WorldWideScience

Sample records for project develops advanced

  1. The advanced software development workstation project

    Science.gov (United States)

    Fridge, Ernest M., III; Pitman, Charles L.

    1991-01-01

    The Advanced Software Development Workstation (ASDW) task is researching and developing the technologies required to support Computer Aided Software Engineering (CASE) with the emphasis on those advanced methods, tools, and processes that will be of benefit to support all NASA programs. Immediate goals are to provide research and prototype tools that will increase productivity, in the near term, in projects such as the Software Support Environment (SSE), the Space Station Control Center (SSCC), and the Flight Analysis and Design System (FADS) which will be used to support the Space Shuttle and Space Station Freedom. Goals also include providing technology for development, evolution, maintenance, and operations. The technologies under research and development in the ASDW project are targeted to provide productivity enhancements during the software life cycle phase of enterprise and information system modeling, requirements generation and analysis, system design and coding, and system use and maintenance. On-line user's guides will assist users in operating the developed information system with knowledge base expert assistance.

  2. Advanced EVA Suit Camera System Development Project

    Science.gov (United States)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  3. The Fox Project: Advanced Development of Systems Software

    National Research Council Canada - National Science Library

    1999-01-01

    The long-term objectives of the Carnegie Mellon Fox Project are to improve the design and construction of systems software and to further the development of advanced programming language technology...

  4. The Fox Project: Advanced Development of Systems Software

    National Research Council Canada - National Science Library

    2000-01-01

    The long-term objectives of the Carnegie Mellon Fox Project are to improve the design and construction of systems software and to further the development of advanced programming language technology...

  5. Overview and Summary of the Advanced Mirror Technology Development Project

    Science.gov (United States)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  6. Development of advanced JGIS considering qualify management and project management

    International Nuclear Information System (INIS)

    Kawachi, Susumu; Ohi, Takao; Kawamura, Makoto; Ishihara, Yoshinao; Ebina, Takanori

    2008-03-01

    A system for managing and integrating the technical information of R and D was developed (JGIS: JAEA Geological Disposal Information Integration System). The subjects are to improve the usability as the system and the usability to record the information and the data in order to display the function of the system sufficiently and in order to enable the practical use of the system. In this study the aims are to display the function of JGIS and to enable the researchers as the users to recognize the significance of using JGIS. We built the conceptual design in order to implement the function of quality management and project management to JGIS. We considered that researchers could access the portal site of the research projects which were set as the WBS (Work Breakdown Structure) items and could confirm which WBS item the research project belonged to in the whole plan. We also considered that the research projects could be managed by using the conformity assessment sheets which were adopted for the quality management. The appendix contains the example of application of real projects to JGIS and the user's manual of JGIS (Example of a study of potential impact of natural phenomena). We demonstrated that researchers could confirm which WBS item the research project related to in JGIS and could manage the quality of the research projects by using the conformity assessment sheets in JGIS. (author)

  7. Advanced software development workstation project: Engineering scripting language. Graphical editor

    Science.gov (United States)

    1992-01-01

    Software development is widely considered to be a bottleneck in the development of complex systems, both in terms of development and in terms of maintenance of deployed systems. Cost of software development and maintenance can also be very high. One approach to reducing costs and relieving this bottleneck is increasing the reuse of software designs and software components. A method for achieving such reuse is a software parts composition system. Such a system consists of a language for modeling software parts and their interfaces, a catalog of existing parts, an editor for combining parts, and a code generator that takes a specification and generates code for that application in the target language. The Advanced Software Development Workstation is intended to be an expert system shell designed to provide the capabilities of a software part composition system.

  8. The projects of skunk works 75 years of Lockheed Martin's advanced development programs

    CERN Document Server

    Pace, Steve

    2016-01-01

    The Projects of Skunk Works examines 75 years of Lockheed Martin's advanced development programs, from jet fighters to missiles, heavy-lift helicopters, a lighter-than-air ship, drones, and a stealth boat.

  9. Active Learning through Materials Development: A Project for the Advanced L2 Classroom

    Directory of Open Access Journals (Sweden)

    Katrina Daly Thompson

    2008-01-01

    Full Text Available Building on the notion of active learning, the assumption that students learn more when given opportunities to practice using their skills and to receive feedback on their performance, this article de-scribes a project undertaken in an Advanced (third-year Swahili course in which students were given the opportunity to develop L2 materials for computer-mediated peer instruction. The article exam-ines the goals, design and results of the project in light of the litera-ture on active learning and learner autonomy, and suggests how the project might be improved in order to serve as a model for other Ad-vanced L2 courses.

  10. Development Approach of the Advanced Life Support On-line Project Information System

    Science.gov (United States)

    Levri, Julie A.; Hogan, John A.; Morrow, Rich; Ho, Michael C.; Kaehms, Bob; Cavazzoni, Jim; Brodbeck, Christina A.; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support (ALS) Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. There has been significant advancement in the On-line Project Information System (OPIS) over the past year (Hogan et al, 2004). This paper presents the resultant OPIS development approach. OPIS is being built as an application framework consisting of an uderlying Linux/Apache/MySQL/PHP (LAMP) stack, and supporting class libraries that provides database abstraction and automatic code generation, simplifying the ongoing development and maintenance process. Such a development approach allows for quick adaptation to serve multiple Programs, although initial deployment is for an ALS module. OPIS core functionality will involve a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIs) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. Such Annual Reports will be permanent, citable references within OPIS. OPlS core functionality will also include Project Home Sites, which will allow PIS to provide updated technology information to the Community in between Annual Report updates. All data will be stored in an object-oriented relational database, created in MySQL(Reistered Trademark) and located on a secure server at NASA Ames Research Center (ARC). Upon launch, OPlS can be utilized by Managers to identify research and technology development (R&TD) gaps and to assess task performance. Analysts can employ OPlS to obtain the current, comprehensive, accurate information about advanced technologies that is required to perform trade studies of various life support system options. ALS researchers and technology developers can use OPlS to achieve an improved understanding of the NASA

  11. Developing Spent Fuel Assembly for Advanced NDA Instrument Calibration - NGSI Spent Fuel Project

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Banfield, James [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Skutnik, Steven [Univ. of Tennessee, Knoxville, TN (United States)

    2014-02-01

    This report summarizes the work by Oak Ridge National Laboratory to investigate the application of modeling and simulation to support the performance assessment and calibration of the advanced nondestructive assay (NDA) instruments developed under the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Advanced NDA instrument calibration will likely require reference spent fuel assemblies with well-characterized nuclide compositions that can serve as working standards. Because no reference spent fuel standard currently exists, and the practical ability to obtain direct measurement of nuclide compositions using destructive assay (DA) measurements of an entire fuel assembly is prohibitive in the near term due to the complexity and cost of spent fuel experiments, modeling and simulation will be required to construct such reference fuel assemblies. These calculations will be used to support instrument field tests at the Swedish Interim Storage Facility (Clab) for Spent Nuclear Fuel.

  12. 6 Sigma project advance

    International Nuclear Information System (INIS)

    2002-12-01

    This book deals with 6 sigma project advance which introduces 6 sigma project in Changwon special steel, how is failure accepted? CTQ selection which is starting line, definition of performance standard, measurement system check on reliability of measurement data, check of process capacity for current level, establishment of target, optimal design and performance of application, practice of management system for maintain of improved result, CTQ selection, check of measurement system and practice of management system.

  13. From demonstration projects to volume market : Market development for advanced housing renovation

    NARCIS (Netherlands)

    Mlecnik, E.; Prendergast, E.; Rodsjo, A.; Haavik, T.; Parker, P.

    2010-01-01

    How do we get from demonstration projects to a volume market for very low energy demand in advanced housing renovation? The contributors to this report have been working with this issue for many years. Some worked in both IEA SHC Task 28 Sustainable Housing (2000-2005) and in SHC Task 37 Advanced

  14. Development of advanced instrumentation for the Phebus FP project-preliminary studies

    International Nuclear Information System (INIS)

    Hampel, G.; Poss, G.

    1989-10-01

    The objective of the project was to examine advanced measuring methods for on-line determination of aerosol, thermohydraulic and hydrogen parameters for their usefulness in the French core melting programme PHEBUS FP. Advanced methods that are known from reactor safety programmes as well as novel measuring techniques as used in related fields such as fuel reprocessing and in non-nuclear process technology have been described and analysed with a view to their potential application in the planned tests. Possibly necessary further developments and modifications have been identified and approaches to solution have been outlined. Special emphasis has been put on the present state of radiation resistant optical fibre wave-guides, which might be integrated in several instruments. As regards the particularly important on-line aerosol measurements in PHEBUS FP, a combined system is recommended as the most promising further development. This novel system configuration comprises the mass monitor of a MESA dust monitoring system and one or several photometers of EIR design

  15. Current status and perspective of advanced loop type fast reactor in fast reactor cycle technology development project

    International Nuclear Information System (INIS)

    Niwa, Hajime; Aoto, Kazumi; Morishita, Masaki

    2007-01-01

    After selecting the combination of the sodium-cooled fast reactor (SFR) with oxide fuel, the advanced aqueous reprocessing and the simplified pelletizing fuel fabrication as the most promising concept of FR cycle system, 'Feasibility Study on Commercialized Fast Reactor Cycle Systems' was finalized in 2006. Instead, a new project, Fast Reactor Cycle Technology Development Project (FaCT Project) was launched in Japan focusing on development of the selected concepts. This paper describes the current status and perspective of the advanced loop type SFR system in the FaCT Project, especially on the design requirements, current design as well as the related innovative technologies together with the development road-map. Some considerations on advantages of the advanced loop type design are also described. (authors)

  16. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  17. Advanced Mirror Technology Development (AMTD) Project: 3.0 Year Status

    Science.gov (United States)

    Stahl, H. Philip

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is a funded NASA Strategic Astrophysics Technology project. Begun in 2011, we are in Phase 2 of a multi-year effort. Our objective is to mature towards TRL6 critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable astronomy mission can be considered by the 2020 Decadal Review. The developed technology must enable missions capable of both general astrophysics and ultra-high contrast observations of exoplanets. Just as JWST's architecture was driven by launch vehicle, a future UVOIR mission's architecture (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. Another key accomplishment is that we have matured our technology by building and testing hardware. To demonstrate stacked core technology, we built a 400 mm thick mirror. Currently, to demonstrate lateral scalability, we are manufacturing a 1.5 meter mirror. To assist in architecture trade studies, the Engineering team develops Structural, Thermal and Optical Performance (STOP) models of candidate mirror assembly systems including substrates, structures, and mechanisms. These models are validated by test of full- and subscale components in relevant thermo-vacuum environments. Specific analyses include: maximum

  18. Advanced reprocessing developments in Europe contribution of European projects ACSEPT and ACTINET-I3

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, S.; Poinssot, C. [CEA DEN, Nuclear Energy Div., RadioChemistry and Processes Dept., F-30207Bagnols sur Ceze (France); Geist, A. [KIT-INE (Germany); Cassayre, L. [CIEMAT (Spain); Rhodes, C. [NNL-UK (United Kingdom); Ekberg, C. [CHALMERS (Sweden)

    2012-07-01

    Nuclear energy has more than ever to demonstrate that it can contribute safely and on a sustainable way to answer the international increase in energy needs. Actually, in addition to an increased safety of the reactors themselves, its acceptance is still closely associated to our capability to reduce the lifetime of the nuclear waste, to manage them safely and to propose options for a better use of the natural resources. Spent fuel reprocessing can help to reach these objectives. But this cannot be achieved only by optimizing industrial processes through engineering studies. It is of a primary importance to increase our fundamental knowledge in actinide sciences in order to build the future of nuclear energy on reliable and scientifically-founded results, and therefore meet the needs of the future fuel cycles in terms of fabrication and performance of fuels, reprocessing and waste management. At the European level, both the collaborative project ACSEPT and the Integrated Infrastructure Initiative ACTINET-I3 work together to improve our knowledge in actinides chemistry and therefore develop advanced separation processes. These tools are complementary and work in close connection on some specific issues such as the understanding of the selectivity of extracting organic ligands. By offering trans-national access to the main nuclear research facility in Europe, ACTINET-I3 aims at increasing the knowledge in actinide sciences by gathering all the expertise available in European nuclear research institutes or university and giving them the opportunity to come and work in hot-labs (ITU, Atalante...) or beamlines (ESFR, ANKA, PSI) ACSEPT is focused on the development of advanced separation processes, both aqueous and pyrochemical. Head-end steps, fuel re-fabrication, solvent treatment, waste management are also taken into account. In aqueous process development, the SANEX and innovative SANEX flowsheets demonstration were successfully achieved. Chemical systems were

  19. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    Energy Technology Data Exchange (ETDEWEB)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  20. A Study on planning of the international collaboration foundation for the Advanced Nuclear Technology Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-03-15

    Korea has participated in the international collaboration programs for the development of future nuclear energy systems driven by the countries holding advanced nuclear technology and Korea and U.S. have cooperated in the INERI. This study aimed mainly at developing the plan for participation in the collaborative development of the Gen IV, searching the participation strategy for INERI and the INPRO, and the international cooperation in these programs. Contents and scope of the study for successful achievement are as follows; Investigation and analysis of international and domestic trends related to advanced nuclear technologies, Development of the plan for collaborative development of the Gen IV and conducting the international cooperation activities, Support for the activities related to I-NERI between Korea and U.S. and conducting the international cooperation, International cooperation activities for the INPRO. This study can be useful for planning the research plan and setting up of the strategy of integrating the results of the international collaboration and the domestic R and D results by combining the Gen IV and the domestic R and D in the field of future nuclear technology. Futhermore, this study can contribute to establishing the effective foundation and broadening the cooperation activities not only with the advanced countries for acquisition of the advanced technologies but also with the developing countries for the export of the domestic nuclear energy systems.

  1. A Study on planning of the international collaboration foundation for the Advanced Nuclear Technology Development Project

    International Nuclear Information System (INIS)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-03-01

    Korea has participated in the international collaboration programs for the development of future nuclear energy systems driven by the countries holding advanced nuclear technology and Korea and U.S. have cooperated in the INERI. This study aimed mainly at developing the plan for participation in the collaborative development of the Gen IV, searching the participation strategy for INERI and the INPRO, and the international cooperation in these programs. Contents and scope of the study for successful achievement are as follows; Investigation and analysis of international and domestic trends related to advanced nuclear technologies, Development of the plan for collaborative development of the Gen IV and conducting the international cooperation activities, Support for the activities related to I-NERI between Korea and U.S. and conducting the international cooperation, International cooperation activities for the INPRO. This study can be useful for planning the research plan and setting up of the strategy of integrating the results of the international collaboration and the domestic R and D results by combining the Gen IV and the domestic R and D in the field of future nuclear technology. Futhermore, this study can contribute to establishing the effective foundation and broadening the cooperation activities not only with the advanced countries for acquisition of the advanced technologies but also with the developing countries for the export of the domestic nuclear energy systems

  2. Managing Risk on a Technology Development Project/Advanced Mirror System Demonstrator

    Science.gov (United States)

    Byberg, Alicia; Russell, J. Kevin; Stahl, Phil (Technical Monitor)

    2002-01-01

    The risk management study applied to the Advanced Mirror System Demonstrator (AMSD), a precursor mirror technology development for the Next Generation Space Telescope (NGST) is documented. The AMSD will be developed as a segment of a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. The technology gained from the program will support the risk mitigation strategy for the NGST, as well as other government agency space mirror programs.

  3. Advanced Life Support Project Plan

    Science.gov (United States)

    2002-01-01

    Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.

  4. Advanced engineering environment collaboration project.

    Energy Technology Data Exchange (ETDEWEB)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  5. Advanced engineering environment collaboration project

    International Nuclear Information System (INIS)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-01-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications

  6. Advanced engineering environment pilot project.

    Energy Technology Data Exchange (ETDEWEB)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty (Parametric Technology Corporation, Needham, MA)

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  7. Development of a more fish-tolerant turbine runner, advanced hydropower turbine project

    International Nuclear Information System (INIS)

    Cook, T.C.; Hecker, G.E.

    1997-02-01

    Alden Research Laboratory, Inc. (ARL) and Northern Research and Engineering Corporation (NREC) conducted a research program to develop a turbine runner which will minimize fish injury and mortality at hydroelectric projects. ARL?NREC have developed a runner shape which minimizes the number of blade leading edges, reduces the pressure versus time and the velocity versus distance gradients within the runner, minimizes or eliminates the clearance between the runner and runner housing, and maximizes the size of the flow passages, all with minimal penalty on turbine efficiency. An existing pump impeller provided the starting point for developing the fish tolerant turbine runner. The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Conceptual design of the new runner began with a re-evaluation of studies which have been previously conducted to identify probable sources of injury to fish passing through hydraulic turbines. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. 86 figs., 5 tabs

  8. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  9. Advanced Biomass Gasification Projects

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

  10. Advanced neutron source project

    International Nuclear Information System (INIS)

    Gorynina, L.V.; Proskuryakov, S.F.; Tishchenko, V.A.; Uzhanova, V.V.

    1991-01-01

    The project of the ANS improved neutron source intended for fundamental researches in nuclear physics and materials testing is considered. New superhigh-flux heavy-water 350 MW reactor is used for the source creation. The standard fuel is uranium silicide (U 3 Si 2 ). Reactor core volume equals 67.4 l and average power density is 4.9 MW/l. Neutron flux density is 10 16 neutron/(cm 2 xs). The facility construction begin is planned for 1996. The first experiments should be accomplished in 2000

  11. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  12. CARA Project: development of the advanced ULE fuel element for heavy water nuclear power plants

    International Nuclear Information System (INIS)

    Brasnarof, Daniel O.; Marino, Armando C.; Florido, Pablo C.; Munoz, C.; Bianchi, Daniel R.; Giorgis, Miguel A.

    2006-01-01

    The CARA Project (Spanish acronym of Combustible Avanzado para Reactores Argentinos) is a national fuel element technology development, compatible with our nuclear power plants (Atucha I, Embalse and Atucha II). It takes into account the experience obtained in our nuclear organisations (CNEA-CONUAR-NASA). The goal of the CARA fuel element is the performance improvement for those reactors and the enhancing of their normal operative conditions. The CARA design allows the burnup extension by using 52 rods of the same diameter. Likewise it keeps good thermo-hydraulic behaviour. The fuel bundle can be directly used in nuclear power plants with horizontal channels. By using an additional system it can be installed in the PHWR with vertical channels. The expected profits, by the use of the CARA in our reactors, broadly guaranty the recovery of the fund for its development, due to a reduction of the NPP fuels and back end cost. We estimate a reduction in the generation cost between 20 or 25 % in relation to the present one if we use 0.85 or 0.90% SEU (Slightly Enriched Uranium). The use of the CARA fuel in our reactors will also reduce the amount of spent fuel to be treated. The shortening could be between 17 to 27 % in Atucha I in relation to the present ULE (0.85%), between 38 to 46% for Embalse, and 45 to 53% for Atucha II. The mechanical behaviour and hydraulic compatibility have been verified. Several CARA prototypes were fabricated with a new design of the end plate and with new processes for the welding for the rods. We present in this paper the current status of the CARA fuel element development. (author) [es

  13. Advanced fusion concepts: project summaries

    International Nuclear Information System (INIS)

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac

  14. Status Report on the Development of Micro-Scheduling Software for the Advanced Outage Control Center Project

    Energy Technology Data Exchange (ETDEWEB)

    Germain, Shawn St. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thomas, Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Farris, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The long-term viability of existing nuclear power plants (NPPs) in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet, refueling outages are highly complex operations, involving multiple concurrent and dependent activities that are difficult to coordinate. Finding ways to improve refueling outage performance while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center project is a research and development (R&D) demonstration activity under the Light Water Reactor Sustainability (LWRS) Program. LWRS is a R&D program which works with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current NPPs. The Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, this INL R&D project is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report describes specific recent efforts to develop a capability called outage Micro-Scheduling. Micro-Scheduling is the ability to allocate and schedule outage support task resources on a sub-hour basis. Micro-Scheduling is the real-time fine-tuning of the outage schedule to react to the actual progress of the primary outage activities to ensure that support task resources are

  15. The ADVANCE project: Insights and achievments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    ADVANCE [Advanced Driver and Vehicle Advisory Navigation ConcEpt] was a public/private partnership conceived and developed by four founding parties. The founding parties include the Federal Highway Administration (FHWA), the Illinois Department of Transportation (IDOT), the University of Illinois at Chicago and Northwestern University operating together under the auspices of the Illinois Universities Transportation Research Consortium (IUTRC), and Motorola, Inc. The major responsibilities of each party are fully described in the Project agreement. Subsequently, these four were joined on the Steering Committee by the American Automobile Association (AAA). This unique blending of public sector, private sector and university interests, augmented by more than two dozen other private sector participants, provided a strong set of resources for ADVANCE. The ADVANCE test area covered over 300 square miles including portions of the City of Chicago and 40 northwest suburban communities. The Project encompasses the high growth areas adjacent to O`Hare International Airport, the Schaumburg/Hoffman Estates office and retail complexes, and the Lake-Cook Road development corridor. It also includes major sports and entertainment complexes such as the Arlington International Racecourse and the Rosemont Horizon. The population in the area is more than 750,000. The Insights and Perspectives Compendium is intended to provide useful information to project managers, system developers, and system integrators of future similar ITS implementations. It is intended for those that are technically interested in the ADVANCE Project and have a basic understanding of the project.

  16. A study on the planning to promote the advanced nuclear technology development project

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Kue; Hahn, Do Hee; Kim, Young J. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    Korea has participated in GIF from early stage, and played an important role in GIF as an original signatory of the GIF Charter. Korea has dispatched two representatives of GIF Policy Group and Expert Group respectively. Korea submitted 10 concepts of Gen IV for Gen IV technology roadmap. Korea's KALIMER and SMART concepts have stood higher in technological evaluation. 7 Korean experts were dispatched for Gen IV technology roadmap (4 from institution, 3 from industry and 1 form academia). Furthermore, USA's NTD (Near term Deployment) will be expanded to I-NTD (International NTD). This study suggested that Korea should propose APR-1400 as I-NTD concept for I-NTD discussion in GIF. Finally, Korea and USA jointly decided to fund 2 million dollars respectively for 2001 I-ERI program and selected 6 projects for the program, which are composed of 4 for LWR area and 2 for I and C area. 27 refs., 6 figs., 11 tabs. (Author)

  17. THE ADVANCED CHEMISTRY BASINS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  18. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Maruyama, Michio

    1990-01-01

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  19. Overview and Recent Accomplishments of the Advanced Mirror Technology Development (AMTD) for Large Aperture UVOIR Space Telescopes Project

    Science.gov (United States)

    Stahl, H. Philip

    2013-01-01

    Per Astro2010, a new, larger UVO telescope is needed to answer fundamental scientific questions, such as: is there life on Earth-like exoplanets; how galaxies assemble stellar populations; how baryonic matter interacts with intergalactic medium; and how solar systems form and evolve. And, present technology is not mature enough to affordably build and launch any potential UVO concept. Advanced Mirror Technology Development (AMTD) is a funded SAT project. Our objective is to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. We defined and initiated a program to mature 6 key technologies required to fabricate monolithic and segmented space mirrors.

  20. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  1. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.

  2. The PixFEL project: development of advanced X-ray pixel detectors for application at future FEL facilities

    International Nuclear Information System (INIS)

    Rizzo, G.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Paladino, A.; Paoloni, E.; Comotti, D.; Grassi, M.; Lodola, L.; Malcovati, P.; Ratti, L.; Vacchi, C.; Fabris, L.; Manghisoni, M.; Re, V.; Traversi, G.; Morsani, F.; Betta, G.-F. Dalla; Pancheri, L.

    2015-01-01

    The PixFEL project aims to develop an advanced X-ray camera for imaging suited for the demanding requirements of next generation free electron laser (FEL) facilities. New technologies can be deployed to boost the performance of imaging detectors as well as future pixel devices for tracking. In the first phase of the PixFEL project, approved by the INFN, the focus will be on the development of the microelectronic building blocks, carried out with a 65 nm CMOS technology, implementing a low noise analog front-end channel with high dynamic range and compression features, a low power ADC and high density memory. At the same time PixFEL will investigate and implement some of the enabling technologies to assembly a seamless large area X-ray camera composed by a matrix of multilayer four-side buttable tiles. A pixel matrix with active edge will be developed to minimize the dead area of the sensor layer. Vertical interconnection of two CMOS tiers will be explored to build a four-side buttable readout chip with small pixel pitch and all the on-board required functionalities. The ambitious target requirements of the new pixel device are: single photon resolution, 1 to 10 4 photons @ 1 keV to 10 keV input dynamic range, 10-bit analog to digital conversion up to 5 MHz, 1 kevent in-pixel memory and 100 μm pixel pitch. The long term goal of PixFEL will be the development of a versatile X-ray camera to be operated either in burst mode (European XFEL), or in continuous mode to cope with the high frame rates foreseen for the upgrade phase of the LCLS-II at SLAC

  3. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive

  4. Advanced Instrumentation, Information and Control (II and C) Research and Development Facility Buildout and Project Execution of LWRS II and C Pilot Projects 1 and 3

    International Nuclear Information System (INIS)

    Farris, Ronald; Oxstrand, Johanna; Weatherby, Gregory

    2011-01-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II and C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II and C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results

  5. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  6. Ceramic Technology For Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

  7. Advanced Neutron Source (ANS) Project

    International Nuclear Information System (INIS)

    Campbell, J.H.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts

  8. Progress in Methodologies for the Assessment of Passive Safety System Reliability in Advanced Reactors. Results from the Coordinated Research Project on Development of Advanced Methodologies for the Assessment of Passive Safety Systems Performance in Advanced Reactors

    International Nuclear Information System (INIS)

    2014-09-01

    Strong reliance on inherent and passive design features has become a hallmark of many advanced reactor designs, including several evolutionary designs and nearly all advanced small and medium sized reactor (SMR) designs. Advanced nuclear reactor designs incorporate several passive systems in addition to active ones — not only to enhance the operational safety of the reactors but also to eliminate the possibility of serious accidents. Accordingly, the assessment of the reliability of passive safety systems is a crucial issue to be resolved before their extensive use in future nuclear power plants. Several physical parameters affect the performance of a passive safety system, and their values at the time of operation are unknown a priori. The functions of passive systems are based on basic physical laws and thermodynamic principals, and they may not experience the same kind of failures as active systems. Hence, consistent efforts are required to qualify the reliability of passive systems. To support the development of advanced nuclear reactor designs with passive systems, investigations into their reliability using various methodologies are being conducted in several Member States with advanced reactor development programmes. These efforts include reliability methods for passive systems by the French Atomic Energy and Alternative Energies Commission, reliability evaluation of passive safety system by the University of Pisa, Italy, and assessment of passive system reliability by the Bhabha Atomic Research Centre, India. These different approaches seem to demonstrate a consensus on some aspects. However, the developers of the approaches have been unable to agree on the definition of reliability in a passive system. Based on these developments and in order to foster collaboration, the IAEA initiated the Coordinated Research Project (CRP) on Development of Advanced Methodologies for the Assessment of Passive Safety Systems Performance in Advanced Reactors in 2008. The

  9. Advanced Messaging Concept Development Basic Safety Message

    Data.gov (United States)

    Department of Transportation — Contains all Basic Safety Messages (BSMs) collected during the Advanced Messaging Concept Development (AMCD) field testing program. For this project, all of the Part...

  10. The NASA Advanced Space Power Systems Project

    Science.gov (United States)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  11. Kansas Advanced Semiconductor Project: Final Report

    International Nuclear Information System (INIS)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-01-01

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  12. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  13. Thermodynamics of Advanced Fuels - International Database Project

    International Nuclear Information System (INIS)

    Massara, Simone; Gueneau, Christine

    2014-01-01

    The Thermodynamics of Advanced Fuels - International Database (TAF-ID) Project was established in 2013 under the auspices of the NEA Nuclear Science Committee. The project was designed to make available a comprehensive, internationally recognised and quality-assured database of phase diagrams and thermodynamic properties of advanced nuclear fuels with a view to meeting specialised requirements for the development of advanced fuels for a future generation of nuclear reactors. Some of the specific technical objectives that this programme intends to achieve are to predict the solid, liquid and/or gas phases formed during fuel cladding chemical interactions under normal and accident conditions, to improve the control of the experimental conditions during the fabrication of fuel materials at high temperature, for example by predicting the vapour pressures of the elements (particularly of plutonium and the minor actinides) and to predict the evolution of the chemical composition of fuel under irradiation versus temperature and burn-up. This joint project, co-ordinated by the NEA, was established for an initial three-year period among nine organisations from six NEA member countries: Canada (AECL, RMCC, UOIT), France (CEA), Japan (JAEA, CRIEPI), the Netherlands (NRG), the Republic of Korea (KAERI) and the United States (US DOE). It is entirely funded by the nine signatories of the project. (authors)

  14. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  15. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  16. Project development symposium

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Papers were presented on the following: project evaluation; case studies - minerals; finance; applied finance; legal; manpower/industrial relations; and new technologies. Those papers on the coal industry were: mine planning for coal project development; the planning and management of a lignite exploration contract in Thailand; development of the West Cliff extended project; Ulan: a resource development; Saxonvale mine development a case study in project planning and project management; the role of marketing in the development of a new coal project; technical support for coal marketing; infrastructure development for the Ulan project; underground mine project developments; the bucketwheel excavator at Goonyella - a case study; tax aspects of mining development projects; cost of capital mining development projects; and trends in development project finance. 16 papers were abstracted separately.

  17. Advanced Energy Projects FY 1990 research summaries

    International Nuclear Information System (INIS)

    1990-09-01

    This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)

  18. Advanced Turbine Technology Applications Project (ATTAP)

    Science.gov (United States)

    1994-01-01

    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  19. "Blogfolios" and Their Role in the Development of Research Projects in an Advanced Academic Literacy Class for ESL Students

    Science.gov (United States)

    Ananyeva, Maria

    2014-01-01

    This paper focuses on "blogfolios", online interactive blog-based portfolios, developed by students for class projects in Electronic Literacy. Blogfolios may contain interactive images, podcasts, and web-log discussions on a variety of researched academic topics. The impact of academic blogfolios on the second language learner's…

  20. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Siemens Energy, Inc., Orlando, FL (United States)

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  1. Advanced reactor development

    International Nuclear Information System (INIS)

    Till, C.E.

    1989-01-01

    Consideration is given to what the aims of advanced reactor development have to be, if a new generation of nuclear power is really to play an important role in man's energy generation activities in a fragile environment. The background given briefly covers present atmospheric evidence, the current situation in nuclear power, how reactors work and what can go wrong with them, and the present magnitudes of world energy generation. The central part of the paper describes what is currently being done in advanced reactor development and what can be expected from various systems and various elements of it. A vigorous case is made that three elements must be present in any advanced reactor development: (1) breeding; (2) passive safety; and (3) shorter-live nuclear waste. All three are possible. In the right advanced reactor systems the ways of achieving them are known. But R and D is necessary. That is the central argument made in the paper. Not advanced reactor prototype construction at this point, but R and D itself. (author)

  2. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction of combined cycle cost from the baseline. A customer advisory board was instituted during Phase 1 to obtain important feedback regarding the future direction of the project. he technologies being developed for the Hydrogen Turbine will also be utilized, as appropriate, in the 2010 time frame engine and the FutureGen Plant. These new technologies and concepts also have the potential to accelerate commercialization of advanced coal-based IGCC plants in the U. S. and around the world, thereby reducing emissions, water use, solid waste production and dependence on scarce, expensive and insecure foreign energy supplies. Technology developments accomplished in Phase 1 provide a solid foundation for ensuring successful completion in Phase 2 and providing that the challenging program goals will be achieved.

  3. Advanced Fusion Concepts project summaries. FY 1983

    International Nuclear Information System (INIS)

    1983-06-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate studients, graduates, other professional staff, and recent publications. The individual project summaries are prepared by the principle investigators in collaboration with the Advanced Fusion Concepts (AFC) Branch. In addition to the project summaries, statements of branch objectives, and budget summaries are also provided

  4. Advanced fusion concepts project summaries: 1981

    International Nuclear Information System (INIS)

    1982-03-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications

  5. Advanced Fusion Concepts project summaries, FY 1982

    International Nuclear Information System (INIS)

    1982-10-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, U.S. Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications

  6. Advanced servomanipulator development

    International Nuclear Information System (INIS)

    Kuban, D.P.

    1985-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller (DAMC) or master, and the control system. The ASM is remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world

  7. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  8. Decision Point 3 of Statement of Project Objectives (SOPO) “Recovery Act: Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems”

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Phillip

    2012-03-01

    Air Products is carrying out a scope of work under Phase 5 of the ITM Oxygen Cooperative Agreement to design, build, and operate a ceramic membrane fabrication facility (the -CerFabII) to enable production of membrane modules to supply a conceptual 2000 ton per day (TPD) ITM Oxygen facility (the -ITM Oxygen Development FacilityII), and to perform supporting development tasks in materials development and engineering development toward industrial, carbon capture and sequestration applications. Air Products is executing this project under the American Recovery and Reinvestment Act (ARRA) with the objective to accelerate the adoption of ITM Oxygen technology to help meet the country’s goals for deploying clean power plants. The objective of this Topical Report is to address the requirements of Decision Point 3 (DP3), which pertains to the status of all Tasks within Phase 5 and most notably the project status of the CerFab (Task 30) prior to authorization of funds for equipment purchase and construction of the facility. The intent of the DP3 is to provide the opportunity for DOE-NETL to review the status of these tasks and to make recommendations on forward project direction, including a recommendation to pass into Budget Period 8. In the area of Materials Development, Air Products has specified a high pressure dilatometer system which will enable measurements of material expansion of ITM ceramic compounds at very high oxygen partial pressures consistent with CCS applications. Under Task 28.2, subcontractor Ceramatec has made significant progress since DP2 in materials selection and process development and improvement for advanced architecture module fabrication. Ceramatec has determined a materials specification, and has selected a process for making the material. Ceramatec has further developed and selected the process for applying the membrane to unsintered advanced architecture wafers with a Two Step process. Ceramatec has built submodules meeting leak rate

  9. Advanced energy projects: FY 1987 research summaries

    International Nuclear Information System (INIS)

    1987-09-01

    This report contains brief summaries of all projects active in the Division of Advanced Energy Projects during Fiscal Year 1987 (October 1, 1986-September 30, 1987). The intent of this compilation is to provide a convenient means for quickly acquainting an interested reader with the program in Advanced Energy Projects. More detailed information on research activities in a particular project may be obtained by contacting directly the principal investigator. Some projects will have reached the end of their contract periods by the time this book appears, and will, therefore, no longer be active. Those cases in which work was completed in FY '87 are indicated by the footnote: Project completed. The annual funding level of each project is shown

  10. Innovations in Advanced Materials and Metals Manufacturing Project (IAM2)

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Elizabeth [Columbia River Economic Development Council, Vancouver, WA (United States)

    2017-01-06

    This project, under the Jobs and Innovation Accelerator Challenge, Innovations in Advanced Materials and Metals Manufacturing Project, contracted with Cascade Energy to provide a shared energy project manager engineer to work with five different companies throughout the Portland metro grant region to implement ten energy efficiency projects and develop a case study to analyze the project model. As a part of the project, the energy project manager also looked into specific new technologies and methodologies that could change the way energy is consumed by manufacturers—from game-changing equipment and technology to monitor energy use to methodologies that change the way companies interact and use their machines to reduce energy consumption.

  11. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  12. Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.

    Science.gov (United States)

    Dunlap, Dale

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…

  13. Advanced Emissions Control Development Program

    Energy Technology Data Exchange (ETDEWEB)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  14. FY 1999 Advanced research and development project under New Sunshine Project. Study on supercritical solvolysis reaction; 1999 nendo chorinkai ryutai riyo gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The research and development project is implemented for the chemical processes which utilize supercritical fluids, in order to establish the basic technologies for the environment-friendly chemical processes. For the solvolysis, the conditions under which plastics are hydrolyzed in supercritical water are investigated, and the basic data are obtained for the optimum conditions under which thermoplastic resins are hydrolyzed. The mechanisms involved in hydrolysis of polymers in supercritical water are elucidated to some extent. The environment-friendly process for synthesizing polycarbonate in supercritical carbon dioxide gas is investigated, and the continuous flow sheets are established for securing almost 100% conversion in the presence of an inexpensive catalyst. For the oxidation, the tests are conducted to burn low-grade coal in supercritical water, and the conditions under which it is burnt without releasing acid and toxic gases are found. For the hydrogenation, heavy fuel oil is treated in supercritical water to produce the lighter products. The conditions under which light oils and gases are produced are clarified, and the basic data are obtained for producing light gases from the resultant coke as the by-product. (NEDO)

  15. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  16. Advanced Selling: A Comprehensive Course Sales Project

    Science.gov (United States)

    Yarrington-Young, Susan; Castleberry, Stephen B.; Coleman, Joshua T.

    2016-01-01

    A comprehensive project for the Advanced Selling course that has been tested at three universities is introduced. After selecting an industry and a company, students engage in a complete industry analysis, a company sales analysis, a sales-specific SWOT analysis, complete a ride day with a salesperson in that firm, then present their findings in a…

  17. Advanced Dewatering Systems Development

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Yoon; G.H. Luttrell

    2008-07-31

    A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

  18. Oluvil Port Development Project

    DEFF Research Database (Denmark)

    Frigaard, Peter; Margheritini, Lucia

    Oluvil Port Development Project is the first development of a large port infrastructure in the entire eastern coastline of Sri Lanka. The project is supported by the Danish Foreign Ministry. Feasibility studies and detailed design studies were carried out by Lanka Hydraulic Institute Ltd during...... the years 1995 to 2003. The design was reviewed by COWI a/s. Construction of the port was started in 2008. MT Højgaard a/s acted as contractor. The outer breakwaters were constructed as first part of the project. During and after completion of the breakwaters a serious beach erosion and sand accumulation...... has been observed. Severe erosion is seen north of the harbour and some accumulation of sand is seen south of the harbour. On a sandy coastline like the one in Oluvil such erosion problems as observed are very typical. The report: Oluvil Port Development Project: Studies on Beach Erosion written...

  19. CANDU project development

    Energy Technology Data Exchange (ETDEWEB)

    Hedges, K R [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    Advanced CANDU reactor design strategy follows an evolutionary approach, taking manageable steps in the development of power plants from today`s available designs, and in parallel carrying out longer-term studies to develop future-generation reactor concepts. The major emphasis is on safety, on on reducing cost and schedule. New features are developed and thoroughly proof-tested before introduction into designs, in order to maximize owner confidence. (author). 4 figs.

  20. CANDU project development

    International Nuclear Information System (INIS)

    Hedges, K.R.

    1995-01-01

    Advanced CANDU reactor design strategy follows an evolutionary approach, taking manageable steps in the development of power plants from today's available designs, and in parallel carrying out longer-term studies to develop future-generation reactor concepts. The major emphasis is on safety, on on reducing cost and schedule. New features are developed and thoroughly proof-tested before introduction into designs, in order to maximize owner confidence. (author). 4 figs

  1. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    International Nuclear Information System (INIS)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I ampersand C Research and Development; Design; and Safety

  2. Replacement and Original Magnet Engineering Options (ROMEOs): A European Seventh Framework Project to Develop Advanced Permanent Magnets Without, or with Reduced Use of, Critical Raw Materials

    Science.gov (United States)

    Mcguiness, P.; Akdogan, O.; Asali, A.; Bance, S.; Bittner, F.; Coey, J. M. D.; Dempsey, N. M.; Fidler, J.; Givord, D.; Gutfleisch, O.; Katter, M.; Le Roy, D.; Sanvito, S.; Schrefl, T.; Schultz, L.; Schwöbl, C.; Soderžnik, M.; Šturm, S.; Tozman, P.; Üstüner, K.; Venkatesan, M.; Woodcock, T. G.; Žagar, K.; Kobe, S.

