WorldWideScience

Sample records for project develops advanced

  1. The advanced software development workstation project

    Science.gov (United States)

    Fridge, Ernest M., III; Pitman, Charles L.

    1991-01-01

    The Advanced Software Development Workstation (ASDW) task is researching and developing the technologies required to support Computer Aided Software Engineering (CASE) with the emphasis on those advanced methods, tools, and processes that will be of benefit to support all NASA programs. Immediate goals are to provide research and prototype tools that will increase productivity, in the near term, in projects such as the Software Support Environment (SSE), the Space Station Control Center (SSCC), and the Flight Analysis and Design System (FADS) which will be used to support the Space Shuttle and Space Station Freedom. Goals also include providing technology for development, evolution, maintenance, and operations. The technologies under research and development in the ASDW project are targeted to provide productivity enhancements during the software life cycle phase of enterprise and information system modeling, requirements generation and analysis, system design and coding, and system use and maintenance. On-line user's guides will assist users in operating the developed information system with knowledge base expert assistance.

  2. The Fox Project: Advanced Development of Systems Software

    National Research Council Canada - National Science Library

    1999-01-01

    The long-term objectives of the Carnegie Mellon Fox Project are to improve the design and construction of systems software and to further the development of advanced programming language technology...

  3. The Fox Project: Advanced Development of Systems Software

    National Research Council Canada - National Science Library

    2000-01-01

    The long-term objectives of the Carnegie Mellon Fox Project are to improve the design and construction of systems software and to further the development of advanced programming language technology...

  4. Active Learning through Materials Development: A Project for the Advanced L2 Classroom

    Directory of Open Access Journals (Sweden)

    Katrina Daly Thompson

    2008-01-01

    Full Text Available Building on the notion of active learning, the assumption that students learn more when given opportunities to practice using their skills and to receive feedback on their performance, this article de-scribes a project undertaken in an Advanced (third-year Swahili course in which students were given the opportunity to develop L2 materials for computer-mediated peer instruction. The article exam-ines the goals, design and results of the project in light of the litera-ture on active learning and learner autonomy, and suggests how the project might be improved in order to serve as a model for other Ad-vanced L2 courses.

  5. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  6. Current status and perspective of advanced loop type fast reactor in fast reactor cycle technology development project

    International Nuclear Information System (INIS)

    Niwa, Hajime; Aoto, Kazumi; Morishita, Masaki

    2007-01-01

    After selecting the combination of the sodium-cooled fast reactor (SFR) with oxide fuel, the advanced aqueous reprocessing and the simplified pelletizing fuel fabrication as the most promising concept of FR cycle system, 'Feasibility Study on Commercialized Fast Reactor Cycle Systems' was finalized in 2006. Instead, a new project, Fast Reactor Cycle Technology Development Project (FaCT Project) was launched in Japan focusing on development of the selected concepts. This paper describes the current status and perspective of the advanced loop type SFR system in the FaCT Project, especially on the design requirements, current design as well as the related innovative technologies together with the development road-map. Some considerations on advantages of the advanced loop type design are also described. (authors)

  7. The ADVANCE project: Insights and achievments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    ADVANCE [Advanced Driver and Vehicle Advisory Navigation ConcEpt] was a public/private partnership conceived and developed by four founding parties. The founding parties include the Federal Highway Administration (FHWA), the Illinois Department of Transportation (IDOT), the University of Illinois at Chicago and Northwestern University operating together under the auspices of the Illinois Universities Transportation Research Consortium (IUTRC), and Motorola, Inc. The major responsibilities of each party are fully described in the Project agreement. Subsequently, these four were joined on the Steering Committee by the American Automobile Association (AAA). This unique blending of public sector, private sector and university interests, augmented by more than two dozen other private sector participants, provided a strong set of resources for ADVANCE. The ADVANCE test area covered over 300 square miles including portions of the City of Chicago and 40 northwest suburban communities. The Project encompasses the high growth areas adjacent to O`Hare International Airport, the Schaumburg/Hoffman Estates office and retail complexes, and the Lake-Cook Road development corridor. It also includes major sports and entertainment complexes such as the Arlington International Racecourse and the Rosemont Horizon. The population in the area is more than 750,000. The Insights and Perspectives Compendium is intended to provide useful information to project managers, system developers, and system integrators of future similar ITS implementations. It is intended for those that are technically interested in the ADVANCE Project and have a basic understanding of the project.

  8. Development Approach of the Advanced Life Support On-line Project Information System

    Science.gov (United States)

    Levri, Julie A.; Hogan, John A.; Morrow, Rich; Ho, Michael C.; Kaehms, Bob; Cavazzoni, Jim; Brodbeck, Christina A.; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support (ALS) Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. There has been significant advancement in the On-line Project Information System (OPIS) over the past year (Hogan et al, 2004). This paper presents the resultant OPIS development approach. OPIS is being built as an application framework consisting of an uderlying Linux/Apache/MySQL/PHP (LAMP) stack, and supporting class libraries that provides database abstraction and automatic code generation, simplifying the ongoing development and maintenance process. Such a development approach allows for quick adaptation to serve multiple Programs, although initial deployment is for an ALS module. OPIS core functionality will involve a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIs) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. Such Annual Reports will be permanent, citable references within OPIS. OPlS core functionality will also include Project Home Sites, which will allow PIS to provide updated technology information to the Community in between Annual Report updates. All data will be stored in an object-oriented relational database, created in MySQL(Reistered Trademark) and located on a secure server at NASA Ames Research Center (ARC). Upon launch, OPlS can be utilized by Managers to identify research and technology development (R&TD) gaps and to assess task performance. Analysts can employ OPlS to obtain the current, comprehensive, accurate information about advanced technologies that is required to perform trade studies of various life support system options. ALS researchers and technology developers can use OPlS to achieve an improved understanding of the NASA

  9. The projects of skunk works 75 years of Lockheed Martin's advanced development programs

    CERN Document Server

    Pace, Steve

    2016-01-01

    The Projects of Skunk Works examines 75 years of Lockheed Martin's advanced development programs, from jet fighters to missiles, heavy-lift helicopters, a lighter-than-air ship, drones, and a stealth boat.

  10. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  11. Advanced EVA Suit Camera System Development Project

    Science.gov (United States)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  12. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Maruyama, Michio

    1990-01-01

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  13. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.

  14. Development of advanced instrumentation for the Phebus FP project-preliminary studies

    International Nuclear Information System (INIS)

    Hampel, G.; Poss, G.

    1989-10-01

    The objective of the project was to examine advanced measuring methods for on-line determination of aerosol, thermohydraulic and hydrogen parameters for their usefulness in the French core melting programme PHEBUS FP. Advanced methods that are known from reactor safety programmes as well as novel measuring techniques as used in related fields such as fuel reprocessing and in non-nuclear process technology have been described and analysed with a view to their potential application in the planned tests. Possibly necessary further developments and modifications have been identified and approaches to solution have been outlined. Special emphasis has been put on the present state of radiation resistant optical fibre wave-guides, which might be integrated in several instruments. As regards the particularly important on-line aerosol measurements in PHEBUS FP, a combined system is recommended as the most promising further development. This novel system configuration comprises the mass monitor of a MESA dust monitoring system and one or several photometers of EIR design

  15. The NASA Advanced Space Power Systems Project

    Science.gov (United States)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  16. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  17. Ceramic Technology For Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

  18. Advanced Turbine Technology Applications Project (ATTAP)

    Science.gov (United States)

    1994-01-01

    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  19. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  20. Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.

    Science.gov (United States)

    Dunlap, Dale

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…

  1. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  2. Advanced engineering environment collaboration project.

    Energy Technology Data Exchange (ETDEWEB)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  3. Advanced engineering environment collaboration project

    International Nuclear Information System (INIS)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-01-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications

  4. Advanced Air Transportation Technologies Project, Final Document Collection

    Science.gov (United States)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  5. From demonstration projects to volume market : Market development for advanced housing renovation

    NARCIS (Netherlands)

    Mlecnik, E.; Prendergast, E.; Rodsjo, A.; Haavik, T.; Parker, P.

    2010-01-01

    How do we get from demonstration projects to a volume market for very low energy demand in advanced housing renovation? The contributors to this report have been working with this issue for many years. Some worked in both IEA SHC Task 28 Sustainable Housing (2000-2005) and in SHC Task 37 Advanced

  6. Monte Carlo advances for the Eolus Asci Project

    International Nuclear Information System (INIS)

    Hendrick, J. S.; McKinney, G. W.; Cox, L. J.

    2000-01-01

    The Eolus ASCI project includes parallel, 3-D transport simulation for various nuclear applications. The codes developed within this project provide neutral and charged particle transport, detailed interaction physics, numerous source and tally capabilities, and general geometry packages. One such code is MCNPW which is a general purpose, 3-dimensional, time-dependent, continuous-energy Monte Carlo fully-coupled N-Particle transport code. Significant advances are also being made in the areas of modern software engineering and parallel computing. These advances are described in detail

  7. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  8. Advanced Life Support Project Plan

    Science.gov (United States)

    2002-01-01

    Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.

  9. Kansas Advanced Semiconductor Project: Final Report

    International Nuclear Information System (INIS)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-01-01

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  10. Thermodynamics of Advanced Fuels - International Database Project

    International Nuclear Information System (INIS)

    Massara, Simone; Gueneau, Christine

    2014-01-01

    The Thermodynamics of Advanced Fuels - International Database (TAF-ID) Project was established in 2013 under the auspices of the NEA Nuclear Science Committee. The project was designed to make available a comprehensive, internationally recognised and quality-assured database of phase diagrams and thermodynamic properties of advanced nuclear fuels with a view to meeting specialised requirements for the development of advanced fuels for a future generation of nuclear reactors. Some of the specific technical objectives that this programme intends to achieve are to predict the solid, liquid and/or gas phases formed during fuel cladding chemical interactions under normal and accident conditions, to improve the control of the experimental conditions during the fabrication of fuel materials at high temperature, for example by predicting the vapour pressures of the elements (particularly of plutonium and the minor actinides) and to predict the evolution of the chemical composition of fuel under irradiation versus temperature and burn-up. This joint project, co-ordinated by the NEA, was established for an initial three-year period among nine organisations from six NEA member countries: Canada (AECL, RMCC, UOIT), France (CEA), Japan (JAEA, CRIEPI), the Netherlands (NRG), the Republic of Korea (KAERI) and the United States (US DOE). It is entirely funded by the nine signatories of the project. (authors)

  11. Advanced engineering environment pilot project.

    Energy Technology Data Exchange (ETDEWEB)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty (Parametric Technology Corporation, Needham, MA)

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  12. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  13. Developing Spent Fuel Assembly for Advanced NDA Instrument Calibration - NGSI Spent Fuel Project

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Banfield, James [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Skutnik, Steven [Univ. of Tennessee, Knoxville, TN (United States)

    2014-02-01

    This report summarizes the work by Oak Ridge National Laboratory to investigate the application of modeling and simulation to support the performance assessment and calibration of the advanced nondestructive assay (NDA) instruments developed under the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Advanced NDA instrument calibration will likely require reference spent fuel assemblies with well-characterized nuclide compositions that can serve as working standards. Because no reference spent fuel standard currently exists, and the practical ability to obtain direct measurement of nuclide compositions using destructive assay (DA) measurements of an entire fuel assembly is prohibitive in the near term due to the complexity and cost of spent fuel experiments, modeling and simulation will be required to construct such reference fuel assemblies. These calculations will be used to support instrument field tests at the Swedish Interim Storage Facility (Clab) for Spent Nuclear Fuel.

  14. Fixed Wing Project: Technologies for Advanced Air Transports

    Science.gov (United States)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  15. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  16. Halden Reactor Project Workshop: Understanding Advanced Instrumentation and Controls Issues

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1991-01-01

    A Halden Reactor Project Workshop on 'Understanding Advanced Instrumentation and Controls Issues' was held in Halden, Norway, during June 17-18, 1991. The objectives of the workshop were to (1) identify and prioritize the types of technical information that the Halden Project can produce to facilitate the development of man-machine interface guidelines and (2) to identify methods to effectively integrate and disseminate this information to signatory organizations. As a member of the Halden Reactor Project, the Nuclear Regulatory Commission (NRC) requested the workshop. This request resulted from the NRC's need for human factors guidelines for the evaluation of advanced instrumentation and controls. The Halden Reactor Project is a cooperative agreement among several countries belonging to the Organization for Economic Cooperation and Development (OECD). The US began its association with the Halden Project in 1958 through the Atomic Energy Commission. The project's activities are centered at the Halden heavy-water reactor and its associated man-machine laboratory in Halden, Norway. The research program conducted at Halden consists of studies on fuel performance and computer-based man-machine interfaces

  17. Advanced Mirror Technology Development (AMTD) Project: 3.0 Year Status

    Science.gov (United States)

    Stahl, H. Philip

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is a funded NASA Strategic Astrophysics Technology project. Begun in 2011, we are in Phase 2 of a multi-year effort. Our objective is to mature towards TRL6 critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable astronomy mission can be considered by the 2020 Decadal Review. The developed technology must enable missions capable of both general astrophysics and ultra-high contrast observations of exoplanets. Just as JWST's architecture was driven by launch vehicle, a future UVOIR mission's architecture (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. Another key accomplishment is that we have matured our technology by building and testing hardware. To demonstrate stacked core technology, we built a 400 mm thick mirror. Currently, to demonstrate lateral scalability, we are manufacturing a 1.5 meter mirror. To assist in architecture trade studies, the Engineering team develops Structural, Thermal and Optical Performance (STOP) models of candidate mirror assembly systems including substrates, structures, and mechanisms. These models are validated by test of full- and subscale components in relevant thermo-vacuum environments. Specific analyses include: maximum

  18. Advanced energy projects: FY 1987 research summaries

    International Nuclear Information System (INIS)

    1987-09-01

    This report contains brief summaries of all projects active in the Division of Advanced Energy Projects during Fiscal Year 1987 (October 1, 1986-September 30, 1987). The intent of this compilation is to provide a convenient means for quickly acquainting an interested reader with the program in Advanced Energy Projects. More detailed information on research activities in a particular project may be obtained by contacting directly the principal investigator. Some projects will have reached the end of their contract periods by the time this book appears, and will, therefore, no longer be active. Those cases in which work was completed in FY '87 are indicated by the footnote: Project completed. The annual funding level of each project is shown

  19. ARDENT to develop advanced dosimetric techniques

    CERN Document Server

    Antonella Del Rosso

    2012-01-01

    Earlier this week, the EU-supported Marie Curie training network ARDENT kicked off at a meeting held at CERN. The overall aim of the project is the development of advanced instrumentation for radiation dosimetry. The applications range from radiation measurements around particle accelerators, onboard commercial flights and in space, to the characterization of radioactive waste and medicine, where accurate dosimetry is of vital importance.   The ARDENT (Advanced Radiation Dosimetry European Network Training) project is both a research and a training programme, which aims at developing new dosimetric techniques while providing 15 Early-Stage Researchers (ESR) with state-of-the-art training. The project, coordinated by CERN, is funded by the European Union with a contribution of about 3.9 million euros over four years. The ARDENT initiative will focus on three main technologies: gas detectors, in particular Gas Electron Multipliers (GEM) and Tissue Equivalent Proportional Counters (TEPC); solid stat...

  20. Advanced Fusion Concepts project summaries. FY 1983

    International Nuclear Information System (INIS)

    1983-06-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate studients, graduates, other professional staff, and recent publications. The individual project summaries are prepared by the principle investigators in collaboration with the Advanced Fusion Concepts (AFC) Branch. In addition to the project summaries, statements of branch objectives, and budget summaries are also provided

  1. Development of inherent core technologies for advanced reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H.

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  2. Development of inherent core technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H. [and others

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  3. Overview and Summary of the Advanced Mirror Technology Development Project

    Science.gov (United States)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  4. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    International Nuclear Information System (INIS)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I ampersand C Research and Development; Design; and Safety

  5. 6 Sigma project advance

    International Nuclear Information System (INIS)

    2002-12-01

    This book deals with 6 sigma project advance which introduces 6 sigma project in Changwon special steel, how is failure accepted? CTQ selection which is starting line, definition of performance standard, measurement system check on reliability of measurement data, check of process capacity for current level, establishment of target, optimal design and performance of application, practice of management system for maintain of improved result, CTQ selection, check of measurement system and practice of management system.

  6. Status Report on the Development of Micro-Scheduling Software for the Advanced Outage Control Center Project

    Energy Technology Data Exchange (ETDEWEB)

    Germain, Shawn St. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thomas, Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Farris, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The long-term viability of existing nuclear power plants (NPPs) in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet, refueling outages are highly complex operations, involving multiple concurrent and dependent activities that are difficult to coordinate. Finding ways to improve refueling outage performance while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center project is a research and development (R&D) demonstration activity under the Light Water Reactor Sustainability (LWRS) Program. LWRS is a R&D program which works with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current NPPs. The Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, this INL R&D project is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report describes specific recent efforts to develop a capability called outage Micro-Scheduling. Micro-Scheduling is the ability to allocate and schedule outage support task resources on a sub-hour basis. Micro-Scheduling is the real-time fine-tuning of the outage schedule to react to the actual progress of the primary outage activities to ensure that support task resources are

  7. Advanced reach tool (ART) : Development of the mechanistic model

    NARCIS (Netherlands)

    Fransman, W.; Tongeren, M. van; Cherrie, J.W.; Tischer, M.; Schneider, T.; Schinkel, J.; Kromhout, H.; Warren, N.; Goede, H.; Tielemans, E.

    2011-01-01

    This paper describes the development of the mechanistic model within a collaborative project, referred to as the Advanced REACH Tool (ART) project, to develop a tool to model inhalation exposure for workers sharing similar operational conditions across different industries and locations in Europe.

  8. Innovations in Advanced Materials and Metals Manufacturing Project (IAM2)

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Elizabeth [Columbia River Economic Development Council, Vancouver, WA (United States)

    2017-01-06

    This project, under the Jobs and Innovation Accelerator Challenge, Innovations in Advanced Materials and Metals Manufacturing Project, contracted with Cascade Energy to provide a shared energy project manager engineer to work with five different companies throughout the Portland metro grant region to implement ten energy efficiency projects and develop a case study to analyze the project model. As a part of the project, the energy project manager also looked into specific new technologies and methodologies that could change the way energy is consumed by manufacturers—from game-changing equipment and technology to monitor energy use to methodologies that change the way companies interact and use their machines to reduce energy consumption.

  9. Advanced Messaging Concept Development Basic Safety Message

    Data.gov (United States)

    Department of Transportation — Contains all Basic Safety Messages (BSMs) collected during the Advanced Messaging Concept Development (AMCD) field testing program. For this project, all of the Part...

  10. MITI project on advanced man-machine system for nuclear power plants

    International Nuclear Information System (INIS)

    Kato, Kanji; Watanabe, Takao; Hayakawa, Hiroyasu; Naito, Norio; Masui, Takao; Ogino, Takamichi.

    1988-01-01

    A computerized operator support system (COSS) against abnormal plant conditions was developed as a five-year project from 1980 to 1984, under the sponsorship of the Ministry of International Trade and Industry. The main purpose of the COSS development was to implement the lessons learned from the Three Mile Island accident. The main nuclear industries in Japan participated in the project. The design concept of the operator support functions and the method to implement it were established, and the prototype systems of the COSS for BWR and PWR plants were developed. After the completion of the COSS development, the above participant group once again joined for the work on an advanced man-machine system for nuclear power plants (MMS-NPP). This eight-year project aims at realizing an advanced operator support system by applying artificial intelligence, especially knowledge engineering, and sophisticated man-machine interface devices. Its main objectives are shown. This system configuration, operating method decision system, man-machine communication system, operation and maintenance support functions and so on are described. (Kako, I.)

  11. High Temperature Materials Characterization and Advanced Materials Development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H.

    2007-06-01

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division

  12. Cooperative Research and Development for Advanced Microturbines Program on Advanced Integrated Microturbine System

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Bowman

    2007-05-30

    The Advanced Integrated Microturbine Systems (AIMS) project was kicked off in October of 2000 to develop the next generation microturbine system. The overall objective of the project was to develop a design for a 40% electrical efficiency microturbine system and demonstrate many of the enabling technologies. The project was initiated as a collaborative effort between several units of GE, Elliott Energy Systems, Turbo Genset, Oak Ridge National Lab and Kyocera. Since the inception of the project the partners have changed but the overall direction of the project has stayed consistent. The project began as a systems study to identify design options to achieve the ultimate goal of 40% electrical efficiency. Once the optimized analytical design was identified for the 40% system, it was determined that a 35% efficient machine would be capable of demonstrating many of the advanced technologies within the given budget and timeframe. The items that would not be experimentally demonstrated were fully produced ceramic parts. However, to understand the requirements of these ceramics, an effort was included in the project to experimentally evaluate candidate materials in representative conditions. The results from this effort would clearly identify the challenges and improvement required of these materials for the full design. Following the analytical effort, the project was dedicated to component development and testing. Each component and subsystem was designed with the overall system requirements in mind and each tested to the fullest extent possible prior to being integrated together. This method of component development and evaluation helps to minimize the technical risk of the project. Once all of the components were completed, they were assembled into the full system and experimentally evaluated.

  13. Advanced fusion concepts project summaries: 1981

    International Nuclear Information System (INIS)

    1982-03-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications

  14. Evaluation and development of advanced nuclear materials: IAEA activities

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Basak, U.; Killeen, J.; Dyck, G.; Zeman, A.; )

    2011-01-01

    Economical, environmental and non-proliferation issues associated with sustainable development of nuclear power bring about a need for optimization of fuel cycles and implementation of advanced nuclear systems. While a number of physical and design concepts are available for innovative reactors, the absence of reliable materials able to sustain new challenging irradiation conditions represents the real bottle-neck for practical implementation of these promising ideas. Materials performance and integrity are key issues for the safety and competitiveness of future nuclear installations being developed for sustainable nuclear energy production incorporating fuel recycling and waste transmutation systems. These systems will feature high thermal operational efficiency, improved utilization of resources (both fissile and fertile materials) and reduced production of nuclear waste. They will require development, qualification and deployment of new and advanced fuel and structural materials with improved mechanical and chemical properties combined with high radiation and corrosion resistance. The extensive, diverse, and expensive efforts toward the development of these materials can be more effectively organized within international collaborative programmes with wide participation of research, design and engineering communities. IAEA carries out a number of international projects supporting interested Member States with the use of available IAEA program implementation tools (Coordinated Research Projects, Technical Meetings, Expert Reviews, etc). The presentation summarizes the activities targeting material developments for advanced nuclear systems, with particular emphasis on fast reactors, which are the focal topics of IAEA Coordinated Research Projects 'Accelerator Simulation and Theoretical Modelling of Radiation Effects' (on-going), 'Benchmarking of Structural Materials Pre-Selected for Advanced Nuclear Reactors', 'Examination of advanced fast reactor fuel and core

  15. Advanced fusion concepts: project summaries

    International Nuclear Information System (INIS)

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac

  16. Ceramic technology for advanced heat engines project. Semiannual progress report, April-September 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, new concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.

  17. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  18. Ceramic technology for advanced heat engines project: Semiannual progress report for April through September 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  19. Advanced Energy Industries, Inc. SEGIS developments.

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  20. Advanced Engineering Environment FY09/10 pilot project.

    Energy Technology Data Exchange (ETDEWEB)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.; Dutra, Edward G.; Sego, Abraham L.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporate product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.

  1. Study on Risk Approaches in Software Development Projects

    Directory of Open Access Journals (Sweden)

    Claudiu BRANDAS

    2012-01-01

    Full Text Available Risk approaches in project development led to the integration in the IT project management methodologies and software development of activities and processes of risk management. The diversity and the advanced level of the used technologies in IT projects with increasing com-plexity leads to an exponential diversification of risk factors.The purpose of this research is to identify the level of the risk approach in IT projects both at the IT project management and software development methodologies level and the level of the perception of IT project man-agers, IT managers and IT analysts in Romanian IT companies. Thus, we want to determine the correlation between the use of a project management or software development methodology and the overall level of risk perceived by the project managers using these methodologies.

  2. Advanced Energy Projects FY 1990 research summaries

    International Nuclear Information System (INIS)

    1990-09-01

    This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)

  3. Decision Point 3 of Statement of Project Objectives (SOPO) “Recovery Act: Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems”

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Phillip

    2012-03-01

    Air Products is carrying out a scope of work under Phase 5 of the ITM Oxygen Cooperative Agreement to design, build, and operate a ceramic membrane fabrication facility (the -CerFabII) to enable production of membrane modules to supply a conceptual 2000 ton per day (TPD) ITM Oxygen facility (the -ITM Oxygen Development FacilityII), and to perform supporting development tasks in materials development and engineering development toward industrial, carbon capture and sequestration applications. Air Products is executing this project under the American Recovery and Reinvestment Act (ARRA) with the objective to accelerate the adoption of ITM Oxygen technology to help meet the country’s goals for deploying clean power plants. The objective of this Topical Report is to address the requirements of Decision Point 3 (DP3), which pertains to the status of all Tasks within Phase 5 and most notably the project status of the CerFab (Task 30) prior to authorization of funds for equipment purchase and construction of the facility. The intent of the DP3 is to provide the opportunity for DOE-NETL to review the status of these tasks and to make recommendations on forward project direction, including a recommendation to pass into Budget Period 8. In the area of Materials Development, Air Products has specified a high pressure dilatometer system which will enable measurements of material expansion of ITM ceramic compounds at very high oxygen partial pressures consistent with CCS applications. Under Task 28.2, subcontractor Ceramatec has made significant progress since DP2 in materials selection and process development and improvement for advanced architecture module fabrication. Ceramatec has determined a materials specification, and has selected a process for making the material. Ceramatec has further developed and selected the process for applying the membrane to unsintered advanced architecture wafers with a Two Step process. Ceramatec has built submodules meeting leak rate

  4. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mugerwa, Michael [Technip USA, Inc., Claremont, CA (United States)

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  5. Collaborative Learning in Advanced Supply Systems: The KLASS Pilot Project.

    Science.gov (United States)

    Rhodes, Ed; Carter, Ruth

    2003-01-01

    The Knowledge and Learning in Advanced Supply Systems (KLASS) project developed collaborative learning networks of suppliers in the British automotive and aerospace industries. Methods included face-to-face and distance learning, work toward National Vocational Qualifications, and diagnostic workshops for senior managers on improving quality,…

  6. Laser light scattering instrument advanced technology development

    Science.gov (United States)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  7. Advanced Fusion Concepts project summaries, FY 1982

    International Nuclear Information System (INIS)

    1982-10-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, U.S. Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications

  8. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin A. [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  9. Status of advanced nuclear reactor development in Korea

    International Nuclear Information System (INIS)

    Kim, H.R.; Kim, K.K.; Kim, Y.W.; Joo, H.K.

    2014-01-01

    The Korean nuclear industry is facing new challenges to solve the spent fuel storage problem and meet the needs to diversify the application areas of nuclear energy. In order to provide solutions to these challenges, the Korea Atomic Energy Research Institute (KAERI) has been developing advanced nuclear reactors including a Sodium-cooled Fast Reactor, Very High Temperature Gas cooled Reactor (VHTR), and System-integrated Modular Advanced Reactor (SMART) with substantially improved safety, economics, and environment-friendly features. A fast reactor system is one of the most promising options for a reduction of radioactive wastes. The long-term plan for Advanced SFR development in conjunction with the pyro-process was authorized by the Korean Atomic Energy Commission in 2008. The development milestone includes specific design approval of a prototype SFR by 2020, and the construction of a prototype SFR by 2028. KAERI has been carrying out the preliminary design of a 150MWe SFR prototype plant system since 2012. The development of advanced SFR technologies and the basic key technologies necessary for the prototype SFR are also being carried out. By virtue of high-temperature heat, a VHTR has diverse applications including hydrogen production. KAERI launched a nuclear hydrogen project using a VHTR in 2006, which focused on four basic technologies: the development of design tools, very high-temperature experimental technology, TRISO fuel fabrication, and Sulfur-iodine thermo-chemical hydrogen production technology. The technology development project will be continued until 2017. A conceptual reactor design study was started in 2012 as collaboration between industry and government to enhance the early-launching of the nuclear hydrogen development and demonstration (NHDD) project. The goal of the NHDD project is to design and build a nuclear hydrogen demonstration system by 2030. KAERI has developed SMART which is a small-sized advanced integral reactor with a rated

  10. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  11. The ECLSS Advanced Automation Project Evolution and Technology Assessment

    Science.gov (United States)

    Dewberry, Brandon S.; Carnes, James R.; Lukefahr, Brenda D.; Rogers, John S.; Rochowiak, Daniel M.; Mckee, James W.; Benson, Brian L.

    1990-01-01

    Viewgraphs on Environmental Control and Life Support System (ECLSS) advanced automation project evolution and technology assessment are presented. Topics covered include: the ECLSS advanced automation project; automatic fault diagnosis of ECLSS subsystems descriptions; in-line, real-time chemical and microbial fluid analysis; and object-oriented, distributed chemical and microbial modeling of regenerative environmental control systems description.

  12. The Employment Retention and Advancement Project: Paths to Advancement for Single Parents

    Science.gov (United States)

    Miller, Cynthia; Deitch, Victoria; Hill, Aaron

    2010-01-01

    Between 2000 and 2003, the Employment Retention and Advancement (ERA) project identified and implemented a diverse set of innovative models designed to promote employment stability and wage or earnings progression among low-income individuals, mostly current or former welfare recipients. The project's goal was to determine which strategies could…

  13. Advanced fusion concepts project summaries, FY 1988

    International Nuclear Information System (INIS)

    1988-04-01

    This report summarizes all the projects supported by the Advanced Fusion Concepts Branch of the Applied Plasma Physics Division of the Office of Fusion Energy, US Department of Energy. Each project summary was written by the respective principal investigator using the format: title, principal investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. This report is organized into three sections: Section one contains five summaries describing work in the reversed-field pinch program being performed by a diversified group of contractors, these include a national laboratory, a private company, and several universities. Section two contains eight summaries of work from the compact toroid area which encompasses field-reversed configurations, spheromaks, and heating and formation experiments. Section three contains summaries from two other programs, a density Z-pinch experiment and high-beta Q machine experiment. The intent of this collection of project summaries is to help the contractors of the Advanced Fusion Concepts Branch understand their relationship with the rest of the branch's activities. It is also meant to provide background to those outside the program by showing the range of activities of interest of the Advanced Fusion Concepts Branch

  14. Windscale advanced gas-cooled reactor (WAGR) decommissioning project overview

    International Nuclear Information System (INIS)

    Pattinson, A.

    2003-01-01

    The current BNFL reactor decommissioning projects are presented. The projects concern power reactor sites at Berkely, Trawsfynydd, Hunterstone, Bradwell, Hinkley Point; UKAEA Windscale Pile 1; Research reactors within UK Scottish Universities at East Kilbride and ICI (both complete); WAGR. The BNFL environmental role include contract management; effective dismantling strategy development; implementation and operation; sentencing, encapsulation and transportation of waste. In addition for the own sites it includes strategy development; baseline decommissioning planning; site management and regulator interface. The project objectives for the Windscale Advanced Gas-Cooled Reactor (WAGR) are 1) Safe and efficient decommissioning; 2) Building of good relationships with customer; 3) Completion of reactor decommissioning in 2005. The completed WAGR decommissioning campaigns are: Operational Waste; Hot Box; Loop Tubes; Neutron Shield; Graphite Core and Restrain System; Thermal Shield. The current campaign is Lower Structures and the remaining are: Pressure vessel and Insulation; Thermal Columns and Outer Vault Membrane. An overview of each campaign is presented

  15. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  16. High Efficiency Space Power Systems Project Advanced Space-Rated Batteries

    Science.gov (United States)

    Reid, Concha M.

    2011-01-01

    Case Western Reserve University (CWRU) has an agreement with China National Offshore Oil Corporation New Energy Investment Company, Ltd. (CNOOC), under the United States-China EcoPartnerships Framework, to create a bi-national entity seeking to develop technically feasible and economically viable solutions to energy and environmental issues. Advanced batteries have been identified as one of the initial areas targeted for collaborations. CWRU invited NASA Glenn Research Center (GRC) personnel from the Electrochemistry Branch to CWRU to discuss various aspects of advanced battery development as they might apply to this partnership. Topics discussed included: the process for the selection of a battery chemistry; the establishment of an integrated development program; project management/technical interactions; new technology developments; and synergies between batteries for automotive and space operations. Additional collaborations between CWRU and NASA GRC's Electrochemistry Branch were also discussed.

  17. The ADVANCE project: Formal evaluation of the targeted deployment. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    ADVANCE [Advanced Driver and Vehicle Advisory Navigation ConcEpt] was a public/private partnership conceived and developed by four founding parties. The founding parties include the Federal Highway Administration (FHWA), the Illinois Department of Transportation (IDOT), the University of Illinois at Chicago and Northwestern University operating together under the auspices of the Illinois Universities Transportation Research Consortium (IUTRC), and Motorola, Inc. The major responsibilities of each party are fully described in the Project agreement. Subsequently, these four were joined on the Steering Committee by the American Automobile Association (AAA). This unique blending of public sector, private sector and university interests, augmented by more than two dozen other private sector participants, provided a strong set of resources for ADVANCE. The ADVANCE test area covered over 300 square miles including portions of the City of Chicago and 40 northwest suburban communities. The Project encompasses the high growth areas adjacent to O`Hare International Airport, the Schaumbura/Hoffman Estates office and retail complexes, and the Lake-Cook Road development corridor. It also includes major sports and entertainment complexes such as the Arlington International Racecourse and the Rosemont Horizon. The population in the area is more than 750,000. This volume provides a summary of the insights and achievements made as a result of this field test, and selected appendices containing more detailed information.

  18. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  19. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    Science.gov (United States)

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.

  20. Development of the advanced CANDU technology -Development of CANDU advanced fuel fabrication technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Bum; Park, Choon Hoh; Park, Chul Joo; Kwon, Woo Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This project is carrying out jointly with AECL to develop CANFLEX fuel which can enhance reactor safety, fuel economy and can be used with various fuel cycles (natural U, slightly enriched U, other advanced fuel). The final goal of this research is to load the CANFLEX fuel in commercial CANDU reactor for demonstration irradiation. The annual portion of research activities performed during this year are followings ; The detail design of CANFLEX-NU fuel was determined. Based on this design, various fabrication drawings and process specifications were revised. The seventeen CANFLEX-NU fuel bundles for reactivity test in ZED-2 and out-pile test, two CANFLEX-SEU fuel bundles for demo-irradiation in NRU were fabricated. Advanced tack welding machine was designed and sequence control software of automatic assembly welder was developed. The basic researches related to fabrication processes, such as weld evaluation by ECT, effect of additives in UO{sub 2}, thermal stabilities of Zr based metallic glasses, were curried out. 51 figs, 22 tabs, 42 refs. (Author).

  1. Development of advanced JGIS considering qualify management and project management

    International Nuclear Information System (INIS)

    Kawachi, Susumu; Ohi, Takao; Kawamura, Makoto; Ishihara, Yoshinao; Ebina, Takanori

    2008-03-01

    A system for managing and integrating the technical information of R and D was developed (JGIS: JAEA Geological Disposal Information Integration System). The subjects are to improve the usability as the system and the usability to record the information and the data in order to display the function of the system sufficiently and in order to enable the practical use of the system. In this study the aims are to display the function of JGIS and to enable the researchers as the users to recognize the significance of using JGIS. We built the conceptual design in order to implement the function of quality management and project management to JGIS. We considered that researchers could access the portal site of the research projects which were set as the WBS (Work Breakdown Structure) items and could confirm which WBS item the research project belonged to in the whole plan. We also considered that the research projects could be managed by using the conformity assessment sheets which were adopted for the quality management. The appendix contains the example of application of real projects to JGIS and the user's manual of JGIS (Example of a study of potential impact of natural phenomena). We demonstrated that researchers could confirm which WBS item the research project related to in JGIS and could manage the quality of the research projects by using the conformity assessment sheets in JGIS. (author)

  2. State of development progress of advanced boiling water reactors

    International Nuclear Information System (INIS)

    Tomono, Katsuya

    1982-01-01

    Advanced BWRs being developed at present are those aiming at the improvement of reliability and safety, the reduction of radiation exposure, the improvement of operation performance and capacity ratio of plants, and the heightening of economical efficiency by concentrating the experience and excellent technology of BWR manufacturers in the world. Now in Japan, the independence with Japanese technology is possible in almost all fields of nuclear power generation, and the improvement and standardization project is in progress to obtain the steady results. However, in order to pursue the most desirable BWRs conceivable at present, five BWR manufacturers in the world organized the Advanced Engineering Team in July, 1978, and performed the feasibility study of advanced BWRs for more than one year. Tokyo Electric Power Co., Inc., evaluated the report on the results, and judged that it is desirable to advance into the next stage aiming at the practical use of advanced BWRs. For the purpose, the electric power common research on advanced BWRs has been in progress, and the A-BWR project is to be examined in the third improvement and standardization project of MITI. The main technical features such as the coolant recirculation system of internal pump type, reinforced concrete containment vessels, fine motion control rod drive, improved core and fuel and others are explained. (Kako, I.)

  3. Development of essential system technologies for advanced reactor

    International Nuclear Information System (INIS)

    Bae, Y. Y.; Hwang, Y. D.; Cho, B. H. and others

    1999-03-01

    Basic design of SMART adopts the new advanced technologies which were not applied in the existing 1000MWe PWR. However, the R and D experience on these advanced essential technologies is lacking in domestic nuclear industry. Recently, a research on these advanced technologies has been performed as a part of the mid-and-long term nuclear R and D program, but the research was limited only for the small scale fundamental study. The research on these essential technologies such as helically coiled tube steam generator, self pressurizer, core cooling by natural circulation required for the development of integral reactor SMART have not been conducted in full scale. This project, therefore, was performed for the development of analysis models and methodologies, system analysis and thermal hydraulic experiments on the essential technologies to be applied to the 300MWe capacity of integral reactor SMART and the advanced passive reactor expected to be developed in near future with the emphasis on experimental investigation. (author)

  4. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    Science.gov (United States)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  5. Advanced reprocessing developments in Europe contribution of European projects ACSEPT and ACTINET-I3

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, S.; Poinssot, C. [CEA DEN, Nuclear Energy Div., RadioChemistry and Processes Dept., F-30207Bagnols sur Ceze (France); Geist, A. [KIT-INE (Germany); Cassayre, L. [CIEMAT (Spain); Rhodes, C. [NNL-UK (United Kingdom); Ekberg, C. [CHALMERS (Sweden)

    2012-07-01

    Nuclear energy has more than ever to demonstrate that it can contribute safely and on a sustainable way to answer the international increase in energy needs. Actually, in addition to an increased safety of the reactors themselves, its acceptance is still closely associated to our capability to reduce the lifetime of the nuclear waste, to manage them safely and to propose options for a better use of the natural resources. Spent fuel reprocessing can help to reach these objectives. But this cannot be achieved only by optimizing industrial processes through engineering studies. It is of a primary importance to increase our fundamental knowledge in actinide sciences in order to build the future of nuclear energy on reliable and scientifically-founded results, and therefore meet the needs of the future fuel cycles in terms of fabrication and performance of fuels, reprocessing and waste management. At the European level, both the collaborative project ACSEPT and the Integrated Infrastructure Initiative ACTINET-I3 work together to improve our knowledge in actinides chemistry and therefore develop advanced separation processes. These tools are complementary and work in close connection on some specific issues such as the understanding of the selectivity of extracting organic ligands. By offering trans-national access to the main nuclear research facility in Europe, ACTINET-I3 aims at increasing the knowledge in actinide sciences by gathering all the expertise available in European nuclear research institutes or university and giving them the opportunity to come and work in hot-labs (ITU, Atalante...) or beamlines (ESFR, ANKA, PSI) ACSEPT is focused on the development of advanced separation processes, both aqueous and pyrochemical. Head-end steps, fuel re-fabrication, solvent treatment, waste management are also taken into account. In aqueous process development, the SANEX and innovative SANEX flowsheets demonstration were successfully achieved. Chemical systems were

  6. Integration of advanced technologies to enhance problem-based learning over distance: Project TOUCH.

    Science.gov (United States)

    Jacobs, Joshua; Caudell, Thomas; Wilks, David; Keep, Marcus F; Mitchell, Steven; Buchanan, Holly; Saland, Linda; Rosenheimer, Julie; Lozanoff, Beth K; Lozanoff, Scott; Saiki, Stanley; Alverson, Dale

    2003-01-01

    Distance education delivery has increased dramatically in recent years as a result of the rapid advancement of communication technology. The National Computational Science Alliance's Access Grid represents a significant advancement in communication technology with potential for distance medical education. The purpose of this study is to provide an overview of the TOUCH project (Telehealth Outreach for Unified Community Health; http://hsc.unm.edu/touch) with special emphasis on the process of problem-based learning case development for distribution over the Access Grid. The objective of the TOUCH project is to use emerging Internet-based technology to overcome geographic barriers for delivery of tutorial sessions to medical students pursuing rotations at remote sites. The TOUCH project also is aimed at developing a patient simulation engine and an immersive virtual reality environment to achieve a realistic health care scenario enhancing the learning experience. A traumatic head injury case is developed and distributed over the Access Grid as a demonstration of the TOUCH system. Project TOUCH serves as an example of a computer-based learning system for developing and implementing problem-based learning cases within the medical curriculum, but this system should be easily applied to other educational environments and disciplines involving functional and clinical anatomy. Future phases will explore PC versions of the TOUCH cases for increased distribution. Copyright 2003 Wiley-Liss, Inc.

