAD, concurrent engineering of product design, creative concept design.

  14. Support for Different Roles in Software Engineering Master's Thesis Projects

    Science.gov (United States)

    Host, M.; Feldt, R.; Luders, F.

    2010-01-01

    Like many engineering programs in Europe, the final part of most Swedish software engineering programs is a longer project in which the students write a Master's thesis. These projects are often conducted in cooperation between a university and industry, and the students often have two supervisors, one at the university and one in industry. In…

  15. Contracting Economics of Large Engineering and Construction Projects

    NARCIS (Netherlands)

    Berends, T.C.

    2007-01-01

    Large Engineering and Construction Projects (LECPs) form an important area of economic activity, covering a range of different artefacts. These projects have in common that they are massive undertakings, spanning long time periods and they involve large capital investments. Uncertainty and risk are

  16. Designing Project Management

    NARCIS (Netherlands)

    Heintz, John Linke; Lousberg, L.; Wamelink, J.W.F.; Saari, A.; Huovinen, P.

    2016-01-01

    In this paper we introduce the concept of Designing Project Management. On the basis of our earlier work, we suggest that there is still a gap between what is known from recent project management literature and what project managers can structurally help in the effectiveness of their work. Assuming

  17. Westinghouse Hanford Company Engineering Indoctrination Program

    International Nuclear Information System (INIS)

    Hull, K.J.

    1991-02-01

    Westinghouse Hanford Company has recognized that a learning curve exists in its engineering design programs. A one-year training program is under way to shorten this learning curve by introducing new engineers, both recent graduates and experienced new hires, to both company standards and intuitive engineering design processes. The participants are organized into multi-disciplined teams and assigned mentor engineers who assist them in completing a team project. Weekly sessions alternate between information presentations and time to work on team design projects. The presentations include information that is applicable to the current phase of the design project as well as other items of interest, such as site tours, creative thinking, and team brainstorming techniques. 1 fig

  18. Safety culture for engineering companies. Licensing and design bases for Cofrentes NPP

    International Nuclear Information System (INIS)

    Nhorte Gomez, M.D.

    1994-01-01

    Safety culture must be given higher priority by all organisations. It must not be considered a separate concept, attributable to just one particular organisation, or a single responsible party. It is important to apply this criterion throughout the different phases of a nuclear power plant project (design, construction, commissioning and operation) without becoming isolated or dissociated. Nevertheless, it is absolutely essential to apply and consider it during operation, so to ensure highest possible safety standards. Consideration must also be given to the interfaces and interconnections between the different parties involved in the project (Owner of the NPP, Main Engineering Company, Main Supplier, Regulatory Body, etc) to build a SAFETY CULTURE in a collective and effective way. In applying the safety culture, an engineering company emphasises the following concepts: - Personal dedication and sense of responsibility in all those involved in any activity related to the safety of Nuclear Power Plants. - Clearly defined and readily accessible areas of responsibility and channels of communication - Strict adherence to procedures - Internal review of activities (Design review) (Author)

  19. Managing the continuum certainty, uncertainty, unpredictability in large engineering projects

    CERN Document Server

    Caron, Franco

    2013-01-01

    The brief will describe how to develop a risk analysis applied to a project , through a sequence of steps: risk management planning, risk identification, risk classification, risk assessment, risk quantification, risk response planning, risk monitoring and control, process close out and lessons learning. The project risk analysis and management process will be applied to large engineering projects, in particular related to the oil and gas industry. The brief will address the overall range of possible events affecting the project moving from certainty (project issues) through uncertainty (project risks) to unpredictability (unforeseeable events), considering both negative and positive events. Some quantitative techniques (simulation, event tree, Bayesian inference, etc.) will be used to develop risk quantification. The brief addresses a typical subject in the area of project management, with reference to large engineering projects concerning the realization of large plants and infrastructures. These projects a...

  20. Integrated project support environments the ASPECT project

    CERN Document Server

    Brown, Alan W

    1991-01-01

    A major part of software engineering developments involve the use of computing tools which facilitate the management, maintenance, security, and building of long-scale software engineer projects. Consequently, there have been a proliferation of CASE tools and IPSES. This book looks at IPSES in general and the ASPECT project in particular, providing design and implementation details, as well as locating ASPECT in IPSE developments.Survey of integrated project support environments for more efficient software engineering**Description of a large scale IPSE--ASPECT**Evaluation of formal methods in

  1. Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Technology Project Status

    Science.gov (United States)

    Gromski, Jason; Majamaki, Annik; Chianese, Silvio; Weinstock, Vladimir; Kim, Tony S.

    2010-01-01

    NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of future lander missions. To meet lander requirements, several technical challenges need to be overcome, one of which is the ability for the descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202 engine. The TR202 is a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two series of pintle injector testing. The first series of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at discrete points throughout the designed 10:1 throttle range. The second series was conducted with calorimeter chambers and demonstrated injector performance at discrete points throughout the throttle range as well as chamber heat flow adequate to power an expander cycle design across the throttle range. This paper provides an overview of the TR202 program, describing the different phases and key milestones. It describes how test data was correlated to the engine conceptual design. The test data obtained has created a valuable database for deep throttling cryogenic pintle technology, a technology that is readily scalable in thrust level.

  2. Engineer's Notebook--A Design Assessment Tool

    Science.gov (United States)

    Kelley, Todd R.

    2011-01-01

    As technology education continues to consider a move toward an engineering design focus as proposed by various leaders in technology education, it will be necessary to employ new pedagogical approaches. Hill (2006) provided some new perspectives regarding pedagogical approaches for technology education with an engineering design focus. One…

  3. Discovering beaten paths in collaborative ontology-engineering projects using Markov chains.

    Science.gov (United States)

    Walk, Simon; Singer, Philipp; Strohmaier, Markus; Tudorache, Tania; Musen, Mark A; Noy, Natalya F

    2014-10-01

    Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50,000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering

  4. Discovering Beaten Paths in Collaborative Ontology-Engineering Projects using Markov Chains

    Science.gov (United States)

    Walk, Simon; Singer, Philipp; Strohmaier, Markus; Tudorache, Tania; Musen, Mark A.; Noy, Natalya F.

    2014-01-01

    Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50, 000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering

  5. Metabolite damage and repair in metabolic engineering design.

    Science.gov (United States)

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  6. The ESDRED project: Engineering studies and demonstration of repository designs

    International Nuclear Information System (INIS)

    Verstricht, J.

    2009-01-01

    The construction, operation and closure of a deep geological repository for spent fuel and long-lived radioactive waste in clay involves specific technologies. The demonstration of these techniques at an industrial scale is being carried out in the frame of a technological integrated project within the sixth Framework Programme of EURATOM. The Belgian design for high level waste disposal is based on the so-called Supercontainer concept. Within this concept, the waste is encased in a carbon steel overpack, which is consequently fitted into a 70 cm thick concrete shell, in its turn enveloped by a stainless steel liner. A Supercontainer measures about 2 m in diameter. In the design of the repository, the Supercontainers will be emplaced, one after the other, in disposal galleries. The space between the Supercontainers and the gallery lining needs to be filled up with a solid material. The most essential function of this component, referred to as backfill, is to prevent a collapse of the gallery. A secondary function is to limit the presence of free oxygen, to limit corrosion. In the ESDRED project EIG EURIDICE, together with SCK-CEN and ONDRAF/NIRAS, investigates technologies to apply the backfill. After testing two techniques to apply the backfill in 2007 at limited scale (unite with granular material and grouting with backfill mortar), grouting was selected as the preferred technique. This technique then should be tested at full-scale (30 m long mock-up). First, a full-scale structure needs to built, including an extensive instrumentation programme. In addition, the logistical needs to ensure a continuous backfill operation have to be worked out. The objective is to have the almost 100 m 3 backfilled in 4 hours

  7. Design Theory Projectability

    DEFF Research Database (Denmark)

    Baskerville, Richard; Pries-Heje, Jan

    2014-01-01

    design science research is materially prescriptive, it requires a different perspective in developing the breadth of applications of design theories. In this paper we propose different concepts that embody forms of general technological knowledge The concept of projectability, developed originally......Technological knowledge has been characterized as having a scope that is specific to a particular problem. However, the information systems community is exploring forms of design science research that provide a promising avenue to technological knowledge with broader scope: design theories. Because...... as a means of distinguishing realized generalizations from unrealized generalizations, helps explain how design theories, being prescriptive, possess a different form of applicability. The concept of entrenchment describes the use of a theory in many projections. Together these concepts provide a means...

  8. Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen / Liquid Methane Main Engine

    Science.gov (United States)

    Melcher, John C.; Morehead, Robert L.

    2014-01-01

    The project Morpheus liquid oxygen (LOX) / liquid methane (LCH4) main engine is a Johnson Space Center (JSC) designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. The engine met or exceeded all performance requirements without experiencing any in- ight failures, but the engine exhibited acoustic-coupled combustion instabilities during sea-level ground-based testing. First tangential (1T), rst radial (1R), 1T1R, and higher order modes were triggered by conditions during the Morpheus vehicle derived low chamber pressure startup sequence. The instability was never observed to initiate during mainstage, even at low power levels. Ground-interaction acoustics aggravated the instability in vehicle tests. Analysis of more than 200 hot re tests on the Morpheus vehicle and Stennis Space Center (SSC) test stand showed a relationship between ignition stability and injector/chamber pressure. The instability had the distinct characteristic of initiating at high relative injection pressure drop at low chamber pressure during the start sequence. Data analysis suggests that the two-phase density during engine start results in a high injection velocity, possibly triggering the instabilities predicted by the Hewitt stability curves. Engine ignition instability was successfully mitigated via a higher-chamber pressure start sequence (e.g., 50% power level vs 30%) and operational propellant start temperature limits that maintained \\cold LOX" and \\warm methane" at the engine inlet. The main engine successfully demonstrated 4:1 throttling without chugging during mainstage, but chug instabilities were observed during some engine shutdown sequences at low injector pressure drop, especially during vehicle landing.

