WorldWideScience

Sample records for project corrosion process

  1. SRB seawater corrosion project

    Science.gov (United States)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  2. Laboratory procedures used in the hot corrosion project

    International Nuclear Information System (INIS)

    Jeys, T.R.

    1980-01-01

    The objective of the Hot Corrosion Project in the LLNL Metals and Ceramics Division is to study the physical and chemical mechanisms of corrosion of nickel, iron, and some of their alloys when these metals are subjected to oxidizing or sulfidizing environments at temperatures between 850 and 950 0 C. To obtain meaningful data in this study, we must rigidly control many parameters. Parameters are discussed and the methods chosen to control them in this laboratory. Some of the mechanics and manipulative procedures that are specifically related to data access and repeatability are covered. The method of recording and processing the data from each experiment using an LS-11 minicomputer are described. The analytical procedures used to evaluate the specimens after the corrosion tests are enumerated and discussed

  3. Accelerated Test Method for Corrosion Protective Coatings Project

    Science.gov (United States)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  4. Corrosion database for the nuclear fuel cycle. Sub-project no. 1

    International Nuclear Information System (INIS)

    Schoenfeld, R.; Wegner, K.

    1989-03-01

    The aim of the project was to prepare and process data on corrosion in fuel recycling systems of fast breeder reactors and to store them in a test data base designed as an information system. Based on examinations on the nitric acid corrosion of austenitic steels (typical material/corrosive agent combination used in the reprocessing of burned fuel elements of nuclear power plants) and, in coordination with scientist specialized on materials, the most important characteristics were determined and summarized in a catalogue. This catalogue was realized with the help of a relational data base management system as a scientific data base where the adequate information from the original literature is recorded. (orig./MM) [de

  5. Stochastic process corrosion growth models for pipeline reliability

    International Nuclear Information System (INIS)

    Bazán, Felipe Alexander Vargas; Beck, André Teófilo

    2013-01-01

    Highlights: •Novel non-linear stochastic process corrosion growth model is proposed. •Corrosion rate modeled as random Poisson pulses. •Time to corrosion initiation and inherent time-variability properly represented. •Continuous corrosion growth histories obtained. •Model is shown to precisely fit actual corrosion data at two time points. -- Abstract: Linear random variable corrosion models are extensively employed in reliability analysis of pipelines. However, linear models grossly neglect well-known characteristics of the corrosion process. Herein, a non-linear model is proposed, where corrosion rate is represented as a Poisson square wave process. The resulting model represents inherent time-variability of corrosion growth, produces continuous growth and leads to mean growth at less-than-one power of time. Different corrosion models are adjusted to the same set of actual corrosion data for two inspections. The proposed non-linear random process corrosion growth model leads to the best fit to the data, while better representing problem physics

  6. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  7. Data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (DAWAC). Report of a coordinated research project 2001-2005

    International Nuclear Information System (INIS)

    2006-06-01

    This publication provides information on the current status and development trends in monitoring, diagnostics and control of water chemistry and corrosion of core and primary circuit materials in water cooled power reactors. It summarizes the results of an IAEA Coordinated Research Project and focuses on the methods for development, qualification and implementation of water chemistry expert systems at nuclear power plants. These systems are needed to have full benefit from using on-line sensors in real time mode when sensor signals, and other chemistry and operational data, are collected and continuously analysed with data acquisition and evaluation software. Technical knowledge was acquired in water chemistry control techniques (grab sampling, on-line monitoring, data collecting and processing, etc), plant chemistry and corrosion diagnostics, plant monitoring (corrosion, chemistry, activity) and plant chemistry improvement (analytical models and practices). This publication covers contributions from leading experts in water chemistry/corrosion, representing organizations from 16 countries with the largest nuclear capacities

  8. Statistical characterization of pitting corrosion process and life prediction

    International Nuclear Information System (INIS)

    Sheikh, A.K.; Younas, M.

    1995-01-01

    In order to prevent corrosion failures of machines and structures, it is desirable to know in advance when the corrosion damage will take place, and appropriate measures are needed to mitigate the damage. The corrosion predictions are needed both at development as well as operational stage of machines and structures. There are several forms of corrosion process through which varying degrees of damage can occur. Under certain conditions these corrosion processes at alone and in other set of conditions, several of these processes may occur simultaneously. For a certain type of machine elements and structures, such as gears, bearing, tubes, pipelines, containers, storage tanks etc., are particularly prone to pitting corrosion which is an insidious form of corrosion. The corrosion predictions are usually based on experimental results obtained from test coupons and/or field experiences of similar machines or parts of a structure. Considerable scatter is observed in corrosion processes. The probabilities nature and kinetics of pitting process makes in necessary to use statistical method to forecast the residual life of machine of structures. The focus of this paper is to characterization pitting as a time-dependent random process, and using this characterization the prediction of life to reach a critical level of pitting damage can be made. Using several data sets from literature on pitting corrosion, the extreme value modeling of pitting corrosion process, the evolution of the extreme value distribution in time, and their relationship to the reliability of machines and structure are explained. (author)

  9. Assessing corrosion in oil refining and petrochemical processing

    Directory of Open Access Journals (Sweden)

    Randy C. John

    2004-03-01

    Full Text Available This paper summarizes the development of an information system used to manage corrosion of metals and alloys by high temperature gases found in many different oil refining, petrochemical, power generation, and chemical processes. The database currently represents about 7.9 million h of exposure time for about 5,500 tests with 89 commercial alloys for a temperature range of 200 - 1,200°C. The system manages corrosion data from well-defined exposures and determines corrosion product stabilities. New models used in the analysis of thermochemical data for the Fe-Ni-Cr-Co-C-O-S-N-H system are being compiled. All known phases based upon combinations of the elements have been analyzed to allow complete assessments of corrosion product stabilities. Use of these data allows prediction of stable corrosion products and hence identification of the possible dominant corrosion mechanisms. The system has the potential to be used in corrosion research, alloy development, failure analysis, lifetime prediction, and process operations evaluations. The corrosion mechanisms emphasized are oxidation, sulfidation, sulfidation/oxidation, and carburization.

  10. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process

    International Nuclear Information System (INIS)

    Zhang Ruijin; Castel, Arnaud; Francois, Raoul

    2010-01-01

    This paper deals with the evolution of the corrosion pattern based on two beams corroded by 14 years (beam B1CL1) and 23 years (beam B2CL1) of conservation in a chloride environment. The experimental results indicate that, at the cracking initiation stage and the first stage of cracking propagation, localized corrosion due to chloride ingress is the predominant corrosion pattern and pitting corrosion is the main factor that influences the cracking process. As corrosion cracking increases, general corrosion develops rapidly and gradually becomes predominant in the second stage of cracking propagation. A comparison between existing models and experimental results illustrates that, although Vidal et al.'s model can better predict the reinforcement corrosion of beam B1CL1 under localized corrosion, it cannot predict the corrosion of beam B2CL1 under general corrosion. Also, Rodriguez's model, derived from the general corrosion due to electrically accelerated corrosion experiments, cannot match natural chloride corrosion irrespective of whether corrosion is localized or general. Thus, for natural general corrosion in the second stage of cracking propagation, a new model based on the parameter of average steel cross-section loss is put forward to predict steel corrosion from corrosion cracking.

  11. Tank vent processing system having a corrosion preventive device

    International Nuclear Information System (INIS)

    Ouchi, Shoichi; Sato, Hirofumi

    1987-01-01

    Purpose: To prevent corrosion of a tank vent processing device by injecting an oxygen gas. Constitution: Oxygen gas and phosphorous at high temperature are poured into a tank vent processing device and amorphous oxide layers optimum to the prevention of external corrosion are formed to the inner surface of the device. Since the corrosion preventive device using the oxygen gas injection can be constituted as a relatively simple device, it is more economical than constituting a relatively large tank vent processing device with corrosion resistant stainless steels. (Kamimura, M.)

  12. Preliminary sensitivity analyses of corrosion models for BWIP [Basalt Waste Isolation Project] container materials

    International Nuclear Information System (INIS)

    Anantatmula, R.P.

    1984-01-01

    A preliminary sensitivity analysis was performed for the corrosion models developed for Basalt Waste Isolation Project container materials. The models describe corrosion behavior of the candidate container materials (low carbon steel and Fe9Cr1Mo), in various environments that are expected in the vicinity of the waste package, by separate equations. The present sensitivity analysis yields an uncertainty in total uniform corrosion on the basis of assumed uncertainties in the parameters comprising the corrosion equations. Based on the sample scenario and the preliminary corrosion models, the uncertainty in total uniform corrosion of low carbon steel and Fe9Cr1Mo for the 1000 yr containment period are 20% and 15%, respectively. For containment periods ≥ 1000 yr, the uncertainty in corrosion during the post-closure aqueous periods controls the uncertainty in total uniform corrosion for both low carbon steel and Fe9Cr1Mo. The key parameters controlling the corrosion behavior of candidate container materials are temperature, radiation, groundwater species, etc. Tests are planned in the Basalt Waste Isolation Project containment materials test program to determine in detail the sensitivity of corrosion to these parameters. We also plan to expand the sensitivity analysis to include sensitivity coefficients and other parameters in future studies. 6 refs., 3 figs., 9 tabs

  13. Research process of nondestructive testing pitting corrosion in metal material

    Directory of Open Access Journals (Sweden)

    Bo ZHANG

    2017-12-01

    Full Text Available Pitting corrosion directly affects the usability and service life of metal material, so the effective nondestructive testing and evaluation on pitting corrosion is of great significance for fatigue life prediction because of data supporting. The features of pitting corrosion are elaborated, and the relation between the pitting corrosion parameters and fatigue performance is pointed out. Through introducing the fundamental principles of pitting corrosion including mainly magnetic flux leakage inspection, pulsed eddy current and guided waves, the research status of nondestructive testing technology for pitting corrosion is summarized, and the key steps of nondestructive testing technologies are compared and analyzed from the theoretical model, signal processing to industrial applications. Based on the analysis of the signal processing specificity of different nondestructive testing technologies in detecting pitting corrosion, the visualization combined with image processing and signal analysis are indicated as the critical problems of accurate extraction of pitting defect information and quantitative characterization for pitting corrosion. The study on non-contact nondestructive testing technologies is important for improving the detection precision and its application in industries.