  7. Vision and Displays for Military and Security Applications The Advanced Deployable Day/Night Simulation Project

    CERN Document Server

    Niall, Keith K

    2010-01-01

    Vision and Displays for Military and Security Applications presents recent advances in projection technologies and associated simulation technologies for military and security applications. Specifically, this book covers night vision simulation, semi-automated methods in photogrammetry, and the development and evaluation of high-resolution laser projection technologies for simulation. Topics covered include: advances in high-resolution projection, advances in image generation, geographic modeling, and LIDAR imaging, as well as human factors research for daylight simulation and for night vision devices. This title is ideal for optical engineers, simulator users and manufacturers, geomatics specialists, human factors researchers, and for engineers working with high-resolution display systems. It describes leading-edge methods for human factors research, and it describes the manufacture and evaluation of ultra-high resolution displays to provide unprecedented pixel density in visual simulation.

  8. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  9. The Advanced Linked Extended Reconnaissance & Targeting Technology Demonstration project

    Science.gov (United States)

    Edwards, Mark

    2008-04-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing many operational needs of the future Canadian Army's Surveillance and Reconnaissance forces. Using the surveillance system of the Coyote reconnaissance vehicle as an experimental platform, the ALERT TD project aims to significantly enhance situational awareness by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. The project is exploiting important advances made in computer processing capability, displays technology, digital communications, and sensor technology since the design of the original surveillance system. As the major research area within the project, concepts are discussed for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as from beyond line-of-sight systems such as mini-UAVs and unattended ground sensors. Video-rate image processing has been developed to assist the operator to detect poorly visible targets. As a second major area of research, automatic target cueing capabilities have been added to the system. These include scene change detection, automatic target detection and aided target recognition algorithms processing both IR and visible-band images to draw the operator's attention to possible targets. The merits of incorporating scene change detection algorithms are also discussed. In the area of multi-sensor data fusion, up to Joint Defence Labs level 2 has been demonstrated. The human factors engineering aspects of the user interface in this complex environment are presented, drawing upon multiple user group sessions with military surveillance system operators. The paper concludes with Lessons Learned from the project. The ALERT system has been used in a number of C4ISR

  10. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  11. Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.

    2006-01-01

    NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.

  12. The Environmental Control and Life Support System (ECLSS) advanced automation project

    Science.gov (United States)

    Dewberry, Brandon S.; Carnes, Ray

    1990-01-01

    The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.

  13. Advanced Metrics for Assessing Holistic Care: The "Epidaurus 2" Project.

    Science.gov (United States)

    Foote, Frederick O; Benson, Herbert; Berger, Ann; Berman, Brian; DeLeo, James; Deuster, Patricia A; Lary, David J; Silverman, Marni N; Sternberg, Esther M

    2018-01-01

    In response to the challenge of military traumatic brain injury and posttraumatic stress disorder, the US military developed a wide range of holistic care modalities at the new Walter Reed National Military Medical Center, Bethesda, MD, from 2001 to 2017, guided by civilian expert consultation via the Epidaurus Project. These projects spanned a range from healing buildings to wellness initiatives and healing through nature, spirituality, and the arts. The next challenge was to develop whole-body metrics to guide the use of these therapies in clinical care. Under the "Epidaurus 2" Project, a national search produced 5 advanced metrics for measuring whole-body therapeutic effects: genomics, integrated stress biomarkers, language analysis, machine learning, and "Star Glyphs." This article describes the metrics, their current use in guiding holistic care at Walter Reed, and their potential for operationalizing personalized care, patient self-management, and the improvement of public health. Development of these metrics allows the scientific integration of holistic therapies with organ-system-based care, expanding the powers of medicine.

  14. Minerals and energy: major development projects - April 2006 listing

    Energy Technology Data Exchange (ETDEWEB)

    William Mollard [Australian Bureau of Agricultural and Resource Economics (ABARE), Canberra, ACT (Australia)

    2006-06-15

    ABARE's project list, released around May and November each year, lists completed and committed projects in the minerals and energy sector in Australia. Santos' $200 million Casino gas field project in Bass Strait will produce natural gas and condensate while output from Berwyndale South will be coal seam methane. Five coal projects were completed in the six months to April 2006. The largest of these was Xstrata's Newlands Northern underground mine. In the same region, BMA's (BHP Billiton Mitsubishi Alliance) $102 million Broadmeadow underground mine and BHP/Mitsui Coal's $50 million Poitrel opencut mine, both near Moranbah, were brought into production. In New South Wales, two projects a new mine and a mine infrastructure development, both near Singletonwere commissioned. Xstrata's new Ravensworth West opencut mine will produce up to 1.5 million tonnes a year of thermal coal. Excel Coal's $73 million Wambo Rail project involved building a rail loop and loading facilities at its Wambo operation. Queensland coal mine projects and coal infrastructure developments account for 19 per cent (or $6.3 billion) of the estimated capital cost of $34 billion for all advanced projects. The largest coal mine development is the $1 billion Dawson mine expansion which is expected to add around 12 million tonnes of coking and thermal coal capacity, commencing in early 2007. Anglo Coal/Mitsui is also developing the large new Lake Lindsay opencut mine. Rio Tinto is developing its $440 million Clermont opencut mine. Twelve other advanced coal mine developments in Queensland are expected to raise coal production capacity by around 30 million tonnes a year by 2008. 10 figs., 4 tabs.

  15. Advanced software development workstation project: Engineering scripting language. Graphical editor

    Science.gov (United States)

    1992-01-01

    Software development is widely considered to be a bottleneck in the development of complex systems, both in terms of development and in terms of maintenance of deployed systems. Cost of software development and maintenance can also be very high. One approach to reducing costs and relieving this bottleneck is increasing the reuse of software designs and software components. A method for achieving such reuse is a software parts composition system. Such a system consists of a language for modeling software parts and their interfaces, a catalog of existing parts, an editor for combining parts, and a code generator that takes a specification and generates code for that application in the target language. The Advanced Software Development Workstation is intended to be an expert system shell designed to provide the capabilities of a software part composition system.

  16. Fiscal 1991 research report. Research trend survey for next-generation industrial structure technology research and development project - Research and development of advanced materials for extreme environments; 1991 nendo jisedai sangyo kiban gijutsu kenkyu kaihatsu project ni kakawaru kenkyu doko chosa hokokusho. Chotaikankyosei senshin zairyo no kenkyu kaihatsu (sekitoku sekiyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    Efforts were exerted to develop intermetallic compounds and advanced C/C (carbon/carbon) composite materials usable under extreme environments such as high temperatures. In relation with advanced composite materials, especially with projects for developing composite materials using oil as raw material, a survey was conducted of the three fields of (1) summarization of activities conducted up to fiscal 1991, (2) contents of associated aerospace projects, and (3) oil based composite material technology. In Field (1), past achievements are summarized. In Field (2), aerospace projects under way across the world are broken down by airframe and engine, and are reviewed from the viewpoint of needs for materials. In Field (3), the present and future of heat resisting thermosetting composite materials, thermoplastic composite materials, and C/C composites are discussed. Characteristics such materials are supposed to finally assume and tasks to discharge for technical development are also taken up. (NEDO)

  17. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  18. Advanced Neutron Source (ANS) Project progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  19. Advanced Neutron Source (ANS) Project progress report, FY 1994

    International Nuclear Information System (INIS)

    Campbell, J.H.; King-Jones, K.H.; Thompson, P.B.

    1995-01-01

    The President's budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met

  20. Managing complex, high risk projects a guide to basic and advanced project management

    CERN Document Server

    Marle, Franck

    2016-01-01

    Maximizing reader insights into project management and handling complexity-driven risks, this book explores propagation effects, non-linear consequences, loops, and the emergence of positive properties that may occur over the course of a project. This book presents an introduction to project management and analysis of traditional project management approaches and their limits regarding complexity. It also includes overviews of recent research works about project complexity modelling and management as well as project complexity-driven issues. Moreover, the authors propose their own new approaches, new methodologies and new tools which may be used by project managers and/or researchers and/or students in the management of their projects. These new elements include project complexity definitions and frameworks, multi-criteria approaches for project complexity measurement, advanced methodologies for project management (propagation studies to anticipate potential behaviour of the project, and clustering approaches...

  1. Managing Risk on a Technology Development Project/Advanced Mirror System Demonstrator

    Science.gov (United States)

    Byberg, Alicia; Russell, J. Kevin; Stahl, Phil (Technical Monitor)

    2002-01-01

    The risk management study applied to the Advanced Mirror System Demonstrator (AMSD), a precursor mirror technology development for the Next Generation Space Telescope (NGST) is documented. The AMSD will be developed as a segment of a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. The technology gained from the program will support the risk mitigation strategy for the NGST, as well as other government agency space mirror programs.

  2. Fiscal 1991 research report. Research trend survey for next-generation industrial structure technology research and development project - Research and development of advanced materials for extreme environments; 1991 nendo jisedai sangyo kiban gijutsu kenkyu kaihatsu project ni kakawaru kenkyu doko chosa hokokusho. Chotaikankyosei senshin zairyo no kenkyu kaihatsu (sekitoku daiene)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    Efforts were exerted to develop intermetallic compounds and C/C (carbon/carbon) composites to serve as advanced materials for extreme environments. In relation with advanced materials, especially with intermetallic compounds and fiber reinforced intermetallic compound composite materials, a technical research survey was conducted covering the three fields of (1) summarization of activities conducted up to fiscal 1991, (2) contents of associated aerospace projects, and (3) aeroengine components. In Field (1), the ground on which the project was created and the project's basic plans, goals, and systems, and its ripple effects are discussed, and the fruits produced so far are summarized. In Field (2), aeroengine component related projects of America, Britain, France, Germany, and Japan are investigated. In Field (3), aluminum alloys, titanium alloys, alloy steel, superalloys, intermetallic compounds, and intermetallic compound composite materials are discussed with attention paid to their current status and future trend, characteristics they are supposed to finally assume, and technical tasks to discharge for the development of technologies concerned. (NEDO)

  3. Proposed Project Selection Method for Human Support Research and Technology Development (HSR&TD)

    Science.gov (United States)

    Jones, Harry

    2005-01-01

    The purpose of HSR&TD is to deliver human support technologies to the Exploration Systems Mission Directorate (ESMD) that will be selected for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are acceptable. HSR&TD must select an may of technology development projects, guide them, and either terminate or continue them, so as to maximize the resulting number of usable advanced human support technologies. This paper proposes an effective project scoring methodology to support managing the HSR&TD project portfolio. Researchers strongly disagree as to what are the best technology project selection methods, or even if there are any proven ones. Technology development is risky and outstanding achievements are rare and unpredictable. There is no simple formula for success. Organizations that are satisfied with their project selection approach typically use a mix of financial, strategic, and scoring methods in an open, established, explicit, formal process. This approach helps to build consensus and develop management insight. It encourages better project proposals by clarifying the desired project attributes. We propose a project scoring technique based on a method previously used in a federal laboratory and supported by recent research. Projects are ranked by their perceived relevance, risk, and return - a new 3 R's. Relevance is the degree to which the project objective supports the HSR&TD goal of developing usable advanced human support technologies. Risk is the estimated probability that the project will achieve its specific objective. Return is the reduction in mission life cycle cost obtained if the project is successful. If the project objective technology performs a new function with no current cost, its return is the estimated cash value of performing the new function. The proposed project selection scoring method includes definitions of the criteria, a project evaluation

  4. Advanced Stirling Convertor (ASC) Development for NASA RPS

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh

    2014-01-01

    Sunpower's Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center (GRC) and after a series of successful demonstrations, the ASC began transitioning from a technology development project to flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the U.S. In recent years, the ASC became part of the NASA-Department of Energy Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASC convertors, one with the Department of Energy/Lockheed Martin to produce the ASC-F flight convertors, and one with NASA GRC for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flight-like ASC-E3 by 2013. However, in late Fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at GRC, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  5. Advances in the project about Pin type silicon radiation detectors

    International Nuclear Information System (INIS)

    Ramirez F, J.; Cerdeira, A.; Aceves, M.; Diaz, A.; Estrada, M.; Rosales, P.; Cabal, A.E.; Montano L, M.; Leyva, A.

    1998-01-01

    The obtained advances in the collaboration project ININ-CINVESTAV about development of Pin type semiconductor radiation detectors here are presented. It has been characterized the response to different types of radiation made in CINVESTAV and INAOE. Measurements have been realized with different types of sensitive to charge preamplifiers determining the main characteristics which must be executed to be able to be employed with low capacitance detectors. As applications it has been possible to measure the irradiation time in a mammography machine and X-ray energy spectra have been obtained in the order of 14 KeV, with 4 KeV at ambient temperature. The future actions of project have been indicated and the possible applications of these detectors. (Author)

  6. Development of advanced neutron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Seong, B S; Lee, J S; Sim, C M [and others

    2007-06-15

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility.

  7. Development of advanced neutron beam technology

    International Nuclear Information System (INIS)

    Seong, B. S.; Lee, J. S.; Sim, C. M.

    2007-06-01

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility

  8. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    Suk, H. C.; Hwang, W.; Rhee, B. W.; Jung, S. H.; Chung, C. H.

    1992-05-01

    This research project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor for 1996 and 1997, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year include the detail design of CANFLEX fuel with natural enriched uranium (CANFLEX-NU). Based on this design, CANFLEX fuel was mocked up. Out-of-pile hydraulic scoping tests were conducted with the fuel in the CANDU Cold Test Loop to investigate the condition under which maximum pressure drop occurs and the maximum value of the bundle pressure drop. (Author)

  9. Project development symposium

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Papers were presented on the following: project evaluation; case studies - minerals; finance; applied finance; legal; manpower/industrial relations; and new technologies. Those papers on the coal industry were: mine planning for coal project development; the planning and management of a lignite exploration contract in Thailand; development of the West Cliff extended project; Ulan: a resource development; Saxonvale mine development a case study in project planning and project management; the role of marketing in the development of a new coal project; technical support for coal marketing; infrastructure development for the Ulan project; underground mine project developments; the bucketwheel excavator at Goonyella - a case study; tax aspects of mining development projects; cost of capital mining development projects; and trends in development project finance. 16 papers were abstracted separately.

  10. Advanced Emissions Control Development Program

    Energy Technology Data Exchange (ETDEWEB)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  11. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE`s overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program.

  12. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    International Nuclear Information System (INIS)

    1994-02-01

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE's overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program

  13. Advanced Emissions Control Development Program: Mercury Control

    International Nuclear Information System (INIS)

    Evans, A.P.; Redinger, K.W.; Holmes, M.J.

    1997-07-01

    McDermott Technology, Inc. (a subsidiary of Babcock ampersand Wilcox) is conducting the Advanced Emissions Control Development Project (AECDP) which is aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPS) from coal-fired electric utility plants. The need for such controls may arise as the US Environmental Protection Agency (EPA) proceeds with implementation of requirements set forth in the Clean Air Act Amendments (CAAA's) of 1990. Promulgation of air toxics emissions regulations for electric utility plants could dramatically impact utilities burning coal, their industrial and residential customers, and the coal industry. AECDP project work will supply the information needed by utilities to respond to potential HAPs regulations in a timely, cost-effective, enviromnentally-sound manner which supports the continued use of the Nation's abundant reserves of coal, such as those in the State of Ohio. The development work is being carried out using the 10 MW Clean Environment Development Facility wherein air toxics emissions control strategies can be developed under controlled conditions. The specific objectives of the project are to (1) measure and understand production and partitioning of air toxics species for a variety of coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems, (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. This project is supported by the Department of Energy, the Ohio Coal Development Office within the Ohio Department of Development and Babcock ampersand Wilcox. A comprehensive assessment of HAP emissions from coal-fired electric utility boilers sponsored by the Department of Energy and the Electric Power Research Institute concluded that with the exception of

  14. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  15. Project T.E.A.M. (Technical Education Advancement Modules). Introduction to Statistical Process Control.

    Science.gov (United States)

    Billings, Paul H.

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 6-hour introductory module on statistical process control (SPC), designed to develop competencies in the following skill areas: (1) identification of the three classes of SPC use; (2) understanding a process and how it works; (3)…

  16. 'Advancement of KHPS to DOE TRL 7/8' Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Adonizio, Mary Ann [Verdant Power Inc., New York, NY (United States); Corren, Dean [Verdant Power Inc., New York, NY (United States); Smith, Ron [Verdant Power Inc., New York, NY (United States); Colby, Jonathan [Verdant Power Inc., New York, NY (United States); Hernandez, Aaron [Verdant Power Inc., New York, NY (United States)

    2016-04-08

    Final Report describing activities performed under the 'Advancement of the KHPS to DOE TRL 7/8' project, including the development of critical component test protocols, testing and analysis of the Gen5 KHPS main shaft seal, and continuing compliance work on approved operational environmental monitoring plans in anticipation of KHPS turbine installation at Verdant Power's Roosevelt Island Tidal Energy (RITE) Project site in New York, NY.

  17. Texas ''Recycled Content''/Advanced Green Builder Demonstration Home Project

    International Nuclear Information System (INIS)

    Fisk, P. III; Vittori, G.

    1993-01-01

    This paper presents an overview of principal issues addressed in the Advanced Green Builder Demonstration Home Project, with units to be constructed in Austin and Laredo. The project's objective is to introduce these distinct communities to a range of ''green'' housing materials and methods, emphasizing opportunities for recycled-content and by-product based construction materials. The project, principally funded by U.S. Department of Energy Oil Overcharge Funds administered by the Texas Governor's Energy Office, also is supported by several state, regional, and municipal agencies. As such, the project reflects a regional process, as open to adaptation to a region's natural resources as it is to its peoples. The design is specifically intended to bridge issues of social and family concerns, such as affordability, expandibility, and economic development. This is a result of a modular-based design framework, coupled with reliance on environmentally-conscious regional manufacture of by-product based materials. Environmental issues are addressed by establishing a user for pollutants considered major contributors to global concerns of acid rain (due to release of sulphur dioxide), global warming (due to release of carbon dioxide), and deforestation. The homes will be built without virgin wood products or portland cement

  18. Current status on advanced aqueous reprocessing process (next) in FaCT project

    International Nuclear Information System (INIS)

    Washiya, Tadahiro; Myochin, Munetaka; Koyama, Tomozo

    2009-01-01

    Japan Atomic Energy Agency (JAEA) launched the Fast Reactor Cycle Technology Development (FaCT) project in cooperation with the Japanese electric utilities in 2006. An integration of the advanced aqueous reprocessing concept and the simplified pelletizing fuel fabrication was selected as the most promising fuel cycle system. In order to accomplish the integration, R and D tasks were launched as FaCT Project in 2006 by Japanese joint team. The New Extraction System for TRU Recovery (NEXT) system is an advanced aqueous reprocessing concept which was based on the well established aqueous reprocessing for LWR spent fuel and newly applied processes such as uranium crystallization and extraction chromatography for MAs recovery. Main task of the NEXT process is to develop the TRU recovery process and equipments with high reliability, criticality safety, high durability and remote maintainability. In the FaCT project, all innovative technologies are planned to be developed within the next decade focusing on the future commercialization of FBR cycle systems. The judgment of the adoption of each innovative technology will be made by 2010 based on the results of R and Ds. The development of each technology is to be completed by around 2015. By the same time, it is scheduled to present the conceptual design of commercial and demonstrative fast reactor cycle facilities. The six items (Disassembling and shearing, Fuel dissolution, Uranium Crystallization, Single cycle co-extraction of U, Pu and Np, MA recovery by extraction chromatography and Waste treatment) have been identified as the issues to be developed corresponding to each process step. Current R and D status and prospects of this system until around 2015 is reported. (author)

  19. Evaluation, engineering and development of advanced cyclone processes

    Energy Technology Data Exchange (ETDEWEB)

    Durney, T.E.; Cook, A. [Coal Technology Corporation, Bristol, VA (United States); Ferris, D.D. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)] [and others

    1995-11-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal`s heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation`s coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel.

  20. Evaluation, engineering and development of advanced cyclone processes

    International Nuclear Information System (INIS)

    Durney, T.E.; Cook, A.; Ferris, D.D.

    1995-01-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal's heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation's coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel

  1. Advanced Monitoring Systems Initiative Project Achievements for Environmental Restoration and Waste Management

    International Nuclear Information System (INIS)

    Hohman, E.H.; Lohrstorfer, C.L.; Venedam, R.J.; Weeks, S.J.; Fannin, C.R.

    2006-01-01

    The Advanced Monitoring Systems Initiative (AMSI) project has been in existence since 2002. In this short time period, AMSI has successfully developed, tested and/or demonstrated over 30 advanced sensors and monitoring systems for applications in environmental restoration, waste management and other areas of national interest. This presentation summarizes the AMSI project, and gives examples of recent successes. The purpose of the presentation is to make Symposium attendees aware of AMSI's capabilities and experience, for possible use in the future. Example successes include the following: - Automated hexavalent chromium (Cr(VI)) monitoring in wells alongside the Columbia River; - Atmospheric chemical sensor array for remote, real-time plume tracking; - Wireless sensor platform for long-term monitoring of subsurface moisture; - Embedded piezo-resistive micro-cantilever (EPM) units for carbon tetrachloride (CCl 4 ) and hydrogen cyanide (HCN) detection; - 'iHistorian' for efficient, real-time data management of chemical releases. (authors)

  2. NASA Subsonic Rotary Wing Project-Multidisciplinary Analysis and Technology Development: Overview

    Science.gov (United States)

    Yamauchi, Gloria K.

    2009-01-01

    This slide presentation reviews the objectives of the Multidisciplinary Analysis and Technology Development (MDATD) in the Subsonic Rotary Wing project. The objectives are to integrate technologies and analyses to enable advanced rotorcraft and provide a roadmap to guide Level 1 and 2 research. The MDATD objectives will be met by conducting assessments of advanced technology benefits, developing new or enhanced design tools, and integrating Level 2 discipline technologies to develop and enable system-level analyses and demonstrations.

  3. Verification tests for CANDU advanced fuel -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Chung, Jang Hwan; Suk, Ho Cheon; Jeong, Moon Ki; Park, Joo Hwan; Jeong, Heung Joon; Jeon, Ji Soo; Kim, Bok Deuk

    1994-07-01

    This project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year Out-of-pile hydraulic tests for the prototype of CANFLEX bundle was conducted in the CANDU-hot test loop at KAERI. Thermalhydraulic analysis with the assumption of CANFLEX-NU fuel loaded in Wolsong-1 was performed by using thermalhydraulic code, and the thermal margin and T/H compatibility of CANFLEX bundle with existing fuel for CANDU-6 reactor have been evaluated. (Author)

  4. Complex New Product Development projects - How the Project Manager’s Information Sharing With Core Actors Changes Over Time

    DEFF Research Database (Denmark)

    Jepsen, Lisbeth Brøde

    2013-01-01

    A heavily burdened project manager must ensure effective information sharing with actors inside and outside the organization because this is a necessary condition for a new product development (NPD) project to achieve its objectives. Knowledge, however, on who actually assists a project manager...... with the information sharing during NPD projects is limited; therefore, this study of longitudinal objective email data (4658 emails) during a NPD project contributes to theory and practice by advancing our understanding of when and how the project manager establishes relationships with different core actors inside...

  5. Progress in Methodologies for the Assessment of Passive Safety System Reliability in Advanced Reactors. Results from the Coordinated Research Project on Development of Advanced Methodologies for the Assessment of Passive Safety Systems Performance in Advanced Reactors

    International Nuclear Information System (INIS)

    2014-09-01

    Strong reliance on inherent and passive design features has become a hallmark of many advanced reactor designs, including several evolutionary designs and nearly all advanced small and medium sized reactor (SMR) designs. Advanced nuclear reactor designs incorporate several passive systems in addition to active ones — not only to enhance the operational safety of the reactors but also to eliminate the possibility of serious accidents. Accordingly, the assessment of the reliability of passive safety systems is a crucial issue to be resolved before their extensive use in future nuclear power plants. Several physical parameters affect the performance of a passive safety system, and their values at the time of operation are unknown a priori. The functions of passive systems are based on basic physical laws and thermodynamic principals, and they may not experience the same kind of failures as active systems. Hence, consistent efforts are required to qualify the reliability of passive systems. To support the development of advanced nuclear reactor designs with passive systems, investigations into their reliability using various methodologies are being conducted in several Member States with advanced reactor development programmes. These efforts include reliability methods for passive systems by the French Atomic Energy and Alternative Energies Commission, reliability evaluation of passive safety system by the University of Pisa, Italy, and assessment of passive system reliability by the Bhabha Atomic Research Centre, India. These different approaches seem to demonstrate a consensus on some aspects. However, the developers of the approaches have been unable to agree on the definition of reliability in a passive system. Based on these developments and in order to foster collaboration, the IAEA initiated the Coordinated Research Project (CRP) on Development of Advanced Methodologies for the Assessment of Passive Safety Systems Performance in Advanced Reactors in 2008. The

  6. Development of Risk Uncertainty Factors from Historical NASA Projects

    Science.gov (United States)

    Amer, Tahani R.

    2011-01-01

    NASA is a good investment of federal funds and strives to provide the best value to the nation. NASA has consistently budgeted to unrealistic cost estimates, which are evident in the cost growth in many of its programs. In this investigation, NASA has been using available uncertainty factors from the Aerospace Corporation, Air Force, and Booz Allen Hamilton to develop projects risk posture. NASA has no insight into the developmental of these factors and, as demonstrated here, this can lead to unrealistic risks in many NASA Programs and projects (P/p). The primary contribution of this project is the development of NASA missions uncertainty factors, from actual historical NASA projects, to aid cost-estimating as well as for independent reviews which provide NASA senior management with information and analysis to determine the appropriate decision regarding P/p. In general terms, this research project advances programmatic analysis for NASA projects.

  7. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  8. National project : advanced robot for nuclear power plant

    International Nuclear Information System (INIS)

    Tsunemi, T.; Takehara, K.; Hayashi, T.; Okano, H.; Sugiyama, S.

    1993-01-01

    The national project 'Advanced Robot' has been promoted by the Agency of Industrial science and Technology, MITI for eight years since 1983. The robot for a nuclear plant is one of the projects, and is a prototype intelligent one that also has a three dimensional vision system to generate an environmental model, a quadrupedal walking mechanism to work on stairs and four fingered manipulators to disassemble a valve with a hand tool. Many basic technologies such as an actuator, a tactile sensor, autonomous control and so on progress to high level. The prototype robot succeeded functionally in official demonstration in 1990. More refining such as downsizing and higher intelligence is necessary to realize a commercial robot, while basic technologies are useful to improve conventional robots and systems. This paper presents application studies on the advanced robot technologies. (author)

  9. Financing the development of renewable energy projects of territorial interest

    International Nuclear Information System (INIS)

    Regnier, Yannick; Bailleul, Esther; Claustre, Raphael; Bessiere, Patrick; Boumard, Erwan; Peulemeulle, Justine; Causse, Laurent; Coton, Patrice; Djemouai, Nadia; Dubus, Jean-Michel; Duffes, Thomas; Gauduchon, Marie-Veronique; Raguet, Alex; Ghewy, Etienne; Heitz, Philippe; Jedliczka, Marc; Jourdain, Pierre; Julien, Emmanuel; Marcenac, Guillaume; Marillier, Frederic; Massias, Louis; Picot, Roland; Poize, Noemie; Quantin, Jacques; Rabian, Jean; Rocaboy, Dominique; Rumolino, Claudio; Sabin, Patrick; Saultier, Patrick; Tincelin-Salomon, Claire; Trillaud, Nicolas; Vachette, Philippe; Verhaeghe, Laure

    2016-11-01

    This report highlights the relationship between a territorial project (its autonomous strategy) and projects of renewable energy which could and should be developed. It focuses on large projects of electric power production, notably those based on solar and wind energy for which such a territorial anchoring is not as obvious as for the production of heat or gas (heat networks are necessarily local, and biomass production and supply as well). Thus, its outlines how these projects can be a benefit for a territory, the stakes of participation for the different local actors, and discusses how such a participation is to be organised. It describes different aspects of the way a project development phase is to be financed: stakes (financing needs, risks, peculiarities of local financing, project management and governance), financing typologies, development ease and safety, support of development financing (capital-risk tools, intervention of local public companies, advance payments, subsidies). The last part addresses how to locally finance the other project phases (stakes during construction and exploitation, intervention modes by participation, financial tools or loans)

  10. Status of the Advanced Teleoperation Project in the French A.R.A. program

    International Nuclear Information System (INIS)

    Andre, G.; Fournier, R.

    1987-01-01

    This paper reports the research and development work carried out in the French advanced teleoperation project. The successful achievement of significant progress, in recent years, allows to considerably advance the state of the art so that it objectively constitutes the foundation of a new generation of remote systems. After briefly recalling the organization of this project, the authors outline the basic concepts related to the evolution of teleoperation with regard to the notions of flexibility, adaptivity, autonomy, transparency. The authors present the overall architecture of the computer aided teleoperation system. The following sections deal with fundamental studies which have been realized and key subsystems which have been developed. The authors emphasize on the computer control system which includes: generalized bilateral control and supervisory control. Secondly, they underline the role of sophisticated technologies: sensory system, computer graphics. . ., for generating adaptive control functions and for providing new interfaces. Thirdly, they describe the integrated experimental site and, a set of generic experiments in nuclear applications. The paper ends with future perspectives

  11. Foundational development of an advanced nuclear reactor integrated safety code

    International Nuclear Information System (INIS)

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-01-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  12. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  13. Development of an advanced fluid-dynamic analysis code: α-flow

    International Nuclear Information System (INIS)

    Akiyama, Mamoru

    1990-01-01

    A Project for development of large scale three-dimensional fluid-dynamic analysis code, α-FLOW, coping with the recent advancement of supercomputers and workstations, has been in progress. This project is called the α-Project, which has been promoted by the Association for Large Scale Fluid Dynamics Analysis Code comprising private companies and research institutions such as universities. The developmental period for the α-FLOW is four years, March 1989 to March 1992. To date, the major portions of basic design and program preparation have been completed and the project is in the stage of testing each module. In this paper, the present status of the α-Project, design policy and outline of α-FLOW are described. (author)

  14. Advanced reactor development

    International Nuclear Information System (INIS)

    Till, C.E.

    1989-01-01

    Consideration is given to what the aims of advanced reactor development have to be, if a new generation of nuclear power is really to play an important role in man's energy generation activities in a fragile environment. The background given briefly covers present atmospheric evidence, the current situation in nuclear power, how reactors work and what can go wrong with them, and the present magnitudes of world energy generation. The central part of the paper describes what is currently being done in advanced reactor development and what can be expected from various systems and various elements of it. A vigorous case is made that three elements must be present in any advanced reactor development: (1) breeding; (2) passive safety; and (3) shorter-live nuclear waste. All three are possible. In the right advanced reactor systems the ways of achieving them are known. But R and D is necessary. That is the central argument made in the paper. Not advanced reactor prototype construction at this point, but R and D itself. (author)

  15. Architectural development of an advanced EVA Electronic System

    Science.gov (United States)

    Lavelle, Joseph

    1992-01-01

    An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.

  16. Advanced Metrics for Assessing Holistic Care: The “Epidaurus 2” Project

    Science.gov (United States)

    Foote, Frederick O; Benson, Herbert; Berger, Ann; Berman, Brian; DeLeo, James; Deuster, Patricia A.; Lary, David J; Silverman, Marni N.; Sternberg, Esther M

    2018-01-01

    In response to the challenge of military traumatic brain injury and posttraumatic stress disorder, the US military developed a wide range of holistic care modalities at the new Walter Reed National Military Medical Center, Bethesda, MD, from 2001 to 2017, guided by civilian expert consultation via the Epidaurus Project. These projects spanned a range from healing buildings to wellness initiatives and healing through nature, spirituality, and the arts. The next challenge was to develop whole-body metrics to guide the use of these therapies in clinical care. Under the “Epidaurus 2” Project, a national search produced 5 advanced metrics for measuring whole-body therapeutic effects: genomics, integrated stress biomarkers, language analysis, machine learning, and “Star Glyphs.” This article describes the metrics, their current use in guiding holistic care at Walter Reed, and their potential for operationalizing personalized care, patient self-management, and the improvement of public health. Development of these metrics allows the scientific integration of holistic therapies with organ-system-based care, expanding the powers of medicine. PMID:29497586

  17. Advanced Selling: A Comprehensive Course Sales Project

    Science.gov (United States)

    Yarrington-Young, Susan; Castleberry, Stephen B.; Coleman, Joshua T.

    2016-01-01

    A comprehensive project for the Advanced Selling course that has been tested at three universities is introduced. After selecting an industry and a company, students engage in a complete industry analysis, a company sales analysis, a sales-specific SWOT analysis, complete a ride day with a salesperson in that firm, then present their findings in a…

  18. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  19. The establishment of master plan for developing advanced I and C technology -The development of advanced instrumentation and control technology-

    International Nuclear Information System (INIS)

    Ham, Chang Shik; Lee, Byung Sun; Kwon, Kee Choon; Lee, Dong Young; Hwang, In Koo; Lee, Jang Soo; Kim, Jung Soo; Kim, Chang Hwoi; Jung, Chul Hwan; Na, Nan Ju; Dong, In Sook; Kang, Soon Gu; Lyu, Chan Ho; Song, Soon Ja

    1994-07-01

    Although several organizations are performing their tasks making efforts to develop new digital technology for application to existing nuclear power plants as well as new plants of the future, their projects are similar to each other and have possibilities of redundant investment. Therefore, KAERI have established a Master Plan to define the suitable work-scope of each Instrumentation and Control (I and C) development project and proceed its development items continuously. Furthermore, in the project, several kinds of advanced technology for application of computer science and digital electronics were studied to obtain better reliability of the I and C systems and reduce opertor's burden. For establishing the Master Plan, functions of I and C system of NPPs were surveyed. Especially EPRI URD was deeply analyzed for setting up a basis of the foreign countries were referred for the Master Plan. For the new technology survey, fault-tolerant control technology and control system performance analysis methods were studied. Requirements of alarm and information system as well as technology of I and C network system of NPPs were also established to introduce the advantages of commercial distributed control system. (Author)

  20. The PixFEL project: development of advanced X-ray pixel detectors for application at future FEL facilities

    International Nuclear Information System (INIS)

    Rizzo, G.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Paladino, A.; Paoloni, E.; Comotti, D.; Grassi, M.; Lodola, L.; Malcovati, P.; Ratti, L.; Vacchi, C.; Fabris, L.; Manghisoni, M.; Re, V.; Traversi, G.; Morsani, F.; Betta, G.-F. Dalla; Pancheri, L.

    2015-01-01

    The PixFEL project aims to develop an advanced X-ray camera for imaging suited for the demanding requirements of next generation free electron laser (FEL) facilities. New technologies can be deployed to boost the performance of imaging detectors as well as future pixel devices for tracking. In the first phase of the PixFEL project, approved by the INFN, the focus will be on the development of the microelectronic building blocks, carried out with a 65 nm CMOS technology, implementing a low noise analog front-end channel with high dynamic range and compression features, a low power ADC and high density memory. At the same time PixFEL will investigate and implement some of the enabling technologies to assembly a seamless large area X-ray camera composed by a matrix of multilayer four-side buttable tiles. A pixel matrix with active edge will be developed to minimize the dead area of the sensor layer. Vertical interconnection of two CMOS tiers will be explored to build a four-side buttable readout chip with small pixel pitch and all the on-board required functionalities. The ambitious target requirements of the new pixel device are: single photon resolution, 1 to 10 4 photons @ 1 keV to 10 keV input dynamic range, 10-bit analog to digital conversion up to 5 MHz, 1 kevent in-pixel memory and 100 μm pixel pitch. The long term goal of PixFEL will be the development of a versatile X-ray camera to be operated either in burst mode (European XFEL), or in continuous mode to cope with the high frame rates foreseen for the upgrade phase of the LCLS-II at SLAC

  1. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  2. NASA Game Changing Development Program Manufacturing Innovation Project

    Science.gov (United States)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  3. A Study on planning of the international collaboration foundation for the Advanced Nuclear Technology Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-03-15

    Korea has participated in the international collaboration programs for the development of future nuclear energy systems driven by the countries holding advanced nuclear technology and Korea and U.S. have cooperated in the INERI. This study aimed mainly at developing the plan for participation in the collaborative development of the Gen IV, searching the participation strategy for INERI and the INPRO, and the international cooperation in these programs. Contents and scope of the study for successful achievement are as follows; Investigation and analysis of international and domestic trends related to advanced nuclear technologies, Development of the plan for collaborative development of the Gen IV and conducting the international cooperation activities, Support for the activities related to I-NERI between Korea and U.S. and conducting the international cooperation, International cooperation activities for the INPRO. This study can be useful for planning the research plan and setting up of the strategy of integrating the results of the international collaboration and the domestic R and D results by combining the Gen IV and the domestic R and D in the field of future nuclear technology. Futhermore, this study can contribute to establishing the effective foundation and broadening the cooperation activities not only with the advanced countries for acquisition of the advanced technologies but also with the developing countries for the export of the domestic nuclear energy systems.

  4. A Study on planning of the international collaboration foundation for the Advanced Nuclear Technology Development Project

    International Nuclear Information System (INIS)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-03-01

    Korea has participated in the international collaboration programs for the development of future nuclear energy systems driven by the countries holding advanced nuclear technology and Korea and U.S. have cooperated in the INERI. This study aimed mainly at developing the plan for participation in the collaborative development of the Gen IV, searching the participation strategy for INERI and the INPRO, and the international cooperation in these programs. Contents and scope of the study for successful achievement are as follows; Investigation and analysis of international and domestic trends related to advanced nuclear technologies, Development of the plan for collaborative development of the Gen IV and conducting the international cooperation activities, Support for the activities related to I-NERI between Korea and U.S. and conducting the international cooperation, International cooperation activities for the INPRO. This study can be useful for planning the research plan and setting up of the strategy of integrating the results of the international collaboration and the domestic R and D results by combining the Gen IV and the domestic R and D in the field of future nuclear technology. Futhermore, this study can contribute to establishing the effective foundation and broadening the cooperation activities not only with the advanced countries for acquisition of the advanced technologies but also with the developing countries for the export of the domestic nuclear energy systems

  5. The environmental control and life support system advanced automation project

    Science.gov (United States)

    Dewberry, Brandon S.

    1991-01-01

    The objective of the ECLSS Advanced Automation project includes reduction of the risk associated with the integration of new, beneficial software techniques. Demonstrations of this software to baseline engineering and test personnel will show the benefits of these techniques. The advanced software will be integrated into ground testing and ground support facilities, familiarizing its usage by key personnel.

  6. ARCHER Project: Progress on Material and component activities for the Advanced High Temperature Reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D) integrated project is a four year project which was started in 2011 as part of the European Commission 7th Framework Programme (FP7) to perform High Temperature Reactor technology R&D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research & Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on ARCHER materials and component activities since the start of the project and underlines some of the main conclusions reached. (author)

  7. Development activities on advanced LWR in Argentina

    International Nuclear Information System (INIS)

    Gomez, S.E.