  9. Peer Assessment in Engineering Group Projects

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2014-01-01

    Peer review has proved to be beneficial in project-based environments by involving students in the process and encouraging them to take ownership of their learning. This article reviews how peer assessment has been employed within group work for different engineering programs. Since the administr...

  10. Tool for Benchmarking BIM Performance of Design Engineering and Construction Firms in The Netherlands

    NARCIS (Netherlands)

    Sebastian, R.; Berlo, L. van

    2010-01-01

    Building information modelling (BIM) is becoming more and more important to manage complex communication and information sharing processes in collaborative building projects. A growing number of design, engineering and construction firms have made attempts to adopt BIM to enhance their services and

  11. Reengineering the Project Design Process

    Science.gov (United States)

    Casani, E.; Metzger, R.

    1994-01-01

    In response to NASA's goal of working faster, better and cheaper, JPL has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center and the Flight System Testbed. Reengineering at JPL implies a cultural change whereby the character of its design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and cost estimating.

  12. Expert vs. novice: Problem decomposition/recomposition in engineering design

    Science.gov (United States)

    Song, Ting

    The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and audio recorded. After the design session, members participated in a group interview. This study used protocol analysis as the methodology. Video and audio data were transcribed, segmented, and coded. Two coding systems including the FBS ontology and "levels of the problem" were used in this study. A series of statistical techniques were used to analyze data. Interview data and participants' design sketches also worked as supplemental data to help answer the research questions. By analyzing the quantitative and qualitative data, it was found that students used less problem decomposition and problem recomposition than engineer experts in engineering design. This result implies that engineering education should place more importance on teaching problem decomposition and problem recomposition. Students were found to spend less cognitive effort when considering the problem as a whole and interactions between subsystems than engineer experts. In addition, students were also found to spend more cognitive effort when considering details of subsystems. These results showed that students tended to use dept-first decomposition and experts tended to use breadth-first decomposition in engineering design. The use of Function (F), Behavior (B), and Structure (S) among engineering experts, engineering seniors, and engineering freshmen was compared on three levels. Level 1 represents designers consider the problem as an integral whole, Level 2 represents designers consider interactions between

  13. Metabolite damage and repair in metabolic engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.; Bruner, Steven D.; Hanson, Andrew D.

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.

  14. Toward design-based engineering of industrial microbes.

    Science.gov (United States)

    Tyo, Keith E J; Kocharin, Kanokarn; Nielsen, Jens

    2010-06-01

    Engineering industrial microbes has been hampered by incomplete knowledge of cell biology. Thus an iterative engineering cycle of modeling, implementation, and analysis has been used to increase knowledge of the underlying biology while achieving engineering goals. Recent advances in Systems Biology technologies have drastically improved the amount of information that can be collected in each iteration. As well, Synthetic Biology tools are melding modeling and molecular implementation. These advances promise to move microbial engineering from the iterative approach to a design-oriented paradigm, similar to electrical circuits and architectural design. Genome-scale metabolic models, new tools for controlling expression, and integrated -omics analysis are described as key contributors in moving the field toward Design-based Engineering. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Mechanical engineers' handbook, design, instrumentation, and controls

    CERN Document Server

    Kutz, Myer

    2015-01-01

    Full coverage of electronics, MEMS, and instrumentation andcontrol in mechanical engineering This second volume of Mechanical Engineers' Handbookcovers electronics, MEMS, and instrumentation and control, givingyou accessible and in-depth access to the topics you'll encounterin the discipline: computer-aided design, product design formanufacturing and assembly, design optimization, total qualitymanagement in mechanical system design, reliability in themechanical design process for sustainability, life-cycle design,design for remanufacturing processes, signal processing, dataacquisition and dis

  16. How to Develop an Engineering Design Task

    Science.gov (United States)

    Dankenbring, Chelsey; Capobianco, Brenda M.; Eichinger, David

    2014-01-01

    In this article, the authors provide an overview of engineering and the engineering design process, and describe the steps they took to develop a fifth grade-level, standards-based engineering design task titled "Getting the Dirt on Decomposition." Their main goal was to focus more on modeling the discrete steps they took to create and…

  17. Design of reinforcement welding machine within steel framework for marine engineering

    Science.gov (United States)

    Wang, Gang; Wu, Jin

    2017-04-01

    In this project, a design scheme that reinforcement welding machine is added within the steel framework is proposed according to the double-side welding technology for box-beam structure in marine engineering. Then the design and development of circuit and transmission mechanism for new welding equipment are completed as well with one sample machine being made. Moreover, the trial running is finished finally. Main technical parameters of the equipment are: the working stroke: ≥1500mm, the welding speed: 8˜15cm/min and the welding sheet thickness: ≥20mm.

  18. An Exploratory Study of Cost Engineering in Axiomatic Design: Creation of the Cost Model Based on an FR-DP Map

    Science.gov (United States)

    Lee, Taesik; Jeziorek, Peter

    2004-01-01

    Large complex projects cost large sums of money throughout their life cycle for a variety of reasons and causes. For such large programs, the credible estimation of the project cost, a quick assessment of the cost of making changes, and the management of the project budget with effective cost reduction determine the viability of the project. Cost engineering that deals with these issues requires a rigorous method and systematic processes. This paper introduces a logical framework to a&e effective cost engineering. The framework is built upon Axiomatic Design process. The structure in the Axiomatic Design process provides a good foundation to closely tie engineering design and cost information together. The cost framework presented in this paper is a systematic link between the functional domain (FRs), physical domain (DPs), cost domain (CUs), and a task/process-based model. The FR-DP map relates a system s functional requirements to design solutions across all levels and branches of the decomposition hierarchy. DPs are mapped into CUs, which provides a means to estimate the cost of design solutions - DPs - from the cost of the physical entities in the system - CUs. The task/process model describes the iterative process ot-developing each of the CUs, and is used to estimate the cost of CUs. By linking the four domains, this framework provides a superior traceability from requirements to cost information.

  19. A Team Formation Framework for Managing Diversity in Multidisciplinary Engineering Project

    Directory of Open Access Journals (Sweden)

    Shawqi Mohammed Hossain

    2017-02-01

    Full Text Available Team formation is one of the essential elements in constructing effective teamwork of any team size that requires different skill sets. Diversity in team encourages students to challenge and compete with one another while searching for new ideas, which in turn can lead to a better team performance. In a well-functioning diverse teams, the students who performed poorly may gain benefit by observing how excellent students approach the assignments. They may also benefit by getting advice and assistance from the excellent students. Studies have shown that Malaysian university graduates lack of team skills. The purpose of this paper is to propose a framework for forming a diverse multidisciplinary team among engineering undergraduates based on selected criteria such as individual personality type, gender, and other relevant demographic information. The proposed framework can also be used to design an automated team-formation system based on the identified metrics. The purpose of the framework is to consolidate the existing team formation literature, and to develop and test interventions for maximizing individual member and team performance as a whole that makes an effective team. For this study, a multidisciplinary approach was used where first year engineering students from three different faculties, namely Faculty of Electrical Engineering (FKE, Faculty of Mechanical Engineering (FKM, and Faculty of Biosciences and Medical Engineering (FBME at Universiti Teknologi Malaysia (UTM worked on an innovation project using the Conceive, Design, Implement, and Operate (CDIO framework. Keirsey Temperament Sorter was used as an instrument to identify an individual's personality type.

  20. Improving Software Engineering on NASA Projects

    Science.gov (United States)

    Crumbley, Tim; Kelly, John C.

    2010-01-01

    Software Engineering Initiative: Reduces risk of software failure -Increases mission safety. More predictable software cost estimates and delivery schedules. Smarter buyer of contracted out software. More defects found and removed earlier. Reduces duplication of efforts between projects. Increases ability to meet the challenges of evolving software technology.

  1. Fuel design and engineering

    International Nuclear Information System (INIS)

    Hiemer, H.

    1975-01-01

    The essential aspects of the design and engineering of fuel assemblies for LWR reactors are outlined, and the major criteria to be met by the materials used are given. The fuel rods must be mechanically designed to withstand many stresses which are shortly dealt with here. (RB) [de

  2. 3D Printing as a Didactic Tool for Teaching some Engineering and Design Concepts

    OpenAIRE

    Edwin Blasnilo Rua Ramirez; Fernando Jimenez Diaz; German Andres Gutierrez Arias; Nelson Iván Villamizar

    2018-01-01

    Context: 3D printing can be used for a wide range of tasks such as the design and testing of prototypes and finished products in a shorter time. In mechanical engineering, prototype designs are continuously generated in academic class activities and final coursework projects by students and teachers. However, students show limitations while understanding the abstract concepts represented with such designs. Method: Firstly, a large scale 3D printer with improved technical specifications c...

  3. Transformer engineering design, technology, and diagnostics

    CERN Document Server

    Kulkarni, SV

    2012-01-01

    Transformer Engineering: Design, Technology, and Diagnostics, Second Edition helps you design better transformers, apply advanced numerical field computations more effectively, and tackle operational and maintenance issues. Building on the bestselling Transformer Engineering: Design and Practice, this greatly expanded second edition also emphasizes diagnostic aspects and transformer-system interactions. What's New in This Edition Three new chapters on electromagnetic fields in transformers, transformer-system interactions and modeling, and monitoring and diagnostics An extensively revised chap

  4. Engineering Changes in Product Design - A Review

    Science.gov (United States)

    Karthik, K.; Janardhan Reddy, K., Dr

    2016-09-01

    Changes are fundamental to product development. Engineering changes are unavoidable and can arise at any phase of the product life cycle. The consideration of market requirements, customer/user feedbacks, manufacturing constraints, design innovations etc., turning them into viable products can be accomplished when product change is managed properly. In the early design cycle, informal changes are accepted. However, changes become formal when its complexity and cost increases, and as product matures. To maximize the market shares, manufacturers have to effectively and efficiently manage engineering changes by means of Configuration Control. The paper gives a broad overview about ‘Engineering Change Management’ (ECM) through configuration management and its implications in product design. The aim is to give an idea and understanding about the engineering changes in product design scenario to the new researchers. This paper elaborates the significant aspect of managing the engineering changes and the importance of ECM in a product life cycle.