  14. Corrosion map for metal pipes in coastal Louisiana : research project capsule.

    Science.gov (United States)

    2016-03-01

    The objective of this project is to create a guidance document with maps : that delineate zones where metal pipe is prone to increased corrosion due : to environmental conditions. Results from this project will provide a logical : rationale to suppor...

  15. Corrosion Behaviour of Steels in Nigerian Food Processing ...

    African Journals Online (AJOL)

    Michael Horsfall

    quality regulatory agencies and food processing equipment fabricators. It is our desire that ... poisoning. ... corrosive effect under two special conditions; in solution with ..... Loto C.A and Atanda P.O (1998) Corrosion of Mild ... Health Paper. No.

  16. Fuel corrosion processes under waste disposal conditions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    2000-01-01

    The release of the majority of radionuclides from spent nuclear fuel under permanent disposal conditions will be controlled by the rate of dissolution of the UO 2 fuel matrix. In this manuscript the mechanism of the coupled anodic (fuel dissolution) and cathodic (oxidant reduction) reactions which constitute the overall fuel corrosion process is reviewed, and the many published observations on fuel corrosion under disposal conditions discussed. The primary emphasis is on summarizing the overall mechanistic behaviour and establishing the primary factors likely to control fuel corrosion. Included are discussions on the influence of various oxidants including radiolytic ones, pH, temperature, groundwater composition, and the formation of corrosion product deposits. The relevance of the data recorded on unirradiated UO 2 to the interpretation of spent fuel behaviour is included. Based on the review, the data used to develop fuel corrosion models under the conditions anticipated in Yucca Mountain (NV, USA) are evaluated

  17. Fuel corrosion processes under waste disposal conditions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1999-09-01

    Under the oxidizing conditions likely to be encountered in the Yucca Mountain Repository, fuel dissolution is a corrosion process involving the coupling of the anodic dissolution of the fuel with the cathodic reduction of oxidants available within the repository. The oxidants potentially available to drive fuel corrosion are environmental oxygen, supplied by the transport through the permeable rock of the mountain and molecular and radical species produced by the radiolysis of available aerated water. The mechanism of these coupled anodic and cathodic reactions is reviewed in detail. While gaps in understanding remain, many kinetic features of these reactions have been studied in considerable detail, and a reasonably justified mechanism for fuel corrosion is available. The corrosion rate is determined primarily by environmental factors rather than the properties of the fuel. Thus, with the exception of increase in rate due to an increase in surface area, pre-oxidation of the fuel has little effect on the corrosion rate

  18. Fuel corrosion processes under waste disposal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D.W. [Univ. of Western Ontario, Dept. of Chemistry, London, Ontario (Canada)

    1999-09-01

    Under the oxidizing conditions likely to be encountered in the Yucca Mountain Repository, fuel dissolution is a corrosion process involving the coupling of the anodic dissolution of the fuel with the cathodic reduction of oxidants available within the repository. The oxidants potentially available to drive fuel corrosion are environmental oxygen, supplied by the transport through the permeable rock of the mountain and molecular and radical species produced by the radiolysis of available aerated water. The mechanism of these coupled anodic and cathodic reactions is reviewed in detail. While gaps in understanding remain, many kinetic features of these reactions have been studied in considerable detail, and a reasonably justified mechanism for fuel corrosion is available. The corrosion rate is determined primarily by environmental factors rather than the properties of the fuel. Thus, with the exception of increase in rate due to an increase in surface area, pre-oxidation of the fuel has little effect on the corrosion rate.

  19. Practical applications of ion beam and plasma processing for improving corrosion and wear protection

    CERN Document Server

    Klingenberg, M L; Wei, R; Demaret, J; Hirvonen, J

    2002-01-01

    A multi-year project for the US Army has been investigating the use of various ion beam and plasma-based surface treatments to improve the corrosion and wear properties of military hardware. These processes are intended to be complementary to, rather than competing with, other promising macro scale coating processes such high velocity oxy-fuel (HVOF) deposition, particularly in non-line-of- sight and flash chrome replacement applications. It is believed that these processes can improve the tribological and corrosion behavior of parts without significantly altering the dimensions of the part, thereby eliminating the need for further machining operations and reducing overall production costs. The ion beam processes chosen are relatively mature, low-cost processes that can be scaled-up. The key methods that have been considered under this program include nitrogen ion implantation into electroplated hard chrome, ion beam assisted chromium and chromium nitride coatings, and plasma-deposited diamond- like carbon an...

  20. From marine bio-corrosion to new bio-processes

    International Nuclear Information System (INIS)

    Bergel, A.; Dasilva, S.; Basseguy, R.; Feron, D.; Mollica, A.

    2004-01-01

    Full text of publication follows: From the middle of the last century it has been observed that the development of marine bio-films on the surface of stainless steels and different metallic materials induces the ennoblement of their free corrosion potential. A main step in deciphering the mechanisms of aerobic marine bio-corrosion has been achieved around 1976 with the demonstration that the potential ennoblement was due to the modification of the cathodic process. Since this date, the catalysis of oxygen reduction by marine bio-films has been the topic of numerous controversies, but it is now commonly agreed as a basic phenomena in aerobic corrosion. Several hypotheses have been proposed to explain the fine mechanisms of the bio-film-catalysed reduction of oxygen: intermediate formation of hydrogen peroxide, modification of the oxide layer on the stainless steel surface, involvement of manganese species and manganese oxidising bacteria, catalysis by proteins produced by the micro-organisms... Recent results may confirm the possible involvement of hemic enzymes or proteins. Whatever the mechanisms, very promising results have been obtained with the possible application of bio-film-catalysed oxygen reduction to conceive innovative biofuel cells with stainless steel electrodes. Actually, the catalysis of oxygen reduction is a key step that still drastically hinders the development of economically efficient hydrogen/oxygen fuel cells. The current technology requires high amounts of platinum or platinum-based materials to catalyze oxygen reduction on the cathode of these cells. The prohibitive cost of platinum is a main obstacle to the commercialization of low-cost fuel cells. Unpublished results recently showed that adapting the enzyme-catalysed reaction that was assumed for bio-corrosion on the cathode of hydrogen/oxygen fuel cells may lead to a significant decrease in the charge of platinum. Moreover, it was demonstrated on a laboratory-scale fuel cell pilot that

  1. Plasma nitrocarburizing process - a solution to improve wear and corrosion resistance

    International Nuclear Information System (INIS)

    Joseph, Alphonsa J.; Ghanshyam, J.; Mukherjee, S.

    2015-01-01

    To prevent wear and corrosion problems in steam turbines, coatings have proved to have an advantage of isolating the component substrate from the corrosive environment with minimal changes in turbine material and design. Diffusion based coatings like plasma nitriding and plasma nitrocarburizing have been used for improving the wear and corrosion resistance of components undergoing wear during their operation. In this study plasma nitrocarburizing process was carried out on ferritic alloys like ASTM A182 Grade F22 and ATM A105 alloy steels and austenitic stainless steels like AISI 304 and AISI 316 which are used to make trim parts of control valves used for high pressure and high temperature steam lines to enhance their wear and corrosion resistance properties. The corrosion rate was measured by a potentiodynamic set up and salt spray unit in two different environments viz., tap water and 5% NaCl solutions. The Tafel plots of ferritic alloys and austenitic stainless steels show that plasma nitrocarburizing process show better corrosion resistance compared to that of the untreated steel. It was found that after plasma nitrocarburizing process the hardness of the alloy steels increased by a factor of two. The corrosion resistance of all the steels mentioned above improved in comparison to the untreated steels. This improvement can be attributed to the nitrogen and carbon incorporation in the surface of the material. This process can be also applied to components used in nuclear industries to cater to the wear and corrosion problems. (author)

  2. Microbiologically influenced corrosion in ship ballast tanks

    NARCIS (Netherlands)

    Heyer, A.

    2013-01-01

    Microbiologically influenced corrosion (MIC) is known to be a dangerous process in ship tanks due to its rapid and yet unpredictable occurrence, leading to extremely fast local corrosion, possibly jeopardizing the structural integrity, in a relatively short time. This project focuses on a

  3. Corrosion experience in nuclear waste processing at Battelle Northwest

    International Nuclear Information System (INIS)

    Slate, S.C.; Maness, R.F.

    1976-11-01

    Emphasis is on corrosion as related to waste storage canister. Most work has been done in support of the In-Can Melter (ICM) vitrification system. It is assumed that the canister goes through the ICM process and is then stored in a water basin. The most severe corrosion effect seen is oxidation of stainless steel (SS) surfaces in contact with gases containing oxygen during processing. The processing temperature is near 1100 0 C and furnace atmosphere, used until now, has been air with unrestricted flow to the furnace. The oxidation rate at 1100 0 C is 15.8 g/cm 2 for 304L SS. Techniques for eliminating this corrosion currently being investigated include the use of different materials, such as Inconel 601, and the use of an inert cover gas. Corrosion due to the waste melt is not as rapid as the air oxidation. This effect has been studied extensively in connection with the development of a metallic crucible melter at Battelle. Data are available on the corrosion rates of several waste compositions in contact with various materials. Long-term compatibility tests between the melt and the metal have been run; it was found the corrosion rates due to the melt or its vapor do not pose a serious problem to the waste canister. However, these rates are high enough to preclude the practical use of a metallic melter. Interim water storage of the canister may be a problem if proper corrective measurements are not taken.The canister may be susceptible to stress corrosion cracking (SCC) because it will be sensitized to some extent and it will be nearly stressed to yield. The most favorable solution to SCC involves minimizing canister sensitization and stress plus providing good water quality control. It has been recommended to keep the chlorine ion concentration below 1 ppM and the pH above 10. At these conditions no failures of 304L are predicted due to SCC. It is concluded that corrosion of a canister used during the In-Can Melter process and interim storage can be controlled

  4. FEBEX Project Post-mortem Analysis: Corrosion Study

    International Nuclear Information System (INIS)

    Madina, V.; Azkarate, I.