    2015-06-01

    The rare-earth crisis, which peaked in the summer of 2011 with the prices of both light and heavy rare earths soaring to unprecedented levels, brought about the widespread realization that the long-term availability and price stability of rare earths could not be guaranteed. This triggered a rapid response from manufacturers involved in rare earths, as well as governments and national and international funding agencies. In the case of rare-earth-containing permanent magnets, three possibilities were given quick and serious consideration: (I) increased recycling of devices containing rare earths; (II) the search for new, mineable, rare-earth resources beyond those in China; and (III) the development of high-energy-product permanent magnets with little or no rare-earth content used in their manufacture. The Replacement and Original Magnet Engineering Options (ROMEO) project addresses the latter challenge using a two-pronged approach. With its basis on work packages that include materials modeling and advanced characterization, the ROMEO project is an attempt to develop a new class of novel permanent magnets that are free of rare earths. Furthermore, the project aims to minimize rare-earth content, particularly heavy-rare-earth (HRE) content, as much as possible in Nd-Fe-B-type magnets. Success has been achieved on both fronts. In terms of new, rare-earth-free magnets, a Heusler alloy database of 236,945 compounds has been narrowed down to approximately 20 new compounds. Of these compounds, Co2MnTi is expected to be a ferromagnet with a high Curie temperature and a high magnetic moment. Regarding the reduction in the amount of rare earths, and more specifically HREs, major progress is seen in electrophoretic deposition as a method for accurately positioning the HRE on the surface prior to its diffusion into the microstructure. This locally increases the coercivity of the rather small Nd-Fe-B-type magnet, thereby substantially reducing the dependence on the HREs Dy and

  3. Advanced fusion concepts project summaries, FY 1988

    International Nuclear Information System (INIS)

    1988-04-01

    This report summarizes all the projects supported by the Advanced Fusion Concepts Branch of the Applied Plasma Physics Division of the Office of Fusion Energy, US Department of Energy. Each project summary was written by the respective principal investigator using the format: title, principal investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. This report is organized into three sections: Section one contains five summaries describing work in the reversed-field pinch program being performed by a diversified group of contractors, these include a national laboratory, a private company, and several universities. Section two contains eight summaries of work from the compact toroid area which encompasses field-reversed configurations, spheromaks, and heating and formation experiments. Section three contains summaries from two other programs, a density Z-pinch experiment and high-beta Q machine experiment. The intent of this collection of project summaries is to help the contractors of the Advanced Fusion Concepts Branch understand their relationship with the rest of the branch's activities. It is also meant to provide background to those outside the program by showing the range of activities of interest of the Advanced Fusion Concepts Branch

  4. Renewable energy project development

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J.

    1996-12-31

    The author presents this paper with three main thrusts. The first is to discuss the implementation of renewable energy options in China, the second is to identify the key project development steps necessary to implement such programs, and finally is to develop recommendations in the form of key issues which must be addressed in developing such a program, and key technical assistance needs which must be addressed to make such a program practical.

  5. Advanced Neutron Source (ANS) Project progress report

    International Nuclear Information System (INIS)

    McBee, M.R.; Chance, C.M.

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I ampersand C research and development; facility concepts; design; and safety

  6. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  7. Monte Carlo advances for the Eolus Asci Project

    International Nuclear Information System (INIS)

    Hendrick, J. S.; McKinney, G. W.; Cox, L. J.

    2000-01-01

    The Eolus ASCI project includes parallel, 3-D transport simulation for various nuclear applications. The codes developed within this project provide neutral and charged particle transport, detailed interaction physics, numerous source and tally capabilities, and general geometry packages. One such code is MCNPW which is a general purpose, 3-dimensional, time-dependent, continuous-energy Monte Carlo fully-coupled N-Particle transport code. Significant advances are also being made in the areas of modern software engineering and parallel computing. These advances are described in detail

  8. Collaborative Learning in Advanced Supply Systems: The KLASS Pilot Project.

    Science.gov (United States)

    Rhodes, Ed; Carter, Ruth

    2003-01-01

    The Knowledge and Learning in Advanced Supply Systems (KLASS) project developed collaborative learning networks of suppliers in the British automotive and aerospace industries. Methods included face-to-face and distance learning, work toward National Vocational Qualifications, and diagnostic workshops for senior managers on improving quality,…

  9. Report on Advanced Detector Development

    Energy Technology Data Exchange (ETDEWEB)

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  10. Various advanced design projects promoting engineering education

    Science.gov (United States)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  11. Advanced Fingerprint Analysis Project Fingerprint Constituents

    Energy Technology Data Exchange (ETDEWEB)

    GM Mong; CE Petersen; TRW Clauss

    1999-10-29

    The work described in this report was focused on generating fundamental data on fingerprint components which will be used to develop advanced forensic techniques to enhance fluorescent detection, and visualization of latent fingerprints. Chemical components of sweat gland secretions are well documented in the medical literature and many chemical techniques are available to develop latent prints, but there have been no systematic forensic studies of fingerprint sweat components or of the chemical and physical changes these substances undergo over time.

  12. Sniffer project development

    CERN Document Server

    Grau, S; CERN. Geneva. ST Division

    2002-01-01

    To ensure the safety of the personnel, and prevent major damage to the equipment in the LHC experiments, a combined fire and gas detection system is being developed in conjunction with the industry. This system named SNIFFER, shall detect fire, flammable gas leaks and oxygen deficiency. In addition it shall interface with the Experiments' Control System and the CERN Safety Alarm Monitoring system. The SNIFFER project is currently at the end of the prototyping phase, and the technical specification is being written for the outsourcing of the system. The purpose of this document is to describe the main functions, constraints and interfaces of the system, to present the status report and planning of the project, and to explain the preliminary conclusions of the prototyping phase.

  13. ARDENT to develop advanced dosimetric techniques

    CERN Document Server

    Antonella Del Rosso

    2012-01-01

    Earlier this week, the EU-supported Marie Curie training network ARDENT kicked off at a meeting held at CERN. The overall aim of the project is the development of advanced instrumentation for radiation dosimetry. The applications range from radiation measurements around particle accelerators, onboard commercial flights and in space, to the characterization of radioactive waste and medicine, where accurate dosimetry is of vital importance.   The ARDENT (Advanced Radiation Dosimetry European Network Training) project is both a research and a training programme, which aims at developing new dosimetric techniques while providing 15 Early-Stage Researchers (ESR) with state-of-the-art training. The project, coordinated by CERN, is funded by the European Union with a contribution of about 3.9 million euros over four years. The ARDENT initiative will focus on three main technologies: gas detectors, in particular Gas Electron Multipliers (GEM) and Tissue Equivalent Proportional Counters (TEPC); solid stat...

  14. Accelerating development of advanced inverters :

    Energy Technology Data Exchange (ETDEWEB)

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael; Schutz, Dustin

    2013-11-01

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  15. Development of advanced BWR

    International Nuclear Information System (INIS)

    Toyota, Masatoshi

    1982-01-01

    The Japanese technology and domestic production of BWR type nuclear power plants have been established through the experiences in the construction and operation of BWRs in addition to the technical agreement with the General Electric Co. In early days, the plants experienced some trouble such as stress corrosion cracking and some inconvenience in the operation and maintenance. The government, electric power companies and BWR manufacturers have endeavored to standardize and improve the design of LWRs for the purpose of improving the safety, reliability and the rate of operation and reducing the radiation exposure dose of plant workers. The first and second stages of the standardization and improvement of LWRs have been completed. Five manufacturers of BWRs in the world have continued the conceptual design of a new version of BWR power plants. It was concluded that this is the most desirable version of BWR nuclear power stations, but the technical and economic evaluation must be made before the commercial application. Six electric power companies and three manufacturers of BWRs in Japan set up the organization to develop the technology in cooperation. The internal pump system, the new control rod drive mechanism and others are the main features. (Kako, I.)

  16. Advanced Hydrocarbon Fuel Development

    Science.gov (United States)

    Bai, S. Don; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    As a part of a high energy density materials (HEDM) development, the hot fire tests for Quadricyclane, 1,7 Octadiyne, AFRL-1, Biclopropylidene, and CINCH (Dimethyl amino ethyl azide) have been conducted at NASA/MSFC. The first 4 materials for this task are provided from Air Force Research Laboratory at Edward Air Force Base and US Army provided CINCH. The performance of these fuels is compared with RP-1. The preliminary results of these tests are presented. The preliminary results of Quadricyclane tests indicate that the specific impulse and c-star efficiency for quadricyclane at the mixture ratio 1.94 are approximately 5 sec and 105 ft/sec better than the RP-1 at mixture ratio 1.9. The 1,7 Octadiyne test indicate that the specific impulse and c-star efficiency at the mixture ratio 2.1 are approximately -1 sec and 89 ft/sec differ than the RP-1 at mixture ratio 2.04. The Quadricyclane soot buildup at the combustor is a little more than RP-1, but detail study of soot formation is not considered at this time. There was no visual soot buildup for the 1,7 Octadiyne and AFRL-1.

  17. Advanced nuclear reactor public opinion project

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  18. Advanced nuclear reactor public opinion project

    International Nuclear Information System (INIS)

    Benson, B.

    1991-01-01

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions

  19. Fiscal 1991 research report. Research trend survey for next-generation industrial structure technology research and development project - Research and development of advanced materials for extreme environments; 1991 nendo jisedai sangyo kiban gijutsu kenkyu kaihatsu project ni kakawaru kenkyu doko chosa hokokusho. Chotaikankyosei senshin zairyo no kenkyu kaihatsu (sekitoku sekiyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    Efforts were exerted to develop intermetallic compounds and advanced C/C (carbon/carbon) composite materials usable under extreme environments such as high temperatures. In relation with advanced composite materials, especially with projects for developing composite materials using oil as raw material, a survey was conducted of the three fields of (1) summarization of activities conducted up to fiscal 1991, (2) contents of associated aerospace projects, and (3) oil based composite material technology. In Field (1), past achievements are summarized. In Field (2), aerospace projects under way across the world are broken down by airframe and engine, and are reviewed from the viewpoint of needs for materials. In Field (3), the present and future of heat resisting thermosetting composite materials, thermoplastic composite materials, and C/C composites are discussed. Characteristics such materials are supposed to finally assume and tasks to discharge for technical development are also taken up. (NEDO)

  20. Halden Reactor Project Workshop: Understanding Advanced Instrumentation and Controls Issues

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1991-01-01

    A Halden Reactor Project Workshop on 'Understanding Advanced Instrumentation and Controls Issues' was held in Halden, Norway, during June 17-18, 1991. The objectives of the workshop were to (1) identify and prioritize the types of technical information that the Halden Project can produce to facilitate the development of man-machine interface guidelines and (2) to identify methods to effectively integrate and disseminate this information to signatory organizations. As a member of the Halden Reactor Project, the Nuclear Regulatory Commission (NRC) requested the workshop. This request resulted from the NRC's need for human factors guidelines for the evaluation of advanced instrumentation and controls. The Halden Reactor Project is a cooperative agreement among several countries belonging to the Organization for Economic Cooperation and Development (OECD). The US began its association with the Halden Project in 1958 through the Atomic Energy Commission. The project's activities are centered at the Halden heavy-water reactor and its associated man-machine laboratory in Halden, Norway. The research program conducted at Halden consists of studies on fuel performance and computer-based man-machine interfaces

  1. Laser light scattering instrument advanced technology development

    Science.gov (United States)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  2. Pilot Project: analysis, development and projection

    OpenAIRE

    Tapia Abril, Verónica Emilia; Chérrez Rodas, Karina; García Pesántez, Gabriela Rosana; Maldonado Marchán, María Elisa; Bustamante Montesdeoca, José Luis

    2014-01-01

    Since the introduction of ICT in architecture and teaching, pedagogies of education have faced their learning paradigms change. Institutes of higher education have folded to this motion and have undergone a process of change by implementing multimedia elements in their subjects. Through the pilot project educational videos that aim to meet the highest standards of educational videos described by Van Dam have been developed. The project expects to generate educational videos for different depa...

  3. Windscale advanced gas-cooled reactor (WAGR) decommissioning project overview

    International Nuclear Information System (INIS)

    Pattinson, A.

    2003-01-01

    The current BNFL reactor decommissioning projects are presented. The projects concern power reactor sites at Berkely, Trawsfynydd, Hunterstone, Bradwell, Hinkley Point; UKAEA Windscale Pile 1; Research reactors within UK Scottish Universities at East Kilbride and ICI (both complete); WAGR. The BNFL environmental role include contract management; effective dismantling strategy development; implementation and operation; sentencing, encapsulation and transportation of waste. In addition for the own sites it includes strategy development; baseline decommissioning planning; site management and regulator interface. The project objectives for the Windscale Advanced Gas-Cooled Reactor (WAGR) are 1) Safe and efficient decommissioning; 2) Building of good relationships with customer; 3) Completion of reactor decommissioning in 2005. The completed WAGR decommissioning campaigns are: Operational Waste; Hot Box; Loop Tubes; Neutron Shield; Graphite Core and Restrain System; Thermal Shield. The current campaign is Lower Structures and the remaining are: Pressure vessel and Insulation; Thermal Columns and Outer Vault Membrane. An overview of each campaign is presented

  4. Advanced Air Transportation Technologies Project, Final Document Collection

    Science.gov (United States)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  5. Advanced Radiation Protection (ARP): Advanced Radiation Protection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project is building the first prototype integrated system to mitigate solar event risk through probabilistic modeling, forecasting, and dose projection. This new...

  6. The advanced containment experiments (ACE) Project

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Ritzman, R.; Merilo, M.; Rahn, F.; Machiels, A.

    1992-01-01

    The overall structure and content of the ACE Project, which has been obtaining experimental data in four key areas of LWR severe accident technology are described. The key areas consist of filtration systems for vented containment concepts, radioiodine behavior in containment, the interaction of molten core material with structural concrete, and the use of water to terminate the core-concrete interaction process. Experiment procedures used in each phase of the work are summarized and the principal results and conclusions developed to date are discussed

  7. Data management system advanced development

    Science.gov (United States)

    Douglas, Katherine; Humphries, Terry

    1990-01-01

    The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.

  8. Projecting regulatory expectations for advanced reactor designs

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    This paper explores the overarching safety principles that will likely guide the safety design of advanced reactor technologies. As will be shown, the already established safety framework provides a solid foundation for the safety design of future nuclear power plants. As a specific example, the principle of 'proven technology' is presented in greater detail and its implications for a novel technology are discussed. Research, modeling and prototyping are shown to be components in satisfying this principle. While the fundamental safety principles are in place, their interpretation may depend both on the considered technology as well as the national context. Thus, the regulatory authority will need to be engaged, at an appropriate stage of the technology development, in specifying the regulatory requirements that will have to be met for a specific reactor design. (author)

  9. Advanced Energy Industries, Inc. SEGIS developments.

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  10. Fixed Wing Project: Technologies for Advanced Air Transports

    Science.gov (United States)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  11. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  12. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    Suk, H. C.; Hwang, W.; Rhee, B. W.; Jung, S. H.; Chung, C. H.

    1992-05-01

    This research project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor for 1996 and 1997, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year include the detail design of CANFLEX fuel with natural enriched uranium (CANFLEX-NU). Based on this design, CANFLEX fuel was mocked up. Out-of-pile hydraulic scoping tests were conducted with the fuel in the CANDU Cold Test Loop to investigate the condition under which maximum pressure drop occurs and the maximum value of the bundle pressure drop. (Author)

  13. Advanced express web application development

    CERN Document Server

    Keig, Andrew

    2013-01-01

    A practical book, guiding the reader through the development of a single page application using a feature-driven approach.If you are an experienced JavaScript developer who wants to build highly scalable, real-world applications using Express, this book is ideal for you. This book is an advanced title and assumes that the reader has some experience with node, Javascript MVC web development frameworks, and has heard of Express before, or is familiar with it. You should also have a basic understanding of Redis and MongoDB. This book is not a tutorial on Node, but aims to explore some of the more

  14. The ECLSS Advanced Automation Project Evolution and Technology Assessment

    Science.gov (United States)

    Dewberry, Brandon S.; Carnes, James R.; Lukefahr, Brenda D.; Rogers, John S.; Rochowiak, Daniel M.; Mckee, James W.; Benson, Brian L.

    1990-01-01

    Viewgraphs on Environmental Control and Life Support System (ECLSS) advanced automation project evolution and technology assessment are presented. Topics covered include: the ECLSS advanced automation project; automatic fault diagnosis of ECLSS subsystems descriptions; in-line, real-time chemical and microbial fluid analysis; and object-oriented, distributed chemical and microbial modeling of regenerative environmental control systems description.

  15. Advanced Blade Manufacturing Project - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  16. Advanced Energy Projects: FY 1993, Research summaries

    International Nuclear Information System (INIS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included

  17. Advanced Energy Projects: FY 1993, Research summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  18. SIYAZAMA ENTREPRENEURIAL DEVELOPMENT PROJECT ...

    African Journals Online (AJOL)

    course of planning, implementation and evaluation are presented. Identification of challenges ..... 2012. 113. Most participants in the Siyazama project live in informal housing with an average of six ..... The contributions of educational psychology to school psychology. In: T.B. Gutkin & C.R. Reynolds (eds.), The handbook of ...

  19. Fiscal 1998 research achievement report. Project for promoting development of super-advanced electronic technology; 1998 nendo chosentan denshi gijutsu kaihatsu sokushin jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    For the purpose of establishing super-advanced technologies two generations ahead in the field of electronics and information, research and development was carried out involving ultrafine machining process technology, technologies of ultimate measuring, analysis, and control, and technologies of electronic materials equipped with novel functions. In the study of writing systems in which writing is performed directly by an electron beam, writing technologies using electron beams under single-column and multi-column systems were taken up. In the study of ultrashort wavelength electromagnetic wave patterning systems, studies were made about equimultiple ultrashort wavelength and reduced ultrashort wavelength electromagnetic wave patterning. In the study of ultrahigh precision shielding systems, studies involved high precision in situ measurement and control of writing distortion, and ultrahigh precision and high current density electronic optical technologies. Also carried out were research and development of technologies of super-advanced plasma measurement, analysis, and control, technology of cleaning by ultrafine particle control, technology of ultrahigh sensitivity medium, and technologies of new functional elements and film fabrication. In the overall research and survey, surveys were conducted of the trends of development of technology of semiconductor related lithography. (NEDO)

  20. Report on fabrication of pin components for fuel fabrication in FUJI project (Co-operation in the research and development of advanced sphere-pac fuel among PSI, JNC, and NRG)

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Hinai, Hiroshi; Shigetome, Yoshiaki; Kono, Shusaku; Matsuzaki, Masaaki

    2003-03-01

    Japan Nuclear Cycle Development Institute (JNC) has conducted the co-operation concerning vibro-packed fuels with Paul Scherrer Institut (PSI) in Switzerland and Nuclear Research and consultancy Group (NRG) in the Netherlands. The project 'Research and Development of advanced Sphere-pac Fuel' is called FUJI (FUel irradiations for JNC and PSI) Project. In this project, three types of fuels that are sphere-pac fuels, vipac fuels, and pellet fuels will be irradiated in the High Flux Reactor (HFR) to compare their performance. Based on the drawing which has been agreed among three parties, fabrication of the pin components and welding of the upper and lower connection end plugs were performed in accordance with ISO9001 in JNC. This report describes data of the fabricated pin components, results of welding qualification tests, and quality assurance of the welded components. The fabrication of pin components was successfully completed and they were delivered to PSI in October 2002. (author)

  1. Development activities on advanced LWR in Argentina

    International Nuclear Information System (INIS)

    Gomez, S.E.

    2001-01-01

    CAREM, an Argentinean project, consists of the development, design and construction of a small Nuclear Power Plant. CAREM is an advanced reactor conceived with new generation design solutions and standing on the large experience accumulated in the safe operation of Light Water Reactors in the world. The CAREM is an indirect cycle reactor with some distinctive features that greatly simplify the reactor and also contribute to a high level of safety: integrated primary cooling system, self-pressurized, primary cooling by natural circulation and safety system relying on passive features. In this paper a brief description of the CAREM distinctive features and associated development activities are presented. (author)

  2. Advanced Engineering Environment FY09/10 pilot project.

    Energy Technology Data Exchange (ETDEWEB)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.; Dutra, Edward G.; Sego, Abraham L.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporate product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.

  3. Fiscal 2000 research achievement report. Super-advanced electronics technologies development promotion project; 2000 nendo kenkyu seika hokokusho. Cho sentan gijutsu kaihatsu sokushin jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    For the construction of a common base of key technologies in the domain of electronics and information with the influence propagating across a wide range of industries, research and development was conducted of technologies of ultrafine working process, technologies of ultimate measurement, analysis, and control, technologies of new functional electronic materials, etc. Studied in the field of electron beam lithography were high precision and large area imaging technology, highly accurate electron optics control system technology, and beam monitoring technology. Studied in the field of ultrashort wavelength electromagnetic wave patterning system technology were proximity ultrashort wavelength electromagnetic wave patterning system technology, reduced ultrashort wavelength electromagnetic wave patterning system technology, and ultrahigh precision new materials patterning technology. Also studied were technologies of super-advanced plasma measurement, analysis, and control, and technology of super-advanced cleaning. In the field of technologies of new functional elements and films, studies were conducted about technologies of highly sensitive GMR (giant magnetoresistive) film and head fabrication process for contact magnetic recording and technologies of a spin-valve head with submicron track width for contact magnetic recording. (NEDO)

  4. Fiscal 1991 research report. Research trend survey for next-generation industrial structure technology research and development project - Research and development of advanced materials for extreme environments; 1991 nendo jisedai sangyo kiban gijutsu kenkyu kaihatsu project ni kakawaru kenkyu doko chosa hokokusho. Chotaikankyosei senshin zairyo no kenkyu kaihatsu (sekitoku daiene)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    Efforts were exerted to develop intermetallic compounds and C/C (carbon/carbon) composites to serve as advanced materials for extreme environments. In relation with advanced materials, especially with intermetallic compounds and fiber reinforced intermetallic compound composite materials, a technical research survey was conducted covering the three fields of (1) summarization of activities conducted up to fiscal 1991, (2) contents of associated aerospace projects, and (3) aeroengine components. In Field (1), the ground on which the project was created and the project's basic plans, goals, and systems, and its ripple effects are discussed, and the fruits produced so far are summarized. In Field (2), aeroengine component related projects of America, Britain, France, Germany, and Japan are investigated. In Field (3), aluminum alloys, titanium alloys, alloy steel, superalloys, intermetallic compounds, and intermetallic compound composite materials are discussed with attention paid to their current status and future trend, characteristics they are supposed to finally assume, and technical tasks to discharge for the development of technologies concerned. (NEDO)

  5. Advanced reach tool (ART) : Development of the mechanistic model

    NARCIS (Netherlands)

    Fransman, W.; Tongeren, M. van; Cherrie, J.W.; Tischer, M.; Schneider, T.; Schinkel, J.; Kromhout, H.; Warren, N.; Goede, H.; Tielemans, E.

    2011-01-01

    This paper describes the development of the mechanistic model within a collaborative project, referred to as the Advanced REACH Tool (ART) project, to develop a tool to model inhalation exposure for workers sharing similar operational conditions across different industries and locations in Europe.

  6. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    Science.gov (United States)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  7. Advances in the project about Pin type silicon radiation detectors

    International Nuclear Information System (INIS)

    Ramirez F, J.; Cerdeira, A.; Aceves, M.; Diaz, A.; Estrada, M.; Rosales, P.; Cabal, A.E.; Montano L, M.; Leyva, A.

    1998-01-01

    The obtained advances in the collaboration project ININ-CINVESTAV about development of Pin type semiconductor radiation detectors here are presented. It has been characterized the response to different types of radiation made in CINVESTAV and INAOE. Measurements have been realized with different types of sensitive to charge preamplifiers determining the main characteristics which must be executed to be able to be employed with low capacitance detectors. As applications it has been possible to measure the irradiation time in a mammography machine and X-ray energy spectra have been obtained in the order of 14 KeV, with 4 KeV at ambient temperature. The future actions of project have been indicated and the possible applications of these detectors. (Author)

  8. Gamification in Software Development Projects

    Directory of Open Access Journals (Sweden)

    Platonova Valērija

    2017-12-01

    Full Text Available Gamification is one of the many ways to motivate employees and introduce more fun in daily activities. The aim of the paper is to analyse the impact of gamification method on the software development projects. The paper contains results of a literature review about application areas of gamification, methods, positive and negative effects on projects. The paper also presents an overview of the gamification tools used in software development projects and attempts to answer the question about benefits of gamification usage: whether gamification in the project leads to the desired results and increases the employee productivity and motivation.

  9. Catalyzing RE Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kate; Elgqvist, Emma; Walker, Andy; Cutler, Dylan; Olis, Dan; DiOrio, Nick; Simpkins, Travis

    2016-09-01

    This poster details how screenings done with REopt - NREL's software modeling platform for energy systems integration and optimization - are helping to catalyze the development of hundreds of megawatts of renewable energy.

  10. Developing Government Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  11. Project fuel development

    International Nuclear Information System (INIS)

    Stratton, R.W.

    1981-05-01

    The activities continued on lab-scale production of uranium-plutonium carbide fuel for the fast reactor using gelation methods, irradiation testing and performance evaluation. Whereas in earlier years a balance was maintained between research and development or with emphasis on research, 1980 was marked by a concentrated equipment development effort for an increased throughput with improved process control and product reproducability and installation of new equipment for large pin fabrication. (Auth.)

  12. Advanced Ground Systems Maintenance Enterprise Architecture Project

    Science.gov (United States)

    Perotti, Jose M. (Compiler)

    2015-01-01

    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. The delivered capabilities include anomaly detection, fault isolation, prognostics and physics based diagnostics.

  13. Advanced Emissions Control Development Program: Mercury Control

    International Nuclear Information System (INIS)

    Evans, A.P.; Redinger, K.W.; Holmes, M.J.

    1997-07-01

    McDermott Technology, Inc. (a subsidiary of Babcock ampersand Wilcox) is conducting the Advanced Emissions Control Development Project (AECDP) which is aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPS) from coal-fired electric utility plants. The need for such controls may arise as the US Environmental Protection Agency (EPA) proceeds with implementation of requirements set forth in the Clean Air Act Amendments (CAAA's) of 1990. Promulgation of air toxics emissions regulations for electric utility plants could dramatically impact utilities burning coal, their industrial and residential customers, and the coal industry. AECDP project work will supply the information needed by utilities to respond to potential HAPs regulations in a timely, cost-effective, enviromnentally-sound manner which supports the continued use of the Nation's abundant reserves of coal, such as those in the State of Ohio. The development work is being carried out using the 10 MW Clean Environment Development Facility wherein air toxics emissions control strategies can be developed under controlled conditions. The specific objectives of the project are to (1) measure and understand production and partitioning of air toxics species for a variety of coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems, (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. This project is supported by the Department of Energy, the Ohio Coal Development Office within the Ohio Department of Development and Babcock ampersand Wilcox. A comprehensive assessment of HAP emissions from coal-fired electric utility boilers sponsored by the Department of Energy and the Electric Power Research Institute concluded that with the exception of

  14. Project Success in Agile Development Software Projects

    Science.gov (United States)

    Farlik, John T.

    2016-01-01

    Project success has multiple definitions in the scholarly literature. Research has shown that some scholars and practitioners define project success as the completion of a project within schedule and within budget. Others consider a successful project as one in which the customer is satisfied with the product. This quantitative study was conducted…

  15. Development of advanced neutron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Seong, B S; Lee, J S; Sim, C M [and others

    2007-06-15

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility.

  16. Development of advanced neutron beam technology

    International Nuclear Information System (INIS)

    Seong, B. S.; Lee, J. S.; Sim, C. M.

    2007-06-01

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility

  17. Advanced accelerator research and development

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    Research and development on the Positron-Electron Project (PEP), the electron rings, the superconducting accelerator (ESCAR), and the superconductivity program are reported. Efforts relating to the proposed PEP include work on: (1) the injection system; (2) the rf system; (3) the main-ring bend magnets; (4) the magnet power supplies and controls; (5) alignment; (6) radiation and shielding; (7) the vacuum system; and (8) conventional facilities (utilities, etc.). Experimental and theoretical work continued on the development of suitably intense electron rings as vehicles for the collective acceleration of ions. The most difficult problem was found to be the longitudinal (negative mass) instability. Design work was begun for ESCAR (Experimental Superconducting Accelerating Ring), a small proton synchrotron and storage ring using superconducting magnets, which should aid in the design of future large superconducting facilities. Magnet development was largely directed toward the detailed design of the dipole units. A superconducting beam transport line was installed at the Bevatron. (PMA)

  18. Advanced Metrics for Assessing Holistic Care: The "Epidaurus 2" Project.

    Science.gov (United States)

    Foote, Frederick O; Benson, Herbert; Berger, Ann; Berman, Brian; DeLeo, James; Deuster, Patricia A; Lary, David J; Silverman, Marni N; Sternberg, Esther M

    2018-01-01

    In response to the challenge of military traumatic brain injury and posttraumatic stress disorder, the US military developed a wide range of holistic care modalities at the new Walter Reed National Military Medical Center, Bethesda, MD, from 2001 to 2017, guided by civilian expert consultation via the Epidaurus Project. These projects spanned a range from healing buildings to wellness initiatives and healing through nature, spirituality, and the arts. The next challenge was to develop whole-body metrics to guide the use of these therapies in clinical care. Under the "Epidaurus 2" Project, a national search produced 5 advanced metrics for measuring whole-body therapeutic effects: genomics, integrated stress biomarkers, language analysis, machine learning, and "Star Glyphs." This article describes the metrics, their current use in guiding holistic care at Walter Reed, and their potential for operationalizing personalized care, patient self-management, and the improvement of public health. Development of these metrics allows the scientific integration of holistic therapies with organ-system-based care, expanding the powers of medicine.

  19. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  20. Knowledge Creation Through Development Projects

    DEFF Research Database (Denmark)

    Laursen, Erik

    2010-01-01

    The focus of the paper is set on efforts to produce and manage organizational learning and development through engagement in organizational development projects, involving the implementation of new methods, new technologies and new ways of organizing the work processes. The issues discussed...... study of four organizational development projects (covering the organizations as a whole) held by four Danish High Schools (“gymnasium”). The study included questionnaires as well as interviews with the management and staff, plus a survey of selected written materials and documents. The purpose...... of the paper is to describe the activities, actually organized by the projects., as well as the various ways in which different groupings among the staff and the management are relating to the project. A special focus is set on the different perspectives on the projects established by the staff...

  1. Development project HTR-electricity-generating plant, concept design of an advanced high-temperature reactor steam cycle plant with spherical fuel elements (HTR-K)

    International Nuclear Information System (INIS)

    1978-07-01

    The report gives a survey of the principal work which was necessary to define the design criteria, to determine the main design data, and to design the principal reactor components for a large steam cycle plant. It is the objective of the development project to establish a concept design of an edvanced steam cycle plant with a pebble bed reactor to permit a comparison with the direct-cycle-plant and to reach a decision on the concept of a future high-temperature nuclear power plant. It is tried to establish a largerly uniform basic concept of the nuclear heat-generating systems for the electricity-generating and the process heat plant. (orig.) [de

  2. Texas ''Recycled Content''/Advanced Green Builder Demonstration Home Project

    International Nuclear Information System (INIS)

    Fisk, P. III; Vittori, G.

    1993-01-01

    This paper presents an overview of principal issues addressed in the Advanced Green Builder Demonstration Home Project, with units to be constructed in Austin and Laredo. The project's objective is to introduce these distinct communities to a range of ''green'' housing materials and methods, emphasizing opportunities for recycled-content and by-product based construction materials. The project, principally funded by U.S. Department of Energy Oil Overcharge Funds administered by the Texas Governor's Energy Office, also is supported by several state, regional, and municipal agencies. As such, the project reflects a regional process, as open to adaptation to a region's natural resources as it is to its peoples. The design is specifically intended to bridge issues of social and family concerns, such as affordability, expandibility, and economic development. This is a result of a modular-based design framework, coupled with reliance on environmentally-conscious regional manufacture of by-product based materials. Environmental issues are addressed by establishing a user for pollutants considered major contributors to global concerns of acid rain (due to release of sulphur dioxide), global warming (due to release of carbon dioxide), and deforestation. The homes will be built without virgin wood products or portland cement

  3. The environmental control and life support system advanced automation project

    Science.gov (United States)

    Dewberry, Brandon S.

    1991-01-01

    The objective of the ECLSS Advanced Automation project includes reduction of the risk associated with the integration of new, beneficial software techniques. Demonstrations of this software to baseline engineering and test personnel will show the benefits of these techniques. The advanced software will be integrated into ground testing and ground support facilities, familiarizing its usage by key personnel.

  4. Advanced Neutron Source (ANS) Project progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  5. Advanced Neutron Source (ANS) Project progress report, FY 1994

    International Nuclear Information System (INIS)

    Campbell, J.H.; King-Jones, K.H.; Thompson, P.B.

    1995-01-01

    The President's budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met

  6. FY 2000 report on the research cooperation project on the research cooperative follow-up for development of the manufacturing technology supported by advanced and integrated information system through cooperation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The manufacturing technology supported by advanced and integrated information system through cooperation (MATIC), that is, a project supporting the production technology including the international information system and CAD/CAM system, etc. was carried out from FY 1994 to FY 1998. From FY 1999, the follow-up project is being implemented for the spread of the MATIC results, support for the independent R and D and the technical guidance. China, Indonesia, Malaysia and Singapore participated in this project, by which the support and technical guidance were given in three fields: automobiles/the parts; household electric appliances/the parts; fiber/apparel. At present, each country is continuing its own activity for using the system developed in the MATIC project in its country. In this fiscal year, researchers were sent to each country for supporting the activities. Further, the MATIC follow-up committee was established to conduct the drawing-up of a business plan, grasp of the state of the spread/R and D, discussion about problems/subjects, comprehensive evaluation of the MATIC project, etc. (NEDO)

  7. The Advanced Linked Extended Reconnaissance & Targeting Technology Demonstration project

    Science.gov (United States)

    Edwards, Mark

    2008-04-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing many operational needs of the future Canadian Army's Surveillance and Reconnaissance forces. Using the surveillance system of the Coyote reconnaissance vehicle as an experimental platform, the ALERT TD project aims to significantly enhance situational awareness by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. The project is exploiting important advances made in computer processing capability, displays technology, digital communications, and sensor technology since the design of the original surveillance system. As the major research area within the project, concepts are discussed for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as from beyond line-of-sight systems such as mini-UAVs and unattended ground sensors. Video-rate image processing has been developed to assist the operator to detect poorly visible targets. As a second major area of research, automatic target cueing capabilities have been added to the system. These include scene change detection, automatic target detection and aided target recognition algorithms processing both IR and visible-band images to draw the operator's attention to possible targets. The merits of incorporating scene change detection algorithms are also discussed. In the area of multi-sensor data fusion, up to Joint Defence Labs level 2 has been demonstrated. The human factors engineering aspects of the user interface in this complex environment are presented, drawing upon multiple user group sessions with military surveillance system operators. The paper concludes with Lessons Learned from the project. The ALERT system has been used in a number of C4ISR

  8. Advanced Research Reactor Fuel Development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. K.; Park, H. D.; Kim, K. H. (and others)

    2006-04-15

    RERTR program for non-proliferation has propelled to develop high-density U-Mo dispersion fuels, reprocessable and available as nuclear fuel for high performance research reactors in the world. As the centrifugal atomization technology, invented in KAERI, is optimum to fabricate high-density U-Mo fuel powders, it has a great possibility to be applied in commercialization if the atomized fuel shows an acceptable in-reactor performance in irradiation test for qualification. In addition, if rod-type U-Mo dispersion fuel is developed for qualification, it is a great possibility to export the HANARO technology and the U-Mo dispersion fuel to the research reactors supplied in foreign countries in future. In this project, reprocessable rod-type U-Mo test fuel was fabricated, and irradiated in HANARO. New U-Mo fuel to suppress the interaction between U-Mo and Al matrix was designed and evaluated for in-reactor irradiation test. The fabrication process of new U-Mo fuel developed, and the irradiation test fuel was fabricated. In-reactor irradiation data for practical use of U-Mo fuel was collected and evaluated. Application plan of atomized U-Mo powder to the commercialization of U-Mo fuel was investigated.

  9. Incentive contracts for development projects

    Science.gov (United States)

    Finley, David T.; Smith, Byron; DeGroff, B.

    2012-09-01

    Finding a contract vehicle that balances the concerns of the customer and the contractor in a development project can be difficult. The customer wants a low price and an early delivery, with as few surprises as possible as the project progresses. The contractor wants sufficient cost and schedule to cover risk. Both want to clearly define what each party will provide. Many program offices do not want to award cost plus contracts because their funding sources will not allow it, their boards do not want an open ended commitment, and they feel like they lose financial control of the project. A fixed price incentive contract, with a mutually agreed upon target cost, provides the owner with visibility into the project and input into the execution of the project, encourages both parties to save costs, and stimulates a collaborative atmosphere by aligning the respective interests of customers and contractors.

  10. Developing a career advancement program.

    Science.gov (United States)

    Pinette, Shirley L

    2003-01-01

    Have you ever asked yourself, "What will I be doing five or ten years from now?" "Will I be doing the same thing I'm doing right now?" How would you feel if the answer were "yes"? I often wonder if any of my employees think the same thing. If they do, and the answer is "yes," just how does that make them feel? A day's work for managers can run the gamut--from billing and coding, to patient issues, to staff performance reviews, to CQI, to JCAHO-just to name a few. We're NEVER bored. Can we say the same of our employees, or do they do the same thing day in and day out? If so, it's no wonder that attitudes may become negative and motivation and productivity may decline. What are we as healthcare managers and administrators doing to value and continually train our employees so that staff morale, productivity and patient satisfaction remain high? What are we doing to keep those highly motivated employees motivated and challenged so that they don't get bored and want to move across town to our neighboring hospital or healthcare center? What are we doing to stop our employees from developing the "same job, different day" attitude? A Career Ladder program holds many benefits and opportunities for the motivated employee who seeks and needs additional challenges on the job. It affords them opportunities to learn new skills, demonstrate initiative, accept additional responsibilities and possibly advance into new positions. It also affords them opportunities to grow, to be challenged and to feel like an important and valued member of the radiology team and radiology department. For the manager, a Career Ladder program affords opportunities to retain valuable employees, attract new high-quality employees and maintain a workforce of well-trained highly motivated employees, which in turn will provide high quality products and services to our customers. A Career Ladder program is a "win-win" situation for everyone. For the last twelve months, I have been working with other

  11. SEOM's Sentinel-3/OLCI' project CAWA: advanced GRASP aerosol retrieval

    Science.gov (United States)

    Dubovik, Oleg; litvinov, Pavel; Huang, Xin; Aspetsberger, Michael; Fuertes, David; Brockmann, Carsten; Fischer, Jürgen; Bojkov, Bojan

    2016-04-01

    The CAWA "Advanced Clouds, Aerosols and WAter vapour products for Sentinel-3/OLCI" ESA-SEOM project aims on the development of advanced atmospheric retrieval algorithms for the Sentinel-3/OLCI mission, and is prepared using Envisat/MERIS and Aqua/MODIS datasets. This presentation discusses mainly CAWA aerosol product developments and results. CAWA aerosol retrieval uses recently developed GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) algorithm described by Dubovik et al. (2014). GRASP derives extended set of atmospheric parameters using multi-pixel concept - a simultaneous fitting of a large group of pixels under additional a priori constraints limiting the time variability of surface properties and spatial variability of aerosol properties. Over land GRASP simultaneously retrieves properties of both aerosol and underlying surface even over bright surfaces. GRAPS doesn't use traditional look-up-tables and performs retrieval as search in continuous space of solution. All radiative transfer calculations are performed as part of the retrieval. The results of comprehensive sensitivity tests, as well as results obtained from real Envisat/MERIS data will be presented. The tests analyze various aspects of aerosol and surface reflectance retrieval accuracy. In addition, the possibilities of retrieval improvement by means of implementing synergetic inversion of a combination of OLCI data with observations by SLSTR are explored. Both the results of numerical tests, as well as the results of processing several years of Envisat/MERIS data illustrate demonstrate reliable retrieval of AOD (Aerosol Optical Depth) and surface BRDF. Observed retrieval issues and advancements will be discussed. For example, for some situations we illustrate possibilities of retrieving aerosol absorption - property that hardly accessible from satellite observations with no multi-angular and polarimetric capabilities.

  12. Management of Software Development Projects

    Directory of Open Access Journals (Sweden)

    Felician ALECU

    2011-04-01

    Full Text Available Any major software development starts with the Initiating process group. Once the charter document is approved, the Planning and then to the Executing stages will follow. Monitoring and Controlling is measuring the potential performance deviation of the project in terms of schedule and costs and performs the related Integrated Change Control activities. At the end, during the Closing, the program/project manager will check the entire work is completed and the objectives are met.

  13. Ceramic technology for advanced heat engines project: Semiannual progress report for April through September 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  14. Advanced Bimanual Manipulation Results from the DEXMART Project

    CERN Document Server

    2012-01-01

    Dexterous and autonomous manipulation is a key technology for the personal and service robots of the future. Advances in Bimanual Manipulation edited by Bruno Siciliano provides the robotics community with the most noticeable results of the four-year European project DEXMART (DEXterous and autonomous dual-arm hand robotic manipulation with sMART sensory-motor skills: A bridge from natural to artificial cognition). The volume covers a host of highly important topics in the field, concerned with modelling and learning of human manipulation skills, algorithms for task planning, human-robot interaction, and grasping, as well as hardware design of dexterous anthropomorphic hands. The results described in this five-chapter collection are believed to pave the way towards the development of robotic systems endowed with dexterous and human-aware dual-arm/hand manipulation skills for objects, operating with a high degree of autonomy in unstructured real-world environments.

  15. Some advanced accelerator projects and ideas

    International Nuclear Information System (INIS)

    Sessler, A.