  5. Manpower simulation for the power plant design engineering

    International Nuclear Information System (INIS)

    Moon, B.S.; Juhn, P.E.

    1982-01-01

    Some observation from the examination of actual manhour curves for the power design engineering obtained from Sargent and Lundy Engineers and of a few of the model curves proposed by Bechtel, are analyzed in this paper. A model curve representing typical design engineering manhour has been determined as probability density function for the Gamma Distribution. By means of this model curve, we strategically forecast the future engineering manpower requirements to meet the Covernment's long range nuclear power plan. As a sensitivity analysis, the directions for the localization of nuclear power plant design engineering, are studied in terms of the performance factor for the experienced versus inexperienced engineers. (Author)

  6. IT-tools for Mechatronic System Engineering and Design

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben; Andersen, T. O.

    2003-01-01

    Companies are facing the on-going challenge that customers always increase their needs for capability of products and machinery. They want improved productivity and efficiency - if possible to lower prices; value for money. The demands often focus on extensions of functionality, faster response......, operation capability, man-machine interface (MMI), robustness, reliability and safety in use. Information Technology (IT) offers both software and hardware for improvement of the engineering design and industrial applications. The latest progress in IT makes integration of an overall design...... the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility for a hydraulic robot and a CNC XY-machine table was implemented. The controller applies digital signal processors (DSPs). The DSP controller utilizes the dSPACE System suitable...

  7. Global Engineering Teams--A Programme Promoting Teamwork in Engineering Design and Manufacturing

    Science.gov (United States)

    Oladiran, M. T.; Uziak, J.; Eisenberg, M.; Scheffer, C.

    2011-01-01

    Engineering graduates are expected to possess various competencies categorised into hard and soft skills. The hard skills are acquired through specific coursework, but the soft skills are often treated perfunctorily. Global Engineering Teams (GET) is a programme that promotes project-oriented tasks in virtual student teams working in collaboration…

  8. Industrial design as an innovative element in engineering education

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Abou-Hayt, Imad; Ashworth, David

    2012-01-01

    This paper describes how the Copenhagen University College of Engineering (IHK), in our continuing effort to innovate the engineering study programs, have introduced strong industrial design elements in the 210 ECTS Bachelor of Mechanical Engineering program as well as the 30 ECTS International...... Design Semester and the 10 ECTS Summer School in International Design and Development. The paper describes how implementation of novel industrial design subject areas requires the creation of new laboratory and workshop facilities in order to combine traditional engineering design disciplines...... with creative design as a driver of innovation. With a practical and problem based learning approach at IHK the students are asked to work closely together with companies to come up with engineering solutions that are sustainable from both an engineering and a design perspective....

  9. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    Science.gov (United States)

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  10. Design reliability engineering

    International Nuclear Information System (INIS)

    Buden, D.; Hunt, R.N.M.

    1989-01-01

    Improved design techniques are needed to achieve high reliability at minimum cost. This is especially true of space systems where lifetimes of many years without maintenance are needed and severe mass limitations exist. Reliability must be designed into these systems from the start. Techniques are now being explored to structure a formal design process that will be more complete and less expensive. The intent is to integrate the best features of design, reliability analysis, and expert systems to design highly reliable systems to meet stressing needs. Taken into account are the large uncertainties that exist in materials, design models, and fabrication techniques. Expert systems are a convenient method to integrate into the design process a complete definition of all elements that should be considered and an opportunity to integrate the design process with reliability, safety, test engineering, maintenance and operator training. 1 fig

  11. Unified Engineering Software System

    Science.gov (United States)

    Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.

    1989-01-01

    Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.

  12. Coordination of I and C design with the obligatory consideration of human factors. A project management approach

    International Nuclear Information System (INIS)

    Sanz, Silvia; Ciriello, Antonio; Krause, Wolfgang; Eisinger, Asriel

    2015-01-01

    Human Factors Engineering (HFE), like other engineering disciplines involved in plant design, cannot be considered retroactively. The engineering principles and methods derived from deep knowledge of the cognitive and perceptual capabilities and limitations of the plant's 'human element' are applied instead throughout plant design. Focusing HFE efforts on the plant's I and C, the plant's HMI is designed to ensure effective and error-free performance of the monitoring, control, and administrative tasks allocated to the control room crew. Generally speaking, a project's HFE program prescribes three main steps: (1) the analyses of plant monitoring and control functions in order to identify those to be performed manually (all others are performed automatically while still manually monitored) and determine in turn the HMI inventory of information displays, controls, alarms, and operating procedures required to support their performance, (2) the guided design of the plant's HMI, ensuring its compliance with HFE principles and the completeness and correctness of the task support it provides, and (3) the subsequent evaluation of operators performance, trained to follow the operating procedures and use the HMI referred to. The I and C systems designed to monitor and control the plant processes and implement, among other functions, the plant's HMI, are likely validated, governed by I and C norms and the project's V and V guidelines. Past experience shows that the three following obligatory steps pose challenges to project execution: (1) the acquisition and analysis of the multidisciplinary functional requirements (related to plant monitoring and control); (2) the likely interdisciplinary analysis whether and how fulfillment of these requirements shall be allocated to I and C automation systems or operators (or both), and (3) the HFE-guided HMI design and validation. A timely and cost-effective application of HFE to I and C engineering can be achieved by adequate planning and

  13. Design of experiments in production engineering

    CERN Document Server

    2016-01-01

    This book covers design of experiments (DoE) applied in production engineering as a combination of manufacturing technology with applied management science. It presents recent research advances and applications of design experiments in production engineering and the chapters cover metal cutting tools, soft computing for modelling and optmization of machining, waterjet machining of high performance ceramics, among others.

  14. A Model of Designing: Understanding Engineering Design Activity

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Aurisicchio, Marco

    2007-01-01

    This research describes an understanding of design activity through design questions. From a number of previous studies two types of questions have been identified: 1) reasoning questions; and 2) strategic questions. Strategic questions are part of an experienced designers approach to solving a d...... solving model. An example of aerospace engineering design is used to illustrate the argument. The research contributes to an understanding of design activity....

  15. NASA/DOE automotive Stirling engine project: Overview 1986

    Science.gov (United States)

    Beremand, D. G.; Shaltens, R. K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  16. Construction project of Flamanville 3 NPP. The participation of Iberdrola engineering and Construction

    International Nuclear Information System (INIS)

    Diaz Prada, J. I.; Cubian, B.

    2014-01-01

    Iberdrola Engineering and Construction (IIC) leads several projects mini EPC for the EPR Flamanville 3 NPP for providing important for safety components and auxiliary systems in the pump house and in the turbine island. The realization of this new nuclear project has been a challenge from the technical and organizational perspective because the plant is the first of the new nuclear station (FDAKE) type EPR 1700 MWe series in a highly restrictive environment due to to the large number of particular requirements from the final customer and the meager degree of progress of the design to the date of commencement of construction. (Author)

  17. Sustainable Product Design, Engineering and Management Education for Industrial Design Engineering

    OpenAIRE

    Boks, C.; Diehl, J.C.; Wever, R.

    2006-01-01

    Developments in the field of sustainable product design are manifold, which means that education in this field is rapidly evolving as well. In this paper, the continuously evolving portfolio of courses offered at Delft University of Technology’s Industrial Design Engineering faculty is systematically discussed, with a focus on content, course formats, assignments and lessons learned from course evaluations in recent years. It is concluded that in particular integration in existing contexts (a...

  18. Computer-aided design in power engineering. Application of software tools

    International Nuclear Information System (INIS)

    Stojkovic, Zlatan

    2012-01-01

    Demonstrates the use software tools in the practice of design in the field of power systems. Presents many applications in the design in the field of power systems. Useful for educative purposes and practical work. This textbooks demonstrates the application of software tools in solving a series of problems from the field of designing power system structures and systems. It contains four chapters: The first chapter leads the reader through all the phases necessary in the procedures of computer aided modeling and simulation. It guides through the complex problems presenting on the basis of eleven original examples. The second chapter presents application of software tools in power system calculations of power systems equipment design. Several design example calculations are carried out using engineering standards like MATLAB, EMTP/ATP, Excel and Access, AutoCAD and Simulink. The third chapters focuses on the graphical documentation using a collection of software tools (AutoCAD, EPLAN, SIMARIS SIVACON, SIMARIS DESIGN) which enable the complete automation of the development of graphical documentation of a power systems. In the fourth chapter, the application of software tools in the project management in power systems is discussed. Here, the emphasis is put on the standard software MS Excel and MS Project.

  19. Computer-aided design in power engineering. Application of software tools

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovic, Zlatan

    2012-07-01

    Demonstrates the use software tools in the practice of design in the field of power systems. Presents many applications in the design in the field of power systems. Useful for educative purposes and practical work. This textbooks demonstrates the application of software tools in solving a series of problems from the field of designing power system structures and systems. It contains four chapters: The first chapter leads the reader through all the phases necessary in the procedures of computer aided modeling and simulation. It guides through the complex problems presenting on the basis of eleven original examples. The second chapter presents application of software tools in power system calculations of power systems equipment design. Several design example calculations are carried out using engineering standards like MATLAB, EMTP/ATP, Excel and Access, AutoCAD and Simulink. The third chapters focuses on the graphical documentation using a collection of software tools (AutoCAD, EPLAN, SIMARIS SIVACON, SIMARIS DESIGN) which enable the complete automation of the development of graphical documentation of a power systems. In the fourth chapter, the application of software tools in the project management in power systems is discussed. Here, the emphasis is put on the standard software MS Excel and MS Project.