    2004-01-01

    The partial dismantling of the FEBEX in situ test was carried out during de summer of 2002, following 5 years of continuous heating. The operation included the demolition of the concrete plug and the removal of the section of the test corresponding to the first heater. A large number of samples from all types of materials have been taken during the dismantling for subsequent analysis. Part of the samples collected were devoted to the analysis of the corrosion processes occurred during the first operational phase of the test. These samples comprised corrosion coupons from different metals installed for that purpose, sensors retrieved during the dismantling that were found severely corroded and bentonite in contact with those sensors. In addition, a corrosion study was performed on the heater extracted and on one section of liner surrounding it. All the analyses were carried out by the Fundacion INASMET (Spain). This report describes, in detail the studies carried out the different materials and the obtained results, as well as the drawn conclusions. (Author)

  5. FEBEX Project Post-mortem Analysis: Corrosion Study

    Energy Technology Data Exchange (ETDEWEB)

    Madina, V.; Azkarate, I.

    2004-07-01

    The partial dismantling of the FEBEX in situ test was carried out during de summer of 2002, following 5 years of continuous heating. The operation included the demolition of the concrete plug and the removal of the section of the test corresponding to the first heater. A large number of samples from all types of materials have been taken during the dismantling for subsequent analysis. Part of the samples collected were devoted to the analysis of the corrosion processes occurred during the first operational phase of the test. These samples comprised corrosion coupons from different metals installed for that purpose, sensors retrieved during the dismantling that were found severely corroded and bentonite in contact with those sensors. In addition, a corrosion study was performed on the heater extracted and on one section of liner surrounding it. All the analyses were carried out by the Fundacion INASMET (Spain). This report describes, in detail the studies carried out the different materials and the obtained results, as well as the drawn conclusions. (Author)

  6. The application of image processing to the detection of corrosion by radiography

    International Nuclear Information System (INIS)

    Packer, M.E.

    1979-02-01

    The computer processing of digitised radiographs has been investigated with a view to improving x-radiography as a method for detecting corrosion. Linearisation of the image-density distribution in a radiograph has been used to enhance information which can be attributed to corrosion, making the detection of corrosion by radiography both easier and more reliable. However, conclusive evidence has yet to be obtained that image processing can result in the detection of corrosion which was not already faintly apparent on an unprocessed radiograph. A potential method has also been discovered for analysing the history of a corrosion site

  7. Microbial impact on metallic corrosion processes: case of iron reducing bacteria

    International Nuclear Information System (INIS)

    Esnault, Loic; Jullien, Michel; Libert, Marie; Mustin, Christian

    2010-01-01

    Document available in extended abstract form only. French concept of deep disposal of nuclear waste is based on a multi-barrier system with a metal container and a clayey host rock as last natural barrier for radionuclides confinement and to avoid their migration in the environment. One of the most important criteria for the safety assessment concerns the life time of metal containers. In this deep environment (elevated pressure and temperature, low water content) many factors may induce an alteration and modification of metal containers properties through corrosion processes. Two types of reactions are currently studied First, the anaerobic aqueous corrosion (a) which is depending on the amount of water available and the second is clayey corrosion (b) by an oxidation of structural Iron(III) or clay's H + on Fe(0) of metal containers. - Fe 0 + 2H 2 O → Fe 2+ + 2OH - + H 2 (a) - Fe 0 + 2H + argile → Fe 2+ solution + H 2 (b) - Fe 0 + Fe 3+ argile → Fe 2+ solution + Fe 2+ argile (b) These processes will entail different reaction products: first, we observe formation of corrosion products like aqueous Fe(II) and magnetite, hematite like mineral. These new minerals inhibit aqueous corrosion by the formation of a passivation process. For the second process, we observe a transformation of smectites into iron-rich serpentine-type minerals. These phenomenons will be responsible for a potential loss of confinement properties such as release of radionuclides, swelling and capacity to cations exchange. Moreover, since the discovery of microorganisms in deep clayey environment or in bentonite used as swelling clay. A new corrosion parameter 'biological one inducing bio-corrosion process' must be taken into account and has to be investigated to improve geochemical prediction on the sustainability of containers in geological disposal. - Impact of microorganisms has to be focused in term of bio-corrosion and more precisely on an indirect corrosion through the

  8. Degradation of aged plants by corrosion: 'Long cell action' in unresolved corrosion issues

    International Nuclear Information System (INIS)

    Saji, Genn

    2009-01-01

    In a series of previously published papers the author has identified that 'long cell action' corrosion plays a pivotal role in practically all unresolved corrosion issues for all types of nuclear power plants (e.g. PWR/VVER, BWR/RBMK and CANDU). Some of these unresolved issues are IGSCC, PWSCC, AOA and FAC (erosion-corrosion). In conventional corrosion science it is well established that 'long cell action' can seriously accelerate or suppress the local cell corrosion activities. Although long cell action is another fundamental mechanism of corrosion, especially in a 'soil corrosion' arena, potential involvement of this corrosion process has never been studied in nuclear and fossil power plants as far as the author has been able to establish. The author believes that the omission of this basic corrosion mechanism is the root cause of practically all un-resolved corrosion issues. In this paper, the author further elaborated on his assessment to other key corrosion issues, e.g. steam generator and turbine corrosion issues, while briefly summarizing previous discussions for completeness purposes, as well as introducing additional experimental and theoretical evidence of this basic corrosion mechanism. Due to the importance of this potential mechanism the author is calling for institutional review activities and further verification experiments in the form of a joint international project.

  9. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  10. Preliminary corrosion models for BWIP [Basalt Waste Isolation Project] canister materials

    International Nuclear Information System (INIS)

    Fish, R.L.; Anantatmula, R.P.

    1983-01-01

    Waste package development for the Basalt Waste Isolation Project (BWIP) requires the generation of materials degradation data under repository relevant conditions. These data are used to develop predictive models for the behavior of each component of waste package. The component models are exercised in performance analyses to optimize the waste package design. This document presents all repository relevant canister materials corrosion data that the BWIP and others have developed to date, describes the methodology used to develop preliminary corrosion models and provides the mathematical description of the models for both low carbon steel and Fe9Cr1Mo steel. Example environment/temperature history and model application calculations are presented to aid in understanding the models. The models are preliminary in nature and will be updated as additional corrosion data become available. 6 refs., 5 tabs

  11. Development of models and online diagnostic monitors of the high-temperature corrosion of refractories in oxy/fuel glass furnaces : final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, Stewart K.; Gupta, Amul (Monofrax Inc., Falconer, NY); Walsh, Peter M.; Rice, Steven F.; Velez, Mariano (University of Missouri, Rolla, MO); Allendorf, Mark D.; Pecoraro, George A. (PPG Industries, Inc., Pittsburgh, PA); Nilson, Robert H.; Wolfe, H. Edward (ANH Refractories, Pittsburgh, PA); Yang, Nancy Y. C.; Bugeat, Benjamin () American Air Liquide, Countryside, IL); Spear, Karl E. (Pennsylvania State University, University Park, PA); Marin, Ovidiu () American Air Liquide, Countryside, IL); Ghani, M. Usman (American Air Liquide, Countryside, IL)

    2005-02-01

    This report summarizes the results of a five-year effort to understand the mechanisms and develop models that predict the corrosion of refractories in oxygen-fuel glass-melting furnaces. Thermodynamic data for the Si-O-(Na or K) and Al-O-(Na or K) systems are reported, allowing equilibrium calculations to be performed to evaluate corrosion of silica- and alumina-based refractories under typical furnace operating conditions. A detailed analysis of processes contributing to corrosion is also presented. Using this analysis, a model of the corrosion process was developed and used to predict corrosion rates in an actual industrial glass furnace. The rate-limiting process is most likely the transport of NaOH(gas) through the mass-transport boundary layer from the furnace atmosphere to the crown surface. Corrosion rates predicted on this basis are in better agreement with observation than those produced by any other mechanism, although the absolute values are highly sensitive to the crown temperature and the NaOH(gas) concentration at equilibrium and at the edge of the boundary layer. Finally, the project explored the development of excimer laser induced fragmentation (ELIF) fluorescence spectroscopy for the detection of gas-phase alkali hydroxides (e.g., NaOH) that are predicted to be the key species causing accelerated corrosion in these furnaces. The development of ELIF and the construction of field-portable instrumentation for glass furnace applications are reported and the method is shown to be effective in industrial settings.

  12. Corrosion Behavior in 3.5% NaCl Solutions of γ-TiAl Processed by Electron Beam Melting Process

    Directory of Open Access Journals (Sweden)

    Asiful Hossain Seikh

    2015-12-01

    Full Text Available In this work, the corrosion behavior of γ-TiAl alloy produced by electron beam melting (EBM process in 3.5% NaCl solution was reported. The study has been performed using potentiodynamic polarization resistance and electrochemical impedance spectroscopy techniques and complemented by scanning electron microscopy investigations. All measurements were carried out after different periods of alloy exposure in the chloride solutions and at different temperatures. The results showed that the EBM produced γ-TiAl alloy has excellent corrosion resistance confirmed by the high values of polarization resistance and the low values of corrosion current and corrosion rate. With increase in immersion time, the corrosion potential moved to a higher positive value with a decrease in corrosion current and corrosion rate, which suggests an improvement in corrosion resistance. On the other hand, the increase of temperature was found to significantly increase the corrosion of the processed γ-TiAl alloy.