    1987-01-01

    The author discusses projects and ideas represented, as follows: The motivation is to secure high gradients to reduce power to a reasonable amount, and reduce the length as a consequence of the high gradient; a promising solution is offered by a possibility of having a free electron laser in conjunction with induction units resulting in the following steps: A free electron laser (FEL) to generate high peak power (30 GHz, 10 times the frequency at SLAC, so the wave length is one centimeter instead of ten centimeters); translate this radiation to a conventional high gradient accelerator structure, a conventional linac so that it results in stability and all the positive things known about ordinary linacs; this becomes a power source; use induction units to pump up low energy beams and accelerate little bunches of 10'' electrons up to a few hundred GeV; the schematic of such a system is exemplified with a low energy beam which is a kilo-amp of tens of MeVs; between the FEL sections, energy returns with induction units; and wave guides take rf power to a conventional linac structure - a high gradient linac structure

  16. Managing complex, high risk projects a guide to basic and advanced project management

    CERN Document Server

    Marle, Franck

    2016-01-01

    Maximizing reader insights into project management and handling complexity-driven risks, this book explores propagation effects, non-linear consequences, loops, and the emergence of positive properties that may occur over the course of a project. This book presents an introduction to project management and analysis of traditional project management approaches and their limits regarding complexity. It also includes overviews of recent research works about project complexity modelling and management as well as project complexity-driven issues. Moreover, the authors propose their own new approaches, new methodologies and new tools which may be used by project managers and/or researchers and/or students in the management of their projects. These new elements include project complexity definitions and frameworks, multi-criteria approaches for project complexity measurement, advanced methodologies for project management (propagation studies to anticipate potential behaviour of the project, and clustering approaches...

  17. Managing MDO Software Development Projects

    Science.gov (United States)

    Townsend, J. C.; Salas, A. O.

    2002-01-01

    Over the past decade, the NASA Langley Research Center developed a series of 'grand challenge' applications demonstrating the use of parallel and distributed computation and multidisciplinary design optimization. All but the last of these applications were focused on the high-speed civil transport vehicle; the final application focused on reusable launch vehicles. Teams of discipline experts developed these multidisciplinary applications by integrating legacy engineering analysis codes. As teams became larger and the application development became more complex with increasing levels of fidelity and numbers of disciplines, the need for applying software engineering practices became evident. This paper briefly introduces the application projects and then describes the approaches taken in project management and software engineering for each project; lessons learned are highlighted.

  18. Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development

    Energy Technology Data Exchange (ETDEWEB)

    Pschirer, James [Alstom Power Inc., Windsor, CT (United States); Burgess, Joshua [Alstom Power Inc., Windsor, CT (United States); Schrecengost, Robert [Alstom Power Inc., Windsor, CT (United States)

    2017-08-16

    Alstom Power Inc., a wholly owned subsidiary of the General Electric Company (GE), has completed the projectAdvanced Ultrasupercritical (AUSC) Tube Membrane Panel Development” under U.S. Department of Energy (DOE) Award Number DE-FE0024076. This project was part of DOE’s Novel Crosscutting Research and Development to Support Advanced Energy Systems program. AUSC Tube Membrane Panel Development was a two and one half year project to develop and verify the manufacturability and serviceability of welded tube membrane panels made from high performance materials suitable for the AUSC steam cycles, defined as high pressure steam turbine inlet conditions of 700-760°C (1292-1400°F) and 24.5-35MPa (3500-5000psi). The difficulty of this challenge lies in the fact that the membrane-welded construction imposes demands on the materials that are unlike any that exist in other parts of the boiler. Tube membrane panels have been designed, fabricated, and installed in boilers for over 50 years with relatively favorable experience when fabricated from carbon and Cr-Mo low alloy steels. The AUSC steam cycle requires membrane tube panels fabricated from materials that have not been used in a weldment with metal temperatures in the range of 582-610°C (1080-1130°F). Fabrication materials chosen for the tubing were Grade 92 and HR6W. Grade 92 is a creep strength enhanced ferritic Cr-Mo alloy and HR6W is a high nickel alloy. Once the materials were chosen, GE performed the engineering design of the panels, prepared shop manufacturing drawings, and developed manufacturing and inspection plans. After the materials were purchased, GE manufactured and inspected the tube membrane panels, determined if post fabrication heat treatment of the tube membrane panels was needed, performed pre- and post-weld heat treatment on the Grade 92 panels, conducted final nondestructive inspection of any heat treated tube membrane panels, conducted destructive inspection of the completed tube

  19. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  20. Advanced Learning Theories Applied to Leadership Development

    Science.gov (United States)

    2006-11-01

    Center for Army Leadership Technical Report 2006-2 Advanced Learning Theories Applied to Leadership Development Christina Curnow...2006 5a. CONTRACT NUMBER W91QF4-05-F-0026 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Advanced Learning Theories Applied to Leadership Development 5c...ABSTRACT This report describes the development and implementation of an application of advanced learning theories to leadership development. A

  1. The advanced linked extended reconnaissance and targeting technology demonstration project

    Science.gov (United States)

    Cruickshank, James; de Villers, Yves; Maheux, Jean; Edwards, Mark; Gains, David; Rea, Terry; Banbury, Simon; Gauthier, Michelle

    2007-06-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing key operational needs of the future Canadian Army's Surveillance and Reconnaissance forces by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. We discuss concepts for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as beyond line-of-sight systems such as a mini-UAV and unattended ground sensors. The authors address technical issues associated with the use of fully digital IR and day video cameras and discuss video-rate image processing developed to assist the operator to recognize poorly visible targets. Automatic target detection and recognition algorithms processing both IR and visible-band images have been investigated to draw the operator's attention to possible targets. The machine generated information display requirements are presented with the human factors engineering aspects of the user interface in this complex environment, with a view to establishing user trust in the automation. The paper concludes with a summary of achievements to date and steps to project completion.

  2. Ultra advanced projects. ; Naming hyper-hightech projects. (Cho) no tsuku project. ; Naming no shikumi

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Y. (Ministry of International Trade and Industry, Tokyo (Japan))

    1992-10-05

    Significance of using 'super' for naming a project of technological development is discussed. Functions of naming are classified into (1) recognition, (2) display and (3) sales-promotion, whereby mechanism of naming of merchandise that is developed through the technique of 3 is considered. Further, the mechanism of naming is discussed in relation to marketing. It is pointed out that naming of merchandise is determined on the basis of (1) concept of planned goods and (2) marketing-mixes composed of goods, price, sales-roots and sales-promotion. The same mechanism works also in a project for technological development. Technical trends are caught and projects are targetted by taking supposed regimes into account, thereby the most suitable mix is formed. The mix in the technological development is assumed to be composed of purpose, specification, regime and sales-promotion. Two examples of the governmental projects by Ministry of International Trade and Industry, 'the big regime for research and development on industrial technologies' and 'the regime for development of the fundamental technologies in the next generation' are introduced and the significance of their naming is described. 2 tabs.

  3. The Polaris Project: Undergraduate Research Catalyzing Advances in Arctic Science

    Science.gov (United States)

    Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Bunn, A. G.; Frey, K. E.

    2017-12-01

    With guidance and sufficient resources, undergraduates can drive the exploration of new research directions, lead high impact scientific products, and effectively communicate the value of science to the public. As mentors, we must recognize the strong contribution undergraduates make to the advancement of scientific understanding and their unique ability and desire to be transdisciplinary and to translate ideas into action. Our job is to be sure students have the resources and tools to successfully explore questions that they care about, not to provide or lead them towards answers we already have. The central goal of the Polaris Project is to advance understanding of climate change in the Arctic through an integrated research, training, and outreach program that has at its heart a research expedition for undergraduates to a remote field station in the Arctic. Our integrative approach to training provides undergraduates with strong intellectual development and they bring fresh perspectives, creativity, and a unique willingness to take risks on new ideas that have an energizing effect on research and outreach. Since the projects inception in summer 2008, we have had >90 undergraduates participate in high-impact field expeditions and outreach activities. Over the years, we have also been fortunate enough to attract an ethnically, racially, and culturally diverse group of students, including students from Puerto Rico, Hispanic-, African- and Native-Americans, members of the LGBT community, and first-generation college students. Most of these students have since pursued graduate degrees in ecology, and many have received NSF fellowships and Fulbright scholarships. One of our major goals is to increase the diversity of the scientific community, and we have been successful in our short-term goal of recruiting and retaining a diverse group of students. The goal of this presentation is to provide a description of the mentoring model at the heart of the Polaris Project

  4. High Temperature Materials Characterization and Advanced Materials Development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H.

    2007-06-01

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division

  5. Recent advances in the JENDL project

    International Nuclear Information System (INIS)

    Shibata, K.; Nakagawa, T.; Fukahori, T.; Iwamoto, O.; Ichihara, A.; Iwamoto, N.; Kunieda, S.; Otuka, N.; Katakura, J.; Watanabe, Y.; Kosako, K.

    2008-01-01

    General- and special-purpose JENDL data files are being produced in cooperation with the Japanese Nuclear Data Committee. Nuclear model codes have been developed in order to raise the reliability of the fourth version of JENDL General-Purpose File (JENDL-4). Minor actinides and fission products data have been evaluated for JENDL-4. The capture cross section of 235 U was examined in the energy region from 2 keV to 1 MeV. As a follow-up action on the previous library JENDL-3.3, covariances of several nuclei were estimated for a study on accelerator driven systems. The evaluation for the 2007 versions of JENDL High Energy File (JENDL/HE) and JENDL Photonuclear Data File (JENDL/PD), which are regarded as special-purpose files, is in the final stage. Analyses of neutron transmission experiments reveal the reliability of JENDL/HE. (authors)

  6. The Employment Retention and Advancement Project: Paths to Advancement for Single Parents

    Science.gov (United States)

    Miller, Cynthia; Deitch, Victoria; Hill, Aaron

    2010-01-01

    Between 2000 and 2003, the Employment Retention and Advancement (ERA) project identified and implemented a diverse set of innovative models designed to promote employment stability and wage or earnings progression among low-income individuals, mostly current or former welfare recipients. The project's goal was to determine which strategies could…

  7. Institutional support for projects development

    International Nuclear Information System (INIS)

    Tobar, Carlos

    2000-01-01

    The paper describes the institutional support to develop projects on renewable energy, also describes the different ways to obtain financial support from the public sector and the interaction among private sector, universities and non governmental agencies in training, research and generation of energy

  8. Balbina's region sustainable development project

    International Nuclear Information System (INIS)

    Hargreaves, Paul

    1994-01-01

    This work presents a planning and administration of an environmental project proposal for Balbina's lake hydroelectric power station restoration. The socio-economic objectives are the hydro-forest bio production development which include fishery, specialized tourism, leisure, besides the processing of industrial raw materials

  9. Automated Operations Development for Advanced Exploration Systems

    Science.gov (United States)

    Haddock, Angie T.; Stetson, Howard

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide "single button" intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system onboard the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System, along with the execution component design from within the HAL 9000 Space Operating System, this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA's Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  10. Development of Advanced Spent Fuel Management Process

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G. (and others)

    2007-06-15

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm{sup 2} and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields.

  11. Development of Advanced Spent Fuel Management Process

    International Nuclear Information System (INIS)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G.

    2007-06-01

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm 2 and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields

  12. Hualapai Tribal Utility Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Hualapai Tribal Nation

    2008-05-25

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon

  13. 75 FR 22674 - Moynihan Station Development Project

    Science.gov (United States)

    2010-04-29

    ... DEPARTMENT OF TRANSPORTATION Federal Railroad Administration Moynihan Station Development Project... availability of and public comment period for the Moynihan Station Development Project Environmental Assessment... 22675

  14. Development of the advanced CANDU technology

    International Nuclear Information System (INIS)

    Suk, Soo Dong; Min, Byung Joo; Na, Y. H.; Lee, S. Y.; Choi, J. H.; Lee, B. C.; Kim, S. N.; Jo, C. H.; Paik, J. S.; On, M. R.; Park, H. S.; Kim, S. R.

    1997-07-01

    The purpose of this study is to develop the advanced design technology to improve safety, operability and economy and to develop and advanced safety evaluation system. More realistic and reasonable methodology and modeling was employed to improve safety margin in containment analysis. Various efforts have been made to verify the CATHENA code which is the major safety analysis code for CANDU PHWR system. Fully computerized prototype ECCS was developed. The feasibility study and conceptual design of the distributed digital control system have been performed as well. The core characteristics of advanced fuel cycle, fuel management and power upgrade have been studied to determine the advanced core. (author). 77 refs., 51 tabs., 108 figs

  15. Development of the advanced CANDU technology

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Na, Y H; Lee, S Y; Choi, J H; Lee, B C; Kim, S N; Jo, C H; Paik, J S; On, M R; Park, H S; Kim, S R [Korea Electric Power Co., Taejon (Korea, Republic of)

    1997-07-01

    The purpose of this study is to develop the advanced design technology to improve safety, operability and economy and to develop and advanced safety evaluation system. More realistic and reasonable methodology and modeling was employed to improve safety margin in containment analysis. Various efforts have been made to verify the CATHENA code which is the major safety analysis code for CANDU PHWR system. Fully computerized prototype ECCS was developed. The feasibility study and conceptual design of the distributed digital control system have been performed as well. The core characteristics of advanced fuel cycle, fuel management and power upgrade have been studied to determine the advanced core. (author). 77 refs., 51 tabs., 108 figs.

  16. Development of Advanced Small Hydrogen Engines

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  17. Advanced research reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Pak, H. D.; Kim, K. H. [and others

    2000-05-01

    The fabrication technology of the U{sub 3}Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U{sub 3}Si{sub 2} dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U{sub 3}Si{sub 2} fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 {approx} 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The {gamma}-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U{sub 3}Si{sub 2}. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano

  18. Experiences of project developers around CDM projects in South Africa

    International Nuclear Information System (INIS)

    Thurner, Thomas W.; Varughese, Arun

    2013-01-01

    Project developers in South Africa are puzzled with the long process of evaluating and registering their CDM projects. In addition to other obstacles, we find that South African big businesses are rather reluctant to engage in any new business activities such as CDM projects and municipalities often lack the necessary flexibility. This offers opportunities for small-scale project developers who spot the opportunities and find creative solutions to overcome these difficulties. - Highlights: • First paper analysing the experience of small project developers in South Africa. • Project developers in South Africa are puzzled with the long process. • South African big businesses are reluctant to engage in CDM projects. • Small-scale project developers spot opportunities and find creative solutions to overcome difficulties. • Also, we saw learning processes of South African administration in support of CDM projects

  19. Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report

    Science.gov (United States)

    1994-01-01

    This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.

  20. Development of advanced PEM water electrolysers

    International Nuclear Information System (INIS)

    A Deschamps; C Etievant; C Puyenchet; V Fateev; S Grigoriev; A Kalinnikov; V Porembsky; P Millet

    2006-01-01

    Concerning the production of electrolytic hydrogen, the goal of present R and D is to develop advanced hydrogen generator based on proton exchange membrane (PEM) water electrolysers. PEM-based water electrolysis offers a number of advantages, such as ecological safety, high gas purity (more than 99.99% for hydrogen), the possibility of producing compressed gases (up to 200 bar) for direct pressurized storage without additional power inputs, etc. PEM electrolysers are considered as rather attractive devices to accelerate the transition to the hydrogen economy and develop a hydrogen infrastructure network (for example for the development of re-filling stations for cars, using electric power stations at night hours and renewable energy sources). The work presented here result from a cooperation between Hydrogen Energy and Plasma Technology Institute (HEPTI) of Russian Research Center (RRC) 'Kurchatov Institute', Universite Paris - Sud XI and Compagnie d'Etudes des Technologies de l'Hydrogene. This project is supported by the Commission of the European Communities within the frame of the 6. Framework Programme (GenHyPEM, STREP no 019802). (authors)

  1. Study on Risk Approaches in Software Development Projects

    Directory of Open Access Journals (Sweden)

    Claudiu BRANDAS

    2012-01-01

    Full Text Available Risk approaches in project development led to the integration in the IT project management methodologies and software development of activities and processes of risk management. The diversity and the advanced level of the used technologies in IT projects with increasing com-plexity leads to an exponential diversification of risk factors.The purpose of this research is to identify the level of the risk approach in IT projects both at the IT project management and software development methodologies level and the level of the perception of IT project man-agers, IT managers and IT analysts in Romanian IT companies. Thus, we want to determine the correlation between the use of a project management or software development methodology and the overall level of risk perceived by the project managers using these methodologies.

  2. Remote sensing of sea ice: advances during the DAMOCLES project

    Directory of Open Access Journals (Sweden)

    G. Heygster

    2012-12-01

    Full Text Available In the Arctic, global warming is particularly pronounced so that we need to monitor its development continuously. On the other hand, the vast and hostile conditions make in situ observation difficult, so that available satellite observations should be exploited in the best possible way to extract geophysical information. Here, we give a résumé of the sea ice remote sensing efforts of the European Union's (EU project DAMOCLES (Developing Arctic Modeling and Observing Capabilities for Long-term Environmental Studies. In order to better understand the seasonal variation of the microwave emission of sea ice observed from space, the monthly variations of the microwave emissivity of first-year and multi-year sea ice have been derived for the frequencies of the microwave imagers like AMSR-E (Advanced Microwave Scanning Radiometer on EOS and sounding frequencies of AMSU (Advanced Microwave Sounding Unit, and have been used to develop an optimal estimation method to retrieve sea ice and atmospheric parameters simultaneously. In addition, a sea ice microwave emissivity model has been used together with a thermodynamic model to establish relations between the emissivities from 6 GHz to 50 GHz. At the latter frequency, the emissivity is needed for assimilation into atmospheric circulation models, but is more difficult to observe directly. The size of the snow grains on top of the sea ice influences both its albedo and the microwave emission. A method to determine the effective size of the snow grains from observations in the visible range (MODIS is developed and demonstrated in an application on the Ross ice shelf. The bidirectional reflectivity distribution function (BRDF of snow, which is an essential input parameter to the retrieval, has been measured in situ on Svalbard during the DAMOCLES campaign, and a BRDF model assuming aspherical particles is developed. Sea ice drift and deformation is derived from satellite observations with the scatterometer

  3. Prospects for the development of advanced reactors. [Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, B. A.; Kupitz, J.; Cleveland, J. [International Atomic Energy Agency Vienna (Austria). Dept. of Nuclear Energy and Safety

    1992-01-01

    Energy supply is an important prerequisite for further socio-economic development, especially in developing countries where the per capita energy use is only a very small fraction of that in industrialized countries. Nuclear energy is an essentially unlimited energy resource with the potential to provide this energy in the form of electricity, district heat and process heat under environmentally acceptable conditions. However, this potential will be realized only if nuclear power plants can meet the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide a tremendous amount of experience has been accumulated during development, licensing, construction and operation of nuclear power reactors. The experience forms a sound basis for further improvements. Nuclear programmes in many countries are addressing the development of advanced reactors which are intended to have better economics, higher reliability and improved safety in order to overcome the current concerns of nuclear power. Advanced reactors now being developed could help to meet the demand for new plants in developed and developing countries, not only for electricity generation, but also for district heating, desalination and for process heat. The IAEA, as the only global international governmental organization dealing with nuclear power, promotes international information exchange and international co-operation between all countries with their own advanced nuclear power programmes and offers assistance to countries with an interest in exploratory or research programmes.

  4. Department of Defense Fiscal Year (FY) 2005 Budget Estimates. Research, Development, Test and Evaluation, Defense-Wide. Volume 1 - Defense Advanced Research Projects Agency

    Science.gov (United States)

    2004-02-01

    capabilities of biological systems to manufacture, sense, or compute. (U) Program Plans: − Manufacture the world’s smallest nanofluidic channels...of doping profile s and defects. It might be possible to use these techniques to measure and control individual atoms or spins. In addition...Silicon Carbide (SiC) substrate consistent with yielding 1 cm2 devices. − Develop lightly doped , thick (more than 100 micron) SiC epitaxy with low defects

  5. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mugerwa, Michael [Technip USA, Inc., Claremont, CA (United States)

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  6. Management of research and development project

    International Nuclear Information System (INIS)

    Go, Seok Hwa; Hong Jeong Yu; Hyun, Byeong Hwan

    2010-12-01

    This book introduces summary on management of research and development project, prepare of research and development with investigation and analysis of paper, patent and trend of technology, structure of project, management model, management of project, management of project range, management of project time, management of project cost, management of project goods, management of project manpower, management of communication, management of project risk, management of project supply, management of outcome of R and D, management of apply and enroll of patent and management of technology transfer.

  7. Project Kaleidoscope: Advancing What Works in Undergraduate STEM Education

    Science.gov (United States)

    Elrod, S.

    2011-12-01

    In 1989, Project Kaleidoscope (PKAL) published its first report, What Works: Building Natural Science Communities, on reforming undergraduate STEM (science, technology, engineering and mathematics) education. Since then, PKAL has grown into a national organization comprised of a diverse group of over 6500 STEM educators who are committed to advancing "what works." The PKAL mission is to be a national leader in catalyzing the efforts of people, institutions, organizations and networks to move from analysis to action in significantly improving undergraduate student learning and achievement in STEM (science, technology, engineering and mathematics). Specifically, PKAL's strategic goals are to: 1) Promote the development and wider use of evidence-based teaching, learning and assessment approaches, 2) Build individual and organizational capacity to lead change in STEM education, and 3) Engage the broader community of external stakeholders - professional and disciplinary societies, business and industry groups, accreditation organizations, educational associations, governmental agencies, philanthropic organizations - in achieving our mission. PKAL achieves these goals by serving as the nexus of an interconnected and multidisciplinary web of people, ideas, strategies, evidence and resources focused on systemic change in undergraduate STEM education. PKAL also provides resources on critical issues, such as teaching using pedagogies of engagement, and engages interested faculty, campuses and professional societies in national projects and programs focused on cutting edge issues in STEM education. One of these projects - Mobilizing Disciplinary Societies for a Sustainable Future - is engaging eleven disciplinary societies, including the National Association of Geoscience Teachers, in defining specific resources, faculty development programs and goals focused on promoting undergraduate STEM courses that: 1) provide more knowledge about real-world issues; 2) connect these real

  8. Project T.E.A.M. (Technical Education Advancement Modules). Introduction to Statistical Process Control.

    Science.gov (United States)

    Billings, Paul H.

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 6-hour introductory module on statistical process control (SPC), designed to develop competencies in the following skill areas: (1) identification of the three classes of SPC use; (2) understanding a process and how it works; (3)…

  9. Engineering development of advanced froth flotation. Volume 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, D.D.; Bencho, J.R.; Torak, E.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

    1995-03-01

    This report is an account of findings related to the Engineering and Development of Advanced Froth Flotation project. The results from benchscale and proof-of-concept (POC) level testing are presented and the important results from this testing are used to refine a conceptual design and cost estimate for a 20 TPH Semi-Works Facility incorporating the final proposed technology.

  10. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  11. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  12. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  13. Development of advanced ceramics at AECL

    International Nuclear Information System (INIS)

    Palmer, B.J.F.; MacEwen, S.R.; Sawicka, B.D.; Hayward, P.J.; Sridhar, S.

    1986-12-01

    Atomic Energy of Canada Limited (AECL) has a long history of developing ceramics for nuclear fission and fusion applications. AECL is now applying its multidisciplinary materials R and D capabilities, including unique capabilities in ceramic processing and nondestructive evaluation, to develop advanced ceramic materials for commercial and industrial applications. This report provides an overview of the facilities and programs associated with the development of advanced ceramics at AECL

  14. Advanced dendritic web growth development

    Science.gov (United States)

    Hopkins, R. H.

    1985-01-01

    A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.

  15. Evaluation and development of advanced nuclear materials: IAEA activities

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Basak, U.; Killeen, J.; Dyck, G.; Zeman, A.; )

    2011-01-01

    Economical, environmental and non-proliferation issues associated with sustainable development of nuclear power bring about a need for optimization of fuel cycles and implementation of advanced nuclear systems. While a number of physical and design concepts are available for innovative reactors, the absence of reliable materials able to sustain new challenging irradiation conditions represents the real bottle-neck for practical implementation of these promising ideas. Materials performance and integrity are key issues for the safety and competitiveness of future nuclear installations being developed for sustainable nuclear energy production incorporating fuel recycling and waste transmutation systems. These systems will feature high thermal operational efficiency, improved utilization of resources (both fissile and fertile materials) and reduced production of nuclear waste. They will require development, qualification and deployment of new and advanced fuel and structural materials with improved mechanical and chemical properties combined with high radiation and corrosion resistance. The extensive, diverse, and expensive efforts toward the development of these materials can be more effectively organized within international collaborative programmes with wide participation of research, design and engineering communities. IAEA carries out a number of international projects supporting interested Member States with the use of available IAEA program implementation tools (Coordinated Research Projects, Technical Meetings, Expert Reviews, etc). The presentation summarizes the activities targeting material developments for advanced nuclear systems, with particular emphasis on fast reactors, which are the focal topics of IAEA Coordinated Research Projects 'Accelerator Simulation and Theoretical Modelling of Radiation Effects' (on-going), 'Benchmarking of Structural Materials Pre-Selected for Advanced Nuclear Reactors', 'Examination of advanced fast reactor fuel and core

  16. Automotive Stirling Engine Development Project

    Science.gov (United States)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  17. Advanced photovoltaic-trough development

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.; Yasuda, K.; Merson, B.

    1982-04-01

    The scope of the work on photvoltaic troughs includes analytical studies, hardware development, and component testing. Various aspects of the system have been optimized and improvements have been realized, particularly in the receiver and reflecting surface designs. An empirical system performance model has been developed that closely agrees with measured system performance. This in-depth study of single-axis reflecting linear focus photovoltaic concentrators will be very beneficial in the development of improved models for similar systems as well as other phtovoltaic concentrator designs.

  18. Development of inherent core technologies for advanced reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H.

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  19. Development of inherent core technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H. [and others

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  20. National project : advanced robot for nuclear power plant

    International Nuclear Information System (INIS)

    Tsunemi, T.; Takehara, K.; Hayashi, T.; Okano, H.; Sugiyama, S.

    1993-01-01

    The national project 'Advanced Robot' has been promoted by the Agency of Industrial science and Technology, MITI for eight years since 1983. The robot for a nuclear plant is one of the projects, and is a prototype intelligent one that also has a three dimensional vision system to generate an environmental model, a quadrupedal walking mechanism to work on stairs and four fingered manipulators to disassemble a valve with a hand tool. Many basic technologies such as an actuator, a tactile sensor, autonomous control and so on progress to high level. The prototype robot succeeded functionally in official demonstration in 1990. More refining such as downsizing and higher intelligence is necessary to realize a commercial robot, while basic technologies are useful to improve conventional robots and systems. This paper presents application studies on the advanced robot technologies. (author)

  1. NORA project offers unique reactor research and advanced training opportunities

    International Nuclear Information System (INIS)

    1961-01-01

    An international program for reactor research and advanced training for a period of three years has been established in connection with the Norwegian critical assembly NORA. The aim of the project is to determine, through integral experiments, the basic reactor physics data for lattices moderated with light-water, heavy-water or mixtures of heavy and light water, with fuels of different sizes and spacing, three different enrichments and compositions. The objectives, programme, and facilities are described in details

  2. Development of essential system technologies for advanced reactor

    International Nuclear Information System (INIS)

    Bae, Y. Y.; Hwang, Y. D.; Cho, B. H. and others

    1999-03-01

    Basic design of SMART adopts the new advanced technologies which were not applied in the existing 1000MWe PWR. However, the R and D experience on these advanced essential technologies is lacking in domestic nuclear industry. Recently, a research on these advanced technologies has been performed as a part of the mid-and-long term nuclear R and D program, but the research was limited only for the small scale fundamental study. The research on these essential technologies such as helically coiled tube steam generator, self pressurizer, core cooling by natural circulation required for the development of integral reactor SMART have not been conducted in full scale. This project, therefore, was performed for the development of analysis models and methodologies, system analysis and thermal hydraulic experiments on the essential technologies to be applied to the 300MWe capacity of integral reactor SMART and the advanced passive reactor expected to be developed in near future with the emphasis on experimental investigation. (author)

  3. Cognitive Development: An Advanced Textbook

    Science.gov (United States)

    Bornstein, Marc H., Ed.; Lamb, Michael E., Ed.

    2011-01-01

    This new text consists of parts of Bornstein and Lamb's Developmental Science, 6th edition along with new introductory material that as a whole provides a cutting edge and comprehensive overview of cognitive development. Each of the world-renowned contributors masterfully introduces the history and systems, methodologies, and measurement and…

  4. Estimating software development project size, using probabilistic ...

    African Journals Online (AJOL)

    Estimating software development project size, using probabilistic techniques. ... of managing the size of software development projects by Purchasers (Clients) and Vendors (Development ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  5. State of development progress of advanced boiling water reactors

    International Nuclear Information System (INIS)

    Tomono, Katsuya

    1982-01-01

    Advanced BWRs being developed at present are those aiming at the improvement of reliability and safety, the reduction of radiation exposure, the improvement of operation performance and capacity ratio of plants, and the heightening of economical efficiency by concentrating the experience and excellent technology of BWR manufacturers in the world. Now in Japan, the independence with Japanese technology is possible in almost all fields of nuclear power generation, and the improvement and standardization project is in progress to obtain the steady results. However, in order to pursue the most desirable BWRs conceivable at present, five BWR manufacturers in the world organized the Advanced Engineering Team in July, 1978, and performed the feasibility study of advanced BWRs for more than one year. Tokyo Electric Power Co., Inc., evaluated the report on the results, and judged that it is desirable to advance into the next stage aiming at the practical use of advanced BWRs. For the purpose, the electric power common research on advanced BWRs has been in progress, and the A-BWR project is to be examined in the third improvement and standardization project of MITI. The main technical features such as the coolant recirculation system of internal pump type, reinforced concrete containment vessels, fine motion control rod drive, improved core and fuel and others are explained. (Kako, I.)

  6. Advanced Solid State Lighting for AES Deep Space Hab Project

    Science.gov (United States)

    Holbert, Eirik

    2015-01-01

    The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.

  7. Recent advances and future projections in clinical radionuclide imaging

    International Nuclear Information System (INIS)

    Peters, A.M.

    1990-01-01

    This outline review of recent advances in radionuclide imaging draws attention to developments in nuclear medicine of the urinary tract such as Captopril renography and the introduction of MAG-3, the technetium-99m labelled mimic of hippuran, the use of radionuclides for infection diagnosis, advances in lung perfusion scanning, new radiopharmaceuticals for cardiac imaging, and developments in radiopharmaceuticals for imaging tumours, including gallium-67, thallium-201, and the development of radiolabelled monoclonal antibodies. Attention is drawn to the wider use of nuclear medicine in child care. (author)

  8. Cooperative Research and Development for Advanced Microturbines Program on Advanced Integrated Microturbine System

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Bowman

    2007-05-30

    The Advanced Integrated Microturbine Systems (AIMS) project was kicked off in October of 2000 to develop the next generation microturbine system. The overall objective of the project was to develop a design for a 40% electrical efficiency microturbine system and demonstrate many of the enabling technologies. The project was initiated as a collaborative effort between several units of GE, Elliott Energy Systems, Turbo Genset, Oak Ridge National Lab and Kyocera. Since the inception of the project the partners have changed but the overall direction of the project has stayed consistent. The project began as a systems study to identify design options to achieve the ultimate goal of 40% electrical efficiency. Once the optimized analytical design was identified for the 40% system, it was determined that a 35% efficient machine would be capable of demonstrating many of the advanced technologies within the given budget and timeframe. The items that would not be experimentally demonstrated were fully produced ceramic parts. However, to understand the requirements of these ceramics, an effort was included in the project to experimentally evaluate candidate materials in representative conditions. The results from this effort would clearly identify the challenges and improvement required of these materials for the full design. Following the analytical effort, the project was dedicated to component development and testing. Each component and subsystem was designed with the overall system requirements in mind and each tested to the fullest extent possible prior to being integrated together. This method of component development and evaluation helps to minimize the technical risk of the project. Once all of the components were completed, they were assembled into the full system and experimentally evaluated.

  9. 23 CFR 660.112 - Project development.

    Science.gov (United States)

    2010-04-01

    ... PROGRAMS (DIRECT FEDERAL) Forest Highways § 660.112 Project development. (a) Projects to be administered by... Program. Projects to be administered by a cooperator shall be developed in accordance with Federal-aid procedures and procedures documented in the statewide agreement. (b) The FH projects shall be designed in...

  10. 'Advancement of KHPS to DOE TRL 7/8' Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Adonizio, Mary Ann [Verdant Power Inc., New York, NY (United States); Corren, Dean [Verdant Power Inc., New York, NY (United States); Smith, Ron [Verdant Power Inc., New York, NY (United States); Colby, Jonathan [Verdant Power Inc., New York, NY (United States); Hernandez, Aaron [Verdant Power Inc., New York, NY (United States)

    2016-04-08

    Final Report describing activities performed under the 'Advancement of the KHPS to DOE TRL 7/8' project, including the development of critical component test protocols, testing and analysis of the Gen5 KHPS main shaft seal, and continuing compliance work on approved operational environmental monitoring plans in anticipation of KHPS turbine installation at Verdant Power's Roosevelt Island Tidal Energy (RITE) Project site in New York, NY.

  11. Vision and Displays for Military and Security Applications The Advanced Deployable Day/Night Simulation Project

    CERN Document Server

    Niall, Keith K

    2010-01-01

    Vision and Displays for Military and Security Applications presents recent advances in projection technologies and associated simulation technologies for military and security applications. Specifically, this book covers night vision simulation, semi-automated methods in photogrammetry, and the development and evaluation of high-resolution laser projection technologies for simulation. Topics covered include: advances in high-resolution projection, advances in image generation, geographic modeling, and LIDAR imaging, as well as human factors research for daylight simulation and for night vision devices. This title is ideal for optical engineers, simulator users and manufacturers, geomatics specialists, human factors researchers, and for engineers working with high-resolution display systems. It describes leading-edge methods for human factors research, and it describes the manufacture and evaluation of ultra-high resolution displays to provide unprecedented pixel density in visual simulation.

  12. Development of advanced PWR steam generator

    International Nuclear Information System (INIS)

    Saito, Itaru; Nakamura, Tomomichi

    1999-01-01

    In response to the increased power of the advanced PWR, it is necessary to develop a steam generator (SG) which has a large capacity with high performance and high reliability as well as being economical to produce. In this paper, the development of the design of a new SG for the advanced PWRs is described and compared with the design of a conventional SG. Moreover, an outline of a seismic verification test for the U-bend tube bundle which includes advanced anti-vibration bars (AVB) which are very important is described. As a result, it was verified that the bundle has sufficient strength and a relatively high attenuation to seismic loads. These results will be reflected in the detailed design of advanced AVBs. (author)

  13. Development of the advanced CANDU technology -Development of CANDU advanced fuel fabrication technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Bum; Park, Choon Hoh; Park, Chul Joo; Kwon, Woo Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This project is carrying out jointly with AECL to develop CANFLEX fuel which can enhance reactor safety, fuel economy and can be used with various fuel cycles (natural U, slightly enriched U, other advanced fuel). The final goal of this research is to load the CANFLEX fuel in commercial CANDU reactor for demonstration irradiation. The annual portion of research activities performed during this year are followings ; The detail design of CANFLEX-NU fuel was determined. Based on this design, various fabrication drawings and process specifications were revised. The seventeen CANFLEX-NU fuel bundles for reactivity test in ZED-2 and out-pile test, two CANFLEX-SEU fuel bundles for demo-irradiation in NRU were fabricated. Advanced tack welding machine was designed and sequence control software of automatic assembly welder was developed. The basic researches related to fabrication processes, such as weld evaluation by ECT, effect of additives in UO{sub 2}, thermal stabilities of Zr based metallic glasses, were curried out. 51 figs, 22 tabs, 42 refs. (Author).

  14. Ceramic technology for advanced heat engines project. Semiannual progress report, April-September 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, new concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.

  15. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin A. [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  16. Ethiopian Journal of Development Research: Advanced Search

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Ethiopian Journal of Development Research: Advanced Search ... containing either term; e.g., education OR research; Use parentheses to create more complex queries; ... Ethiopian Journal of Business and Economics (The), Ethiopian Journal of Development Research ...

  17. Project margins of advanced reactor design WWER-500

    International Nuclear Information System (INIS)

    Rogov, M.F.; Birukov, G.I.; Ershov, V.G.; Volkov, B.E.

    1994-01-01

    Project criteria for design of advanced WWER-500 reactor within design conditions are compared to the requirements of the Russian regulatory guides. Normal operation limits, safe operation limits for main anticipated operational occurrences and design limits accepted for design basis accidents are considered as in preliminary safety report. It is shown that the basic design criteria in the design of WWER-500 for the anticipated operational occurrences and for design basis accidents are more severe than required in the following regulatory guides General Safety Regulations for Nuclear Power Plants and Nuclear Safety Rules for Reactors of Nuclear Power Plants. This provides certain margins from safety point of view

  18. Development of project financing in Russia

    Directory of Open Access Journals (Sweden)

    Nikonova Irina Aleksandrovna

    2012-07-01

    Full Text Available The implementation of effective investment projects is essential to the modernization of the Russian economy and its transition to a high-tech way of development. The most complex and risky form of financing projects is project financing (Project Finance.

  19. Advanced Stellar Compass - Proposal for the LunARSat project

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    request for proposal (r.f.p.) for the LunARSat star tracker.The Advanced Stellar Compass (ASC) is a highly advanced and autonomous Stellar Reference Unit designed, developed and produced by the Space Instrumentation Group of the Department of Automation of the Technical University of Denmark.The document...... is structured as follows. First we present the ASC - heritage, system description, performance and the calibration procedures. In section 3 the mechanical and electrical interfaces are given. In section 4 and 5 we address issues like manufacturing, transportation and storage and to conclude, in sect. 6, we...

  20. ADVANCED TECHNOLOGIES OF ELECTRONIC EDUCATIONAL SYSTEMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Shishkina

    2011-11-01

    Full Text Available Actual problems and contradictions of electronic educational systems development are described: availability of education, quality of educational services; individualization of education; exposures and advantages in using of computer technology; standardization of technologies and resources. Tendencies of their solution in the view of development of new advanced technologies of e-education are specified. The essence and advantages of using the cloud computing technologies as a new platform of distributed learning are specified. Advanced directions of cloud-based data usage in executive system of education are declared: access management, content management, asset management, communications management.

  1. Report on achievement for fiscal 1998. Global environment industry technology development promotion project (the advanced technology survey and research project); 1998 nendo seika hokoiusho. Chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo (sentan gijutsu chosa kenkyu jigyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In order to structure innovative technologies to solve effectively the global environment problems, it is important to incorporate infra-structural technologies that have been achieved by universities and other research institutions. The fiscal 1998 project has commissioned 25 researches found superior from among research plans that have been invited during fiscal 1997. This paper enumerates the main themes including those under continued research. The research themes include: fixation of phosphor by using photo-energy, utilization of nitrogen fixing bacteria in rice plant roots for the purpose of carbon dioxide reduction, new functional solid ultra-strong acids for clean chemical processes, fixation of warming gases by using ultra critical fluid catalytic reactions, photo-catalysts having microporous structure, whose energy structure is controlled, waste water purification by using stimulation sensitive polymers, a practical and small high-speed environment purification system by means of a simple technology to cultivate high concentration bacteria of microorganisms, fundamental analysis of response to specific wavelength light in photosynthesized microorganisms, bio-remediation utilizing symbiotic systems of plants and bacteria, high efficiency catalysts purposed for total decomposition of water, and separation of carbon dioxide in deep sea bottoms by controlling hydrate crystal growth. (NEDO)

  2. Policy issues inherent in advanced technology development

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, P.D.

    1994-12-31

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses.

  3. Policy issues inherent in advanced technology development

    International Nuclear Information System (INIS)

    Baumann, P.D.

    1994-01-01

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses

  4. Defense Advanced Research Projects Agency Fiscal Year 1982 Research & Development Program. Summary Statement by Dr. Robert R. Fossum, Director Before the Research & Development Subcommittee of the House Armed Services Committee

    Science.gov (United States)

    1981-03-12

    progressive burning rocket motors , and advanced warheads in a low-cost, high-performance, day/night, fire-and-forget missile that would be a...for advanced homopolar generators (energy storage systems) were completed in FY 1979; detailed engineering drawings of the generators were completed

  5. Advancing Work Practices Through Online Professional Development

    DEFF Research Database (Denmark)

    Noesgaard, Signe Schack

    The natural expectation for professional development courses is that they will improve a participant’s work performance, but do they? This PhD research challenges several assumptions underlying the design of online professional development courses, revealing that it is after such interventions...... was not effective and subsequently terminate change that could have advanced their practices. This underlines the need to think beyond the course format to make online professional development interventions continuous, committing, and contextual. The research suggests rethinking online professional development...... as adaptive “just-in-time” technologies and proposes a design theory called “situated online professional development,” entailing six design principles for advancing work practices....