  20. "Dirt Cheap" Project Teaches Soils Engineering

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    This article describes a soil-testing activity that enables students to learn some interesting and useful things about how soil behaves under varied conditions. It offers a great way to give them a practical pre-engineering experience and will show them how engineers think about construction and how local soils influence building design. The…

  1. Experiential learning in control systems laboratories and engineering project management

    Science.gov (United States)

    Reck, Rebecca Marie

    2015, a panel of 40 control systems faculty members, from a variety of institutions, completed a multi-round Delphi survey in order to bring them toward consensus on the common aspects of their laboratories. The following winter, 45 additional faculty members and practitioners from the control systems community completed a follow-up survey to gather feedback on the results of the Delphi survey. During the Delphi study, the panelists identified 15 laboratory objectives, 26 concepts, and 15 components that were common in their laboratories. Then in both the Delphi survey and follow-up survey each participant rated the importance of each of these items. While the average ratings differed slightly between the two groups, the order of each set of items was compared with two different tests and the order was found to be similar. Some of the common and important learning objectives include connecting theory to what is implemented and observed in the laboratory, designing controllers, and modeling and simulating systems. The most common component in both groups was Math-Works software. Some of the common concepts include block diagrams, stability, and PID control. Defining common aspects of undergraduate control systems laboratories enables common development, detailed comparisons, and simplified adaptation of equipment and experiments between campuses and programs. Throughout an undergraduate program in engineering, there are multiple opportunities for hands-on laboratory experiences that are related to course content. However, a similarly immersive experience for project management graduate students is harder to incorporate for all students in a course at once. This study explores an experiential learning opportunity for graduate students in engineering management or project management programs. The project management students enroll in a project management course. Undergraduate students interested in working on a project with a real customer enroll in a different projects

  2. Underground engineering at the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1987-01-01

    A special task group was organized by the US National Committee for Rock Mechanics and the Board on Radioactive Waste Management of the National Research Council to address issues relating to the geotechnical site characterization program for an underground facility to house high-level radioactive waste of the Basalt Waste Isolation Project (BWIP). Intended to provide an overview of the geotechnical program, the study was carried out by a task group consisting of ten members with expertise in the many disciplines required to successfully complete such a project. The task group recognized from the outset that the short time frame of this study would limit its ability to address all geotechnical issues in detail. Geotechnical issues were considered to range from specific technical aspects such as in-situ testing for rock mass permeability; rock hardness testing in the laboratory; or geologic characterizations and quantification of joints, to broader aspects of design philosophy, data collection, and treatment of uncertainty. The task group chose to focus on the broader aspects of underground design and construction, recognizing that the BWIP program utilizes a peer review group on a regular basis which reviews the specific technical questions related to geotechnical engineering. In this way, it was hoped that the review provided by the task group would complement those prepared by the BWIP peer review group

  3. Waste Receiving and Processing Facility, Module 1: Volume 7, Project design criteria

    International Nuclear Information System (INIS)

    1992-03-01

    This Project Design Criteria document for the WRAP facility at the Hanford Site is presented within a systems format. The WRAP Module 1 facility has been categorized into eight (8) engineering systems for design purposes. These systems include: receiving, shipping and storage, nondestructive assay/nondestructive examination (NDA/NDE), waste process, internal transportation, building, heating ventilation and air conditioning (HVAC), process control, and utilities. Within each system section of this document, the system-specific requirements are identified. The scope of the system is defined, the design goals are identified and the functional requirements are detailed

  4. Current status of 700 MWe class PHWR NSSS design and engineering technology

    International Nuclear Information System (INIS)

    Park, Tae Keun; Suh, Sung Ki

    1996-06-01

    The capability of NSSS design and engineering technology of KAERI for 700 MWe class PHWR (CANDU 6) as of 1996 March 30 is comprehensively summarized in this report. The design and engineering capability of KAERI which have been gained during the implementation of Wolsung 2, 3 and 4 project are assessed, and showed with tangible scale. The status of Technology Transfer Materials received from Atomic Energy of Canada Limited under the Technology Transfer Agreement (TTA) which is effective simultaneously to Wolsung 3 and 4 contract, is also given in this report. The division of responsibility (DOR) of KAERI for Wolsung 2 and Wolsung 3 and 4 contract is also given, and expansion of DOR from Wolsung 2 contract to Wolsung 3 and 4 is presented. 3 refs. (Author)

  5. A simple method of calculating Stirling engines for engine design optimization

    Science.gov (United States)

    Martini, W. R.

    1978-01-01

    A calculation method is presented for a rhombic drive Stirling engine with a tubular heater and cooler and a screen type regenerator. Generally the equations presented describe power generation and consumption and heat losses. It is the simplest type of analysis that takes into account the conflicting requirements inherent in Stirling engine design. The method itemizes the power and heat losses for intelligent engine optimization. The results of engine analysis of the GPU-3 Stirling engine are compared with more complicated engine analysis and with engine measurements.

  6. Analytical Design Package (ADP2): A computer aided engineering tool for aircraft transparency design

    Science.gov (United States)

    Wuerer, J. E.; Gran, M.; Held, T. W.

    1994-01-01

    The Analytical Design Package (ADP2) is being developed as a part of the Air Force Frameless Transparency Program (FTP). ADP2 is an integrated design tool consisting of existing analysis codes and Computer Aided Engineering (CAE) software. The objective of the ADP2 is to develop and confirm an integrated design methodology for frameless transparencies, related aircraft interfaces, and their corresponding tooling. The application of this methodology will generate high confidence for achieving a qualified part prior to mold fabrication. ADP2 is a customized integration of analysis codes, CAE software, and material databases. The primary CAE integration tool for the ADP2 is P3/PATRAN, a commercial-off-the-shelf (COTS) software tool. The open architecture of P3/PATRAN allows customized installations with different applications modules for specific site requirements. Integration of material databases allows the engineer to select a material, and those material properties are automatically called into the relevant analysis code. The ADP2 materials database will be composed of four independent schemas: CAE Design, Processing, Testing, and Logistics Support. The design of ADP2 places major emphasis on the seamless integration of CAE and analysis modules with a single intuitive graphical interface. This tool is being designed to serve and be used by an entire project team, i.e., analysts, designers, materials experts, and managers. The final version of the software will be delivered to the Air Force in Jan. 1994. The Analytical Design Package (ADP2) will then be ready for transfer to industry. The package will be capable of a wide range of design and manufacturing applications.

  7. The development of quality management techniques in civil engineering design and site supervision

    International Nuclear Information System (INIS)

    Cowan, A.J.

    1991-01-01

    Quality assurance techniques have developed considerably over the past few years, and in particular the application of Quality Management within a service industry such as civil engineering has evolved into a well developed management control system. James Williamson and Partners were the first members of the Association of Consulting Engineers successfully to achieve third party accreditation with BSI for civil and structural design. The initial system was generated for work on Torness Power Station in the early 1980s, and the firm has, in the last ten years, developed a flexible quality system to effectively control and co-ordinate complex projects. This paper discusses the use of quality assurance (QA) techniques in a civil engineering design office, looking at a few areas where the requirements of BS 5750 and BS 5882 are difficult to interpret. Some observations are also made on the adoption of QA for site supervision. (author)

  8. Problem Solving Methods in Engineering Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1999-01-01

    This short paper discusses typical engineering tasks and problem solving methods, based on a field study of engineering tasks at a Danish engineering firm. The field study has identified ten classes of design tasks and in this paper these classes are related to problem solving methods. The descri...

  9. The trail of six design projects in the Delft bachelor Aerospace Engineering

    NARCIS (Netherlands)

    Kamp, A.

    2012-01-01

    Tomorrow’s engineers are required to have a good balance between deep working knowledge of engineering sciences and engineering skills. In the Bachelor Aerospace Engineering at TU Delft, students are educated to master these competences so that they are ready to engineer when they graduate. The

  10. The JET Project (Design proposal)

    International Nuclear Information System (INIS)

    1976-01-01

    This proposal describes a large Tokamak experiment, which aims to study plasma behavior in conditions and dimensions approaching those required in a fusion reactor. The maximum plasma minor radius (a) is 1.25 m and the major radius R 0 is 2.96 m. An important feature is the flexibility to study, for plasma currents in the 1→3 MA range, a wide range of aspect ratios R 0 /a=2.37→5), toroidal magnetic fields (up to 3.6T), minor radii (0.6→1.25 m) and elongation ratios (b/a=1→3.5). The cost of the apparatus, power supplies, plasma heating equipment and specific diagnostics is estimated as 70.1 Muc (March 1975 prices, 1 uc=50 FB). The total construction phase cost including commissioning, buildings and staff is 135 Muc. These figures include an average overall contingency of 30%. The construction time for the project is estimated at 5 years and requires 370 professional man years of effort in the construction organisation with additional effort deployed by the Associated Laboratories in such areas as diagnostics and plasma heating. This design proposal is arranged as follows: The preface gives an introduction to the field of fusion research and relates JET to the European and international programmes. Chapter I is a concise summary of the design proposal, it describes the objectives of research with JET, and gives a brief description of: the apparatus; the cost and construction schedules; the proposed experimental programme and the possible modes of operation of the device. A detailed account of the project is given in the rest of the report of which Chapters IV and VII comprise the engineering design and the staff and cost estimates respectively

  11. Teaching physics using project-based engineering curriculum with a theme of alternative energy

    Science.gov (United States)

    Tasior, Bryan

    The Next Generation Science Standards (NGSS) provide a new set of science standards that, if adopted, shift the focus from content knowledge-based to skill-based education. Students will be expected to use science to investigate the natural world and solve problems using the engineering design process. The world also is facing an impending crisis related to climate, energy supply and use, and alternative energy development. Education has an opportunity to help provide the much needed paradigm shift from our current methods of providing the energy needs of society. The purpose of this research was to measure the effectiveness of a unit that accomplishes the following objectives: uses project-based learning to teach the engineering process and standards of the NGSS, addresses required content expectations of energy and electricity from the HSCE's, and provides students with scientific evidence behind issues (both environmental and social/economic) relating to the energy crisis and current dependence of fossil fuels as our primary energy source. The results of the research indicate that a physics unit can be designed to accomplish these objectives. The unit that was designed, implemented and reported here also shows that it was highly effective at improving students' science content knowledge, implementing the engineering design standards of the NGSS, while raising awareness, knowledge and motivations relating to climate and the energy crisis.