  13. Material compatibility and corrosion control of the KWU chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1994-01-01

    The concentrations of salt impurities within the deposits on the tube sheet and in the tube to tube-support-plate crevices can induce a variety of corrosion mechanisms on steam generator tubes. One of the most effective ways of counteracting corrosion mechanisms and thus of improving steam generator performance is to clean the steam generators and keep them in a clean condition. As shown by field results chemical cleaning is a way of removing hazardous deposits from steam generators. All available chemical cleaning processes use inhibitors to control the corrosion except the KWU chemical cleaning process. In this article the corrosion control technique of KWU Chemical Cleaning Process without using conventional inhibitors will be explained and the state of the field experience with respect to material compatibility will be presented. (author). 4 figs., 1 tab., 8 refs

  14. Prediction of Corrosion of Advanced Materials and Fabricated Components

    Energy Technology Data Exchange (ETDEWEB)

    A. Anderko; G. Engelhardt; M.M. Lencka (OLI Systems Inc.); M.A. Jakab; G. Tormoen; N. Sridhar (Southwest Research Institute)

    2007-09-29

    The goal of this project is to provide materials engineers, chemical engineers and plant operators with a software tool that will enable them to predict localized corrosion of process equipment including fabricated components as well as base alloys. For design and revamp purposes, the software predicts the occurrence of localized corrosion as a function of environment chemistry and assists the user in selecting the optimum alloy for a given environment. For the operation of existing plants, the software enables the users to predict the remaining life of equipment and help in scheduling maintenance activities. This project combined fundamental understanding of mechanisms of corrosion with focused experimental results to predict the corrosion of advanced, base or fabricated, alloys in real-world environments encountered in the chemical industry. At the heart of this approach is the development of models that predict the fundamental parameters that control the occurrence of localized corrosion as a function of environmental conditions and alloy composition. The fundamental parameters that dictate the occurrence of localized corrosion are the corrosion and repassivation potentials. The program team, OLI Systems and Southwest Research Institute, has developed theoretical models for these parameters. These theoretical models have been applied to predict the occurrence of localized corrosion of base materials and heat-treated components in a variety of environments containing aggressive and non-aggressive species. As a result of this project, a comprehensive model has been established and extensively verified for predicting the occurrence of localized corrosion as a function of environment chemistry and temperature by calculating the corrosion and repassivation potentials.To support and calibrate the model, an experimental database has been developed to elucidate (1) the effects of various inhibiting species as well as aggressive species on localized corrosion of nickel

  15. Bio-films and processes of bio-corrosion and bio-deterioration in oil-and gas-processing industry

    Energy Technology Data Exchange (ETDEWEB)

    Kholodenko, V.P.; Irkhina, I.A.; Chugunov, V.A.; Rodin, V.B.; Zhigletsova, S.K.; Yermolenko, Z.M.; Rudavin, V.V. [State Research Center for Applied Microbiology, Obolensk, Moscow region (Russian Federation)

    2004-07-01

    As a rule, oil- and gas-processing equipment and pipelines are attacked by different microorganisms. Their vital ability determines processes of bio-deterioration and bio-corrosion that lead often to technological accidents and severe environmental contamination. Bio-films presenting a complex association of different microorganisms and their metabolites are responsible for most of damages. In this context, to study the role bio-films may play in processes of bio-damages and in efficacy of protective measures is important. We have developed method of culturing bio-films on the surface of metal coupons by using a natural microbial association isolated from oil-processing sites. Simple and informative methods of determining microbiological parameters of bio-films required to study bio-corrosion processes are also developed. In addition, a method of electron microscopic analysis of bio-films and pitting corrosion is offered. Using these methods, we conducted model experiments to determine the dynamics of corrosion processes depending on qualitative and quantitative composition of bio-films, aeration conditions and duration of the experiment. A harmful effect of soil bacteria and micro-mycetes on different pipeline coatings was also investigated. Experiments were conducted within 3-6 months and revealed degrading action of microorganisms. This was confirmed by axial tension testing of coatings. All these approaches will be used for further development of measures to protect gas- and oil-processing equipment and pipelines against bio-corrosion and bio-damages (first of all biocides). (authors)

  16. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  17. Treatment Tank Corrosion Studies For The Enhanced Chemical Cleaning Process

    International Nuclear Information System (INIS)

    Wiersma, B.

    2011-01-01

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  18. Corrosion surveillance of the chemical decontamination process in Kuosheng nuclear power plant

    International Nuclear Information System (INIS)

    Wang, L.H.

    2002-01-01

    The Piping Recirculation System (RRS) and reactor water clean-up system (RWCU) of Kuosheng Nuclear Power Plant of Taiwan Power Company were decontaminated by CORD process of Framatome ANP GmbH during the outage at October 2001. This is the first time that CORD process was adopted and applied in Taiwan Nuclear Power Plant. To verify minor corrosion damage and correct process control, the material corrosion condition was monitored during all the stages of the chemical decontamination work. Three kinds of specimen were adopted in this corrosion monitoring, including corrosion coupons for weight loss measurements, electrochemical specimens for on-line corrosion monitoring, and WOL specimens (wedge opening loaded) for stress corrosion evaluation. The measured metal losses from nine coupon materials did not reveal any unexpected or intolerable high corrosion damage from the CORD UV or CORD CS processes. The coupon materials included type 304 stainless steel (SS) with sensitized and as-received thermal history, type 308 weld filler, type CF8 cast SS, nickel base alloy 182 weld filler, Inconel 600, Stellite 6 hard facing alloy, NOREM low cobalt hard facing alloy, and A106B carbon steel (CS). The electrochemical noise (ECN) measurements from three-electrode electrochemical probe precisely depicted the metal corrosion variation with the decontamination process change. Most interestingly, the estimated trend of accumulated metal loss is perfectly corresponding to the total removed activities. The ECN measurements were also used for examining the effect of different SS oxide films pre-formed in NWC and HWC on the decontamination efficiency, and for evaluating the galvanic effect of CS with SS. The existing cracks did not propagate further during the decontamination. The average decontamination factors achieved were 50.8 and 4.2 respectively for RRS and RWCU. (authors)

  19. CORROSION ISSUES ASSOCIATED WITH AUSTENITIC STAINLESS STEEL COMPONENTS USED IN NUCLEAR MATERIALS EXTRACTION AND SEPARATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Louthan, M.; Sindelar, R.

    2012-12-17

    This paper illustrated the magnitude of the systems, structures and components used at the Savannah River Site for nuclear materials extraction and separation processes. Corrosion issues, including stress corrosion cracking, pitting, crevice corrosion and other corrosion induced degradation processes are discussed and corrosion mitigation strategies such as a chloride exclusion program and corrosion release testing are also discussed.

  20. Microstructure and corrosion behavior of laser processed NiTi alloy.

    Science.gov (United States)

    Marattukalam, Jithin J; Singh, Amit Kumar; Datta, Susmit; Das, Mitun; Balla, Vamsi Krishna; Bontha, Srikanth; Kalpathy, Sreeram K

    2015-12-01

    Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing. The high amount of austenite in these samples increased the hardness. The grain size and corrosion resistance were found to increase with laser power. The surface energy of NiTi alloy, calculated using contact angles, decreased from 61 mN/m to 56 mN/m with increase in laser energy density from 20 J/mm(2) to 80 J/mm(2). The decrease in surface energy shifted the corrosion potentials to nobler direction and decreased the corrosion current. Under present experimental conditions the laser power found to have strong influence on microstructure, phase constituents and corrosion resistance of NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Corrosion behaviour of some conventional stainless steels in electrolyzing process

    Directory of Open Access Journals (Sweden)

    Amal NASSAR

    2015-12-01

    Full Text Available In this study, attempts were made to increase the amount of hydrogen generated from the water electrolysis process. Some conventional stainless steels (316; 409; 410 and 430 were used as anode and cathode in electrolysis process. Further study was carried out on the corrosion trend in all the investigated metals. It is observed that the electrode material can effect on the amount of hydrogen generate by electrolyzing process and metal composition of the stainless steels effects on the rate of corrosion.

  2. EVALUATION OF CORROSION COST OF CRUDE OIL PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    ADESANYA A.O.

    2012-08-01

    Full Text Available Crude oil production industry as the hub of Nigeria Economy is not immune to the global financial meltdown being experienced world over which have resulted in a continual fall of oil price. This has necessitated the need to reduce cost of production. One of the major costs of production is corrosion cost, hence, its evaluation. This research work outlined the basic principles of corrosion prevention, monitoring and inspection and attempted to describe ways in which these measures may be adopted in the context of oil production. A wide range of facilities are used in crude oil production making it difficult to evaluate precisely the extent of corrosion and its cost implication. In this study, cost of corrosion per barrel was determined and the annualized value of corrosion cost was also determined using the principles of engineering economy and results analyzed using descriptive statistics. The results showed that among the corrosion prevention methods identified, the use of chemical treatment gave the highest cost contribution (81% of the total cost of prevention while coating added 19%. Cleaning pigging and cathodic protection gave no cost. The contribution of corrosion maintenance methods are 60% for repairs and 40% for replacement. Also among the corrosion monitoring and inspection identified, NDT gave the highest cost contribution of 41% of the total cost, followed by coating survey (34%. Cathodic protection survey and crude analysis gives the lowest cost contribution of 19% and 6% respectively. Corrosion control cost per barrel was found to be 77 cent/barrel. The significance of this cost was not much due to high price of crude oil in the international market. But the effect of corrosion in crude oil processing takes its toll on crude oil production (i.e. deferment.