  6. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  7. Quality Assurance Project Plan Development Tool

    Science.gov (United States)

    This tool contains information designed to assist in developing a Quality Assurance (QA) Project Plan that meets EPA requirements for projects that involve surface or groundwater monitoring and/or the collection and analysis of water samples.

  8. Landfill Gas Energy Project Development Handbook

    Science.gov (United States)

    View handbook that provides an overview of LFG energy project development guidance and presents the technological, economic and regulatory considerations that affect the feasibility and success of these projects.

  9. Journal of Development and Communication Studies: Advanced ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Journal of Development and Communication Studies: Advanced Search ... of characters; e.g., soci* morality would match documents containing "sociological" or "societal" .... Journal of Business and Administrative Studies, Journal of Business Research, Journal of Child ...

  10. Advanced seismic imaging for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Honjas, Bill [Optim

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  11. Development of Risk Uncertainty Factors from Historical NASA Projects

    Science.gov (United States)

    Amer, Tahani R.

    2011-01-01

    NASA is a good investment of federal funds and strives to provide the best value to the nation. NASA has consistently budgeted to unrealistic cost estimates, which are evident in the cost growth in many of its programs. In this investigation, NASA has been using available uncertainty factors from the Aerospace Corporation, Air Force, and Booz Allen Hamilton to develop projects risk posture. NASA has no insight into the developmental of these factors and, as demonstrated here, this can lead to unrealistic risks in many NASA Programs and projects (P/p). The primary contribution of this project is the development of NASA missions uncertainty factors, from actual historical NASA projects, to aid cost-estimating as well as for independent reviews which provide NASA senior management with information and analysis to determine the appropriate decision regarding P/p. In general terms, this research project advances programmatic analysis for NASA projects.

  12. Stress analysis of HLW containers advanced test work Compas project

    International Nuclear Information System (INIS)

    Ove Arup and Partners

    1990-01-01

    The Compas project is concerned with the structural performance of metal overpacks which may be used to encapsulate vitrified high-level waste forms before disposal in deep geological repositories. This document describes the activities performed between June and August 1989 forming the advanced test work phase of this project. This is the culmination of two years' analysis and test work to demonstrate whether the analytical ability exists to model containers subjected to realistic loads. Three mild steel containers were designed and manufactured to be one-third scale models of a realistic HLW container, modified to represent the effect of anisotropic loading and to facilitate testing. The containers were tested under a uniform external pressure and all failed by buckling in the mid-body region. The outer surface of each container was comprehensively strain-gauged to provide strain history data at all positions of interest. In parallel with the test work, Compas project partners, from five different European countries, independently modelled the behaviour of each of the containers using their computer codes to predict the failure pressure and produce strain history data at a number of specified locations. The first axisymmetric container was well modelled but predictions for the remaining two non-axisymmetric containers were much more varied, with differences of up to 50% occurring between failure predictions and test data

  13. Project for the Institution of an Advanced Course in Physics

    Science.gov (United States)

    Teodorani, M.; Nobili, G.

    2006-06-01

    A project for an advanced course in physics at the master level, is presented in great detail. The goal of this project is to create a specific and rigorous training for those who want to carry out experimental and theoretical research on "anomalies" in physical science, especially from the point of view of atmospheric physics, plasma physics, photonic physics, biophysics, astronomy and astrophysics. A specific training in powering mental skills is planned as well. The planned teaching program is presented as a two-year course where the following subjects are intended to be taught: cognitive techniques (I and II), radiation physics (I and II), biophysics (I and II), bioastronomy (I and II), history of physics (I and II), didactics of physics, physics of atmospheric plasmas, physics of non-stationary photonic events, physics of non-linear processes, complements of quantum mechanics, quantum informatics, research methodology in physics and astronomy, computer science methods in physics and astronomy, optoelectronics, radioelectronics. Detailed teaching programs, didactics methods, and performance evaluation, are presented for each subject. The technical content of this project is preceded by an ample introduction that shows all the reasons of this kind of physics course, particularly aimed at innovation in physical science.

  14. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    Science.gov (United States)

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.

  15. Development of advanced MCR task analysis methods

    International Nuclear Information System (INIS)

    Na, J. C.; Park, J. H.; Lee, S. K.; Kim, J. K.; Kim, E. S.; Cho, S. B.; Kang, J. S.

    2008-07-01

    This report describes task analysis methodology for advanced HSI designs. Task analyses was performed by using procedure-based hierarchical task analysis and task decomposition methods. The results from the task analysis were recorded in a database. Using the TA results, we developed static prototype of advanced HSI and human factors engineering verification and validation methods for an evaluation of the prototype. In addition to the procedure-based task analysis methods, workload estimation based on the analysis of task performance time and analyses for the design of information structure and interaction structures will be necessary

  16. Development of Advanced Ceramic Manufacturing Technology; FINAL

    International Nuclear Information System (INIS)

    Pujari, V.K.

    2001-01-01

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. I n order to achieve these objectives, NAC, a leading U.S. advanced ceramics component manufacturer, assembled a multidisciplinary, vertically integrated team. This team included: a major diesel engine builder, Detroit Diesel Corporation (DDC); a corporate ceramics research division, SGIC's Northboro R and D Center; intelligent processing system developers, BDM Federal/MATSYS; a furnace equipment company, Centorr/Vacuum Industries; a sintering expert, Wittmer Consultants; a production OEM, Deco-Grand; a wheel manufacturer and grinding operation developer, Norton Company's Higgins Grinding Technology Center (HGTC); a ceramic machine shop, Chand Kare Technical Ceramics; and a manufacturing cost consultant, IBIS Associates. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration

  17. Technology readiness levels for advanced nuclear fuels and materials development

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J., E-mail: jon.carmack@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Braase, L.A.; Wigeland, R.A. [Idaho National Laboratory, Idaho Falls, ID (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-03-15

    Highlights: • Definition of nuclear fuels system technology readiness level. • Identification of evaluation criteria for nuclear fuel system TRLs. • Application of TRLs to fuel systems. - Abstract: The Technology Readiness process quantitatively assesses the maturity of a given technology. The National Aeronautics and Space Administration (NASA) pioneered the process in the 1980s to inform the development and deployment of new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications. It was also adopted by the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is needed to improve the performance and safety of current and advanced reactors, and ultimately close the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the assessment process to advanced fuel development is useful as a management, communication, and tracking tool. This article provides definition of technology readiness levels (TRLs) for nuclear fuel technology as well as selected examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).

  18. Verification tests for CANDU advanced fuel -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Chung, Jang Hwan; Suk, Ho Cheon; Jeong, Moon Ki; Park, Joo Hwan; Jeong, Heung Joon; Jeon, Ji Soo; Kim, Bok Deuk

    1994-07-01

    This project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year Out-of-pile hydraulic tests for the prototype of CANFLEX bundle was conducted in the CANDU-hot test loop at KAERI. Thermalhydraulic analysis with the assumption of CANFLEX-NU fuel loaded in Wolsong-1 was performed by using thermalhydraulic code, and the thermal margin and T/H compatibility of CANFLEX bundle with existing fuel for CANDU-6 reactor have been evaluated. (Author)

  19. Advanced prototyping tools for project- and problem-based learning

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Bech, Michael Møller; Holm, Allan J.

    2002-01-01

    A new approach in prototyping for project- and problem-based learning is achieved by using the new Total Development Environment concept introduced by dSPACE that allows a full visual block-oriented programming of dynamic real-time systems to be achieved  using the Matlab/Simulink environment...

  20. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Woong; Cho, Jae Wan; Lee, Nam Ho; Kim, Woong Ki; Moon, Byung Soo; Lee, Young Jae; Kim, Chang Hoi; Kim, Seung Ho; Hwang, Seok Yong; Kim, Byung Soo; Moon, Jae Sun; Lee, Young Kwang; Choi, Kap Joo

    1996-07-01

    The comparison study of 3 kinds of stereo camera modules done in this final year of 4 year's longterm project shows that regenerating characteristics of stereo image of stereo camera using horizontally moving lens axis method is superior to the other two modules. Base on this comparison result, stereo camera module using horizontally moving lens method is developed. Also, stereo-Boom unit, high definition polarized stereo monitor(KAERI-PSM II) and 10.4sec. auto-stereogram TV using parallax barrier method are developed. These developed systems can be used for people involved in extremely hazardous working area to give vivid reality image of work environment. In the recognition and tracking section, auto-vergencing technology using focus fixation and cepstral filter, stereo camera calibration, range measurement technology using stereo camera module are developed. And active target tracking technology is developed also. In the sensing and intelligent control research part, active radioactivity image monitoring unit is developed. The spatial resolution of monitoring unit is 10cm at 1m distance, FOV is 60x40 deg [HXV], and radioactivity detection limit is 1mR/hr. Also, radiation-resistant inspection camera for nuclear facilities is designed. In the intelligent control section, fuzzy control algorithm for obstacle detouring navigation of mobile robot is developed. The smoothing techniques by fuzzy set is adapted to raise the pliability of obstacle detouring navigation of mobile robot. In order to raise robustness of developed fuzzy algorithm, fuzzy control algorithm is applied to 'Truck Backer Upper' problem and tuned. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation/removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous

  1. ARCHER Project: Progress on Material and component activities for the Advanced High Temperature Reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D) integrated project is a four year project which was started in 2011 as part of the European Commission 7th Framework Programme (FP7) to perform High Temperature Reactor technology R&D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research & Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on ARCHER materials and component activities since the start of the project and underlines some of the main conclusions reached. (author)

  2. Advanced Cell Development and Degradation Studies

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; O'Brien, R.C.; Condie, K.G.; Sohal, M.; Housley, G.K.; Hartvigsen, J.J.; Larsen, D.; Tao, G.; Yildiz, B.; Sharma, V.; Singh, P.; Petigny, N.; Cable, T.L.

    2010-01-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003-2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  3. Advanced Cell Development and Degradation Studies

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; R. C. O' Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

    2010-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  4. Systems engineering real estate development projects

    Science.gov (United States)

    Gusakova, Elena; Titarenko, Boris; Stepanov, Vitaliy

    2017-10-01

    In recent years, real estate development has accumulated a wealth of experience in implementing major projects, which requires comprehension and systematization. The scientific instrument of system engineering is studied in the article and is substantively interpreted with reference to real estate development projects. The most perspective approaches and models are substantiated, allowing strategically to plan the life cycle of the project as a whole, and also to solve the engineering butt problems of the project. The relevance of further scientific studies of regularities and specifics of the life cycle of real estate development projects conducted at the Moscow State University of Economics and Management at the ISTA department is shown.

  5. Collaborative Writing to Enhance Academic Writing Development through Project Work

    Science.gov (United States)

    Robayo Lun, Alma Milena; Hernandez Ortiz, Luz Stella

    2013-01-01

    Advanced students at university level struggle with many aspects of academic writing in English as a foreign language. The purpose of this article is to report on an investigation aimed at analyzing what collaborative writing through project work tells us about students' academic writing development at the tertiary level. The compositions written…

  6. Status of advanced nuclear reactor development in Korea

    International Nuclear Information System (INIS)

    Kim, H.R.; Kim, K.K.; Kim, Y.W.; Joo, H.K.

    2014-01-01

    The Korean nuclear industry is facing new challenges to solve the spent fuel storage problem and meet the needs to diversify the application areas of nuclear energy. In order to provide solutions to these challenges, the Korea Atomic Energy Research Institute (KAERI) has been developing advanced nuclear reactors including a Sodium-cooled Fast Reactor, Very High Temperature Gas cooled Reactor (VHTR), and System-integrated Modular Advanced Reactor (SMART) with substantially improved safety, economics, and environment-friendly features. A fast reactor system is one of the most promising options for a reduction of radioactive wastes. The long-term plan for Advanced SFR development in conjunction with the pyro-process was authorized by the Korean Atomic Energy Commission in 2008. The development milestone includes specific design approval of a prototype SFR by 2020, and the construction of a prototype SFR by 2028. KAERI has been carrying out the preliminary design of a 150MWe SFR prototype plant system since 2012. The development of advanced SFR technologies and the basic key technologies necessary for the prototype SFR are also being carried out. By virtue of high-temperature heat, a VHTR has diverse applications including hydrogen production. KAERI launched a nuclear hydrogen project using a VHTR in 2006, which focused on four basic technologies: the development of design tools, very high-temperature experimental technology, TRISO fuel fabrication, and Sulfur-iodine thermo-chemical hydrogen production technology. The technology development project will be continued until 2017. A conceptual reactor design study was started in 2012 as collaboration between industry and government to enhance the early-launching of the nuclear hydrogen development and demonstration (NHDD) project. The goal of the NHDD project is to design and build a nuclear hydrogen demonstration system by 2030. KAERI has developed SMART which is a small-sized advanced integral reactor with a rated

  7. Foundational development of an advanced nuclear reactor integrated safety code

    International Nuclear Information System (INIS)

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-01-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  8. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  9. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  10. Advanced nuclear reactor public opinion project. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  11. Database requirements for the Advanced Test Accelerator project

    International Nuclear Information System (INIS)

    Chambers, F.W.

    1984-01-01

    The database requirements for the Advanced Test Accelerator (ATA) project are outlined. ATA is a state-of-the-art electron accelerator capable of producing energetic (50 million electron volt), high current (10,000 ampere), short pulse (70 billionths of a second) beams of electrons for a wide variety of applications. Databasing is required for two applications. First, the description of the configuration of facility itself requires an extended database. Second, experimental data gathered from the facility must be organized and managed to insure its full utilization. The two applications are intimately related since the acquisition and analysis of experimental data requires knowledge of the system configuration. This report reviews the needs of the ATA program and current implementation, intentions, and desires. These database applications have several unique aspects which are of interest and will be highlighted. The features desired in an ultimate database system are outlined. 3 references, 5 figures

  12. Equipment system for advanced nuclear fuel development

    International Nuclear Information System (INIS)

    Kwon, Hyuk Il; Ji, C. G.; Bae, S. O.

    2002-11-01

    The purpose of the settlement of equipment system for nuclear Fuel Technology Development Facility(FTDF) is to build a seismic designed facility that can accommodate handling of nuclear materials including <20% enriched Uranium and produce HANARO fuel commercially, and also to establish the advanced common research equipment essential for the research on advanced fuel development. For this purpose, this research works were performed for the settlement of radiation protection system and facility special equipment for the FTDF, and the advanced common research equipment for the fuel fabrication and research. As a result, 11 kinds of radiation protection systems such as criticality detection and alarm system, 5 kinds of facility special equipment such as environmental pollution protection system and 5 kinds of common research equipment such as electron-beam welding machine were established. By the settlement of exclusive domestic facility for the research of advanced fuel, the fabrication and supply of HANARO fuel is possible and also can export KAERI-invented centrifugal dispersion fuel materials and its technology to the nations having research reactors in operation. For the future, the utilization of the facility will be expanded to universities, industries and other research institutes

  13. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  14. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-02-05

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT "dark current" background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or "Back" detector, to both (1) minimize Compton background in the low-energy portion of the "Front" scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as impelmented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors.

  15. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    International Nuclear Information System (INIS)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-01-01

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT 'dark current' background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or 'Back' detector, to both (1) minimize Compton background in the low-energy portion of the 'Front' scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as implemented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors

  16. Development of fabrication technology for CANDU advanced fuel -Development of the advanced CANDU technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Beom; Kim, Hyeong Soo; Kim, Sang Won; Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Jang, Ho Il; Kim, Sang Sik; Choi, Il Kwon; Cho, Dae Sik; Sheo, Seung Won; Lee, Soo Cheol; Kim, Yoon Hoi; Park, Choon Ho; Jeong, Seong Hoon; Kang, Myeong Soo; Park, Kwang Seok; Oh, Hee Kwan; Jang, Hong Seop; Kim, Yang Kon; Shin, Won Cheol; Lee, Do Yeon; Beon, Yeong Cheol; Lee, Sang Uh; Sho, Dal Yeong; Han, Eun Deok; Kim, Bong Soon; Park, Cheol Joo; Lee, Kyu Am; Yeon, Jin Yeong; Choi, Seok Mo; Shon, Jae Moon [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-01

    The present study is to develop the advanced CANDU fuel fabrication technologies by means of applying the R and D results and experiences gained from localization of mass production technologies of CANDU fuels. The annual portion of this year study includes following: 1. manufacturing of demo-fuel bundles for out-of-pile testing 2. development of technologies for the fabrication and inspection of advanced fuels 3. design and munufacturing of fuel fabrication facilities 4. performance of fundamental studies related to the development of advanced fuel fabrication technology.

  17. Criteria for Developing a Successful Privatization Project

    Science.gov (United States)

    1989-05-01

    conceptualization and planning are required when pursuing privatization projects. In fact, privatization project proponents need to know how to...selection of projects for analysis, methods of acquiring information about these projects, and the analysis framwork . Chapter IV includes the analysis. A...performed an analysis to determine cormion conceptual and creative approaches and lessons learned. This analysis was then used to develop criteria for

  18. Evaluation, engineering and development of advanced cyclone processes

    Energy Technology Data Exchange (ETDEWEB)

    Durney, T.E.; Cook, A. [Coal Technology Corporation, Bristol, VA (United States); Ferris, D.D. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)] [and others

    1995-11-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal`s heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation`s coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel.

  19. Evaluation, engineering and development of advanced cyclone processes

    International Nuclear Information System (INIS)

    Durney, T.E.; Cook, A.; Ferris, D.D.

    1995-01-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal's heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation's coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel

  20. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  1. Architectural development of an advanced EVA Electronic System

    Science.gov (United States)

    Lavelle, Joseph

    1992-01-01

    An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.

  2. South Ukraine Nuclear Power Plant. Advanced Computer Information System Project

    International Nuclear Information System (INIS)

    Hord, J.; Afanasiev, N.; Smith, C.; Kudinov, Yu.

    1997-01-01

    The South Ukraine upgrade is the first of many that will take place in the former eastern bloc countries over the next several years. Westron is currently developing a similar system for the Zaporozhe nuclear power plant. In addition, there are eleven other WWER type units in operation in the Ukraine, as well as twenty seven others in operation throughout Eastern and Central Europe and Russia - all potential upgrade projects. (author)

  3. Research and development project in fiscal 1990 for large industrial technologies. Achievement report on research and development of ultra-advanced processing systems (Research and development of ultra-advanced processing systems); 1990 nendo chosentan kako system no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    Research and development has been performed with an objective to establish the processing technology using excitation beam required for the advanced industries, and the ultra-precision machining technology to realize the nano-technology. This paper summarizes the achievements in fiscal 1990. In the research on the ultra-precision machining elements, experimental discussions were given on positioning and movement characteristics of static pressure feed screws in an NC equipment, wherein the intermediate target was achieved on rigidity improvement in rotating devices and accuracy in the ultra-precision positioning device. In the research on the thin film forming and laminating technology, a low temperature forming method was completed to form a diamond film at temperatures lower than 400 degrees C on such a substrate as aluminum. In the research of the ion beam surface modifying technology, researches were performed to laminate a silicon nitride layer and a phosphoric glass layer on the glass surface layer, having obtained a result that the modification can be executed in 57 minutes. A method was established to evaluate performance of Si films by measuring movement characteristics of an Si thin film transistor formed on the modified substrate, having achieved the intermediate target. (NEDO)

  4. Status of LMFBR development project in Japan

    International Nuclear Information System (INIS)

    Nagane, G.; Akebi, M.; Matsuno, Y.

    1987-01-01

    Initiation of the LMFBR development project in Japan was decided by the Atomic Energy Commission of Japan in 1966. In 1967, the Power Reactor and Nuclear Fuel Development Corporation (PNC) was established to realize the project as a part of its tasks of a wide scope covering all the reseatch and development activities concerning fuel cycle. In the present paper the status of experimental fast reactor (Joyo), which is the first milestone of the LMFBR project, prototype fast reactor (Monju) and R and D activities supporting the project including that for larger LMFBRs in the future is described. (author)

  5. Advancing CANDU technology AECL's Development program

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1997-01-01

    AECL has a comprehensive product development program that is advancing all aspects of CANDU technology including fuel and fuel cycles, fuel channels, heavy water and tritium technology, safety technology, components and systems, constructability, health and environment, and control and instrumentation. The technology arising from these programs is being incorporated into the CANDU design through an evolutionary process. This evolutionary process is focused on improving economics, enhancing safety and ensuring fuel cycle flexibility to secure fuel supply for the foreseeable future. This strategic thrusts are being used by CANDU designers and researchers to set priorities and goals for AECL's development activities. The goals are part of a 25-year development program that culminates in the 'CANDU X'. The 'CANDU X' is not a specific design - it is a concept that articulates our best extrapolation of what is achievable with the CANDU design over the next 25 years, and includes the advanced features arising from the R and D and engineering to be done over that time. AECL's current product, the 700 MWe class CANDU 6 and the 900 MWe class CANDU 9, both incorporate output from the development programs as the technology become available. A brief description of each development areas is given below. The paper ends with the conclusion that AECL has a clear vision of how CANDU technology and products will evolve over the next several years, and has structured a comprehensive development program to take full advantage of the inherent characteristics of heavy water reactors. (author)

  6. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE`s overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program.

  7. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    International Nuclear Information System (INIS)

    1994-02-01

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE's overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program

  8. Integration of advanced technologies to enhance problem-based learning over distance: Project TOUCH.

    Science.gov (United States)

    Jacobs, Joshua; Caudell, Thomas; Wilks, David; Keep, Marcus F; Mitchell, Steven; Buchanan, Holly; Saland, Linda; Rosenheimer, Julie; Lozanoff, Beth K; Lozanoff, Scott; Saiki, Stanley; Alverson, Dale

    2003-01-01

    Distance education delivery has increased dramatically in recent years as a result of the rapid advancement of communication technology. The National Computational Science Alliance's Access Grid represents a significant advancement in communication technology with potential for distance medical education. The purpose of this study is to provide an overview of the TOUCH project (Telehealth Outreach for Unified Community Health; http://hsc.unm.edu/touch) with special emphasis on the process of problem-based learning case development for distribution over the Access Grid. The objective of the TOUCH project is to use emerging Internet-based technology to overcome geographic barriers for delivery of tutorial sessions to medical students pursuing rotations at remote sites. The TOUCH project also is aimed at developing a patient simulation engine and an immersive virtual reality environment to achieve a realistic health care scenario enhancing the learning experience. A traumatic head injury case is developed and distributed over the Access Grid as a demonstration of the TOUCH system. Project TOUCH serves as an example of a computer-based learning system for developing and implementing problem-based learning cases within the medical curriculum, but this system should be easily applied to other educational environments and disciplines involving functional and clinical anatomy. Future phases will explore PC versions of the TOUCH cases for increased distribution. Copyright 2003 Wiley-Liss, Inc.

  9. The Advanced Stellar Compass, Development and Operations

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Liebe, Carl Christian

    1996-01-01

    The science objective of the Danish Geomagnetic Research Satellite "Ørsted" is to map the magnetic field of the Earth, with a vector precision of a fraction of a nanotesla. This necessitates an attitude reference instrument with a precision of a few arcseconds onboard the satellite. To meet...... this demand the Advanced Stellar Compass (ASC), a fully autonomous miniature star tracker, was developed. This ASC is capable of both solving the "lost in space" problem and determine the attitude with arcseconds precision. The development, principles of operation and instrument autonomy of the ASC...

  10. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  11. Development of advanced retrofit FGD designs

    International Nuclear Information System (INIS)

    Dene, C.E.; Boward, W.L.; Noblett, J.G.; Keeth, R.J.

    1992-01-01

    The 1990 Clean Air Act Amendment is a dramatic departure from previous legislation in that it affords the electric utility industry the flexibility to achieve their portion of the sulfur dioxide reduction in a myriad of ways. Each utility must look at its system overall. One strategy which may prove beneficial is to remove as much SO 2 as possible at facilities where there is an existing flue gas desulfurization (FGD) system or where one is planned. In response to this need EPRI is developing a family of advanced retrofit FGD designs that incorporate recent advances in FGD technology. A range of design options are being investigated to determine both the SO 2 collection capability and the relative cost impacts of each option. Some of the design options considered include the use of trays, packing, additional liquid flow rate, and additives to boost the removal efficiency. These options are being investigated for limestone, and magnesium-enhanced lime systems. The sensitivity of these designs to changes in coal sulfur content, chloride content, unit size, gas velocity, and other factors are being investigated to determine how the performance of a designs is changed and the ability to meet compliance. This paper illustrates the type of analysis used to develop the advanced designs and presents the sensitivity of a Countercurrent spray tower design using limestone and forced oxidation to changes in specific design input parameters such as boiler load, tower height, and gas velocity

  12. Project Development Specification for Valve Pit Manifold

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    Establishes the performance, design development, and test requirements for the valve pit manifolds. The system engineering approach was used to develop this document in accordance with the guidelines laid out in the Systems Engineering Management Plan for Project W-314

  13. Project Development Specification for Special Protective Coating

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    Establishes the performance, design development, and test requirements for the Special Protective Coating. The system engineering approach was used to develop this document in accordance with the guidelines laid out in the Systems Engineering Management Plan for Project W-314

  14. Advanced LWR Nuclear Fuel Cladding Development

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Griffith, G.

    2012-01-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R and D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental enhancements are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction to allow improved fuel economy via power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an 'accident tolerant' fuel system that would offer improved coping time under accident scenarios. In a staged development approach, the LWRS program will engage stakeholders throughout the development process to ensure commercial viability of the investigated technologies. Applying minimum performance criteria, several of the top-ranked materials and fabrication concepts will undergo a rigorous series of mechanical, thermal and chemical characterization tests to better define their properties and operating potential in a relatively low-cost, nonnuclear test series. A reduced number of options will be recommended for test rodlet fabrication and in-pile nuclear testing under steady-state, transient and accident conditions. (author)

  15. Advanced Small Modular Reactor Economics Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J [ORNL

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the

  16. Development of NUCEF project hereafter

    International Nuclear Information System (INIS)

    Takeshita, Isao; Dojiri, Shigeru

    1994-01-01

    The construction of NUCEF was started in June, 1989, and it is completed in June, 1994. The hot test is prepared from the middle of this fiscal year, and static critical ficility(STACY)/transient critical facility(TRACY) are expected to attain the initial criticality within this fiscal year. The research plan for the time being was decided, and the conception and policy for the cooperation with outside and utilization are taking shape. In the STACY, low enriched uranium experiment is carried out for about three years, and thereafter, plutonium experiment is started. In the TRACY, the performance is confirmed by raising the test condition, and it is expected to obtain useful data. In the back-end key elements research facility(BECKY), after sufficient uranium experiment, the experiment using actual spent fuel and high level waste liquid is carried out. NUCEF is the facility for carrying out the basic research on the back end of nuclear fuel cycle. The promotion of the national and international cooperation in the research, the contribution to the fostering of capable men, and the method of cooperation with outside are explained. NUCEF has the role of leading the basic research on the safety and the technical advance in this field. (K.I.)

  17. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  18. LOFT advanced fuel rod instrumentation development

    International Nuclear Information System (INIS)

    Billeter, T.R.; Brown, R.L.; Chan, A.I.Y.; Day, C.K.; Meyers, S.C.; Sheen, E.M.; Stringer, J.L.

    1978-01-01

    Advanced fuel rod instrumentation for the Loss of Fluid Test (LOFT) reactor is being developed by the Hanford Engineering Development Laboratory for the Nuclear Regulatory Commission. This effort calls for development of sensors to measure fuel rod axial motion, fuel centerline temperature (to 2200 0 C), fuel rod plenum gas pressure (to 2500 psig), and plenum gas temperature (to 1500 0 F). A parallel test and evaluation of several modified commercial sensors was undertaken and will result in commercial availability of the final qualified sensors. Necessary test facilities were prepared for the development and evaluation effort. Tests to date indicate a three coil Linear Variable Differential Transformer (LVDT), operated from temperature compensating signal source and processing electronics, will meet the desired requirements

  19. Minerals and energy: major development projects - April 2006 listing

    Energy Technology Data Exchange (ETDEWEB)

    William Mollard [Australian Bureau of Agricultural and Resource Economics (ABARE), Canberra, ACT (Australia)

    2006-06-15

    ABARE's project list, released around May and November each year, lists completed and committed projects in the minerals and energy sector in Australia. Santos' $200 million Casino gas field project in Bass Strait will produce natural gas and condensate while output from Berwyndale South will be coal seam methane. Five coal projects were completed in the six months to April 2006. The largest of these was Xstrata's Newlands Northern underground mine. In the same region, BMA's (BHP Billiton Mitsubishi Alliance) $102 million Broadmeadow underground mine and BHP/Mitsui Coal's $50 million Poitrel opencut mine, both near Moranbah, were brought into production. In New South Wales, two projects a new mine and a mine infrastructure development, both near Singletonwere commissioned. Xstrata's new Ravensworth West opencut mine will produce up to 1.5 million tonnes a year of thermal coal. Excel Coal's $73 million Wambo Rail project involved building a rail loop and loading facilities at its Wambo operation. Queensland coal mine projects and coal infrastructure developments account for 19 per cent (or $6.3 billion) of the estimated capital cost of $34 billion for all advanced projects. The largest coal mine development is the $1 billion Dawson mine expansion which is expected to add around 12 million tonnes of coking and thermal coal capacity, commencing in early 2007. Anglo Coal/Mitsui is also developing the large new Lake Lindsay opencut mine. Rio Tinto is developing its $440 million Clermont opencut mine. Twelve other advanced coal mine developments in Queensland are expected to raise coal production capacity by around 30 million tonnes a year by 2008. 10 figs., 4 tabs.

  20. Development for advanced materials and testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Recent studies using a JMTR and research reactors of JRR-2 and JRR-3 are briefly summarized. Small specimen testing techniques (SSTT) required for an effective use of irradiation volume and also irradiated specimens have been developed focussing on tensile test, fatigue test, Charpy test and small punch test. By using the small specimens of 0.1 - several mm in size, similar values of tensile and fatigue properties to those by standard size specimens can be taken, although the ductile-brittle transition temperature (DBTT) depends strongly on Charpy specimen size. As for advanced material development, R and D about low activation ferritic steels have been done to investigate irradiation response. The low activation ferritic steel, so-called F82H jointly-developed by JAERI and NKK for fusion, has been confirmed to have good irradiation resistance within a limited dose and now selected as a standard material in the fusion material community. It is also found that TiAi intermetallic compounds, which never been considered for nuclear application in the past, have an excellent irradiation resistance under an irradiation condition. Such knowledge can bring about a large expectation for developing advanced nuclear materials. (author)

  1. High Efficiency Space Power Systems Project Advanced Space-Rated Batteries

    Science.gov (United States)

    Reid, Concha M.

    2011-01-01

    Case Western Reserve University (CWRU) has an agreement with China National Offshore Oil Corporation New Energy Investment Company, Ltd. (CNOOC), under the United States-China EcoPartnerships Framework, to create a bi-national entity seeking to develop technically feasible and economically viable solutions to energy and environmental issues. Advanced batteries have been identified as one of the initial areas targeted for collaborations. CWRU invited NASA Glenn Research Center (GRC) personnel from the Electrochemistry Branch to CWRU to discuss various aspects of advanced battery development as they might apply to this partnership. Topics discussed included: the process for the selection of a battery chemistry; the establishment of an integrated development program; project management/technical interactions; new technology developments; and synergies between batteries for automotive and space operations. Additional collaborations between CWRU and NASA GRC's Electrochemistry Branch were also discussed.

  2. Advanced Monitoring Systems Initiative Project Achievements for Environmental Restoration and Waste Management

    International Nuclear Information System (INIS)

    Hohman, E.H.; Lohrstorfer, C.L.; Venedam, R.J.; Weeks, S.J.; Fannin, C.R.

    2006-01-01

    The Advanced Monitoring Systems Initiative (AMSI) project has been in existence since 2002. In this short time period, AMSI has successfully developed, tested and/or demonstrated over 30 advanced sensors and monitoring systems for applications in environmental restoration, waste management and other areas of national interest. This presentation summarizes the AMSI project, and gives examples of recent successes. The purpose of the presentation is to make Symposium attendees aware of AMSI's capabilities and experience, for possible use in the future. Example successes include the following: - Automated hexavalent chromium (Cr(VI)) monitoring in wells alongside the Columbia River; - Atmospheric chemical sensor array for remote, real-time plume tracking; - Wireless sensor platform for long-term monitoring of subsurface moisture; - Embedded piezo-resistive micro-cantilever (EPM) units for carbon tetrachloride (CCl 4 ) and hydrogen cyanide (HCN) detection; - 'iHistorian' for efficient, real-time data management of chemical releases. (authors)

  3. The ADVANCE project: Formal evaluation of the targeted deployment. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    ADVANCE [Advanced Driver and Vehicle Advisory Navigation ConcEpt] was a public/private partnership conceived and developed by four founding parties. The founding parties include the Federal Highway Administration (FHWA), the Illinois Department of Transportation (IDOT), the University of Illinois at Chicago and Northwestern University operating together under the auspices of the Illinois Universities Transportation Research Consortium (IUTRC), and Motorola, Inc. The major responsibilities of each party are fully described in the Project agreement. Subsequently, these four were joined on the Steering Committee by the American Automobile Association (AAA). This unique blending of public sector, private sector and university interests, augmented by more than two dozen other private sector participants, provided a strong set of resources for ADVANCE. The ADVANCE test area covered over 300 square miles including portions of the City of Chicago and 40 northwest suburban communities. The Project encompasses the high growth areas adjacent to O`Hare International Airport, the Schaumbura/Hoffman Estates office and retail complexes, and the Lake-Cook Road development corridor. It also includes major sports and entertainment complexes such as the Arlington International Racecourse and the Rosemont Horizon. The population in the area is more than 750,000. This volume provides a summary of the insights and achievements made as a result of this field test, and selected appendices containing more detailed information.

  4. Leadership Development Program Final Project

    Science.gov (United States)

    Parrish, Teresa C.

    2016-01-01

    TOSC is NASA's prime contractor tasked to successfully assemble, test, and launch the EM1 spacecraft. TOSC success is highly dependent on design products from the other NASA Programs manufacturing and delivering the flight hardware; Space Launch System(SLS) and Multi-Purpose Crew Vehicle(MPCV). Design products directly feed into TOSC's: Procedures, Personnel training, Hardware assembly, Software development, Integrated vehicle test and checkout, Launch. TOSC senior management recognized a significant schedule risk as these products are still being developed by the other two (2) programs; SVE and ACE positions were created.

  5. Development of an advanced robot manipulator system

    International Nuclear Information System (INIS)

    Oomichi, Takeo; Higuchi, Masaru; Shimizu, Yujiro; Ohnishi, Ken

    1991-01-01

    A sophisticated manipulator system for an advanced robot was developed under the 'Advanced Robot Technology Development' Program promoted and supported by the Agency of Industrial Science and Technology of MITI. The authors have participated in the development of a fingered manipulator with force and tactile sensors applicable to a masterslave robot system. Our slave manipulator is equipped with four fingers. Though the finger needs many degrees of freedom so as to be suitable for skilful handing of an object, our fingers are designed to have minimum degree of freedom in order to reduce weight. Each finger tip was designed to be similar to a human finger which has flexibility, softness and contact feeling. The shape of the master finger manipulator was so designed that the movement of the fingers is smoother and that the constraint feeling of the operator is smaller. We were adopted to a pneumatic pressure system for transmitting the tactile feeling of the slave fingers to the master fingers. A multiple sensory bilateral control system which gives an operator a feeling of force and tactile reduces his feeling of constraint in carrying out work with a robot system. (author)

  6. Advanced systems: Status and development prospects

    International Nuclear Information System (INIS)

    Morozov, I.G.

    1983-01-01

    World reserves of coal, uranium, thorium and thermonuclear fuel (deuterium and lithium) are sufficient to provide mankind with energy for many centuries. The rate of increase in demand is unlikely to be a limiting factor, and it would seem that any ''limits to growth'' will be dictated by other, in particular ecological, factors. In the last two decades, world power production has developed a structure in which a predominant place is occupied by oil and gas; this will have to change as a result of the marked depletion of oil resources and the enhanced role played in the fuel balance by power from coal and nuclear fission, on which, it would seem, the long-term growth of world energy production will be based. The contribution of nuclear fission power towards meeting world energy needs will depend on a number of factors, the most important of which from a long-term point of view is the time and rate of introduction of advanced nuclear power systems and fuel cycles with high nuclear fuel surpluses (breeding ratios). The results of almost 30 years of development of nuclear power with thermal-neutron reactors may serve as a basis for the analysis, evaluation and forecasting of the development of advanced systems. (author)

  7. Advances and challenges in malaria vaccine development.

    Science.gov (United States)

    Crompton, Peter D; Pierce, Susan K; Miller, Louis H

    2010-12-01

    Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.

  8. Baseline methodologies for clean development mechanism projects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.K. (ed.); Shrestha, R.M.; Sharma, S.; Timilsina, G.R.; Kumar, S.

    2005-11-15

    The Kyoto Protocol and the Clean Development Mechanism (CDM) came into force on 16th February 2005 with its ratification by Russia. The increasing momentum of this process is reflected in more than 100 projects having been submitted to the CDM Executive Board (CDM-EB) for approval of the baselines and monitoring methodologies, which is the first step in developing and implementing CDM projects. A CDM project should result in a net decrease of GHG emissions below any level that would have resulted from other activities implemented in the absence of that CDM project. The 'baseline' defines the GHG emissions of activities that would have been implemented in the absence of a CDM project. The baseline methodology is the process/algorithm for establishing that baseline. The baseline, along with the baseline methodology, are thus the most critical element of any CDM project towards meeting the important criteria of CDM, which are that a CDM should result in 'real, measurable, and long term benefits related to the mitigation of climate change'. This guidebook is produced within the frame work of the United Nations Environment Programme (UNEP) facilitated 'Capacity Development for the Clean Development Mechanism (CD4CDM)' Project. This document is published as part of the projects effort to develop guidebooks that cover important issues such as project finance, sustainability impacts, legal framework and institutional framework. These materials are aimed to help stakeholders better understand the CDM and are believed to eventually contribute to maximize the effect of the CDM in achieving the ultimate goal of UNFCCC and its Kyoto Protocol. This Guidebook should be read in conjunction with the information provided in the two other guidebooks entitled, 'Clean Development Mechanism: Introduction to the CDM' and 'CDM Information and Guidebook' developed under the CD4CDM project. (BA)

  9. Baseline methodologies for clean development mechanism projects

    International Nuclear Information System (INIS)

    Lee, M.K.; Shrestha, R.M.; Sharma, S.; Timilsina, G.R.; Kumar, S.

    2005-11-01

    The Kyoto Protocol and the Clean Development Mechanism (CDM) came into force on 16th February 2005 with its ratification by Russia. The increasing momentum of this process is reflected in more than 100 projects having been submitted to the CDM Executive Board (CDM-EB) for approval of the baselines and monitoring methodologies, which is the first step in developing and implementing CDM projects. A CDM project should result in a net decrease of GHG emissions below any level that would have resulted from other activities implemented in the absence of that CDM project. The 'baseline' defines the GHG emissions of activities that would have been implemented in the absence of a CDM project. The baseline methodology is the process/algorithm for establishing that baseline. The baseline, along with the baseline methodology, are thus the most critical element of any CDM project towards meeting the important criteria of CDM, which are that a CDM should result in 'real, measurable, and long term benefits related to the mitigation of climate change'. This guidebook is produced within the frame work of the United Nations Environment Programme (UNEP) facilitated 'Capacity Development for the Clean Development Mechanism (CD4CDM)' Project. This document is published as part of the projects effort to develop guidebooks that cover important issues such as project finance, sustainability impacts, legal framework and institutional framework. These materials are aimed to help stakeholders better understand the CDM and are believed to eventually contribute to maximize the effect of the CDM in achieving the ultimate goal of UNFCCC and its Kyoto Protocol. This Guidebook should be read in conjunction with the information provided in the two other guidebooks entitled, 'Clean Development Mechanism: Introduction to the CDM' and 'CDM Information and Guidebook' developed under the CD4CDM project. (BA)

  10. Complex New Product Development projects - How the Project Manager’s Information Sharing With Core Actors Changes Over Time

    DEFF Research Database (Denmark)

    Jepsen, Lisbeth Brøde

    2013-01-01

    A heavily burdened project manager must ensure effective information sharing with actors inside and outside the organization because this is a necessary condition for a new product development (NPD) project to achieve its objectives. Knowledge, however, on who actually assists a project manager...... with the information sharing during NPD projects is limited; therefore, this study of longitudinal objective email data (4658 emails) during a NPD project contributes to theory and practice by advancing our understanding of when and how the project manager establishes relationships with different core actors inside...

  11. Are Project Developers Knights and Researchers Queens?

    DEFF Research Database (Denmark)

    Vinstrup, Anya Bjørn

    2014-01-01

    How do project developers at universities view their customers – the researchers, and how do they see themselves as a profession? Does this view influence their motivation and what challenges does it impose? Taking elements of theory from Public Service Motivation (PSM) and linking it with a small...... empirically based survey among the project developers at a centrally located office at a university in Denmark – these questions are sought to be answered. The focal point being the motivation of the project developer, with special emphasis on their user perception, and the practical implications it has...... for leadership and organisational structures....