    2001-01-01

    CAREM, an Argentinean project, consists of the development, design and construction of a small Nuclear Power Plant. CAREM is an advanced reactor conceived with new generation design solutions and standing on the large experience accumulated in the safe operation of Light Water Reactors in the world. The CAREM is an indirect cycle reactor with some distinctive features that greatly simplify the reactor and also contribute to a high level of safety: integrated primary cooling system, self-pressurized, primary cooling by natural circulation and safety system relying on passive features. In this paper a brief description of the CAREM distinctive features and associated development activities are presented. (author)

  8. Development of Personalized Cancer Therapy for Men with Advanced Prostate Cancer

    Science.gov (United States)

    2017-10-01

    of this study is to develop a strategy to identify molecular markers of response of advanced prostate cancer to specific therapies using clinically...combination treatment strategies are urgently needed. The purpose of this study is to develop a strategy for identifying molecular markers of response of...PENDING) Level of Funding: $125,978 annual direct Project Goals: To develop a strategy for identifying molecular therapeutic response markers of

  9. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive

  10. U.S. Department of Energy Wind Turbine Development Projects

    International Nuclear Information System (INIS)

    Migliore, P.G.; Calvert, S.D.

    1999-01-01

    This paper provides an overview of wind-turbine development activities in the Unites States and relates those activities to market conditions and projections. Several factors are responsible for a surge in wind energy development in the United States, including a federal production tax credit, ''green power'' marketing, and improving cost and reliability. More development is likely, as approximately 363 GW of new capacity will be needed by 2020 to meet growing demand and replace retiring units. The U.S. Department of Energy (DOE) is helping two companies develop next-generation turbines intended to generate electricity for $0.025/kWh or less. We expect to achieve this objective through a combination of improved engineering methods and configuration advancements. This should ensure that wind power will compete effectively against advanced combined-cycle plants having projected generating costs of $0.031/kWh in 2005. To address the market for small and intermediate-size wind turbines, DOE is assisting five companies in their attempts to develop new turbines having low capital cost and high reliability. Additional information regarding U.S. wind energy programs is available on the internet site www.nrel.gov/wind/. E-mail addresses for the turbine manufacturers are found in the Acknowledgements

  11. Advanced human-system interface design review guideline. General evaluation model, technical development, and guideline description

    International Nuclear Information System (INIS)

    O'Hara, J.M.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use

  12. Advanced human-system interface design review guideline. General evaluation model, technical development, and guideline description

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  13. Technology readiness levels for advanced nuclear fuels and materials development

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J., E-mail: jon.carmack@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Braase, L.A.; Wigeland, R.A. [Idaho National Laboratory, Idaho Falls, ID (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-03-15

    Highlights: • Definition of nuclear fuels system technology readiness level. • Identification of evaluation criteria for nuclear fuel system TRLs. • Application of TRLs to fuel systems. - Abstract: The Technology Readiness process quantitatively assesses the maturity of a given technology. The National Aeronautics and Space Administration (NASA) pioneered the process in the 1980s to inform the development and deployment of new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications. It was also adopted by the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is needed to improve the performance and safety of current and advanced reactors, and ultimately close the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the assessment process to advanced fuel development is useful as a management, communication, and tracking tool. This article provides definition of technology readiness levels (TRLs) for nuclear fuel technology as well as selected examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).

  14. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  15. Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development

    Energy Technology Data Exchange (ETDEWEB)

    Pschirer, James [Alstom Power Inc., Windsor, CT (United States); Burgess, Joshua [Alstom Power Inc., Windsor, CT (United States); Schrecengost, Robert [Alstom Power Inc., Windsor, CT (United States)

    2017-08-16

    Alstom Power Inc., a wholly owned subsidiary of the General Electric Company (GE), has completed the projectAdvanced Ultrasupercritical (AUSC) Tube Membrane Panel Development” under U.S. Department of Energy (DOE) Award Number DE-FE0024076. This project was part of DOE’s Novel Crosscutting Research and Development to Support Advanced Energy Systems program. AUSC Tube Membrane Panel Development was a two and one half year project to develop and verify the manufacturability and serviceability of welded tube membrane panels made from high performance materials suitable for the AUSC steam cycles, defined as high pressure steam turbine inlet conditions of 700-760°C (1292-1400°F) and 24.5-35MPa (3500-5000psi). The difficulty of this challenge lies in the fact that the membrane-welded construction imposes demands on the materials that are unlike any that exist in other parts of the boiler. Tube membrane panels have been designed, fabricated, and installed in boilers for over 50 years with relatively favorable experience when fabricated from carbon and Cr-Mo low alloy steels. The AUSC steam cycle requires membrane tube panels fabricated from materials that have not been used in a weldment with metal temperatures in the range of 582-610°C (1080-1130°F). Fabrication materials chosen for the tubing were Grade 92 and HR6W. Grade 92 is a creep strength enhanced ferritic Cr-Mo alloy and HR6W is a high nickel alloy. Once the materials were chosen, GE performed the engineering design of the panels, prepared shop manufacturing drawings, and developed manufacturing and inspection plans. After the materials were purchased, GE manufactured and inspected the tube membrane panels, determined if post fabrication heat treatment of the tube membrane panels was needed, performed pre- and post-weld heat treatment on the Grade 92 panels, conducted final nondestructive inspection of any heat treated tube membrane panels, conducted destructive inspection of the completed tube

  16. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  17. The advanced neutron source research and development plan

    International Nuclear Information System (INIS)

    Selby, D.L.

    1995-08-01

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 · 10 19 · m -2 · s -1 . Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R ampersand D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R ampersand D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R ampersand D program will focus on the four objectives described

  18. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  19. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  20. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  1. A Ground Testbed to Advance US Capability in Autonomous Rendezvous and Docking Project

    Science.gov (United States)

    D'Souza, Chris

    2014-01-01

    This project will advance the Autonomous Rendezvous and Docking (AR&D) GNC system by testing it on hardware, particularly in a flight processor, with a goal of testing it in IPAS with the Waypoint L2 AR&D scenario. The entire Agency supports development of a Commodity for Autonomous Rendezvous and Docking (CARD) as outlined in the Agency-wide Community of Practice whitepaper entitled: "A Strategy for the U.S. to Develop and Maintain a Mainstream Capability for Automated/Autonomous Rendezvous and Docking in Low Earth Orbit and Beyond". The whitepaper establishes that 1) the US is in a continual state of AR&D point-designs and therefore there is no US "off-the-shelf" AR&D capability in existence today, 2) the US has fallen behind our foreign counterparts particularly in the autonomy of AR&D systems, 3) development of an AR&D commodity is a national need that would benefit NASA, our commercial partners, and DoD, and 4) an initial estimate indicates that the development of a standardized AR&D capability could save the US approximately $60M for each AR&D project and cut each project's AR&D flight system implementation time in half.

  2. THE ADVANCED CHEMISTRY BASINS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  3. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.D.; Kendall, R.P.; Whitney, E.M. [Dave Martin and Associates, Inc., Socorro, NM (United States)] [and others

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  4. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    Energy Technology Data Exchange (ETDEWEB)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  5. Project-based faculty development for e-learning.

    Science.gov (United States)

    Vyas, Rashmi; Faith, Minnie; Selvakumar, Dhayakani; Pulimood, Anna; Lee, Mary

    2016-12-01

    The Christian Medical College, Vellore, in collaboration with Tufts University, Boston, conducted an advanced workshop in e-learning for medical faculty members in India. E-learning can enhance educational reforms for today's computer-literate generation, and keep faculty members up to speed in a rapidly changing world. The purpose of this paper is to report on the design and evaluation of a project-based faculty member development programme focused on developing faculty members as educators and as peer trainers who can use e-learning for educational reforms. During a 2-day workshop, 29 participants in groups of two or three developed 13 e-learning projects for implementation in their institutions. Evaluation of the workshop was through written feedback from the participants at the end of the workshop and by telephone interview with one participant from each project group at the end of one year. Content analysis of qualitative data was perfomed. The participants reported that they were motivated to implement e-learning projects and recognised the need for and usefulness of e-learning. The majority of projects (10 out of 13) that were implemented 'to some extent' or 'to a great extent' faced challenges with a lack of resources and administrative support, but faculty members were able to overcome them. E-learning can enhance educational reforms for today's computer-literate generation IMPLICATIONS: Designing feasible e-learning projects in small groups and obtaining hands-on experience with e-learning tools enhance the effectiveness of subsequent implementation. To successfully incorporate e-learning when designing educational reforms, faculty member training, continuing support and infrastructure facilities are essential. © 2016 John Wiley & Sons Ltd.

  6. 2011 NDIA Advanced Research Projects Agency - Energy/DoD Workshop

    Science.gov (United States)

    2011-09-12

    for Handoffs Advanced Research Projects Agency • Energy Portfolio of Projects UNIVERSITY/ LAB SMALL BUSINESS CORPORATION Fuel-Free Isothermal...2011 Present Programs • Agile Delivery of Electrical Power Technology (ADEPT) • Batteries for Electrical Energy Storage in Transportation ( BEEST ...Technologies for Energy (REACT) • Solar Agile Delivery of Electrical Power Technology (Solar – ADEPT) The BEEST : An Overview of ARPA-E’s Program in Ultra-High

  7. SEOM's Sentinel-3/OLCI' project CAWA: advanced GRASP aerosol retrieval

    Science.gov (United States)

    Dubovik, Oleg; litvinov, Pavel; Huang, Xin; Aspetsberger, Michael; Fuertes, David; Brockmann, Carsten; Fischer, Jürgen; Bojkov, Bojan

    2016-04-01

    The CAWA "Advanced Clouds, Aerosols and WAter vapour products for Sentinel-3/OLCI" ESA-SEOM project aims on the development of advanced atmospheric retrieval algorithms for the Sentinel-3/OLCI mission, and is prepared using Envisat/MERIS and Aqua/MODIS datasets. This presentation discusses mainly CAWA aerosol product developments and results. CAWA aerosol retrieval uses recently developed GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) algorithm described by Dubovik et al. (2014). GRASP derives extended set of atmospheric parameters using multi-pixel concept - a simultaneous fitting of a large group of pixels under additional a priori constraints limiting the time variability of surface properties and spatial variability of aerosol properties. Over land GRASP simultaneously retrieves properties of both aerosol and underlying surface even over bright surfaces. GRAPS doesn't use traditional look-up-tables and performs retrieval as search in continuous space of solution. All radiative transfer calculations are performed as part of the retrieval. The results of comprehensive sensitivity tests, as well as results obtained from real Envisat/MERIS data will be presented. The tests analyze various aspects of aerosol and surface reflectance retrieval accuracy. In addition, the possibilities of retrieval improvement by means of implementing synergetic inversion of a combination of OLCI data with observations by SLSTR are explored. Both the results of numerical tests, as well as the results of processing several years of Envisat/MERIS data illustrate demonstrate reliable retrieval of AOD (Aerosol Optical Depth) and surface BRDF. Observed retrieval issues and advancements will be discussed. For example, for some situations we illustrate possibilities of retrieving aerosol absorption - property that hardly accessible from satellite observations with no multi-angular and polarimetric capabilities.

  8. Engineering development of advanced froth flotation. Volume 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, D.D.; Bencho, J.R.; Torak, E.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

    1995-03-01

    This report is an account of findings related to the Engineering and Development of Advanced Froth Flotation project. The results from benchscale and proof-of-concept (POC) level testing are presented and the important results from this testing are used to refine a conceptual design and cost estimate for a 20 TPH Semi-Works Facility incorporating the final proposed technology.

  9. Architecture and Functionality of the Advanced Life Support On-Line Project Information System

    Science.gov (United States)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriguez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Ames Research Center (ARC) to develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a Web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an research and technology development (R&TD) status information hub that can potentially serve as the primary annual reporting mechanism for ALS-funded projects. Using OPIS, ALS managers and element leads will be able to carry out informed R&TD investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, Controls and Systems Analysis). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  10. Development of fabrication technology for CANDU advanced fuel -Development of the advanced CANDU technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Beom; Kim, Hyeong Soo; Kim, Sang Won; Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Jang, Ho Il; Kim, Sang Sik; Choi, Il Kwon; Cho, Dae Sik; Sheo, Seung Won; Lee, Soo Cheol; Kim, Yoon Hoi; Park, Choon Ho; Jeong, Seong Hoon; Kang, Myeong Soo; Park, Kwang Seok; Oh, Hee Kwan; Jang, Hong Seop; Kim, Yang Kon; Shin, Won Cheol; Lee, Do Yeon; Beon, Yeong Cheol; Lee, Sang Uh; Sho, Dal Yeong; Han, Eun Deok; Kim, Bong Soon; Park, Cheol Joo; Lee, Kyu Am; Yeon, Jin Yeong; Choi, Seok Mo; Shon, Jae Moon [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-01

    The present study is to develop the advanced CANDU fuel fabrication technologies by means of applying the R and D results and experiences gained from localization of mass production technologies of CANDU fuels. The annual portion of this year study includes following: 1. manufacturing of demo-fuel bundles for out-of-pile testing 2. development of technologies for the fabrication and inspection of advanced fuels 3. design and munufacturing of fuel fabrication facilities 4. performance of fundamental studies related to the development of advanced fuel fabrication technology.

  11. Evaluation of the Benefits Attributable to Automotive Lighweight Materials Program Research and Development Projects

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.

    2002-01-11

    The purpose of this project is to identify and test methods appropriate for estimating the benefits attributable to research and development (R and D) projects funded by the Automotive Lightweight Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The program focuses on the development and validation of advanced lightweight materials technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The work supports the goals of the Partnership for a New Generation of Vehicles (PNGV). Up to thirty percent of the improvement required to meet the PNGV goal of tripling vehicle fuel economy and much of its cost, safety, and recyclability goal depend on the lightweight materials. Funded projects range from basic materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers.

  12. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    Science.gov (United States)

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  13. Various advanced design projects promoting engineering education

    Science.gov (United States)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  14. Collaborative Writing to Enhance Academic Writing Development through Project Work

    Science.gov (United States)

    Robayo Lun, Alma Milena; Hernandez Ortiz, Luz Stella

    2013-01-01

    Advanced students at university level struggle with many aspects of academic writing in English as a foreign language. The purpose of this article is to report on an investigation aimed at analyzing what collaborative writing through project work tells us about students' academic writing development at the tertiary level. The compositions written…

  15. The Polaris Project: Undergraduate Research Catalyzing Advances in Arctic Science

    Science.gov (United States)

    Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Bunn, A. G.; Frey, K. E.

    2017-12-01

    With guidance and sufficient resources, undergraduates can drive the exploration of new research directions, lead high impact scientific products, and effectively communicate the value of science to the public. As mentors, we must recognize the strong contribution undergraduates make to the advancement of scientific understanding and their unique ability and desire to be transdisciplinary and to translate ideas into action. Our job is to be sure students have the resources and tools to successfully explore questions that they care about, not to provide or lead them towards answers we already have. The central goal of the Polaris Project is to advance understanding of climate change in the Arctic through an integrated research, training, and outreach program that has at its heart a research expedition for undergraduates to a remote field station in the Arctic. Our integrative approach to training provides undergraduates with strong intellectual development and they bring fresh perspectives, creativity, and a unique willingness to take risks on new ideas that have an energizing effect on research and outreach. Since the projects inception in summer 2008, we have had >90 undergraduates participate in high-impact field expeditions and outreach activities. Over the years, we have also been fortunate enough to attract an ethnically, racially, and culturally diverse group of students, including students from Puerto Rico, Hispanic-, African- and Native-Americans, members of the LGBT community, and first-generation college students. Most of these students have since pursued graduate degrees in ecology, and many have received NSF fellowships and Fulbright scholarships. One of our major goals is to increase the diversity of the scientific community, and we have been successful in our short-term goal of recruiting and retaining a diverse group of students. The goal of this presentation is to provide a description of the mentoring model at the heart of the Polaris Project

  16. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  17. Advanced maintenance research programs

    International Nuclear Information System (INIS)

    Marston, T.U.; Gelhaus, F.; Burke, R.

    1985-01-01

    The purpose of this paper is to provide the reader with an idea of the advanced maintenance research program at the Electric Power Research Institute (EPRI). A brief description of the maintenance-related activities is provided as a foundation for the advanced maintenance research projects. The projects can be divided into maintenance planning, preventive maintenance program development and implementation, predictive (or conditional) maintenance, and innovative maintenance techniques. The projects include hardware and software development, human factors considerations, and technology promotion and implementation. The advanced concepts include: the incorporation of artificial intelligence into outage planning; turbine and pump maintenance; rotating equipment monitoring and diagnostics with the aid of expert systems; and the development of mobile robots for nuclear power plant maintenance

  18. The Advanced Exploration Systems Water Recovery Project: Innovation on 2 Fronts

    Science.gov (United States)

    Sarguisingh, Miriam M.; Neumeyer, Derek; Shull, Sarah

    2012-01-01

    As NASA looks forward to sending humans farther away from Earth, we will have to develop a transportation architecture that is highly reliable and that can sustain life for long durations without the benefit of Earth s proximity for continuous resupply or even operational guidance. NASA has consistently been challenged with performing great feats of innovation, but particularly in this time of economic stress, we are challenged to go farther with less. The Advanced Exploration Systems (AES) projects were implemented to address both of these needs by not only developing innovative technologies, but by incorporating innovative management styles and processes that foster the needed technical innovation given a small amount of resources. This presentation explains how the AES Water Recovery Project is exhibiting innovation on both fronts; technical and process. The AES Water Recovery Project (WRP) is actively engineering innovative technologies in order to maximize the efficiency of water recovery. The development of reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support (ECLS) is critical to enable long-duration human missions outside of low-Earth orbit. Recycling of life support consumables is necessary to reduce resupply mass and provide for vehicle autonomy. To address this, the WRP is working on a rotary distiller that has shown enhanced performance over the state-of-the-art (SOA). Additionally, the WRP is looking at innovative ways to address issues present in the state-of-the-art (SOA) systems pertaining to toxicity and calcium scale buildup. As an AES project, the WRP has a more streamlined Skunk Works like approach to technology development intended to reduce overhead but achieve a more refined end product. The project has incorporated key partnerships between NASA centers as well as between NASA and industry. A minimal project management style has been implemented such that risks are managed and

  19. Advanced Bimanual Manipulation Results from the DEXMART Project

    CERN Document Server

    2012-01-01

    Dexterous and autonomous manipulation is a key technology for the personal and service robots of the future. Advances in Bimanual Manipulation edited by Bruno Siciliano provides the robotics community with the most noticeable results of the four-year European project DEXMART (DEXterous and autonomous dual-arm hand robotic manipulation with sMART sensory-motor skills: A bridge from natural to artificial cognition). The volume covers a host of highly important topics in the field, concerned with modelling and learning of human manipulation skills, algorithms for task planning, human-robot interaction, and grasping, as well as hardware design of dexterous anthropomorphic hands. The results described in this five-chapter collection are believed to pave the way towards the development of robotic systems endowed with dexterous and human-aware dual-arm/hand manipulation skills for objects, operating with a high degree of autonomy in unstructured real-world environments.

  20. Engineering development of advance physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Smit, F.J.; Shields, G.L. [AMAX R& D Center/ENTECH Global Inc., Golden, CO (United States)

    1995-11-01

    The objective of this project is to develop the engineering design base for prototype fine coal cleaning plants based on Advanced Column Flotation and Selective Agglomeration processes for premium fuel and near-term applications. Removal of toxic trace elements is also being investigated. The scope of the project includes laboratory research and bench-scale testing of each process on six coals followed by design, construction, and operation of a 2 tons/hour process development unit (PDU). Three coals will be cleaned in tonnage quantity and provided to DOE and its contractors for combustion evaluation. Amax R&D (now a subsidiary of Cyprus Amax Mineral Company) is the prime contractor. Entech Global is managing the project and performing most of the research and development work as an on-site subcontractor. Other participants in the project are Cyprus Amax Coal Company, Arcanum, Bechtel, TIC, University of Kentucky and Virginia Tech. Drs. Keller of Syracuse and Dooher of Adelphi University are consultants.

  1. Development of a more fish-tolerant turbine runner, advanced hydropower turbine project

    International Nuclear Information System (INIS)

    Cook, T.C.; Hecker, G.E.

    1997-02-01

    Alden Research Laboratory, Inc. (ARL) and Northern Research and Engineering Corporation (NREC) conducted a research program to develop a turbine runner which will minimize fish injury and mortality at hydroelectric projects. ARL?NREC have developed a runner shape which minimizes the number of blade leading edges, reduces the pressure versus time and the velocity versus distance gradients within the runner, minimizes or eliminates the clearance between the runner and runner housing, and maximizes the size of the flow passages, all with minimal penalty on turbine efficiency. An existing pump impeller provided the starting point for developing the fish tolerant turbine runner. The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Conceptual design of the new runner began with a re-evaluation of studies which have been previously conducted to identify probable sources of injury to fish passing through hydraulic turbines. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. 86 figs., 5 tabs

  2. Ultra advanced projects. ; Naming hyper-hightech projects. (Cho) no tsuku project. ; Naming no shikumi

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Y. (Ministry of International Trade and Industry, Tokyo (Japan))

    1992-10-05

    Significance of using 'super' for naming a project of technological development is discussed. Functions of naming are classified into (1) recognition, (2) display and (3) sales-promotion, whereby mechanism of naming of merchandise that is developed through the technique of 3 is considered. Further, the mechanism of naming is discussed in relation to marketing. It is pointed out that naming of merchandise is determined on the basis of (1) concept of planned goods and (2) marketing-mixes composed of goods, price, sales-roots and sales-promotion. The same mechanism works also in a project for technological development. Technical trends are caught and projects are targetted by taking supposed regimes into account, thereby the most suitable mix is formed. The mix in the technological development is assumed to be composed of purpose, specification, regime and sales-promotion. Two examples of the governmental projects by Ministry of International Trade and Industry, 'the big regime for research and development on industrial technologies' and 'the regime for development of the fundamental technologies in the next generation' are introduced and the significance of their naming is described. 2 tabs.

  3. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Woong; Cho, Jae Wan; Lee, Nam Ho; Kim, Woong Ki; Moon, Byung Soo; Lee, Young Jae; Kim, Chang Hoi; Kim, Seung Ho; Hwang, Seok Yong; Kim, Byung Soo; Moon, Jae Sun; Lee, Young Kwang; Choi, Kap Joo

    1996-07-01

    The comparison study of 3 kinds of stereo camera modules done in this final year of 4 year's longterm project shows that regenerating characteristics of stereo image of stereo camera using horizontally moving lens axis method is superior to the other two modules. Base on this comparison result, stereo camera module using horizontally moving lens method is developed. Also, stereo-Boom unit, high definition polarized stereo monitor(KAERI-PSM II) and 10.4sec. auto-stereogram TV using parallax barrier method are developed. These developed systems can be used for people involved in extremely hazardous working area to give vivid reality image of work environment. In the recognition and tracking section, auto-vergencing technology using focus fixation and cepstral filter, stereo camera calibration, range measurement technology using stereo camera module are developed. And active target tracking technology is developed also. In the sensing and intelligent control research part, active radioactivity image monitoring unit is developed. The spatial resolution of monitoring unit is 10cm at 1m distance, FOV is 60x40 deg [HXV], and radioactivity detection limit is 1mR/hr. Also, radiation-resistant inspection camera for nuclear facilities is designed. In the intelligent control section, fuzzy control algorithm for obstacle detouring navigation of mobile robot is developed. The smoothing techniques by fuzzy set is adapted to raise the pliability of obstacle detouring navigation of mobile robot. In order to raise robustness of developed fuzzy algorithm, fuzzy control algorithm is applied to 'Truck Backer Upper' problem and tuned. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation/removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous

  4. Advanced Instrumentation, Information and Control (II and C) Research and Development Facility Buildout and Project Execution of LWRS II and C Pilot Projects 1 and 3

    International Nuclear Information System (INIS)

    Farris, Ronald; Oxstrand, Johanna; Weatherby, Gregory

    2011-01-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II and C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II and C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results

  5. Interprofessional development and implementation of a pharmacist professional advancement and recognition program.

    Science.gov (United States)

    Hager, David; Chmielewski, Eric; Porter, Andrea L; Brzozowski, Sarah; Rough, Steve S; Trapskin, Philip J

    2017-11-15

    The interprofessional development, implementation, and outcomes of a pharmacist professional advancement and recognition program (PARP) at an academic medical center are described. Limitations of the legacy advancement program, in combination with low rates of employee engagement in peer recognition and professional development, at the UW Health department of pharmacy led to the creation of a task force comprising pharmacists from all practice areas to develop a new pharmacist PARP. Senior leadership within the organization expanded the scope of the project to include an interprofessional work group tasked to develop guidelines and core principles that other professional staff could use to reduce variation across advancement and recognition programs. Key program design elements included a triennial review of performance against advancement standards and the use of peer review to supplement advancement decisions. The primary objective was to meaningfully improve pharmacists' engagement as measured through employee engagement surveys. Secondary outcomes of interest included the results of pharmacist and management satisfaction surveys and the program's impact on the volume and mix of pharmacist professional development activities. Of the 126 eligible pharmacists, 93 participated in the new program. The majority of pharmacists was satisfied with the program. For pharmacists who were advanced as part of the program, meaningful increases in employee engagement scores were observed, and a mean of 95 hours of professional development and quality-improvement activities was documented. Implementation of a PARP helped increase pharmacist engagement through participation in quality-improvement and professional development activities. The program also led to the creation of organizationwide interprofessional guidelines for advancement programs within various healthcare disciplines. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  6. A technology development summary for the AGT101 advanced gas turbine program

    Science.gov (United States)

    Boyd, Gary L.; Kidwell, James R.; Kreiner, Daniel M.

    1987-01-01

    A summary is presented of significant technology developments that have been made in the AGT101 advanced gas turbine program. The AGT101 design features are reviewed, and the power section testing and results are addressed in detail. The results of component testing and evaluation are described for the compressor, turbine, regenerator, and foil bearing. Ceramic component development is discussed, including that of the static seal, turbine shroud seal, regenerator shield planar seal, regenerator shield piston ring, stator rig, ceramic combustor, and turbine rotor. Important areas to be addressed by the Advanced Turbine Technology Applications Project now in the planning stage at DOE and NASA are briefly reviewed.

  7. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  8. The advanced linked extended reconnaissance and targeting technology demonstration project

    Science.gov (United States)

    Cruickshank, James; de Villers, Yves; Maheux, Jean; Edwards, Mark; Gains, David; Rea, Terry; Banbury, Simon; Gauthier, Michelle

    2007-06-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing key operational needs of the future Canadian Army's Surveillance and Reconnaissance forces by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. We discuss concepts for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as beyond line-of-sight systems such as a mini-UAV and unattended ground sensors. The authors address technical issues associated with the use of fully digital IR and day video cameras and discuss video-rate image processing developed to assist the operator to recognize poorly visible targets. Automatic target detection and recognition algorithms processing both IR and visible-band images have been investigated to draw the operator's attention to possible targets. The machine generated information display requirements are presented with the human factors engineering aspects of the user interface in this complex environment, with a view to establishing user trust in the automation. The paper concludes with a summary of achievements to date and steps to project completion.

  9. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Siemens Energy, Inc., Orlando, FL (United States)

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  10. Evaluation of the Benefits Attributable to Automotive Lightweight Materials Program Research and Development Projects; TOPICAL

    International Nuclear Information System (INIS)

    Das, S

    2001-01-01

    The purpose of this project is to identify and test methods appropriate for estimating the benefits attributable to research and development (R and D) projects funded by the Automotive Lightweight Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). Funded projects range from basic materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R and D projects were chosen for this pilot evaluation: Low-Cost, Continuous Cast Aluminum Sheet; Advanced Forming Technologies for Aluminum; and Manufacturing of Composite Automotive Structures. These projects were chosen because they represent a range of benefits evaluation situations. The first project resulted in an improved process that may be commercialized. The second project is on going and has two distinct components. The third project has yielded an improved technology that has been commercialized. This completed project also benefited from numerous complementary projects

  11. Overview and Recent Accomplishments of the Advanced Mirror Technology Development (AMTD) for Large Aperture UVOIR Space Telescopes Project

    Science.gov (United States)

    Stahl, H. Philip

    2013-01-01

    Per Astro2010, a new, larger UVO telescope is needed to answer fundamental scientific questions, such as: is there life on Earth-like exoplanets; how galaxies assemble stellar populations; how baryonic matter interacts with intergalactic medium; and how solar systems form and evolve. And, present technology is not mature enough to affordably build and launch any potential UVO concept. Advanced Mirror Technology Development (AMTD) is a funded SAT project. Our objective is to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. We defined and initiated a program to mature 6 key technologies required to fabricate monolithic and segmented space mirrors.

  12. Development of Advanced Small Hydrogen Engines

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  13. International research and development projects in nuclear energy: Experience and future prospects

    International Nuclear Information System (INIS)

    Strohl, P.

    1983-01-01

    From the very beginning nuclear energy appeared as a fruitful field for international co-operation and particularly for international projects and joint ventures. By pooling scientific, technical and financial resources, the participating countries sought to promote the development of technology and the transition of nuclear energy to the industrial stage. Governments and therefore intergovernmental organizations were the driving force behind the establishment of joint projects in various R and D sectors, often in association with industry and private research institutes. The situation changed considerably from the end of the 1960s onwards. Despite some remarkable technical achievements, international co-operation did not develop to the extent predicted at the outset. Industry took over in the exploitation of proven technologies, and industrial co-operation agreements have become an important feature in some key areas of nuclear energy. This trend raises questions as to the future of joint R and D projects organized through intergovernmental co-operation. Although such projects are still very useful, they tend to be concentrated in those few sectors which continue to be of direct interest to the Governments; for instance, fundamental research, radioactive waste management and nuclear safety. The position of nuclear energy has changed, and the benefits to be drawn from this form of international co-operation must be critically re-assessed accordingly. While advantage to be gained from international projects for countries which are the most advanced in the development of nuclear energy is not the same as it was at the beginning, the transfer of experience and knowledge to less advanced countries is still the main concern of projects dealing with safety and regulatory matters. The experience thus gained provides a very useful insight into the legal and institutional framework of joint projects

  14. Advanced nuclear reactor public opinion project

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  15. Advanced nuclear reactor public opinion project

    International Nuclear Information System (INIS)

    Benson, B.

    1991-01-01

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions

  16. Development of advanced PEM water electrolysers

    International Nuclear Information System (INIS)

    A Deschamps; C Etievant; C Puyenchet; V Fateev; S Grigoriev; A Kalinnikov; V Porembsky; P Millet

    2006-01-01

    Concerning the production of electrolytic hydrogen, the goal of present R and D is to develop advanced hydrogen generator based on proton exchange membrane (PEM) water electrolysers. PEM-based water electrolysis offers a number of advantages, such as ecological safety, high gas purity (more than 99.99% for hydrogen), the possibility of producing compressed gases (up to 200 bar) for direct pressurized storage without additional power inputs, etc. PEM electrolysers are considered as rather attractive devices to accelerate the transition to the hydrogen economy and develop a hydrogen infrastructure network (for example for the development of re-filling stations for cars, using electric power stations at night hours and renewable energy sources). The work presented here result from a cooperation between Hydrogen Energy and Plasma Technology Institute (HEPTI) of Russian Research Center (RRC) 'Kurchatov Institute', Universite Paris - Sud XI and Compagnie d'Etudes des Technologies de l'Hydrogene. This project is supported by the Commission of the European Communities within the frame of the 6. Framework Programme (GenHyPEM, STREP no 019802). (authors)

  17. Architecture and Functionality of the Advanced Life Support On-Line Project Information System (OPIS)

    Science.gov (United States)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriquez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Amcs Research Center (ARC) tu develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL(Trademark) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an R&TD status information hub that can potentially serve as the primary annual reporting mechanism. Using OPIS, ALS managers and element leads will be able to carry out informed research and technology development investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, and Control). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  18. Advanced Percussive Drilling Technology for Geothermal Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Prasad, Somuri [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfer, Dale [Atlas-Copco Secoroc LLC, Fagersta (Sweden)

    2017-06-12

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phase I and evaluating performance of the materials and designs at high operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for use in the driller’s toolbox.

  19. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  20. The development of an advanced computerised control room

    International Nuclear Information System (INIS)

    Haugset, K.

    1988-01-01

    Control room improvements by use of computer technology is a major activity within the OECD Halden Reactor Project. The goal is to improve operational efficiency and safety by supplying the operator with the information relevant for the specific operational situation, assisting him both in identifying plant state, plan operational strategies and implement such plans. The research activity consists of development of specific operator support systems, validation of such systems under realistic conditions and integration under the scope of an advanced control room concept. The work is carried out in close cooperation with the many member organisations. (author) 2 figs., 8 refs

  1. ADVANCE: research project of aging in wiring electric; ADVANCE: Proyecto de investigacion de envejecimiento en cableado electrico

    Energy Technology Data Exchange (ETDEWEB)

    Cano, J. C.; Ruiz Rabanedo, S.; Testa, J.

    2013-07-01

    This document summarizes the project ADVANCE (Ageing Diagnostics and Pronostics of low-voltage I and C Cables) whose objective is to adapt, optimize and rating techniques of Condition Monitoring for nuclear power plants cables, enabling know the State of degradation of the cable along its length, and together with the establishment of acceptance criteria appropriate to estimate their residual life. In the paper outlines the main stages of the project and the current state of the same.

  2. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    Science.gov (United States)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  3. Project Kaleidoscope: Advancing What Works in Undergraduate STEM Education

    Science.gov (United States)

    Elrod, S.

    2011-12-01

    In 1989, Project Kaleidoscope (PKAL) published its first report, What Works: Building Natural Science Communities, on reforming undergraduate STEM (science, technology, engineering and mathematics) education. Since then, PKAL has grown into a national organization comprised of a diverse group of over 6500 STEM educators who are committed to advancing "what works." The PKAL mission is to be a national leader in catalyzing the efforts of people, institutions, organizations and networks to move from analysis to action in significantly improving undergraduate student learning and achievement in STEM (science, technology, engineering and mathematics). Specifically, PKAL's strategic goals are to: 1) Promote the development and wider use of evidence-based teaching, learning and assessment approaches, 2) Build individual and organizational capacity to lead change in STEM education, and 3) Engage the broader community of external stakeholders - professional and disciplinary societies, business and industry groups, accreditation organizations, educational associations, governmental agencies, philanthropic organizations - in achieving our mission. PKAL achieves these goals by serving as the nexus of an interconnected and multidisciplinary web of people, ideas, strategies, evidence and resources focused on systemic change in undergraduate STEM education. PKAL also provides resources on critical issues, such as teaching using pedagogies of engagement, and engages interested faculty, campuses and professional societies in national projects and programs focused on cutting edge issues in STEM education. One of these projects - Mobilizing Disciplinary Societies for a Sustainable Future - is engaging eleven disciplinary societies, including the National Association of Geoscience Teachers, in defining specific resources, faculty development programs and goals focused on promoting undergraduate STEM courses that: 1) provide more knowledge about real-world issues; 2) connect these real

  4. Trace of the 'Fugen' project. Its technical development results to be succeeded

    International Nuclear Information System (INIS)

    Ishikure, Kenkichi; Kikuchi, Saburo; Kobayashi, Hiromasa; Hino, Minoru

    2003-01-01

    A prototype reactor of the advanced thermal reactor (ATR), 'Fugen' will be finished its operation on March, 2003. And, the 'Fugen' project advanced by self technology development has largely contributed to nuclear energy development in Japan at various fields. Nuclear energy is now laid at change of its environment without previous experiences, such as relaxation of regulation, liberalization of electric powers, cost down, and so on. A history on challenge of self technology development must be valuable experiences essential for present and future nuclear energy. To succeed results with and without shapes obtained by the 'Fugen', to generation sharing coming future, here were investigated verifications on its technical results and self technology development results and how their results are activated to future. (G.K.)

  5. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J.; Chang, J. H.; Hahn, D. H.; Bae, Y. Y.; Kim, W. W.; Jeong, I.; Lee, D. S.; Lee, J. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-06-15

    Generation IV International Forum(GIF), where 13 countries including Korea collaborate to develop future nuclear energy systems, put into force 'Generation IV International Forum Project Arrangement' in 2007 for the international research and development of Gen IV Systems, following the entry into force of Framework Agreement in 2005. The International Nuclear Research Initiative(I-NERI) between Korea and United States and the International Project on Innovative Nuclear Energy Systems and Fuel Cycles(INPRO) of IAEA are continued in this year, produced lots of visible outcomes. These international activities have a common goal of the collaborative development of advanced nuclear system technologies but differ in the main focusing areas and aspects, so Korea needs to establish the integrated strategy based on the distinguished and complementary approach for the participation of each international programs, as examples the GIF for the advanced system technology development, INPRO for the set-up of institution and infra-structure, and I-NERI for the access of the core technologies and acquisition of the transparency of nuclear R and D.

  6. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    International Nuclear Information System (INIS)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J.; Chang, J. H.; Hahn, D. H.; Bae, Y. Y.; Kim, W. W.; Jeong, I.; Lee, D. S.; Lee, J. H.

    2008-06-01

    Generation IV International Forum(GIF), where 13 countries including Korea collaborate to develop future nuclear energy systems, put into force 'Generation IV International Forum Project Arrangement' in 2007 for the international research and development of Gen IV Systems, following the entry into force of Framework Agreement in 2005. The International Nuclear Research Initiative(I-NERI) between Korea and United States and the International Project on Innovative Nuclear Energy Systems and Fuel Cycles(INPRO) of IAEA are continued in this year, produced lots of visible outcomes. These international activities have a common goal of the collaborative development of advanced nuclear system technologies but differ in the main focusing areas and aspects, so Korea needs to establish the integrated strategy based on the distinguished and complementary approach for the participation of each international programs, as examples the GIF for the advanced system technology development, INPRO for the set-up of institution and infra-structure, and I-NERI for the access of the core technologies and acquisition of the transparency of nuclear R and D

  7. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, D.D.; Bencho, J.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

    1995-11-01

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project.

  8. 7 CFR 3560.309 - Advancement (loan) of funds to a RRH project by the owner, member of the organization, or agent...

    Science.gov (United States)

    2010-01-01

    ... income; however, interest must be reasonable. The proposal may be denied if Rural Development financing... the loan will be filed against the property securing the Rural Development loan or against project... by the borrower and Rural Development at the time of the advance and the financial position of the...

  9. Proceedings of the symposium on the joint research project between JAERI and Universities. Status and perspective of the advanced radiation technology project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    This report describes the Proceedings of the Symposium on the Joint Research Project between JAERI and Universities -Status and Perspective of the Advanced Radiation Technology Project-, held at Tokyo on January 27, 1999. After a series of conferences which had been held at the second or third year to present the main activities of this unique collaborative project system, the symposium was particularly focused on critical reviewing of the project and on its future. The scientific papers presented were the recent achievements in the themes: 1) nuclear spectroscopy and nuclear materials science with an isotope separator on-line; 2) radiation shielding and nuclear data for use of accelerators; 3) materials analysis methods using ion beams; 4) microstructure in polymer materials irradiated with ions; 5) effects of transmutation products in fusion-reactor materials; 6) physiological study of plants using positron-emitting isotopes. The new theme titled 'Development and application of micro PIXE analysis in the atmospheric pressure' was proposed. Eight panelists discussed the future of the project. The 17 papers are indexed individually. (J.P.N.)

  10. Advanced Neutron Source (ANS) Project

    International Nuclear Information System (INIS)

    Campbell, J.H.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts

  11. Global development of advanced nuclear power plants, and related IAEA activities

    International Nuclear Information System (INIS)

    2006-09-01

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is underlining the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies deployable in the near term as well as in the longer term. For applications in the medium to longer term, with rising expectations for the role of nuclear energy in the future, technological innovation has become a strong focus of nuclear power technology developments by many Member States. To meet Member States' needs, the IAEA conducts activities to foster information exchange and collaborative research and development in the area of advanced nuclear reactor technologies. These activities include coordination of collaborative research, organization of international information exchange, and analyses of globally available technical data and results, with a focus on reducing nuclear power plant capital costs and construction periods while further improving performance, safety and proliferation resistance. In other activities, evolutionary and innovative advances are catalyzed for all reactor lines such as advanced water cooled reactors, high temperature gas cooled reactors, liquid metal cooled reactors and accelerator driven systems, including small and medium sized reactors. In addition, there are activities related to other applications of nuclear energy such as seawater desalination, hydrogen production, and other process heat applications. This brochure summarizes the worldwide status and the activities related to advanced nuclear power technology development and related IAEA activities. It includes a list of the collaborative research and development projects conducted by the IAEA, as well as of the status reports and other publications produced

  12. Strategic Institutional Change to Support Advancement of Women Scientists in the Academy: Lessons from a Study of ADVANCE-IT Projects

    Science.gov (United States)

    Laursen, S. L.; Austin, A. E.; Soto, M.; Martinez, D.