  3. Neural network for prediction of superheater fireside corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Makkonen, P [Foster Wheeler Energia Oy, Karhula R and D Center, Karhula (Finland)

    1999-12-31

    Superheater corrosion causes vast annual losses to the power companies. If the corrosion could be reliably predicted, new power plants could be designed accordingly, and knowledge of fuel selection and determination of process conditions could be utilized to minimize superheater corrosion. If relations between inputs and the output are poorly known, conventional models depending on corrosion theories will fail. A prediction model based on a neural network is capable of learning from errors and improving its performance as the amount of data increases. The neural network developed during this study predicts superheater corrosion with 80 % accuracy at early stage of the project. (orig.) 10 refs.

  4. Neural network for prediction of superheater fireside corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Makkonen, P. [Foster Wheeler Energia Oy, Karhula R and D Center, Karhula (Finland)

    1998-12-31

    Superheater corrosion causes vast annual losses to the power companies. If the corrosion could be reliably predicted, new power plants could be designed accordingly, and knowledge of fuel selection and determination of process conditions could be utilized to minimize superheater corrosion. If relations between inputs and the output are poorly known, conventional models depending on corrosion theories will fail. A prediction model based on a neural network is capable of learning from errors and improving its performance as the amount of data increases. The neural network developed during this study predicts superheater corrosion with 80 % accuracy at early stage of the project. (orig.) 10 refs.

  5. Natural analogues of nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-01

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses

  6. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  7. Corrosion behavior of Al6061 alloy weldment produced by friction stir welding process

    Directory of Open Access Journals (Sweden)

    Farhad Gharavi

    2015-07-01

    Full Text Available In this work, the corrosion behavior of welded lap joints of AA6061-T6 aluminum alloy produced by friction stir welding process has been investigated. Corrosion properties of welded lap joints were studied by cyclic polarization and electrochemical impedance spectroscopy tests. All tests were performed in an aerated 0.6 mol L−1 NaCl aqueous solution with pH = 6.5 at a temperature of 30 °C to characterize corrosion morphology and realize corrosion features of weld regions as opposed to the parent alloy. The microstructure of weld nugget (WN, heated affected zone (HAZ, and parent alloy were analyzed using scanning electron microscopy and energy dispersive spectroscopy. The experimental results indicated that the welding process has a major effect on the corrosion resistance, which possibly associated to the break-down and dissolution of intermetallic particles. It is supposed that an increasing in intermetallic distributed throughout the matrix of weld regions increases the galvanic corrosion couples. Furthermore, by decreasing the grain size in the weld regions, the susceptibility to corrosion is enhanced. The pitting corrosion and intergranular attack are the dominant corrosion types in the weld regions and the parent alloy.

  8. Comparison of corrosion behaviour of friction stir processed and laser melted AA 2219 aluminium alloy

    International Nuclear Information System (INIS)

    Surekha, K.; Murty, B.S.; Prasad Rao, K.

    2011-01-01

    Highlights: → Poor corrosion resistance of AA 2219 can be improved by surface treatments. → FSP and LM leads to dissolution of second phase particles. → No literature available on comparison of corrosion behaviour after FSP and LM. → The study implies FSP is as good as LM in improving the corrosion resistance of AA 2219. -- Abstract: Dissolution of second phase particles (CuAl 2 ) present in AA 2219 aluminium improves the corrosion resistance of the alloy. Two surface treatment techniques, viz., solid state friction stir processing and fusion based laser melting lead to the reduction in CuAl 2 content and the effect of these processes on the corrosion behaviour of the alloy is compared in this study. Potentiodynamic polarization and electrochemical impedance spectroscopy tests were carried out to compare corrosion behaviour. The corrosion resistance achieved by friction stir processing is comparable to that obtained by the laser melting technique.

  9. Exploratory shaft liner corrosion estimate

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1985-10-01

    An estimate of expected corrosion degradation during the 100-year design life of the Exploratory Shaft (ES) is presented. The basis for the estimate is a brief literature survey of corrosion data, in addition to data taken by the Basalt Waste Isolation Project. The scope of the study is expected corrosion environment of the ES, the corrosion modes of general corrosion, pitting and crevice corrosion, dissimilar metal corrosion, and environmentally assisted cracking. The expected internal and external environment of the shaft liner is described in detail and estimated effects of each corrosion mode are given. The maximum amount of general corrosion degradation was estimated to be 70 mils at the exterior and 48 mils at the interior, at the shaft bottom. Corrosion at welds or mechanical joints could be significant, dependent on design. After a final determination of corrosion allowance has been established by the project it will be added to the design criteria. 10 refs., 6 figs., 5 tabs

  10. Microstructure and corrosion characteristics of HANA 6 alloy with various manufacturing processes

    International Nuclear Information System (INIS)

    Kim, Hyun Gil; Choi, Byung Kwan; Jeong, Yong Hwan

    2008-01-01

    In order to obtain the best manufacturing process for the HANA 6 alloy, the various evaluations such as a corrosion test at 400 .deg. C steam condition, a microstructural analysis by using TEM, and texture analysis by using XRD were performed for the HANA 6 alloy with various manufacturing processes. This alloy was manufactured as sheets by applying 4 types of manufacturing processes which were controlled by a combination of the intermediate annealing temperature and reduction ratio, as well as two types of final annealing conditions which were applied to the HANA 6 alloy from TREX samples. The corrosion resistance of the HANA 6 alloy with various manufacturing processes was increased with a decreasing intermediate annealing temperature and the corrosion resistance of that alloy was decreased by increasing the final annealing temperature after a corrosion test up to 240 days. The precipitate of the HANA 6 alloy mainly consisted of Nb-containing precipitates in all the samples, but the size, distribution and Nb concentration of the precipitates was affected by the applied manufacturing processes. The Nb concentration in the precipitates was increased when the samples were annealed at 570.deg.C during the intermediate annealing processes. So, the corrosion rate of the HANA 6 alloy is affected considerably by a control of the intermediate and final annealing conditions which affect the precipitate characteristics in the matrix. The crystallographic texture of the HANA 6 alloy with various manufacturing processes is similar since the total reduction ratio was the same in all the manufactured sheet samples

  11. Simulation of Corrosion Process for Structure with the Cellular Automata Method

    Science.gov (United States)

    Chen, M. C.; Wen, Q. Q.

    2017-06-01

    In this paper, from the mesoscopic point of view, under the assumption of metal corrosion damage evolution being a diffusive process, the cellular automata (CA) method was proposed to simulate numerically the uniform corrosion damage evolution of outer steel tube of concrete filled steel tubular columns subjected to corrosive environment, and the effects of corrosive agent concentration, dissolution probability and elapsed etching time on the corrosion damage evolution were also investigated. It was shown that corrosion damage increases nonlinearly with increasing elapsed etching time, and the longer the etching time, the more serious the corrosion damage; different concentration of corrosive agents had different impacts on the corrosion damage degree of the outer steel tube, but the difference between the impacts was very small; the heavier the concentration, the more serious the influence. The greater the dissolution probability, the more serious the corrosion damage of the outer steel tube, but with the increase of dissolution probability, the difference between its impacts on the corrosion damage became smaller and smaller. To validate present method, corrosion damage measurements for concrete filled square steel tubular columns (CFSSTCs) sealed at both their ends and immersed fully in a simulating acid rain solution were conducted, and Faraday’s law was used to predict their theoretical values. Meanwhile, the proposed CA mode was applied for the simulation of corrosion damage evolution of the CFSSTCs. It was shown by the comparisons of results from the three methods aforementioned that they were in good agreement, implying that the proposed method used for the simulation of corrosion damage evolution of concrete filled steel tubular columns is feasible and effective. It will open a new approach to study and evaluate further the corrosion damage, loading capacity and lifetime prediction of concrete filled steel tubular structures.

  12. Corrosion processes of physical vapor deposition-coated metallic implants.

    Science.gov (United States)

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2009-01-01

    Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.

  13. Modelling the effects of porous and semi-permeable layers on corrosion processes

    International Nuclear Information System (INIS)

    King, F.; Kolar, M.; Shoesmith, D.W.

    1996-09-01

    Porous and semi-permeable layers play a role in many corrosion processes. Porous layers may simply affect the rate of corrosion by affecting the rate of mass transport of reactants and products to and from the corroding surface. Semi-permeable layers can further affect the corrosion process by reacting with products and/or reactants. Reactions in semi-permeable layers include redox processes involving electron transfer, adsorption, ion-exchange and complexation reactions and precipitation/dissolution processes. Examples of porous and semi-permeable layers include non-reactive salt films, precipitate layers consisting of redox-active species in multiple oxidation states (e.g., Fe oxide films), clay and soil layers and biofilms. Examples of these various types of processes will be discussed and modelling techniques developed from studies for the disposal of high-level nuclear waste presented. (author). 48 refs., 1 tab., 12 figs

  14. FORMULATION OF MATHEMATICAL PROBLEM DESCRIBING PHYSICAL AND CHEMICAL PROCESSES AT CONCRETE CORROSION

    Directory of Open Access Journals (Sweden)

    Sergey V. Fedosov

    2017-06-01

    Full Text Available The article deals with the relevance of new scientific research focused on modeling of physical and chemical processes occurring in the cement concrete at their exploitation. The basic types of concrete corrosion are described. The problem of mass transfer processes in a flat reinforced concrete wall at concrete corrosion of the first and the second types has been mathematically formulated.

  15. Achievments of corrosion science and corrosion protection technology

    International Nuclear Information System (INIS)

    Fontana, M.; Stehjl, R.