  12. 18 CFR 157.37 - Project design.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Project design. 157.37... Seasons for Alaska Natural Gas Transportation Projects § 157.37 Project design. In reviewing any... proposed project has been designed to accommodate the needs of shippers who have made conforming bids...

  13. An assessment strategy for proposals of engineering projects in the Bachelor of Biomedical Engineering Curriculum at Universidad Autónoma Metropolitana-Iztapalapa.

    Science.gov (United States)

    Castañeda-Villa, N; Jiménez-González, A; Ortiz-Posadas, M R

    2015-08-01

    Since 1974, the Bachelor of Biomedical Engineering Program (BBME) is offered at Universidad Autónoma Metropolitana-Iztapalapa, in Mexico City. By design, it must be completed in four years (12 trimesters) and, in the latter three, the senior students work on a BME project, which is done by completing three modules: Project Seminar (PS), Project on BME I and Project on BME II. In the PS module, the student must find a problem of interest in the BME field and suggest a solution through the development of an Engineering Project Proposal (EPP). Currently, the module is being taught by two faculty members of the BBME, who instruct students on how to develop their EPPs and evaluate their progress by reviewing a number of EPPs during the trimester. This generates a huge workload for the module instructors, which makes it necessary to involve more faculty members trimester-to-trimester (i.e. every 12 weeks) and, therefore, to create a set of systematic guidelines that ease the evaluation process for new instructors. Hence, the purpose of this paper is to present an assessment strategy (in the form of an assessment matrix) for the PS module as well as some preliminary results after two trimesters of its implementation.

  14. Simple, Complex, Innovative : Design Education at Civil Engineering

    NARCIS (Netherlands)

    Van Nederveen, G.A.; Soons, F.A.M.; Suddle, S.I.; De Ridder, H.

    2011-01-01

    In faculties such as Civil Engineering, design is a not a core activity. Core activities at Civil Engineering are structural engineering, structural analysis, mechanics, fluid dynamics, etc. Design education has a relatively small share in the curriculum, compared to faculties such as Industrial

  15. Development of Engineering Design Education in the Department of Mechanical Engineering at Kanazawa Technical College

    Science.gov (United States)

    Yamada, Hirofumi; Ten-Nichi, Michio; Mathui, Hirosi; Nakamura, Akizi

    This paper introduces a method of the engineering design education for college of technology mechanical engineering students. In order to teach the practical engineering design, the MIL-STD-499A process is adapted and improved upon for a Mechatronics hands-on lesson used as the MOT method. The educational results in five years indicate that knowledge of the engineering management is useful for college students in learning engineering design. Portfolio for lessons and the hypothesis method also have better effects on the understanding of the engineering specialty.

  16. Design engineer perceptions and attitudes regarding human factors application to nuclear power plant design

    International Nuclear Information System (INIS)

    Ma, R.; Jones, J. M.

    2006-01-01

    With the renewed interest in nuclear power and the possibility of constructing new reactors within the next decade in the U.S., there are several challenges for the regulators, designers, and vendors. One challenge is to ensure that Human Factors Engineering (HFE) is involved, and correctly applied in the life-cycle design of the Nuclear Power Plant (NPP). As an important part of the effort, people would ask: 'is the system-design engineer effectively incorporating HFE in the NPPs design?' The present study examines the sagacity of Instrumentation and Control design engineers on issues relating to awareness, attitude, and application of HFE in NPP design. A questionnaire was developed and distributed, focusing on the perceptions and attitudes of the design engineers. The responses revealed that, while the participants had a relatively high positive attitude about HFE, their awareness and application of HFE were moderate. The results also showed that senior engineers applied HFE more frequently in their design work than young engineers. This study provides some preliminary results and implications for improved HFE education and application in NPP design. (authors)

  17. New Production Reactor project-management plan

    International Nuclear Information System (INIS)

    McCrosson, F.J.; Hibbard, L.; Buckner, M.R.

    1982-01-01

    This document provides a project management plan for the first phase of a project to design and build a new production reactor (NPR) at SRP. The design of the NPR is based upon proven SRP heavy water reactor design, with several enhancements such as full containment, moderator detritiation, improved cooling, and modernized control rooms and instrumentation. The first phase of the NPR project includes environmental and safety analyses, preparation of the technical data summary and basic data, site studies, engineering studies, and conceptual design. The project management plan was developed by a 14-member task force comprised of representatives from the Technical Division, the Manufacturing Division, the Departmental Engineer's Office, and the Engineering Department

  18. LHCb RICH1 Engineering Design Review Report

    CERN Document Server

    Brook, N; Metlica, F; Muir, A; Phillips, A; Buckley, A; Gibson, V; Harrison, K; Jones, C R; Katvars, S G; Lazzeroni, C; Storey, J; Ward, CP; Wotton, S; Alemi, M; Arnabaldi, C; Bellunato, T F; Calvi, M; Matteuzzi, C; Musy, M; Negri, P; Perego, D L; Pessina, G; Chamonal, R; Eisenhardt, S; Lawrence, J; McCarron, J; Muheim, F; Playfer, S; Walker, A; Cuneo, S; Fontanelli, F; Gracco, Valerio; Mini, G; Musico, P; Petrolini, A; Sannino, M; Bates, A; MacGregor, A; O'Shea, V; Parkes, C; Paterson, S; Petrie, D; Pickford, A; Rahman, M; Soler, F; Allebone, L; Barber, J H; Cameron, W; Clark, D; Dornan, Peter John; Duane, A; Egede, U; Hallam, R; Howard, A; Plackett, R; Price, D; Savidge, T; Vidal-Sitjes, G; Websdale, D M; Adinolfi, M; Bibby, J H; Cioffi, C; Gligorov, Vladimir V; Harnew, N; Harris, F; McArthur, I A; Newby, C; Ottewell, B; Rademacker, J; Senanayake, R; Somerville, L P; Soroko, A; Smale, N J; Topp-Jørgensen, S; Wilkinson, G; Yang, S; Benayoun, M; Khmelnikov, V A; Obraztsov, V F; Densham, C J; Easo, S; Franek, B; Kuznetsov, G; Loveridge, P W; Morrow, D; Morris, JV; Papanestis, A; Patrick, G N; Woodward, M L; Aglieri-Rinella, G; Albrecht, A; Braem, André; Campbell, M; D'Ambrosio, C; Forty, R W; Frei, C; Gys, Thierry; Jamet, O; Kanaya, N; Losasso, M; Moritz, M; Patel, M; Piedigrossi, D; Snoeys, W; Ullaland, O; Van Lysebetten, A; Wyllie, K

    2005-01-01

    This document describes the concepts of the engineering design to be adopted for the upstream Ring Imaging Cherenkov detector (RICH1) of the reoptimized LHCb detector. Our aim is to ensure that coherent solutions for the engineering design and integration for all components of RICH1 are available, before proceeding with the detailed design of these components.

  19. Reengineering the project design process

    Science.gov (United States)

    Kane Casani, E.; Metzger, Robert M.

    1995-01-01

    In response to the National Aeronautics and Space Administration's goal of working faster, better, and cheaper, the Jet Propulsion Laboratory (JPL) has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Development Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center (PDC) and the Flight System Testbed (FST). Reengineering at JPL implies a cultural change whereby the character of the Laboratory's design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and more accurate cost estimating. These improvements signal JPL's commitment to meeting the challenges of space exploration in the next century.

  20. Human factor engineering applied to nuclear power plant design

    International Nuclear Information System (INIS)

    Manrique, A.; Valdivia, J.C.

    2007-01-01

    Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. Such a plan should state: -) Activities to be performed, and -) Creation of a Human Factor Engineering team adequately qualified. The Human Factor Engineering team is an integral part of the design team and is strongly linked to the engineering organizations but simultaneously has independence to act and is free to evaluate designs and propose changes in order to enhance human behavior. TECNATOM S.A. (a Spanish company) has been a part of the Design and Human Factor Engineering Team and has collaborated in the design of an advanced Nuclear Power Plant, developing methodologies and further implementing those methodologies in the design of the plant systems through the development of the plant systems operational analysis and of the man-machine interface design. The methodologies developed are made up of the following plans: -) Human Factor Engineering implementation in the Man-Machine Interface design; -) Plant System Functional Requirement Analysis; -) Allocation of Functions to man/machine; -) Task Analysis; -) Human-System Interface design; -) Control Room Verification and -) Validation

  1. The WPU Project

    DEFF Research Database (Denmark)

    Jensen, Janne Jul; Skov, Mikael B.; Stage, Jan

    2009-01-01

    The Web Portal Usability (WPU) project is working on usability engineering methods, which are important in the development of Web portals. These methods are tested with companies that design modern Web portals.......The Web Portal Usability (WPU) project is working on usability engineering methods, which are important in the development of Web portals. These methods are tested with companies that design modern Web portals....

  2. Systems Engineering as a tool; Verktoeyet Systems Engineering : struktur fra start til maal

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Randi

    2002-07-01

    Systems engineering integrates all types of specialists and disciplines into teams that try to create a structured development process from concept via production to operation. The idea is that by using systems engineering, projects can be completed efficiently and successfully. It is important that the individual participant in a project understands that he or she works within a system and that there is a need for skill, comprehensiveness and communication. Systems engineering comprises system design, computer aided design, cybernetics and mecatronics. The article describes the use of systems engineering in a student project in which a heat pump will be used to utilize the energy potential of ground water primarily to heat the visitors' area in a mine museum in Kongsberg, Norway.