  12. Photovoltaic concentrator technology development project. Sixth project integration meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

  13. Development of advanced nuclear reactors in Russia

    International Nuclear Information System (INIS)

    Sotoudeh, M.; Silakhori, K.; Sepanloo, K.; Jahanfarnia, G.; Moattar, F.

    2008-01-01

    Several advanced reactor designs have been so far developed in Russia. The AES-91 and AES-92 plants with the VVER-1000 reactors have been developed at the beginning of 1990. However, the former design has been built in China and the latest which is certified meeting European Utility Requirements is being built in India. Moreover, the model VVER-1500 reactor with 50-60 MWd/t burn-up and an enhanced safety was being developed by Gidropress about 2005, excepting to be completed in 2007. But, this schedule has slipped in favor of development of the AES-2006 power plant incorporating a third-generation standardized VVER-1200 reactor of 1170 MWe. This is an evolutionary development of the well-proven VVER-1000 reactor in the AES-92 plant, with longer life, greater power and efficiency and its lead units are being built at Novovoronezh II, to start operation in 2012-13. Based on Atomenergoproekt declaration, the AES-2006 conforms to both Russian standards and European Utility Requirements. The most important features of the AES-2006 design are mentioned as: a design based on the passive safety systems, double containment, longer plant service life of 50 years with a capacity factor of 92%, longer irreplaceable components service life of 60 years, a 28.6% lower amount of concrete and metal, shorter construction time of 54 months, a Core Damage Frequency of 1x10 -7 / year and lower liquid and solid wastes by 70% and 80% respectively. The presented paper includes a comparative analysis of technological and safety features, economic parameters and environmental impact of the AES-2006 design versus the other western advanced reactors. Since the Bushehr phase II NPP and several other NPPs are planning in Iran, such analysis would be of a great importance

  14. Gastroenterology in developing countries: Issues and advances

    Science.gov (United States)

    Mandeville, Kate L; Krabshuis, Justus; Ladep, Nimzing Gwamzhi; Mulder, Chris JJ; Quigley, Eamonn MM; Khan, Shahid A

    2009-01-01

    Developing countries shoulder a considerable burden of gastroenterological disease. Infectious diseases in particular cause enormous morbidity and mortality. Diseases which afflict both western and developing countries are often seen in more florid forms in poorer countries. Innovative techniques continuously improve and update gastroenterological practice. However, advances in diagnosis and treatment which are commonplace in the West, have yet to reach many developing countries. Clinical guidelines, based on these advances and collated in resource-rich environments, lose their relevance outside these settings. In this two-part review, we first highlight the global burden of gastroenterological disease in three major areas: diarrhoeal diseases, hepatitis B, and Helicobacter pylori. Recent progress in their management is explored, with consideration of future solutions. The second part of the review focuses on the delivery of clinical services in developing countries. Inadequate numbers of healthcare workers hamper efforts to combat gastroenterological disease. Reasons for this shortage are examined, along with possibilities for increased specialist training. Endoscopy services, the mainstay of gastroenterology in the West, are in their infancy in many developing countries. The challenges faced by those setting up a service are illustrated by the example of a Nigerian endoscopy unit. Finally, we highlight the limited scope of many clinical guidelines produced in western countries. Guidelines which take account of resource limitations in the form of “cascades” are advocated in order to make these guidelines truly global. Recognition of the different working conditions facing practitioners worldwide is an important step towards narrowing the gap between gastroenterology in rich and poor countries. PMID:19533805

  15. Financing the development of renewable energy projects of territorial interest

    International Nuclear Information System (INIS)

    Regnier, Yannick; Bailleul, Esther; Claustre, Raphael; Bessiere, Patrick; Boumard, Erwan; Peulemeulle, Justine; Causse, Laurent; Coton, Patrice; Djemouai, Nadia; Dubus, Jean-Michel; Duffes, Thomas; Gauduchon, Marie-Veronique; Raguet, Alex; Ghewy, Etienne; Heitz, Philippe; Jedliczka, Marc; Jourdain, Pierre; Julien, Emmanuel; Marcenac, Guillaume; Marillier, Frederic; Massias, Louis; Picot, Roland; Poize, Noemie; Quantin, Jacques; Rabian, Jean; Rocaboy, Dominique; Rumolino, Claudio; Sabin, Patrick; Saultier, Patrick; Tincelin-Salomon, Claire; Trillaud, Nicolas; Vachette, Philippe; Verhaeghe, Laure

    2016-11-01

    This report highlights the relationship between a territorial project (its autonomous strategy) and projects of renewable energy which could and should be developed. It focuses on large projects of electric power production, notably those based on solar and wind energy for which such a territorial anchoring is not as obvious as for the production of heat or gas (heat networks are necessarily local, and biomass production and supply as well). Thus, its outlines how these projects can be a benefit for a territory, the stakes of participation for the different local actors, and discusses how such a participation is to be organised. It describes different aspects of the way a project development phase is to be financed: stakes (financing needs, risks, peculiarities of local financing, project management and governance), financing typologies, development ease and safety, support of development financing (capital-risk tools, intervention of local public companies, advance payments, subsidies). The last part addresses how to locally finance the other project phases (stakes during construction and exploitation, intervention modes by participation, financial tools or loans)

  16. Fermilab advanced computer program multi-microprocessor project

    International Nuclear Information System (INIS)

    Nash, T.; Areti, H.; Biel, J.

    1985-06-01

    Fermilab's Advanced Computer Program is constructing a powerful 128 node multi-microprocessor system for data analysis in high-energy physics. The system will use commercial 32-bit microprocessors programmed in Fortran-77. Extensive software supports easy migration of user applications from a uniprocessor environment to the multiprocessor and provides sophisticated program development, debugging, and error handling and recovery tools. This system is designed to be readily copied, providing computing cost effectiveness of below $2200 per VAX 11/780 equivalent. The low cost, commercial availability, compatibility with off-line analysis programs, and high data bandwidths (up to 160 MByte/sec) make the system an ideal choice for applications to on-line triggers as well as an offline data processor

  17. MITI project on advanced man-machine system for nuclear power plants

    International Nuclear Information System (INIS)

    Kato, Kanji; Watanabe, Takao; Hayakawa, Hiroyasu; Naito, Norio; Masui, Takao; Ogino, Takamichi.

    1988-01-01

    A computerized operator support system (COSS) against abnormal plant conditions was developed as a five-year project from 1980 to 1984, under the sponsorship of the Ministry of International Trade and Industry. The main purpose of the COSS development was to implement the lessons learned from the Three Mile Island accident. The main nuclear industries in Japan participated in the project. The design concept of the operator support functions and the method to implement it were established, and the prototype systems of the COSS for BWR and PWR plants were developed. After the completion of the COSS development, the above participant group once again joined for the work on an advanced man-machine system for nuclear power plants (MMS-NPP). This eight-year project aims at realizing an advanced operator support system by applying artificial intelligence, especially knowledge engineering, and sophisticated man-machine interface devices. Its main objectives are shown. This system configuration, operating method decision system, man-machine communication system, operation and maintenance support functions and so on are described. (Kako, I.)

  18. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  19. The development of an advanced computerised control room

    International Nuclear Information System (INIS)

    Haugset, K.

    1988-01-01

    Control room improvements by use of computer technology is a major activity within the OECD Halden Reactor Project. The goal is to improve operational efficiency and safety by supplying the operator with the information relevant for the specific operational situation, assisting him both in identifying plant state, plan operational strategies and implement such plans. The research activity consists of development of specific operator support systems, validation of such systems under realistic conditions and integration under the scope of an advanced control room concept. The work is carried out in close cooperation with the many member organisations. (author) 2 figs., 8 refs

  20. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Shin, Y. J.; Do, J. B.; You, G. S.; Seo, J. S.; Lee, H. G.

    1998-03-01

    This study is to develop an advanced spent fuel management process for countries which have not yet decided a back-end nuclear fuel cycle policy. The aims of this process development based on the pyroreduction technology of PWR spent fuels with molten lithium, are to reduce the storage volume by a quarter and to reduce the storage cooling load in half by the preferential removal of highly radioactive decay-heat elements such as Cs-137 and Sr-90 only. From the experimental results which confirm the feasibility of metallization technology, it is concluded that there are no problems in aspects of reaction kinetics and equilibrium. However, the operating performance test of each equipment on an engineering scale still remain and will be conducted in 1999. (author). 21 refs., 45 tabs., 119 figs

  1. Development of Korea advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Park, C.K.

    1998-01-01

    Future nuclear power plants should not only have the features of improved safety and economic competitiveness but also provide a means to resolve spent fuel storage problems by minimizing volume of high level wastes. It is widely believed that liquid metal reactors (LMRs) have the highest potential of meeting these requirements. In this context, the LMR development program was launched as a national long-term R and D program in 1992, with a target to introduce a commercial LMR around 2030. Korea Advanced Liquid Metal Reactor (KALIMER), a 150 MWe pool-type sodium cooled prototype reactor, is currently under the conceptual design study with the target schedule to complete its construction by the mid-2010s. This paper summarizes the KALIMER development program and major technical features of the reactor system. (author)

  2. Extending the GEMINI advanced review station development

    International Nuclear Information System (INIS)

    Kadner, S.; Spahn, W.; Pepper, S.

    1999-01-01

    Recent changes in the objectives of arms control agreements will have a dramatic impact on the nuclear non-proliferation regime. Meeting the demands of the nuclear non-proliferation regime will require the utilisation of the best available technological means for verification. The following discussion focuses on the increasing demands for safeguards with a view towards the possible technological solutions available to meet these demands. Based on the assumption that the gap between the international nonproliferation verification agenda and the available financial means can only be bridged via technology, the following discussion hopes to offer a compelling argument for the adoption of remote monitoring technologies in safeguards applications, specifically, data collection and review. The GEMINI Advanced Review Station (GARS) was developed with initial support from USPOTAS. This poster presentation presents the latest developments in GARS, including its extension to other surveillance systems under IAEA consideration, NDA applications, and networked safeguards. (author)

  3. Advances in Robotic Servicing Technology Development

    Science.gov (United States)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  4. The Financing of Media Projects for Development.

    Science.gov (United States)

    Spain, Peter L.

    1978-01-01

    Discusses the financing of Third World media projects that are designed for development, and reports on five main sources of funding--government sources, international agencies, advertising sales, private local support, and self-support. (Author/JEG)

  5. Development of nuclear fuel. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Hwang, Woan; Jeong, Young Hwan; Jung, Sung Hoon

    1991-07-01

    In order to develop CANDU advanced fuel, the agreement of the joint research between KAERI and AECL was made on February 19, 1991. AECL conceptual design of CANFLEX bundle for Bruce reactors was analyzed and then the reference design and design drawing of the advanced fuel bundle with natural uranium fuel for CANDU-6 reactor were completed. The CANFLEX fuel cladding was preliminarily investigated. The fabricability of the advanced fuel bundle was investigated. The design and purchase of the machinery tools for the bundle fabrication for hydraulic scoping tests were performed. As a result of CANFLEX tube examination, the tubes were found to be meet the criteria proposed in the technical specification. The dummy bundles for hydraulic scoping tests have been fabricated by using the process and tools, where the process parameters and tools have been newly established. (Author)

  6. Itataia project - Development of the process

    International Nuclear Information System (INIS)

    Coelho, S.V.

    1987-01-01

    A process for treating the phosphorus uraniferous ore, from Itataia-CE mine in Brazil, was developed, establishing the basic flow chart for recovery two products: uranium concentrate and phosphoric acid. The developed process consists in physical concentration, chemical separation, solvent extraction, and it presented, in laboratory and pilot scales, recovery levels which assure the project viability technicaly and economicaly. The consolidation of project and the description of installations are presented by a documentary film. (M.C.K.) [pt

  7. Itataia project - Development of the process

    International Nuclear Information System (INIS)

    Coelho, S.V.

    1987-01-01

    A process for treating the phosphorous uraniferous ore, from Itataia-CE mine in Brazil, was developed, establishing the basic flow chart for recovery two products: uranium concentrate and phosphoric acid. The developed process consists in physical concentration, chemical separation, solvent extraction, and it presented, in laboratory and pilot scales, recovery leves which assure the project viability technically and economically. The consolidation of project and the description of installations are presented by a documentary film. (M.C.K.) [pt

  8. Advanced Stirling Convertor (ASC) Development for NASA RPS

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh

    2014-01-01

    Sunpower's Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center (GRC) and after a series of successful demonstrations, the ASC began transitioning from a technology development project to flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the U.S. In recent years, the ASC became part of the NASA-Department of Energy Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASC convertors, one with the Department of Energy/Lockheed Martin to produce the ASC-F flight convertors, and one with NASA GRC for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flight-like ASC-E3 by 2013. However, in late Fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at GRC, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  9. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  10. Development of demonstration advanced thermal reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Seiji; Oguchi, Isao; Touhei, Kazushige

    1982-08-01

    The design of the advanced thermal demonstration reactor with 600 MWe output was started in 1975. In order to make the compact core, 648 fuel assemblies, each comprising 36 fuel rods, were used, and the mean channel output was increased by 20% as compared with the prototype reactor. The heavy water dumping mechanism for the calandria was abolished. Advanced thermal reactors are suitable to burn plutonium, since the control rod worth does not change, the void reactivity coefficient of coolant shifts to the negative side, and the harmful influence of high order plutonium is small. The void reactivity coefficient is nearly zero, the fluctuation of output in relation to pressure disturbance is small, and the local output change of fuel by the operation of control rods is small, therefore, the operation following load change is relatively easy. The coolant recirculation system is of independent loop construction dividing the core into two, and steam and water are separated in respective steam drums. At present, the rationalizing design is in progress by the leadership of the Power Reactor and Nuclear Fuel Development Corp. The outline of the demonstration reactor, the reactor construction, the nuclear-thermal-hydraulic characteristics and the output control characteristics are reported.

  11. Development of demonstration advanced thermal reactor

    International Nuclear Information System (INIS)

    Nishimura, Seiji; Oguchi, Isao; Touhei, Kazushige.

    1982-01-01

    The design of the advanced thermal demonstration reactor with 600 MWe output was started in 1975. In order to make the compact core, 648 fuel assemblies, each comprising 36 fuel rods, were used, and the mean channel output was increased by 20% as compared with the prototype reactor. The heavy water dumping mechanism for the calandria was abolished. Advanced thermal reactors are suitable to burn plutonium, since the control rod worth does not change, the void reactivity coefficient of coolant shifts to the negative side, and the harmful influence of high order plutonium is small. The void reactivity coefficient is nearly zero, the fluctuation of output in relation to pressure disturbance is small, and the local output change of fuel by the operation of control rods is small, therefore, the operation following load change is relatively easy. The coolant recirculation system is of independent loop construction dividing the core into two, and steam and water are separated in respective steam drums. At present, the rationalizing design is in progress by the leadership of the Power Reactor and Nuclear Fuel Development Corp. The outline of the demonstration reactor, the reactor construction, the nuclear-thermal-hydraulic characteristics and the output control characteristics are reported. (Kako, I.)

  12. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Park, Seong Won; Shin, Y. J.; Cho, S. H.

    2004-03-01

    The research on spent fuel management focuses on the maximization of the disposal efficiency by a volume reduction, the improvement of the environmental friendliness by the partitioning and transmutation of the long lived nuclides, and the recycling of the spent fuel for an efficient utilization of the uranium source. In the second phase which started in 2001, the performance test of the advanced spent fuel management process consisting of voloxidation, reduction of spent fuel and the lithium recovery process has been completed successfully on a laboratory scale. The world-premier spent fuel reduction hot test of a 5 kgHM/batch has been performed successfully by joint research with Russia and the valuable data on the actinides and FPs material balance and the characteristics of the metal product were obtained with experience to help design an engineering scale reduction system. The electrolytic reduction technology which integrates uranium oxide reduction in a molten LiCl-Li 2 O system and Li 2 O electrolysis is developed and a unique reaction system is also devised. Design data such as the treatment capacity, current density and mass transfer behavior obtained from the performance test of a 5 kgU/batch electrolytic reduction system pave the way for the third phase of the hot cell demonstration of the advanced spent fuel management technology

  13. Product development projects dynamics and emergent complexity

    CERN Document Server

    Schlick, Christopher

    2016-01-01

    This book primarily explores two topics: the representation of simultaneous, cooperative work processes in product development projects with the help of statistical models, and the assessment of their emergent complexity using a metric from theoretical physics (Effective Measure Complexity, EMC). It is intended to promote more effective management of development projects by shifting the focus from the structural complexity of the product being developed to the dynamic complexity of the development processes involved. The book is divided into four main parts, the first of which provides an introduction to vector autoregression models, periodic vector autoregression models and linear dynamical systems for modeling cooperative work in product development projects. The second part presents theoretical approaches for assessing complexity in the product development environment, while the third highlights and explains closed-form solutions for the complexity metric EMC for vector autoregression models and linear dyn...

  14. Advancement of CMOS Doping Technology in an External Development Framework

    Science.gov (United States)

    Jain, Amitabh; Chambers, James J.; Shaw, Judy B.

    2011-01-01

    The consumer appetite for a rich multimedia experience drives technology development for mobile hand-held devices and the infrastructure to support them. Enhancements in functionality, speed, and user experience are derived from advancements in CMOS technology. The technical challenges in developing each successive CMOS technology node to support these enhancements have become increasingly difficult. These trends have motivated the CMOS business towards a collaborative approach based on strategic partnerships. This paper describes our model and experience of CMOS development, based on multi-dimensional industrial and academic partnerships. We provide to our process equipment, materials, and simulation partners, as well as to our silicon foundry partners, the detailed requirements for future integrated circuit products. This is done very early in the development cycle to ensure that these requirements can be met. In order to determine these fundamental requirements, we rely on a strategy that requires strong interaction between process and device simulation, physical and chemical analytical methods, and research at academic institutions. This learning is shared with each project partner to address integration and manufacturing issues encountered during CMOS technology development from its inception through product ramp. We utilize TI's core strengths in physical analysis, unit processes and integration, yield ramp, reliability, and product engineering to support this technological development. Finally, this paper presents examples of the advancement of CMOS doping technology for the 28 nm node and beyond through this development model.

  15. The advanced neutron source research and development plan

    International Nuclear Information System (INIS)

    Selby, D.L.

    1995-08-01

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 · 10 19 · m -2 · s -1 . Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R ampersand D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R ampersand D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R ampersand D program will focus on the four objectives described

  16. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  17. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  18. Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  19. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  20. The Environmental Control and Life Support System (ECLSS) advanced automation project

    Science.gov (United States)

    Dewberry, Brandon S.; Carnes, Ray

    1990-01-01

    The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.

  1. Development of advanced zirconium fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Young Hwan; Park, S. Y.; Lee, M. H.

    2007-04-01

    This report includes the manufacturing technology developed for HANA TM claddings, a series of their characterization results as well as the results of their in-pile and out-of pile performances tests which were carried out to develop some fuel claddings for a high burn-up (70,000MWd/mtU) which are competitive in the world market. Some of the HANA TM claddings, which had been manufactured based on the results from the 1st and 2nd phases of the project, have been tested in a research reactor in Halden of Norway for an in-pile performance qualification. The results of the in-pile test showed that the performance of the HANA TM claddings for corrosion and creep was better than 50% compared to that of Zircaloy-4 or A cladding. It was also found that the out-of pile performance of the HANA TM claddings for such as LOCA and RIA in some accident conditions corrosion creep, tensile, burst and fatigue was superior or equivalent to that of the Zircaloy-4 or A cladding. The project also produced the other many data which were required to get a license for an in-pile test of HANA TM claddings in a commercial reactor. The data for the qualification or characterization were provided for KNFC to assist their activities to get the license for the in-pile test of HANA TM Lead Test Rods(LTR) in a commercial reactor

  2. Development of advanced LWR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hwan; Park, S. Y.; Lee, M. H. [and others

    2000-04-01

    This report describes the results from evaluating the preliminary Zr-based alloys to develop the advanced Zr-based alloys for the nuclear fuel claddings, which should have good corrosion resistance and mechanical properties at high burn-up over 70,000MWD/MTU. It also includes the results from the basic studies for optimizing the processes which are involved in the development of the advanced Zr-based alloys. Ten(10) kinds of candidates for the alloys of which performance is over that of the existing Zircaloy-4 or ZIRLO alloy were selected out of the preliminary alloys of 150 kinds which were newly designed and repeatedly manufactured and evaluated to find out the promising alloys. First of all, the corrosion tests on the preliminary alloys were carried out to evaluate their performance in both pure water and LiOH solution at 360 deg C and in steam at 400 deg C. The tensile tests were performed on the alloys which proved to be good in the corrosion resistance. The creep behaviors were tested at 400 deg C for 10 days with the application of constant load on the samples which showed good performance in the corrosion resistance and tensile properties. The effect of the final heat treatment and A-parameters as well as Sn or Nb on the corrosion resistance, tensile properties, hardness, microstructures of the alloys was evaluated for some alloys interested. The other basic researches on the oxides, electrochemical properties, corrosion mechanism, and the establishment of the phase diagrams of some alloys were also carried out.

  3. Development of advanced LWR fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Park, S. Y.; Lee, M. H.

    2000-04-01

    This report describes the results from evaluating the preliminary Zr-based alloys to develop the advanced Zr-based alloys for the nuclear fuel claddings, which should have good corrosion resistance and mechanical properties at high burn-up over 70,000MWD/MTU. It also includes the results from the basic studies for optimizing the processes which are involved in the development of the advanced Zr-based alloys. Ten(10) kinds of candidates for the alloys of which performance is over that of the existing Zircaloy-4 or ZIRLO alloy were selected out of the preliminary alloys of 150 kinds which were newly designed and repeatedly manufactured and evaluated to find out the promising alloys. First of all, the corrosion tests on the preliminary alloys were carried out to evaluate their performance in both pure water and LiOH solution at 360 deg C and in steam at 400 deg C. The tensile tests were performed on the alloys which proved to be good in the corrosion resistance. The creep behaviors were tested at 400 deg C for 10 days with the application of constant load on the samples which showed good performance in the corrosion resistance and tensile properties. The effect of the final heat treatment and A-parameters as well as Sn or Nb on the corrosion resistance, tensile properties, hardness, microstructures of the alloys was evaluated for some alloys interested. The other basic researches on the oxides, electrochemical properties, corrosion mechanism, and the establishment of the phase diagrams of some alloys were also carried out

  4. Advanced Extravehicular Activity Pressure Garment Requirements Development

    Science.gov (United States)

    Ross, Amy

    2014-01-01

    The NASA Johnson Space Center advanced pressure garment technology development team is addressing requirements development for exploration missions. Lessons learned from the Z-2 high fidelity prototype development have reiterated that clear low-level requirements and verification methods reduce risk to the government, improve efficiency in pressure garment design efforts, and enable the government to be a smart buyer. The expectation is to provide requirements at the specification level that are validated so that their impact on pressure garment design is understood. Additionally, the team will provide defined verification protocols for the requirements. However, in reviewing exploration space suit high level requirements there are several gaps in the team's ability to define and verify related lower level requirements. This paper addresses the efforts in requirement areas such as mobility/fit/comfort and environmental protection (dust, radiation, plasma, secondary impacts) to determine the by what method the requirements can be defined and use of those methods for verification. Gaps exist at various stages. In some cases component level work is underway, but no system level effort has begun, in other cases no effort has been initiated to close the gap. Status of ongoing efforts and potential approaches to open gaps are discussed.

  5. Optimising Impact in Astronomy for Development Projects

    Science.gov (United States)

    Grant, Eli

    2015-08-01

    Positive outcomes in the fields of science education and international development are notoriously difficult to achieve. Among the challenges facing projects that use astronomy to improve education and socio-economic development is how to optimise project design in order to achieve the greatest possible benefits. Over the past century, medical scientists along with statisticians and economists have progressed an increasingly sophisticated and scientific approach to designing, testing and improving social intervention and public health education strategies. This talk offers a brief review of the history and current state of `intervention science'. A similar framework is then proposed for astronomy outreach and education projects, with applied examples given of how existing evidence can be used to inform project design, predict and estimate cost-effectiveness, minimise the risk of unintended negative consequences and increase the likelihood of target outcomes being achieved.

  6. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-30

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  7. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 1: Theoretical development and application to yearly predictions for selected cities in the United States

    Science.gov (United States)

    Manning, Robert M.

    1986-01-01

    A rain attenuation prediction model is described for use in calculating satellite communication link availability for any specific location in the world that is characterized by an extended record of rainfall. Such a formalism is necessary for the accurate assessment of such availability predictions in the case of the small user-terminal concept of the Advanced Communication Technology Satellite (ACTS) Project. The model employs the theory of extreme value statistics to generate the necessary statistical rainrate parameters from rain data in the form compiled by the National Weather Service. These location dependent rain statistics are then applied to a rain attenuation model to obtain a yearly prediction of the occurrence of attenuation on any satellite link at that location. The predictions of this model are compared to those of the Crane Two-Component Rain Model and some empirical data and found to be very good. The model is then used to calculate rain attenuation statistics at 59 locations in the United States (including Alaska and Hawaii) for the 20 GHz downlinks and 30 GHz uplinks of the proposed ACTS system. The flexibility of this modeling formalism is such that it allows a complete and unified treatment of the temporal aspects of rain attenuation that leads to the design of an optimum stochastic power control algorithm, the purpose of which is to efficiently counter such rain fades on a satellite link.

  8. Leadership and Project Success in Development Sector

    Directory of Open Access Journals (Sweden)

    Saghir Ahmed

    2017-10-01

    Full Text Available Aim/purpose - The study aims to investigate the relationship among the leadership, operational efficiency and project success in general and the impact of transformational leadership and operational efficiency on project success in particular. Design/methodology/approach - Mean comparison from descriptive statistics and multiple linear regression from inferential statistics was used to determine the association between variables and further impact of the transformational leadership and operational efficiency on project success in the development sector. The paper presents the results of a survey conducted among 200 employees from the top, middle & lower management levels of various national & international development organizations working in Pakistan like Microfinance Banks and other Rural Support Programs. Statistical Package for Social Sciences (SPSS was used to process data. Findings - The result shows positive association among transformational leadership, operational efficiency and project success. In addition, it was found that transformational leadership and operational efficiency have a positive and statistically significant impact on the project success. It is concluded that both transformational leadership and operational efficiency are vital to achieving the optimum level of success in any project, especially in the development sector. Research implications/limitations - The integral limitation of the study was the respondents because most of the development organizations have their operations in rural areas where access was difficult because of limited time and resources. In addition, such organizations are always reluctant to provide survey feedback. Originality/value/contribution - The paper contribution is in the theoretical and practical knowledge of the project success factors in the development sector which is still a somehow unexplored area. Regulators of the development sector may be benefited from this study.

  9. Witness: The Movie. A Material Development Project.

    Science.gov (United States)

    Conlon, Susan Henderson

    A teaching guide and series of exercises for high-intermediate or advanced English-as-a-Second-Language (ESL) instruction based on the movie "Witness" are presented. The materials are designed primarily to develop English listening and speaking skills and enhance awareness of American culture and the criminal justice system. The teaching…

  10. Development in laser peening of advanced ceramics

    Science.gov (United States)

    Shukla, Pratik; Smith, Graham C.; Waugh, David G.; Lawrence, Jonathan

    2015-07-01

    Laser peening is a well-known process applicable to surface treat metals and alloys in various industrial sectors. Research in the area of laser peening of ceramics is still scarce and a complete laser-ceramic interaction is still unreported. This paper focuses on laser peening of SiC ceramics employed for cutting tools, armor plating, dental and biomedical implants, with a view to elucidate the unreported work. A detailed investigation was conducted with 1064nm Nd:YAG ns pulse laser to first understand the surface effects, namely: the topography, hardness, KIc and the microstructure of SiC advanced ceramics. The results showed changes in surface roughness and microstructural modification after laser peening. An increase in surface hardness was found by almost 2 folds, as the diamond footprints and its flaws sizes were considerably reduced, thus, enhancing the resistance of SiC to better withstand mechanical impact. This inherently led to an enhancement in the KIc by about 42%. This is attributed to an induction of compressive residual stress and phase transformation. This work is a first-step towards the development of a 3-dimensional laser peening technique to surface treat many advanced ceramic components. This work has shown that upon tailoring the laser peening parameters may directly control ceramic topography, microstructure, hardness and the KIc. This is useful for increasing the performance of ceramics used for demanding applications particularly where it matters such as in military. Upon successful peening of bullet proof vests could result to higher ballistic strength and resistance against higher sonic velocity, which would not only prevent serious injuries, but could also help to save lives of soldiers on the battle fields.

  11. Generation project development opportunities in Latin America

    International Nuclear Information System (INIS)

    Carter, R.W.

    1993-01-01

    This presentation addresses the pitfalls and benefits of developing power generation projects in Latin America. The topics of the presentation include the countries where there is opportunity for development, the opportunities that exist in these countries, the influence of geographic proximity, and competition from the Far East and the European Community

  12. Clean development mechanism projects and portfolio risks

    International Nuclear Information System (INIS)

    Matsuhashi, Ryuji; Fujisawa, Sei; Mitamura, Wataru; Momobayashi, Yutaka; Yoshida, Yoshikuni

    2004-01-01

    Clean development mechanism (CDM) is expected to facilitate technology transfer from developed to developing countries as well as to economically reduce greenhouse gas emissions. In this article, we explore effective institutions to activate CDM projects. For this purpose, we have estimated internal rate of return (IRR) and other indicators on profitability for 42 CDM or JI projects, taking account of volatilities in the price of certified emission reductions (CER). As a result of Monte Carlo simulations, expected values and standard deviations in the IRR of the projects were quantitatively shown. Then we evaluated various risks in CDM, concluding that diversification of investment is an effective way to suppress these risks. Therefore securitization of CDM finance is proposed as a means of facilitating the diversification of investment. Namely, we present the concept of a CDM bond, which is a project bond with CER. We also investigated the role of governments to suppress risks in CDM. Referring to CERUPT, initiated by the Netherlands' government, the institution of 'insured CERUPT' is proposed to suppress downside risks in the IRR of the projects. We concluded that it is possible to make CDM projects viable by the 'insured CERUPT' and CDM bond

  13. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  14. Method of advancing research and development of fast breeder reactors

    International Nuclear Information System (INIS)

    1988-01-01

    In the long term plan of atomic energy development and utilization, fast breeder reactors are to be developed as the main of the future nuclear power generation in Japan, and when their development is advanced, it has been decided to positively aim at building up the plutonium utilization system using FBRs superior to the uranium utilization system using LWRs. Also it has been decided that the development of FBRs requires to exert incessant efforts for a considerable long period under the proper cooperation system of government and people, and as for its concrete development, hereafter the deliberation is to be carried out in succession by the expert subcommittee on FBR development projects of the Atomic Energy Commission. The subcommittee was founded in May, 1986, to deliberate on the long term promotion measures for FBR development, the measures for promoting the research and development, the examination of the basic specification of a demonstration FBR, the measures for promoting international cooperation, and other important matters. As the results of investigation, the situation around the development of FBRs, the fundamentals at the time of promoting the research and development, the subjects of the research and development and so on are reported. (Kako, I.)

  15. MELCOR development for existing and advanced reactors

    International Nuclear Information System (INIS)

    Summers, R.M.

    1993-01-01

    Recent efforts in MELCOR development to address previously identified deficiencies have resulted in release of MELCOR 1.8.2, a much-improved version of the code. Major new models have been implemented for direct containment heating, ice condensers, debris quenching, lower plenum debris behavior, core materials interactions' and radial relocation of debris. Significant improvements have also been made in the modeling of interfacial momentum exchange and in the modeling of fission product release, condensation/evaporation, and aerosol behavior. Efforts are underway to address two-phase hydrodynamics difficulties, to improve modeling of water condensation on structures and fine-scale natural circulation within the reactor vessel, and to implement CORCON-Mod3. Improvements are also being made to MELCOR's capability to handle new features of the advanced light water reactor designs, including drainage of water films on connected heat structures, heat transfer from the external surface of the reactor vessel to a flooded cavity, and creep rupture failure of the lower head. Additional development needs in other areas are discussed

  16. Advanced Turbo-Charging Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-02-27

    The objective of this project is to conduct analysis, design, procurement and test of a high pressure ratio, wide flow range, and high EGR system with two stages of turbocharging. The system needs to meet the stringent 2010MY emissions regulations at 20% + better fuel economy than its nearest gasoline competitor while allowing equivalent vehicle launch characteristics and higher torque capability than its nearest gasoline competitor. The system will also need to meet light truck/ SUV life requirements, which will require validation or development of components traditionally used only in passenger car applications. The conceived system is termed 'seriessequential turbocharger' because the turbocharger system operates in series at appropriate times and also sequentially when required. This is accomplished using intelligent design and control of flow passages and valves. Components of the seriessequential system will also be applicable to parallel-sequential systems which are also expected to be in use for future light truck/SUV applications.

  17. Architecture and Functionality of the Advanced Life Support On-Line Project Information System

    Science.gov (United States)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriguez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Ames Research Center (ARC) to develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a Web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an research and technology development (R&TD) status information hub that can potentially serve as the primary annual reporting mechanism for ALS-funded projects. Using OPIS, ALS managers and element leads will be able to carry out informed R&TD investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, Controls and Systems Analysis). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  18. Research and development project for a large-scale industrial technology in fiscal 1992. Research and development of an advanced function creating and processing technology /Development of an advanced function creating and processing technology (Report on work achievements); 1992 nend senshin kino soshutsu kako gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    A joint research has been performed between the Material Engineering Technology Research Institute of the National Institute of Materials and Chemical Research of the Ministry of International Trade and Industry and the Advanced Function Creating and Processing Technology Research Association. The research themes are the 'identification of the basic conditions for production of ultra fine ceramics particles by using the hybrid high-frequency plasma process' and the 'establishment of non-destructive analysis technology for inclination functional materials'. This paper reports the achievements in fiscal 1992. The research on the inclination functional materials has performed hybridization of high-frequency plasmas and fabrication of ultra fine alumina particles, trial fabrication and evaluation on alumina-titanium mixed ultra fine particles by using the high-frequency plasma process, spraying of hydroxyapatite by using high-frequency plasma, evaluation on thick film bulk made of ultra fine particles, and trial fabrication of an ultra fine particle injection device. It was intended to evaluate quantitatively crystalline deficiency and composition distribution in the inclination functional materials for which continuous composition control is important. Therefore, a Rutherford wake scattering device was introduced and installed newly at the Material Engineering Technology Research Institute, which has improved the evaluation and experiment system at the institute. (NEDO)

  19. The establishment of master plan for developing advanced I and C technology -The development of advanced instrumentation and control technology-

    International Nuclear Information System (INIS)

    Ham, Chang Shik; Lee, Byung Sun; Kwon, Kee Choon; Lee, Dong Young; Hwang, In Koo; Lee, Jang Soo; Kim, Jung Soo; Kim, Chang Hwoi; Jung, Chul Hwan; Na, Nan Ju; Dong, In Sook; Kang, Soon Gu; Lyu, Chan Ho; Song, Soon Ja

    1994-07-01

    Although several organizations are performing their tasks making efforts to develop new digital technology for application to existing nuclear power plants as well as new plants of the future, their projects are similar to each other and have possibilities of redundant investment. Therefore, KAERI have established a Master Plan to define the suitable work-scope of each Instrumentation and Control (I and C) development project and proceed its development items continuously. Furthermore, in the project, several kinds of advanced technology for application of computer science and digital electronics were studied to obtain better reliability of the I and C systems and reduce opertor's burden. For establishing the Master Plan, functions of I and C system of NPPs were surveyed. Especially EPRI URD was deeply analyzed for setting up a basis of the foreign countries were referred for the Master Plan. For the new technology survey, fault-tolerant control technology and control system performance analysis methods were studied. Requirements of alarm and information system as well as technology of I and C network system of NPPs were also established to introduce the advantages of commercial distributed control system. (Author)

  20. Project Work in Social Biology at GCE Advanced Level

    Science.gov (United States)

    Gadd, P.; Smith, S. Tyrell

    1977-01-01

    The system by which projects are submitted, modified, and approved is outlined and an indication is given of the standards and quantity of work expected. Criteria on which assessment is based are explained, the range of individual studies is summarized, and cases for and against project work are given. (Author/AJ)

  1. Project finance and international energy development

    International Nuclear Information System (INIS)

    Pollio, G.

    1998-01-01

    This paper explores the preference for and the features unique to project finance, one of the favoured vehicles for funding energy development. Our main focus is on the interests of project sponsors, commercial banks and host governments. Inclusion of the latter reflects the fact host governments are often leading participants in primary energy and energy-related projects; more recently, they have come to use limited recourse structures to finance local infrastructure development. Traditional analyses, whilst providing useful insights into the interests of leading project participants, are incapable of isolation a single motive or set of motives that can comprehensively account for all of the features common to this form of debt. Within an options-theoretic framework, most of these ambiguities are resolved. Risk management, long recognised as one of the primary reasons for choosing project finance over rival debt structures, is affirmed as a key explanatory factor. One the other hand, options pricing theory provides a radically different perspective on how to project finance contributes to the realisation of these objectives. (author)

  2. Advanced Electrical, Optical and Data Communication Infrastructure Development

    Energy Technology Data Exchange (ETDEWEB)

    Simon Cobb

    2011-04-30

    The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

  3. Development of Direct-Use Projects: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lund, J.

    2011-01-01

    A geothermal direct-use project utilizes a natural resource, a flow of geothermal fluid at elevated temperatures, which is capable of providing heat and/or cooling to buildings, greenhouses, aquaculture ponds, and industrial processes. Geothermal utilization requires matching the varied needs of the user and characteristics of the resource in order to development a successful project. Each application is unique; guidelines are provided for the logical steps required to implement a project. Recommended temperature and flows are suggested for spas and pools, space and district heating, greenhouse and aquaculture pond heating, and industrial applications. Guidelines are provided for selecting the necessary equipment for successfully implementing a direct-use project, including downhole pumps, piping, heat exchangers, and heat convectors. Additionally, the relationship between temperature, flow rate, and the use of heat exchangers to provide heat to a space with hot water or hot air is provided for a number of applications, with suggested 'rules of thumb'.

  4. Developing Project Duration Models in Software Engineering

    Institute of Scientific and Technical Information of China (English)

    Pierre Bourque; Serge Oligny; Alain Abran; Bertrand Fournier

    2007-01-01

    Based on the empirical analysis of data contained in the International Software Benchmarking Standards Group(ISBSG) repository, this paper presents software engineering project duration models based on project effort. Duration models are built for the entire dataset and for subsets of projects developed for personal computer, mid-range and mainframeplatforms. Duration models are also constructed for projects requiring fewer than 400 person-hours of effort and for projectsre quiring more than 400 person-hours of effort. The usefulness of adding the maximum number of assigned resources as asecond independent variable to explain duration is also analyzed. The opportunity to build duration models directly fromproject functional size in function points is investigated as well.

  5. Advancing LGBTQI2 rights in developing countries through research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-05-10

    May 10, 2018 ... Advancing LGBTQI2 rights in developing countries through research ... the role of research in advancing the rights of lesbian, gay, bisexual, transgender, ... cities were discussed at ADAPTO's second international workshop.

  6. Progress in development of the advanced Thomson scattering diagnostics

    International Nuclear Information System (INIS)

    Hatae, T; Naito, O; Howard, J; Ebizuka, N; Yoshida, H; Nakatsuka, M; Fujita, H; Kajita, S; Narihara, K; Yamada, I; Funaba, H; Hirano, Y; Koguchi, H

    2010-01-01

    We have been studied the advanced Thomson scattering diagnostics from viewpoints of new concepts, laser technology and spectrum analysis. This paper summarizes results of development on technologies for advanced Thomson scattering diagnostics.

  7. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.D.; Kendall, R.P.; Whitney, E.M. [Dave Martin and Associates, Inc., Socorro, NM (United States)] [and others

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  8. B ampersand W PWR advanced control system algorithm development

    International Nuclear Information System (INIS)

    Winks, R.W.; Wilson, T.L.; Amick, M.