    1985-01-01

    Problems of corrosion-mechanical strength of metals, effect of corrosive media on creep characteristics are presented. New concepts of the mechanism of corrosion cracking and its relation to hydrogen embrittlement are described. Kinetics and mechanism of hydrogen embrittlement effect on the process of corrosion cracking of different steels and alloys are considered. The dependence of such types of failure on various structural factors is shown. Data on corrosion cracking of high-strength aluminium and titanium alloys, mechanism of the processes and protective methods are given

  16. Effect of Plasma Nitriding Process Conditions on Corrosion Resistance of 440B Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Łępicka Magdalena

    2014-09-01

    Full Text Available Martensitic stainless steels are used in a large number of various industrial applications, e.g. molds for plastic injections and glass moldings, automotive components, cutting tools, surgical and dental instruments. The improvement of their tribological and corrosion properties is a problem of high interest especially in medical applications, where patient safety becomes a priority. The paper covers findings from plasma nitrided AISI 440B (PN-EN or DIN X90CrMoV18 stainless steel corrosion resistance studies. Conventionally heat treated and plasma nitrided in N2:H2 reaction gas mixture (50:50, 65:35 and 80:20, respectively in two different temperature ranges (380 or 450°C specimens groups were examined. Microscopic observations and electrochemical corrosion tests were performed using a variety of analytical techniques. As obtained findings show, plasma nitriding of AISI 440B stainless steel, regardless of the process temperature, results in reduction of corrosion current density. Nevertheless, applying thermo-chemical process which requires exceeding temperature of about 400°C is not recommended due to increased risk of steel sensitization to intergranular and stress corrosion. According to the results, material ion nitrided in 450°C underwent leaching corrosion processes, which led to significant disproportion in chemical composition of the corroded and corrosion-free areas. The authors suggest further research into corrosion process of plasma nitrided materials and its degradation products.

  17. Microstructure and Corrosion Resistance Property of a Zn-AI-Mg Alloy with Different Solidification Processes

    Directory of Open Access Journals (Sweden)

    Jiang Guang-rui

    2017-01-01

    Full Text Available Zn-Al-Mg alloy coating attracted much attention due to its high corrosion resistance properties, especially high anti-corrosion performance at the cut edge. As the Zn-Al-Mg alloy coating was usually produced by hot-dip galvanizing method, solidification process was considered to influence its microstructure and corrosion properties. In this work, a Zn-Al-Mg cast alloy was melted and cooled to room temperature with different solidification processes, including water quench, air cooling and furnace cooling. Microstructure of the alloy with different solidification processes was characterized by scanning electron microscopy (SEM. Result shows that the microstructure of the Zn-Al-Mg alloy are strongly influenced by solidification process. With increasing solidification rate, more Al is remained in the primary crystal. Electrochemical analysis indicates that with lowering solidification rate, the corrosion current density of the Zn-Al-Mg alloy decreases, which means higher corrosion resistance.

  18. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  19. Corrosion-Resistant Container for Molten-Material Processing

    Science.gov (United States)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination

  20. TANK 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM PROJECT LESSONS LEARNED

    International Nuclear Information System (INIS)

    TAYLOR T; HAGENSEN A; KIRCH NW

    2008-01-01

    During 2007 and 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was designed and fabricated for use in double-shell tank 241-AN-102. The system was successfully installed in the tank on May 1, 2008. The 241-AN-102 MPCMS consists of one 'fixed' in-tank probe containing primary and secondary reference electrodes, tank material electrodes, Electrical Resistance (ER) sensors, and stressed and unstressed corrosion coupons. In addition to the fixed probe, the 241-AN-102 MPCMS also contains four standalone coupon racks, or 'removable' probes. Each rack contains stressed and unstressed coupons made of American Society of Testing and Materials A537 CL1 steel, heat-treated to closely match the chemical and mechanical characteristics of the 241-AN-102 tank wall. These coupon racks can be removed periodically to facilitate examination of the attached coupons for corrosion damage. Along the way to successful system deployment and operation, the system design, fabrication, and testing activities presented a number of challenges. This document discusses these challenges and lessons learned, which when applied to future efforts, should improve overall project efficiency

  1. Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory

    Science.gov (United States)

    Robinson, Raymond C.; Cuy, Michael D.

    1994-01-01

    The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.

  2. Corrosion and Creep Characteristics of the HANA-4 Alloy with the various Manufacturing Processes

    International Nuclear Information System (INIS)

    Kim, Hyun-Gil; Choi, Byung-Kwan; Park, Jeong-Yong; Jeong, Yong-Hwan

    2008-01-01

    Zirconium alloys have been used as a fuel cladding material for several decades, since these alloys have revealed a good corrosion resistance and mechanical properties in reactor operating conditions. The development of an advanced Zr-based alloy with an improved corrosion and creep resistance is necessary for the high burn-up operating conditions in PWRs. The alloying element effects of the Nb, Sn, Fe, Cr, Cu etc as well as an optimization of the manufacturing processes such as the reduction ratio and annealing temperatures have been studied to improve the corrosion and creep properties. A high Nb-containing Zr-based alloy named HANA-4 was designed at KAERI and its nominal composition is Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr in wt.%. For high Nb-containing Zr alloys, their corrosion resistance is very sensitive to their microstructural characteristics which are determined by a manufacturing process. In order to obtain the best manufacturing process for the HANA-4 alloy, various evaluations such as corrosion and creep tests, a microstructural analysis, and a texture analysis were performed on the HANA-4 alloy with various manufacturing processes

  3. Mapping the concentration changes during the dynamic processes of crevice corrosion by digital

    Directory of Open Access Journals (Sweden)

    HENGLEI JIA

    2009-02-01

    Full Text Available The dynamic process of crevice corrosion during anodic dissolution of a crevice electrode in a 5.0 mmol dm-3 NaCl solution has been studied by digital holographic reconstruction. Digital holographic reconstruction has been proved to be an effective and in situ technique to detect the changes in the solution concentration because useful and direct information can be obtained from the three-dimensional images. It provides a valuable method for a better understanding of the mechanism of crevice corrosion by studying the dynamic processes of changes in the solution concentration at the interface of crevice corrosion.

  4. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys

    Science.gov (United States)

    Minárik, P.; Král, R.; Janeček, M.

    2013-09-01

    Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.

  5. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Minárik, P., E-mail: peter.minarik@mff.cuni.cz [Charles University, Department of Physics of Materials, Prague (Czech Republic); Král, R.; Janeček, M. [Charles University, Department of Physics of Materials, Prague (Czech Republic)

    2013-09-15

    Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.

  6. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys

    International Nuclear Information System (INIS)

    Minárik, P.; Král, R.; Janeček, M.

    2013-01-01

    Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.

  7. Studies on corrosion inhibitors for the cooling water system at the Heavy Water Project, Kota

    International Nuclear Information System (INIS)

    Pillai, B.P.; Mehta, C.T.; Abubacker, K.M.

    1986-01-01

    The Heavy Water Project at Kota uses the water from the Rana Pratap Sagar Lake as coolant in the open recirculation system. In order to find suitable corrosion inhibitors for the above system, a series of laboratory experiments on corrosion inhibitors were carried out using the constructional materials of the cooling water system and a number of proprietary formulations and the results are tabulated. From the data thus generated through various laboratory experiments, the most useful ones have been recommended for application in practice. (author)

  8. Electromagnetic absorbing property of the flaky carbonyl iron particles by chemical corrosion process

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dianliang, E-mail: 272895980@qq.com [College of Aeronautical Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); Liu, Ting; Zhou, Li [College of Aeronautical Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); Xu, Yonggang [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China)

    2016-12-01

    The flaky carbonyl iron particles (CIPs) were prepared using a milling process at the first step, then the chemical corrosion process was done to optimize the particle shape. The particle morphology was characterized by the scanning electron microscopy, the static magnetic property was evaluated on a vibrating sample magnetometer and X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2–18 GHz and the reflection loss (RL) was calculated. The results showed that the saturation magnetization value of the CIPs decreased as the CIPs was corroded to the small flakes in chemical corrosion process. The diffraction peaks of the single α-Fe existed in the XRD pattern of CIPs, and the characteristic peaks was more obvious and the intensity of the diffraction pattern was lower by corrosion. The permittivity and the permeability of the corroded milling CIPs was a little larger than the milling CIPs, it was due to the larger aspect ratio based on the fitting calculation process. At thickness 0.6 mm and 0.8 mm, the corroded milling CIPs composite had the better absorbing property than the other two samples. The frequency band (RL<−5 dB) could be widened to 8.96–18 GHz at 0.6 mm and 5.92–18 GHz at 0.8 mm, and RL less than −8 dB began to exist in 8.96–14.72 GHz at 0.8 mm. - Graphical abstract: The property of absorber using corrosion process could be enhanced. - Highlights: • The chemical corrosion process was done to optimize the particle shape. • The permittivity and permeability of corroded milling CIPs increased. • The aspect ratio of flaky CIPs increased in the corrosion process. • The corroded milling CIPs composite had the better absorbing property.

  9. Pipeline corrosion prevention by pH stabilization or corrosion inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nyborg, Rolf [Institute for Energy Technology, Oslo (Norway)

    2009-07-01

    In many offshore oil and gas projects the pipeline costs are a considerable part of the investment and can become prohibitively high if the corrosivity of the fluid necessitates the use of corrosion resistant alloys instead of carbon steel. Development of more robust and reliable methods for internal corrosion control can increase the application range of carbon steel and therefore have a large economic impact. Corrosion control of carbon steel pipelines has traditionally often been managed by the use of corrosion inhibitors. The pH stabilization technique has been successfully used for corrosion control of several large wet gas pipelines in the last years. This method has advantages over film forming corrosion inhibitors when no or little formation water is produced. The use of corrosion inhibitors in multiphase pipelines implies several challenges which are not fully accounted for in traditional corrosion inhibitor testing procedures. Specialized test procedures have been developed to take account for the presence of emulsions dispersions and sand and clay particles in corrosion inhibitor testing. (author)

  10. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhujie [Univ. of Michigan, Ann Arbor, MI (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Bartels, David [Univ. of Notre Dame, IN (United States)

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  11. Factors affecting the silver corrosion performance of jet fuel from the Merox process

    Energy Technology Data Exchange (ETDEWEB)

    Viljoen, C.L. [Sasol Oil R& D (South Africa); Hietkamp, S. [CSIR, Pretoria (South Africa); Marais, B.; Venter, J.J. [National Petroleum Refineries of South Africa, Sasolburg (South Africa)

    1995-05-01

    The Natref refinery at Sasolburg, South Africa, which is 63,6% owned by Sasol and 36,5% by Total, is producing Jet A-1 fuel at a rate of 80 m{sup 3}/h by means of a UOP Merox process. A substantial part of the crude oil slate is made up from crudes which have been stored for considerable times in underground mines. Since the 1970`s, Natref has experienced sporadic non-conformance of its treated jet fuel to the silver corrosion (IP 227) test. Various causes and explanations for the sporadic silver corrosion occurrence have been put forward but a direct causal link has remained obscure. The paper addresses these possible causes for silver corrosion and some of the process changes which have been made to alleviate the problem. Emphasis is placed on the most recent approaches which were taken to identify the origin of the sporadic silver corrosion. An inventory of all the potential causes was made, such a bacterial action, elemental sulphur formation in storage, etc. and experiments designed to test the validity of these causes, are discussed. A statistical evaluation which was done of the historical process data over a 2 year period, failed to link the use of mine crudes directly to Ag-corrosion occurrence. However, a correlation between elemental sulphur and H{sub 2}S levels in the feed to the Merox reactor and Ag-corrosion was observed. Finally, the outcome of the experiments are discussed, as well as the conclusions which were reached from the observed results.