    2011-12-01

    While women's representation among undergraduate and graduate degree-earners has grown steadily in most science fields, progress at the faculty level has been slow to realize, especially in upper academic ranks and in higher status institutions. This is only partly explained by the slow turnover of faculty positions. While some efforts to address this issue have aimed to support individual women and foster their career success, the National Science Foundation's ADVANCE program has taken a different approach, calling for institutions to take a systemic and organizational approach to enhance women's representation in the academy. Since 2001, some 50 institutions have received ADVANCE Institutional Transformation (IT) awards to develop such systemic approaches. Most ADVANCE-IT projects have attended to structures (e.g. committee and departmental leadership roles), processes (e.g. hiring), policy (e.g. family leave), attitudes and awareness (e.g. training for chairs), and workplace climate, as well as interventions that focus on faculty members as valuable human resources. Our research team is studying ADVANCE institutions' approaches to organizational change, by identifying and categorizing individual change interventions, examining how they combine to build an overall change portfolio, and considering how change interventions are selected or adapted to fit a specific institutional context. Because universities are complex organizations composed of multiple, loosely coupled, interconnected sub-systems, an overall change strategy cannot depend on a single type of intervention. Yet any particular intervention might be deployed on behalf of multiple goals and in a variety of forms that may depend on the context, or institutional system, in which it is introduced. We will discuss some common types of strategic intervention used in ADVANCE-IT projects, categorized by Bolman and Deal's (1991) four main perspectives or "lenses" for understanding organizational issues. The

  13. Rapid E-learning Development Strategies and a Multimedia Project Design Model

    Science.gov (United States)

    Sözcü, Ömer Faruk; Ipek, Ismail

    2014-01-01

    The purpose of the study is to discuss e-learning design strategies which can be used for multimedia projects as a design model. Recent advances in instructional technologies have been found to be very important in the design of training courses by using rapid instructional design (ID) approaches. The approaches were developed to use in training…

  14. Development of Advanced Spent Fuel Management Process

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G. (and others)

    2007-06-15

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm{sup 2} and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields.

  15. Development of Advanced Spent Fuel Management Process

    International Nuclear Information System (INIS)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G.

    2007-06-01

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm 2 and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields

  16. Advanced CANDU reactors

    International Nuclear Information System (INIS)

    Dunn, J.T.; Finlay, R.B.; Olmstead, R.A.

    1988-12-01

    AECL has undertaken the design and development of a series of advanced CANDU reactors in the 700-1150 MW(e) size range. These advanced reactor designs are the product of ongoing generic research and development programs on CANDU technology and design studies for advanced CANDU reactors. The prime objective is to create a series of advanced CANDU reactors which are cost competitive with coal-fired plants in the market for large electricity generating stations. Specific plant designs in the advanced CANDU series will be ready for project commitment in the early 1990s and will be capable of further development to remain competitive well into the next century

  17. Establishing a portfolio of quality-improvement projects in pediatric surgery through advanced improvement leadership systems.

    Science.gov (United States)

    Gerrein, Betsy T; Williams, Christina E; Von Allmen, Daniel

    2013-01-01

    Formal quality-improvement (QI) projects require that participants are educated in QI methods to provide them with the capability to carry out successful, meaningful work. However, orchestrating a portfolio of projects that addresses the strategic mission of the institution requires an extension of basic QI training to provide the division or business unit with the capacity to successfully develop and manage the portfolio. Advanced Improvement Leadership Systems is a program to help units create a meaningful portfolio. This program, used by the Division of Pediatric General and Thoracic Surgery at Cincinnati Children's Hospital Medical Center, helped establish a portfolio of targeted QI projects designed to achieve outstanding outcomes at competitive costs in multiple clinical areas aligned with the institution's strategic goals (improve disease-based outcomes, patient safety, flow, and patient and family experience). These objectives are addressed in an institutional strategic plan built around 5 core areas: Safety, Productivity, Care Coordination and Outcomes, Patient and Family Experience, and Value. By combining the portfolio of QI projects with improvements in the divisional infrastructure, effective improvement efforts were realized throughout the division. In the 9 months following the program, divisional capability resulted in a 16.5% increase (5.7% to 22.2%) of formally trained staff working on 10 QI teams. Concurrently, a leadership team, designed to coordinate projects, remove barriers, and provide technical support, provided the capacity to pursue this ongoing effort. The Advanced Improvement Leadership Systems program increased the Division's efficiency and effectiveness in pursing the QI mission that is integral at our hospital.

  18. Establishing a Portfolio of Quality-Improvement Projects in Pediatric Surgery through Advanced Improvement Leadership Systems

    Science.gov (United States)

    Gerrein, Betsy T; Williams, Christina E; von Allmen, Daniel

    2013-01-01

    Formal quality-improvement (QI) projects require that participants are educated in QI methods to provide them with the capability to carry out successful, meaningful work. However, orchestrating a portfolio of projects that addresses the strategic mission of the institution requires an extension of basic QI training to provide the division or business unit with the capacity to successfully develop and manage the portfolio. Advanced Improvement Leadership Systems is a program to help units create a meaningful portfolio. This program, used by the Division of Pediatric General and Thoracic Surgery at Cincinnati Children’s Hospital Medical Center, helped establish a portfolio of targeted QI projects designed to achieve outstanding outcomes at competitive costs in multiple clinical areas aligned with the institution’s strategic goals (improve disease-based outcomes, patient safety, flow, and patient and family experience). These objectives are addressed in an institutional strategic plan built around 5 core areas: Safety, Productivity, Care Coordination and Outcomes, Patient and Family Experience, and Value. By combining the portfolio of QI projects with improvements in the divisional infrastructure, effective improvement efforts were realized throughout the division. In the 9 months following the program, divisional capability resulted in a 16.5% increase (5.7% to 22.2%) of formally trained staff working on 10 QI teams. Concurrently, a leadership team, designed to coordinate projects, remove barriers, and provide technical support, provided the capacity to pursue this ongoing effort. The Advanced Improvement Leadership Systems program increased the Division’s efficiency and effectiveness in pursing the QI mission that is integral at our hospital. PMID:24361020

  19. Integrating Project-Based Service-Learning into an Advanced Environmental Chemistry Course

    Science.gov (United States)

    Draper, Alison J.

    2004-01-01

    An active service-learning research work is conducted in the field of advanced environmental chemistry. Multiple projects are assigned to students, which promote individual learning skills, self-confidence as scientists, and a deep understanding of the environmental chemist's profession.

  20. Report on fabrication of pin components for fuel fabrication in FUJI project (Co-operation in the research and development of advanced sphere-pac fuel among PSI, JNC, and NRG)

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Hinai, Hiroshi; Shigetome, Yoshiaki; Kono, Shusaku; Matsuzaki, Masaaki

    2003-03-01

    Japan Nuclear Cycle Development Institute (JNC) has conducted the co-operation concerning vibro-packed fuels with Paul Scherrer Institut (PSI) in Switzerland and Nuclear Research and consultancy Group (NRG) in the Netherlands. The project 'Research and Development of advanced Sphere-pac Fuel' is called FUJI (FUel irradiations for JNC and PSI) Project. In this project, three types of fuels that are sphere-pac fuels, vipac fuels, and pellet fuels will be irradiated in the High Flux Reactor (HFR) to compare their performance. Based on the drawing which has been agreed among three parties, fabrication of the pin components and welding of the upper and lower connection end plugs were performed in accordance with ISO9001 in JNC. This report describes data of the fabricated pin components, results of welding qualification tests, and quality assurance of the welded components. The fabrication of pin components was successfully completed and they were delivered to PSI in October 2002. (author)

  1. Guidebook on the development of projects for uranium mining and ore processing

    International Nuclear Information System (INIS)

    1991-04-01

    Bringing a uranium operation into production involves a sequence of interrelated steps. These are outlined in the simplified diagram of Fig. 1. The challenge is to determine how the various steps of the development sequence should function and whether the costs are sufficiently low to return a positive benefit to the owner. This Guidebook has been prepared to aid in the planning, development and implementation of feasible uranium projects. It is one in a series of publications by the IAEA. This guidebook is essentially the executive summary of the other publications. It is an overview of the systematic approach to project development. It might be viewed as the ''road map'' of a project. A list of other publications in this series is provided in the Bibliography. Each chapter of the Guidebook addresses a critical aspect of project development. Chapters follow a general sequence, but none should be considered in isolation. Each Chapter presents an overview of the requirements for reaching decisions necessary to advance a project. References are provided to more definitive information and to documents which will be required by technical personnel on a project. Such detailed publications include IAEA books such as ''An Instruction Manual on Methods for Estimation of Uranium Ore Reserves'', and the ''Significance of Mineralogy in the Development of Flow Sheets for Processing Uranium Ores''. This Guidebook does not detail how to do project development but rather what must be done to insure that all critical elements of a project are considered. Refs, figs and tabs

  2. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  3. Programmes and projects for high-temperature reactor development

    International Nuclear Information System (INIS)

    Bogusch, Edgar; Hittner, Dominique

    2009-01-01

    An increasing attention has to be recognised worldwide on the development of High-Temperature Reactors (HTR) which has started in Germany and other countries in the 1970ies. While pebble bed reactors with spherical fuel elements have been developed and constructed in Germany, countries such as France, the US and Russia investigated HTR concepts with prismatic block-type fuel elements. The concept of a modular HTR formerly developed by Areva NP was an essential basis for the HTR-10 in China. A pebble bed HTR for electricity production is developed in South Africa. The construction is planned after the completion of the licensing procedure. Also the US is planning an HTR under the NGNP (Next Generation Nuclear Plant) Project. Due to the high temperature level of the helium coolant, the HTR can be used not only for electricity production but also for supply of process heat. Including its inherent safety features the HTR is an attractive candidate for heat supply to various types of plants e.g. for hydrogen production or coal liquefactions. The conceptual design of an HTR with prismatic fuel elements for the cogeneration of electricity and process heat has been developed by Areva NP. On the European scale the HTR development is promoted by the RAPHAEL (ReActor for Process heat, Hydrogen And ELectricity generation) project. RAPHAEL is an Integrated Project of the Euratom 6th Framework Programme for the development of technologies towards a Very High-Temperature Reactor (VHTR) for the production of electricity and heat. It is financed jointly by the European Commission and the partners of the HTR Technology Network (HTR-TN) and coordinated by Areva NP. The RAPHAEL project not only promotes HTR development but also the cooperation with other European projects such as the material programme EXTREMAT. Furthermore HTR technology is investigated in the frame of Generation IV International Forum (GIF). The development of a VHTR with helium temperatures above 900 C for the

  4. Development of the advanced CANDU technology

    International Nuclear Information System (INIS)

    Suk, Soo Dong; Min, Byung Joo; Na, Y. H.; Lee, S. Y.; Choi, J. H.; Lee, B. C.; Kim, S. N.; Jo, C. H.; Paik, J. S.; On, M. R.; Park, H. S.; Kim, S. R.

    1997-07-01

    The purpose of this study is to develop the advanced design technology to improve safety, operability and economy and to develop and advanced safety evaluation system. More realistic and reasonable methodology and modeling was employed to improve safety margin in containment analysis. Various efforts have been made to verify the CATHENA code which is the major safety analysis code for CANDU PHWR system. Fully computerized prototype ECCS was developed. The feasibility study and conceptual design of the distributed digital control system have been performed as well. The core characteristics of advanced fuel cycle, fuel management and power upgrade have been studied to determine the advanced core. (author). 77 refs., 51 tabs., 108 figs

  5. Development of the advanced CANDU technology

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Na, Y H; Lee, S Y; Choi, J H; Lee, B C; Kim, S N; Jo, C H; Paik, J S; On, M R; Park, H S; Kim, S R [Korea Electric Power Co., Taejon (Korea, Republic of)

    1997-07-01

    The purpose of this study is to develop the advanced design technology to improve safety, operability and economy and to develop and advanced safety evaluation system. More realistic and reasonable methodology and modeling was employed to improve safety margin in containment analysis. Various efforts have been made to verify the CATHENA code which is the major safety analysis code for CANDU PHWR system. Fully computerized prototype ECCS was developed. The feasibility study and conceptual design of the distributed digital control system have been performed as well. The core characteristics of advanced fuel cycle, fuel management and power upgrade have been studied to determine the advanced core. (author). 77 refs., 51 tabs., 108 figs.

  6. Experiences of project developers around CDM projects in South Africa

    International Nuclear Information System (INIS)

    Thurner, Thomas W.; Varughese, Arun

    2013-01-01

    Project developers in South Africa are puzzled with the long process of evaluating and registering their CDM projects. In addition to other obstacles, we find that South African big businesses are rather reluctant to engage in any new business activities such as CDM projects and municipalities often lack the necessary flexibility. This offers opportunities for small-scale project developers who spot the opportunities and find creative solutions to overcome these difficulties. - Highlights: • First paper analysing the experience of small project developers in South Africa. • Project developers in South Africa are puzzled with the long process. • South African big businesses are reluctant to engage in CDM projects. • Small-scale project developers spot opportunities and find creative solutions to overcome difficulties. • Also, we saw learning processes of South African administration in support of CDM projects

  7. Advanced Learning Theories Applied to Leadership Development

    Science.gov (United States)

    2006-11-01

    Center for Army Leadership Technical Report 2006-2 Advanced Learning Theories Applied to Leadership Development Christina Curnow...2006 5a. CONTRACT NUMBER W91QF4-05-F-0026 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Advanced Learning Theories Applied to Leadership Development 5c...ABSTRACT This report describes the development and implementation of an application of advanced learning theories to leadership development. A

  8. Multiple Perspective Approach for the Development of Information Systems Based on Advanced Mathematical Models

    DEFF Research Database (Denmark)

    Carugati, Andrea

    through negotiation and democratic decision making will it be possible for the team members to have their current weltanschauung represented in decision making. Thirdly, geographical distribution and loose coupling foster individualist rather than group behavior. The more the social tissue is disconnected...... to the customers of the system. The use of democratic decision making that brings together the team members on regular basis contributes to both the reconstruction of the social tissue and to the satisfaction of the development team as customer of the project. Fourth, the novelty of the technology created problems......This dissertation presents the results of a three-year long case study of an information systems development project where a scheduling and control system was developed for a manufacturing company. The project goal was to test the feasibility of a new technology called advanced mathematical...

  9. Advanced Neutron Source (ANS) Project progress report

    International Nuclear Information System (INIS)

    McBee, M.R.; Chance, C.M.

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I ampersand C research and development; facility concepts; design; and safety

  10. Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Terrance [Ford Motor Co., Dearborn, MI (United States)

    2015-12-31

    This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, and to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.

  11. Advanced servomanipulator development

    International Nuclear Information System (INIS)

    Kuban, D.P.

    1985-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller (DAMC) or master, and the control system. The ASM is remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world

  12. Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

    Energy Technology Data Exchange (ETDEWEB)

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham; Sachdev, Anil K.; Quinn, James; Krupitzer, Ronald; Sun, Xin

    2015-06-01

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.

  13. Advanced Electrical, Optical and Data Communication Infrastructure Development

    Energy Technology Data Exchange (ETDEWEB)

    Simon Cobb

    2011-04-30

    The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

  14. IAEA activities in technology development for advanced water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Juhn, Poong Eil; Kupitz, Juergen; Cleveland, John; Lyon, Robert; Park, Je Won

    2003-01-01

    As part of its Nuclear Power Programme, the IAEA conducts activities that support international information exchange, co-operative research and technology assessments and advancements with the goal of improving the reliability, safety and economics of advanced water-cooled nuclear power plants. These activities are conducted based on the advice, and with the support, of the IAEA Department of Nuclear Energy's Technical Working Groups on Advanced Technologies for Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs). Assessments of projected electricity generation costs for new nuclear plants have shown that design organizations are challenged to develop advanced designs with lower capital costs and short construction times, and sizes, including not only large evolutionary plants but also small and medium size plants, appropriate to grid capacity and owner financial investment capability. To achieve competitive costs, both proven means and new approaches should be implemented. The IAEA conducts activities in technology development that support achievement of improved economics of water-cooled nuclear power plants (NPPs). These include fostering information sharing and cooperative research in thermo-hydraulics code validation; examination of natural circulation phenomena, modelling and the reliability of passive systems that utilize natural circulation; establishment of a thermo-physical properties data base; improved inspection and diagnostic techniques for pressure tubes of HWRs; and collection and balanced reporting from recent construction and commissioning experiences with evolutionary water-cooled NPPs. The IAEA also periodically publishes Status Reports on global development of advanced designs. (author)

  15. Prospects for the development of advanced reactors. [Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, B. A.; Kupitz, J.; Cleveland, J. [International Atomic Energy Agency Vienna (Austria). Dept. of Nuclear Energy and Safety

    1992-01-01

    Energy supply is an important prerequisite for further socio-economic development, especially in developing countries where the per capita energy use is only a very small fraction of that in industrialized countries. Nuclear energy is an essentially unlimited energy resource with the potential to provide this energy in the form of electricity, district heat and process heat under environmentally acceptable conditions. However, this potential will be realized only if nuclear power plants can meet the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide a tremendous amount of experience has been accumulated during development, licensing, construction and operation of nuclear power reactors. The experience forms a sound basis for further improvements. Nuclear programmes in many countries are addressing the development of advanced reactors which are intended to have better economics, higher reliability and improved safety in order to overcome the current concerns of nuclear power. Advanced reactors now being developed could help to meet the demand for new plants in developed and developing countries, not only for electricity generation, but also for district heating, desalination and for process heat. The IAEA, as the only global international governmental organization dealing with nuclear power, promotes international information exchange and international co-operation between all countries with their own advanced nuclear power programmes and offers assistance to countries with an interest in exploratory or research programmes.

  16. Project of Atomic Energy Technology Record

    International Nuclear Information System (INIS)

    Song, K. C.; Ko, Y. C.; Kwon, K. C.

    2012-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records whole process, from the background to the performance, of each category in all fields of nuclear science technology which have been researched and developed at KAERI. This project includes development of Data And Documents Advanced at KAERI. This project includes development of Data And Documents Advanced Management System(DADAMS) to collect, organize and preserve various records occurred in each research and development process. In addition, it means the whole records related to nuclear science technology for the past, present and future. This report summarizes research contents and results of 'Project of Atomic Energy Technology Record'. Section 2 summarizes the theoretical background, the current status of records management in KAERI and the overview of this project. And Section 3 to 6 summarize contents and results performed in this project. Section 3 is about the process of sectoral technology record, Section 4 summarizes the process of Information Strategy Master Plan(ISMP), Section 5 summarizes the development of Data And Documents Advanced Management System(DADAMS) and Section 6 summarizes the process of collecting, organizing and digitalizing of records

  17. B ampersand W PWR advanced control system algorithm development

    International Nuclear Information System (INIS)

    Winks, R.W.; Wilson, T.L.; Amick, M.

    1992-01-01

    This paper discusses algorithm development of an Advanced Control System for the B ampersand W Pressurized Water Reactor (PWR) nuclear power plant. The paper summarizes the history of the project, describes the operation of the algorithm, and presents transient results from a simulation of the plant and control system. The history discusses the steps in the development process and the roles played by the utility owners, B ampersand W Nuclear Service Company (BWNS), Oak Ridge National Laboratory (ORNL), and the Foxboro Company. The algorithm description is a brief overview of the features of the control system. The transient results show that operation of the algorithm in a normal power maneuvering mode and in a moderately large upset following a feedwater pump trip

  18. The ADVANCE project: Formal evaluation of the targeted deployment. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE) was an invehicle advanced traveler information system (ATIS) that operated in the northwest suburbs of Chicago, Illinois. It was designed to provide origin-destination shortest-time route guidance to a vehicle based on (a) an on-board static (fixed) data base of average network link travel times by time of day, combined as available and appropriate with (b) dynamic (real-time) information on traffic conditions provided by radio frequency (RF) communications to and from a traffic information center (TIC). Originally conceived in 1990 as a major project that would have installed 3,000 to 5,000 route guidance units in privately owned vehicles throughout the test area, ADVANCE was restructured in 1995 as a {open_quotes}targeted deployment,{close_quotes} in which approximately 80 vehicles were to be equipped with the guidance units - Mobile Navigation Assistants (MNAs) - to be in full communication with the TIC while driving the ADVANCE test area road system. Volume one consists of the evaluation managers overview report, and several appendices containing test results.

  19. Micromagnetic Code Development of Advanced Magnetic Structures Final Report CRADA No. TC-1561-98

    Energy Technology Data Exchange (ETDEWEB)

    Cerjan, Charles J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shi, Xizeng [Read-Rite Corporation, Fremont, CA (United States)

    2017-11-09

    The specific goals of this project were to: Further develop the previously written micromagnetic code DADIMAG (DOE code release number 980017); Validate the code. The resulting code was expected to be more realistic and useful for simulations of magnetic structures of specific interest to Read-Rite programs. We also planned to further the code for use in internal LLNL programs. This project complemented LLNL CRADA TC-840-94 between LLNL and Read-Rite, which allowed for simulations of the advanced magnetic head development completed under the CRADA. TC-1561-98 was effective concurrently with LLNL non-exclusive copyright license (TL-1552-98) to Read-Rite for DADIMAG Version 2 executable code.

  20. Clinical software development for the Web: lessons learned from the BOADICEA project.

    Science.gov (United States)

    Cunningham, Alex P; Antoniou, Antonis C; Easton, Douglas F

    2012-04-10

    In the past 20 years, society has witnessed the following landmark scientific advances: (i) the sequencing of the human genome, (ii) the distribution of software by the open source movement, and (iii) the invention of the World Wide Web. Together, these advances have provided a new impetus for clinical software development: developers now translate the products of human genomic research into clinical software tools; they use open-source programs to build them; and they use the Web to deliver them. Whilst this open-source component-based approach has undoubtedly made clinical software development easier, clinical software projects are still hampered by problems that traditionally accompany the software process. This study describes the development of the BOADICEA Web Application, a computer program used by clinical geneticists to assess risks to patients with a family history of breast and ovarian cancer. The key challenge of the BOADICEA Web Application project was to deliver a program that was safe, secure and easy for healthcare professionals to use. We focus on the software process, problems faced, and lessons learned. Our key objectives are: (i) to highlight key clinical software development issues; (ii) to demonstrate how software engineering tools and techniques can facilitate clinical software development for the benefit of individuals who lack software engineering expertise; and (iii) to provide a clinical software development case report that can be used as a basis for discussion at the start of future projects. We developed the BOADICEA Web Application using an evolutionary software process. Our approach to Web implementation was conservative and we used conventional software engineering tools and techniques. The principal software development activities were: requirements, design, implementation, testing, documentation and maintenance. The BOADICEA Web Application has now been widely adopted by clinical geneticists and researchers. BOADICEA Web

  1. Integrating Project-Based Service-Learning into an Advanced Environmental Chemistry Course

    Science.gov (United States)

    Draper, Alison J.

    2004-02-01

    In an advanced environmental chemistry course, the inclusion of semester-long scientific service projects successfully integrated the research process with course content. Each project involved a unique community-based environmental analysis in which students assessed an aspect of environmental health. The projects were due in small pieces at even intervals, and students worked independently or in pairs. Initially, students wrote a project proposal in which they chose and justified a project. Following a literature review of their topic, they drafted sampling and analysis plans using methods in the literature. Samples were collected and analyzed, and all students assembled scientific posters describing the results of their study. In the last week of the semester, the class traveled to a regional professional meeting to present the posters. In all, students found the experience valuable. They learned to be professional environmental chemists and learned the value of the discipline to community health. Students not only learned about their own project in depth, but they were inspired to learn textbook material, not for an exam, but because it helped them understand their own project. Finally, having a community to answer to at the end of the project motivated students to do careful work.

  2. FY 2000 report on the research cooperation project on the research cooperative follow-up for development of the manufacturing technology supported by advanced and integrated information system through cooperation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The manufacturing technology supported by advanced and integrated information system through cooperation (MATIC), that is, a project supporting the production technology including the international information system and CAD/CAM system, etc. was carried out from FY 1994 to FY 1998. From FY 1999, the follow-up project is being implemented for the spread of the MATIC results, support for the independent R and D and the technical guidance. China, Indonesia, Malaysia and Singapore participated in this project, by which the support and technical guidance were given in three fields: automobiles/the parts; household electric appliances/the parts; fiber/apparel. At present, each country is continuing its own activity for using the system developed in the MATIC project in its country. In this fiscal year, researchers were sent to each country for supporting the activities. Further, the MATIC follow-up committee was established to conduct the drawing-up of a business plan, grasp of the state of the spread/R and D, discussion about problems/subjects, comprehensive evaluation of the MATIC project, etc. (NEDO)

  3. A transdisciplinary approach to developing a web-based nursing experiential log system for advanced practice nursing clinical experiences.

    Science.gov (United States)

    Olson, Brandon D; Fauchald, Sally K

    2011-11-01

    This article describes a transdisciplinary project between the computer information systems department and the graduate nursing department of a higher education institution. The project is the planning, development, and implementation of a Web-based nursing experiential log system for advanced practice nursing clinical experiences, which was funded by a Nursing Education Practice and Retention grant from the Health Resources and Services Administration. The article explains the concept and benefits of the transdisciplinary nature of the project. The design team, project leadership, and roles within the team are reviewed, including the role of end-user faculty in the design process. The article describes the focus and scope of the Web-based experiential log system database that is used to document and track advanced practice nursing student clinical experiences, as well as a summary of the design process used to develop the log system and the specific functionality of the database system. The implementation process, including end-user training, pilot implementation, and modifications, lessons learned, and future directions of the project are addressed. The article concludes with the benefits to the clinical experience and graduate nursing program that have been noted since the implementation of the system.

  4. Development of environmentally advanced hydropower turbine system design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  5. Development of environmentally advanced hydropower turbine system design concepts

    International Nuclear Information System (INIS)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr.

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower''s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable

  6. All projects related to | Page 145 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    A Rights-Based Approach to Internet Policy and Governance for the Advancement of Economic, Social, and Cultural Rights. Project. The debate on Internet freedom has ... Toward More Equitable Primary Health Care in Argentina and Latin America through Intersectoral Approaches. Project. Improving primary health care for ...

  7. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  8. Advanced Fingerprint Analysis Project Fingerprint Constituents

    Energy Technology Data Exchange (ETDEWEB)

    GM Mong; CE Petersen; TRW Clauss

    1999-10-29

    The work described in this report was focused on generating fundamental data on fingerprint components which will be used to develop advanced forensic techniques to enhance fluorescent detection, and visualization of latent fingerprints. Chemical components of sweat gland secretions are well documented in the medical literature and many chemical techniques are available to develop latent prints, but there have been no systematic forensic studies of fingerprint sweat components or of the chemical and physical changes these substances undergo over time.

  9. Technological Education for the Rural Community (TERC) Project: Technical Mathematics for the Advanced Manufacturing Technician

    Science.gov (United States)

    McCormack, Sherry L.; Zieman, Stuart

    2017-01-01

    Hopkinsville Community College's Technological Education for the Rural Community (TERC) project is funded through the National Science Foundation Advanced Technological Education (NSF ATE) division. It is advancing innovative educational pathways for technological education promoted at the community college level serving rural communities to fill…

  10. Data management system advanced development

    Science.gov (United States)

    Douglas, Katherine; Humphries, Terry

    1990-01-01

    The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.

  11. [Provision of integrity and reliability in hygienic examination of investment projects for human capital development].

    Science.gov (United States)

    Tarkhov, P V; Matsenko, A M; Krugliak, A P; Derkach, Zh V

    2012-01-01

    To reach normal competitiveness in world division of labour, investment projects should stimulate development of human capital towards advance of modern technologies and organizational development of all types of labour. At present time there are only separate calculations of certain types of people's health damage and completely disparate matters of damage compensation exceptionally for chemical contamination effects. The purpose of the paper is development of algorithms to provide hygienic welfare of human capital in investment projects. For this purpose in investments assessment and hygienic examination it is necessary to apply complete and comprehensive (systematic) evaluation of all factors that influence human capital welfare and practical hygienic and research institutions should be focused on systematic elimination of possible dangers and risks of investment projects.

  12. Framework Programmable Platform for the Advanced Software Development Workstation (FPP/ASDW). Demonstration framework document. Volume 1: Concepts and activity descriptions

    Science.gov (United States)

    Mayer, Richard J.; Blinn, Thomas M.; Dewitte, Paul S.; Crump, John W.; Ackley, Keith A.

    1992-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at effectively combining tool and data integration mechanisms with a model of the software development process to provide an intelligent integrated software development environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The Advanced Software Development Workstation (ASDW) program is conducting research into development of advanced technologies for Computer Aided Software Engineering (CASE).

  13. Development of advanced ceramics at AECL

    International Nuclear Information System (INIS)

    Palmer, B.J.F.; MacEwen, S.R.; Sawicka, B.D.; Hayward, P.J.; Sridhar, S.

    1986-12-01

    Atomic Energy of Canada Limited (AECL) has a long history of developing ceramics for nuclear fission and fusion applications. AECL is now applying its multidisciplinary materials R and D capabilities, including unique capabilities in ceramic processing and nondestructive evaluation, to develop advanced ceramic materials for commercial and industrial applications. This report provides an overview of the facilities and programs associated with the development of advanced ceramics at AECL

  14. Hydrocarbons. Independent Learning Project for Advanced Chemistry (ILPAC). Unit O1.

    Science.gov (United States)

    Inner London Education Authority (England).

    This unit on hydrocarbons is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit is divided into sections dealing with alkanes, alkenes, alkynes, arenes, and several aspects of the petroleum industry. Two experiments, exercises (with answers), and pre- and post-tests are included.…

  15. Recent advances and future projections in clinical radionuclide imaging

    International Nuclear Information System (INIS)

    Peters, A.M.

    1990-01-01

    This outline review of recent advances in radionuclide imaging draws attention to developments in nuclear medicine of the urinary tract such as Captopril renography and the introduction of MAG-3, the technetium-99m labelled mimic of hippuran, the use of radionuclides for infection diagnosis, advances in lung perfusion scanning, new radiopharmaceuticals for cardiac imaging, and developments in radiopharmaceuticals for imaging tumours, including gallium-67, thallium-201, and the development of radiolabelled monoclonal antibodies. Attention is drawn to the wider use of nuclear medicine in child care. (author)

  16. Report on Advanced Detector Development

    Energy Technology Data Exchange (ETDEWEB)

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  17. Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report

    Science.gov (United States)

    1994-01-01

    This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.

  18. Development of advanced PWR steam generator

    International Nuclear Information System (INIS)

    Saito, Itaru; Nakamura, Tomomichi

    1999-01-01

    In response to the increased power of the advanced PWR, it is necessary to develop a steam generator (SG) which has a large capacity with high performance and high reliability as well as being economical to produce. In this paper, the development of the design of a new SG for the advanced PWRs is described and compared with the design of a conventional SG. Moreover, an outline of a seismic verification test for the U-bend tube bundle which includes advanced anti-vibration bars (AVB) which are very important is described. As a result, it was verified that the bundle has sufficient strength and a relatively high attenuation to seismic loads. These results will be reflected in the detailed design of advanced AVBs. (author)

  19. ESTIMATION OF SURVIVAL IN PATIENTS WITH ADVANCED OVARIAN CANCER – ABSTRACT OF THE RESEARCH PROJECT

    Directory of Open Access Journals (Sweden)

    Špela Smrkolj

    2018-02-01

    Full Text Available Background: Morbidity and mortality caused by cancer persist to be an important health problem world- wide and in the European Union member states as well. In Slovenia, most ovarian cancer cases are detected in advanced stages, hence a rather high mortality rate. Aims: The purpose of this research project is to analyze the primary cytoreduction in the patients with advanced ovarian cancer. The main objective of the project is to assess the use of lap- aroscopy in the prediction of optimal cytoreduction in these patients. Applicative research project ‘Estimation of survial in patients with advanced ovarian can- cer based on primary laparoscopical assessment of optimal cytoreduction’ (L3-2371 was approved and has been financed by the Slovene Research Agency and co-financed by the Ministry of Health of RS; Duration: May 1, 2009–April 30, 2012. Methods: The research project will consist of retrospective and prospective study. In all the patients with advanced ovarian cancer managed at the Department of Obstetrics and Gynecol- ogy, University Medical Centre Ljubljana in the years 2003–2008, and in whom optimal primary cytoreduction was made using either laparoscopy or laparotomy, certain clinical and pathomorphological factors will be compared, and the effects of all analyzed factors on the outcome of treatment assessed. In the prospective study, we will aim at assessing the use of laparoscopy in the prediction of optimal cytoreduction in all newly detected cases using a laparoscopy-based score (Fagotti’s scoring system. Conclusions: The standard management of advanced ovarian cancer patients consists of primary surgical optimal and/or suboptimal cytoreduction followed by aggressive cytotoxic chemotherapy. In line with our experience and with that published most recently, laparoscopy seems to be a promising method with which we will attempt to most accurately assess the optimal cytoreduction in surgical treatment of ovarian cancer patients.

  20. Advances and Best Practices in Airborne Gravimetry from the U.S. GRAV-D Project

    Science.gov (United States)

    Diehl, Theresa; Childers, Vicki; Preaux, Sandra; Holmes, Simon; Weil, Carly

    2013-04-01

    The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, an official policy of the U.S. National Geodetic Survey as of 2007, is working to survey the entire U.S. and its holdings with high-altitude airborne gravimetry. The goal of the project is to provide a consistent, high-quality gravity dataset that will become the cornerstone of a new gravimetric geoid and national vertical datum in 2022. Over the last five years, the GRAV-D project has surveyed more than 25% of the country, accomplishing almost 500 flights on six different aircraft platforms and producing more than 3.7 Million square km of data thus far. This wealth of experience has led to advances in the collection, processing, and evaluation of high-altitude (20,000 - 35,000 ft) airborne gravity data. This presentation will highlight the most important practical and theoretical advances of the GRAV-D project, giving an introduction to each. Examples of innovation include: 1. Use of navigation grade inertial measurement unit data and precise lever arm measurements for positioning; 2. New quality control tests and software for near real-time analysis of data in the field; 3. Increased accuracy of gravity post-processing by reexamining assumptions and simplifications that were inconsistent with a goal of 1 mGal precision; and 4. Better final data evaluation through crossovers, additional statistics, and inclusion of airborne data into harmonic models that use EGM08 as a base model. The increases in data quality that resulted from implementation of the above advances (and others) will be shown with a case study of the GRAV-D 2008 southern Alaska survey near Anchorage, over Cook Inlet. The case study's statistics and comparisons to global models illustrate the impact that these advances have had on the final airborne gravity data quality. Finally, the presentation will summarize the best practices identified by the project from its last five years of experience.

  1. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  2. Development of Advanced Nuclear Materials for Extreme Applications

    International Nuclear Information System (INIS)

    Jang, Jinsung; Rhee, Chang Kyu; Kim, Dae Hwan

    2011-09-01

    One of the critical paths to develop and deploy the Generation IV nuclear systems is to procure the materials necessary to the key components of the systems. Very high temperature gas-cooled reactor, which is anticipated to run at the reactor out-let temperature of about 900 .deg. C. Therefore high temperature materials that can sustain the system at that high temperature region for long design life such as tens of years is pre-requisite. Commercial high temperature materials could be a first consideration, but some improvement by modification is essential for the development of the system, and development of advanced new materials is anticipated to be eventually required. Materials development, however, need a long lead time compared with other research and development areas. In this project NC (nano cluster) strengthened Ni-base alloys are attempted for the development for the very high temperature applications. Three commercial Ni-base high temperature alloys were used as the matrix phase, and nano-sized yttria particles are dispersed by mechanical alloying. Alternative methods to prepare the nano-sized composite powders were investigated. Ni-base nano composite powders, which were characterized by one of the methods, were characterized and confirmed to be useful

  3. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    International Nuclear Information System (INIS)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-01-01

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT 'dark current' background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or 'Back' detector, to both (1) minimize Compton background in the low-energy portion of the 'Front' scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as implemented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors

  4. The FEL development at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Arnold, N. D.; Benson, C.; Berg, S.; Berg, W.; Biedron, S. G.; Chae, Y. C.; Crosbie, E. A.; Decker, G.; Dejus, R. J.; Den Hartog, P.; Deriy, B.; Dortwegt, R.; Edrmann, M.; Freund, H. P.; Friedsam, H.; Galayda, J. N.; Gluskin, E.; Goeppner, G. A.; Grelick, A.; Huang, Z.; Jones, J.; Kang, Y.; Kim, K.-J.; Kim, S.; Kinoshita, K.; Lewellen, J. W.; Lill, R.; Lumpkin, A. H.; Makarov, O.; Markovich, G. M.; Milton, S. V.; Moog, E. R.; Nassiri, A.; Ogurtsov, V.; Pasky, S.; Power, J.; Tieman, B.; Trakhtenberg, E.; Travish, G.; Vasserman, I.; Walters, D. R.; Wang, J.; Xu, S.; Yang, B.

    1999-01-01

    Construction of a single-pass free-electron laser (FEL) based on the self-amplified spontaneous emission (SASE) mode of operation is nearing completion at the Advanced Photon Source (APS) with initial experiments imminent. The APS SASE FEL is a proof-of-principle fourth-generation light source. As of January 1999 the undulator hall, end-station building, necessary transfer lines, electron and optical diagnostics, injectors, and initial undulatory have been constructed and, with the exception of the undulatory, installed. All preliminary code development and simulations have also been completed. The undulator hall is now ready to accept first beam for characterization of the output radiation. It is the project goal to push towards fill FEL saturation, initially in the visible, but ultimately to W and VUV, wavelengths

  5. Improving safety through an integrated approach for advanced control room development

    International Nuclear Information System (INIS)

    Haugset, K.; Berg, O.; Bologna, S.; Foerdestroemmen, N.T.; Kvalem, J.; Nelson, W.R.; Yamane, N.

    1992-01-01

    With the fast development of computer technology, the potential exists for improving operational safety of nuclear plants by using advanced operator tools in the control room. Specific systems are being introduced, such as systems for alarm handling, failure detection, disturbance diagnosis, procedural advice and others, often based on process modeling techniques or expert system technology. To ensure a maximum benefit from the new technology, a careful integration of the various systems must, however, take place, resulting in a well coordinated interface between the operator and the process. The OECD Halden Reactor Project has started the development of an Integrated Surveillance And Control System (ISACS). The basis for the activity is the experience at Halden in developing specific Computerized Operator Support Systems (COSSs), and the activity around the experimental control room HAMMLAB where detailed validations of operator tools have been performed for a number of years. The first goal in the ISACS project is to have a first, limited prototype in operation at the end of 1990. Validation experiments will follow. (orig.)

  6. Improving safety through an integrated approach for advanced control room development

    International Nuclear Information System (INIS)

    Haugset, K.; Berg, O.; Foerdestroemmen, N.T.; Kvalem, J.; Nelson, W.R.

    1990-01-01

    With the fast development of computer technology, the potential exists for improving operational safety of nuclear plants by using advanced operator tools in the control room. Specific systems are being introduced, such as systems for alarm handling, failure detection, disturbance diagnosis, procedural advice and others, often based on process modeling techniques or expert system technology. To ensure a maximum benefit from the new technology, a careful integration of the various systems must, however, take place, resulting in a well coordinated interface between the operator and the process. The OECD Halden Reactor Project has started the development of an Integrated Surveillance And Control System (ISACS). The basis for the activity is the experience at Halden in developing specific Computerized Operator Support Systems (COSSs), and the activity around the experimental control room HAMMLAB where detailed validations of operator tools have been performed for a number of years. The first goal in the ISACS project is to have a first, limited prototype in operation at the end of 1990. Validation experiments will follow

  7. Advanced radiation detector development: Advanced semiconductor detector development: Development of a oom-temperature, gamma ray detector using gallium arsenide to develop an electrode detector

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1995-11-01

    The advanced detector development project at the University of Michigan has completed the first full year of its current funding. Our general goals are the development of radiation detectors and spectrometers that are capable of portable room temperature operation. Over the past 12 months, we have worked primarily in the development of semiconductor spectrometers with open-quotes single carrierclose quotes response that offer the promise of room temperature operation and good energy resolution in gamma ray spectroscopy. We have also begun a small scale effort at investigating the properties of a small non-spectroscopic detector system with directional characteristics that will allow identification of the approximate direction in which gamma rays are incident. These activities have made use of the extensive clean room facilities at the University of Michigan for semiconductor device fabrication, and also the radiation measurement capabilities provided in our laboratory in the Phoenix Building on the North Campus. In addition to our laboratory based activities, Professor Knoll has also been a participant in several Department of Energy review activities held in the Forrestal Building and at the Germantown site. The most recent of these has been service on a DOE review panel chaired by Dr. Hap Lamonds that is reviewing the detector development programs supported through the Office of Arms Control and International Security

  8. CANDU project development

    International Nuclear Information System (INIS)

    Hedges, K.R.