    1992-01-01

    This paper discusses algorithm development of an Advanced Control System for the B ampersand W Pressurized Water Reactor (PWR) nuclear power plant. The paper summarizes the history of the project, describes the operation of the algorithm, and presents transient results from a simulation of the plant and control system. The history discusses the steps in the development process and the roles played by the utility owners, B ampersand W Nuclear Service Company (BWNS), Oak Ridge National Laboratory (ORNL), and the Foxboro Company. The algorithm description is a brief overview of the features of the control system. The transient results show that operation of the algorithm in a normal power maneuvering mode and in a moderately large upset following a feedwater pump trip

  9. Current status on advanced aqueous reprocessing process (next) in FaCT project

    International Nuclear Information System (INIS)

    Washiya, Tadahiro; Myochin, Munetaka; Koyama, Tomozo

    2009-01-01

    Japan Atomic Energy Agency (JAEA) launched the Fast Reactor Cycle Technology Development (FaCT) project in cooperation with the Japanese electric utilities in 2006. An integration of the advanced aqueous reprocessing concept and the simplified pelletizing fuel fabrication was selected as the most promising fuel cycle system. In order to accomplish the integration, R and D tasks were launched as FaCT Project in 2006 by Japanese joint team. The New Extraction System for TRU Recovery (NEXT) system is an advanced aqueous reprocessing concept which was based on the well established aqueous reprocessing for LWR spent fuel and newly applied processes such as uranium crystallization and extraction chromatography for MAs recovery. Main task of the NEXT process is to develop the TRU recovery process and equipments with high reliability, criticality safety, high durability and remote maintainability. In the FaCT project, all innovative technologies are planned to be developed within the next decade focusing on the future commercialization of FBR cycle systems. The judgment of the adoption of each innovative technology will be made by 2010 based on the results of R and Ds. The development of each technology is to be completed by around 2015. By the same time, it is scheduled to present the conceptual design of commercial and demonstrative fast reactor cycle facilities. The six items (Disassembling and shearing, Fuel dissolution, Uranium Crystallization, Single cycle co-extraction of U, Pu and Np, MA recovery by extraction chromatography and Waste treatment) have been identified as the issues to be developed corresponding to each process step. Current R and D status and prospects of this system until around 2015 is reported. (author)

  10. Status of developing advanced PWR in Japan

    International Nuclear Information System (INIS)

    Iida, Yotaro

    1982-01-01

    During past eleven years since the first PWR power plant, Mihama Unit 1 of Kansai Electric Power Co., started the commercial operation in 1970, Mitsubishi Heavy Industries has endeavored to improve PWR technologies on the basis of the advice from electric power companies and the technical information to overcome difficulties in PWR power plants. Now, the main objective is to improve the overall plant performance, and the rate of operation of Japanese PWR power plants has significantly risen. The improvement of the reliability, the shortening of regular inspection period and the reduction of radioactive waste handling were attempted. In view of the satisfactory operational experience of Westinghouse type PWRs, the basic reactor concept has not been changed so far. Mitsubishi and Westinghouse reached basic agreement in August, 1981, to develop a spectral shift type large capacity reactor as the advanced PWRs for Japan. This type of PWRs hab higher degree of freedom for extended fuel cycle operation and enhances the advantage of entire fuel cycle economy, particularly the significant reduction of uranium use. The improved neutron economy is attainable by reducing neutron loss, and the core design with low power density and the economical use of plutonium are advantageous for the fuel cycle economy. (Kako, I.)

  11. Development of environmentally advanced hydropower turbine system design concepts

    International Nuclear Information System (INIS)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr.

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower''s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable

  12. Development of environmentally advanced hydropower turbine system design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  13. ADVANCE: research project of aging in wiring electric; ADVANCE: Proyecto de investigacion de envejecimiento en cableado electrico

    Energy Technology Data Exchange (ETDEWEB)

    Cano, J. C.; Ruiz Rabanedo, S.; Testa, J.

    2013-07-01

    This document summarizes the project ADVANCE (Ageing Diagnostics and Pronostics of low-voltage I and C Cables) whose objective is to adapt, optimize and rating techniques of Condition Monitoring for nuclear power plants cables, enabling know the State of degradation of the cable along its length, and together with the establishment of acceptance criteria appropriate to estimate their residual life. In the paper outlines the main stages of the project and the current state of the same.

  14. Establishing a portfolio of quality-improvement projects in pediatric surgery through advanced improvement leadership systems.

    Science.gov (United States)

    Gerrein, Betsy T; Williams, Christina E; Von Allmen, Daniel

    2013-01-01

    Formal quality-improvement (QI) projects require that participants are educated in QI methods to provide them with the capability to carry out successful, meaningful work. However, orchestrating a portfolio of projects that addresses the strategic mission of the institution requires an extension of basic QI training to provide the division or business unit with the capacity to successfully develop and manage the portfolio. Advanced Improvement Leadership Systems is a program to help units create a meaningful portfolio. This program, used by the Division of Pediatric General and Thoracic Surgery at Cincinnati Children's Hospital Medical Center, helped establish a portfolio of targeted QI projects designed to achieve outstanding outcomes at competitive costs in multiple clinical areas aligned with the institution's strategic goals (improve disease-based outcomes, patient safety, flow, and patient and family experience). These objectives are addressed in an institutional strategic plan built around 5 core areas: Safety, Productivity, Care Coordination and Outcomes, Patient and Family Experience, and Value. By combining the portfolio of QI projects with improvements in the divisional infrastructure, effective improvement efforts were realized throughout the division. In the 9 months following the program, divisional capability resulted in a 16.5% increase (5.7% to 22.2%) of formally trained staff working on 10 QI teams. Concurrently, a leadership team, designed to coordinate projects, remove barriers, and provide technical support, provided the capacity to pursue this ongoing effort. The Advanced Improvement Leadership Systems program increased the Division's efficiency and effectiveness in pursing the QI mission that is integral at our hospital.

  15. Establishing a Portfolio of Quality-Improvement Projects in Pediatric Surgery through Advanced Improvement Leadership Systems

    Science.gov (United States)

    Gerrein, Betsy T; Williams, Christina E; von Allmen, Daniel

    2013-01-01

    Formal quality-improvement (QI) projects require that participants are educated in QI methods to provide them with the capability to carry out successful, meaningful work. However, orchestrating a portfolio of projects that addresses the strategic mission of the institution requires an extension of basic QI training to provide the division or business unit with the capacity to successfully develop and manage the portfolio. Advanced Improvement Leadership Systems is a program to help units create a meaningful portfolio. This program, used by the Division of Pediatric General and Thoracic Surgery at Cincinnati Children’s Hospital Medical Center, helped establish a portfolio of targeted QI projects designed to achieve outstanding outcomes at competitive costs in multiple clinical areas aligned with the institution’s strategic goals (improve disease-based outcomes, patient safety, flow, and patient and family experience). These objectives are addressed in an institutional strategic plan built around 5 core areas: Safety, Productivity, Care Coordination and Outcomes, Patient and Family Experience, and Value. By combining the portfolio of QI projects with improvements in the divisional infrastructure, effective improvement efforts were realized throughout the division. In the 9 months following the program, divisional capability resulted in a 16.5% increase (5.7% to 22.2%) of formally trained staff working on 10 QI teams. Concurrently, a leadership team, designed to coordinate projects, remove barriers, and provide technical support, provided the capacity to pursue this ongoing effort. The Advanced Improvement Leadership Systems program increased the Division’s efficiency and effectiveness in pursing the QI mission that is integral at our hospital. PMID:24361020

  16. Recent developments in advanced aircraft aluminium alloys

    International Nuclear Information System (INIS)

    Dursun, Tolga; Soutis, Costas

    2014-01-01

    Highlights: • To compete with composites, performance of aluminium alloys should be increased. • Al–Li alloys have higher strength, fracture and fatigue/corrosion resistance. • Improvements of aerospace Al alloys are due to optimised solute content and ratios. • In selecting new materials, there should be no reduction in the level of safety. • The use of hybrid materials could provide additional opportunities for Al alloys. - Abstract: Aluminium alloys have been the primary material for the structural parts of aircraft for more than 80 years because of their well known performance, well established design methods, manufacturing and reliable inspection techniques. Nearly for a decade composites have started to be used more widely in large commercial jet airliners for the fuselage, wing as well as other structural components in place of aluminium alloys due their high specific properties, reduced weight, fatigue performance and corrosion resistance. Although the increased use of composite materials reduced the role of aluminium up to some extent, high strength aluminium alloys remain important in airframe construction. Aluminium is a relatively low cost, light weight metal that can be heat treated and loaded to relatively high level of stresses, and it is one of the most easily produced of the high performance materials, which results in lower manufacturing and maintenance costs. There have been important recent advances in aluminium aircraft alloys that can effectively compete with modern composite materials. This study covers latest developments in enhanced mechanical properties of aluminium alloys, and high performance joining techniques. The mechanical properties on newly developed 2000, 7000 series aluminium alloys and new generation Al–Li alloys are compared with the traditional aluminium alloys. The advantages and disadvantages of the joining methods, laser beam welding and friction stir welding, are also discussed

  17. New developments in Generator Services project

    International Nuclear Information System (INIS)

    Karneyeu, A; Kirsanov, M; Konstantinov, D; Ryabov, A; Zenin, O; Pokorski, W; Ribon, A

    2011-01-01

    The LOG Generator Services project provides validated, LOG compliant Monte Carlo generators code for both the theoretical and experimental communities at the LHC. In this paper we present the recent developments and the future plans of the project. We report on the current status of the generators repository, the new Autotools-based build system, as well as the new installation tools to create mirrors of the repository. We discuss new developments in testing and physics validation procedures in particular the use of HepMC Analysis Tool, as well as the Rivet validation tool. We also present a new activity, enlarging the scope of the Generator Services project, it is the involvement in the tuning of the Monte Carlo generators. This work, being essential for the understanding of the future LHC data, is now starting with the involvement of all the LHC experiments.

  18. A Ground Testbed to Advance US Capability in Autonomous Rendezvous and Docking Project

    Science.gov (United States)

    D'Souza, Chris

    2014-01-01

    This project will advance the Autonomous Rendezvous and Docking (AR&D) GNC system by testing it on hardware, particularly in a flight processor, with a goal of testing it in IPAS with the Waypoint L2 AR&D scenario. The entire Agency supports development of a Commodity for Autonomous Rendezvous and Docking (CARD) as outlined in the Agency-wide Community of Practice whitepaper entitled: "A Strategy for the U.S. to Develop and Maintain a Mainstream Capability for Automated/Autonomous Rendezvous and Docking in Low Earth Orbit and Beyond". The whitepaper establishes that 1) the US is in a continual state of AR&D point-designs and therefore there is no US "off-the-shelf" AR&D capability in existence today, 2) the US has fallen behind our foreign counterparts particularly in the autonomy of AR&D systems, 3) development of an AR&D commodity is a national need that would benefit NASA, our commercial partners, and DoD, and 4) an initial estimate indicates that the development of a standardized AR&D capability could save the US approximately $60M for each AR&D project and cut each project's AR&D flight system implementation time in half.

  19. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    Science.gov (United States)

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  20. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  1. Double beta decay: recent developments and projections

    International Nuclear Information System (INIS)

    Avignone, F.T. III; Brodzinski, R.L.; Brown, D.P.; Evans, J.C. Jr.; Hensley, W.K.; Reeves, J.H.; Wogman, N.A.

    1983-08-01

    A report of recent events in both theoretical and experimental aspects of double beta decay is given. General theoretical considerations, recent developments in nuclear structure theory, geochronological determinations of half lives and ratios as well as laboratory experiments are discussed with emphasis on the past three years. Some projections are given. 28 references

  2. Renewable Energy Project Development Assistance (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-07-01

    This fact sheet provides information on the Tribes selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  3. Implementing change: lessons from five development projects

    DEFF Research Database (Denmark)

    Riis, J. O.; Hildebrandt, S.; Andreasen, Mogens Myrup

    2001-01-01

    The aim of this paper is firstly to report on what we have observed by following major improvement and development projects in five industrial enterprises. In particular, the authors shall focus on issues which have often been addressed in Danish enterprises, namely the participation of employees...... with organizational changes. Thirdly, four paradoxes for managing development projects are presented; they may serve as guidelines for coping with the complexity and uncertainty of change processes......The aim of this paper is firstly to report on what we have observed by following major improvement and development projects in five industrial enterprises. In particular, the authors shall focus on issues which have often been addressed in Danish enterprises, namely the participation of employees...... in the change process, the role of a vision of the future company; and organizational learning processes taking place during the development project. Secondly, different interpretation models will be employed in an effort to broaden the understanding of the many facets and viewpoints associated...

  4. Future development of project management competences.

    NARCIS (Netherlands)

    Silvius, A.J.G.; Batenburg, R.

    2009-01-01

    This paper describes a study into the expected development of the competences of the project manager in the year 2027. The study was performed amongst the members of IPMA-Netherlands during the summer of 2007. In the study the 46 competences of the International Competence Baseline 3 (ICB 3) were

  5. Workforce development and effective evaluation of projects.

    Science.gov (United States)

    Dickerson, Claire; Green, Tess; Blass, Eddie

    The success of a project or programme is typically determined in relation to outputs. However, there is a commitment among UK public services to spending public funds efficiently and on activities that provide the greatest benefit to society. Skills for Health recognised the need for a tool to manage the complex process of evaluating project benefits. An integrated evaluation framework was developed to help practitioners identify, describe, measure and evaluate the benefits of workforce development projects. Practitioners tested the framework on projects within three NHS trusts and provided valuable feedback to support its development. The prospective approach taken to identify benefits and collect baseline data to support evaluation was positively received and the clarity and completeness of the framework, as well as the relevance of the questions, were commended. Users reported that the framework was difficult to complete; an online version could be developed, which might help to improve usability. Effective implementation of this approach will depend on the quality and usability of the framework, the willingness of organisations to implement it, and the presence or establishment of an effective change management culture.

  6. Constraints To Effective Community Development Projects Among ...

    African Journals Online (AJOL)

    The study focused on the perceived constraints to effective community development projects among rural households in Calabar agricultural zone of Cross River State, Nigeria. Data were collected with the aid of structured questionnaire from 104 randomly selected respondents in the study area. Data analysis was by the ...

  7. Developing Critical Thinking through Student Consulting Projects

    Science.gov (United States)

    Canziani, Bonnie; Tullar, William L.

    2017-01-01

    The authors present survey results from faculty at 44 universities on the role of student consulting projects in developing business students' critical thinking. They conclude that students can improve critical thinking by engaging in guided primary and secondary research to inform their business assumptions that underpin business planning and…

  8. Architecture and Functionality of the Advanced Life Support On-Line Project Information System (OPIS)

    Science.gov (United States)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriquez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Amcs Research Center (ARC) tu develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL(Trademark) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an R&TD status information hub that can potentially serve as the primary annual reporting mechanism. Using OPIS, ALS managers and element leads will be able to carry out informed research and technology development investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, and Control). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  9. Status of the Advanced Teleoperation Project in the French A.R.A. program

    International Nuclear Information System (INIS)

    Andre, G.; Fournier, R.

    1987-01-01

    This paper reports the research and development work carried out in the French advanced teleoperation project. The successful achievement of significant progress, in recent years, allows to considerably advance the state of the art so that it objectively constitutes the foundation of a new generation of remote systems. After briefly recalling the organization of this project, the authors outline the basic concepts related to the evolution of teleoperation with regard to the notions of flexibility, adaptivity, autonomy, transparency. The authors present the overall architecture of the computer aided teleoperation system. The following sections deal with fundamental studies which have been realized and key subsystems which have been developed. The authors emphasize on the computer control system which includes: generalized bilateral control and supervisory control. Secondly, they underline the role of sophisticated technologies: sensory system, computer graphics. . ., for generating adaptive control functions and for providing new interfaces. Thirdly, they describe the integrated experimental site and, a set of generic experiments in nuclear applications. The paper ends with future perspectives

  10. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  11. Advanced Exploration Systems (AES) Logistics Reduction and Repurposing Project: Advanced Clothing Ground Study Final Report

    Science.gov (United States)

    Byrne, Vicky; Orndoff, Evelyne; Poritz, Darwin; Schlesinger, Thilini

    2013-01-01

    All human space missions require significant logistical mass and volume that will become an excessive burden for long duration missions beyond low Earth orbit. The goal of the Advanced Exploration Systems (AES) Logistics Reduction & Repurposing (LRR) project is to bring new ideas and technologies that will enable human presence in farther regions of space. The LRR project has five tasks: 1) Advanced Clothing System (ACS) to reduce clothing mass and volume, 2) Logistics to Living (L2L) to repurpose existing cargo, 3) Heat Melt Compactor (HMC) to reprocess materials in space, 4) Trash to Gas (TTG) to extract useful gases from trash, and 5) Systems Engineering and Integration (SE&I) to integrate these logistical components. The current International Space Station (ISS) crew wardrobe has already evolved not only to reduce some of the logistical burden but also to address crew preference. The ACS task is to find ways to further reduce this logistical burden while examining human response to different types of clothes. The ACS task has been broken into a series of studies on length of wear of various garments: 1) three small studies conducted through other NASA projects (MMSEV, DSH, HI-SEAS) focusing on length of wear of garments treated with an antimicrobial finish; 2) a ground study, which is the subject of this report, addressing both length of wear and subject perception of various types of garments worn during aerobic exercise; and 3) an ISS study replicating the ground study, and including every day clothing to collect information on perception in reduced gravity in which humans experience physiological changes. The goal of the ground study is first to measure how long people can wear the same exercise garment, depending on the type of fabric and the presence of antimicrobial treatment, and second to learn why. Human factors considerations included in the study consist of the Institutional Review Board approval, test protocol and participants' training, and a web

  12. Neighborhood Energy/Economic Development project

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Energy costs impact low income communities more than anyone else. Low income residents pay a larger percentage of their incomes for energy costs. In addition, they generally have far less discretionary energy use to eliminate in response to increasing energy prices. Furthermore, with less discretionary income, home energy efficiency improvements are often too expensive. Small neighborhood businesses are in the same situation. Improved efficiency in the use of energy can improve this situation by reducing energy costs for residents and local businesses. More importantly, energy management programs can increase the demand for local goods and services and lead to the creation of new job training and employment opportunities. In this way, neighborhood based energy efficiency programs can support community economic development. The present project, undertaken with the support of the Urban Consortium Energy Task Force, was intended to serve as a demonstration of energy/economic programming at the neighborhood level. The San Francisco Neighborhood Energy/Economic Development (NEED) project was designed to be a visible demonstration of bringing the economic development benefits of energy management home to low-income community members who need it most. To begin, a Community Advisory Committee was established to guide the design of the programs to best meet needs of the community. Subsequently three neighborhood energy/economic development programs were developed: The small business energy assistance program; The youth training and weatherization program; and, The energy review of proposed housing development projects.

  13. Advanced Metrics for Assessing Holistic Care: The “Epidaurus 2” Project

    Science.gov (United States)

    Foote, Frederick O; Benson, Herbert; Berger, Ann; Berman, Brian; DeLeo, James; Deuster, Patricia A.; Lary, David J; Silverman, Marni N.; Sternberg, Esther M

    2018-01-01

    In response to the challenge of military traumatic brain injury and posttraumatic stress disorder, the US military developed a wide range of holistic care modalities at the new Walter Reed National Military Medical Center, Bethesda, MD, from 2001 to 2017, guided by civilian expert consultation via the Epidaurus Project. These projects spanned a range from healing buildings to wellness initiatives and healing through nature, spirituality, and the arts. The next challenge was to develop whole-body metrics to guide the use of these therapies in clinical care. Under the “Epidaurus 2” Project, a national search produced 5 advanced metrics for measuring whole-body therapeutic effects: genomics, integrated stress biomarkers, language analysis, machine learning, and “Star Glyphs.” This article describes the metrics, their current use in guiding holistic care at Walter Reed, and their potential for operationalizing personalized care, patient self-management, and the improvement of public health. Development of these metrics allows the scientific integration of holistic therapies with organ-system-based care, expanding the powers of medicine. PMID:29497586

  14. The development of advanced robotics technology in high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs.

  15. The development of advanced robotics technology in high radiation environment

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo.

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs

  16. Testing Software Development Project Productivity Model

    Science.gov (United States)

    Lipkin, Ilya

    Software development is an increasingly influential factor in today's business environment, and a major issue affecting software development is how an organization estimates projects. If the organization underestimates cost, schedule, and quality requirements, the end results will not meet customer needs. On the other hand, if the organization overestimates these criteria, resources that could have been used more profitably will be wasted. There is no accurate model or measure available that can guide an organization in a quest for software development, with existing estimation models often underestimating software development efforts as much as 500 to 600 percent. To address this issue, existing models usually are calibrated using local data with a small sample size, with resulting estimates not offering improved cost analysis. This study presents a conceptual model for accurately estimating software development, based on an extensive literature review and theoretical analysis based on Sociotechnical Systems (STS) theory. The conceptual model serves as a solution to bridge organizational and technological factors and is validated using an empirical dataset provided by the DoD. Practical implications of this study allow for practitioners to concentrate on specific constructs of interest that provide the best value for the least amount of time. This study outlines key contributing constructs that are unique for Software Size E-SLOC, Man-hours Spent, and Quality of the Product, those constructs having the largest contribution to project productivity. This study discusses customer characteristics and provides a framework for a simplified project analysis for source selection evaluation and audit task reviews for the customers and suppliers. Theoretical contributions of this study provide an initial theory-based hypothesized project productivity model that can be used as a generic overall model across several application domains such as IT, Command and Control

  17. U.S. Department of Energy Wind Turbine Development Projects

    International Nuclear Information System (INIS)

    Migliore, P.G.; Calvert, S.D.

    1999-01-01

    This paper provides an overview of wind-turbine development activities in the Unites States and relates those activities to market conditions and projections. Several factors are responsible for a surge in wind energy development in the United States, including a federal production tax credit, ''green power'' marketing, and improving cost and reliability. More development is likely, as approximately 363 GW of new capacity will be needed by 2020 to meet growing demand and replace retiring units. The U.S. Department of Energy (DOE) is helping two companies develop next-generation turbines intended to generate electricity for $0.025/kWh or less. We expect to achieve this objective through a combination of improved engineering methods and configuration advancements. This should ensure that wind power will compete effectively against advanced combined-cycle plants having projected generating costs of $0.031/kWh in 2005. To address the market for small and intermediate-size wind turbines, DOE is assisting five companies in their attempts to develop new turbines having low capital cost and high reliability. Additional information regarding U.S. wind energy programs is available on the internet site www.nrel.gov/wind/. E-mail addresses for the turbine manufacturers are found in the Acknowledgements

  18. The FEL development at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Arnold, N. D.; Benson, C.; Berg, S.; Berg, W.; Biedron, S. G.; Chae, Y. C.; Crosbie, E. A.; Decker, G.; Dejus, R. J.; Den Hartog, P.; Deriy, B.; Dortwegt, R.; Edrmann, M.; Freund, H. P.; Friedsam, H.; Galayda, J. N.; Gluskin, E.; Goeppner, G. A.; Grelick, A.; Huang, Z.; Jones, J.; Kang, Y.; Kim, K.-J.; Kim, S.; Kinoshita, K.; Lewellen, J. W.; Lill, R.; Lumpkin, A. H.; Makarov, O.; Markovich, G. M.; Milton, S. V.; Moog, E. R.; Nassiri, A.; Ogurtsov, V.; Pasky, S.; Power, J.; Tieman, B.; Trakhtenberg, E.; Travish, G.; Vasserman, I.; Walters, D. R.; Wang, J.; Xu, S.; Yang, B.

    1999-01-01

    Construction of a single-pass free-electron laser (FEL) based on the self-amplified spontaneous emission (SASE) mode of operation is nearing completion at the Advanced Photon Source (APS) with initial experiments imminent. The APS SASE FEL is a proof-of-principle fourth-generation light source. As of January 1999 the undulator hall, end-station building, necessary transfer lines, electron and optical diagnostics, injectors, and initial undulatory have been constructed and, with the exception of the undulatory, installed. All preliminary code development and simulations have also been completed. The undulator hall is now ready to accept first beam for characterization of the output radiation. It is the project goal to push towards fill FEL saturation, initially in the visible, but ultimately to W and VUV, wavelengths

  19. A Randomized Controlled Trial Comparing the Letter Project Advance Directive to Traditional Advance Directive.

    Science.gov (United States)

    Periyakoil, Vyjeyanthi S; Neri, Eric; Kraemer, Helena

    2017-09-01

    Simpler alternatives to traditional advance directives that are easy to understand and available in multiple formats and can be initiated by patients and families will help facilitate advance care planning. The goal of this study was to compare the acceptability of the letter advance directive (LAD) to the traditional advance directive (TAD) of the state of California. A web-based, randomized controlled trial was conducted, in which the participants were randomized to one of two types of advance directives (ADs): the LAD (intervention) or the TAD (control). Primary outcomes were participant ratings of the ease, value, and their level of comfort in the AD document they completed. A total of 400 participants completed the study, with 216 randomized to the LAD and 184 to the TAD by a computerized algorithm. Overall, participants preferred the LAD to the TAD (success rate difference [SRD] = 0.46, 95th percentile confidence interval [CI]: 0.36-0.56, p advance directive to be a better alternative to the traditional advance directive form.

  20. Development of Stitched Composite Structure for Advanced Aircraft

    Science.gov (United States)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  1. The Advanced Exploration Systems Water Recovery Project: Innovation on 2 Fronts

    Science.gov (United States)

    Sarguisingh, Miriam M.; Neumeyer, Derek; Shull, Sarah

    2012-01-01

    As NASA looks forward to sending humans farther away from Earth, we will have to develop a transportation architecture that is highly reliable and that can sustain life for long durations without the benefit of Earth s proximity for continuous resupply or even operational guidance. NASA has consistently been challenged with performing great feats of innovation, but particularly in this time of economic stress, we are challenged to go farther with less. The Advanced Exploration Systems (AES) projects were implemented to address both of these needs by not only developing innovative technologies, but by incorporating innovative management styles and processes that foster the needed technical innovation given a small amount of resources. This presentation explains how the AES Water Recovery Project is exhibiting innovation on both fronts; technical and process. The AES Water Recovery Project (WRP) is actively engineering innovative technologies in order to maximize the efficiency of water recovery. The development of reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support (ECLS) is critical to enable long-duration human missions outside of low-Earth orbit. Recycling of life support consumables is necessary to reduce resupply mass and provide for vehicle autonomy. To address this, the WRP is working on a rotary distiller that has shown enhanced performance over the state-of-the-art (SOA). Additionally, the WRP is looking at innovative ways to address issues present in the state-of-the-art (SOA) systems pertaining to toxicity and calcium scale buildup. As an AES project, the WRP has a more streamlined Skunk Works like approach to technology development intended to reduce overhead but achieve a more refined end product. The project has incorporated key partnerships between NASA centers as well as between NASA and industry. A minimal project management style has been implemented such that risks are managed and

  2. Romanian concern for advanced fuels development

    International Nuclear Information System (INIS)

    Ohai, Dumitru

    2001-01-01

    The Institute for Nuclear Research (ICN), a subsidiary of Romanian Authority for Nuclear Activities, at Pitesti - Romania, has developed a preliminary design of a fuel bundle with 43 elements named SEU 43 for high burnup in CANDU Reactor. A very high experience in nuclear fuels manufacturing and control has also been accumulated. Additionally, on the nuclear site Pitesti there is the Nuclear Fuel Plant (NFP) qualified to manufacturing CANDU 6 type fuel, the main fuel supplier for NPP Cernavoda. A very good collaboration of ICN with NFP can lead to a low cost upgrading the facilities which ensure at present the CANDU standard fuel fabrication to be able of manufacturing also SEU 43 fuel for extended burnup. The financial founds are allocated by Romanian Authority for Nuclear Activities of the Ministry of Industry and Resources to sustain the departmental R and D program 'Nuclear Fuel'. This Program has the main objective to establish a technology for manufacturing a new CANDU fuel type destined for extended burnup. It is studied the possibility to use the Recovered Uranium (RU) resulted from LWR spent fuel reprocessing facility existing in stockpiles. The International Agency for Atomic Energy (IAEA) sustains also this program. By ROM/4/025/ Model Project, IAEA helps ICN to solve the problems regarding materials (RU, Zircaloy 4 tubes) purchasing, devices' upgrading and personnel training. The paper presents the main actions needing to be create the technical base for SEU 43 fuel bundle manufacturing. First step, the technological experiments and experimental fuel element manufacturing, will be accomplished in ICN installations. Second step, the industrial scale, need thorough studies for each installation from NFP to determine tools and technology modification imposed by the new CANDU fuel bundle manufacturing. All modifications must be done such as to the NFP, standard CANDU and SEU fuel bundles to be manufactured alternatively. (author)

  3. Technological Education for the Rural Community (TERC) Project: Technical Mathematics for the Advanced Manufacturing Technician

    Science.gov (United States)

    McCormack, Sherry L.; Zieman, Stuart

    2017-01-01

    Hopkinsville Community College's Technological Education for the Rural Community (TERC) project is funded through the National Science Foundation Advanced Technological Education (NSF ATE) division. It is advancing innovative educational pathways for technological education promoted at the community college level serving rural communities to fill…

  4. Development of Advanced Nuclear Materials for Extreme Applications

    International Nuclear Information System (INIS)

    Jang, Jinsung; Rhee, Chang Kyu; Kim, Dae Hwan

    2011-09-01

    One of the critical paths to develop and deploy the Generation IV nuclear systems is to procure the materials necessary to the key components of the systems. Very high temperature gas-cooled reactor, which is anticipated to run at the reactor out-let temperature of about 900 .deg. C. Therefore high temperature materials that can sustain the system at that high temperature region for long design life such as tens of years is pre-requisite. Commercial high temperature materials could be a first consideration, but some improvement by modification is essential for the development of the system, and development of advanced new materials is anticipated to be eventually required. Materials development, however, need a long lead time compared with other research and development areas. In this project NC (nano cluster) strengthened Ni-base alloys are attempted for the development for the very high temperature applications. Three commercial Ni-base high temperature alloys were used as the matrix phase, and nano-sized yttria particles are dispersed by mechanical alloying. Alternative methods to prepare the nano-sized composite powders were investigated. Ni-base nano composite powders, which were characterized by one of the methods, were characterized and confirmed to be useful

  5. Advanced Aqueous Phase Catalyst Development using Combinatorial Methods, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Combinatorial methods are proposed to develop advanced Aqueous Oxidation Catalysts (AOCs) with the capability to mineralize organic contaminants present in effluents...

  6. Advanced heat exchanger development for molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush, E-mail: Piyush.Sabharwall@inl.gov [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Clark, Denis; Glazoff, Michael [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark [University of Wisconsin, Madison (United States)

    2014-12-15

    Highlights: • Hastelloy N and 242, shows corrosion resistance to molten salt at nominal operating temperatures. • Both diffusion welds and sheet material in Hastelloy N were corrosion tested in at 650, 700, and 850 °C for 200, 500, and 1000 h. • Thermal gradients and galvanic couples in the molten salts enhance corrosion rates. • Corrosion rates found were typically <10 mils per year. - Abstract: This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non-nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, that show good corrosion resistance in molten salt at nominal operating temperatures up to 700 °C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in 58 mol% KF and 42 mol% ZrF{sub 4} at 650, 700, and 850 °C for 200, 500, and 1000 h. Corrosion rates were similar between welded and nonwelded materials, typically <100 μm per year after 1000 h of corrosion tests. No catastrophic corrosion was observed in the diffusion welded regions. For materials of construction, nickel-based alloys and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of the type of salt impurity and alloy composition, with respect to chromium and carbon, to better define the best conditions for corrosion resistance. Also presented is the division of the nuclear reactor and high-temperature components per American Society of Mechanical

  7. Advanced Percussive Drilling Technology for Geothermal Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Prasad, Somuri [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfer, Dale [Atlas-Copco Secoroc LLC, Fagersta (Sweden)

    2017-06-12

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phase I and evaluating performance of the materials and designs at high operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for use in the driller’s toolbox.

  8. FY 2000 report on the research cooperation project on the research cooperative follow-up for development of the manufacturing technology supported by advanced and integrated information system through cooperation; 2000 nendo kenkyu kyoryoku jigyo. 2000 nendo kan'i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku follow up jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The manufacturing technology supported by advanced and integrated information system through cooperation (MATIC), that is, a project supporting the production technology including the international information system and CAD/CAM system, etc. was carried out from FY 1994 to FY 1998. From FY 1999, the follow-up project is being implemented for the spread of the MATIC results, support for the independent R and D and the technical guidance. China, Indonesia, Malaysia and Singapore participated in this project, by which the support and technical guidance were given in three fields: automobiles/the parts; household electric appliances/the parts; fiber/apparel. At present, each country is continuing its own activity for using the system developed in the MATIC project in its country. In this fiscal year, researchers were sent to each country for supporting the activities. Further, the MATIC follow-up committee was established to conduct the drawing-up of a business plan, grasp of the state of the spread/R and D, discussion about problems/subjects, comprehensive evaluation of the MATIC project, etc. (NEDO)

  9. FY 2000 report on the research cooperation project on the research cooperative follow-up for development of the manufacturing technology supported by advanced and integrated information system through cooperation; 2000 nendo kenkyu kyoryoku jigyo. 2000 nendo kan'i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku follow up jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The manufacturing technology supported by advanced and integrated information system through cooperation (MATIC), that is, a project supporting the production technology including the international information system and CAD/CAM system, etc. was carried out from FY 1994 to FY 1998. From FY 1999, the follow-up project is being implemented for the spread of the MATIC results, support for the independent R and D and the technical guidance. China, Indonesia, Malaysia and Singapore participated in this project, by which the support and technical guidance were given in three fields: automobiles/the parts; household electric appliances/the parts; fiber/apparel. At present, each country is continuing its own activity for using the system developed in the MATIC project in its country. In this fiscal year, researchers were sent to each country for supporting the activities. Further, the MATIC follow-up committee was established to conduct the drawing-up of a business plan, grasp of the state of the spread/R and D, discussion about problems/subjects, comprehensive evaluation of the MATIC project, etc. (NEDO)

  10. Environmental Development Plan for advanced isotope separation

    International Nuclear Information System (INIS)

    1979-05-01

    This EDP identifies the planning and management requirements and schedules needed to evaluate and assess the environmental, health, and safety aspects of the Advanced Isotope Separation (AIS) program. Current AIS processes include the molecular and atomic vapor laser processes and the plasma process. This document covers the technology program, environmental concerns and requirements, and environmental strategy

  11. NASA Game Changing Development Program Manufacturing Innovation Project

    Science.gov (United States)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  12. Development of Human Performance Analysis and Advanced HRA Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Won Dea; Park, Jin Kyun; Kim, Jae Whan; Kim, Seong Whan; Kim, Man Cheol; Ha, Je Joo

    2007-06-15

    The purpose of this project is to build a systematic framework that can evaluate the effect of human factors related problems on the safety of nuclear power plants (NPPs) as well as develop a technology that can be used to enhance human performance. The research goal of this project is twofold: (1) the development of a human performance database and a framework to enhance human performance, and (2) the analysis of human error with constructing technical basis for human reliability analysis. There are three kinds of main results of this study. The first result is the development of a human performance database, called OPERA-I/II (Operator Performance and Reliability Analysis, Part I and Part II). In addition, a standard communication protocol was developed based on OPERA to reduce human error caused from communication error in the phase of event diagnosis. Task complexity (TACOM) measure and the methodology of optimizing diagnosis procedures were also finalized during this research phase. The second main result is the development of a software, K-HRA, which is to support the standard HRA method. Finally, an advanced HRA method named as AGAPE-ET was developed by combining methods MDTA (misdiagnosis tree analysis technique) and K-HRA, which can be used to analyze EOC (errors of commission) and EOO (errors of ommission). These research results, such as OPERA-I/II, TACOM, a standard communication protocol, K-HRA and AGAPE-ET methods will be used to improve the quality of HRA and to enhance human performance in nuclear power plants.

  13. Development of Human Performance Analysis and Advanced HRA Methodology

    International Nuclear Information System (INIS)

    Jung, Won Dea; Park, Jin Kyun; Kim, Jae Whan; Kim, Seong Whan; Kim, Man Cheol; Ha, Je Joo

    2007-06-01

    The purpose of this project is to build a systematic framework that can evaluate the effect of human factors related problems on the safety of nuclear power plants (NPPs) as well as develop a technology that can be used to enhance human performance. The research goal of this project is twofold: (1) the development of a human performance database and a framework to enhance human performance, and (2) the analysis of human error with constructing technical basis for human reliability analysis. There are three kinds of main results of this study. The first result is the development of a human performance database, called OPERA-I/II (Operator Performance and Reliability Analysis, Part I and Part II). In addition, a standard communication protocol was developed based on OPERA to reduce human error caused from communication error in the phase of event diagnosis. Task complexity (TACOM) measure and the methodology of optimizing diagnosis procedures were also finalized during this research phase. The second main result is the development of a software, K-HRA, which is to support the standard HRA method. Finally, an advanced HRA method named as AGAPE-ET was developed by combining methods MDTA (misdiagnosis tree analysis technique) and K-HRA, which can be used to analyze EOC (errors of commission) and EOO (errors of ommission). These research results, such as OPERA-I/II, TACOM, a standard communication protocol, K-HRA and AGAPE-ET methods will be used to improve the quality of HRA and to enhance human performance in nuclear power plants

  14. Advanced Simulation Capability for Environmental Management: Development and Demonstrations - 12532

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, Mark D.; Freedman, Vicky; Gorton, Ian [Pacific Northwest National Laboratory, MSIN K9-33, P.O. Box 999, Richland, WA 99352 (United States); Hubbard, Susan S. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4230, Berkeley, CA 94720 (United States); Moulton, J. David; Dixon, Paul [Los Alamos National Laboratory, MS B284, P.O. Box 1663, Los Alamos, NM 87544 (United States)

    2012-07-01

    The U.S. Department of Energy Office of Environmental Management (EM), Technology Innovation and Development is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of capabilities, which are organized into Platform and Integrated Tool-sets and a High-Performance Computing Multi-process Simulator. The Platform capabilities target a level of functionality to allow end-to-end model development, starting with definition of the conceptual model and management of data for model input. The High-Performance Computing capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The new capabilities are demonstrated through working groups, including one focused on the Hanford Site Deep Vadose Zone. The ASCEM program focused on planning during the first year and executing a prototype tool-set for an early demonstration of individual components. Subsequently, ASCEM has focused on developing and demonstrating an integrated set of capabilities, making progress toward a version of the capabilities that can be used to engage end users. Demonstration of capabilities continues to be implemented through working groups. Three different working groups, one focused on EM problems in the deep vadose zone, another investigating attenuation mechanisms for metals and radionuclides, and a third focusing on waste tank performance assessment, continue to make progress. The project

  15. Advanced PWR technology development -Development of advanced PWR system analysis technology-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Moon Heui; Hwang, Yung Dong; Kim, Sung Oh; Yoon, Joo Hyun; Jung, Bub Dong; Choi, Chul Jin; Lee, Yung Jin; Song, Jin Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The primary scope of this study is to establish the analysis technology for the advanced reactor designed on the basis of the passive and inherent safety concepts. This study is extended to the application of these technology to the safety analysis of the passive reactor. The study was performed for the small and medium sized reactor and the large sized reactor by focusing on the development of the analysis technology for the passive components. Among the identified concepts the once-through steam generator, the natural circulation of the integral reactor, heat pipe for containment cooling, and hydraulic valve were selected as the high priority items to be developed and the related studies are being performed for these items. For the large sized passive reactor, the study plans to extend the applicability of the best estimate computer code RELAP5/MOD3 which is widely used for the safety analyses of the reactor system. The improvement and supplementation study of the analysis modeling and the methodology is planned to be carried out for these purpose. The newly developed technologies are expected to be applied to the domestic advanced reactor design and analysis and these technologies will play a key role in extending the domestic nuclear base technology and consolidating self-reliance in the essential nuclear technology. 72 figs, 15 tabs, 124 refs. (Author).

  16. Tribal Colleges and Universities/American Indian Research and Education Initiatives Advanced Manufacturing Technical Assistance Project

    Energy Technology Data Exchange (ETDEWEB)

    Atcitty, Stanley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The overall goal of this project is to establish a network of TCUs with essential advanced manufacturing (AM) facilities, associated training and education programs, and private sector and federal agency partnerships to both prepare an American Indian AM workforce and create economic and employment opportunities within Tribal communities through design, manufacturing, and marketing of high quality products. Some examples of high quality products involve next generation grid components such as mechanical energy storage, cabling for distribution of energy, and electrochemical energy storage enclosures. Sandia National Laboratories (Sandia) is tasked to provide technical advising, planning, and academic program development support for the TCU/American Indian Higher Education Consortium (AIHEC) Advanced Manufacturing Project. The TCUs include Bay Mills Community College (BMCC), Cankdeska Cikana Community College (CCCC), Navajo Technical University (NTU), Southwestern Indian Polytechnic Institute (SIPI), and Salish Kooteani College. AIHEC and Sandia, with collaboration from SIPI, will be establishing an 8-week summer institute on the SIPI campus during the summer of 2017. Up to 20 students from TCUs are anticipated to take part in the summer program. The goal of the program is to bring AM science, technology, engineering, and mathematics (STEM) awareness and opportunities for the American Indian students. Prior to the summer institute, Sandia will be providing reviews on curriculum plans at the each of the TCUs to ensure the content is consistent with current AM design and engineering practice. In addition, Sandia will provide technical assistance to each of the TCUs in regards to their current AM activities.