  12. Corrosion evaluation of alloys for nuclear waste processing

    International Nuclear Information System (INIS)

    Corbett, R.A.; Bickford, D.F.; Morrison, W.S.

    1986-01-01

    Corrosion scouting tests were performed on stainless steel and nickel-based alloys in simulated process solutions to be used in a facility to immobilize high-level radioactive waste by incorporating it into borosilicate glass. Alloys with combined chromium plus molybdenum contents >30% and also >9% molybdenum, were the most resistant to general and local attack. Alloy C-276 was selected as the reference process equipment material, with Alloy 690 and ALLCORR selected for specific applications

  13. A new corrosion monitoring technique

    International Nuclear Information System (INIS)

    Brown, Gerald K.

    2000-01-01

    Internal Corrosion Monitoring has relied upon 5 basic techniques. Little improvement in performance has been achieved in any of these. Many newer internal corrosion monitoring techniques have proved of little value in the field although some have instances of success in the laboratory. Industry has many high value hydrocarbon applications requiring corrosion rate monitoring for real-time problem solving and control. The high value of assets and the cost of asset replacement makes it necessary to practice cost effective process and corrosion control with sensitivity beyond the 5 basic techniques. This new metal loss technology offers this sensitivity. Traditional metal loss technology today provides either high sensitivity with short life, or conversely, long life but with substantially reduced sensitivity. The new metal loss technology offers an improved working life of sensors without significantly compromising performance. The paper discusses the limitations of existing on-line technologies and describes the performance of a new technology. This new metal loss technology was introduced at NACE Corrosion 99'. Since that time several field projects have been completed or are ongoing. This paper will discuss the new metal loss technology and report on some of the data that has been obtained.(author)

  14. Corrosion processes of alloyed steels in salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Institut fuer Nukleare Entsorgung

    2018-02-15

    A summary is given of the corrosion experiments with alloyed Cr-Ni steels in salt solutions performed at Research Centre Karlsruhe (today KIT), Institute for Nuclear Waste Disposal (INE) in the period between 1980 and 2004. Alloyed steels show significantly lower general corrosion in comparison to carbon steels. However, especially in salt brines the protective Cr oxide layers on the surfaces of these steels are disturbed and localized corrosion takes place. Data on general corrosion rates, and findings of pitting, crevice and stress corrosion cracking are presented.

  15. Corrosion barriers processed by Al electroplating and their resistance against flowing Pb–15.7Li

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Wolfgang, E-mail: wolfgang.krauss@kit.edu; Konys, Jürgen; Wulf, Sven-Erik

    2014-12-15

    In the HCLL blanket design, ferritic–martensitic steels are in direct contact with the flowing liquid breeder Pb–15.7Li and have to withstand severe corrosion attack. Beyond corrosion, T-permeation from the breeder into the RAFM-steels is also an important issue and has to be reduced significantly. Earlier work showed that Al-based coatings can act as barriers for both, however, applied processes e.g. HDA or VPS exhibited strong drawbacks in the past. Meanwhile new industrial relevant coating processes, using electroplating technology are under development and called ECA (electrochemical aluminization) and ECX (electrochemical deposition from ionic liquids) process. In this study electrochemically Al-coated and heat-treated Eurofer samples were tested in PICOLO loop for exposure times up to 12,000 h (ECA) and 2000 h (first results ECX) respectively to determine corrosion properties in flowing Pb–15.7Li (550 °C, 0.1 m/s). Cross section analysis afterward corrosion testing proved the ability of thin Al-based barriers made by electrochemical techniques to protect the bare Eurofer from corrosion attack even at exposure times of 12,000 h. Determined radial corrosion rates lay between 10 and 20 μm/a. First results for ECX coated samples (2000 h) revealed more homogeneous corrosion behavior of the barrier layer itself compared to ECA.

  16. Processing and Probability Analysis of Pulsed Terahertz NDE of Corrosion under Shuttle Tile Data

    Science.gov (United States)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Ely, Thomas M.

    2009-01-01

    This paper examines data processing and probability analysis of pulsed terahertz NDE scans of corrosion defects under a Shuttle tile. Pulsed terahertz data collected from an aluminum plate with fabricated corrosion defects and covered with a Shuttle tile is presented. The corrosion defects imaged were fabricated by electrochemically etching areas of various diameter and depth in the plate. In this work, the aluminum plate echo signal is located in the terahertz time-of-flight data and a threshold is applied to produce a binary image of sample features. Feature location and area are examined and identified as corrosion through comparison with the known defect layout. The results are tabulated with hit, miss, or false call information for a probability of detection analysis that is used to identify an optimal processing threshold.

  17. Protection by high velocity thermal spraying coatings on thick walled permanent and interim store components for the diminution of repairs, corrosion and costs 'SHARK'. Overview at the end of the project

    International Nuclear Information System (INIS)

    Behrens, Sabine; Hassel, Thomas; Bach, Friedrich-Wilhelm

    2012-01-01

    The corrosion protection of the internal space of thick-walled interim and permanent storage facility components, such as Castor copyright containers, are ensured nowadays by a galvanic nickel layer. The method has proved itself and protects the base material of the containers at the underwater loading in the Nuclear power station from a corrosive attack. Although, the galvanic nickel plating is a relatively time consuming method, it lasts for several days for each container, and is with a layer thickness of 1,000 μm also expensive. To develop an alternative, faster and more economical method, a BMBF research project named - 'SHARK - protection by high velocity thermal spraying layers on thick-walled permanent and interim store components for the diminution of repairs, corrosion and costs' in cooperation between Siempelkamp Nukleartechnik GmbH and the Institute of Materials Science of the Leibniz University of Hanover was established to investigate the suitability of the high velocity oxy fuel spraying technology (HVOF) for the corrosion protective coating of thickwalled interim and permanent storage facility components. Since the permanent storage depot components are manufactured from cast iron with globular graphite, this material was exclusively used as a base material in this project. The evaluation of the economical features of the application of different nickel base spraying materials on cast iron substratum was in focus, as well as the scientific characterization of the coating systems with regard to the corrosion protective properties. Furthermore, the feasibility of the transfer of the laboratory results on a large industrial setup as well as a general suitability of the coating process for a required repair procedure was to be investigated. The preliminary examination program identified chromium containing spraying materials as successful. Results of the preliminary examination program have been used for investigations with the CASOIK demonstration

  18. Monitoring the corrosion process of Al alloys through pH induced fluorescence

    International Nuclear Information System (INIS)

    Pidaparti, R M; Neblett, E B; Miller, S A; Alvarez, J C

    2008-01-01

    A sensing and monitoring set-up based on electrochemical pH induced fluorescence to systematically control the electrochemical corrosion process has been developed for possible applications in the field of localized corrosion. The sensing and monitoring concept is based on exposing the corroding metal surface to solutions that contain selected redox chemicals which will react in local regions where anodic or cathodic polarizations occur. Redox couples that produce or consume protons in their electrochemical reactions were used so that local pH gradients can indicate electrochemical activity by inducing fluorescence in dyes. This approach has been applied to study the corrosion initiation in aircraft aluminum metal 2024-T3 in a controlled electrochemical cell. Preliminary results obtained suggest that monitoring of localized corrosion based on pH can be achieved for field applications

  19. Corrosion of metallic materials. Dry corrosion, aqueous corrosion and corrosion by liquid metal, methods of protection

    International Nuclear Information System (INIS)

    Helie, Max

    2015-01-01

    This book is based on a course on materials given in an engineering school. The author first gives an overview of metallurgy issues: metallic materials (pure metals, metallic alloys), defects of crystal lattices (point defects, linear defects or dislocations), equilibrium diagrams, steels and cast, thermal processing of steels, stainless steels, aluminium and its alloys, copper and its alloys. The second part addresses the properties and characterization of surfaces and interfaces: singularity of a metal surface, surface energy of a metal, energy of grain boundaries, adsorption at a material surface, metal-electrolyte interface, surface oxide-electrolyte interface, techniques of surface analysis. The third chapter addresses the electrochemical aspects of corrosion: description of the corrosion phenomenon, free enthalpy of a compound and free enthalpy of a reaction, case of dry corrosion (thermodynamic aspect, Ellingham diagram, oxidation mechanisms, experimental study, macroscopic modelling), case of aqueous corrosion (electrochemical thermodynamics and kinetics, experimental determination of corrosion rate). The fourth part addresses the different forms of aqueous corrosion: generalized corrosion (atmospheric corrosion, mechanisms and tests), localized corrosion (galvanic, pitting, cracking, intergranular, erosion and cavitation), particular cases of stress cracking (stress corrosion, fatigue-corrosion, embrittlement by hydrogen), and bi-corrosion (of non alloyed steels, of stainless steels, and of aluminium and copper alloys). The sixth chapter addresses the struggle and the protection against aqueous corrosion: methods of prevention, scope of use of main alloys, geometry-based protection of pieces, use of corrosion inhibitors, use of organic or metallic coatings, electrochemical protection. The last chapter proposes an overview of corrosion types in industrial practices: in the automotive industry, in the oil industry, in the aircraft industry, and in the

  20. Corrosion/96 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO 2 corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base

  1. Corrosion process studies in a nuclear waste container

    International Nuclear Information System (INIS)

    Guasp, Ruben A.; Lanzani, Liliana A.; Coronel, Pascual; Bruzzoni, Pablo; Semino, Carlos J.