    1995-01-01

    Advanced CANDU reactor design strategy follows an evolutionary approach, taking manageable steps in the development of power plants from today's available designs, and in parallel carrying out longer-term studies to develop future-generation reactor concepts. The major emphasis is on safety, on on reducing cost and schedule. New features are developed and thoroughly proof-tested before introduction into designs, in order to maximize owner confidence. (author). 4 figs

  9. CANDU project development

    Energy Technology Data Exchange (ETDEWEB)

    Hedges, K R [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    Advanced CANDU reactor design strategy follows an evolutionary approach, taking manageable steps in the development of power plants from today`s available designs, and in parallel carrying out longer-term studies to develop future-generation reactor concepts. The major emphasis is on safety, on on reducing cost and schedule. New features are developed and thoroughly proof-tested before introduction into designs, in order to maximize owner confidence. (author). 4 figs.

  10. Oluvil Port Development Project

    DEFF Research Database (Denmark)

    Frigaard, Peter; Margheritini, Lucia

    Oluvil Port Development Project is the first development of a large port infrastructure in the entire eastern coastline of Sri Lanka. The project is supported by the Danish Foreign Ministry. Feasibility studies and detailed design studies were carried out by Lanka Hydraulic Institute Ltd during...... the years 1995 to 2003. The design was reviewed by COWI a/s. Construction of the port was started in 2008. MT Højgaard a/s acted as contractor. The outer breakwaters were constructed as first part of the project. During and after completion of the breakwaters a serious beach erosion and sand accumulation...... has been observed. Severe erosion is seen north of the harbour and some accumulation of sand is seen south of the harbour. On a sandy coastline like the one in Oluvil such erosion problems as observed are very typical. The report: Oluvil Port Development Project: Studies on Beach Erosion written...

  11. Cam Design Projects in an Advanced CAD Course for Mechanical Engineers

    Science.gov (United States)

    Ault, H. K.

    2009-01-01

    The objective of this paper is to present applications of solid modeling aimed at modeling of complex geometries such as splines and blended surfaces in advanced CAD courses. These projects, in CAD-based Mechanical Engineering courses, are focused on the use of the CAD system to solve design problems for applications in machine design, namely the…

  12. Reducing failures rate within the project documentation using Building Information Modelling, especially Level of Development

    Directory of Open Access Journals (Sweden)

    Prušková Kristýna

    2018-01-01

    Full Text Available Paper´s focus is on differences between traditional modelling in 2D software and modelling within the BIM technology. Research uncovers failures connected to the traditional way of designing and construction of project documentation. There are revealed and shown mismatches within the project documentation. Solution within the Building information modelling Technology is outlined. As a reference, there is used experience with design of specific building in both ways of construction of project documentation: in the way of traditional modelling and in the way when using BIM technology, especially using Level of Development. Output of this paper is pointing to benefits of using advanced technology in building design, thus Building Information Modelling, especially Level of Development, which leads to reducing failures rate within the project documentation.

  13. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    International Nuclear Information System (INIS)

    1997-01-01

    Bechtel, together with Amax Research and Development Center (Amax R ampersand D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications, (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at

  14. Management of research and development project

    International Nuclear Information System (INIS)

    Go, Seok Hwa; Hong Jeong Yu; Hyun, Byeong Hwan

    2010-12-01

    This book introduces summary on management of research and development project, prepare of research and development with investigation and analysis of paper, patent and trend of technology, structure of project, management model, management of project, management of project range, management of project time, management of project cost, management of project goods, management of project manpower, management of communication, management of project risk, management of project supply, management of outcome of R and D, management of apply and enroll of patent and management of technology transfer.

  15. Advancement of CMOS Doping Technology in an External Development Framework

    Science.gov (United States)

    Jain, Amitabh; Chambers, James J.; Shaw, Judy B.

    2011-01-01

    The consumer appetite for a rich multimedia experience drives technology development for mobile hand-held devices and the infrastructure to support them. Enhancements in functionality, speed, and user experience are derived from advancements in CMOS technology. The technical challenges in developing each successive CMOS technology node to support these enhancements have become increasingly difficult. These trends have motivated the CMOS business towards a collaborative approach based on strategic partnerships. This paper describes our model and experience of CMOS development, based on multi-dimensional industrial and academic partnerships. We provide to our process equipment, materials, and simulation partners, as well as to our silicon foundry partners, the detailed requirements for future integrated circuit products. This is done very early in the development cycle to ensure that these requirements can be met. In order to determine these fundamental requirements, we rely on a strategy that requires strong interaction between process and device simulation, physical and chemical analytical methods, and research at academic institutions. This learning is shared with each project partner to address integration and manufacturing issues encountered during CMOS technology development from its inception through product ramp. We utilize TI's core strengths in physical analysis, unit processes and integration, yield ramp, reliability, and product engineering to support this technological development. Finally, this paper presents examples of the advancement of CMOS doping technology for the 28 nm node and beyond through this development model.

  16. Design development of steel plate concrete modularization for the advanced PWR in Korea

    International Nuclear Information System (INIS)

    Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang; Kim, Taeyoung; Hwang, Geunha

    2008-01-01

    APR1400 TM - an advanced PWR - has been developed in Korea since 1992. Four APR1400 units - Shin Kori no.3,4 and Shin Uljin no.1,2 - are going to be built in a next decade. As for economical efficiency, construction cost per power generation Unit(W) is improved more than 10% compared to the former 1,000 MWe PWRs. Moreover, life-cycle maintenance cost is reduced to the world's most level. For construction period from first concrete pouring to commercial operation, 54 months for APR1400 and 36 months for n-th unit have been projected. Reduction of the construction term of the Nuclear Power Plant has been emphasized increasingly for the NPP construction Project because it would reduce the interest cost and uncertainty of the project. The reduction can also advance the return of investment. Some of the PPM(Prefabrication, Preassembly, and Modularization) techniques have been studied for the shortening the construction period of nuclear power plant. Especially for the internal structure of reactor containment building (RCB) in PWR whose term of construction is critical to the whole project, Steel Plate Concrete(SC) structure has been studied as one of alternative structural systems to the conventional Reinforced Concrete(RC) structure in APR1400. SC structure is considered appropriate for the modularization of the structure with its self-supporting. In addition, formwork can be dramatically eliminated when SC structural modules are used. The MKE (Ministry of Knowledge Economy) and KHNP (Korea Hydro and Nuclear Power Co., Ltd.) initiated the research and development of SC Structure in 2005. This paper presents design examples along with Codes and Standards of SC structure in nuclear power plant. (author)

  17. Project margins of advanced reactor design WWER-500

    International Nuclear Information System (INIS)

    Rogov, M.F.; Birukov, G.I.; Ershov, V.G.; Volkov, B.E.

    1994-01-01

    Project criteria for design of advanced WWER-500 reactor within design conditions are compared to the requirements of the Russian regulatory guides. Normal operation limits, safe operation limits for main anticipated operational occurrences and design limits accepted for design basis accidents are considered as in preliminary safety report. It is shown that the basic design criteria in the design of WWER-500 for the anticipated operational occurrences and for design basis accidents are more severe than required in the following regulatory guides General Safety Regulations for Nuclear Power Plants and Nuclear Safety Rules for Reactors of Nuclear Power Plants. This provides certain margins from safety point of view

  18. Development of an advanced intelligent robot navigation system

    International Nuclear Information System (INIS)

    Hai Quan Dai; Dalton, G.R.; Tulenko, J.; Crane, C.C. III

    1992-01-01

    As part of the US Department of Energy's Robotics for Advanced Reactors Project, the authors are in the process of assembling an advanced intelligent robotic navigation and control system based on previous work performed on this project in the areas of computer control, database access, graphical interfaces, shared data and computations, computer vision for positions determination, and sonar-based computer navigation systems. The system will feature three levels of goals: (1) high-level system for management of lower level functions to achieve specific functional goals; (2) intermediate level of goals such as position determination, obstacle avoidance, and discovering unexpected objects; and (3) other supplementary low-level functions such as reading and recording sonar or video camera data. In its current phase, the Cybermotion K2A mobile robot is not equipped with an onboard computer system, which will be included in the final phase. By that time, the onboard system will play important roles in vision processing and in robotic control communication

  19. U.S. Department of Energy & Nuclear Regulatory Commission Advanced Fuel Cycle Research & Development Seminar Series FY 2007 & 2008

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States)

    2008-08-01

    In fiscal year 2007, the Advanced Burner Reactor project initiated an educational seminar series for the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) personnel on various aspects of fast reactor fuel cycle closure technologies. This important work was initiated to inform DOE and NRC personnel on initial details of sodium-cooled fast reactor, separations, waste form, and safeguard technologies being considered for the Advanced Fuel Cycle Research and Development program, and to learn the important lesson from the licensing process for the Clinch River Breeder Reactor Plant that educating the NRC staff early in the regulatory process is very important and critical to a project success.

  20. Development of selected advanced aerodynamics and active control concepts for commercial transport aircraft

    Science.gov (United States)

    Taylor, A. B.

    1984-01-01

    Work done under the Energy Efficient Transport project in the field of advanced aerodynamics and active controls is summarized. The project task selections focused on the following: the investigation of long-duct nacelle shape variation on interference drag; the investigation of the adequacy of a simple control law for the elastic modes of a wing; the development of the aerodynamic technology at cruise and low speed of high-aspect-ratio supercritical wings of high performance; and the development of winglets for a second-generation jet transport. All the tasks involved analysis and substantial wind tunnel testing. The winglet program also included flight evaluation. It is considered that the technology base has been built for the application of high-aspect-ratio supercritical wings and for the use of winglets on second-generation transports.

  1. Advanced reactor development for non-electric applications

    International Nuclear Information System (INIS)

    Chang, M.H.; Kim, S.H.

    1996-01-01

    Advance in the nuclear reactor technology achieved through nuclear power programs carried out in the world has led nuclear communities to direct its attention to a better and peaceful utilization of nuclear energy in addition to that for power generation. The efforts for non-electric application of nuclear energy has been pursued in a limited number of countries in the world for their special needs. However, those needs and the associated efforts contributed largely to the development and practical realization of advanced reactors characterized by highly improved reactor safety and reliability by deploying the most up-to-date safety technologies. Due mainly to the special purpose of utilization, economic reasons and ease in implementation of new advanced technologies, small and medium reactors have become a major stream in the reactor developments for non-electric applications. The purpose of this paper is to provide, to the interested nuclear society, the overview of the development status and design characteristics of selected advanced nuclear reactors previously developed and/or currently under development specially for non-electric applications. Major design technologies employed in those reactors to enhance the reactor safety and reliability are reviewed to present the underlying principles of the design. Along with the overview, this paper also introduces a development program and major design characteristics of an advanced integral reactor (SMART) for co-generation purpose currently under conceptual development in Korea. (author)

  2. Advances in the development of interaction between the codes MCNPX and ANSYS Fluent and their fusion applications

    International Nuclear Information System (INIS)

    Colomer, C.; Salellas, J.; Ahmed, R.; Fabbrio, M.; Aleman, A.

    2012-01-01

    The advances are presented in the project for the development of a code of interaction between MCNPX y el ANSYS Fluent. Following the flow of the work carried out during the development of the project will study of the most appropriate remeshing algorithms between both codes. In addition explain the selection and implementation of methods to verify internally the correct transmission of the variables involved between both nets. Finally the selection of cases for verification and validation of the interaction between both codes in each of the possible fields of application will be exposed.

  3. Accelerating development of advanced inverters :

    Energy Technology Data Exchange (ETDEWEB)

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael; Schutz, Dustin

    2013-11-01

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  4. Automated Operations Development for Advanced Exploration Systems

    Science.gov (United States)

    Haddock, Angie T.; Stetson, Howard

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide "single button" intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system onboard the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System, along with the execution component design from within the HAL 9000 Space Operating System, this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA's Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  5. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  6. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  7. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    International Nuclear Information System (INIS)

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R and D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  8. The intelligent user interface for NASA's advanced information management systems

    Science.gov (United States)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  9. Engaging Clinical Nurses in Quality Improvement Projects.

    Science.gov (United States)

    Moore, Susan; Stichler, Jaynelle F

    2015-10-01

    Clinical nurses have the knowledge and expertise required to provide efficient and proficient patient care. Time and knowledge deficits can prevent nurses from developing and implementing quality improvement or evidence-based practice projects. This article reviews a process for professional development of clinical nurses that helped them to define, implement, and analyze quality improvement or evidence-based practice projects. The purpose of this project was to educate advanced clinical nurses to manage a change project from inception to completion, using the Six Sigma DMAIC (Define, Measure, Analyze, Improve, Control) Change Acceleration Process as a framework. One-to-one mentoring and didactic in-services advanced the knowledge, appreciation, and practice of advanced practice clinicians who completed multiple change projects. The projects facilitated clinical practice changes, with improved patient outcomes; a unit cultural shift, with appreciation of quality improvement and evidence-based projects; and engagement with colleagues. Project outcomes were displayed in poster presentations at a hospital exposition for knowledge dissemination. Copyright 2015, SLACK Incorporated.

  10. Program Evaluation - Automotive Lightweighting Materials Program Research and Development Projects Assessment of Benefits - Case Studies No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.

    2003-01-23

    This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamental materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal

  11. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-02-05

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT "dark current" background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or "Back" detector, to both (1) minimize Compton background in the low-energy portion of the "Front" scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as impelmented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors.

  12. Pilot Project: analysis, development and projection

    OpenAIRE

    Tapia Abril, Verónica Emilia; Chérrez Rodas, Karina; García Pesántez, Gabriela Rosana; Maldonado Marchán, María Elisa; Bustamante Montesdeoca, José Luis

    2014-01-01

    Since the introduction of ICT in architecture and teaching, pedagogies of education have faced their learning paradigms change. Institutes of higher education have folded to this motion and have undergone a process of change by implementing multimedia elements in their subjects. Through the pilot project educational videos that aim to meet the highest standards of educational videos described by Van Dam have been developed. The project expects to generate educational videos for different depa...

  13. Development of Human Performance Analysis and Advanced HRA Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Won Dea; Park, Jin Kyun; Kim, Jae Whan; Kim, Seong Whan; Kim, Man Cheol; Ha, Je Joo

    2007-06-15

    The purpose of this project is to build a systematic framework that can evaluate the effect of human factors related problems on the safety of nuclear power plants (NPPs) as well as develop a technology that can be used to enhance human performance. The research goal of this project is twofold: (1) the development of a human performance database and a framework to enhance human performance, and (2) the analysis of human error with constructing technical basis for human reliability analysis. There are three kinds of main results of this study. The first result is the development of a human performance database, called OPERA-I/II (Operator Performance and Reliability Analysis, Part I and Part II). In addition, a standard communication protocol was developed based on OPERA to reduce human error caused from communication error in the phase of event diagnosis. Task complexity (TACOM) measure and the methodology of optimizing diagnosis procedures were also finalized during this research phase. The second main result is the development of a software, K-HRA, which is to support the standard HRA method. Finally, an advanced HRA method named as AGAPE-ET was developed by combining methods MDTA (misdiagnosis tree analysis technique) and K-HRA, which can be used to analyze EOC (errors of commission) and EOO (errors of ommission). These research results, such as OPERA-I/II, TACOM, a standard communication protocol, K-HRA and AGAPE-ET methods will be used to improve the quality of HRA and to enhance human performance in nuclear power plants.

  14. Development of Human Performance Analysis and Advanced HRA Methodology

    International Nuclear Information System (INIS)

    Jung, Won Dea; Park, Jin Kyun; Kim, Jae Whan; Kim, Seong Whan; Kim, Man Cheol; Ha, Je Joo

    2007-06-01

    The purpose of this project is to build a systematic framework that can evaluate the effect of human factors related problems on the safety of nuclear power plants (NPPs) as well as develop a technology that can be used to enhance human performance. The research goal of this project is twofold: (1) the development of a human performance database and a framework to enhance human performance, and (2) the analysis of human error with constructing technical basis for human reliability analysis. There are three kinds of main results of this study. The first result is the development of a human performance database, called OPERA-I/II (Operator Performance and Reliability Analysis, Part I and Part II). In addition, a standard communication protocol was developed based on OPERA to reduce human error caused from communication error in the phase of event diagnosis. Task complexity (TACOM) measure and the methodology of optimizing diagnosis procedures were also finalized during this research phase. The second main result is the development of a software, K-HRA, which is to support the standard HRA method. Finally, an advanced HRA method named as AGAPE-ET was developed by combining methods MDTA (misdiagnosis tree analysis technique) and K-HRA, which can be used to analyze EOC (errors of commission) and EOO (errors of ommission). These research results, such as OPERA-I/II, TACOM, a standard communication protocol, K-HRA and AGAPE-ET methods will be used to improve the quality of HRA and to enhance human performance in nuclear power plants

  15. Alida – Advanced Library for Integrated Development of Data Analysis Applications

    Directory of Open Access Journals (Sweden)

    Stefan Posch

    2017-03-01

    Full Text Available Data analysis procedures can often be modeled as a set of manipulation operations applied to input data and resulting in transformed intermediate and result data. The Java library Alida is providing an advanced development framework to support programmers in developing data analysis applications adhering to such a scheme. The main intention of Alida is to foster re-usability by offering well-defined, unified, modular APIs and execution procedures for operators, and to ease development by releasing developers from tedious tasks. Alida features automatic generation of handy graphical and command line user interfaces, a built-in graphical editor for workflow design, and an automatic documentation of analysis pipelines. Alida is available from its project webpage http://www.informatik.uni-halle.de/alida, on Github and via our Maven server.

  16. Current status of decommissioning projects and their strategies in advanced countries

    Energy Technology Data Exchange (ETDEWEB)

    Chung, U. S.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Park, J. H.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B

    2007-06-15

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The number of nuclear facilities to be dismantled will be much increased in future and the decommissioning industries will be enlarged. Keeping pace with this increasing tendency, each country formulated their own strategies and regulation systems, and applied their own technologies. The international organizations such as the IAEA and the OECD/NEA also prepared standards in technologies and regulation upon decommissioning and recommended to adopt them to the decommissioning projects. These strategies and technologies are very different country by country due to the different site dependent conditions and it will not be reasonable to evaluate their merits and weakness. The world wide status of the decommissioning, highlighted on that of 5 countries of USA, UK, France, Germany and Japan because they are advanced counties in nuclear industries, are summarized and their site specific conditions are evaluated. The scopes of the evaluation are decommissioning strategies, licensing procedures and requirements focused on decommissioning plan, waste management, technology development and so on. The detailed decommissioning progresses of several typical example sites were introduced. The activities on decommissioning field of the international organization, increased according to the enlarged decommissioning industries, are also summarized.

  17. Current status of decommissioning projects and their strategies in advanced countries

    International Nuclear Information System (INIS)

    Chung, U. S.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Park, J. H.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B.

    2007-06-01

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The number of nuclear facilities to be dismantled will be much increased in future and the decommissioning industries will be enlarged. Keeping pace with this increasing tendency, each country formulated their own strategies and regulation systems, and applied their own technologies. The international organizations such as the IAEA and the OECD/NEA also prepared standards in technologies and regulation upon decommissioning and recommended to adopt them to the decommissioning projects. These strategies and technologies are very different country by country due to the different site dependent conditions and it will not be reasonable to evaluate their merits and weakness. The world wide status of the decommissioning, highlighted on that of 5 countries of USA, UK, France, Germany and Japan because they are advanced counties in nuclear industries, are summarized and their site specific conditions are evaluated. The scopes of the evaluation are decommissioning strategies, licensing procedures and requirements focused on decommissioning plan, waste management, technology development and so on. The detailed decommissioning progresses of several typical example sites were introduced. The activities on decommissioning field of the international organization, increased according to the enlarged decommissioning industries, are also summarized

  18. Project studies

    DEFF Research Database (Denmark)

    Geraldi, Joana; Söderlund, Jonas

    2018-01-01

    Project organising is a growing field of scholarly inquiry and management practice. In recent years, two important developments have influenced this field: (1) the study and practice of projects have extended their level of analysis from mainly focussing on individual projects to focussing on micro......, and of the explanations of project practices they could offer. To discuss avenues for future research on projects and project practice, this paper suggests the notion of project studies to better grasp the status of our field. We combine these two sets of ideas to analyse the status and future options for advancing...... project research: (1) levels of analysis; and (2) type of research. Analysing recent developments within project studies, we observe the emergence of what we refer to as type 3 research, which reconciles the need for theoretical development and engagement with practice. Type 3 research suggests pragmatic...

  19. Final Report for SERDP Project RC-1649: Advanced Chemical Measurements of Smoke from DoD-prescribed Burns

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weise, David [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lincoln, E. N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sams, Robert L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cameron, Melanie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Veres, Patrick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yokelson, Robert J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Urbanski, Shawn [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Profeta, Luisa T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilman, Jessica [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuster, W. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Akagi, Sheryl [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stockwell, Chelsea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendoza, Albert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wold, Cyle E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Warneke, Carsten [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); de Gouw, Joost A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burling, Ian R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Reardon, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schneider, Matthew D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Griffith, David W.T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roberts, James M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-17

    Objectives: Project RC-1649, “Advanced Chemical Measurement of Smoke from DoD-prescribed Burns” was undertaken to use advanced instrumental techniques to study in detail the particulate and vapor-phase chemical composition of the smoke that results from prescribed fires used as a land management tool on DoD bases, particularly bases in the southeastern U.S. The statement of need (SON) called for “(1) improving characterization of fuel consumption” and “(2) improving characterization of air emissions under both flaming and smoldering conditions with respect to volatile organic compounds, heavy metals, and reactive gases.” The measurements and fuels were from several bases throughout the southeast (Camp Lejeune, Ft. Benning, and Ft. Jackson) and were carried out in collaboration and conjunction with projects 1647 (models) and 1648 (particulates, SW bases). Technical Approach: We used an approach that featured developing techniques for measuring biomass burning emission species in both the laboratory and field and developing infrared (IR) spectroscopy in particular. Using IR spectroscopy and other methods, we developed emission factors (EF, g of effluent per kg of fuel burned) for dozens of chemical species for several common southeastern fuel types. The major measurement campaigns were laboratory studies at the Missoula Fire Sciences Laboratory (FSL) as well as field campaigns at Camp Lejeune, NC, Ft. Jackson, SC, and in conjunction with 1648 at Vandenberg AFB, and Ft. Huachuca. Comparisons and fusions of laboratory and field data were also carried out, using laboratory fuels from the same bases. Results: The project enabled new technologies and furthered basic science, mostly in the area of infrared spectroscopy, a broadband method well suited to biomass burn studies. Advances in hardware, software and supporting reference data realized a nearly 20x improvement in sensitivity and now provide quantitative IR spectra for potential detection of ~60 new

  20. Development of Advanced Suite of Deterministic Codes for VHTR Physics Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, J. Y.; Lee, K. H. (and others)

    2007-07-15

    Advanced Suites of deterministic codes for VHTR physics analysis has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. These code suites include the conventional 2-step procedure in which a few group constants are generated by a transport lattice calculation, and the reactor physics analysis is performed by a 3-dimensional diffusion calculation, and a whole core transport code that can model local heterogeneities directly at the core level. Particular modeling issues in physics analysis of the gas-cooled VHTRs were resolved, which include a double heterogeneity of the coated fuel particles, a neutron streaming in the coolant channels, a strong core-reflector interaction, and large spectrum shifts due to changes of the surrounding environment, temperature and burnup. And the geometry handling capability of the DeCART code were extended to deal with the hexagonal fuel elements of the VHTR core. The developed code suites were validated and verified by comparing the computational results with those of the Monte Carlo calculations for the benchmark problems.

  1. Knowledge Creation Through Development Projects

    DEFF Research Database (Denmark)

    Laursen, Erik

    2010-01-01

    The focus of the paper is set on efforts to produce and manage organizational learning and development through engagement in organizational development projects, involving the implementation of new methods, new technologies and new ways of organizing the work processes. The issues discussed...... study of four organizational development projects (covering the organizations as a whole) held by four Danish High Schools (“gymnasium”). The study included questionnaires as well as interviews with the management and staff, plus a survey of selected written materials and documents. The purpose...... of the paper is to describe the activities, actually organized by the projects., as well as the various ways in which different groupings among the staff and the management are relating to the project. A special focus is set on the different perspectives on the projects established by the staff...

  2. 23 CFR 660.112 - Project development.

    Science.gov (United States)

    2010-04-01

    ... PROGRAMS (DIRECT FEDERAL) Forest Highways § 660.112 Project development. (a) Projects to be administered by... Program. Projects to be administered by a cooperator shall be developed in accordance with Federal-aid procedures and procedures documented in the statewide agreement. (b) The FH projects shall be designed in...

  3. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction of combined cycle cost from the baseline. A customer advisory board was instituted during Phase 1 to obtain important feedback regarding the future direction of the project. he technologies being developed for the Hydrogen Turbine will also be utilized, as appropriate, in the 2010 time frame engine and the FutureGen Plant. These new technologies and concepts also have the potential to accelerate commercialization of advanced coal-based IGCC plants in the U. S. and around the world, thereby reducing emissions, water use, solid waste production and dependence on scarce, expensive and insecure foreign energy supplies. Technology developments accomplished in Phase 1 provide a solid foundation for ensuring successful completion in Phase 2 and providing that the challenging program goals will be achieved.

  4. NORA project offers unique reactor research and advanced training opportunities

    International Nuclear Information System (INIS)

    1961-01-01

    An international program for reactor research and advanced training for a period of three years has been established in connection with the Norwegian critical assembly NORA. The aim of the project is to determine, through integral experiments, the basic reactor physics data for lattices moderated with light-water, heavy-water or mixtures of heavy and light water, with fuels of different sizes and spacing, three different enrichments and compositions. The objectives, programme, and facilities are described in details

  5. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  6. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.

  7. Project Selection for NASA's R&D Programs

    Science.gov (United States)

    Jones, Harry

    2005-01-01

    The purpose of NASA s Research and Development (R&D) programs is to provide advanced human support technologies for the Exploration Systems Mission Directorate (ESMD). The new technologies must be sufficiently attractive and proven to be selectable for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are likely options for flight. The R&D programs must select an array of technology development projects, manage them, and either terminate or continue them, so as to maximize the delivered number of potentially usable advanced human support technologies. This paper proposes an effective project selection methodology to help manage NASA R&D project portfolios.

  8. Advanced nuclear reactor public opinion project. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  9. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    Science.gov (United States)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  10. Development of generic key performance indicators for PMBOK® using a 3D project integration model

    Directory of Open Access Journals (Sweden)

    Craig Langston

    2013-12-01

    Full Text Available Since Martin Barnes’ so-called ‘iron triangle’ circa 1969, much debate has occurred over how best to describe the fundamental constraints that underpin project success. This paper develops a 3D project integration model for PMBOK® comprising core constraints of scope, cost, time and risk as a basis to propose six generic key performance indicators (KPIs that articulate successful project delivery. These KPIs are defined as value, efficiency, speed, innovation, complexity and impact and can each be measured objectively as ratios of the core constraints. An overall KPI (denoted as s3/ctr is also derived. The aim in this paper is to set out the case for such a model and to demonstrate how it can be employed to assess the performance of project teams in delivering successful outcomes at various stages in the project life cycle. As part of the model’s development, a new PMBOK® knowledge area concerning environmental management is advanced.

  11. Advanced Cell Development and Degradation Studies

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; O'Brien, R.C.; Condie, K.G.; Sohal, M.; Housley, G.K.; Hartvigsen, J.J.; Larsen, D.; Tao, G.; Yildiz, B.; Sharma, V.; Singh, P.; Petigny, N.; Cable, T.L.

    2010-01-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003-2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  12. Advanced Cell Development and Degradation Studies

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; R. C. O' Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

    2010-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  13. Status of advanced tritium breeder development for DEMO in the broader approach activities in Japan

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Oikawa, Fumiaki; Nishitani, Takeo

    2010-01-01

    DEMO reactors require ' 6 Li-enriched ceramic tritium breeders' which have high tritium breeding ratios (TBRs) in the blanket designs of both EU and JA. Both parties have been promoting the development of fabrication technologies of Li 2 TiO 3 pebbles and of Li 4 SiO 4 pebbles including the reprocessing. However, the fabrication techniques of tritium breeders pebbles have not been established for large quantities. Therefore, these parties launch a collaborative project on scaleable and reliable production routes of advanced tritium breeders. In addition, this project aims to develop fabrication techniques allowing effective reprocessing of 6 Li. The development of the production and 6 Li reprocessing techniques includes preliminary fabrication tests of breeder pebbles, reprocessing of lithium, and suitable out-of-pile characterizations. The R and D on the fabrication technologies of the advanced tritium breeders and the characterization of developed materials has been started between the EU and Japan in the DEMO R and D of the International Fusion Energy Research Centre (IFERC) project as a part of the Broader Approach activities from 2007 to 2016. The equipment for production of advanced breeder pebbles is planned will be installed in the DEMO R and D building at Rokkasho, Japan. The design work in this facility was carried out. The specifications of the pebble production apparatuses and related equipment in this facility were fixed, and the basic data of these apparatuses was obtained. In this design work, the preliminary investigations of the dissolution and purification process of tritium breeders were carried out. From the results of the preliminary investigations, lithium resources of 90% above were recovered by the aqueous dissolving methods using HNO 3 and H 2 O 2 . The removal efficiency of 60 Co by the addition in the dissolved solutions of lithium ceramics were 97-99.9% above using activated carbon impregnated with 8-hydroxyquinolinol. In this report

  14. Advanced PWR technology development -Development of advanced PWR system analysis technology-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Moon Heui; Hwang, Yung Dong; Kim, Sung Oh; Yoon, Joo Hyun; Jung, Bub Dong; Choi, Chul Jin; Lee, Yung Jin; Song, Jin Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The primary scope of this study is to establish the analysis technology for the advanced reactor designed on the basis of the passive and inherent safety concepts. This study is extended to the application of these technology to the safety analysis of the passive reactor. The study was performed for the small and medium sized reactor and the large sized reactor by focusing on the development of the analysis technology for the passive components. Among the identified concepts the once-through steam generator, the natural circulation of the integral reactor, heat pipe for containment cooling, and hydraulic valve were selected as the high priority items to be developed and the related studies are being performed for these items. For the large sized passive reactor, the study plans to extend the applicability of the best estimate computer code RELAP5/MOD3 which is widely used for the safety analyses of the reactor system. The improvement and supplementation study of the analysis modeling and the methodology is planned to be carried out for these purpose. The newly developed technologies are expected to be applied to the domestic advanced reactor design and analysis and these technologies will play a key role in extending the domestic nuclear base technology and consolidating self-reliance in the essential nuclear technology. 72 figs, 15 tabs, 124 refs. (Author).

  15. Assessment report of research and development on 'the abolition measures of nuclear facilities and associated technology development' and 'radioactive waste treatment and disposal and associated technology development' (result evaluation, in advance evaluation) and 'technology development related to reprocessing of nuclear fuel material' (In advance evaluation)

    International Nuclear Information System (INIS)

    2015-07-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consulted the 'Evaluation Committee for Decommissioning and Radioactive Waste Management ' for result evaluation and in advance evaluation of 'The abolition measures of nuclear facilities and associated technology development' project and 'Radioactive waste treatment and disposal and associated technology development' project and 'Technology development related to reprocessing of nuclear fuel material' project in accordance with the 'Guideline for evaluation of government R and D activities', the 'Guideline for evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology (MEXT)' and the 'Operational rule for evaluation of R and D activities' by JAEA. In response to the JAEA's request, the Evaluation Committee for Decommissioning and Radioactive Waste Management, in accordance with the evaluation method as defined in the Committee deliberations and oral report and deliberation of material about the R and D project of three was conducted. This report summarizes the results of the assessment by the Committee with the Committee report. (author)

  16. Gamification in Software Development Projects

    Directory of Open Access Journals (Sweden)

    Platonova Valērija

    2017-12-01

    Full Text Available Gamification is one of the many ways to motivate employees and introduce more fun in daily activities. The aim of the paper is to analyse the impact of gamification method on the software development projects. The paper contains results of a literature review about application areas of gamification, methods, positive and negative effects on projects. The paper also presents an overview of the gamification tools used in software development projects and attempts to answer the question about benefits of gamification usage: whether gamification in the project leads to the desired results and increases the employee productivity and motivation.

  17. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Forest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bochev, Pavel B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cameron-Smith, Philip J.. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Easter, Richard C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Scott M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ghan, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Xiaohong [Univ. of Wyoming, Laramie, WY (United States); Lowrie, Robert B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lucas, Donald D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ma, Po-lun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sacks, William J. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Shrivastava, Manish [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Singh, Balwinder [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tautges, Timothy J. [Argonne National Lab. (ANL), Argonne, IL (United States); Taylor, Mark A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Vertenstein, Mariana [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Worley, Patrick H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-15

    The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.

  18. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    Science.gov (United States)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  19. Career advancement and professional development in nursing.

    Science.gov (United States)

    Adeniran, Rita K; Smith-Glasgow, Mary Ellen; Bhattacharya, Anand; Xu, Yu

    2013-01-01

    Excellence underscores the need for nurses to keep their skills and competencies current through participation in professional development and career advancement. Evidence suggests that internationally educated nurses (IENs) progress relatively slowly through the career ladder and participate less in professional development compared with nurses educated in the United States (UENs). Mentorship and self-efficacy are considered major determinants of career advancement. The aim of the study was to understand the differences in levels of mentorship function and self-efficacy as well as the differences in participation in professional development and career advancement between UENs and IENs. A descriptive survey design was implemented using a Web-based survey. Significant disparities were noted in the role model function of mentoring and some professional development and career advancement measures between UENs and IENs. Mentorship is essential for professional growth. Sociodemographic characteristics of mentors are important because mentors are role models. Standardized career advancement structures are needed to promote professional growth. Published by Mosby, Inc.

  20. Developing Government Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  1. Project-based fieldwork: perspectives of graduate entry students and project sponsors.

    Science.gov (United States)

    Fortune, Tracy; McKinstry, Carol

    2012-08-01

    This article builds on an earlier viewpoint regarding the need for project-focussed fieldwork. It presents the findings of an evaluative study into the value of project placements undertaken by final year graduate entry master's students as part of a capstone subject. The authors argue that provision of project placements enable impending graduates to develop and implement macro level strategies to develop prevention, resource and service development skills often required of contemporary occupational therapy practitioners. A qualitative approach is adopted. Student cohorts from 2005 and 2006 completed open-ended, written questionnaires, and agency project sponsors were interviewed to obtain their perspectives of the project placement experience. Despite some concern that project placements might be undertaken at the expense of 'clinical' placements these findings reveal that projects managed by students were perceived by services to add great value enabling them to advance important priorities. Students and sponsors highlighted a range of positive learning outcomes, including the ability to work collaboratively with supervisors and develop advanced communication skills and political acumen. The success of such placements depends on supportive supervision from academic staff. CONCLUSIONS AND SIGNIFICANCE OF THE STUDY: The findings promote project placements as a highly authentic aspect of work integrated learning enabling learners to draw together a range of attributes that support the ability to manage complex issues that have occupational relevance at a macro level. In addition, such experiences help learners to develop agency and political acumen both increasingly important capabilities for the contemporary workplace. © 2012 The Authors Australian Occupational Therapy Journal © 2012 Occupational Therapy Australia.

  2. Systems engineering real estate development projects

    Science.gov (United States)

    Gusakova, Elena; Titarenko, Boris; Stepanov, Vitaliy

    2017-10-01

    In recent years, real estate development has accumulated a wealth of experience in implementing major projects, which requires comprehension and systematization. The scientific instrument of system engineering is studied in the article and is substantively interpreted with reference to real estate development projects. The most perspective approaches and models are substantiated, allowing strategically to plan the life cycle of the project as a whole, and also to solve the engineering butt problems of the project. The relevance of further scientific studies of regularities and specifics of the life cycle of real estate development projects conducted at the Moscow State University of Economics and Management at the ISTA department is shown.

  3. The CELSS Antarctic Analog Project: An Advanced Life Support Testbed at the Amundsen-Scott South Pole Station, Antarctica

    Science.gov (United States)

    Straight, Christian L.; Bubenheim, David L.; Bates, Maynard E.; Flynn, Michael T.

    1994-01-01

    CELSS Antarctic Analog Project (CAAP) represents a logical solution to the multiple objectives of both the NASA and the National Science Foundation (NSF). CAAP will result in direct transfer of proven technologies and systems, proven under the most rigorous of conditions, to the NSF and to society at large. This project goes beyond, as it must, the generally accepted scope of CELSS and life support systems including the issues of power generation, human dynamics, community systems, and training. CAAP provides a vivid and starkly realistic testbed of Controlled Ecological Life Support System (CELSS) and life support systems and methods. CAAP will also be critical in the development and validation of performance parameters for future advanced life support systems.

  4. Uncertainty Analyses of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Miller, Laurence F.; Preston, J.; Sweder, G.; Anderson, T.; Janson, S.; Humberstone, M.; MConn, J.; Clark, J.

    2008-01-01

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development

  5. Uncertainty Analyses of Advanced Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

    2008-12-12

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

  6. Development of Stitched Composite Structure for Advanced Aircraft

    Science.gov (United States)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  7. Design and analysis of CANDU advanced fuel -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Park, Kwang Seok; Kim, Bong Ki; Lee, Yeong Uk; Jeong, Chang Joon; Oh, Deok Joo; Lee, Ui Joo; Park, Joo Hwan; Lee, Sang Yong; Jeong, Beop Dong; Choi, Han Rim; Lee, Yeong Jin; Choi, Cheol Jin; Choi, Jong Ho; Lee, Kwang Won; Cho, Cheon Hyi; On, Myeong Ryong; Kim, Taek Mo; Lim, Hong Sik; Lee, Kang Moon; Lee, Nam Ho; Lee, Kyu Hyeong

    1994-07-01

    It has been projected that a total of 5 pressurized heavy water reactors (PHWR) including Wolsong 1 under operation and Wolsong 2, 3 and 4 under construction will be operated by 2006, and so about 500 ton of natural uranium will be consumed every year and a lot of spent fuels will be generated. Therefore, the ultimate goal of this R and D project is to develop the CANDU advanced fuel having the following capabilities compared with existing standard fuel: (1) To reduce linear heat generation rating by more than 15% (i.e., less than 50 kW/m), (2) To extend fuel burnup by more than 3 times (i.e., higher than 21,000 MWD/MTU), and (3) To increase critical channel power by more than 5%. In accordance, the followings are performed in this fiscal year: (1) Undertake CANFLEX-NU design and thermalmechanical performance analysis, and prepare design documents, (2) Establish reactor physics analysis code system, and investigate the compativility of the CANFLEX-NU fuel with the standard 37-element fuel in the CANDU-6 reactor. (3) Establish safety analysis methodology with the assumption of the CANFLEX-NU loaded CANDU-6 reactor, and perform the preliminary thermalhydraulic and fuel behavior for the selected DBA accidents, (4) Investigate reactor physics analysis code system as pre-study for CANFLEX-SEU loaded reactors

  8. Using the Student Research Project to Integrate Macroeconomics and Statistics in an Advanced Cost Accounting Course

    Science.gov (United States)

    Hassan, Mahamood M.; Schwartz, Bill N.

    2014-01-01

    This paper discusses a student research project that is part of an advanced cost accounting class. The project emphasizes active learning, integrates cost accounting with macroeconomics and statistics by "learning by doing" using real world data. Students analyze sales data for a publicly listed company by focusing on the company's…

  9. The research and development of module 3D designing system for nuclear power project based on the PDMS

    International Nuclear Information System (INIS)

    Lu Qinwu; Li Yi; Wu Xiangyong

    2012-01-01

    In order to meet the demand of implementing Modularization design in CPR1000 nuclear power projects, this study aims to develop, relying on CPR1000 nuclear power project, the self-reliant module 3D design system based on the PDMS. so as to offer a convenient and effective module 3D design tool for the designers. Satisfactory results have been achieved through the test and application of two design projects. The research and application have entered the domestic advanced level. (authors)

  10. Development of Advanced Ceramic Manufacturing Technology; FINAL

    International Nuclear Information System (INIS)

    Pujari, V.K.