  17. Advanced Power Plant Development and Analyses Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  18. Advanced Power Plant Development and Analysis Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  19. The Plasma Hearth Process Technology Development Project

    International Nuclear Information System (INIS)

    Geimer, R.; Batdorf, J.; Wolfe, P.

    1993-01-01

    The US DOE Office of Technology Development (OTD) is currently evaluating the Plasma Hearth Process (PHP) for potential treatment of several DOE waste types. The PHP is a high-temperature vitrification process that has potential application for a wide range of mixed waste types in both the low-level and transuranic mixed waste categories. The PHP is being tested under both the OTD Mixed Waste Integrated Program and the Buried Waste Integrated Demonstration. Initial testing has been completed on several different surrogate waste forms that are representative of some of the DOE mixed waste streams. Destruction of organic material exceeds that of conventional incineration technologies. The vitrified residual has leaching characteristics comparable to glass formulations produced in the high-level waste program. The first phase of the PHP demonstration project has been successfully completed, and the project is currently beginning a comprehensive second phase of development and testing

  20. Design and analysis of CANDU advanced fuel -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Park, Kwang Seok; Kim, Bong Ki; Lee, Yeong Uk; Jeong, Chang Joon; Oh, Deok Joo; Lee, Ui Joo; Park, Joo Hwan; Lee, Sang Yong; Jeong, Beop Dong; Choi, Han Rim; Lee, Yeong Jin; Choi, Cheol Jin; Choi, Jong Ho; Lee, Kwang Won; Cho, Cheon Hyi; On, Myeong Ryong; Kim, Taek Mo; Lim, Hong Sik; Lee, Kang Moon; Lee, Nam Ho; Lee, Kyu Hyeong

    1994-07-01

    It has been projected that a total of 5 pressurized heavy water reactors (PHWR) including Wolsong 1 under operation and Wolsong 2, 3 and 4 under construction will be operated by 2006, and so about 500 ton of natural uranium will be consumed every year and a lot of spent fuels will be generated. Therefore, the ultimate goal of this R and D project is to develop the CANDU advanced fuel having the following capabilities compared with existing standard fuel: (1) To reduce linear heat generation rating by more than 15% (i.e., less than 50 kW/m), (2) To extend fuel burnup by more than 3 times (i.e., higher than 21,000 MWD/MTU), and (3) To increase critical channel power by more than 5%. In accordance, the followings are performed in this fiscal year: (1) Undertake CANFLEX-NU design and thermalmechanical performance analysis, and prepare design documents, (2) Establish reactor physics analysis code system, and investigate the compativility of the CANFLEX-NU fuel with the standard 37-element fuel in the CANDU-6 reactor. (3) Establish safety analysis methodology with the assumption of the CANFLEX-NU loaded CANDU-6 reactor, and perform the preliminary thermalhydraulic and fuel behavior for the selected DBA accidents, (4) Investigate reactor physics analysis code system as pre-study for CANFLEX-SEU loaded reactors

  1. Smart Grid Development: Multinational Demo Project Analysis

    OpenAIRE

    Oleinikova I.; Mutule A.; Obushevs A.; Antoskovs N.

    2016-01-01

    This paper analyses demand side management (DSM) projects and stakeholders’ experience with the aim to develop, promote and adapt smart grid tehnologies in Latvia. The research aims at identifying possible system service posibilites, including demand response (DR) and determining the appropriate market design for such type of services to be implemented at the Baltic power system level, with the cooperation of distribution system operator (DSO) and transmission system operator (TSO). This pape...

  2. Bioenergy Project Development and Biomass Supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Modern biomass, and the resulting useful forms of bioenergy produced from it, are anticipated by many advocates to provide a significant contribution to the global primary energy supply of many IEA member countries during the coming decades. For non-member countries, particularly those wishing to achieve economic growth as well as meet the goals for sustainable development, the deployment of modern bioenergy projects and the growing international trade in biomass-based energy carriers offer potential opportunities.

  3. Using the Student Research Project to Integrate Macroeconomics and Statistics in an Advanced Cost Accounting Course

    Science.gov (United States)

    Hassan, Mahamood M.; Schwartz, Bill N.

    2014-01-01

    This paper discusses a student research project that is part of an advanced cost accounting class. The project emphasizes active learning, integrates cost accounting with macroeconomics and statistics by "learning by doing" using real world data. Students analyze sales data for a publicly listed company by focusing on the company's…

  4. Social acceptability of new territorial development projects

    International Nuclear Information System (INIS)

    1993-05-01

    This paper reviews the historical evolution of environmental awareness over the last three decades. The aspects covered include: the growing economic interdependence of nations, the development of new technologies, the internationalization of human rights and the phenomenon of organized trans-nationalism. The paper then develops a framework of territorial development assessment criteria embodying the United Nation's approach towards sustainable growth in which the rights of the human individual to a healthy life in harmony with nature are placed at the forefront of all sustainable growth decision making. Examples of decisional processes during actual hearings to decide on the go-ahead of energy development projects in Italy (a district heating system and a combined cycle gas turbine power plant) are given to evidence optimum ways to have public participation and interaction with government and expert committees take place in line with the United Nation's approach towards development. An important element dealt with is how to optimize the dissemination and use of information

  5. The NEED (National Energy Education Development) Project

    Science.gov (United States)

    Hogan, D.; Spruill, M.

    2012-04-01

    The NEED (National Energy Education Development) Project is a non-profit organization which provides a wide range of K-12 curriculum on energy education topics. The curriculum is specific for primary, elementary, intermediate and secondary levels with age appropriate activities and reading levels. The NEED Project covers a wide range of topics from wind energy, nuclear energy, solar energy, hydropower, hydrogen, fossil fuels, energy conservation, energy efficiency and much more. One of the major strengths of this organization is its Teacher Advisory Board. The curriculum is routinely revised and updated by master classroom teachers who use the lessons and serve on the advisory board. This ensures it is of the highest quality and a useful resource. The NEED Project through a variety of sponsors including businesses, utility companies and government agencies conducts hundreds of teacher professional development workshops each year throughout the United States and have even done some workshops internationally. These workshops are run by trained NEED facilitators. At the workshops, teachers gain background understanding of the energy topics and have time to complete the hands on activities which make up the curriculum. The teachers are then sent a kit of equipment after successfully completing the workshop. This allows them to teach the curriculum and have their students perform the hands on labs and activities in the classroom. The NEED Project is the largest provider of energy education related curriculum in the United States. Their efforts are educating teachers about energy topics and in turn educating students in the hope of developing citizens who are energy literate. Many of the hands on activities used to teach about various energy sources will be described and demonstrated.

  6. A status report on the Advanced Neutron Source project

    International Nuclear Information System (INIS)

    West, C.D.

    1993-01-01

    The Advanced Neutron Source (ANS) will be a new laboratory for neutron research, centered around a 330 MW(f) research reactor cooled and reflected by heavy water and including extensive experiment systems and support facilities. The major components of the baseline design, occupying about 16 heetares, are a guide hall/research support area, containing most of the neutron beam experiment systems, shops and supporting laboratories; a 60 m diameter containment building housing the reactor and its pimary coolant system, and selected scientific research facilities; an operations support building with the majority of the remaining plant systems, an office/interface complex providing a carefully designed, user friendly entry point for access control; and several other major facilities including user housing, an electrical substation, a diesel generator building, a cryorefrigerator building, and heavy water cleanup and upgrade systems

  7. SAGES's advanced GI/MIS fellowship curriculum pilot project.

    Science.gov (United States)

    Weis, Joshua J; Goldblatt, Matthew; Pryor, Aurora; Dunkin, Brian J; Brunt, L Michael; Jones, Daniel B; Scott, Daniel J

    2018-06-01

    The American health care system faces deficits in quality and quantity of surgeons. SAGES is a major stakeholder in surgical fellowship training and is responsible for defining the curriculum for the Advanced GI/MIS fellowship. SAGES leadership is actively adapting this curriculum. The process of reform began in 2014 through a series of iterative meetings and discussions. A working group within the Resident and Fellow Training Committee reviewed case log data from 2012 to 2015. These data were used to propose new criteria designed to provide adequate exposure to core content. The working group also proposed using video assessment of an MIS case to provide objective assessment of competency. Case log data were available for 326 fellows with a total of 85,154 cases logged (median 227 per fellow). The working group proposed new criteria starting with minimum case volumes for five defined categories including foregut (20), bariatrics (25), inguinal hernia (10), ventral hernia (10), and solid organ/colon/thoracic (10). Fellows are expected to perform an additional 75 complex MIS cases of any category for a total of 150 required cases overall. The proposal also included a minimum volume of flexible endoscopy (50) and submission of an MIS foregut case for video assessment. The new criteria more clearly defined which surgeon roles count for major credit within individual categories. Fourteen fellowships volunteered to pilot these new criteria for the 2017-2018 academic year. The new SAGES Advanced GI/MIS fellowship has been crafted to better define the core content that should be contained in these fellowships, while still allowing sufficient heterogeneity so that individual learners can tailor their training to specific areas of interest. The criteria also introduce innovative, evidence-based methods for assessing competency. Pending the results of the pilot program, SAGES will consider broad implementation of the new fellowship criteria.

  8. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    Science.gov (United States)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  9. Project-based faculty development for e-learning.

    Science.gov (United States)

    Vyas, Rashmi; Faith, Minnie; Selvakumar, Dhayakani; Pulimood, Anna; Lee, Mary

    2016-12-01

    The Christian Medical College, Vellore, in collaboration with Tufts University, Boston, conducted an advanced workshop in e-learning for medical faculty members in India. E-learning can enhance educational reforms for today's computer-literate generation, and keep faculty members up to speed in a rapidly changing world. The purpose of this paper is to report on the design and evaluation of a project-based faculty member development programme focused on developing faculty members as educators and as peer trainers who can use e-learning for educational reforms. During a 2-day workshop, 29 participants in groups of two or three developed 13 e-learning projects for implementation in their institutions. Evaluation of the workshop was through written feedback from the participants at the end of the workshop and by telephone interview with one participant from each project group at the end of one year. Content analysis of qualitative data was perfomed. The participants reported that they were motivated to implement e-learning projects and recognised the need for and usefulness of e-learning. The majority of projects (10 out of 13) that were implemented 'to some extent' or 'to a great extent' faced challenges with a lack of resources and administrative support, but faculty members were able to overcome them. E-learning can enhance educational reforms for today's computer-literate generation IMPLICATIONS: Designing feasible e-learning projects in small groups and obtaining hands-on experience with e-learning tools enhance the effectiveness of subsequent implementation. To successfully incorporate e-learning when designing educational reforms, faculty member training, continuing support and infrastructure facilities are essential. © 2016 John Wiley & Sons Ltd.

  10. Developing financeable projects in Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Chelberg, R.; Prerad, V. [POWER International, Josefov (Czechoslovakia)

    1995-12-01

    POWER`s engineering and development experience in the Czech Republic creating financeable projects within the power generation industry will be presented. POWER has been involved in the Czech Republic`s privatization process, environmental legislation as well as formation of the regulatory environment. Strategic methods for accomplishing the development of financeable projects often include ownership and financial restructuring of the projects. This is done by utilizing internal cash flows, external debt and equity placement (provided by international financial institutions) by restructuring the facility`s contractual relationships and operations (providing as least cost solution to engineering) and possibly using existing governmental guarantees. In order to make any recommendations on how to come into compliance with the country`s environmental legislation, it is necessary to begin with an analysis of the existing facility. This involves preparation of technical and economic feasibility study, evaluation of technology and preliminary engineering solutions. It further involves restructuring of power sales agreements, heat sales agreements, and fuel supply agreements. The goal is to provide suitable security for the equity and debt financing participants by mitigating risk and creating a single purpose business unit with predictable life and economics.

  11. A method to study the management of urban development projects

    NARCIS (Netherlands)

    Heurkens, E.

    2011-01-01

    The management of urban development projects in the Netherlands has changed significantly in recent years. These projects have become mainly ‘led’ by developers as they manage the entire life cycle of development projects, while public actors mainly facilitate development projects. This changes the

  12. Development of vacuum glazing with advanced thermal properties - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Manz, H.

    2009-03-15

    Windows constitute a weak link in the building envelope and hence contribute significantly to the total heating energy demand in buildings. By evacuating the glazing cavity a vacuum glazing is created and heat transfer can be significantly reduced. This project was designed to build knowledge and technology necessary to fabricate vacuum glazing with advanced thermal properties. More specifically, various strategies for improvement of conventional technology were investigated. Of central importance was the development of a novel edge sealing approach which can in theory circumvent the main limitation of conventional glass soldering technology. This approach which is rapid, low temperature, low cost and completely vacuum compatible was filed for patenting in 2008. With regards to thermal insulation performance and glazing deflection, numerical studies were performed demonstrating the importance of nonlinear behavior with glazing size and the results published. A detailed service life prediction model was elaborated which defines a set of parameters necessary to keep the expected pressure increase below a threshold value of 0.1 Pa after 30 years. The model takes into account four possible sources of pressure increase and a getter material which acts as a sink. For the production of 0.5 m by 0.5 m glazing assembly prototypes, a high vacuum chamber was constructed and a first sealing prototype realized therein. The manufacture of improved prototypes and optimization of the anodic bonding edge sealing technology with emphasis on process relevant aspects is the goal of a follow-up project. (authors)

  13. Advanced calculations developed for the ITER project within of engineering support framework contracts to F4E; Calculos avanzados desarrollados para el proyecto ITER dentro de los contratos marco de soporte de ingenieria para F4E

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, C.; Polo, J.; Garcia Cid, J.; Guirao, J.; Fernandez, E.; Bayon, A.; Caixas, J.

    2013-07-01

    Present the different kind of analyses carried out within the engineering support framework contracts for F4E in the period 2009-2013 and its evolution according to project needs and Vacuum Vessel manufacturing status.

  14. Report on the FY 1999 research cooperation follow-up project on the development of manufacturing technology supported by advanced and integrated information system through cooperation; 1999 nendo kan'i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku follow up jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In FY 1999, the follow-up project was conducted on the development of manufacturing technology supported by advanced and integrated information system through cooperation (MATIC). The project included the grasp of the state of activity, announcement of the achievement, field survey, etc. of China, Indonesia, Malaysia, Singapore and Thailand. China carried out the system development and demonstrative tests in the fiber/apparel field, trying to spread the MATIC system. Indonesia is planning to spread the use of electronic catalog of automotive parts/electronic parts toward small/medium companies through internet. Malaysia was in charge of the development in the field of home electric appliances and demonstrative tests. They use the results so as to meet the demand in the domestic industry, aiming at spreading it in the country. Singapore uses the electronic catalog system to make it apply to the informatization project of the country. Thailand is making efforts for the spread of the MATIC results through the prototype model. (NEDO)

  15. Advancements in the field of personality development.

    Science.gov (United States)

    De Fruyt, Filip; Van Leeuwen, Karla

    2014-07-01

    A summary is provided what the fields of personality and developmental psychology had to offer each other the past decade, reflected in the eleven contributions enclosed in this special issue. Strengths and opportunities to further advance the field are identified, including the extension of general trait with maladaptive trait models, the use of alternative methods to assess personality, and the adoption of configural approaches to describe traits in individuals, beyond more traditional person-centered approaches. Copyright © 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  16. The development of advanced robotic technology -The development of advanced robotics for the nuclear industry-

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Kim, Woong Ki; Park, Soon Yong; Kim, Seung Ho; Kim, Chang Hoi; Hwang, Suk Yeoung; Kim, Byung Soo; Lee, Young Kwang

    1994-07-01

    In this year (the second year of this project), researches and development have been carried out to establish the essential key technologies applied to robot system for nuclear industry. In the area of robot vision, in order to construct stereo vision system necessary to tele-operation, stereo image acquisition camera module and stereo image displayer have been developed. Stereo matching and storing programs have been developed to analyse stereo images. According to the result of tele-operation experiment, operation efficiency has been enhanced about 20% by using the stereo vision system. In a part of object recognition, a tele-operated robot system has been constructed to evaluate the performance of the stereo vision system and to develop the vision algorithm to automate nozzle dam operation. A nuclear fuel rod character recognition system has been developed by using neural network. As a result of perfomance evaluation of the recognition system, 99% recognition rate has been achieved. In the area of sensing and intelligent control, temperature distribution has been measured by using the analysis of thermal image histogram and the inspection algorithm has been developed to determine of the state be normal or abnormal, and the fuzzy controller has been developed to control the compact mobile robot designed for path moving on block-typed path. (Author)

  17. Hanford Waste Vitrification Plant Project advanced conceptual design summary report

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1988-11-01

    The Hanford Waste Vitrification Plant (HWVP) will immobilize Hanford defense liquid high-level waste in borosilicate glass in preparation for shipment to a geologic repository. The shipment of the waste to the repository will satisfy an objective in the President's Defense Waste Management Plan. The glass product will be cast into stainless steel canisters, which will be sealed and stored at Hanford until they are shipped. This document summarizes work performed during the Advance Conceptual Design (ACD) of the HWVP. In the Reference Conceptual Design phase, which preceded the ACD, a number of design issues were identified with the potential to improve cost effectiveness, safety, constructibility, and operability. The ACD addressed and evaluated these design issues. Implementation of recommendations derived from ACD work will occur in subsequent design phases. The next design phase is preliminary design which will be followed by detailed design and construction. Net potential cost improvements of more than $36.9M were identified along with improvements in safety, constructibility, and operability. No negative schedule impacts will result from implementation of the improvements. 11 refs., 5 figs., 3 tabs

  18. NASA Subsonic Rotary Wing Project-Multidisciplinary Analysis and Technology Development: Overview

    Science.gov (United States)

    Yamauchi, Gloria K.

    2009-01-01

    This slide presentation reviews the objectives of the Multidisciplinary Analysis and Technology Development (MDATD) in the Subsonic Rotary Wing project. The objectives are to integrate technologies and analyses to enable advanced rotorcraft and provide a roadmap to guide Level 1 and 2 research. The MDATD objectives will be met by conducting assessments of advanced technology benefits, developing new or enhanced design tools, and integrating Level 2 discipline technologies to develop and enable system-level analyses and demonstrations.

  19. Biomass Gasification Research and Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, Birgitte K. [Washington State Univ., Pullman, WA (United States)

    2014-07-22

    The overall objective of the BioChemCat project was to demonstrate the feasibility of using Advanced Wet Oxidation Steam-Explosion (AWEx) process to open and solubilize lignocellulosic biomass (LBM) coupled to an innovative mixed culture fermentation technology capable of producing a wide range of volatile fatty acids (VFAs) from all sugars present in LBM. The VFAs will then be separated and converted to hydrocarbon biofuel through catalytic upgrading. By continuously removing VFAs as they are produced (extractive fermentation), we were able to recover the VFAs while both eliminating the need for pH adjustment and increasing the fermentation productivity. The recovered VFAs were then esterified and upgraded to hydrocarbon fuels through a parallel series of hydrogenolysis/decarboxylation and dehydration reactions. We also demonstrated that a portion of the residual lignin fraction was solubilized and converted into VFAs, also improving the yields of VFAs. The remaining lignin fraction was then shown to be available (after dewatering and drying) for use as a lignin-enriched fuel pellet or as a feedstock for further processing.

  20. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    Science.gov (United States)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  1. Development of funding project risk management tools.

    Science.gov (United States)

    2013-11-01

    Funding project risk management is a process for identifying, assessing, and prioritizing project funding risks. To plan to : minimize or eliminate the impact of negative events, one must identify what projects have higher risk to respond to potentia...

  2. Advances of the low enriched uranium utilization project in CNA-1 during 1998 and 1999

    International Nuclear Information System (INIS)

    Fink, Jose M.; Higa, Manabu; Sidelnik, Jorge I.; Perez, Ramon A.; Casario, Jose A.; Alvarez, Luis A.

    1999-01-01

    In this work, a general description of advances of the Enriched Fuel Introduction Project in CNA-1 and the main tasks performed during 1998 and 1999 are presented. The program is being satisfactorily developed and during that period the number of slightly enriched fuels (LEU) introduced had significantly increased in relation to previous years. At present, there are 181 LEU fuel elements in the core and 125 LEU fuel elements have been extracted. The number of full power burnt fuel elements per day decreased from 1.31 FE/dpp in 1994 (when all fuel was natural) to 0.92 in 1998 and 0.83 in 1999, reaching the predicted value for homogeneous LEU core of 0.7. The cost of burnt fuel in 1998 was 25% lower that if only natural fuel would have been used. (author)

  3. Programmes and projects for high-temperature reactor development

    International Nuclear Information System (INIS)

    Bogusch, Edgar; Hittner, Dominique

    2009-01-01

    An increasing attention has to be recognised worldwide on the development of High-Temperature Reactors (HTR) which has started in Germany and other countries in the 1970ies. While pebble bed reactors with spherical fuel elements have been developed and constructed in Germany, countries such as France, the US and Russia investigated HTR concepts with prismatic block-type fuel elements. The concept of a modular HTR formerly developed by Areva NP was an essential basis for the HTR-10 in China. A pebble bed HTR for electricity production is developed in South Africa. The construction is planned after the completion of the licensing procedure. Also the US is planning an HTR under the NGNP (Next Generation Nuclear Plant) Project. Due to the high temperature level of the helium coolant, the HTR can be used not only for electricity production but also for supply of process heat. Including its inherent safety features the HTR is an attractive candidate for heat supply to various types of plants e.g. for hydrogen production or coal liquefactions. The conceptual design of an HTR with prismatic fuel elements for the cogeneration of electricity and process heat has been developed by Areva NP. On the European scale the HTR development is promoted by the RAPHAEL (ReActor for Process heat, Hydrogen And ELectricity generation) project. RAPHAEL is an Integrated Project of the Euratom 6th Framework Programme for the development of technologies towards a Very High-Temperature Reactor (VHTR) for the production of electricity and heat. It is financed jointly by the European Commission and the partners of the HTR Technology Network (HTR-TN) and coordinated by Areva NP. The RAPHAEL project not only promotes HTR development but also the cooperation with other European projects such as the material programme EXTREMAT. Furthermore HTR technology is investigated in the frame of Generation IV International Forum (GIF). The development of a VHTR with helium temperatures above 900 C for the

  4. Proposed Project Selection Method for Human Support Research and Technology Development (HSR&TD)

    Science.gov (United States)

    Jones, Harry

    2005-01-01

    The purpose of HSR&TD is to deliver human support technologies to the Exploration Systems Mission Directorate (ESMD) that will be selected for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are acceptable. HSR&TD must select an may of technology development projects, guide them, and either terminate or continue them, so as to maximize the resulting number of usable advanced human support technologies. This paper proposes an effective project scoring methodology to support managing the HSR&TD project portfolio. Researchers strongly disagree as to what are the best technology project selection methods, or even if there are any proven ones. Technology development is risky and outstanding achievements are rare and unpredictable. There is no simple formula for success. Organizations that are satisfied with their project selection approach typically use a mix of financial, strategic, and scoring methods in an open, established, explicit, formal process. This approach helps to build consensus and develop management insight. It encourages better project proposals by clarifying the desired project attributes. We propose a project scoring technique based on a method previously used in a federal laboratory and supported by recent research. Projects are ranked by their perceived relevance, risk, and return - a new 3 R's. Relevance is the degree to which the project objective supports the HSR&TD goal of developing usable advanced human support technologies. Risk is the estimated probability that the project will achieve its specific objective. Return is the reduction in mission life cycle cost obtained if the project is successful. If the project objective technology performs a new function with no current cost, its return is the estimated cash value of performing the new function. The proposed project selection scoring method includes definitions of the criteria, a project evaluation

  5. Smart Grid Development: Multinational Demo Project Analysis

    Directory of Open Access Journals (Sweden)

    Oleinikova I.

    2016-12-01

    Full Text Available This paper analyses demand side management (DSM projects and stakeholders’ experience with the aim to develop, promote and adapt smart grid tehnologies in Latvia. The research aims at identifying possible system service posibilites, including demand response (DR and determining the appropriate market design for such type of services to be implemented at the Baltic power system level, with the cooperation of distribution system operator (DSO and transmission system operator (TSO. This paper is prepared as an extract from the global smart grid best practices, smart solutions and business models.

  6. Smart Grid Development: Multinational Demo Project Analysis

    Science.gov (United States)

    Oleinikova, I.; Mutule, A.; Obushevs, A.; Antoskovs, N.

    2016-12-01

    This paper analyses demand side management (DSM) projects and stakeholders' experience with the aim to develop, promote and adapt smart grid tehnologies in Latvia. The research aims at identifying possible system service posibilites, including demand response (DR) and determining the appropriate market design for such type of services to be implemented at the Baltic power system level, with the cooperation of distribution system operator (DSO) and transmission system operator (TSO). This paper is prepared as an extract from the global smart grid best practices, smart solutions and business models.

  7. Advanced Reactor Development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Giessing, D. F.; Griffith, J. D.; McGoff, D. J.; Rosen, Sol [U. S. Department of Energy, Texas (United States)

    1990-04-15

    In the United States, three technologies are employed for the new generation of advanced reactors. These technologies are Advanced Light Water Reactors (A LWRs) for the 1990s and beyond, the Modular High Temperature Gas Reactor (M HTGR) for commercial use after the turn of the century, and Liquid Metal Reactors (LWRs) to provide energy production and to convert reactor fission waste to a more manageable waste product. Each technology contributes to the energy solution. Light Water Reactors For The 1990s And Beyond--The U. S. Program The economic and national security of the United States requires a diversified energy supply base built primarily upon adequate, domestic resources that are relatively free from international pressures. Nuclear energy is a vital component of this supply and is essential to meet current and future national energy demands. It is a safe, economically continues to contribute to national energy stability, and strength. The Light Water Reactor (LWR) has been a major and successful contributor to the electrical generating needs of many nations throughout the world. It is being counted upon in the United States as a key to revitalizing nuclear energy option in the 1990s. In recent years, DOE joined with the industry to ensure the availability and future viability of the LWR option. This national program has the participation of the Nation's utility industry, the Electric Power Research Institute (EPRI), and several of the major reactor manufacturers and architect-engineers. Separate but coordinated parts of this program are managed by EPRI and DOE.

  8. All projects related to | Page 26 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    A comparative study of child marriage and parenthood in Ethiopia, India, Peru ... The aim of this project is to enhance the understanding of the complexities of child ... Closing the gender gap in financial inclusion: Advancing the business case.

  9. Draft project management update to the Iowa DOT Project Development Manual : final report.

    Science.gov (United States)

    2016-08-01

    This work supported drafting project management guidance for the Iowa Department of Transportation (DOT). The goal is to : incorporate a greater focus on project management in their project development process. : A technical advisory committee (TAC) ...

  10. Project on strengthening of structures using advanced composites

    Directory of Open Access Journals (Sweden)

    Recuero, A.

    1997-12-01

    Full Text Available Restoration, strengthening and rehabilitation of buildings becomes one of the more interesting aspects of the use of composites. Construction industry has not yet accepted the wide structural use of these new materials because it does not know the advantages of composites in comparison with traditional materials, such as concrete or steel. Engineers involved in design and construction are conservative and resist to changes. They require codes and specifications, what makes that an entity should lead the use of the new material or technology. At present, the experience needed to prepare those codes does not exist. Experimental tests and successful cases are necessary for the acceptance of these materials in construction. A project is presented, with the aim to provide the experimental basis, needed to update design codes and standards, and the technology for the use of these new composites in building and civil structures strengthening, taking actual pathology, quality and durability into account, as well as urban aesthetics. Research specialists in composites, structural analysis and testing, and in structural pathology, as well as composites and adhesives manufacturers and users, designers and final users will co-work in this project. This will allow that all relevant aspects of the problem be considered.

    La restauración, refuerzo o rehabilitación de estructuras resulta ser uno de los campos de aplicación de mayor interés y más directamente relacionado con los nuevos materiales compuestos. La Industria de la Construcción no ha aceptado aún el uso estructural extenso de los nuevos materiales compuestos porque todavía no conoce bien sus ventajas respecto a los materiales tradicionales, tales como el hormigón o el acero. Los profesionales implicados en el proyecto y en la ejecución de obras suelen ser conservadores y resistirse a los cambios. Para aceptar un nuevo material requieren disponer de normativa relativa a la nueva

  11. Crop Production for Advanced Life Support Systems - Observations From the Kennedy Space Center Breadboard Project

    Science.gov (United States)

    Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.

    2003-01-01

    The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.

  12. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Woong; Cho, Jae Wan; Lee, Nam Ho; Kim, Woong Ki; Moon, Byung Soo; Lee, Young Jae; Kim, Chang Hoi; Kim, Seung Ho; Hwang, Seok Yong; Kim, Byung Soo; Moon, Jae Sun; Lee, Young Kwang; Choi, Kap Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    The comparison study of 3 kinds of stereo camera modules done in this final year of 4 year`s longterm project shows that regenerating characteristics of stereo image of stereo camera using horizontally moving lens axis method is superior to the other two modules. Base on this comparison result, stereo camera module using horizontally moving lens method is developed. Also, stereo-Boom unit, high definition polarized stereo monitor(KAERI-PSM II) and 10.4sec. auto-stereogram TV using parallax barrier method are developed. These developed systems can be used for people involved in extremely hazardous working area to give vivid reality image of work environment. In the recognition and tracking section, auto-vergencing technology using focus fixation and cepstral filter, stereo camera calibration, range measurement technology using stereo camera module are developed. And active target tracking technology is developed also. In the sensing and intelligent control research part, active radioactivity image monitoring unit is developed. The spatial resolution of monitoring unit is 10cm at 1m distance, FOV is 60x40 deg [HXV], and radioactivity detection limit is 1mR/hr. Also, radiation-resistant inspection camera for nuclear facilities is designed. In the intelligent control section, fuzzy control algorithm for obstacle detouring navigation of mobile robot is developed. The smoothing techniques by fuzzy set is adapted to raise the pliability of obstacle detouring navigation of mobile robot. In order to raise robustness of developed fuzzy algorithm, fuzzy control algorithm is applied to `Truck Backer Upper` problem and tuned. (Abstract Truncated)

  13. Minerals and energy: major development projects - April 2005 listing

    Energy Technology Data Exchange (ETDEWEB)

    Ian Haine (and others) [Australian Bureau of Agricultural and Resource Economics (ABARE), Canberra, ACT (Australia)

    2005-06-01

    The article describes trends in project development and investment in the minerals and energy sector in Australia. It lists competed projects and committed projects. Black coal projects completed during November 2004 to April 2005 were: Dendrobium underground and Mandalong longwall mining expansion projects in New South Wales and development of Curragh North and Eaglefield opencut mine in Queensland. One of the more significant newly listed projects is Macarthur Coal's Queensland Coke Project near Rockhampton. Capital cost and values of projects are included. The full listing of 229 projects is available electronically from ABARE. The list is released around May and November each year. 10 figs., 4 tabs.

  14. Unrealized Architectural Projects in Lithuania: Historical Development

    Directory of Open Access Journals (Sweden)

    Indrė Gudelytė

    2012-05-01

    Full Text Available The “unrealized architectural projects” are the building projects, carried out under the specific design task and intended to be built in a particular place (site, though, for certain reasons and circumstances, have never been constructed. However, up to the present day, the topic of the “unbuilt” has been analyzed just episodically in literature and sources. The article touches upon the historical development of unrealized architectural works, as well as their artistic value and role within various historical periods of Lithuanian architecture. One of the chapters briefly reviews the relevance and development of unrealized projects during the period since Czarist Russian occupation (1795 to the restoration of Lithuanian independence (1990. Furthermore, the deeper analysis of the Soviet period (1940–1990 “dead” architecture is presented. While exploring “the unrealized”, attention has been also paid to what was actu ally built, therefore the prevailing architectural styles, tendencies and examples of the corresponding decade (in Lithuania and worldwide have been studied.Article in Lithuanian

  15. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    Science.gov (United States)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  16. Cyrogenic Life Support Technology Development Project

    Science.gov (United States)

    Bush, David R.

    2015-01-01

    KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.

  17. Projected uranium requirements of developing countries

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The objective of this paper is to examine the uranium requirements of developing countries both in aggregate and individually. Although the cumulative uranium requirements of these countries are expected to account for less than eight percent of total requirements, the fact that many of these countries are expressing renewed interest in nuclear is, in itself, encouraging. The countries analyzed in this paper are Argentina, Brazil, Egypt, India, Israel, Mexico, Pakistan, South Africa, South Korea and Taiwan. For each country, the existing and planned nuclear capacity levels have been identified and capacity factors have been projected. For countries with no previous nuclear power, the world weighted average capacity factor for the specific reactor type is utilized. Other factors influencing nuclear power demand and operations of these developing countries will be discussed, and finally, uranium requirements based on a calculated optimal tails assay of .30 will be provided

  18. Development of advanced CANDU PHWR -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Seok, Ho Cheon; Na, Yeong Hwan; Seok, Soo Dong; Lee, Bo Uk; Kwak, Ho Sang; Kim, Bong Ki; Kim, Seok Nam; Min, Byeong Joo; Park, Jong Ryunl; Shin, Jeong Cheol; Lee, Kyeong Ho; Lee, Dae Hee; Lee, Deuk Soo; Lee, Yeong Uk; Lee, Jeong Yang; Jwon, Jong Seon; Jwon, Chang Joon; Ji, Yong Kwan; Han, Ki Nam; Kim, Kang Soo; Kim, Dae Jin; Kim, Seon Cheol; Kim, Seong Hak; Kim, Yeon Seung; Kim, Yun Jae; Kim, Jeong Kyu; Kim, Jeong Taek; Kim, Hang Bae; Na, Bok Kyun; Namgung, In; Moon, Ki Hwan; Park, Keun Ok; Shon, Ki Chang; Song, In Ho; Shin, Ji Tae; Yeo, Ji Won; Oh, In Seok; Jang, Ik Ho; Jeong, Dae Won; Jeong, Yong Hwan; Ha, Jae Hong; Ha, Jeong Koo; Hong, Hyeong Pyo; Hwang, Jeong Ki

    1994-07-01

    The target of this project is to assess the feasibility of improving PHWR and to establish the parameter of the improved concept and requirements for developing it. To set up the requirements for the Improved Pressurized Heavy Water Reactor: (1) Design requirements of PHWR main systems and Safety Design Regulatory Requirements for Safety Related System i.e. Reactor Shutdown System, Emergency Core Cooling System and Containment System were prepared. (2) Licensing Basis Documents were summarized and Safety Analysis Regulatory. Requirements were reviewed and analyzed. To estimate the feasibility of improving PHWR and to establish the main parameters of the concept of new PHWR in future: (1) technical level/developing trend of PHWR in Korea through Wolsong 2, 3 and 4 design experience and Technical Transfer Program was investigated to analyze the state of basic technology and PHWR improvement potential. (2) CANDU 6 design improvement tendency, CANDU 3 design concept and CANDU 9 development state in other country was analyzed. (3) design improvement items to apply to the reactors after Wolsong 2, 3 and 4 were selected and Plant Design Requirements and Conceptual Design Description were prepared and the viability of improved HWR was estimated by analyzing economics, performance and safety. (4) PHWR technology improving research and development plan was established and international joint study initiated for main design improvement items

  19. "International regime for advancing lunar development"

    Science.gov (United States)

    Beldavs, VZ

    2017-09-01

    A specific concern regarding the Moon Treaty is the provision for sharing the wealth gained from space with developing countries that have not invested and taken risks in making possible space materials utilization. Article 11, par. 7 states "The main purposes of the international regime to be established shall include: (a) The orderly and safe development of the natural resources of the moon; (b) The rational management of those resources; (c) The expansion of opportunities in the use of those resources; (d) An equitable sharing by all States Parties in the benefits derived from those resources, whereby the interests and needs of the developing countries, as well as the efforts of those countries which have contributed either directly or indirectly to the exploration of the moon, shall be given special consideration." Whether the Moon Treaty in its present form or modified to be acceptable to more parties or the Moon Treaty is ignored, the language of Article 11, paragraph 7 can be used to construct an international regime for lunar development that can meet the requirements of commercial business as well as of states that provide support for lunar development as well as developing countries that may have played a modest role in making lunar development possible. This paper will consider options for constructing an international regime for lunar development.

  20. Advanced Mirror Technology Development for Very Large Space Telescopes

    Science.gov (United States)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  1. Advanced Stellar Compass - Proposal for the SMART-1 Project

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Betto, Maurizio; Kilsgaard, Søren

    1998-01-01

    and autonomous Stellar Reference Unit designed, developed and produced by the Space Instrumentation Group of the Department of Automation of the Technical University of Denmark.The document is structured as follows. First we present the ASC - heritage, system description, performance - then we address more...... like manufacturing, transportation and storage, in section 10 the requirements imposed by the ASC on the system are given and to conclude we address the financial issues (sect. 11) and we review the ASC specifications against the SMART-1 requirements and provide the compliance matrices (sect. 12)....

  2. Advanced CANDU reactor development: a customer-driven program

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    2005-01-01

    The Advanced CANDU Reactor (ACR) product development program is well under way. The development approach for the ACR is to ensure that all activities supporting readiness for the first ACR project are carded out in parallel, as parts of an integrated whole. In this way design engineering, licensing, development and testing, supply chain planning, construct ability and module strategy, and planning for commissioning and operations, all work in synergy with one another. Careful schedule management :ensures that program focus stays on critical path priorities.'This paper provides an overview of the program, with an emphasis on integration to ensure maximum project readiness, This program management approach is important now that AECL is participating as the reactor vendor in Dominion Energy's DOE-sponsored Combined Construction/Operating License (COL) program. Dominion Energy selected the ACR-700 as their reference reactor technology for purposes of demonstrating the COL process. AECL's development of the ACR is unique in that pre-licensing activities are being carded out parallel in the USA and Canada, via independent, but well-communicated programs. In the short term, these programs are major drivers of ACR development. The ACR design approach has been to optimize to achieve major design objectives: capital cost reduction, robust design with ample margins, proveness by using evolutionary change from existing :reference plants, design for ease :of operability. The ACR development program maintains these design objectives for each of the program elements: Design: .Carefully selected design innovations based on the SEU fuel/light water coolant:/heavy water moderator approach. Emphasis on lessons-learned review from operating experience and customer feedback Licensing: .Safety case based on strengths of existing CANDU plus benefits of optimised design Development and Test: Choice of materials, conditions to enable incremental testing building on existing CANDU and LWR

  3. Agile Project Management for e-Learning Developments

    Science.gov (United States)

    Doherty, Iain

    2010-01-01

    We outline the project management tactics that we developed in praxis in order to manage elearning projects and show how our tactics were enhanced through implementing project management techniques from a formal project management methodology. Two key factors have contributed to our project management success. The first is maintaining a clear…

  4. Advanced Water Purification System for In Situ Resource Utilization Project

    Science.gov (United States)

    Anthony, Stephen M.

    2014-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  5. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human`s eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. 203 figs, 12 tabs, 72 refs. (Author).

  6. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human's eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. It has been looking for these techniques to expand the working area of human, raise the working efficiencies of remote task to the highest degree, and enhance the industrial

  7. Advanced radiation detector development: Advanced semiconductor detector development: Development of a oom-temperature, gamma ray detector using gallium arsenide to develop an electrode detector

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1995-11-01

    The advanced detector development project at the University of Michigan has completed the first full year of its current funding. Our general goals are the development of radiation detectors and spectrometers that are capable of portable room temperature operation. Over the past 12 months, we have worked primarily in the development of semiconductor spectrometers with open-quotes single carrierclose quotes response that offer the promise of room temperature operation and good energy resolution in gamma ray spectroscopy. We have also begun a small scale effort at investigating the properties of a small non-spectroscopic detector system with directional characteristics that will allow identification of the approximate direction in which gamma rays are incident. These activities have made use of the extensive clean room facilities at the University of Michigan for semiconductor device fabrication, and also the radiation measurement capabilities provided in our laboratory in the Phoenix Building on the North Campus. In addition to our laboratory based activities, Professor Knoll has also been a participant in several Department of Energy review activities held in the Forrestal Building and at the Germantown site. The most recent of these has been service on a DOE review panel chaired by Dr. Hap Lamonds that is reviewing the detector development programs supported through the Office of Arms Control and International Security

  8. Fast Charging Electric Vehicle Research & Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment

  9. Optimization of advanced plants operation: The Escrime project

    International Nuclear Information System (INIS)

    Fiche, C.; Papin, B.

    1994-01-01

    The Escrime program aims at defining the optimal share of tasks between humans and computers under normal or accidental plant operation. Basic principles we keep in mind are the following: human operators are likely to be necessary in the operation of future plants because we cannot demonstrate that plant design is error free, so unexpected situation can still happen; automation must not release the operators from their decisional role but only help them avoiding situations of cognitive overload which can lead to increase the risk of errors; the optimum share of tasks between human and automatic systems must be based on a critical analysis of the tasks and of the way they are handled. The last point appeared to be of major importance. The corresponding analysis of the French PWR's operating procedures enabled us to define a unified scheme for plant operation under the form of a hierarchy of goals and means. Beyond this analysis, development of a specific testing facility is under way to check the relevance of the proposed plant operation organization and to test the human-machine cooperation in different situations for various levels of automation. 7 refs, 4 figs

  10. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2013-01-01

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10 −6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  11. Overview of autoventing turbine technology development project

    International Nuclear Information System (INIS)

    Waldrop, W.R.