  3. Kansei Engineering and Website Design

    DEFF Research Database (Denmark)

    Song, Zheng; Howard, Thomas J.; Achiche, Sofiane

    2012-01-01

    a methodology based on Kansei Engineering, which has done significant work in product and industrial design but not quite been adopted in the IT field, in order to discover implicit emotional needs of users toward web site and transform them into design details. Survey and interview techniques and statistical...... methods were performed in this paper. A prototype web site was produced based on the Kansei results integrated with technical expertise and practical considerations. The results showed that the Kansei Engineering methodology in this paper played a significant role in web site design in terms of satisfying......Capturing users’ needs is critical in web site design. However, a lot of attention has been paid to enhance the functionality and usability, whereas much less consideration has been given to satisfy the emotional needs of users, which is also important to a successful design. This paper explores...

  4. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  5. Metric-driven Robust Design – Robustness Quantification of Complex Engineering Systems

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz

    2017-01-01

    by the Danish Council for Strategic Research. Other supporters of the project have been MAN Diesel & Turbo A/S, DTU Mechanical Engineering, DTU Chemical Engineering, Sandia National Laboratories USA, Norwegian University of Science & Technology (NTNU) and University of Nottingham, Malaysia Campus......This PhD dissertation was carried out at the Technical University of Denmark in the Department of Mechanical Engineering and has been supervised by Associate Professor Anders Ivarsson and co-supervised by Professor Jesper Schramm. The project has been a part of the RADIADE project funded....... The continuing stringency of emission regulations for marine diesel engines forces a deeper understanding of the complex physical processes occurring inside the engine cylinder. A deeper understanding can lead to higher accuracy of predictive numerical models, thereby enabling evaluation of multiple engine...

  6. Experimental Engineering: Articulating and Valuing Design Experimentation

    DEFF Research Database (Denmark)

    Vallgårda, Anna; Grönvall, Erik; Fritsch, Jonas

    2017-01-01

    In this paper we propose Experimental Engineering as a way to articulate open- ended technological experiments as a legitimate design research practice. Experimental Engineering introduces a move away from an outcome or result driven design process towards an interest in existing technologies and...

  7. Hydrogen engine performance analysis project. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

    1980-01-01

    Progress in a 3 year research program to evaluate the performance and emission characteristics of hydrogen-fueled internal combustion engines is reported. Fifteen hydrogen engine configurations will be subjected to performance and emissions characterization tests. During the first two years, baseline data for throttled and unthrottled, carburetted and timed hydrogen induction, Pre IVC hydrogen-fueled engine configurations, with and without exhaust gas recirculation (EGR) and water injection, were obtained. These data, along with descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained, are given. Analyses of other hydrogen-engine project data are also presented and compared with the results of the present effort. The unthrottled engine vis-a-vis the throttled engine is found, in general, to exhibit higher brake thermal efficiency. The unthrottled engine also yields lower NO/sub x/ emissions, which were found to be a strong function of fuel-air equivalence ratio. (LCL)

  8. EMERGING ENGINEERING PRINCIPLES FOR YIELD IMPROVEMENT IN MICROBIAL CELL DESIGN

    Directory of Open Access Journals (Sweden)

    Santiago Comba

    2012-10-01

    Full Text Available Metabolic Engineering has undertaken a rapid transformation in the last ten years making real progress towards the production of a wide range of molecules and fine chemicals using a designed cellular host. However, the maximization of product yields through pathway optimization is a constant and central challenge of this field. Traditional methods used to improve the production of target compounds from engineered biosynthetic pathways in non-native hosts include: codon usage optimization, elimination of the accumulation of toxic intermediates or byproducts, enhanced production of rate-limiting enzymes, selection of appropriate promoter and ribosome binding sites, application of directed evolution of enzymes, and chassis re-circuit. Overall, these approaches tend to be specific for each engineering project rather than a systematic practice based on a more generalizable strategy. In this mini-review, we highlight some novel and extensive approaches and tools intended to address the improvement of a target product formation, founded in sophisticated principles such as dynamic control, pathway genes modularization, and flux modeling.

  9. Emerging engineering principles for yield improvement in microbial cell design

    Directory of Open Access Journals (Sweden)

    Santiago Comba

    2012-10-01

    Full Text Available Metabolic Engineering has undertaken a rapid transformation in the last ten years making real progress towards the production of a wide range of molecules and fine chemicals using a designed cellular host. However, the maximization of product yields through pathway optimization is a constant and central challenge of this field. Traditional methods used to improve the production of target compounds from engineered biosynthetic pathways in non-native hosts include: codon usage optimization, elimination of the accumulation of toxic intermediates or byproducts, enhanced production of rate-limiting enzymes, selection of appropriate promoter and ribosome binding sites, application of directed evolution of enzymes, and chassis re-circuit. Overall, these approaches tend to be specific for each engineering project rather than a systematic practice based on a more generalizable strategy. In this mini-review, we highlight some novel and extensive approaches and tools intended to address the improvement of a target product formation, founded in sophisticated principles such as dynamic control, pathway genes modularization, and flux modeling.

  10. Preparation of Engineering Students for Capstone Design Experience through a Microprocessors Course

    Directory of Open Access Journals (Sweden)

    Mohammed El-Abd

    2017-11-01

    Full Text Available This paper presents the outcomes of a developed methodology to handle the project component in a higher-level undergraduate course. The approach relies on providing the students the freedom to choose their own project area as well as the utilized technology. At the same time, the students have to follow certain regulation to allow for the creation of a semi-capstone experience. We illustrate how this approach has a positive effect, not only on the project outcomes at the course level, but also on the students’ performances in subsequent capstone courses. Data collected, over five consecutive course offerings, shows that this approach is an effective method to prepare engineering students for their senior design capstone courses.

  11. Training of Ability for Engineering Design through Long Term Internship Program

    Science.gov (United States)

    Konishi, Masami; Gofuku, Akio; Tomita, Eiji

    The education program for engineering design capabilities through long term internship of Okayama University had started in 2006. The program supported by the MEXT is aimed to educate students in the Graduate School of Natural Science and Technology of Okayama University. The internship satellite laboratory of the University is settled in the near place of collaborative companies in which students are engaged with the project themes extracted from problems in the factory of collaborative companies. Through the program, promotion of abilities for setup and solving a problem considering cost and due date together with performance of the solution. Students are also expected to gain knowledge on patent and ethics required for skillful engineers.

  12. Developing Project Duration Models in Software Engineering

    Institute of Scientific and Technical Information of China (English)

    Pierre Bourque; Serge Oligny; Alain Abran; Bertrand Fournier

    2007-01-01

    Based on the empirical analysis of data contained in the International Software Benchmarking Standards Group(ISBSG) repository, this paper presents software engineering project duration models based on project effort. Duration models are built for the entire dataset and for subsets of projects developed for personal computer, mid-range and mainframeplatforms. Duration models are also constructed for projects requiring fewer than 400 person-hours of effort and for projectsre quiring more than 400 person-hours of effort. The usefulness of adding the maximum number of assigned resources as asecond independent variable to explain duration is also analyzed. The opportunity to build duration models directly fromproject functional size in function points is investigated as well.

  13. 3D Printing as a Didactic Tool for Teaching some Engineering and Design Concepts

    Directory of Open Access Journals (Sweden)

    Edwin Blasnilo Rua Ramirez

    2018-01-01

    Full Text Available Context: 3D printing can be used for a wide range of tasks such as the design and testing of prototypes and finished products in a shorter time. In mechanical engineering, prototype designs are continuously generated in academic class activities and final coursework projects by students and teachers. However, students show limitations while understanding the abstract concepts represented with such designs. Method: Firstly, a large scale 3D printer with improved technical specifications compared to traditional market options and similar price, was fabricated. By means of free software and hardware tools and easy-to-obtain alternative manufacturing materials, it was possible to decrease its manufacturing and operating costs. Then a set of study cases utilising the 3D printer in three different subject classes were designed and tested with two cohorts of students of Mechanical Engineering programme. Results: It was feasible to fabricate a cost-effective and practical 3D printer for constructing prototypes and pieces that benefit teaching and learning concepts in engineering and design areas. The experiments carried out in three subjects of engineering courses with second-year students, showed a similar trend of improving the average course grades, as it was observed in two cohorts in different terms. Conclusions: This type of low cost 3D printer obtained academic advantages as a didactic tool for the learning process in engineering and design subjects. Future work will consider applying this tool to other courses and subjects to further evaluate its convenience and effectivity.

  14. A framework to improve performance measurement in engineering projects

    OpenAIRE

    Zheng , Li; Baron , Claude; Esteban , Philippe; Xue , Rui; Zhang , Qiang

    2017-01-01

    International audience; A wide range of methods and good practices have been developed for the measurement of projects performance. They help project managers to effectively monitor the project progress and evaluate results. However, from a literature review, we noticed several remaining critical issues in measuring projects performance, such as an unbalanced development of Key Performance Indicators types between lagging and leading indicators. On the other hand, systems engineering measurem...

  15. A Statistical Project Control Tool for Engineering Managers

    Science.gov (United States)

    Bauch, Garland T.

    2001-01-01

    This slide presentation reviews the use of a Statistical Project Control Tool (SPCT) for managing engineering projects. A literature review pointed to a definition of project success, (i.e., A project is successful when the cost, schedule, technical performance, and quality satisfy the customer.) The literature review also pointed to project success factors, and traditional project control tools, and performance measures that are detailed in the report. The essential problem is that with resources becoming more limited, and an increasing number or projects, project failure is increasing, there is a limitation of existing methods and systematic methods are required. The objective of the work is to provide a new statistical project control tool for project managers. Graphs using the SPCT method plotting results of 3 successful projects and 3 failed projects are reviewed, with success and failure being defined by the owner.