    2001-01-01

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. I n order to achieve these objectives, NAC, a leading U.S. advanced ceramics component manufacturer, assembled a multidisciplinary, vertically integrated team. This team included: a major diesel engine builder, Detroit Diesel Corporation (DDC); a corporate ceramics research division, SGIC's Northboro R and D Center; intelligent processing system developers, BDM Federal/MATSYS; a furnace equipment company, Centorr/Vacuum Industries; a sintering expert, Wittmer Consultants; a production OEM, Deco-Grand; a wheel manufacturer and grinding operation developer, Norton Company's Higgins Grinding Technology Center (HGTC); a ceramic machine shop, Chand Kare Technical Ceramics; and a manufacturing cost consultant, IBIS Associates. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration

  11. Focused development of advanced practice nurse roles for specific patient groups in a Swiss university hospital

    Science.gov (United States)

    Spichiger, Elisabeth; Zumstein-Shaha, Maya; Schubert, Maria; Herrmann, Luzia

    2018-02-01

    Background: To cover future health care needs of the population, new care models are necessary. The development of advanced nursing practice (ANP) offers the opportunity to meet these challenges with novel services. At the Inselspital, Bern University Hospital, ANP services and corresponding advanced practice nurse (APN) roles have been developed since 2011. Purpose: The aim is to develop innovative and evidence based ANP services to supplement health care for specific patient groups and their family members with the goal to improve safety and achieve better outcomes. Methods: Project-based ANP services are developed in close collaboration of clinical departments and the Nursing Development Unit (NDU) of the Directorate of Nursing. Structure, process and outcome data are collected for evaluation. Findings: Currently, five ANP services are established and running, eight more are in the developmental phase. Most services address the long term care of patients with chronic illnesses and their family members. Ten APNs work between 10 % and 80 %, three are leading an ANP-team. APNs work over 50 % in direct clinical practice, primarily in counselling. An ANP network connects APNs and NDU, promoting synergy and exchange. Conclusions: The available resources often constitute a challenge for the development of ANP services. Vital for the long-term success are an adequate extent of the position, the support by department directorate, the conceptual framework that is implemented across the whole hospital, and the development within project structures.

  12. Systems-Level Synthetic Biology for Advanced Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Travis J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strickland, Lucas Marshall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tallant, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  13. All projects related to | Page 26 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    A comparative study of child marriage and parenthood in Ethiopia, India, Peru ... The aim of this project is to enhance the understanding of the complexities of child ... Closing the gender gap in financial inclusion: Advancing the business case.

  14. Advanced Radiation Protection (ARP): Advanced Radiation Protection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project is building the first prototype integrated system to mitigate solar event risk through probabilistic modeling, forecasting, and dose projection. This new...

  15. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  16. Advancing Work Practices Through Online Professional Development

    DEFF Research Database (Denmark)

    Noesgaard, Signe Schack

    The natural expectation for professional development courses is that they will improve a participant’s work performance, but do they? This PhD research challenges several assumptions underlying the design of online professional development courses, revealing that it is after such interventions...... was not effective and subsequently terminate change that could have advanced their practices. This underlines the need to think beyond the course format to make online professional development interventions continuous, committing, and contextual. The research suggests rethinking online professional development...... as adaptive “just-in-time” technologies and proposes a design theory called “situated online professional development,” entailing six design principles for advancing work practices....

  17. How to Grow Project Scientists: A Systematic Approach to Developing Project Scientists

    Science.gov (United States)

    Kea, Howard

    2011-01-01

    The Project Manager is one of the key individuals that can determine the success or failure of a project. NASA is fully committed to the training and development of Project Managers across the agency to ensure that highly capable individuals are equipped with the competencies and experience to successfully lead a project. An equally critical position is that of the Project Scientist. The Project Scientist provides the scientific leadership necessary for the scientific success of a project by insuring that the mission meets or exceeds the scientific requirements. Traditionally, NASA Goddard project scientists were appointed and approved by the Center Science Director based on their knowledge, experience, and other qualifications. However the process to obtain the necessary knowledge, skills and abilities was not documented or done in a systematic way. NASA Goddard's current Science Director, Nicholas White saw the need to create a pipeline for developing new projects scientists, and appointed a team to develop a process for training potential project scientists. The team members were Dr. Harley Thronson, Chair, Dr. Howard Kea, Mr. Mark Goldman, DACUM facilitator and the late Dr. Michael VanSteenberg. The DACUM process, an occupational analysis and evaluation system, was used to produce a picture of the project scientist's duties, tasks, knowledge, and skills. The output resulted in a 3-Day introductory course detailing all the required knowledge, skills and abilities a scientist must develop over time to be qualified for selections as a Project Scientist.

  18. Managing MDO Software Development Projects

    Science.gov (United States)

    Townsend, J. C.; Salas, A. O.

    2002-01-01

    Over the past decade, the NASA Langley Research Center developed a series of 'grand challenge' applications demonstrating the use of parallel and distributed computation and multidisciplinary design optimization. All but the last of these applications were focused on the high-speed civil transport vehicle; the final application focused on reusable launch vehicles. Teams of discipline experts developed these multidisciplinary applications by integrating legacy engineering analysis codes. As teams became larger and the application development became more complex with increasing levels of fidelity and numbers of disciplines, the need for applying software engineering practices became evident. This paper briefly introduces the application projects and then describes the approaches taken in project management and software engineering for each project; lessons learned are highlighted.

  19. The essential value of projects in faculty development.

    Science.gov (United States)

    Gusic, Maryellen E; Milner, Robert J; Tisdell, Elizabeth J; Taylor, Edward W; Quillen, David A; Thorndyke, Luanne E

    2010-09-01

    Projects--planned activities with specific goals and outcomes--have been used in faculty development programs to enhance participant learning and development. Projects have been employed most extensively in programs designed to develop faculty as educators. The authors review the literature and report the results of their 2008 study of the impact of projects within the Pennsylvania State University College of Medicine Junior Faculty Development Program, a comprehensive faculty development program. Using a mixed-methods approach, the products of project work, the academic productivity of program graduates, and the impact of projects on career development were analyzed. Faculty who achieved the most progress on their projects reported the highest number of academic products related to their project and the highest number of overall academic achievements. Faculty perceived that their project had three major effects on their professional development: production of a tangible outcome, development of a career focus, and development of relationships with mentors and peers. On the basis of these findings and a review of the literature, the authors conclude that projects are an essential element of a faculty development program. Projects provide a foundation for future academic success by enabling junior faculty to develop and hone knowledge and skills, identify a career focus and gain recognition within their community, generate scholarship, allocate time to academic work, and establish supportive relationships and collaborative networks. A list of best practices to successfully incorporate projects within faculty development programs is provided.

  20. Development and validation of advanced oxidation protective coatings for super critical steam power plant

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.B.; Scheefer, M. [Alstom Power Ltd., Rugby (United Kingdom); Agueero, A. [Instituto Nacional de Tecnica Aerospacial (INTA) (Spain); Allcock, B. [Monitor Coatings Ltd. (United Kingdom); Norton, B. [Indestructible Paints Ltd. (United Kingdom); Tsipas, D.N. [Aristotle Univ. of Thessaloniki (Greece); Durham, R. [FZ Juelich (Germany); Xiang, Z. [Northumbria Univ. (United Kingdom)

    2006-07-01

    Increasing the efficiency of coal-fired power plant by increasing steam temperatures and pressures brings benefits in terms of cheaper electricity and reduced emissions, particularly CO{sub 2}. In recent years the development of advanced 9%Cr ferritic steels with improved creep strength has enabled power plant operation at temperatures in excess of 600 C, such that these materials are being exploited to construct a new generation of advanced coalfired plant. However, the move to higher temperatures and pressures creates an extremely hostile oxidising environment. To enable the full potential of the new steels to be achieved, it is vital that protective coatings are developed, validated under high temperature steam and applied to candidate components from the steam path. This paper reviews recent work conducted within the Framework V project ''Coatings for Supercritical Steam Cycles'' (SUPERCOAT) to develop and demonstrate advanced slurry and thermal spray coatings capable of providing steam oxidation protection at temperatures in excess of 620 C and up to 300 bar. The programme of work has demonstrated the feasibility of applying a number of candidate coatings to steam turbine power plant components and has generated long-term steam oxidation rate and failure data that underpin the design and application work packages needed to develop and establish this technology for new and retrofit plant. (orig.)

  1. Nanopositioning techniques development for synchrotron radiation instrumentation applications at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu Deming

    2010-01-01

    At modern synchrotron radiation sources and beamlines, high-precision positioning techniques present a significant opportunity to support state-of-the-art synchrotron radiation research. Meanwhile, the required instrument positioning performance and capabilities, such as resolution, dynamic range, repeatability, speed, and multiple axes synchronization are exceeding the limit of commercial availability. This paper presents the current nanopositioning techniques developed for the Argonne Center for Nanoscale Materials (CNM)/Advanced Photon Source (APS) hard x-ray nanoprobe and high-resolution x-ray monochromators and analyzers for the APS X-ray Operations and Research (XOR) beamlines. Future nanopositioning techniques to be developed for the APS renewal project will also be discussed.

  2. Development of project financing in Russia

    Directory of Open Access Journals (Sweden)

    Nikonova Irina Aleksandrovna

    2012-07-01

    Full Text Available The implementation of effective investment projects is essential to the modernization of the Russian economy and its transition to a high-tech way of development. The most complex and risky form of financing projects is project financing (Project Finance.

  3. The relation between project management education and newer streams in project management research

    DEFF Research Database (Denmark)

    Leimbach, Timo; Goodall, Julie Bladt

    2017-01-01

    In the last decades, research in project management (PM) has experienced significant new inputs from a range of new PM methodologies and critical research streams. As a consequence, members of the more critical streams have called for the education of project managers to advance from that of trai......In the last decades, research in project management (PM) has experienced significant new inputs from a range of new PM methodologies and critical research streams. As a consequence, members of the more critical streams have called for the education of project managers to advance from...... that of training technicians, to fostering reflective practitioners that are better equipped to handle the increasing complexity of the profession. This paper is based on a recently commenced re-search project titled "Rethinking Project Management Education – the Role of Universities" that is aimed at analysing...... how the development of PM research is reflected in the education of project managers. On the basis of a short overview of the state of the art of PM education research and practices, the possible challenges for the development of PM education are discussed, and, finding that there is a lack...

  4. A new multi-scale platform for advanced nuclear thermal-hydraulics status and prospects of the Neptune project

    International Nuclear Information System (INIS)

    Bestion, D.; Boudier, P.; Hervieu, E.; Boucker, M.; Peturaud, P.; Guelfi, A.; Fillion, P.; Grandotto, M.; Herard, J.M.

    2005-01-01

    Full text of publication follows: Further to a thorough analysis of the industrial needs and of the limitations of current simulation tools, EDF (Electricite de France) and CEA (Commissariat a l'Energie Atomique) launched in 2001 a new long-term joint development program for the next generation of nuclear reactors simulation tools. The NEPTUNE Project, which constitutes the Thermal-Hydraulics part of this comprehensive program, aims at building a new software platform for advanced two-phase flow thermal-hydraulics allowing easy multi-scale and multi-disciplinary calculations meeting the industrial needs. The NEPTUNE activities include software development, research in physical modeling and numerical methods, the development of advanced instrumentation techniques and performance of new experimental programs. The work focuses on the four different simulation scales: DNS (Direct Numerical Simulation), local CFD (Computational Fluid Dynamics), component (subchannel-type analysis) and system scales. New physical models and numerical methods are being developed for each scale as well as for their coupling. This paper gives an overview of the NEPTUNE activities. It presents the main scientific and technical achievements obtained during Phase 1 (2002-2003) and at the beginning of Phase 2 (2004- 2006). Planned work for the future is also presented. (authors)

  5. Using "Big Data" in a Classroom Setting for Student-Developed Projects

    Science.gov (United States)

    Hayes-Gehrke, Melissa; Vogel, Stuart N.

    2018-01-01

    The advances in exploration of the optical transient sky anticipated with major facilities such as the Zwicky Transient Facility (ZTF) and Large Synoptic Survey Telescope (LSST) provide an opportunity to integrate large public research datasets into the undergraduate classroom. As a step in this direction, the NSF PIRE-funded GROWTH (Global Relay of Observatories Watching Transients Happen) collaboration provided funding for curriculum development using data from the precursor to ZTF, the Intermediate Palomar Transient Factory (iPTF). One of the iPTF portals, the PTF Variable Marshal, was used by 56 Astronomy majors in the fall 2016 and 2017 semesters of the required Observational Astronomy course at the University of Maryland. Student teams learned about the iPTF survey and how to use the PTF Variable Marshal and then developed their own hypotheses about variable stars to test using data they gathered from the Variable Marshal. Through this project, students gained experience in how to develop scientific questions that can be explored using large datasets and became aware of the limitations and difficulties of such projects. This work was supported in part by NSF award OISE-1545949.

  6. On e-Government Project Development in Balmeda

    Science.gov (United States)

    Anagnostou, Miltiades E.; Lambrou, Maria A.

    An e-government project management and development scenario in a fictional country is described. Emphasis is given on how local culture undermines project quality. A detailed fictional project development scenario is presented. The interplay between different players, i.e. project developers, reviewers, and public services, is illustrated. While the rules of technology are the same everywhere, local adaptation due to socio-economic factors can bend them to the degree of making them ineffective.

  7. FY 1999 Report on research and development project. Research and development of high-temperature air combustion technology; 1999 nendo koon kuki nensho seigyo gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The high-temperature air combustion technology recently developed greatly advances combustion technology. The technology, when applied to the other areas, may expand its applicable areas and contribute to environmental preservation, e.g., abatement of CO2 emissions. This is the motivation for promotion of this project. The combustion technology, developed by improving functions of industrial furnaces, cannot be directly applied to the other combustion heaters. This project is aimed at extraction of the problems involved, finding out the solutions, and thereby smoothly transferring the technology to commercialization. This project covers boilers firing finely pulverized coal, waste incineration processes and high-temperature chemical reaction processes, to which the new technology is applied. It is also aimed at establishment of advanced combustion control basic technology, required when the high-temperature air combustion technology is applied to these processes. In addition to application R and D efforts for each area, the basic phenomena characteristic of each combustion heater type are elucidated using microgravity and the like, to support the application R and D efforts from the basic side. This project also surveys reduction of environmental pollutants, e.g., NOx and dioxins. This report presents the results obtained in the first year. (NEDO)

  8. Teaching Sustainable Water Resources and Low Impact Development: A Project Centered Course for First-Year Undergraduates

    Science.gov (United States)

    Cianfrani, C. M.

    2009-12-01

    Teaching Sustainable Water Resources and Low Impact Development: A Project Centered Course for First-Year Undergraduates Christina M. Cianfrani Assistant Professor, School of Natural Science, Hampshire College, 893 West Avenue, Amherst, MA 01002 Sustainable water resources and low impact development principles are taught to first-year undergraduate students using an applied design project sited on campus. All students at Hampshire College are required to take at least one natural science course during their first year as part of their liberal arts education. This requirement is often met with resistance from non-science students. However, ‘sustainability’ has shown to be a popular topic on campus and ‘Sustainable Water Resources’ typically attracts ~25 students (a large class size for Hampshire College). Five second- or third-year students are accepted in the class as advanced students and serve as project leaders. The first-year students often enter the class with only basic high school science background. The class begins with an introduction to global water resources issues to provide a broad perspective. The students then analyze water budgets, both on a watershed basis and a personal daily-use basis. The students form groups of 4 to complete their semester project. Lectures on low impact design principles are combined with group work sessions for the second half of the semester. Students tour the physical site located across the street from campus and begin their project with a site analysis including soils, landcover and topography. They then develop a building plan and identify preventative and mitigative measures for dealing with stormwater. Each group completes TR-55 stormwater calculations for their design (pre- and post-development) to show the state regulations for quantity will be met with their design. Finally, they present their projects to the class and prepare a formal written report. The students have produced a wide variety of creative

  9. Critical success factors influencing the performance of development projects: An empirical study of Constituency Development Fund projects in Kenya

    Directory of Open Access Journals (Sweden)

    Debadyuti Das

    2017-12-01

    Full Text Available The present work attempts to identify critical success factors (CSFs influencing the performance of development projects based on their key performance indicators (KPIs. It has considered the case of Constituency Development Fund (CDF projects constructed between 2003 and 2011 in Kenya and secured the perceptions of 175 respondents comprising clients, consultants and contractors involved in the implementation of CDF projects on 30 success variables. Findings reveal that individual items constituting these six factors represent six CSFs namely project-related, client-related, consultant-related, contractor-related, supply chain-related, and external environment-related factor. The findings are also relevant to development projects undertaken in other developing countries.

  10. Advanced Public Transportation Systems. Technical Assistance Brief 2

    Science.gov (United States)

    1993-01-01

    The Advanced Public Transportation Systems (APTS) Program requires evaluation : of pilot projects. This technical assistance brief discusses the guidelines set : for developing evaluation framework and methodology for local projects. 4p.

  11. Computer Hardware, Advanced Mathematics and Model Physics pilot project final report

    International Nuclear Information System (INIS)

    1992-05-01

    The Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP) Program was launched in January, 1990. A principal objective of the program has been to utilize the emerging capabilities of massively parallel scientific computers in the challenge of regional scale predictions of decade-to-century climate change. CHAMMP has already demonstrated the feasibility of achieving a 10,000 fold increase in computational throughput for climate modeling in this decade. What we have also recognized, however, is the need for new algorithms and computer software to capitalize on the radically new computing architectures. This report describes the pilot CHAMMP projects at the DOE National Laboratories and the National Center for Atmospheric Research (NCAR). The pilot projects were selected to identify the principal challenges to CHAMMP and to entrain new scientific computing expertise. The success of some of these projects has aided in the definition of the CHAMMP scientific plan. Many of the papers in this report have been or will be submitted for publication in the open literature. Readers are urged to consult with the authors directly for questions or comments about their papers

  12. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    Energy Technology Data Exchange (ETDEWEB)

    Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

    2014-09-01

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

  13. Method of advancing research and development of fast breeder reactors

    International Nuclear Information System (INIS)

    1988-01-01

    In the long term plan of atomic energy development and utilization, fast breeder reactors are to be developed as the main of the future nuclear power generation in Japan, and when their development is advanced, it has been decided to positively aim at building up the plutonium utilization system using FBRs superior to the uranium utilization system using LWRs. Also it has been decided that the development of FBRs requires to exert incessant efforts for a considerable long period under the proper cooperation system of government and people, and as for its concrete development, hereafter the deliberation is to be carried out in succession by the expert subcommittee on FBR development projects of the Atomic Energy Commission. The subcommittee was founded in May, 1986, to deliberate on the long term promotion measures for FBR development, the measures for promoting the research and development, the examination of the basic specification of a demonstration FBR, the measures for promoting international cooperation, and other important matters. As the results of investigation, the situation around the development of FBRs, the fundamentals at the time of promoting the research and development, the subjects of the research and development and so on are reported. (Kako, I.)

  14. The Gaseous State. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P1.

    Science.gov (United States)

    Inner London Education Authority (England).

    This unit on the gaseous state is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one deals with the distinctive characteristics of gases, then considers the gas laws, in particular the ideal gas equation and its applications. Level two concentrates on…

  15. Equilibrium I: Principles. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P2.

    Science.gov (United States)

    Inner London Education Authority (England).

    This unit on the principles of equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. After a treatment of non-mathematical aspects in level one (the idea of a reversible reaction, characteristics of an equilibrium state, the Le Chatelier's principle),…

  16. [The debate on the development of advanced competences].

    Science.gov (United States)

    Dimonte, Valerio; Palese, Alvisa; Chiari, Paolo; Laquintana, Dario; Tognoni, Gianni; Di Giulio, Paola

    2016-01-01

    . The debate on the development of advanced nursing competences. The dossier aims to describe and disentagle the present Italian and international debate on the development and recognition of advanced nursing competences. Following a general brief description of the legislative national background, the attention is first of all focused on the lack of clarity on the definition of advanced competence, which is further complicated by the issue of their formal, contractual and economic recognition. To explore these issues a list of contributions is presented and some proposals are formulated to favor a better oriented development of the debate: a. A convenience sample of 139 nurses were interviewed asking to describe problems occurred in the last month that could prompt the intervention of an expert nurse and to list the clinical, managerial and educational competences of a specialized nurse in their ward. The results document the quality and the dispersion of the definitions which are perceived and applied in the general settings of care. b. The issue the post basic courses (master, specialization) offered to nurses in 2015-2016 by Italian universities were described and their aims. While the contribution of the courses in increasing the theoretical knowledge is well defined, the aims and the description of the clinical training are badly developed and an acquisition of advanced competences would seem unlikely. c. The definition of advanced competences was explored in the international literature: while evidences are available on the impact of advanced nursing on patients' outcomes, what is advanced nursing is far from being clear, and an impressive list of roles, activities and functions are considered advanced. d. Although at national level there is no formal recognition for nurses with advanced competences (with the exception of the head nurse that holds mostly an organizational rather than clinical role), the opportunities for promoting the role of specialistic/advanced

  17. Methodology and Supporting Toolset Advancing Embedded Systems Quality

    DEFF Research Database (Denmark)

    Berger, Michael Stübert; Soler, José; Brewka, Lukasz Jerzy

    2013-01-01

    Software quality is of primary importance in the development of embedded systems that are often used in safety-critical applications. Moreover, as the life cycle of embedded products becomes increasingly tighter, productivity and quality are simultaneously required and closely interrelated towards...... delivering competitive products. In this context, the MODUS (Methodology and supporting toolset advancing embedded systems quality) project aims to provide a pragmatic and viable solution that will allow SMEs to substantially improve their positioning in the embedded-systems development market. This paper...... will describe the MODUS project with focus on the technical methodologies that will be developed advancing embedded system quality....

  18. Technological advances in precision medicine and drug development.

    Science.gov (United States)

    Maggi, Elaine; Patterson, Nicole E; Montagna, Cristina

    New technologies are rapidly becoming available to expand the arsenal of tools accessible for precision medicine and to support the development of new therapeutics. Advances in liquid biopsies, which analyze cells, DNA, RNA, proteins, or vesicles isolated from the blood, have gained particular interest for their uses in acquiring information reflecting the biology of tumors and metastatic tissues. Through advancements in DNA sequencing that have merged unprecedented accuracy with affordable cost, personalized treatments based on genetic variations are becoming a real possibility. Extraordinary progress has been achieved in the development of biological therapies aimed to even further advance personalized treatments. We provide a summary of current and future applications of blood based liquid biopsies and how new technologies are utilized for the development of biological therapeutic treatments. We discuss current and future sequencing methods with an emphasis on how technological advances will support the progress in the field of precision medicine.

  19. FY2016 Advanced Batteries R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the Vehicle Technologies Office overview; the Battery subprogram R&D overview; Advanced Battery Development project summaries; and Battery Testing, Analysis, and Design project summaries. It also includes the cover and table of contents.

  20. Final Report for SERDP Project RC-1649: Advanced Chemical Measurements of Smoke from DoD-prescribed Burns

    Science.gov (United States)

    T.J. Johnson; R.J. Yokelson; S.K. Akagi; I.R. Burling; D.R. Weise; S.P. Urbanski; C.E. Stockwell; J. Reardon; E.N. Lincoln; L.T.M. Profeta; A. Mendoza; M.D.W. Schneider; R.L. Sams; S.D. Williams; C.E. Wold; D.W.T. Griffith; M. Cameron; J.B. Gilman; C. Warneke; J.M. Roberts; P. Veres; W.C. Kuster; J de Gouw

    2014-01-01

    Project RC-1649, "Advanced Chemical Measurement of Smoke from DoD-prescribed Burns" was undertaken to use advanced instrumental techniques to study in detail the particulate and vapor-phase chemical composition of the smoke that results from prescribed fires used as a land management tool on DoD bases, particularly bases in the southeastern U.S. The statement...

  1. Local Institutional Development and Organizational Change for Advancing Sustainable Urban Water Futures

    Science.gov (United States)

    Brown, Rebekah R.

    2008-02-01

    This paper presents the local institutional and organizational development insights from a five-year ongoing interdisciplinary research project focused on advancing the implementation of sustainable urban water management. While it is broadly acknowledged that the inertia associated with administrative systems is possibly the most significant obstacle to advancing sustainable urban water management, contemporary research still largely prioritizes investigations at the technological level. This research is explicitly concerned with critically informing the design of methodologies for mobilizing and overcoming the administrative inertia of traditional urban water management practice. The results of fourteen in-depth case studies of local government organizations across Metropolitan Sydney primarily reveal that (i) the political institutionalization of environmental concern and (ii) the commitment to local leadership and organizational learning are key corporate attributes for enabling sustainable management. A typology of five organizational development phases has been proposed as both a heuristic and capacity benchmarking tool for urban water strategists, policy makers, and decision makers that are focused on improving the level of local implementation of sustainable urban water management activity. While this investigation has focused on local government, these findings do provide guideposts for assessing the development needs of future capacity building programs across a range of different institutional contexts.

  2. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  3. Baseline methodologies for clean development mechanism projects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.K. (ed.); Shrestha, R.M.; Sharma, S.; Timilsina, G.R.; Kumar, S.

    2005-11-15

    The Kyoto Protocol and the Clean Development Mechanism (CDM) came into force on 16th February 2005 with its ratification by Russia. The increasing momentum of this process is reflected in more than 100 projects having been submitted to the CDM Executive Board (CDM-EB) for approval of the baselines and monitoring methodologies, which is the first step in developing and implementing CDM projects. A CDM project should result in a net decrease of GHG emissions below any level that would have resulted from other activities implemented in the absence of that CDM project. The 'baseline' defines the GHG emissions of activities that would have been implemented in the absence of a CDM project. The baseline methodology is the process/algorithm for establishing that baseline. The baseline, along with the baseline methodology, are thus the most critical element of any CDM project towards meeting the important criteria of CDM, which are that a CDM should result in 'real, measurable, and long term benefits related to the mitigation of climate change'. This guidebook is produced within the frame work of the United Nations Environment Programme (UNEP) facilitated 'Capacity Development for the Clean Development Mechanism (CD4CDM)' Project. This document is published as part of the projects effort to develop guidebooks that cover important issues such as project finance, sustainability impacts, legal framework and institutional framework. These materials are aimed to help stakeholders better understand the CDM and are believed to eventually contribute to maximize the effect of the CDM in achieving the ultimate goal of UNFCCC and its Kyoto Protocol. This Guidebook should be read in conjunction with the information provided in the two other guidebooks entitled, 'Clean Development Mechanism: Introduction to the CDM' and 'CDM Information and Guidebook' developed under the CD4CDM project. (BA)

  4. Baseline methodologies for clean development mechanism projects

    International Nuclear Information System (INIS)

    Lee, M.K.; Shrestha, R.M.; Sharma, S.; Timilsina, G.R.; Kumar, S.

    2005-11-01

    The Kyoto Protocol and the Clean Development Mechanism (CDM) came into force on 16th February 2005 with its ratification by Russia. The increasing momentum of this process is reflected in more than 100 projects having been submitted to the CDM Executive Board (CDM-EB) for approval of the baselines and monitoring methodologies, which is the first step in developing and implementing CDM projects. A CDM project should result in a net decrease of GHG emissions below any level that would have resulted from other activities implemented in the absence of that CDM project. The 'baseline' defines the GHG emissions of activities that would have been implemented in the absence of a CDM project. The baseline methodology is the process/algorithm for establishing that baseline. The baseline, along with the baseline methodology, are thus the most critical element of any CDM project towards meeting the important criteria of CDM, which are that a CDM should result in 'real, measurable, and long term benefits related to the mitigation of climate change'. This guidebook is produced within the frame work of the United Nations Environment Programme (UNEP) facilitated 'Capacity Development for the Clean Development Mechanism (CD4CDM)' Project. This document is published as part of the projects effort to develop guidebooks that cover important issues such as project finance, sustainability impacts, legal framework and institutional framework. These materials are aimed to help stakeholders better understand the CDM and are believed to eventually contribute to maximize the effect of the CDM in achieving the ultimate goal of UNFCCC and its Kyoto Protocol. This Guidebook should be read in conjunction with the information provided in the two other guidebooks entitled, 'Clean Development Mechanism: Introduction to the CDM' and 'CDM Information and Guidebook' developed under the CD4CDM project. (BA)

  5. Project for the Institution of an Advanced Course in Physics

    Science.gov (United States)

    Teodorani, M.; Nobili, G.

    2006-06-01

    A project for an advanced course in physics at the master level, is presented in great detail. The goal of this project is to create a specific and rigorous training for those who want to carry out experimental and theoretical research on "anomalies" in physical science, especially from the point of view of atmospheric physics, plasma physics, photonic physics, biophysics, astronomy and astrophysics. A specific training in powering mental skills is planned as well. The planned teaching program is presented as a two-year course where the following subjects are intended to be taught: cognitive techniques (I and II), radiation physics (I and II), biophysics (I and II), bioastronomy (I and II), history of physics (I and II), didactics of physics, physics of atmospheric plasmas, physics of non-stationary photonic events, physics of non-linear processes, complements of quantum mechanics, quantum informatics, research methodology in physics and astronomy, computer science methods in physics and astronomy, optoelectronics, radioelectronics. Detailed teaching programs, didactics methods, and performance evaluation, are presented for each subject. The technical content of this project is preceded by an ample introduction that shows all the reasons of this kind of physics course, particularly aimed at innovation in physical science.

  6. The state of art report on advanced reactor development

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Noh, J. M.; Hwang, D. H. and others

    1999-07-01

    Recently, researches on the advanced power reactors are being performed actively, that maximize the economics and enhance the reactor safety by introducing the inherent safety characteristics and passive safety features. In the development of advanced reactor technology, we developed the inherent core design technologies which can form a foundation of indigenous technologies to provide the basic technology for the core design of the domestic advanced reactor. In this report, we examined the neutronics design technologies and core thermal hydraulics design technologies for advanced reactors performed all over the world. Major efforts are focussed on the soluble boron free core design technology and high conversion core design technology. In addition to these, new conceptual core, such as a supercritical core, design technology development was also reviewed. The characteristics of critical heat flux have been investigated for non-square lattice rod bundles, such as triangular lattice and wire wrap lattice. Based on the status of advanced reactor development, the soluble boron free and hexagonal lattice core design technologies are elementary technology for the domestic advanced reactor core. These elementary core technologies would enhance the reactor safety and improve the economics. (author). 71 refs., 31 tabs., 74 figs

  7. Condition Monitoring Through Advanced Sensor and Computational Technology

    International Nuclear Information System (INIS)

    Kim, Jung Taek; Park, Won Man; Kim, Jung Soo; Seong, Soeng Hwan; Hur, Sub; Cho, Jae Hwan; Jung, Hyung Gue

    2005-05-01

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties

  8. Estimating software development project size, using probabilistic ...

    African Journals Online (AJOL)

    Estimating software development project size, using probabilistic techniques. ... of managing the size of software development projects by Purchasers (Clients) and Vendors (Development ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  9. Advanced Stellar Compass - Proposal for the LunARSat project

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    request for proposal (r.f.p.) for the LunARSat star tracker.The Advanced Stellar Compass (ASC) is a highly advanced and autonomous Stellar Reference Unit designed, developed and produced by the Space Instrumentation Group of the Department of Automation of the Technical University of Denmark.The document...... is structured as follows. First we present the ASC - heritage, system description, performance and the calibration procedures. In section 3 the mechanical and electrical interfaces are given. In section 4 and 5 we address issues like manufacturing, transportation and storage and to conclude, in sect. 6, we...

  10. Advanced CANDU reactor development: a customer-driven program

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    2005-01-01

    The Advanced CANDU Reactor (ACR) product development program is well under way. The development approach for the ACR is to ensure that all activities supporting readiness for the first ACR project are carded out in parallel, as parts of an integrated whole. In this way design engineering, licensing, development and testing, supply chain planning, construct ability and module strategy, and planning for commissioning and operations, all work in synergy with one another. Careful schedule management :ensures that program focus stays on critical path priorities.'This paper provides an overview of the program, with an emphasis on integration to ensure maximum project readiness, This program management approach is important now that AECL is participating as the reactor vendor in Dominion Energy's DOE-sponsored Combined Construction/Operating License (COL) program. Dominion Energy selected the ACR-700 as their reference reactor technology for purposes of demonstrating the COL process. AECL's development of the ACR is unique in that pre-licensing activities are being carded out parallel in the USA and Canada, via independent, but well-communicated programs. In the short term, these programs are major drivers of ACR development. The ACR design approach has been to optimize to achieve major design objectives: capital cost reduction, robust design with ample margins, proveness by using evolutionary change from existing :reference plants, design for ease :of operability. The ACR development program maintains these design objectives for each of the program elements: Design: .Carefully selected design innovations based on the SEU fuel/light water coolant:/heavy water moderator approach. Emphasis on lessons-learned review from operating experience and customer feedback Licensing: .Safety case based on strengths of existing CANDU plus benefits of optimised design Development and Test: Choice of materials, conditions to enable incremental testing building on existing CANDU and LWR

  11. Remote sensing of sea ice: advances during the DAMOCLES project

    Directory of Open Access Journals (Sweden)

    G. Heygster

    2012-12-01

    Full Text Available In the Arctic, global warming is particularly pronounced so that we need to monitor its development continuously. On the other hand, the vast and hostile conditions make in situ observation difficult, so that available satellite observations should be exploited in the best possible way to extract geophysical information. Here, we give a résumé of the sea ice remote sensing efforts of the European Union's (EU project DAMOCLES (Developing Arctic Modeling and Observing Capabilities for Long-term Environmental Studies. In order to better understand the seasonal variation of the microwave emission of sea ice observed from space, the monthly variations of the microwave emissivity of first-year and multi-year sea ice have been derived for the frequencies of the microwave imagers like AMSR-E (Advanced Microwave Scanning Radiometer on EOS and sounding frequencies of AMSU (Advanced Microwave Sounding Unit, and have been used to develop an optimal estimation method to retrieve sea ice and atmospheric parameters simultaneously. In addition, a sea ice microwave emissivity model has been used together with a thermodynamic model to establish relations between the emissivities from 6 GHz to 50 GHz. At the latter frequency, the emissivity is needed for assimilation into atmospheric circulation models, but is more difficult to observe directly. The size of the snow grains on top of the sea ice influences both its albedo and the microwave emission. A method to determine the effective size of the snow grains from observations in the visible range (MODIS is developed and demonstrated in an application on the Ross ice shelf. The bidirectional reflectivity distribution function (BRDF of snow, which is an essential input parameter to the retrieval, has been measured in situ on Svalbard during the DAMOCLES campaign, and a BRDF model assuming aspherical particles is developed. Sea ice drift and deformation is derived from satellite observations with the scatterometer

  12. All projects related to | Page 144 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    A Rights-Based Approach to Internet Policy and Governance for the Advancement of Economic, Social, and Cultural Rights. Project. The debate on Internet freedom has intensified over the last few years as governments and civil society organizations explore policies to safeguard online civil liberties and online security.

  13. Advanced man-machine system for nuclear power plants

    International Nuclear Information System (INIS)

    Masui, Takao; Naito, Norio; Kato, Kanji.

    1990-01-01

    Recent development of artificial intelligence(AI) seems to offer new possibility to strengthen the performance of the operator support system. From this point of view, a national project of Advanced Man-Machine System Development for Nuclear Power Plant (MMS-NPP) has been carried out since 1984 as 8-year project. This project aims at establishing advanced operator support functions which support operators in their knowledge-based behaviors and smoother interface with the system. This paper describes the role of MMS-NPP, the support functions and the main feature of the MMS-NPP detailed design with its focus placed on the realization methods using AI technology of the support functions for BWR and PWR plants. (author)

  14. Development Program of the Advanced HANARO Reactor in Korea

    International Nuclear Information System (INIS)

    Yang, I.-S.; Ahn, J.-H.; Han, K.-I.; Parh, C.; Jun, B.-J.; Kim, Y.-J.

    2006-01-01

    The development program of an advanced HANARO (AHR) reactor started in Korea to keep abreast of the increasing future demand, from both home and abroad, for research activities. This paper provides a review of the status of research reactors in Korea, the operating experience of the HANARO, the design principles and preliminary features of an advanced HANARO reactor, and the specific strategy of an advanced HANARO reactor development program. The design principles were established in order to design a new multi-purpose research reactor that is safe, economically competitive and technically feasible. These include the adaptation of the HANARO design concept, its operating experience, a high ratio of flux to power, a high degree of safety, improved economic efficiency, improved operability and maintainability, increased space and expandability, and ALARA design optimization. The strategy of an advanced HANARO reactor development program considers items such as providing a digital advanced HANARO reactor in cyber space, a method for the improving the design quality and economy of research reactors by using Computer Integrated Engineering, and more effective advertising using diverse virtual reality. This development program will be useful for promoting the understanding of and interest in the operating HANARO as well as an advanced HANARO reactor under development in Korea. It will provide very useful information to a country that may need a research reactor in the near future for the promotion of public health, bio-technology, drug design, pharmacology, material processing, and the development of new materials. (author)

  15. Designing and implementing a new advanced level biology course.

    OpenAIRE

    Hall, Angela; Reiss, Michael; Rowell, Cathy; Scott, C.; Scott, Anne

    2003-01-01

    Salters-Nuffield Advanced Biology is a new advanced level biology course currently being piloted from September 2002 in England with around 1200 students. This paper discusses the reasons for developing a new advanced biology course at this time, the philosophy of the project and how the materials are being written and the specification devised. The aim of the project is to provide an up-to-date course that interests students, is considered appropriate by teachers and other professionals in b...

  16. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y., E-mail: yican.wu@fds.org.cn [Inst. of Nuclear Energy Safety Technology, Hefei, Anhui (China)

    2015-07-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  17. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Wu, Y.

    2015-01-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  18. Project Morpheus: Lean Development of a Terrestrial Flight Testbed for Maturing NASA Lander Technologies

    Science.gov (United States)

    Devolites, Jennifer L.; Olansen, Jon B.

    2015-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.

  19. Database requirements for the Advanced Test Accelerator project

    International Nuclear Information System (INIS)

    Chambers, F.W.

    1984-01-01

    The database requirements for the Advanced Test Accelerator (ATA) project are outlined. ATA is a state-of-the-art electron accelerator capable of producing energetic (50 million electron volt), high current (10,000 ampere), short pulse (70 billionths of a second) beams of electrons for a wide variety of applications. Databasing is required for two applications. First, the description of the configuration of facility itself requires an extended database. Second, experimental data gathered from the facility must be organized and managed to insure its full utilization. The two applications are intimately related since the acquisition and analysis of experimental data requires knowledge of the system configuration. This report reviews the needs of the ATA program and current implementation, intentions, and desires. These database applications have several unique aspects which are of interest and will be highlighted. The features desired in an ultimate database system are outlined. 3 references, 5 figures

  20. 75 FR 22674 - Moynihan Station Development Project

    Science.gov (United States)

    2010-04-29

    ... DEPARTMENT OF TRANSPORTATION Federal Railroad Administration Moynihan Station Development Project... availability of and public comment period for the Moynihan Station Development Project Environmental Assessment... 22675

  1. Hualapai Tribal Utility Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Hualapai Tribal Nation

    2008-05-25

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon

  2. Tribal Colleges and Universities/American Indian Research and Education Initiatives Advanced Manufacturing Technical Assistance Project

    Energy Technology Data Exchange (ETDEWEB)

    Atcitty, Stanley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The overall goal of this project is to establish a network of TCUs with essential advanced manufacturing (AM) facilities, associated training and education programs, and private sector and federal agency partnerships to both prepare an American Indian AM workforce and create economic and employment opportunities within Tribal communities through design, manufacturing, and marketing of high quality products. Some examples of high quality products involve next generation grid components such as mechanical energy storage, cabling for distribution of energy, and electrochemical energy storage enclosures. Sandia National Laboratories (Sandia) is tasked to provide technical advising, planning, and academic program development support for the TCU/American Indian Higher Education Consortium (AIHEC) Advanced Manufacturing Project. The TCUs include Bay Mills Community College (BMCC), Cankdeska Cikana Community College (CCCC), Navajo Technical University (NTU), Southwestern Indian Polytechnic Institute (SIPI), and Salish Kooteani College. AIHEC and Sandia, with collaboration from SIPI, will be establishing an 8-week summer institute on the SIPI campus during the summer of 2017. Up to 20 students from TCUs are anticipated to take part in the summer program. The goal of the program is to bring AM science, technology, engineering, and mathematics (STEM) awareness and opportunities for the American Indian students. Prior to the summer institute, Sandia will be providing reviews on curriculum plans at the each of the TCUs to ensure the content is consistent with current AM design and engineering practice. In addition, Sandia will provide technical assistance to each of the TCUs in regards to their current AM activities.