    1991-01-01

    This paper reports on low concentrations of dissolved oxygen (DO) in the discharge of hydro plants which represents one of the most significant environmental concerns confronting the hydropower industry. This is especially of concern to utilities attempting to relicense older plants and to build new facilities. One method which shows promise is the autoventing turbine (AVT). The concept of an AVT involves air to be aspirated into the water as it passes through the turbine whenever concentrations of DO are less than desired. Because of this simple and natural process of aeration, the AVT promises to be more cost efficient and reliable than any of the other techniques. This has been demonstrated through experimentation at TVA's Norris Dam. An applied research project is being conducted to develop experimental and numerical methods to allow for reliable design and deployment of this new environmentally improved hydroturbine. TVA is providing overall coordination for this research which is being performed cooperatively with the U.S. Army Corps of Engineers, the U.S. Bureau of Reclamation, and the Iowa Institute of Hydraulic Research. This applied research project is fully integrated with a scale model test program jointly supported and conducted by TVA and Voith Hydro to test alternative locations for venting air into replacement turbine runners for Norris Dam

  12. Development of PETAL diagnostics: PETAPhys project

    Science.gov (United States)

    Raffestin, D.; Boutoux, G.; Baggio, J.; Batani, D.; Blanchot, N.; Bretheau, D.; Hulin, S.; D'Humieres, E.; Granet, F.; Longhi, Th.; Meyer, Ch.; Moreno, Q.; Nuter, R.; Rault, J.; Tikhonchuk, V.; Universite de Bordeaux/Celia Team; CEA. DAM/Cesta Team

    2017-10-01

    Beginning of autumn 2017, PETAL, a Petawatt laser beam, will be operated for experiments on the LMJ facility at the CEA/ Cesta research center. The PETAPhys project provides a support to the qualification phase of the PETAL laser operation. Within the PETAPhys project, we are developing two simple and robust diagnostics permitting both to characterize the focal spot of the PETAL beam and to measure the hard X-ray spectrum at each shot. The first diagnostic consists in optical imaging of the PETAL beam focal spot in the spectral range of the second and third harmonic radiation emitted from the target. The second diagnostic is a hard X-ray dosimeter consisting in a stack of imaging plates (IP) and filters, either placed inside a re-entrant tube or inserted close to target. Numerical simulations as well as experiments on small scale facilities have been performed to design these diagnostics. If available, preliminary results from PETAL experiments will be discussed. We acknowledge the financial support from the French National Research Agency (ANR) in the framework of ``the investments for the future'' Programme IdEx Bordeaux-LAPHIA (ANR-10-IDEX-03-02).

  13. Development and progress: advancing towards environmental crisis

    International Nuclear Information System (INIS)

    Gomez G, Luis Jair

    2011-01-01

    Physical, biological and social evolution is doubtless. One of its first manifestations is the arrival of technique when hominids emerge from pre-hominids. Those first technical developments implied a new relation man/environment that was expressed in three components that appeared successively and pushed each other in time and space like this: dominion over nature, population concentration (urbanism), and population growth. Techniques are to generate three notorious effects on the relation man/nature: 1. Deep intervention on the physical environment: mining and industrial transformation processes; 2. Deep intervention on the biological environment: development of agriculture with a decrease in biodiversity; and 3. Deep intervention on the social environment: going from a pre-modern communitarian world, to the individualism of modernity; and from the agrarian field to the big city. All these technical developments boosted dominion of the technosphere over the ecosphere, which led to the appearance of the Environmental Crisis, whose most notable manifestation is Climatic Change.

  14. Development of Personalized Cancer Therapy for Men with Advanced Prostate Cancer

    Science.gov (United States)

    2017-10-01

    of this study is to develop a strategy to identify molecular markers of response of advanced prostate cancer to specific therapies using clinically...combination treatment strategies are urgently needed. The purpose of this study is to develop a strategy for identifying molecular markers of response of...PENDING) Level of Funding: $125,978 annual direct Project Goals: To develop a strategy for identifying molecular therapeutic response markers of

  15. Advanced Space Power Systems (ASPS): Advanced Microelectromechanical (MEMs) Photovoltaic Systems (AMPS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop new cell and blanket technologies and manufacturing processes that reduce overall array costs•Cells: develop new cell technology comparable to SOA with...

  16. All projects related to | Page 145 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    A Rights-Based Approach to Internet Policy and Governance for the Advancement of Economic, Social, and Cultural Rights. Project. The debate on Internet freedom has ... Toward More Equitable Primary Health Care in Argentina and Latin America through Intersectoral Approaches. Project. Improving primary health care for ...

  17. 2011 NDIA Advanced Research Projects Agency - Energy/DoD Workshop

    Science.gov (United States)

    2011-09-12

    for Handoffs Advanced Research Projects Agency • Energy Portfolio of Projects UNIVERSITY/ LAB SMALL BUSINESS CORPORATION Fuel-Free Isothermal...2011 Present Programs • Agile Delivery of Electrical Power Technology (ADEPT) • Batteries for Electrical Energy Storage in Transportation ( BEEST ...Technologies for Energy (REACT) • Solar Agile Delivery of Electrical Power Technology (Solar – ADEPT) The BEEST : An Overview of ARPA-E’s Program in Ultra-High

  18. Current status of decommissioning projects and their strategies in advanced countries

    International Nuclear Information System (INIS)

    Chung, U. S.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Park, J. H.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B.

    2007-06-01

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The number of nuclear facilities to be dismantled will be much increased in future and the decommissioning industries will be enlarged. Keeping pace with this increasing tendency, each country formulated their own strategies and regulation systems, and applied their own technologies. The international organizations such as the IAEA and the OECD/NEA also prepared standards in technologies and regulation upon decommissioning and recommended to adopt them to the decommissioning projects. These strategies and technologies are very different country by country due to the different site dependent conditions and it will not be reasonable to evaluate their merits and weakness. The world wide status of the decommissioning, highlighted on that of 5 countries of USA, UK, France, Germany and Japan because they are advanced counties in nuclear industries, are summarized and their site specific conditions are evaluated. The scopes of the evaluation are decommissioning strategies, licensing procedures and requirements focused on decommissioning plan, waste management, technology development and so on. The detailed decommissioning progresses of several typical example sites were introduced. The activities on decommissioning field of the international organization, increased according to the enlarged decommissioning industries, are also summarized

  19. Virginia Offshore Wind Technology Advancement Project (VOWTAP) DOE EE0005985 Final Technical Report Rev 1a

    Energy Technology Data Exchange (ETDEWEB)

    Pietryk, Steven [Dominion, Richmond, VA (United States)

    2017-01-31

    The primary purpose of the VOWTAP was to advance the offshore wind industry in the United States (U.S.) by demonstrating innovative technologies and process solutions that would establish offshore wind as a cost-effective renewable energy resource. The VOWTAP Team proposed to design, construct, and operate a 12 megawatt (MW) offshore wind facility located approximately 27 statute miles (mi) (24 nautical miles [nm], 43 kilometers [km]) off the coast of Virginia. The proposed Project would consist of two Alstom Haliade™ 150-6 MW turbines mounted on inward battered guide structures (IBGS), a 34.5-kilovolt (kV) alternating current (AC) submarine cable interconnecting the WTGs (inter-array cable), a 34.5-kV AC submarine transmission cable (export cable), and a 34.5 kV underground cable (onshore interconnection cable) that would connect the Project with existing Dominion infrastructure located in Virginia Beach, Virginia (Figure 1). Interconnection with the existing Dominion infrastructure would also require an onshore switch cabinet, a fiber optic cable, and new interconnection station to be located entirely within the boundaries of the Camp Pendleton State Military Reservation (Camp Pendleton). The VOWTAP balanced technology innovation with commercial readiness such that turbine operations were anticipated to commence by 2018. Dominion, as the leaseholder of the Virginia Wind Energy Area (WEA), anticipated leveraging lessons learned through the VOWTAP, and applying them to future commercial-scale offshore wind development.

  20. Current status of decommissioning projects and their strategies in advanced countries

    Energy Technology Data Exchange (ETDEWEB)

    Chung, U. S.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Park, J. H.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B

    2007-06-15

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The number of nuclear facilities to be dismantled will be much increased in future and the decommissioning industries will be enlarged. Keeping pace with this increasing tendency, each country formulated their own strategies and regulation systems, and applied their own technologies. The international organizations such as the IAEA and the OECD/NEA also prepared standards in technologies and regulation upon decommissioning and recommended to adopt them to the decommissioning projects. These strategies and technologies are very different country by country due to the different site dependent conditions and it will not be reasonable to evaluate their merits and weakness. The world wide status of the decommissioning, highlighted on that of 5 countries of USA, UK, France, Germany and Japan because they are advanced counties in nuclear industries, are summarized and their site specific conditions are evaluated. The scopes of the evaluation are decommissioning strategies, licensing procedures and requirements focused on decommissioning plan, waste management, technology development and so on. The detailed decommissioning progresses of several typical example sites were introduced. The activities on decommissioning field of the international organization, increased according to the enlarged decommissioning industries, are also summarized.

  1. Development of An Advanced JP-8 Fuel

    Science.gov (United States)

    1993-12-01

    included the Microthermal Precipitation Test (MTP), Fuel Reactor Test, Hot Liquid Process Simulator (HLPS), and Isothermal Corrosion Oxidation Test (ICOT... Microthermal Precipitation Test The impetus for this development effort was the need for a screening test that could discriminate between fuels of...varying propensity to produce thermally induced insoluble particulate material in the bulk fuel. The Microthermal Precipitation (MTP) test thermally

  2. Social and Personality Development: An Advanced Textbook

    Science.gov (United States)

    Lamb, Michael E., Ed.; Bornstein, Marc H., Ed.

    2011-01-01

    This new text contains parts of Bornstein and Lamb's "Developmental Science, 6th edition", along with new introductory material, providing a cutting edge and comprehensive overview of social and personality development. Each of the world-renowned contributors masterfully introduces the history and systems, methodologies, and measurement and…

  3. The United States Advanced Reactor Technologies Research and Development Program

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2014-01-01

    The following aspects are addressed: • Nuclear energy mission; • Reactor research development and deployment (RD&D) programs: - Light Water Reactor Sustainability Program; - Small Modular Reactor Licensing Technical Support; - Advanced Reactor Technologies (ART)

  4. Research and development of advanced materials using ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Susumu [Nagasaki Inst. of Applied Science, Nagasaki (Japan)

    1997-03-01

    A wide range of research and development activities of advanced material synthesis using ion beams will be discussed, including ion beam applications to the state-of-the-art electronics from giant to nano electronics. (author)

  5. Recent developments of the EXCYT project

    International Nuclear Information System (INIS)

    Ciavola, G.

    1997-01-01

    The aim of the EXCYT project is to develop a facility for the production and the acceleration of exotic beams up to 8 MeV/amu. The primary beams shall be provided by the now operational K-800 superconducting cyclotron and the exotic ions will be accelerated by a 15 MV Tandem. We will describe the cyclotron source and its axial injection system, the transfer beam line sending the primary beams onto the target and the target-ion source unit. Also we will describe the planned high resolution isobar separator that should allow to perform either nuclear or astrophysical and material science experiments. This separator consists of a preseparator and two main stages and should provide an overall mass resolving power up to m/Dm∼20000. (orig.)

  6. Recent developments of the EXCYT project

    Energy Technology Data Exchange (ETDEWEB)

    Ciavola, G. [Ist. Nazionale di Fis. Nucl., Catania (Italy). Lab. Nazionale del Sud; Calabretta, L. [Ist. Nazionale di Fis. Nucl., Catania (Italy). Lab. Nazionale del Sud; Cuttone, G. [Ist. Nazionale di Fis. Nucl., Catania (Italy). Lab. Nazionale del Sud; Di Bartolo, G. [Ist. Nazionale di Fis. Nucl., Catania (Italy). Lab. Nazionale del Sud; Finocchiaro, P. [Ist. Nazionale di Fis. Nucl., Catania (Italy). Lab. Nazionale del Sud; Gammino, S. [Ist. Nazionale di Fis. Nucl., Catania (Italy). Lab. Nazionale del Sud; Gu, M. [Ist. Nazionale di Fis. Nucl., Catania (Italy). Lab. Nazionale del Sud; Migneco, E. [Ist. Nazionale di Fis. Nucl., Catania (Italy). Lab. Nazionale del Sud; Qin, J. [Ist. Nazionale di Fis. Nucl., Catania (Italy). Lab. Nazionale del Sud; Raia, G. [Ist. Nazionale di Fis. Nucl., Catania (Italy). Lab. Nazionale del Sud; Rifuggiato, D. [Ist. Nazionale di Fis. Nucl., Catania (Italy). Lab. Nazionale del Sud; Rovelli, A. [Ist. Nazionale di Fis. Nucl., Catania (Italy). Lab. Nazionale del Sud; Vinciguerra, D. [Ist. Nazionale di Fis. Nucl., Catania (Italy). Lab. Nazionale del Sud; Wollnik, H. [University of Giessen, Giessen (Germany)

    1997-04-14

    The aim of the EXCYT project is to develop a facility for the production and the acceleration of exotic beams up to 8 MeV/amu. The primary beams shall be provided by the now operational K-800 superconducting cyclotron and the exotic ions will be accelerated by a 15 MV Tandem. We will describe the cyclotron source and its axial injection system, the transfer beam line sending the primary beams onto the target and the target-ion source unit. Also we will describe the planned high resolution isobar separator that should allow to perform either nuclear or astrophysical and material science experiments. This separator consists of a preseparator and two main stages and should provide an overall mass resolving power up to m/Dm{approx}20000. (orig.).

  7. Knowledge Management in Product Development Projects

    International Nuclear Information System (INIS)

    Sheik Muhamad, S.

    2016-01-01

    Full text: Product data management system (PDM) solutions control vast quantities of information generated by engineers during the product development process. They provide vaulting capabilities to control access to shared data,workflow to distribute it, and configured product structures to relate it to product components. Nuclear Malaysia has the desire to have a proper CAD management system and this is achieved with the use of PDM system to manage all their designs throughout the product lifecycle, i.e., for drawing distribution and design change. The type of documents that Nuclear Malaysia manages are CAD files (as generated by CATIA, AUTOCAD), engineering files, reports, project files, documents (WORD, PDF), spreadsheet (EXCEL), bills of material, manufacturing processes and drawings. Besides managing drawings, we also want to control and manage engineering changes (ECO & ECR) in electronic format. (author

  8. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

  9. Great Plains Wind Energy Transmission Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task

  10. Management Guidelines for Database Developers' Teams in Software Development Projects

    Science.gov (United States)

    Rusu, Lazar; Lin, Yifeng; Hodosi, Georg

    Worldwide job market for database developers (DBDs) is continually increasing in last several years. In some companies, DBDs are organized as a special team (DBDs team) to support other projects and roles. As a new role, the DBDs team is facing a major problem that there are not any management guidelines for them. The team manager does not know which kinds of tasks should be assigned to this team and what practices should be used during DBDs work. Therefore in this paper we have developed a set of management guidelines, which includes 8 fundamental tasks and 17 practices from software development process, by using two methodologies Capability Maturity Model (CMM) and agile software development in particular Scrum in order to improve the DBDs team work. Moreover the management guidelines developed here has been complemented with practices from authors' experience in this area and has been evaluated in the case of a software company. The management guidelines for DBD teams presented in this paper could be very usefully for other companies too that are using a DBDs team and could contribute towards an increase of the efficiency of these teams in their work on software development projects.

  11. Development of an advanced spacecraft tandem mass spectrometer

    Science.gov (United States)

    Drew, Russell C.

    1992-03-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  12. Research for Foreign Advanced Ports for Protection and Development Experience

    Science.gov (United States)

    Zhang, Lu; Tian, Mingjing; Zhao, Junjie; Shou, Youping; Wang, Ning; Qiao, Jianzhe; Li, Guanglou

    2018-04-01

    Into the twenty-first century, the process globalization of economic and trade is getting faster and faster, As of 2014, China's annual port trading amount topped the world, But in the port of environmental protection sustainable development approach with foreign advanced port environmental management concept has a big gap. Combined with the present situation of modern ports in China. Drawing lessons from foreign advanced environmental protection idea of port, in order to promote the protection of port environment in our country. The experience of protection and development of foreign advanced port environment will be discussed and discussed.

  13. Recent developments in the BRAMS project

    Science.gov (United States)

    Calders, Stijn; Lamy, Hervé; Gamby, Emmanuel; Ranvier, Sylvain

    2014-01-01

    In 2009, the Belgian Institute for Space Aeronomy (BIRA-IASB) initiated the development of BRAMS, a Belgian network of radio receiving stations using forward scattering techniques to detect meteors. The primary goals of the project are (1) to collect data and to provide them to the community; (2) to retrieve information about the meteoroid trajectory; and (3) to study the activity profiles of the main meteor showers. In this paper, the work performed since the 2012 International Meteor Conference in La Palma, Canary Islands, Spain, is presented: (1) a software to decode the GPS signal has been developed and added to all BRAMS stations; (2) a workshop about automatic detection of features in radio data was organized in order to discuss about suitable image processing techniques that can be used for radio meteor echoes detection in the BRAMS spectrograms; (3) to assess the quality of such an image processing technique, a big set of manually counted meteors is necessary. A web application has been developed to support this task and facilitate the comparison of counts by different users; (4) to compute the meteoroid flux and for other applications, the radiation pattern of the different antennas must be known. Someone has been hired recently to make simulations of these radiations patterns as well as to carry out measurement campaigns; and (5) detection of solar flares in BRAMS data has been investigated.

  14. New developments in IPD-projects

    NARCIS (Netherlands)

    Ir. Dick van Schenk Brill; Ir. K. Kater

    2004-01-01

    Our IPD-projects have changed: more international partners became involved and simultaneously we started to carry out real projects for real companies. This caused a number of problems. In order to be able to give full support to the projects and conclude them with a nice, formal symposium we need

  15. Advanced CIDI Emission Control System Development

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key

  16. Development of the Advanced CANDU Reactor control centre

    International Nuclear Information System (INIS)

    Malcolm, S.; Leger, R.

    2004-01-01

    The next generation CANDU control centre is being designed for the Advanced CANDU Reactor (ACR) station. The design is based upon the recent Qinshan control room with further upgrades to meet customer needs with respect to high capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This evolutionary design includes the long proven functionality at several existing CANDU control centres such as the 4-unit station at Darlington, with advanced features made possible by new control and display technology. Additionally, ACR control centres address characteristics resulting from Human Factors Engineering (HFE) analysis of control centre operations in order to further enhance personnel awareness of system and plant status. Statistics show that up to 70% of plant significant events, which have caused plant outages, have a root cause attributable to the human from such sources as complex interfaces, procedures, maintenance and management practices. Consequently, special attention is made for the application of HFE throughout the ACR design process. The design process follows a systematic analytical approach to define operations staff information and information presentation requirements. The resultant human-system interfaces (HSI) such as those for monitoring, annunciation and control information are then verified and validated against the system design requirements to provide a high confidence level that adequate and correct information is being provided in a timely manner to support the necessary operational tasks. The ACR control centre provides plant staff with an improved operability capability due to the combination of systematic design and enhanced operating features. Significant design processes (i.e. development) or design features which contribute to this improved operability, include: Design Process: Project HFE Program Plan - intent, scope, timeliness and interfacing; HFE aspects of design process - procedures and instructions

  17. Development of the advanced CANDU reactor control centre

    International Nuclear Information System (INIS)

    Malcolm, S.; Leger, R.

    2004-01-01

    The next generation CANDU control centre is being designed for the Advanced CANDU Reactor (ACR) station. The design is based upon the recent Qinshan control room with further upgrades to meet customer needs with respect to high capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This evolutionary design includes the long proven functionality at several existing CANDU control centres such as the 4-unit station at Darlington, with advanced features made possible by new control and display technology. Additionally, ACR control centres address characteristics resulting from Human Factors Engineering (HFE) analysis of control centre operations in order to further enhance personnel awareness of system and plant status. Statistics show that up to 70% of plant significant events, which have caused plant outages, have a root cause attributable to the human from such sources as complex interfaces, procedures, maintenance and management practices. Consequently, special attention is made for the application of HFE throughout the ACR design process. The design process follows a systematic analytical approach to define operations staff information and information presentation requirements. The resultant human-system interfaces (HSI) such as those for monitoring, annunciation and control information are then verified and validated against the system design requirements to provide a high confidence level that adequate and correct information is being provided in a timely manner to support the necessary operational tasks. The ACR control centre provides plant staff with an improved operability capability due to the combination of systematic design and enhanced operating features. Significant design processes (i.e. development) or design features which contribute to this improved operability, include: Design Process: Project HFE Program Plan - intent, scope, timeliness and interfacing; HFE aspects of design process - procedures and instructions

  18. Development Program of the Advanced HANARO Reactor in Korea

    International Nuclear Information System (INIS)

    Yang, I.-S.; Ahn, J.-H.; Han, K.-I.; Parh, C.; Jun, B.-J.; Kim, Y.-J.

    2006-01-01

    The development program of an advanced HANARO (AHR) reactor started in Korea to keep abreast of the increasing future demand, from both home and abroad, for research activities. This paper provides a review of the status of research reactors in Korea, the operating experience of the HANARO, the design principles and preliminary features of an advanced HANARO reactor, and the specific strategy of an advanced HANARO reactor development program. The design principles were established in order to design a new multi-purpose research reactor that is safe, economically competitive and technically feasible. These include the adaptation of the HANARO design concept, its operating experience, a high ratio of flux to power, a high degree of safety, improved economic efficiency, improved operability and maintainability, increased space and expandability, and ALARA design optimization. The strategy of an advanced HANARO reactor development program considers items such as providing a digital advanced HANARO reactor in cyber space, a method for the improving the design quality and economy of research reactors by using Computer Integrated Engineering, and more effective advertising using diverse virtual reality. This development program will be useful for promoting the understanding of and interest in the operating HANARO as well as an advanced HANARO reactor under development in Korea. It will provide very useful information to a country that may need a research reactor in the near future for the promotion of public health, bio-technology, drug design, pharmacology, material processing, and the development of new materials. (author)

  19. Development of advanced LWR fuel pellet technology

    International Nuclear Information System (INIS)

    Song, Kun Woo; Kang, K.W.; Kim, K. S.; Yang, J. H.; Kim, Y. M.; Kim, J. H.; Bang, J. B.; Kim, D. H.; Bae, S. O.; Jung, Y. H.; Lee, Y. S.; Kim, B. G.; Kim, S. H.

    2000-03-01

    A UO 2 pellet was designed to have a grain size of larger than 12 μm, and a new duplex design that UO 2 -Gd 2 O 3 is in the core and UO 2 -Er 2 O 3 in the periphery was proposed. A master mixing method was developed to make a uniform mixture of UO 2 and additives. The open porosity of UO 2 pellet was reduced by only mixing AUC-UO 2 powder with ADU-UO 2 or milled powder. Duplex compaction tools (die and punch) were designed and fabricated, and duplex compacting procedures were developed to fabricate the duplex BA pellet. In UO 2 sintering, the relations between sintering variables (additive, sintering gas, sintering temperature) and pellet properties (density, grain size, pore size) were experimentally found. The UO 2 -U 3 O 8 powder which is inherently not sinterable to high density could be sintered well with the aid of additives. U 3 O 8 single crystals were added to UO 2 powder, and homogeneous powder mixture was pressed and sintered in a reducing atmosphere. This technology leads to a large-grained pellet of 12-20 μm. In UO 2 -Gd 2 O 3 sintering, the relations between sintering variables (additives, sintering gas) and pellet properties (density, grain size) were experimentally found. The developed technology of fabricating a large-grained UO 2 pellet has been optimized in a lab scale. Pellet properties were investigated in the fields of (1) creep properties, (2) thermal properties, (3) O/M ratios and (4) unit cell lattice. (author)

  20. Development of advanced LWR fuel pellet technology

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kun Woo; Kang, K.W.; Kim, K. S.; Yang, J. H.; Kim, Y. M.; Kim, J. H.; Bang, J. B.; Kim, D. H.; Bae, S. O.; Jung, Y. H.; Lee, Y. S.; Kim, B. G.; Kim, S. H

    2000-03-01

    A UO{sub 2} pellet was designed to have a grain size of larger than 12 {mu}m, and a new duplex design that UO{sub 2}-Gd{sub 2}O{sub 3} is in the core and UO{sub 2}-Er{sub 2}O{sub 3} in the periphery was proposed. A master mixing method was developed to make a uniform mixture of UO{sub 2} and additives. The open porosity of UO{sub 2} pellet was reduced by only mixing AUC-UO{sub 2} powder with ADU-UO{sub 2} or milled powder. Duplex compaction tools (die and punch) were designed and fabricated, and duplex compacting procedures were developed to fabricate the duplex BA pellet. In UO{sub 2} sintering, the relations between sintering variables (additive, sintering gas, sintering temperature) and pellet properties (density, grain size, pore size) were experimentally found. The UO{sub 2}-U{sub 3}O{sub 8} powder which is inherently not sinterable to high density could be sintered well with the aid of additives. U{sub 3}O{sub 8} single crystals were added to UO{sub 2} powder, and homogeneous powder mixture was pressed and sintered in a reducing atmosphere. This technology leads to a large-grained pellet of 12-20 {mu}m. In UO{sub 2}-Gd{sub 2}O{sub 3} sintering, the relations between sintering variables (additives, sintering gas) and pellet properties (density, grain size) were experimentally found. The developed technology of fabricating a large-grained UO{sub 2} pellet has been optimized in a lab scale. Pellet properties were investigated in the fields of (1) creep properties, (2) thermal properties, (3) O/M ratios and (4) unit cell lattice. (author)

  1. Advanced atomic force microscopy: Development and application

    Science.gov (United States)

    Walters, Deron A.

    Over the decade since atomic force microscopy (AFM) was invented, development of new microscopes has been closely intertwined with application of AFM to problems of interest in physics, chemistry, biology, and engineering. New techniques such as tapping mode AFM move quickly in our lab from the designer's bench to the user's table-since this is often the same piece of furniture. In return, designers get ample feedback as to what problems are limiting current instruments, and thus need most urgent attention. Tip sharpness and characterization are such a problem. Chapter 1 describes an AFM designed to operate in a scanning electron microscope, whose electron beam is used to deposit sharp carbonaceous tips. These tips can be tested and used in situ. Another limitation is addressed in Chapter 2: the difficulty of extracting more than just topographic information from a sample. A combined AFM/confocal optical microscope was built to provide simultaneous, independent images of the topography and fluorescence of a sample. In combination with staining or antibody labelling, this could provide submicron information about the composition of a sample. Chapters 3 and 4 discuss two generations of small cantilevers developed for lower-noise, higher-speed AFM of biological samples. In Chapter 4, a 26 mum cantilever is used to image the process of calcite growth from solution at a rate of 1.6 sec/frame. Finally, Chapter 5 explores in detail a biophysics problem that motivates us to develop fast, quiet, and gentle microscopes; namely, the control of crystal growth in seashells by the action of soluble proteins on a growing calcite surface.

  2. Boiling heat transfer modern developments and advances

    CERN Document Server

    Lahey, Jr, RT

    2013-01-01

    This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the

  3. HTR fuel development for advanced application

    International Nuclear Information System (INIS)

    Nickel, H.; Balthesen, E.; Graham, L.W.; Hick, H.

    1975-01-01

    The advantages of the HTR for nuclear steam supply systems are briefly outlined. Due to its great design flexibility a number of different designs have evolved and the main characteristics of existing experimental prototype and power reactor HTR designs are summarized. The present state of coated particle fuel, particularly with regard to performance, is considered. Some implications of producing higher temperatures are discussed. Finally some of the developments in progress such as minimising the temperature drop between fuel and coolant, and of improving fuel performance by better fission product retention, better chemical stability, and the use of alternative coated materials, are discussed. (U.K.)

  4. Advanced Development of Certified OS Kernels

    Science.gov (United States)

    2015-06-01

    Mobile Processes,” ACM Trans. Program. Lang. Syst., vol. 32, no. 5, 2010. 220 [36] S. D. Brookes, “A Semantics for Concurrent Separation Logic,” in...the weights of traces. The logic can be used for interactive stack-bound development or as a backend for verified static analysis tools. For clarity...logic as a backend for static stack-bound analysis tools since they would be required to also prove memory safety. To meet Challenge 3, we

  5. Basic survey project of advanced efficiency of energy consumption in developing countries. Engineer invitation project from developing countries such as Vietnam, Philippines, China and Thailand; Hatten tojokoku energy shohi koritsuka kiso chosa nado jigyo. Hatten tojokoku gijutsusha shohei jigyo (Betonamu, Philippine, Chugoku, Tai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For contributing to the promotion of energy saving and environmental conservation, eighteen officers and engineers were invited to Japan during the period between January 14th and 23rd in 1997, from Vietnam, Philippines, China and Thailand. This report summarizes the invitation project for training conducted under a theme `Energy saving and environmental conservation.` Lectures were given concerning activities of global environmental conservation by NEDO, history and measures of overcoming the Yokkaichi pollution, outline of new energy, outline of energy saving, outline of basic environment law, outline of final industrial waste treatment facilities, and global environmental issues. Site training was conducted at Hekinan Thermal Power Station of Chubu Electric Power Co., Inc., Fujiwara Works of Onoda-Chichibu Cement Co., Ltd., and Yokkaichi Works of Kyowa Petroleum and Chemistry Co., Ltd. Questions and answers were exchanged. The new energy and energy saving were impressive, and were new concept for the trainees. This project was considered to be continued. The inspection of works was also well received, which was considered to be continued

  6. Sustainable development benefits of clean development mechanism projects

    International Nuclear Information System (INIS)

    Olsen, Karen Holm; Fenhann, Jorgen

    2008-01-01

    The clean development mechanism (CDM) is part of the global carbon market developing rapidly in response to global warming. It has the twin objective to achieve sustainable development (SD) in host countries and assist Annex-1 countries in achieving their emission reduction targets in a cost-efficient manner. However, research has shown that trade-offs between the two objectives exist in favour of cost-efficient emission reductions and that left to the market forces, the CDM does not significantly contribute to sustainable development. The main argument of the paper is the need for an international standard for sustainability assessment-additional to national definitions-to counter weaknesses in the existing system of sustainability approval by designated national authorities in host countries. The article develops a new methodology, i.e. a taxonomy for sustainability assessment based on text analysis of the 744 project design documents (PDDs) submitted for validation by 3 May 2006. Through analysis of the SD benefits of all CDM projects at aggregated levels, the strengths and limitations of the taxonomy are explored. The main policy implication of the research is to propose the taxonomy as the basis of an international verification protocol for designated operational entities (DOEs) for reporting, monitoring and verifying that potential SD benefits described in the PDDs are actually realized

  7. Recent development of advanced BWR technology for plant application

    International Nuclear Information System (INIS)

    Horiuchi, Tetsuo; Sakurai, Mikio; Mase, Noriaki; Oyamada, Osamu; Nakadaira, Shiro.

    1988-01-01

    The development of advanced BWRs (ABWR) was completed in 1985. Through the authorization as the third improved and standardized plants of LWRs by the Ministry of International Trade and Industry, the detailed design phase of the actual project has begun, and the improved technology to be applied to the plants has been steadily verified and put in practical use. In the ABWRs, the operational capability, safety and economical efficiency as the general characteristics of the plants were further heightened by simplifying, heightening the performance and compactifying. Particularly internal pumps brought about the improvement of the operational capability and safety of the plants together with improved control rod driving system, besides promoting the simplification and compactification of the reactor system. Also the reinforced concrete containment vessels constructed into one body with the buildings have the compact structure and the solid property sufficiently withstanding hypothetical accidents, and contribute to the improvement of the economical efficiency and safety. These key improvement technologies completed their tests for practical use, and it was shown that the expected objectives are realized with the characteristics of high level, thus the steady steps toward the construction of the actual plants are promoted. (Kako, I.)

  8. Research and development project in fiscal 1990 for large industrial technologies. Achievement report on research and development of ultra-advanced processing systems (Development of high-level processing devices for electric power generation facility members); 1990 nendo chosentan kako system no kenkyu kaihatsu seika hokokusho. Hatsuden shisetsuyo buzai kodo kako sochi kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    Research and development has been performed with an objective to establish the processing technology using excitation beam required for the advanced technology industries, and the ultra-precision machining technology to realize the nano-technology. This paper summarizes the achievements in fiscal 1990. In the research on the large output and long life technology for excimer laser, an average output of 500 W or more was demonstrated achieving the intermediate target by developing and improving the technologies for low electric power gas circulation, high efficiency discharge and excitation, and large output oscillation control. In the research on intensity resistant optical element technology, a prototype device was fabricated to create and process axially symmetrical aspherical shapes, whereas SiC aspherical shape creation and processing were demonstrated at the shape accuracy of three microns or better, and surface roughness of 20 nanometers or less, having achieved the intermediate target. Regarding the large current ion beam, a demonstration device was completed based on improvements and test results on the sheet plasma generator. In the research and development of the high-level processing technology, low-temperature forming technology was developed for oxide ceramic thin films by using the excimer laser abrasion method. (NEDO)

  9. Advances in Therapeutic Development for Radiation Cystitis.

    Science.gov (United States)

    Rajaganapathy, Bharathi Raja; Jayabalan, Nirmal; Tyagi, Pradeep; Kaufman, Jonathan; Chancellor, Michael B

    2014-01-01

    Radiation treatment for pelvic malignancies is typically associated with radiation injury to urinary bladder that can ultimately lead to radiation cystitis (RC). The late sequelae of radiation therapy may take many years to develop and include bothersome storage symptoms such as hematuria, which may be life-threatening in severe cases of hemorrhagic cystitis. Although no definitive treatment is currently available, various interventions are used for radiation and hemorrhagic cystitis including blood transfusion, bladder irrigation, intravesical instillation of substances such as alum, silver nitrate, prostaglandins or formalin, and fulguration of intravesical bleeding sites and surgery options such as supravesical urinary diversions and cystectomy. Effects of non-surgical treatments for radiation and hemorrhagic cystitis are of modest success and studies are lacking to control the effects caused by RC. When such measures have proven ineffective, use of bladder botulinum toxin injection has been reported. New therapy, such as intravesical immunosuppression with local tacrolimus formulation is being developed for the treatment of radiation hemorrhagic cystitis. © 2013 Wiley Publishing Asia Pty Ltd.

  10. Strip reduction testing of lubricants developed during ENFORM project

    DEFF Research Database (Denmark)

    Gazvoda, S.; Andreasen, Jan Lasson; Olsson, David Dam

    Strip reduction testing of lubricants developed during ENFORM project. Experiments were conducted with the strip reduction test [1] in order to classify experimental lubricants, developed during concerned project. One reference lubricant was used during testing....

  11. Advanced human-system interface design review guideline. General evaluation model, technical development, and guideline description

    International Nuclear Information System (INIS)

    O'Hara, J.M.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use

  12. Advanced human-system interface design review guideline. General evaluation model, technical development, and guideline description

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  13. Vague project start makes project success of outsourced software development projects uncertain

    OpenAIRE

    Savolainen, Paula

    2010-01-01

    peer-reviewed A definition of a project success includes at least three criteria: 1) meeting planning goals, 2) customer benefits, and 3) supplier benefits. This study aims to point out the importance of the definition of the project start, the project start date, and what work should be included in the project effort in order to ensure the supplier's benefits. The ambiguity of the project start risks the profitability of the project and therefore makes project success at least from suppli...

  14. NTRCI Legacy Engine Research and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Holbert, Connie [National Transportation Research Center, Inc., Knoxville, TN (United States); Petrolino, Joseph [National Transportation Research Center, Inc., Knoxville, TN (United States); Watkins, Bart [Power Source Technologies Inc., Corvallis, OR (United States); Irick, David [Power Source Technologies Inc., Corvallis, OR (United States)

    2011-12-31

    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine's commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector

  15. Recent advances in control and diagnostics development and application

    International Nuclear Information System (INIS)

    Monson, L.R.; King, R.W.; Lindsay, R.W.; Staffon, J.D.

    1989-01-01

    The power industry is undergoing rapid technological advances and cultural changes. Technologies are advancing and evolving so rapidly that the industry is hard pressed to keep up and take full advantage of the many developments now in progress. Recent advantages in state-of-the-art computer technology are making in-roads in the form of advanced computer control, expert systems, on-line performance monitoring and diagnostics. Validation and verification schemes are being developed which provide increased confidence in the correctness and reliability of both computer hardware and software. Our challenge in the nuclear community is to effectively apply these new technologies to improve the operation, safety, and reliability of our plants. This presentation discusses two areas of development that are essential to advanced control strategies: application of diagnostic systems to improve fault-tolerance, and model-based graphic displays. 4 refs., 4 figs

  16. Technological advances in precision medicine and drug development.

    Science.gov (United States)

    Maggi, Elaine; Patterson, Nicole E; Montagna, Cristina

    New technologies are rapidly becoming available to expand the arsenal of tools accessible for precision medicine and to support the development of new therapeutics. Advances in liquid biopsies, which analyze cells, DNA, RNA, proteins, or vesicles isolated from the blood, have gained particular interest for their uses in acquiring information reflecting the biology of tumors and metastatic tissues. Through advancements in DNA sequencing that have merged unprecedented accuracy with affordable cost, personalized treatments based on genetic variations are becoming a real possibility. Extraordinary progress has been achieved in the development of biological therapies aimed to even further advance personalized treatments. We provide a summary of current and future applications of blood based liquid biopsies and how new technologies are utilized for the development of biological therapeutic treatments. We discuss current and future sequencing methods with an emphasis on how technological advances will support the progress in the field of precision medicine.

  17. 7 CFR 3560.309 - Advancement (loan) of funds to a RRH project by the owner, member of the organization, or agent...

    Science.gov (United States)

    2010-01-01

    ... income; however, interest must be reasonable. The proposal may be denied if Rural Development financing... the loan will be filed against the property securing the Rural Development loan or against project... by the borrower and Rural Development at the time of the advance and the financial position of the...

  18. Advances in developing TiNi nanoparticles

    International Nuclear Information System (INIS)

    Castro, A. Torres; Cuellar, E. Lopez; Mendez, U. Ortiz; Yacaman, M. Jose

    2006-01-01

    The elaboration of nanoparticles has become a field of great interest for many scientists. Nanoparticles possess different properties than those ones shown in bulk materials. Shape memory alloys have the exceptional ability to recuperate its original shape by simple heating after being 'plastically' deformed. When this process is originated, important changes in properties, as mechanical and electrical, are developed in bulk material. If there is possible to obtain nanoparticles with shape memory effects, these nanoparticles could be used in the elaboration of nanofluids with the ability to change their electrical and thermal conductivity with temperature changes, i.e., smart nanofluids. In this work, some recent results and discussion of TiNi nanoparticles obtained by ion beam milling directly from a TiNi wire with shape memory are presented. The nanoparticles obtained by this process are about 2 nm of diameter with a composition of Ti-41.0 at.% Ni. Synthesized nanoparticles elaborated by this method have an ordered structure

  19. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  20. Advancing NOAA NWS Arctic Program Development

    Science.gov (United States)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Meyers, J. C.; Churma, M.; Thoman, R.

    2016-12-01

    Environmental changes in the Arctic require changes in the way the National Oceanic and Atmospheric Administration (NOAA) delivers hydrological and meteorological information to prepare the region's societies and indigenous population for emerging challenges. These challenges include changing weather patterns, changes in the timing and extent of sea ice, accelerated soil erosion due to permafrost decline, increasing coastal vulnerably, and changes in the traditional food supply. The decline in Arctic sea ice is opening new opportunities for exploitation of natural resources, commerce, tourism, and military interest. These societal challenges and economic opportunities call for a NOAA integrated approach for delivery of environmental information including climate, water, and weather data, forecasts, and warnings. Presently the NOAA Arctic Task Force provides leadership in programmatic coordination across NOAA line offices. National Weather Service (NWS) Alaska Region and the National Centers for Environmental Prediction (NCEP) provide the foundational operational hydro-meteorological products and services in the Arctic. Starting in 2016, NOAA's NWS will work toward improving its role in programmatic coordination and development through assembling an NWS Arctic Task Team. The team will foster ties in the Arctic between the 11 NWS national service programs in climate, water, and weather information, as well as between Arctic programs in NWS and other NOAA line offices and external partners. One of the team outcomes is improving decision support tools for the Arctic. The Local Climate Analysis Tool (LCAT) currently has more than 1100 registered users, including NOAA staff and technical partners. The tool has been available online since 2013 (http://nws.weather.gov/lcat/ ). The tool links trusted, recommended NOAA data and analytical capabilities to assess impacts of climate variability and climate change at local levels. A new capability currently being developed will