  16. Coherence and correspondence in engineering design

    Directory of Open Access Journals (Sweden)

    Konstantinos V. Katsikopoulos

    2009-03-01

    Full Text Available I show how the coherence/correspondence distinction can inform the conversation about decision methods for engineering design. Some engineers argue for the application of multi-attribute utility theory while others argue for what they call heuristics. To clarify the differences among methods, I first ask whether each method aims at achieving coherence or correspondence. By analyzing statements in the design literature, I argue that utility theory aims at achieving coherence and heuristics aim at achieving correspondence. Second, I ask if achieving coherence always implies achieving correspondence. It is important to provide an answer because while in design the objective is correspondence, it is difficult to assess it, and coherence that is easier to assess is used as a surrogate. I argue that coherence does not always imply correspondence in design and that this is also the case in problems studied in judgment and decision-making research. Uncovering the conditions under which coherence implies, or does not imply, correspondence is a topic where engineering design and judgment and decision-making research might connect.

  17. Defining Interactions and Interfaces in Engineering Design

    DEFF Research Database (Denmark)

    Parslov, Jakob Filippson

    documents of legal matter and must therefore be unambiguously and completely described. Following this observation, a comprehensive and systematic literature review has been performed in order to investigate the definition and perception of an interface. The review resulted in a classification revealing 13......This PhD thesis focuses on the understanding and definition of interactions and interfaces during the architectural decomposition of complex, multi-technological products. The Interaction and Interface Framework developed in this PhD project contribute to the field of engineering design research...... the framework, it has been possible to arrive at a classification of interaction mechanism, which is mutually exclusive (no overlap) and collectively exhaustive (no gaps). This contribution changes the existing paradigm of reasoning about interactions and allows for an unambiguous architectural decomposition...

  18. Results From a Channel Restoration Project: Hydraulic Design Considerations

    Science.gov (United States)

    Karle, K.F.; Densmore, R.V.; ,

    2001-01-01

    Techniques for the hydraulic restoration of placer-mined streams and floodplains were developed in Denali National Park and Preserve, Alaska. The two-year study at Glen Creek focused on a design of stream and floodplain geometry using hydraulic capacity and shear stress equations. Slope and sinuosity values were based on regional relationships. Design requirements included a channel capacity for a bankfull discharge and a floodplain capacity for a 1.5- to 100-year discharge. Several bio-engineering techniques using alder and willow, including anchored brush bars, streambank hedge layering, seedlings, and cuttings, were tested to dissipate floodwater energy and encourage sediment deposition until natural revegetation stabilized the new floodplains. Permanently monumented cross-sections installed throughout the project site were surveyed every one to three years. Nine years after the project began, a summer flood caused substantial damage to the channel form, including a change in width/depth ratio, slope, and thalweg location. Many of the alder brush bars were heavily damaged or destroyed, resulting in significant bank erosion. This paper reviews the original hydraulic design process, and describes changes to the channel and floodplain geometry over time, based on nine years of cross-section surveys.

  19. Tour Guide Robots: An Integrated Research and Design Platform to Prepare Engineering and Technology Students

    Science.gov (United States)

    Yelamarthi, Kumar

    2016-01-01

    Many interesting research and design questions occur at the intersections of traditional disciplines, yet most coursework and research programs for undergraduate engineering students are focused on one discipline. This leads to underutilization of the potential in better preparing students through multidisciplinary projects. Identifying this…

  20. Academy of Program/Project & Engineering Leadership Annual Publications

    Data.gov (United States)

    National Aeronautics and Space Administration — Academy of Program/Project & Engineering Leadership's Annual Report highlights the Academy's efforts to serve the NASA workforce's needs in adapting to the...

  1. Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA

    Science.gov (United States)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-01-01

    The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…

  2. The use of engineering design scenarios to assess student knowledge of global, societal, economic, and environmental contexts

    Science.gov (United States)

    McKenna, Ann F.; Hynes, Morgan M.; Johnson, Amy M.; Carberry, Adam R.

    2016-07-01

    Product archaeology as an educational approach asks engineering students to consider and explore the broader societal and global impacts of a product's manufacturing, distribution, use, and disposal on people, economics, and the environment. This study examined the impact of product archaeology in a project-based engineering design course on student attitudes and perceptions about engineering and abilities to extend and refine knowledge about broader contexts. Two design scenarios were created: one related to dental hygiene and one related to vaccination delivery. Design scenarios were used to (1) assess knowledge of broader contexts, and (2) test variability of student responses across different contextual situations. Results from pre- to post-surveying revealed improved student perceptions of knowledge of broader contexts. Significant differences were observed between the two design scenarios. The findings support the assumption that different design scenarios elicit consideration of different contexts and design scenarios can be constructed to target specific contextual considerations.

  3. Engineering Technical Review Planning Briefing

    Science.gov (United States)

    Gardner, Terrie

    2012-01-01

    The general topics covered in the engineering technical planning briefing are 1) overviews of NASA, Marshall Space Flight Center (MSFC), and Engineering, 2) the NASA Systems Engineering(SE) Engine and its implementation , 3) the NASA Project Life Cycle, 4) MSFC Technical Management Branch Services in relation to the SE Engine and the Project Life Cycle , 5) Technical Reviews, 6) NASA Human Factor Design Guidance , and 7) the MSFC Human Factors Team. The engineering technical review portion of the presentation is the primary focus of the overall presentation and will address the definition of a design review, execution guidance, the essential stages of a technical review, and the overall review planning life cycle. Examples of a technical review plan content, review approaches, review schedules, and the review process will be provided and discussed. The human factors portion of the presentation will focus on the NASA guidance for human factors. Human factors definition, categories, design guidance, and human factor specialist roles will be addressed. In addition, the NASA Systems Engineering Engine description, definition, and application will be reviewed as background leading into the NASA Project Life Cycle Overview and technical review planning discussion.

  4. Engineering design of systems models and methods

    CERN Document Server

    Buede, Dennis M

    2009-01-01

    The ideal introduction to the engineering design of systems-now in a new edition. The Engineering Design of Systems, Second Edition compiles a wealth of information from diverse sources to provide a unique, one-stop reference to current methods for systems engineering. It takes a model-based approach to key systems engineering design activities and introduces methods and models used in the real world. Features new to this edition include: * The addition of Systems Modeling Language (SysML) to several of the chapters, as well as the introduction of new terminology * Additional material on partitioning functions and components * More descriptive material on usage scenarios based on literature from use case development * Updated homework assignments * The software product CORE (from Vitech Corporation) is used to generate the traditional SE figures and the software product MagicDraw UML with SysML plugins (from No Magic, Inc.) is used for the SysML figures This book is designed to be an introductory reference ...

  5. Utilizing Civil Engineering Senior Design Capstone Projects to Evaluate Students' Sustainability Education across Engineering Curriculum

    Science.gov (United States)

    Dancz, Claire L. A.; Ketchman, Kevin J.; Burke, Rebekah D.; Hottle, Troy A.; Parrish, Kristen; Bilec, Melissa M.; Landis, Amy E.

    2017-01-01

    While many institutions express interest in integrating sustainability into their civil engineering curriculum, the engineering community lacks consensus on established methods for infusing sustainability into curriculum and verified approaches to assess engineers' sustainability knowledge. This paper presents the development of a sustainability…

  6. Engineering education for youth: Diverse elementary school students' experiences with engineering design

    Science.gov (United States)

    Hegedus, Theresa

    Lingering concerns over the persistent achievement gap amidst the trend of an increasingly diverse society have been compounded by calls from the Oval Office, the National Science Board, and nationwide media to also address our current creativity crisis. Now, more than ever, we have a responsibility to produce a STEM-capable (science, technology, engineering, and mathematics) workforce to meet the demands of our rapidly changing local and global economic landscape. Barriers exist in our traditional educational system, which has historically limited underrepresented groups' affiliation and membership in the disciplines of science and engineering. The recent incorporation of engineering into the latest science education reform efforts presents an opportunity to expose students as early as elementary school to engineering practices and habits of mind, which have the potential to stimulate creative thinking skills through engineering design. This qualitative study was designed to examine the ways in which engineering education has the potential to promote creativity and academic competence in elementary science classrooms. As a part of my study, a diverse group of students from two fifth-grade classrooms took part in a 10-12 hour, engineering-based curriculum unit (Engineering is Elementary) during their regular science instructional time. Using a sociocultural lens, to include cultural production and identities in practice as part of my framework, I analyzed group and individual performances through classroom observations, student interviews, and teacher reflections to better understand the meaning students made of their experiences with engineering. Findings from the study included the ways in which creativity was culturally produced in the classroom to include: 1) idea generation; 2) design and innovation; 3) gumption/resourcefulness; and 4) social value. Opportunities for collaboration increased through each stage of the unit culminating with the design challenge

  7. Data-driven engineering design research: Opportunities using open data

    DEFF Research Database (Denmark)

    Parraguez Ruiz, Pedro; Maier, Anja

    2017-01-01

    the already available and continuously growing body of open data sources to create opportunities for research in Engineering Design. Insights are illustrated by an examination of two examples: a study of open source software repositories and an analysis of open business registries in the cleantech industry....... We conclude with a discussion about the limitations, challenges and risks of using open data in Engineering Design research and practice.......Engineering Design research relies on quantitative and qualitative data to describe design-related phenomena and prescribe improvements for design practice. Given data availability, privacy requirements and other constraints, most empirical data used in Engineering Design research can be described...

  8. Project-based learning in engineering design in Bulgaria: expectations, experiments and results

    Science.gov (United States)

    Raycheva, Regina Pavlova; Angelova, Desislava Ivanova; Vodenova, Pavlina Minkova

    2017-11-01

    Using a students' workshop as a laboratory, this article summarises the observation of three years' implementation of a new study module for a Bachelor Program in Engineering Design (Interior and Furniture Design) at the University of Forestry, Sofia, Bulgaria. The article offers an analysis of group dynamics and the difficulties and issues observed during the process. Data from survey questionnaires are interpreted; proposals are made for future research. The conclusion of the authors includes the following points: positive response by students, important encounter with successful professionals and companies; creative fulfilment and experience of team work. On the weak side is the experienced discomfort in public presentation, lack of verbal and graphic skills, interpersonal issues and pressure of real requirements from teachers and company; lack of adequate attention by the tutors. The need of better understanding a team 'code' of behaviour and preparation for an active learning method was felt. A proposal leading to a mixed-team organisation for better support of first-time participants in the module is made.