  3. NTRCI Legacy Engine Research and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Holbert, Connie [National Transportation Research Center, Inc., Knoxville, TN (United States); Petrolino, Joseph [National Transportation Research Center, Inc., Knoxville, TN (United States); Watkins, Bart [Power Source Technologies Inc., Corvallis, OR (United States); Irick, David [Power Source Technologies Inc., Corvallis, OR (United States)

    2011-12-31

    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine's commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector

  4. Advanced Stirling Convertor (ASC) Technology Maturation

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical

  5. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Len Volk; Mark Pickell; Evren Ozbayoglu; Barkim Demirdal; Paco Vieira; Affonso Lourenco

    1999-10-15

    This report includes a review of the progress made in ACTF Flow Loop development and research during 90 days pre-award period (May 15-July 14, 1999) and the following three months after the project approval date (July15-October 15, 1999) The report presents information on the following specific subjects; (a) Progress in Advanced Cuttings Transport Facility design and development, (b) Progress report on the research project ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress report on the research project ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress report on the research project ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress report on the research project ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Progress report on the instrumentation tasks (Tasks 11 and 12) (g) Activities towards technology transfer and developing contacts with oil and service company members.

  6. Developing a Model of Advanced Training to Promote Career Advancement for Certified Genetic Counselors: An Investigation of Expanded Skills, Advanced Training Paths, and Professional Opportunities.

    Science.gov (United States)

    Baty, Bonnie J; Trepanier, Angela; Bennett, Robin L; Davis, Claire; Erby, Lori; Hippman, Catriona; Lerner, Barbara; Matthews, Anne; Myers, Melanie F; Robbins, Carol B; Singletary, Claire N

    2016-08-01

    There are currently multiple paths through which genetic counselors can acquire advanced knowledge and skills. However, outside of continuing education opportunities, there are few formal training programs designed specifically for the advanced training of genetic counselors. In the genetic counseling profession, there is currently considerable debate about the paths that should be available to attain advanced skills, as well as the skills that might be needed for practice in the future. The Association of Genetic Counseling Program Directors (AGCPD) convened a national committee, the Committee on Advanced Training for Certified Genetic Counselors (CATCGC), to investigate varied paths to post-master's training and career development. The committee began its work by developing three related grids that view career advancement from the viewpoints of the skills needed to advance (skills), ways to obtain these skills (paths), and existing genetic counselor positions that offer career change or advancement (positions). Here we describe previous work related to genetic counselor career advancement, the charge of the CATCGC, our preliminary work in developing a model through which to view genetic counselor advanced training and career advancement opportunities, and our next steps in further developing and disseminating the model.

  7. Advanced Simulation Capability for Environmental Management: Development and Demonstrations - 12532

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, Mark D.; Freedman, Vicky; Gorton, Ian [Pacific Northwest National Laboratory, MSIN K9-33, P.O. Box 999, Richland, WA 99352 (United States); Hubbard, Susan S. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4230, Berkeley, CA 94720 (United States); Moulton, J. David; Dixon, Paul [Los Alamos National Laboratory, MS B284, P.O. Box 1663, Los Alamos, NM 87544 (United States)

    2012-07-01

    The U.S. Department of Energy Office of Environmental Management (EM), Technology Innovation and Development is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of capabilities, which are organized into Platform and Integrated Tool-sets and a High-Performance Computing Multi-process Simulator. The Platform capabilities target a level of functionality to allow end-to-end model development, starting with definition of the conceptual model and management of data for model input. The High-Performance Computing capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The new capabilities are demonstrated through working groups, including one focused on the Hanford Site Deep Vadose Zone. The ASCEM program focused on planning during the first year and executing a prototype tool-set for an early demonstration of individual components. Subsequently, ASCEM has focused on developing and demonstrating an integrated set of capabilities, making progress toward a version of the capabilities that can be used to engage end users. Demonstration of capabilities continues to be implemented through working groups. Three different working groups, one focused on EM problems in the deep vadose zone, another investigating attenuation mechanisms for metals and radionuclides, and a third focusing on waste tank performance assessment, continue to make progress. The project

  8. Methodology for economic evaluation of software development projects

    International Nuclear Information System (INIS)

    Witte, D.M.

    1990-01-01

    Many oil and gas exploration and production companies develop computer software in-house or with contract programmers to support their exploration activities. Software development projects compete for funding with exploration and development projects, though most companies lack valid comparison measures for the two types of projects. This paper presents a methodology of pro form a cash flow analysis for software development proposals intended for internal use. This methodology, based on estimates of development and support costs, exploration benefits, and probability of successful development and implementation, can be used to compare proposed software development projects directly with competing exploration proposals

  9. A status update on the Advanced Photon Source Project--Summer 1993

    International Nuclear Information System (INIS)

    Moncton, D.E.; Fenner, R.B.

    1993-01-01

    The Advanced Photon Source Project has passed the mid-point in its construction. The linac and synchrotron booster enclosures are complete. A portion of the experiment hall has been completed and put into use to support accelerator component assembly, test, and installation. Plans for the user lab/office modules and the central laboratory/office complex are well advanced. Installation of the linac injection system has been completed and commissioning is beginning. Installation and commissioning of the positron accumulator ring, the booster synchrotron, the storage ring, and the rf power systems will follow. Accelerator operations capable of supporting the commissioning of the experimental beamlines is planned for the summer of 1995. A strong research program is continuing to produce results supportive of both accelerator and beamline construction and operations. Collaborative Access Teams have been formed to conduct research with the initial set of 32 beamlines that will be available at the completion of the first phase of construction

  10. Energy Efficient Community Development in California: Chula Vista Research Project

    Energy Technology Data Exchange (ETDEWEB)

    Gas Technology Institute

    2009-03-31

    energy utility networks; (d) Alternative land-use design and development options and their impact on energy efficiency and urban runoff, emissions and the heat island effect; and (e) Alternative transportation and mobility options and their impact on local emissions. (2) Creating Energy-Efficient Communities in California: A Reference Guide to Barriers, Solutions and Resources report provides the results of an effort to identify the most innovative existing and emerging public policy, incentive and market mechanisms that encourage investment in advanced energy technologies and enabling community design options in the State of California and the nation. The report evaluates each of these mechanisms in light of the preceding research and concludes with a set of recommended mechanisms designed for consideration by relevant California State agencies, development and finance industry associations, and municipal governments. (3) Creating Energy-Efficient Communities in California: A Technical Reference Guide to Building and Site Design report contains a set of selected commercially viable energy technology and community design options for high-efficiency, low-impact community development in California. It includes a summary of the research findings referenced above and recommendations for energy technology applications and energy-efficient development strategies for residential, commercial and institutional structures and supporting municipal infrastructure for planned communities. The document also identifies design options, technology applications and development strategies that are applicable to urban infill projects.

  11. Status of LMFBR development project in Japan

    International Nuclear Information System (INIS)

    Nagane, G.; Akebi, M.; Matsuno, Y.

    1987-01-01

    Initiation of the LMFBR development project in Japan was decided by the Atomic Energy Commission of Japan in 1966. In 1967, the Power Reactor and Nuclear Fuel Development Corporation (PNC) was established to realize the project as a part of its tasks of a wide scope covering all the reseatch and development activities concerning fuel cycle. In the present paper the status of experimental fast reactor (Joyo), which is the first milestone of the LMFBR project, prototype fast reactor (Monju) and R and D activities supporting the project including that for larger LMFBRs in the future is described. (author)

  12. Project of the basic survey of cooperation for the heightening of energy efficiency in developing countries. Project for inviting engineers from developing countries to Japan (Malaysia); Hatten tojokoku energy shohi koritsuka kyoryoku kiso chosa nado jigyo. Hatten tojokoku gijutsusha shohei jigyo (Malaysia)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    For the purpose of plannably and effectively spreading the results of demonstrative researches on energy conservation and environmental technology in developing countries which were jointly made with Japan and Japan`s advanced energy conservation and environment technology, etc., the project invited engineers of developing countries to Japan, gave the intensive research instruction, made the required information exchange, and attempted improving R and D ability of the engineers and smoothening transfer/spread of the technology concerned. Malaysia has been advancing strongly the economic growth along `the 6th Malaysia Plan,` and aims, as a national target, at completing industrialization by 2020 and reaching the level of developed countries. However, the environment problem in Malaysia is worsening. In this invitation project, two-week training was given to 15 trainees, paying attention to the following three items: (1) introduction of technologies of energy conservation and environment in Japan, (2) actual field training at research institutes and corporations which have high-technology on energy conservation and environment, and (3) information exchanges with executive officials, scientists, and researchers in Japan. 6 figs.

  13. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States)

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  14. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, David K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Dong-Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule. The purpose of this advanced LAW glass research and development plan is to identify the near-term, mid-term, and longer-term research and development activities required to develop and validate advanced LAW glasses, property-composition models and their uncertainties, and an advanced glass algorithm to support WTP facility operations, including both Direct Feed LAW and full pretreatment flowsheets. Data are needed to develop, validate, and implement 1) new glass property-composition models and 2) a new glass formulation algorithm. Hence, this plan integrates specific studies associated with increasing the Na2O and SO3/halide concentrations in glass, because these components will ultimately dictate waste loadings for LAW vitrification. Of equal importance is the development of an efficient and economic strategy for 99Tc management. Specific and detailed studies are being implemented to understand the fate of Tc throughout

  15. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-19

    {open_quotes}Evaluation Engineering and Development of Advanced Cyclone Processes{close_quotes} is one of the DOE-PETC sponsored advanced coal cleaning projects, which share a number of specific goals. These goals are to produce a 6% ash product, reject 85% of the parent coal`s pyritic sulfur, recover 85% of the parent coal`s Btu value, and provide products that are less than 30% moisture. The process in this project, as the name implies, relies on a cyclone or cyclonic separator to achieve physical beneficiation based on the gravimetric differences between clean coal and its impurities. Just as important as the cyclonic separator, if not more so, is the selection of a parting liquid or medium for use in the separator. Selection of a separating medium is regarded as a significant portion of the project because it has a profound impact on the required unit operations, the performance of the separator, and economics of the process. The choice of medium especially influences selection of media recovery system(s), and the characteristics of clean coal and refuse products. Since medium selection is such an important aspect of the project, portions of the project are dedicated to the study, evaluation, and selection of the most desirable medium. Though separators are an important component, this project initially focused on media study, rather than the separators themselves. In coal processing, discussion of media requires description of the handling and recovery system(s), separation performance, interaction with coal, cost, and health, environmental and safety issues. In order to be effective, a candidate must perform well in all of these categories.

  16. Stress analysis of HLW containers advanced test work Compas project

    International Nuclear Information System (INIS)

    Ove Arup and Partners

    1990-01-01

    The Compas project is concerned with the structural performance of metal overpacks which may be used to encapsulate vitrified high-level waste forms before disposal in deep geological repositories. This document describes the activities performed between June and August 1989 forming the advanced test work phase of this project. This is the culmination of two years' analysis and test work to demonstrate whether the analytical ability exists to model containers subjected to realistic loads. Three mild steel containers were designed and manufactured to be one-third scale models of a realistic HLW container, modified to represent the effect of anisotropic loading and to facilitate testing. The containers were tested under a uniform external pressure and all failed by buckling in the mid-body region. The outer surface of each container was comprehensively strain-gauged to provide strain history data at all positions of interest. In parallel with the test work, Compas project partners, from five different European countries, independently modelled the behaviour of each of the containers using their computer codes to predict the failure pressure and produce strain history data at a number of specified locations. The first axisymmetric container was well modelled but predictions for the remaining two non-axisymmetric containers were much more varied, with differences of up to 50% occurring between failure predictions and test data

  17. Advanced Solid State Lighting for AES Deep Space Hab Project

    Science.gov (United States)

    Holbert, Eirik

    2015-01-01

    The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.

  18. Policy issues inherent in advanced technology development

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, P.D.

    1994-12-31

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses.

  19. Policy issues inherent in advanced technology development

    International Nuclear Information System (INIS)

    Baumann, P.D.

    1994-01-01

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses

  20. H Scan/AHP advanced technology proposal evaluation process

    Energy Technology Data Exchange (ETDEWEB)

    Mack, S. [Energetics, Inc., Columbia, MD (United States); Valladares, M.R.S. de [National Renewable Energy Lab., Washington, DC (United States)

    1996-10-01

    It is anticipated that a family of high value/impact projects will be funded by the Hydrogen Program to field test hydrogen technologies that are at advanced stages of development. These projects will add substantial value to the Program in several ways, by: demonstrating successful integration of multiple advanced technologies, providing critical insight on issues of larger scale equipment design, construction and operations management, yielding cost and performance data for competitive analysis, refining and deploying enhanced safety measures. These projects will be selected through a competitive proposal evaluation process. Because of the significant scope and funding levels of projects at these development phases, Program management has indicated the need for an augmented proposal evaluation strategy to ensure that supported projects are implemented by capable investigative teams and that their successful completion will optimally advance programmatic objectives. These objectives comprise a complex set of both quantitative and qualitative factors, many of which can only be estimated using expert judgment and opinion. To meet the above need, the National Renewable Energy Laboratory (NREL) and Energetics Inc. have jointly developed a proposal evaluation methodology called H Scan/AHP. The H Scan component of the process was developed by NREL. It is a two-part survey instrument that substantially augments the type and scope of information collected in a traditional proposal package. The AHP (Analytic Hierarchy Process) component was developed by Energetics. The AHP is an established decision support methodology that allows the Program decision makers to evaluate proposals relatively based on a unique set of weighted criteria that they have determined.

  1. Interagency advanced power group: Semi-annual compilation of briefs, March 1993

    International Nuclear Information System (INIS)

    1993-03-01

    The Government Research and Development Summaries now available from NTIS are project briefs prepared by the Interagency Advanced Power Group (IAPG). They describe the status of all programs in the fields of advanced power research, development and engineering. Members of the IAPG are the U.S. Army, Navy, and Air Force, U.S. Department of Energy and the National Aeronautics and Space Administration (NASA). Their cooperative effort monitors government-funded research and development producing project briefs in the following working groups: Chemical; Electrical; Magnetohydrodynamic; Mechanical, Nuclear, TE, TI; Solar; and Systems. Each project brief contains title; project description; contract number, period, probable completion date and funding; principle investigator name and telephone number; contractor name and address; directing agency; and index terms

  2. The advanced containment experiments (ACE) Project

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Ritzman, R.; Merilo, M.; Rahn, F.; Machiels, A.

    1992-01-01

    The overall structure and content of the ACE Project, which has been obtaining experimental data in four key areas of LWR severe accident technology are described. The key areas consist of filtration systems for vented containment concepts, radioiodine behavior in containment, the interaction of molten core material with structural concrete, and the use of water to terminate the core-concrete interaction process. Experiment procedures used in each phase of the work are summarized and the principal results and conclusions developed to date are discussed

  3. Advanced TCA BAckplane Tester

    CERN Document Server

    Oltean, Alexandra Dana; PGNet2005

    2005-01-01

    The “Advanced Telecom Computing Architecture” (AdvancedTCA) is a modular standard chassis based system designed to support the needs of carrier class telecommunication applications. It is defined by a set of industry standards under the direction of the PICMG group. One early deployment of the standard technology has been a 10 Gigabit Ethernet switch developed in the framework of the EU funded ESTA project. In order to study the practical aspects of high speed Ethernet switching at 10 Gigabit and above and to validate the signal integrity of the AdvancedTCA backplane, we developed a Backplane Tester. This system is able to run pseudo-random bit sequence (PRBS) traffic at 3.125 Gbps over every link on the AdvancedTCA backplane simultaneously, and to monitor any possible connectivity failure immediately in terms of the link and slot positions inside the chassis. In this paper, we describe the design and the practical architectural hardware and software aspects of the AdvancedTCA Backplane Tester. We also pr...

  4. Landfill Gas Energy Project Development Handbook

    Science.gov (United States)

    View handbook that provides an overview of LFG energy project development guidance and presents the technological, economic and regulatory considerations that affect the feasibility and success of these projects.

  5. Planning of development strategy for establishment of advanced simulation of nuclear system

    International Nuclear Information System (INIS)

    Chung, Bubdong; Ko, Wonil; Kwon Junhyun

    2013-12-01

    In this product, the long term development plan in each technical area has been prosed with the plan of coupled code system. The consolidated code system for safety analysis has been proposing for future needs. The computing hardware needed for te advanced simulation is also proposing. The best approach for future safety analysis simulation capabilities may be a dual-path program. i. e. the development programs for an integrated analysis tool and multi-scale/multi-physic analysis tools, where the former aims at reducing uncertainty and the latter at enhancing accuracy. Integrated analysis tool with risk informed safety margin quantification It requires a significant extension of the phenomenological and geometric capabilities of existing reactor safety analysis software, capable of detailed simulations that reduce the uncertainties. Multi-scale, multi-physics analysis tools. Simplifications of complex phenomenological models and dependencies have been made in current safety analyses to accommodate computer hardware limitations. With the advent of modern computer hardware, these limitations may be removed to permit greater accuracy in representation of physical behavior of materials in design basis and beyond design basis conditions, and hence more accurate assessment of the true safety margins based on first principle methodology. The proposals can be utilized to develop the advanced simulation project and formulation of organization and establishment of high performance computing system in KAERI

  6. Agile Project Management for e-Learning Developments

    Science.gov (United States)

    Doherty, Iain

    2010-01-01

    We outline the project management tactics that we developed in praxis in order to manage elearning projects and show how our tactics were enhanced through implementing project management techniques from a formal project management methodology. Two key factors have contributed to our project management success. The first is maintaining a clear…

  7. Recent advances in control and diagnostics development and application

    International Nuclear Information System (INIS)

    Monson, L.R.; King, R.W.; Lindsay, R.W.; Staffon, J.D.

    1989-01-01

    The power industry is undergoing rapid technological advances and cultural changes. Technologies are advancing and evolving so rapidly that the industry is hard pressed to keep up and take full advantage of the many developments now in progress. Recent advantages in state-of-the-art computer technology are making in-roads in the form of advanced computer control, expert systems, on-line performance monitoring and diagnostics. Validation and verification schemes are being developed which provide increased confidence in the correctness and reliability of both computer hardware and software. Our challenge in the nuclear community is to effectively apply these new technologies to improve the operation, safety, and reliability of our plants. This presentation discusses two areas of development that are essential to advanced control strategies: application of diagnostic systems to improve fault-tolerance, and model-based graphic displays. 4 refs., 4 figs

  8. Developing a common framework for integrated solid waste management advances in Managua, Nicaragua.

    Science.gov (United States)

    Olley, Jane E; IJgosse, Jeroen; Rudin, Victoria; Alabaster, Graham

    2014-09-01

    This article describes the municipal solid waste management system in Managua, Nicaragua. It updates an initial profile developed by the authors for the 2010 UN-HABITAT publication Solid Waste Management in the World's Cities and applies the methodology developed in that publication. In recent years, the municipality of Managua has been the beneficiary of a range of international cooperation projects aimed at improving municipal solid waste management in the city. The article describes how these technical assistance and infrastructure investments have changed the municipal solid waste management panorama in the city and analyses the sustainability of these changes. The article concludes that by working closely with the municipal government, the UN-HABITAT project Strengthening Capacities for Solid Waste Management in Managua was able to unite these separate efforts and situate them within a strategic framework to guide the evolution of the municipal solid waste management system in the forthcoming years. The creation of this multi-stakeholder platform allowed for the implementation of joint activities and ensured coherence in the products generated by the different projects. This approach could be replicated in other cities and in other sectors with similar effect. Developing a long term vision was essential for the advancement of municipal solid waste management in the city. Nevertheless, plan implementation may still be undermined by the pressures of the short term municipal administrative government, which emphasize operational over strategic investment. © The Author(s) 2014.

  9. ADVANCED TECHNOLOGIES OF ELECTRONIC EDUCATIONAL SYSTEMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Shishkina

    2011-11-01

    Full Text Available Actual problems and contradictions of electronic educational systems development are described: availability of education, quality of educational services; individualization of education; exposures and advantages in using of computer technology; standardization of technologies and resources. Tendencies of their solution in the view of development of new advanced technologies of e-education are specified. The essence and advantages of using the cloud computing technologies as a new platform of distributed learning are specified. Advanced directions of cloud-based data usage in executive system of education are declared: access management, content management, asset management, communications management.

  10. Advanced Control Test Operation (ACTO) facility

    International Nuclear Information System (INIS)

    Ball, S.J.

    1987-01-01

    The Advanced Control Test Operation (ACTO) project, sponsored by the US Department of Energy (DOE), is being developed to enable the latest modern technology, automation, and advanced control methods to be incorporated into nuclear power plants. The facility is proposed as a national multi-user center for advanced control development and testing to be completed in 1991. The facility will support a wide variety of reactor concepts, and will be used by researchers from Oak Ridge National Laboratory (ORNL), plus scientists and engineers from industry, other national laboratories, universities, and utilities. ACTO will also include telecommunication facilities for remote users

  11. Fiscal 1989 achievement report on next-generation industrial structure technology. Research and development of advanced materials for extreme environments (Research and development of advanced composite materials using oil as raw material); 1989 nendo chotaikankyosei senshin zairyo no kenkyu kaihatsu seika hokokusho. Sekiyu genryokei senshin fukugo zairyo no kenkhyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    The research and development of advanced composite materials succeeds the composite material development project initiated in fiscal 1981, and activities were conducted in the two domains of advanced composite material development and comprehensive survey implementation. In the comprehensive survey, trends of associated technologies were investigated, and technical tasks were studied relative to the development of advanced materials. In the effort to develop advanced composite materials, activities were conducted in the three fields of (1) oil pitch derived random structure carbon fiber/carbon based matrix composite materials, (2) oil pitch derived onion structure carbon fiber/carbon based matrix composite materials, and (3) oil pitch derived double structure carbon fiber/carbon based matrix composite materials. In Field (1), relations between conditions of forming carbon fibers out of pitch and carbon fiber random structure were elucidated, and development was started of technologies for providing fibers with oxidation resisting surface coatings. In Field (2), relations between conditions of forming carbon fibers out of pitch and carbon fiber onion structure were elucidated, and development was started of technologies for providing fibers with oxidation resisting surface coatings. In Field (3), efforts were started to elucidate oxidation resistance governing factors. (NEDO)

  12. Equipment system for advanced nuclear fuel development

    International Nuclear Information System (INIS)

    Kwon, Hyuk Il; Ji, C. G.; Bae, S. O.

    2002-11-01

    The purpose of the settlement of equipment system for nuclear Fuel Technology Development Facility(FTDF) is to build a seismic designed facility that can accommodate handling of nuclear materials including <20% enriched Uranium and produce HANARO fuel commercially, and also to establish the advanced common research equipment essential for the research on advanced fuel development. For this purpose, this research works were performed for the settlement of radiation protection system and facility special equipment for the FTDF, and the advanced common research equipment for the fuel fabrication and research. As a result, 11 kinds of radiation protection systems such as criticality detection and alarm system, 5 kinds of facility special equipment such as environmental pollution protection system and 5 kinds of common research equipment such as electron-beam welding machine were established. By the settlement of exclusive domestic facility for the research of advanced fuel, the fabrication and supply of HANARO fuel is possible and also can export KAERI-invented centrifugal dispersion fuel materials and its technology to the nations having research reactors in operation. For the future, the utilization of the facility will be expanded to universities, industries and other research institutes

  13. Advanced Electrical Materials and Components Development: An Update

    Science.gov (United States)

    Schwarze, Gene E.

    2005-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.

  14. Project Finance and Projects in the Energy Sector in Developing Countries

    OpenAIRE

    ERMELA KRIPA; HALIT XHAFA

    2013-01-01

    The purpose of this study is to show the importance of using project finance in infrastructure investments in developing countries. The paper will be focused only on one infrastructure sector, which is energy. Structurally, power project finance has involved largely buildown-transfer (BOT) project structures and long-term contracts. The projects largely reflect a rational allocation of risks among public and private participants. Private sponsors and lenders generally assume risks for complet...

  15. Advancing tuberculosis drug regimen development through innovative quantitative translational pharmacology methods and approaches.

    Science.gov (United States)

    Hanna, Debra; Romero, Klaus; Schito, Marco

    2017-03-01

    The development of novel tuberculosis (TB) multi-drug regimens that are more efficacious and of shorter duration requires a robust drug development pipeline. Advances in quantitative modeling and simulation can be used to maximize the utility of patient-level data from prior and contemporary clinical trials, thus optimizing study design for anti-TB regimens. This perspective article highlights the work of seven project teams developing first-in-class translational and quantitative methodologies that aim to inform drug development decision-making, dose selection, trial design, and safety assessments, in order to achieve shorter and safer therapies for patients in need. These tools offer the opportunity to evaluate multiple hypotheses and provide a means to identify, quantify, and understand relevant sources of variability, to optimize translation and clinical trial design. When incorporated into the broader regulatory sciences framework, these efforts have the potential to transform the development paradigm for TB combination development, as well as other areas of global health. Copyright © 2016. Published by Elsevier Ltd.

  16. Project finance and international energy development

    International Nuclear Information System (INIS)

    Pollio, G.

    1998-01-01

    This paper explores the preference for and the features unique to project finance, one of the favoured vehicles for funding energy development. Our main focus is on the interests of project sponsors, commercial banks and host governments. Inclusion of the latter reflects the fact host governments are often leading participants in primary energy and energy-related projects; more recently, they have come to use limited recourse structures to finance local infrastructure development. Traditional analyses, whilst providing useful insights into the interests of leading project participants, are incapable of isolation a single motive or set of motives that can comprehensively account for all of the features common to this form of debt. Within an options-theoretic framework, most of these ambiguities are resolved. Risk management, long recognised as one of the primary reasons for choosing project finance over rival debt structures, is affirmed as a key explanatory factor. One the other hand, options pricing theory provides a radically different perspective on how to project finance contributes to the realisation of these objectives. (author)

  17. Sniffer project development

    CERN Document Server

    Grau, S; CERN. Geneva. ST Division

    2002-01-01

    To ensure the safety of the personnel, and prevent major damage to the equipment in the LHC experiments, a combined fire and gas detection system is being developed in conjunction with the industry. This system named SNIFFER, shall detect fire, flammable gas leaks and oxygen deficiency. In addition it shall interface with the Experiments' Control System and the CERN Safety Alarm Monitoring system. The SNIFFER project is currently at the end of the prototyping phase, and the technical specification is being written for the outsourcing of the system. The purpose of this document is to describe the main functions, constraints and interfaces of the system, to present the status report and planning of the project, and to explain the preliminary conclusions of the prototyping phase.

  18. Description and evaluation of an initiative to develop advanced practice nurses in mainland China.

    Science.gov (United States)

    Wong, Frances Kam Yuet; Peng, Gangyi; Kan, Eva C; Li, Yajie; Lau, Ada T; Zhang, Liying; Leung, Annie F; Liu, Xueqin; Leung, Vilna O; Chen, Weiju; Li, Ming

    2010-05-01

    This paper describes an initiative to develop Advanced Practice Nurses (APNs) in mainland China and evaluation of the outcomes of the described programme. The pioneer project was an APN postgraduate programme involving 38 students conducted in Guangzhou, China during 2004-2005. Data related to curriculum content and process, student performance, self-reported competence and programme effects were collected. Quantitative data such as demographic data, student performance were analysed using descriptive statistics and the pre and post self-reported practice of competence was compared using chi-square test. Qualitative data such as case reports and interviews were examined using thematic analyses. Reflective journals and case studies revealed the attributes of APNs in managing clinical cases at advanced level, applying theory into practice and exercising evidence-based practice. The relatively modest self-reported practice of competence suggested that the graduates were novice APNs and needed continued development after the completion of the programme. This study reports the experience of an initiative in China and suggests a useful curriculum framework for educating APNs. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Testing Software Development Project Productivity Model

    Science.gov (United States)

    Lipkin, Ilya

    Software development is an increasingly influential factor in today's business environment, and a major issue affecting software development is how an organization estimates projects. If the organization underestimates cost, schedule, and quality requirements, the end results will not meet customer needs. On the other hand, if the organization overestimates these criteria, resources that could have been used more profitably will be wasted. There is no accurate model or measure available that can guide an organization in a quest for software development, with existing estimation models often underestimating software development efforts as much as 500 to 600 percent. To address this issue, existing models usually are calibrated using local data with a small sample size, with resulting estimates not offering improved cost analysis. This study presents a conceptual model for accurately estimating software development, based on an extensive literature review and theoretical analysis based on Sociotechnical Systems (STS) theory. The conceptual model serves as a solution to bridge organizational and technological factors and is validated using an empirical dataset provided by the DoD. Practical implications of this study allow for practitioners to concentrate on specific constructs of interest that provide the best value for the least amount of time. This study outlines key contributing constructs that are unique for Software Size E-SLOC, Man-hours Spent, and Quality of the Product, those constructs having the largest contribution to project productivity. This study discusses customer characteristics and provides a framework for a simplified project analysis for source selection evaluation and audit task reviews for the customers and suppliers. Theoretical contributions of this study provide an initial theory-based hypothesized project productivity model that can be used as a generic overall model across several application domains such as IT, Command and Control

  20. [Engineering development of advanced coal-fired low-emission boiler systems]. Technical progress report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wesnor, J.D.; Bakke, E. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J.; Kaminski, R.S. [Raytheon Engineers and Constructors, Inc., Philadelphia, PA (United States)

    1995-12-31

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emisssion boiler systems. The primary objectives are: NO{sub x} emissions, lb/million Btu; SO{sub 2} emissions, lb/million Btu; particulate emissions, lb/million Btu; and net plant efficiency, not less than 42%. The secondary objectives are: improved ash disposability; reduced waste generation; and reduced air toxics emissions. Accomplishments to date are summarized for the following tasks: task 1, project planning and management; task 7, component development and optimization; task 8, preliminary POC test facility design; task 9, subsystem test design and plan; task 10, subsystem test unit construction; and task 11, subsystem test operation and evaluation.

  1. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

  2. Advanced Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  3. Renewable energy project development

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J.

    1996-12-31

    The author presents this paper with three main thrusts. The first is to discuss the implementation of renewable energy options in China, the second is to identify the key project development steps necessary to implement such programs, and finally is to develop recommendations in the form of key issues which must be addressed in developing such a program, and key technical assistance needs which must be addressed to make such a program practical.

  4. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    International Nuclear Information System (INIS)

    Kruger, A. A.; Peeler, D. K.; Kim, D. S.; Vienna, J. D.; Piepel, G. F.; Schweiger, M. J.

    2015-01-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.

  5. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peeler, D. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, D. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, G. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, M. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-23

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.

  6. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2013-01-01

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10 −6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  7. Advancing Uncertainty: Untangling and Discerning Related Concepts

    OpenAIRE

    Janice Penrod

    2002-01-01

    Methods of advancing concepts within the qualitative paradigm have been developed and articulated. In this section, I describe methodological perspectives of a project designed to advance the concept of uncertainty using multiple qualitative methods. Through a series of earlier studies, the concept of uncertainty arose repeatedly in varied contexts, working its way into prominence, and warranting further investigation. Processes of advanced concept analysis were used to initiate the formal in...

  8. Leadership and Project Success in Development Sector

    Directory of Open Access Journals (Sweden)

    Saghir Ahmed

    2017-10-01

    Full Text Available Aim/purpose - The study aims to investigate the relationship among the leadership, operational efficiency and project success in general and the impact of transformational leadership and operational efficiency on project success in particular. Design/methodology/approach - Mean comparison from descriptive statistics and multiple linear regression from inferential statistics was used to determine the association between variables and further impact of the transformational leadership and operational efficiency on project success in the development sector. The paper presents the results of a survey conducted among 200 employees from the top, middle & lower management levels of various national & international development organizations working in Pakistan like Microfinance Banks and other Rural Support Programs. Statistical Package for Social Sciences (SPSS was used to process data. Findings - The result shows positive association among transformational leadership, operational efficiency and project success. In addition, it was found that transformational leadership and operational efficiency have a positive and statistically significant impact on the project success. It is concluded that both transformational leadership and operational efficiency are vital to achieving the optimum level of success in any project, especially in the development sector. Research implications/limitations - The integral limitation of the study was the respondents because most of the development organizations have their operations in rural areas where access was difficult because of limited time and resources. In addition, such organizations are always reluctant to provide survey feedback. Originality/value/contribution - The paper contribution is in the theoretical and practical knowledge of the project success factors in the development sector which is still a somehow unexplored area. Regulators of the development sector may be benefited from this study.

  9. Advancing the practice of systems engineering at JPL

    Science.gov (United States)

    Jansma, Patti A.; Jones, Ross M.

    2006-01-01

    In FY 2004, JPL launched an initiative to improve the way it practices systems engineering. The Lab's senior management formed the Systems Engineering Advancement (SEA) Project in order to "significantly advance the practice and organizational capabilities of systems engineering at JPL on flight projects and ground support tasks." The scope of the SEA Project includes the systems engineering work performed in all three dimensions of a program, project, or task: 1. the full life-cycle, i.e., concept through end of operations 2. the full depth, i.e., Program, Project, System, Subsystem, Element (SE Levels 1 to 5) 3. the full technical scope, e.g., the flight, ground and launch systems, avionics, power, propulsion, telecommunications, thermal, etc. The initial focus of their efforts defined the following basic systems engineering functions at JPL: systems architecture, requirements management, interface definition, technical resource management, system design and analysis, system verification and validation, risk management, technical peer reviews, design process management and systems engineering task management, They also developed a list of highly valued personal behaviors of systems engineers, and are working to inculcate those behaviors into members of their systems engineering community. The SEA Project is developing products, services, and training to support managers and practitioners throughout the entire system lifecycle. As these are developed, each one needs to be systematically deployed. Hence, the SEA Project developed a deployment process that includes four aspects: infrastructure and operations, communication and outreach, education and training, and consulting support. In addition, the SEA Project has taken a proactive approach to organizational change management and customer relationship management - both concepts and approaches not usually invoked in an engineering environment. This paper'3 describes JPL's approach to advancing the practice of

  10. Ethiopian Journal of Development Research: Advanced Search

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Ethiopian Journal of Development Research: Advanced Search ... containing either term; e.g., education OR research; Use parentheses to create more complex queries; ... Ethiopian Journal of Business and Economics (The), Ethiopian Journal of Development Research ...

  11. Development and progress of the South African uranium enrichment project

    International Nuclear Information System (INIS)

    Roux, A.J.A.; Grant, W.L.; Barbour, R.A.; Loubser, R.S.; Wannenburg, J.J.

    1977-01-01

    The earlier development of the project is briefly reviewed, and some of the salient features of the South African process are touched upon. Development of the separation element in the last 18 months is discussed, as well as further work on the helikon cascade process. A brief description of the helikon cascade operation is given by means of diagrams. Because of time limitations, the complete helikon theory is not presented, but only some examples shown. Experimental work done to verify the helikon concept, as well as theoretical treatment, is presented. A brief report of the progress made on the experimental module of 6 t/a separative work capacity is given. This module, known as Mini-Z, is well advanced and details of its features and construction are shown. A short discussion of progress on the full-scale prototype module, known as Proto-Z, is next presented. The flexibility of such a design to fit a wide range of cascade sizes is considered, as well as cost implications of various approaches to design. Apart from progress on the development of the commercial plant, a brief review is given of the present state of the pilot plant at Valindaba. Some of the information obtained is mentioned. In conclusion, some information is given in regard to further planning and other work on the commercial plant at present being undertaken. Projected operation of the plant and some nuclear fuel service aspects are touched on

  12. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D. D.; Lvov, S. N.

    2000-01-01

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system

  13. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  14. Technology Base Research Project for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, K.

    1985-06-01

    The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.

  15. Quality Assurance Project Plan Development Tool

    Science.gov (United States)

    This tool contains information designed to assist in developing a Quality Assurance (QA) Project Plan that meets EPA requirements for projects that involve surface or groundwater monitoring and/or the collection and analysis of water samples.

  16. Integrated Computational Materials Engineering Development of Advanced High Strength Steel for Lightweight Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hector, Jr., Louis G. [General Motors, Warren, MI (United States); McCarty, Eric D. [United States Automotive Materials Partnership LLC (USAMP), Southfield, MI (United States)

    2017-07-31

    The goal of the ICME 3GAHSS project was to successfully demonstrate the applicability of Integrated Computational Materials Engineering (ICME) for the development and deployment of third generation advanced high strength steels (3GAHSS) for immediate weight reduction in passenger vehicles. The ICME approach integrated results from well-established computational and experimental methodologies to develop a suite of material constitutive models (deformation and failure), manufacturing process and performance simulation modules, a properties database, as well as the computational environment linking them together for both performance prediction and material optimization. This is the Final Report for the ICME 3GAHSS project, which achieved the fol-lowing objectives: 1) Developed a 3GAHSS ICME model, which includes atomistic, crystal plasticity, state variable and forming models. The 3GAHSS model was implemented in commercially available LS-DYNA and a user guide was developed to facilitate use of the model. 2) Developed and produced two 3GAHSS alloys using two different chemistries and manufacturing processes, for use in calibrating and validating the 3GAHSS ICME Model. 3) Optimized the design of an automotive subassembly by substituting 3GAHSS for AHSS yielding a design that met or exceeded all baseline performance requirements with a 30% mass savings. A technical cost model was also developed to estimate the cost per pound of weight saved when substituting 3GAHSS for AHSS. The project demonstrated the potential for 3GAHSS to achieve up to 30% weight savings in an automotive structure at a cost penalty of up to $0.32 to $1.26 per pound of weight saved. The 3GAHSS ICME Model enables the user to design 3GAHSS to desired mechanical properties in terms of strength and ductility.

  17. Smooth Transition for Advancement to Graduate Education (STAGE) for Underrepresented Groups in the Mathematical Sciences Pilot Project: Broadening Participation through Mentoring

    Science.gov (United States)

    Eubanks-Turner, Christina; Beaulieu, Patricia; Pal, Nabendu

    2018-01-01

    The Smooth Transition for Advancement to Graduate Education (STAGE) project was a three-year pilot project designed to mentor undergraduate students primarily from under-represented groups in the mathematical sciences. The STAGE pilot project focused on mentoring students as they transitioned from undergraduate education to either graduate school…

  18. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    International Nuclear Information System (INIS)

    Smith, K.E.

    1994-01-01

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design

  19. Bench-scale Development of an Advanced Solid Sorbent-based CO2 Capture Process for Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Thomas [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Kataria, Atish [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Soukri, Mustapha [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Farmer, Justin [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Mobley, Paul [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Tanthana, Jak [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Dongxiang [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Xiaoxing [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Song, Chunshan [Research Triangle Institute (RTI), Research Triangle Park, NC (United States)

    2015-12-31

    It is increasingly clear that CO2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO2 capture processes – such as RTI’s Advanced Solid Sorbent CO2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO2 capture. The overall objective

  20. Research and development project report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report summarizes results of research and development projects administered by NEDO for FY 1996. Overview of new energy projects and twelve chapters for individual projects are provided in the report. The new energy technology development projects administered by NEDO are classified into twelve categories, i.e., Development of technologies for solar energy utilization, Development of geothermal resources, Development of technologies for exploration and utilization of geothermal energy, Development of coal energy utilization technologies, Development of coal resources, Development of energy conversion and storage technologies, Development of hydrogen, alcohol and biomass technologies, Development of other oil-alternative energy technologies, Introduction and promotion of new energy sources, International energy-promotion activities, Promotion of development and introduction, and Activities of the NEDO Information Center. To ensure energy security and actively cope with environmental problems such as by taking carbon dioxide emission control measures, NEDO has stepped up its efforts to develop new energy- and energy saving-related technologies and introduce and diffuse them. 79 figs., 37 tabs.

  1. Neighborhood Energy/Economic Development project

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Energy costs impact low income communities more than anyone else. Low income residents pay a larger percentage of their incomes for energy costs. In addition, they generally have far less discretionary energy use to eliminate in response to increasing energy prices. Furthermore, with less discretionary income, home energy efficiency improvements are often too expensive. Small neighborhood businesses are in the same situation. Improved efficiency in the use of energy can improve this situation by reducing energy costs for residents and local businesses. More importantly, energy management programs can increase the demand for local goods and services and lead to the creation of new job training and employment opportunities. In this way, neighborhood based energy efficiency programs can support community economic development. The present project, undertaken with the support of the Urban Consortium Energy Task Force, was intended to serve as a demonstration of energy/economic programming at the neighborhood level. The San Francisco Neighborhood Energy/Economic Development (NEED) project was designed to be a visible demonstration of bringing the economic development benefits of energy management home to low-income community members who need it most. To begin, a Community Advisory Committee was established to guide the design of the programs to best meet needs of the community. Subsequently three neighborhood energy/economic development programs were developed: The small business energy assistance program; The youth training and weatherization program; and, The energy review of proposed housing development projects.

  2. Global trends in advanced reactor developments, and the role of the IAEA

    International Nuclear Information System (INIS)

    Kupitz, J.; Cleveland, J.

    2000-01-01

    Due to further increases in the world's population along with further industrialization and economic development, global energy demand will surely continue to increase in the 21 century. To assure that nuclear power remains a viable option in meeting energy demands in the near and medium terms, new reactor designs for all principle reactor lines and for different applications are being developed in a number of countries. Common goals for these new designs are high availability, user-friendly features, competitive economics and compliance with internationally recognized safety objectives. World-wide, considerable efforts are being made to develop advanced nuclear power Various organizations are involved, including governments, industries, utilities, universities, national laboratories, and research institutes. Expenditures for development of new designs, technology improvements, and the related research for the major reactor types combined is estimated to exceed US$ 2 billion per year. This paper gives an overview about nuclear power technology development programmes and projects in Member States and the role of the IAEA as a forum for informatics exchange and co-operative research. (author)

  3. Global trends in advanced reactor developments, and the role of the IAEA

    International Nuclear Information System (INIS)

    Kupitz, J.; Cleveland, J.

    2000-01-01

    In the second half of the 20 t 'h century nuclear power has evolved from the research and development environment to an industry that supplies approximately 16% of the world's electricity. In these 50 years of nuclear development a great deal has been achieved and many lessons have been learned. At the end of 1998, according to data reported in the Power Reactor Information System, PRlS, of the IAEA, there were 434 nuclear power plants in operation and 36 under construction. About 9500 reactor-years of operating experience have been accumulated by today. World-wide, considerable efforts are being made to develop advanced nuclear power. Various organizations are involved, including governments, industries, utilities, universities, national laboratories, and research institutes. Expenditures for development of new designs, technology improvements, and the related research for the major reactor types combined is estimated to exceed US$ 2 billion per year. This paper gives an overview about nuclear power technology development programmes and projects in Member States and the role of the IAEA as a forum for informatics exchange and co-operative research. (authors)

  4. Development of the Advanced CANDU Reactor control centre

    International Nuclear Information System (INIS)

    Malcolm, S.; Leger, R.

    2004-01-01

    The next generation CANDU control centre is being designed for the Advanced CANDU Reactor (ACR) station. The design is based upon the recent Qinshan control room with further upgrades to meet customer needs with respect to high capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This evolutionary design includes the long proven functionality at several existing CANDU control centres such as the 4-unit station at Darlington, with advanced features made possible by new control and display technology. Additionally, ACR control centres address characteristics resulting from Human Factors Engineering (HFE) analysis of control centre operations in order to further enhance personnel awareness of system and plant status. Statistics show that up to 70% of plant significant events, which have caused plant outages, have a root cause attributable to the human from such sources as complex interfaces, procedures, maintenance and management practices. Consequently, special attention is made for the application of HFE throughout the ACR design process. The design process follows a systematic analytical approach to define operations staff information and information presentation requirements. The resultant human-system interfaces (HSI) such as those for monitoring, annunciation and control information are then verified and validated against the system design requirements to provide a high confidence level that adequate and correct information is being provided in a timely manner to support the necessary operational tasks. The ACR control centre provides plant staff with an improved operability capability due to the combination of systematic design and enhanced operating features. Significant design processes (i.e. development) or design features which contribute to this improved operability, include: Design Process: Project HFE Program Plan - intent, scope, timeliness and interfacing; HFE aspects of design process - procedures and instructions

  5. Development of the advanced CANDU reactor control centre

    International Nuclear Information System (INIS)

    Malcolm, S.; Leger, R.

    2004-01-01

    The next generation CANDU control centre is being designed for the Advanced CANDU Reactor (ACR) station. The design is based upon the recent Qinshan control room with further upgrades to meet customer needs with respect to high capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This evolutionary design includes the long proven functionality at several existing CANDU control centres such as the 4-unit station at Darlington, with advanced features made possible by new control and display technology. Additionally, ACR control centres address characteristics resulting from Human Factors Engineering (HFE) analysis of control centre operations in order to further enhance personnel awareness of system and plant status. Statistics show that up to 70% of plant significant events, which have caused plant outages, have a root cause attributable to the human from such sources as complex interfaces, procedures, maintenance and management practices. Consequently, special attention is made for the application of HFE throughout the ACR design process. The design process follows a systematic analytical approach to define operations staff information and information presentation requirements. The resultant human-system interfaces (HSI) such as those for monitoring, annunciation and control information are then verified and validated against the system design requirements to provide a high confidence level that adequate and correct information is being provided in a timely manner to support the necessary operational tasks. The ACR control centre provides plant staff with an improved operability capability due to the combination of systematic design and enhanced operating features. Significant design processes (i.e. development) or design features which contribute to this improved operability, include: Design Process: Project HFE Program Plan - intent, scope, timeliness and interfacing; HFE aspects of design process - procedures and instructions

  6. Geysers advanced direct contact condenser research

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for the Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  7. Replacement and Original Magnet Engineering Options (ROMEOs): A European Seventh Framework Project to Develop Advanced Permanent Magnets Without, or with Reduced Use of, Critical Raw Materials

    Science.gov (United States)

    Mcguiness, P.; Akdogan, O.; Asali, A.; Bance, S.; Bittner, F.; Coey, J. M. D.; Dempsey, N. M.; Fidler, J.; Givord, D.; Gutfleisch, O.; Katter, M.; Le Roy, D.; Sanvito, S.; Schrefl, T.; Schultz, L.; Schwöbl, C.; Soderžnik, M.; Šturm, S.; Tozman, P.; Üstüner, K.; Venkatesan, M.; Woodcock, T. G.; Žagar, K.; Kobe, S.

    2015-06-01

    The rare-earth crisis, which peaked in the summer of 2011 with the prices of both light and heavy rare earths soaring to unprecedented levels, brought about the widespread realization that the long-term availability and price stability of rare earths could not be guaranteed. This triggered a rapid response from manufacturers involved in rare earths, as well as governments and national and international funding agencies. In the case of rare-earth-containing permanent magnets, three possibilities were given quick and serious consideration: (I) increased recycling of devices containing rare earths; (II) the search for new, mineable, rare-earth resources beyond those in China; and (III) the development of high-energy-product permanent magnets with little or no rare-earth content used in their manufacture. The Replacement and Original Magnet Engineering Options (ROMEO) project addresses the latter challenge using a two-pronged approach. With its basis on work packages that include materials modeling and advanced characterization, the ROMEO project is an attempt to develop a new class of novel permanent magnets that are free of rare earths. Furthermore, the project aims to minimize rare-earth content, particularly heavy-rare-earth (HRE) content, as much as possible in Nd-Fe-B-type magnets. Success has been achieved on both fronts. In terms of new, rare-earth-free magnets, a Heusler alloy database of 236,945 compounds has been narrowed down to approximately 20 new compounds. Of these compounds, Co2MnTi is expected to be a ferromagnet with a high Curie temperature and a high magnetic moment. Regarding the reduction in the amount of rare earths, and more specifically HREs, major progress is seen in electrophoretic deposition as a method for accurately positioning the HRE on the surface prior to its diffusion into the microstructure. This locally increases the coercivity of the rather small Nd-Fe-B-type magnet, thereby substantially reducing the dependence on the HREs Dy and

  8. Development of an advanced code system for fast-reactor transient analysis

    International Nuclear Information System (INIS)

    Konstantin Mikityuk; Sandro Pelloni; Paul Coddington

    2005-01-01

    FAST (Fast-spectrum Advanced Systems for power production and resource management) is a recently approved PSI activity in the area of fast spectrum core and safety analysis with emphasis on generic developments and Generation IV systems. In frames of the FAST project we will study both statics and transients core physics, reactor system behaviour and safety; related international experiments. The main current goal of the project is to develop unique analytical and code capability for core and safety analysis of critical (and sub-critical) fast spectrum systems with an initial emphasis on a gas cooled fast reactors. A structure of the code system is shown on Fig. 1. The main components of the FAST code system are 1) ERANOS code for preparation of basic x-sections and their partial derivatives; 2) PARCS transient nodal-method multi-group neutron diffusion code for simulation of spatial (3D) neutron kinetics in hexagonal and square geometries; 3) TRAC/AAA code for system thermal hydraulics; 4) FRED transient model for fuel thermal-mechanical behaviour; 5) PVM system as an interface between separate parts of the code system. The paper presents a structure of the code system (Fig. 1), organization of interfaces and data exchanges between main parts of the code system, examples of verification and application of separate codes and the system as a whole. (authors)

  9. Critical success factors influencing the performance of development projects: An empirical study of Constituency Development Fund projects in Kenya

    OpenAIRE

    Debadyuti Das; Christopher Ngacho

    2017-01-01

    The present work attempts to identify critical success factors (CSFs) influencing the performance of development projects based on their key performance indicators (KPIs). It has considered the case of Constituency Development Fund (CDF) projects constructed between 2003 and 2011 in Kenya and secured the perceptions of 175 respondents comprising clients, consultants and contractors involved in the implementation of CDF projects on 30 success variables. Findings reveal that individual items co...

  10. Progress in development of the advanced Thomson scattering diagnostics

    International Nuclear Information System (INIS)

    Hatae, T; Naito, O; Howard, J; Ebizuka, N; Yoshida, H; Nakatsuka, M; Fujita, H; Kajita, S; Narihara, K; Yamada, I; Funaba, H; Hirano, Y; Koguchi, H

    2010-01-01

    We have been studied the advanced Thomson scattering diagnostics from viewpoints of new concepts, laser technology and spectrum analysis. This paper summarizes results of development on technologies for advanced Thomson scattering diagnostics.

  11. Equilibrium II: Acids and Bases. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P3.

    Science.gov (United States)

    Inner London Education Authority (England).

    This unit on equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the application of equilibrium principles to equilibria involving weak acids and bases, including buffer solutions and indicators. Level one uses Le Chatelier's…

  12. Incentive Mechanism of Micro-grid Project Development

    Directory of Open Access Journals (Sweden)

    Yong Long

    2018-01-01

    Full Text Available Due to the issue of cost and benefit, the investment demand and consumption demand of micro-grids are insufficient in the early stages, which makes all parties lack motivation to participate in the development of micro-grid projects and leads to the slow development of micro-grids. In order to promote the development of micro-grids, the corresponding incentive mechanism should be designed to motivate the development of micro-grid projects. Therefore, this paper builds a multi-stage incentive model of micro-grid project development involving government, grid corporation, energy supplier, equipment supplier, and the user in order to study the incentive problems of micro-grid project development. Through the solution and analysis of the model, this paper deduces the optimal subsidy of government and the optimal cooperation incentive of the energy supplier, and calculates the optimal pricing strategy of grid corporation and the energy supplier, and analyzes the influence of relevant factors on optimal subsidy and incentive. The study reveals that the cost and social benefit of micro-grid development have a positive impact on micro-grid subsidy, technical level and equipment quality of equipment supplier as well as the fact that government subsidies positively adjust the level of cooperation incentives and price incentives. In the end, the validity of the model is verified by numerical analysis, and the incentive strategy of each participant is analyzed. The research of this paper is of great significance to encourage project development of micro-grids and to promote the sustainable development of micro-grids.

  13. Advanced LWR Nuclear Fuel Cladding Development

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Griffith, G.

    2012-01-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R and D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental enhancements are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction to allow improved fuel economy via power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an 'accident tolerant' fuel system that would offer improved coping time under accident scenarios. In a staged development approach, the LWRS program will engage stakeholders throughout the development process to ensure commercial viability of the investigated technologies. Applying minimum performance criteria, several of the top-ranked materials and fabrication concepts will undergo a rigorous series of mechanical, thermal and chemical characterization tests to better define their properties and operating potential in a relatively low-cost, nonnuclear test series. A reduced number of options will be recommended for test rodlet fabrication and in-pile nuclear testing under steady-state, transient and accident conditions. (author)

  14. Advanced express web application development

    CERN Document Server

    Keig, Andrew

    2013-01-01

    A practical book, guiding the reader through the development of a single page application using a feature-driven approach.If you are an experienced JavaScript developer who wants to build highly scalable, real-world applications using Express, this book is ideal for you. This book is an advanced title and assumes that the reader has some experience with node, Javascript MVC web development frameworks, and has heard of Express before, or is familiar with it. You should also have a basic understanding of Redis and MongoDB. This book is not a tutorial on Node, but aims to explore some of the more

  15. Incentive contracts for development projects

    Science.gov (United States)

    Finley, David T.; Smith, Byron; DeGroff, B.

    2012-09-01

    Finding a contract vehicle that balances the concerns of the customer and the contractor in a development project can be difficult. The customer wants a low price and an early delivery, with as few surprises as possible as the project progresses. The contractor wants sufficient cost and schedule to cover risk. Both want to clearly define what each party will provide. Many program offices do not want to award cost plus contracts because their funding sources will not allow it, their boards do not want an open ended commitment, and they feel like they lose financial control of the project. A fixed price incentive contract, with a mutually agreed upon target cost, provides the owner with visibility into the project and input into the execution of the project, encourages both parties to save costs, and stimulates a collaborative atmosphere by aligning the respective interests of customers and contractors.

  16. Designing and Implementing a New Advanced Level Biology Course

    Science.gov (United States)

    Hall, Angela; Reiss, Michael J.; Rowell, Cathy; Scott, Anne

    2003-01-01

    Salters-Nuffield Advanced Biology is a new advanced level biology course, piloted from September 2002 in England with around 1200 students. This paper discusses the reasons for developing a new advanced biology course at this time, the philosophy of the project and how the materials are being written and the specification devised. The aim of the…

  17. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; hide

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.

  18. Advancing LGBTQI2 rights in developing countries through research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-05-10

    May 10, 2018 ... Advancing LGBTQI2 rights in developing countries through research ... the role of research in advancing the rights of lesbian, gay, bisexual, transgender, ... cities were discussed at ADAPTO's second international workshop.

  19. Are Project Developers Knights and Researchers Queens?

    DEFF Research Database (Denmark)

    Vinstrup, Anya Bjørn

    2014-01-01

    How do project developers at universities view their customers – the researchers, and how do they see themselves as a profession? Does this view influence their motivation and what challenges does it impose? Taking elements of theory from Public Service Motivation (PSM) and linking it with a small...... empirically based survey among the project developers at a centrally located office at a university in Denmark – these questions are sought to be answered. The focal point being the motivation of the project developer, with special emphasis on their user perception, and the practical implications it has...... for leadership and organisational structures....

  20. Advanced Combustion Numerics and Modeling - FY18 First Quarter Report

    Energy Technology Data Exchange (ETDEWEB)

    Whitesides, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petitpas, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-05

    This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emerging needs of the engine designers, engine modelers and fuel mechanism developers.

  1. Assessment report of research and development activities in FY2006 activity. 'Fast reactor cycle technology development project' (Interim report)

    International Nuclear Information System (INIS)

    2007-08-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') asked the advisory committee 'evaluation Committee of Research and Development (R and D) Activities for Advanced Nuclear System/Nuclear Fuel Cycle Technology' (hereinafter referred to as 'Committee') to assess the interim report on Fast Reactor Cycle Technology Development Project ' (former 'Feasibility Study on Commercialized Fast Reactor Cycle Systems') in FY2006, in accordance with 'General Guideline for the Evaluation of Government R and D Activities' by Japanese Cabinet Office, 'Guideline for Evaluation of R and D in Ministry of Education, Culture Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to JAEA's request, the Committee assessed the R and D program over five years, the criteria for adoption judgment on innovative technologies at the end of 2010 (Project Review), and the organization structure for R and D. etc. (Management Review). As a result of review, the Committee concluded that this R and D program and its organization structure are almost reasonable. (author)

  2. Status of advanced technologies for CANDU reactors

    International Nuclear Information System (INIS)

    Lipsett, J.J.

    1989-01-01

    The future development of the CANDU reactor is a continuation of a successful series of reactors, the most recent of which are nine CANDU 6 Mk 1* units and four Darlington units. There are three projects underway that continue the development of the CANDU reactor. These new design projects flow from the original reactor designs and are a natural progression of the CANDU 6 Mk 1, two units of which are operating successfully in Canada, one each in Argentina and Korea, with five more being built in Rumania. These new design projects are known as: CANDU 6 Mk 2, an improved version of CANDU 6 Mk 1; CANDU 3, a small, advanced version of the CANDU 6 Mk 1; CANDU 6 Mk 3, a series of advanced CANDU reactors. A short description of modified versions of CANDU reactors is given in this paper. 5 figs

  3. Technical verification of advanced nuclear fuel for KSNPs

    International Nuclear Information System (INIS)

    Lee, C. B.; Bang, J. G.; Kim, D. H. and others

    2002-03-01

    KNFC has developed the advanced 16x16 fuel assembly for the Korean Standard Nuclear Plants through the three-year R and D project (from April 1999 to March 2002) under the Nuclear R and D program by MOST. The purpose of this project is to verify the advanced 16x16 fuel assembly for the Korean Standard Nuclear Plants being developed by KNFC during the same period. Verification tests for the advanced fuel assembly and its components such as characteristic test on the spacer grid spring and dimple, static buckling and dynamic impact test on the 5x5 partial spacer grid, the fuel rod vibration test supported by the PLUS7 mid-spacer grid, fretting wear test, turbulent flow structure test in wind tunnel and corrosion test were performed by using the KAERI facilities. Design reports and test results produced by KNFC were technically reviewed. For the domestic production of burnable poison rod, manufacturing technology of burnable poison pellets was developed

  4. Interregional technology transfer on advanced materials and renewable energy systems

    International Nuclear Information System (INIS)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M.

    2008-01-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems

  5. Interregional technology transfer on advanced materials and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M. [Department of Mechanical Engineering, Technological Educational Institute of Serres, Serres (Greece)

    2008-07-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems.

  6. Research Projects for Interrogations of Biological Systems: Training for the Development of Novel Radiotracers

    International Nuclear Information System (INIS)

    Jurisson, Silvia S.; Lever, Susan Z.; Robertson, J. David

    2016-01-01

    This grant was situated at the University of Missouri to train Ph.D. scientists in radiochemistry and synthetic chemistry in conjunction with Faculty from the Interdisciplinary Plant Group, Division of Biological Sciences, the MU Research Reactor Center, Molecular Biology and the Radiopharmaceutical Sciences Institute. This project was collaborative with Brookhaven National Laboratory (Richard Ferrieri, PI). Projects for the Ph.D. candidates included novel probe development for peptides, nucleosides, small molecules or radiometals, the direct use of radiometals as probes, or nuclear techniques for analysis. The projects for the postdoctoral fellow involved synthetic chemistry for the preparation of precursors for novel tracers that will be radiolabeled with "1"8F or other appropriate radionuclides. The skill sets of our team members allowed us to prepare probes with positron or single photon emitters, as well as ones that are dual-labeled (fluorescent and radiolabeled). We focused our technical advances to those that will be broadly applicable to any research field.

  7. Research Projects for Interrogations of Biological Systems: Training for the Development of Novel Radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Jurisson, Silvia S. [Univ. of Missouri, Columbia, MO (United States); Lever, Susan Z. [Univ. of Missouri, Columbia, MO (United States); Robertson, J. David [Univ. of Missouri, Columbia, MO (United States)

    2016-10-04

    This grant was situated at the University of Missouri to train Ph.D. scientists in radiochemistry and synthetic chemistry in conjunction with Faculty from the Interdisciplinary Plant Group, Division of Biological Sciences, the MU Research Reactor Center, Molecular Biology and the Radiopharmaceutical Sciences Institute. This project was collaborative with Brookhaven National Laboratory (Richard Ferrieri, PI). Projects for the Ph.D. candidates included novel probe development for peptides, nucleosides, small molecules or radiometals, the direct use of radiometals as probes, or nuclear techniques for analysis. The projects for the postdoctoral fellow involved synthetic chemistry for the preparation of precursors for novel tracers that will be radiolabeled with 18F or other appropriate radionuclides. The skill sets of our team members allowed us to prepare probes with positron or single photon emitters, as well as ones that are dual-labeled (fluorescent and radiolabeled). We focused our technical advances to those that will be broadly applicable to any research field.

  8. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the

  9. Product development projects dynamics and emergent complexity

    CERN Document Server

    Schlick, Christopher

    2016-01-01

    This book primarily explores two topics: the representation of simultaneous, cooperative work processes in product development projects with the help of statistical models, and the assessment of their emergent complexity using a metric from theoretical physics (Effective Measure Complexity, EMC). It is intended to promote more effective management of development projects by shifting the focus from the structural complexity of the product being developed to the dynamic complexity of the development processes involved. The book is divided into four main parts, the first of which provides an introduction to vector autoregression models, periodic vector autoregression models and linear dynamical systems for modeling cooperative work in product development projects. The second part presents theoretical approaches for assessing complexity in the product development environment, while the third highlights and explains closed-form solutions for the complexity metric EMC for vector autoregression models and linear dyn...

  10. Advanced Silicon FET Physics and Device Structures

    National Research Council Canada - National Science Library

    Hu, Chenming

    1998-01-01

    The objectives of the project were to develop experimental techniques for characterizing the transport and hot carrier phenomena in advanced MOSFETs, to investigate the limits of gate oxide scaling...

  11. Implementing change: lessons from five development projects

    DEFF Research Database (Denmark)

    Riis, J. O.; Hildebrandt, S.; Andreasen, Mogens Myrup

    2001-01-01

    The aim of this paper is firstly to report on what we have observed by following major improvement and development projects in five industrial enterprises. In particular, the authors shall focus on issues which have often been addressed in Danish enterprises, namely the participation of employees...... with organizational changes. Thirdly, four paradoxes for managing development projects are presented; they may serve as guidelines for coping with the complexity and uncertainty of change processes......The aim of this paper is firstly to report on what we have observed by following major improvement and development projects in five industrial enterprises. In particular, the authors shall focus on issues which have often been addressed in Danish enterprises, namely the participation of employees...... in the change process, the role of a vision of the future company; and organizational learning processes taking place during the development project. Secondly, different interpretation models will be employed in an effort to broaden the understanding of the many facets and viewpoints associated...

  12. Brokerage by a Project Manager across a New Product Development Project

    DEFF Research Database (Denmark)

    Jepsen, Lisbeth Brøde; Jepsen, Anna Lund; Dietrich, Perttu

    2012-01-01

    between three subtypes of brokerage: Brokerage connecting actors from the project team with actors from the various departments within the same organization (intra-organizational brokerage), brokerage connecting employees at the NPD organization with someone working in another organization (inter...... as a hub between possible suppliers for the project. We had also expected that the PM would be more involved in coordination of, to and from the project team than what we found in this study. Based on the study, it seems that some of the connections that we, based on existing knowledge, would expect...... that the management of the project in terms of linking the stakeholders takes off in the solution development phase rather than in the concept development phase which is the phase in focus in large parts of the research that has taken place in this field. Further, contrary to expectations based on existing knowledge...

  13. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  14. TP Atlas: integration and dissemination of advances in Targeted Proteins Research Program (TPRP)-structural biology project phase II in Japan.

    Science.gov (United States)

    Iwayanagi, Takao; Miyamoto, Sei; Konno, Takeshi; Mizutani, Hisashi; Hirai, Tomohiro; Shigemoto, Yasumasa; Gojobori, Takashi; Sugawara, Hideaki

    2012-09-01

    The Targeted Proteins Research Program (TPRP) promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan is the phase II of structural biology project (2007-2011) following the Protein 3000 Project (2002-2006) in Japan. While the phase I Protein 3000 Project put partial emphasis on the construction and maintenance of pipelines for structural analyses, the TPRP is dedicated to revealing the structures and functions of the targeted proteins that have great importance in both basic research and industrial applications. To pursue this objective, 35 Targeted Proteins (TP) Projects selected in the three areas of fundamental biology, medicine and pharmacology, and food and environment are tightly collaborated with 10 Advanced Technology (AT) Projects in the four fields of protein production, structural analyses, chemical library and screening, and information platform. Here, the outlines and achievements of the 35 TP Projects are summarized in the system named TP Atlas. Progress in the diversified areas is described in the modules of Graphical Summary, General Summary, Tabular Summary, and Structure Gallery of the TP Atlas in the standard and unified format. Advances in TP Projects owing to novel technologies stemmed from AT Projects and collaborative research among TP Projects are illustrated as a hallmark of the Program. The TP Atlas can be accessed at http://net.genes.nig.ac.jp/tpatlas/index_e.html .

  15. Projected oriented organizations as development of enterprise management methods

    Directory of Open Access Journals (Sweden)

    S.I. Pavlova

    2016-12-01

    Full Text Available Dynamic external environment, significant shortage of product life cycle, increase of product technological difficulty, extension of innovative knowledge motivates managers to look for and use in their activities keys that will provide constant, stable development of organizational structures. The methodology of project enterprise management meets the requirements of «preservation through development». The articles researches the integration of methods and procedures of project management into the enterprise management system. Project management philosophy is the efficient way of existence in the competitive environment and the means for internal development of a company. The author conducts an analysis, determines the essence and peculiarities of a project-oriented enterprise, performs comparing characteristics of functional and project management, describes the stages of gradual transformation of an enterprise organizational structure into a project-oriented one. It is defined that a project-oriented enterprise is that one which functions on the base of innovative development and are scientific, creative and widely use the project activity as the means of a steady development. The article describes internal and external instruments of project management, base knowledge systems on project management and possibilities of enterprises on audit of state of system project management in an enterprise according to the IPMA certification program on the territory of Ukraine.

  16. Draft project management update to the Iowa DOT Project Development Manual : final report.

    Science.gov (United States)

    2016-08-01

    This work supported drafting project management guidance for the Iowa Department of Transportation (DOT). The goal is to : incorporate a greater focus on project management in their project development process. : A technical advisory committee (TAC) ...

  17. Innovative Practice in Advancement of Academic Nurse Educator Careers: Developing Scholarship From Program Grants.

    Science.gov (United States)

    Eddy, Linda L; Hoeksel, Renee; Fitzgerald, Cindy; Doutrich, Dawn

    We describe an innovative practice in advancing careers of academic nurse educators: demonstrating scholarly productivity from program grants. Scholarly productivity is often narrowly defined, especially in research-intensive institutions. The expectation may be a career trajectory based on the traditional scholarship of discovery. However, nurse educators, especially at the associate and full professor ranks, are often involved in leadership activities that include writing and managing program grants. We encourage the academy to value and support the development of program grants that include significant scholarly components, and we offer exemplars of associate and full professor scholarship derived from these projects.

  18. Clean development mechanism projects and portfolio risks

    International Nuclear Information System (INIS)

    Matsuhashi, Ryuji; Fujisawa, Sei; Mitamura, Wataru; Momobayashi, Yutaka; Yoshida, Yoshikuni

    2004-01-01

    Clean development mechanism (CDM) is expected to facilitate technology transfer from developed to developing countries as well as to economically reduce greenhouse gas emissions. In this article, we explore effective institutions to activate CDM projects. For this purpose, we have estimated internal rate of return (IRR) and other indicators on profitability for 42 CDM or JI projects, taking account of volatilities in the price of certified emission reductions (CER). As a result of Monte Carlo simulations, expected values and standard deviations in the IRR of the projects were quantitatively shown. Then we evaluated various risks in CDM, concluding that diversification of investment is an effective way to suppress these risks. Therefore securitization of CDM finance is proposed as a means of facilitating the diversification of investment. Namely, we present the concept of a CDM bond, which is a project bond with CER. We also investigated the role of governments to suppress risks in CDM. Referring to CERUPT, initiated by the Netherlands' government, the institution of 'insured CERUPT' is proposed to suppress downside risks in the IRR of the projects. We concluded that it is possible to make CDM projects viable by the 'insured CERUPT' and CDM bond

  19. Advances in the project about Pin type silicon radiation detectors; Avances en el proyecto sobre detectores de radiacion de silicio tipo PIN

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez F, J. [Instituto Nacional de Investigaciones Nucleares, Laboratorio de Detectores de Radiacion, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Cerdeira, A.; Aceves, M.; Diaz, A.; Estrada, M.; Rosales, P.; Cabal, A.E.; Montano L, M.; Leyva, A

    1998-07-01

    The obtained advances in the collaboration project ININ-CINVESTAV about development of Pin type semiconductor radiation detectors here are presented. It has been characterized the response to different types of radiation made in CINVESTAV and INAOE. Measurements have been realized with different types of sensitive to charge preamplifiers determining the main characteristics which must be executed to be able to be employed with low capacitance detectors. As applications it has been possible to measure the irradiation time in a mammography machine and X-ray energy spectra have been obtained in the order of 14 KeV, with 4 KeV at ambient temperature. The future actions of project have been indicated and the possible applications of these detectors. (Author)

  20. Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to the Enterprise

    Science.gov (United States)

    2010-04-29

    Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to

  1. Advanced seismic imaging for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Honjas, Bill [Optim

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  2. Itataia project - Development of the process

    International Nuclear Information System (INIS)

    Coelho, S.V.

    1987-01-01

    A process for treating the phosphorus uraniferous ore, from Itataia-CE mine in Brazil, was developed, establishing the basic flow chart for recovery two products: uranium concentrate and phosphoric acid. The developed process consists in physical concentration, chemical separation, solvent extraction, and it presented, in laboratory and pilot scales, recovery levels which assure the project viability technicaly and economicaly. The consolidation of project and the description of installations are presented by a documentary film. (M.C.K.) [pt

  3. Itataia project - Development of the process

    International Nuclear Information System (INIS)

    Coelho, S.V.

    1987-01-01

    A process for treating the phosphorous uraniferous ore, from Itataia-CE mine in Brazil, was developed, establishing the basic flow chart for recovery two products: uranium concentrate and phosphoric acid. The developed process consists in physical concentration, chemical separation, solvent extraction, and it presented, in laboratory and pilot scales, recovery leves which assure the project viability technically and economically. The consolidation of project and the description of installations are presented by a documentary film. (M.C.K.) [pt

  4. Criteria for Developing a Successful Privatization Project

    Science.gov (United States)

    1989-05-01

    conceptualization and planning are required when pursuing privatization projects. In fact, privatization project proponents need to know how to...selection of projects for analysis, methods of acquiring information about these projects, and the analysis framwork . Chapter IV includes the analysis. A...performed an analysis to determine cormion conceptual and creative approaches and lessons learned. This analysis was then used to develop criteria for

  5. Integrated Graphics Operations and Analysis Lab Development of Advanced Computer Graphics Algorithms

    Science.gov (United States)

    Wheaton, Ira M.

    2011-01-01

    The focus of this project is to aid the IGOAL in researching and implementing algorithms for advanced computer graphics. First, this project focused on porting the current International Space Station (ISS) Xbox experience to the web. Previously, the ISS interior fly-around education and outreach experience only ran on an Xbox 360. One of the desires was to take this experience and make it into something that can be put on NASA s educational site for anyone to be able to access. The current code works in the Unity game engine which does have cross platform capability but is not 100% compatible. The tasks for an intern to complete this portion consisted of gaining familiarity with Unity and the current ISS Xbox code, porting the Xbox code to the web as is, and modifying the code to work well as a web application. In addition, a procedurally generated cloud algorithm will be developed. Currently, the clouds used in AGEA animations and the Xbox experiences are a texture map. The desire is to create a procedurally generated cloud algorithm to provide dynamically generated clouds for both AGEA animations and the Xbox experiences. This task consists of gaining familiarity with AGEA and the plug-in interface, developing the algorithm, creating an AGEA plug-in to implement the algorithm inside AGEA, and creating a Unity script to implement the algorithm for the Xbox. This portion of the project was unable to be completed in the time frame of the internship; however, the IGOAL will continue to work on it in the future.

  6. A method to study the management of urban development projects

    NARCIS (Netherlands)

    Heurkens, E.

    2011-01-01

    The management of urban development projects in the Netherlands has changed significantly in recent years. These projects have become mainly ‘led’ by developers as they manage the entire life cycle of development projects, while public actors mainly facilitate development projects. This changes the

  7. Development through rural advancement, with special reference to Kwazulu-Natal

    OpenAIRE

    2012-01-01

    M.Comm. The aim of this study was to analyse and discuss the importance of rural advancement in the development of developing regions or countries, and KwaZulu-Natal was used as a case study. The literature focused on the backwardness of the rural areas and the importance of rural advancement for the development of less developed regions or countries. Development cannot be said to have taken place unless people's lives in general have improved. Large parts of developing regions or countrie...

  8. Development of nuclear fuel. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Hwang, Woan; Jeong, Young Hwan; Jung, Sung Hoon

    1991-07-01

    In order to develop CANDU advanced fuel, the agreement of the joint research between KAERI and AECL was made on February 19, 1991. AECL conceptual design of CANFLEX bundle for Bruce reactors was analyzed and then the reference design and design drawing of the advanced fuel bundle with natural uranium fuel for CANDU-6 reactor were completed. The CANFLEX fuel cladding was preliminarily investigated. The fabricability of the advanced fuel bundle was investigated. The design and purchase of the machinery tools for the bundle fabrication for hydraulic scoping tests were performed. As a result of CANFLEX tube examination, the tubes were found to be meet the criteria proposed in the technical specification. The dummy bundles for hydraulic scoping tests have been fabricated by using the process and tools, where the process parameters and tools have been newly established. (Author)

  9. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  10. Advances of the low enriched uranium utilization project in CNA-1 during 1998 and 1999

    International Nuclear Information System (INIS)

    Fink, Jose M.; Higa, Manabu; Sidelnik, Jorge I.; Perez, Ramon A.; Casario, Jose A.; Alvarez, Luis A.

    1999-01-01

    In this work, a general description of advances of the Enriched Fuel Introduction Project in CNA-1 and the main tasks performed during 1998 and 1999 are presented. The program is being satisfactorily developed and during that period the number of slightly enriched fuels (LEU) introduced had significantly increased in relation to previous years. At present, there are 181 LEU fuel elements in the core and 125 LEU fuel elements have been extracted. The number of full power burnt fuel elements per day decreased from 1.31 FE/dpp in 1994 (when all fuel was natural) to 0.92 in 1998 and 0.83 in 1999, reaching the predicted value for homogeneous LEU core of 0.7. The cost of burnt fuel in 1998 was 25% lower that if only natural fuel would have been used. (author)

  11. The development of biodiversity conservation measures in China's hydro projects: A review.

    Science.gov (United States)

    Bai, Ruiqiao; Liu, Xuehua; Liu, Xiaofei; Liu, Lanmei; Wang, Jianping; Liao, Sihui; Zhu, Annah; Li, Zhouyuan

    2017-11-01

    The hydropower capacity of China ranks first in the world and accounts for approximately 20% of the total energy production in the country. While hydropower has substantially contributed to meeting China's renewable energy targets and providing clean energy to rural areas, the development of hydropower in China has been met with significant controversy. Ecologically, hydro projects alter the landscape, with potential impacts to the country's aquatic biodiversity. Over the past four decades in China, various mainstream opinions and misunderstandings have been presented concerning how to alleviate the negative impacts of hydro projects on aquatic ecosystems. This article reviews research concerning potential mitigation measures to enhance aquatic biodiversity conservation in hydro projects in China. Based on the academic attention such research has attracted, three technical measures for aquatic biodiversity conservation are considered: (1) fish passages, (2) restocking efforts and (3) river and lake renovations. This article provides a historical comparison of these three practices in China to demonstrate the advantages and disadvantages of each method. The article also reviews the relevant legislation, regulations and technical guidelines concerning China's hydro projects dating back to 1979. The dynamics in research, publications, and patents concerning these three mitigation measures are summarized to demonstrate their technological developments in the context of legislative and policy advances. Data were gathered through the China Knowledge Resource Integrated Database and the State Intellectual Property Office of the People's Republic of China. Based on the analysis provided, the article recommends an expansion of China's environmental certification system for hydro projects, more robust regional legislation to bolster the national framework, the cooperation between upstream and downstream conservation mechanisms, and better monitoring to determine the efficacy

  12. Advanced in-flight measurement techniques

    CERN Document Server

    Lawson, Nicholas; Jentink, Henk; Kompenhans, Jürgen

    2013-01-01

    The book presents a synopsis of the main results achieved during the 3 year EU-project "Advanced Inflight Measurement Techniques (AIM)" which applied advanced image based measurement techniques to industrial flight testing. The book is intended to be not only an overview on the AIM activities but also a guide on the application of advanced optical measurement techniques for future flight testing. Furthermore it is a useful guide for engineers in the field of experimental methods and flight testing who face the challenge of a future requirement for the development of highly accurate non-intrusive in-flight measurement techniques.

  13. The ARCHER project (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D)

    Energy Technology Data Exchange (ETDEWEB)

    Knol, S., E-mail: knol@nrg.eu [Nuclear Research and consultancy Group (NRG), PO Box 25, NL-1755 ZG Petten (Netherlands); Fütterer, M.A. [Joint Research Centre, Institute for Energy, Petten (Netherlands); Roelofs, F. [Nuclear Research and consultancy Group (NRG), PO Box 25, NL-1755 ZG Petten (Netherlands); Kohtz, N. [TÜV Rheinland, Köln (Germany); Laurie, M. [Joint Research Centre, Institute for Transuranium elements, Karlsruhe (Germany); Buckthorpe, D. [UMAN, University of Manchester, Manchester (United Kingdom); Scheuermann, W. [IKE, Stuttgart University, Stuttgart (Germany)

    2016-09-15

    The European HTR R&D project ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D) builds on a solid HTR technology foundation in Europe, established through former national UK and German HTR programs and in European framework programs. ARCHER runs from 2011 to 2015 and targets selected HTR R&D subjects that would specifically support demonstration, with a focus on experimental effort. In line with the R&D and deployment strategy of the European Sustainable Nuclear Energy Technology Platform (SNETP) ARCHER contributes to maintaining, strengthening and expanding the HTR knowledge base in Europe to lay the foundations for demonstration of nuclear cogeneration with HTR systems. The project consortium encompasses conventional and nuclear industry, utilities, Technical Support Organizations, R&D organizations and academia. ARCHER shares results with international partners in the Generation IV International Forum and collaborates directly with related projects in the US, China, Japan, the Republic of Korea and South Africa. The ARCHER project has finished, and the paper comprises an overview of the achievements of the project.

  14. Perceived risks in product innovation projects : development of a risk skeleton

    NARCIS (Netherlands)

    Halman, J.I.M.; Keizer, J.A.; Song, X.M.

    1999-01-01

    The essence of undertaking a product innovation project is to create or establish something new. Risk taking is an intrinsic part of that process. In today's markets, with heavy competition, advanced technology and tough economic conditions, successful product innovation has become critically

  15. Development of a Community-Based Palliative Care Model for Advance Cancer Patients in Public Health Centers in Busan, Korea.

    Science.gov (United States)

    Kim, Sook-Nam; Choi, Soon-Ock; Shin, Seong Hoon; Ryu, Ji-Sun; Baik, Jeong-Won

    2017-07-01

    A feasible palliative care model for advance cancer patients is needed in Korea with its rapidly aging population and corresponding increase in cancer prevalence. This study describes the process involved in the development of a community-based palliative care (CBPC) model implemented originally in a Busan pilot project. The model development included steps I and II of the pilot project, identification of the service types, a survey exploring the community demand for palliative care, construction of an operational infrastructure, and the establishment of a service delivery system. Public health centers (including Busan regional cancer centers, palliative care centers, and social welfare centers) served as the regional hubs in the development of a palliative care model. The palliative care project included the provision of palliative care, establishment of a support system for the operations, improvement of personnel capacity, development of an educational and promotional program, and the establishment of an assessment system to improve quality. The operational infrastructure included a service management team, provision teams, and a support team. The Busan Metropolitan City CBPC model was based on the principles of palliative care as well as the characteristics of public health centers that implemented the community health projects. The potential use of the Busan CBPC model in Korea should be explored further through service evaluations.

  16. Advanced High-Level Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, David K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced

  17. Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

    2006-11-30

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with

  18. The development of advanced robotics technology in high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs.

  19. The development of advanced robotics technology in high radiation environment

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo.

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs

  20. Advancement of High Temperature Black Liquor Gasification Technology

    Energy Technology Data Exchange (ETDEWEB)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the