  9. Development of human factors engineering guide for nuclear power project

    International Nuclear Information System (INIS)

    Wu Dangshi; Sheng Jufang

    1997-01-01

    'THE PRACTICAL GUIDE FOR APPLICATION OF HUMAN FACTORS ENGINEERING TO NUCLEAR POWER PROJECT (First Draft, in Chinese)', which was developed under a research program sponsored by National Nuclear Safety Administration (NNSA) is described briefly. It is hoped that more conscious, more systematical and more comprehensive application of Human Factors Engineering to the nuclear power projects from the preliminary feasibility studies up to the commercial operation will benefit the safe, efficient and economical operations of nuclear power plants in China

  10. Developing a Conceptual Design Engineering Toolbox and its Tools

    Directory of Open Access Journals (Sweden)

    R. W. Vroom

    2004-01-01

    Full Text Available In order to develop a successful product, a design engineer needs to pay attention to all relevant aspects of that product. Many tools are available, software, books, websites, and commercial services. To unlock these potentially useful sources of knowledge, we are developing C-DET, a toolbox for conceptual design engineering. The idea of C-DET is that designers are supported by a system that provides them with a knowledge portal on one hand, and a system to store their current work on the other. The knowledge portal is to help the designer to find the most appropriate sites, experts, tools etc. at a short notice. Such a toolbox offers opportunities to incorporate extra functionalities to support the design engineering work. One of these functionalities could be to help the designer to reach a balanced comprehension in his work. Furthermore C-DET enables researchers in the area of design engineering and design engineers themselves to find each other or their work earlier and more easily. Newly developed design tools that can be used by design engineers but have not yet been developed up to a commercial level could be linked to by C-DET. In this way these tools can be evaluated in an early stage by design engineers who would like to use them. This paper describes the first prototypes of C-DET, an example of the development of a design tool that enables designers to forecast the use process and an example of the future functionalities of C-DET such as balanced comprehension.

  11. Group Creativity Development by Solving Real-life Project in Engineering Education

    DEFF Research Database (Denmark)

    Zhou, Chunfang; Kolmos, Anette; Du, Xiangyun

    2011-01-01

    In recent years, problem and project based learning (PBL) has been employed by a growing number of educational institutions to foster creative engineers. Among the diverse pedagogical practices of PBL, there has been an emergence of real-life project for students. Based on literature of creativity...... along with the learning activities etc., which are necessary for group creativity development in engineering students....

  12. 20% Research & Design Science Project

    Science.gov (United States)

    Spear, Beth A.

    2015-04-01

    A project allowing employees to use 15 % of their time on independent projects was established at 3M in the 1950's. The result of this project included products like post it notes and masking tape. Google allows its employees to use 20% of their time on independently pursued projects. The company values creativity and innovation. Employees are allowed to explore projects of interest to them one day out of the week, 20 % of their work week. Products like AdSense, Gmail, Google Transit, Google News, and Google Talk are the result of this 20 % program. My school is implementing the Next Generation Science Standards (NGSS) as part of our regularly scheduled curriculum review. These new standards focus on the process of learning by doing and designing. The NGSS are very hands on and active. The new standards emphasize learning how to define, understand and solve problems in science and technology. In today's society everyone needs to be familiar with science and technology. This project allows students to develop and practice skills to help them be more comfortable and confident with science and technology while exploring something of interest to them. This project includes three major parts: research, design, and presentation. Students will spend approximately 2-4 weeks defining a project proposal and educating themselves by researching a science and technology topic that is of interest to them. In the next phase, 2-4 weeks, students design a product or plan to collect data for something related to their topic. The time spent on research and design will be dependant on the topic students select. Projects should be ambitious enough to encompass about six weeks. Lastly a presentation or demonstration incorporating the research and design of the project is created, peer reviewed and presented to the class. There are some problems anticipated or already experienced with this project. It is difficult for all students to choose a unique topic when you have large class sizes

  13. Project W-236A, work plan for preparation of a design requirements document

    International Nuclear Information System (INIS)

    Groth, B.D.

    1995-01-01

    This work plan outlines the tasks necessary, and defines the organizational responsibilities for preparing a Design Requirements Document (DRD) for project W-236A, Multi-Function Waste Tank Facility (MWTF). A DRD is a Systems Engineering document which bounds, at a high level, the requirements of a discrete system element of the Tank Waste Remediation System (TWRS) Program. This system element is usually assigned to a specific project, in this case the MWTF. The DRD is the document that connects the TWRS program requirements with the highest level projects requirements and provides the project's link to the overall TWRS mission. The MWTF DRD effort is somewhat unique in that the project is already in detailed design, whereas a DRO is normally prepared prior to preliminary design. The MWTF design effort was initiated with a Functional Design Criteria (FDC) and a Supplemental Design Requirements Document (SDRD) bounding the high level requirements. Another unique aspect of this effort is that some of the TWRS program requirements are still in development. Because of these unique aspects of the MWTF DRD development, the MWTF will be developed from existing TWRS Program requirements and project specific requirements contained in the FDC and SDRD. The following list describes the objectives of the MWTF DRD: determine the primary functions of the tanks through a functional decomposition of the TWRS Program high level functions; allocate the primary functions to a sub-system architecture for the tanks; define the fundamental design features in terms of performance requirements for the system and subsystems; identify system interfaces and design constraints; and document the results in a DRD

  14. Recent Development of the Two-Stroke Engine. II - Design Features. 2; Design Features

    Science.gov (United States)

    Zeman, J.

    1945-01-01

    Completing the first paper dealing with charging methods and arrangements, the present paper discusses the design forms of two-stroke engines. Features which largely influence piston running are: (a) The shape and surface condition of the sliding parts. (b) The cylinder and piston materials. (c) Heat conditions in the piston, and lubrication. There is little essential difference between four-stroke and two-stroke engines with ordinary pistons. In large engines, for example, are always found separately cast or welded frames in which the stresses are taken up by tie rods. Twin piston and timing piston engines often differ from this design. Examples can be found in many engines of German or foreign make. Their methods of operation will be dealt with in the third part of the present paper, which also includes the bibliography. The development of two-stroke engine design is, of course, mainly concerned with such features as are inherently difficult to master; that is, the piston barrel and the design of the gudgeon pin bearing. Designers of four-stroke engines now-a-days experience approximately the same difficulties, since heat stresses have increased to the point of influencing conditions in the piston barrel. Features which notably affect this are: (a) The material. (b) Prevailing heat conditions.

  15. Screening candidate systems engineers: a research design

    CSIR Research Space (South Africa)

    Goncalves, DP

    2009-07-01

    Full Text Available engineering screening methodology that could be used to screen potential systems engineers. According to their design, this can be achieved by defining a system engineering profile according to specific psychological attributes, and using this profile...

  16. Design and computation of modern engineering materials

    CERN Document Server

    Altenbach, Holm

    2014-01-01

     The idea of this monograph is to present the latest results related to design and computation of engineering materials and structures. The contributions cover the classical fields of mechanical, civil and materials engineering up to biomechanics and advanced materials processing and optimization. The materials and structures covered can be categorized into modern steels and titanium alloys, composite materials, biological and natural materials, material hybrids and modern joining technologies. Analytical modelling, numerical simulation, the application of state-of-the-art design tools and sophisticated experimental techniques are applied to characterize the performance of materials and to design and optimize structures in different fields of engineering applications.

  17. Network theory-based analysis of risk interactions in large engineering projects

    International Nuclear Information System (INIS)

    Fang, Chao; Marle, Franck; Zio, Enrico; Bocquet, Jean-Claude

    2012-01-01

    This paper presents an approach based on network theory to deal with risk interactions in large engineering projects. Indeed, such projects are exposed to numerous and interdependent risks of various nature, which makes their management more difficult. In this paper, a topological analysis based on network theory is presented, which aims at identifying key elements in the structure of interrelated risks potentially affecting a large engineering project. This analysis serves as a powerful complement to classical project risk analysis. Its originality lies in the application of some network theory indicators to the project risk management field. The construction of the risk network requires the involvement of the project manager and other team members assigned to the risk management process. Its interpretation improves their understanding of risks and their potential interactions. The outcomes of the analysis provide a support for decision-making regarding project risk management. An example of application to a real large engineering project is presented. The conclusion is that some new insights can be found about risks, about their interactions and about the global potential behavior of the project. - Highlights: ► The method addresses the modeling of complexity in project risk analysis. ► Network theory indicators enable other risks than classical criticality analysis to be highlighted. ► This topological analysis improves project manager's understanding of risks and risk interactions. ► This helps project manager to make decisions considering the position in the risk network. ► An application to a real tramway implementation project in a city is provided.

  18. International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing

    CERN Document Server

    Nigrelli, Vincenzo; Oliveri, Salvatore; Peris-Fajarnes, Guillermo; Rizzuti, Sergio

    2017-01-01

    This book gathers papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of t...

  19. Relationship management in preparation for the new engineering projects

    Directory of Open Access Journals (Sweden)

    Magomedova Julia Yurievna

    2011-07-01

    Full Text Available The author reveals the constituent elements of the customer relationship and the Executive in the preparation of a new engineering projects. Relationships are built with a focus on effective risk management in the execution of the project on energy efficiency a major consumer.

  20. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems. ... Journal Home > Vol 5, No 1 (2007) ... or mathematical modeling, computing, simulation, design and/or operations research tools for solving engineering problems.