    1999-01-01

    Latest results on corrosion behavior studies on high activity nuclear waste container are reported. Corrosion evaluation on lead base alloys and modeling to predict carbon steel external container cover generalized corrosion, are the main issues of these studies. (author)

  2. The effect of various deformation processes on the corrosion behavior of casing and tubing carbon steels in sweet environment

    Science.gov (United States)

    Elramady, Alyaa Gamal

    The aim of this research project is to correlate the plastic deformation and mechanical instability of casing steel materials with corrosion behavior and surface change, in order to identify a tolerable degree of deformation for casing steel materials. While the corrosion of pipeline and casing steels has been investigated extensively, corrosion of these steels in sweet environments with respect to plastic deformation due to bending, rolling, autofrettage, or handling needs more investigation. Downhole tubular expansion of pipes (casings) is becoming standard practice in the petroleum industry to repair damaged casings, shutdown perforations, and ultimately achieve mono-diameter wells. Tubular expansion is a cold-drawing metal forming process, which consists of running conical mandrels through casings either mechanically using a piston or hydraulically by applying a back pressure. This mechanism subjects the pipes to large radial plastic deformations of up to 30 pct. of the inner diameter. It is known that cold-working is a way of strengthening materials such as low carbon steel, but given that this material will be subjected to corrosive environments, susceptibility to stress corrosion cracking (SCC) should be investigated. This research studies the effect of cold-work, in the form of cold-rolling and cold-expansion, on the surface behavior of API 5CT steels when it is exposed to a CO2-containing environment. Cold-work has a pronounced influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. The lowest strength grade steel, API 5CT K55, performed poorly in a corrosive environment in the slow strain rate test. The ductile material exhibited the highest loss in strength and highest susceptibility to stress corrosion cracking in a CO 2-containing environment. The loss in strength declined with cold-rolling, which can be ascribed to the surface compressive stresses induced by cold-work. On the other hand, API 5CT P110 grade steels showed higher

  3. Status of Database for Electrochemical Noise Based Corrosion Monitoring

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    Underground storage tanks made of mild steel are used to contain radioactive waste generated by plutonium production at the Hanford Site. Corrosion of the walls of these tanks is a major issue. Corrosion-related failure of waste tank walls could lead to the leakage of radioactive contaminants to the soil and groundwater. It is essential to monitor corrosion conditions of the tank walls to determine tank integrity and ensure safe waste storage until retrieval and final waste disposal can be accomplished. Corrosion monitoring/control is currently provided at the Hanford Site through a waste chemistry sampling and analysis program. In this process, tank waste is sampled, analyzed and compared to a selection of laboratory exposures of coupons in simulated waste. Tank wall corrosion is inferred by matching measured tank chemistries to the results of the laboratory simulant testing. This method is expensive, time consuming, and does not yield real-time data. A project to improve the Hanford Site's corrosion monitoring strategy was started in 1995

  4. VVER vessel steel corrosion at interaction with molten corium in oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation)], E-mail: bechta@sbor.spb.su; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V.; Almiashev, V.I. [Institute of Silicate Chemistry, Russian Academy of Sciences (ISCh RAS), St. Petersburg (Russian Federation); Lopukh, D.B. [SPb State Electrotechnical University (SPbGETU), St. Petersburg (Russian Federation); Bottomley, D. [EUROPAISCHE KOMMISSION, Joint Research Centre Institut fuer Transurane (ITU), Karlsruhe (Germany); Fischer, M. [AREVA NP GmbH, Erlangen (Germany); Piluso, P. [CEA/DEN/DSNI, Saclay (France); Miassoedov, A.; Tromm, W. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Altstadt, E. [Forschungszentrum Rossendorf (FZR), Dresden (Germany); Fichot, F. [IRSN/DPAM/SEMCA, St. Paul lez Durance (France); Kymalainen, O. [FORTUM Nuclear Services Ltd., Espoo (Finland)

    2009-06-15

    The long-term in-vessel corium retention (IVR) in the lower head bears a risk of the vessel wall deterioration caused by steel corrosion. The ISTC METCOR Project has studied physicochemical impact of prototypic coria having different compositions in air and steam and has generated valuable experimental data on vessel steel corrosion. It is found that the corrosion rate is sensitive to corium composition, but the composition of oxidizing above-melt atmosphere (air, steam) has practically no influence on it. A model of the corrosion process that integrates the experimental data, is proposed and used for development of correlations.

  5. VVER vessel steel corrosion at interaction with molten corium in oxidizing atmosphere

    International Nuclear Information System (INIS)

    Bechta, S.V.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A.; Gusarov, V.V.; Almiashev, V.I.; Lopukh, D.B.; Bottomley, D.; Fischer, M.; Piluso, P.; Miassoedov, A.; Tromm, W.; Altstadt, E.; Fichot, F.; Kymalainen, O.

    2009-01-01

    The long-term in-vessel corium retention (IVR) in the lower head bears a risk of the vessel wall deterioration caused by steel corrosion. The ISTC METCOR Project has studied physicochemical impact of prototypic coria having different compositions in air and steam and has generated valuable experimental data on vessel steel corrosion. It is found that the corrosion rate is sensitive to corium composition, but the composition of oxidizing above-melt atmosphere (air, steam) has practically no influence on it. A model of the corrosion process that integrates the experimental data, is proposed and used for development of correlations.

  6. Modeling of nonuniform corrosion in salt brines: Salt Repository Project

    International Nuclear Information System (INIS)

    Reimus, P.W.

    1988-03-01

    A mechanistic approach to modeling nonuniform corrosion in brines is presented in this report. Equations are derived for completely describing the electrochemical environment within a localized corrosion cavity, and appropriate initial and boundary conditions are invoked to obtain a solvable system of equations. The initial and boundary conditions can be adjusted to simulate pitting, crevice corrosion, or stress corrosion cracking. Although no numerical results are presented, a numerical strategy for solving the equations is presented. The report focuses on the nonuniform corrosion behavior of mild steel; however, the modeling approach presented is expected to apply to a broad range of metallic materials. 34 refs., 5 figs., 2 tabs

  7. State of the art review of degradation processes in LMFBR materials. Volume II. Corrosion behavior

    International Nuclear Information System (INIS)

    Dillon, R.D.

    1975-01-01

    Degradation of materials exposed to Na in LMFBR service is reviewed. The degradation processes are discussed in sections on corrosion and mass transfer, erosion, wear and self welding, sodium--water reactions, and external corrosion. (JRD)

  8. Monitoring corrosion rates and localised corrosion in low conductivity water

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2006-01-01

    Monitoring of low corrosion rates and localised corrosion in a media with low conductivity is a challenge. In municipal district heating, quality control may be improved by implementing on-line corrosion monitoring if a suitable technique can be identified to measure both uniform and localised...... corrosion. Electrochemical techniques (LPR, EIS, crevice corrosion current) as well as direct measurement techniques (high-sensitive electrical resistance, weight loss) have been applied in operating plants. Changes in the corrosion processes are best monitored in non-aggressive, low conductivity media...

  9. Evaluation of seawater corrosion of SSCs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In the unit 1 to unit 4 of the Fukushima Daiichi Nuclear Power Plant, seawater was injected in reactor pressure vessels and spent fuel pools in order to cool nuclear fuel after the disaster of the 2011 off the Pacific coast of Tohoku Earthquake and Tsunami. In fiscal 2012, overall plan of this project has been developed in consideration of corrosion events that might be assumed reactor pressure vessels, spent fuel pools and primary containment vessels of Fukushima Daiichi Nuclear Power Station that was designated to be as the 'Specified Nuclear Power Facilities'. In this project, crevice corrosion susceptibility of stainless steel, galvanic corrosion of aluminum alloy, and uniform corrosion of carbon steel piping will be evaluated. (author)

  10. Influence of the casting processing route on the corrosion behavior of dental alloys.

    Science.gov (United States)

    Galo, Rodrigo; Rocha, Luis Augusto; Faria, Adriana Claudia; Silveira, Renata Rodrigues; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2014-12-01

    Casting in the presence of oxygen may result in an improvement of the corrosion performance of most alloys. However, the effect of corrosion on the casting without oxygen for dental materials remains unknown. The aim of this study was to investigate the influence of the casting technique and atmosphere (argon or oxygen) on the corrosion behavior response of six different dental casting alloys. The corrosion behavior was evaluated by electrochemical measurements performed in artificial saliva for the different alloys cast in two different conditions: arc melting in argon and oxygen-gas flame centrifugal casting. A slight decrease in open-circuit potential for most alloys was observed during immersion, meaning that the corrosion tendency of the materials increases due to the contact with the solution. Exceptions were the Co-based alloys prepared by plasma, and the Co-Cr-Mo and Ni-Cr-4Ti alloys processed by oxidized flame, in which an increase in potential was observed. The amount of metallic ions released into the artificial saliva solution during immersion was similar for all specimens. Considering the pitting potential, a parameter of high importance when considering the fluctuating conditions of the oral environment, Co-based alloys show the best performance in comparison with the Ni-based alloys, independent of the processing route. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Laboratory testing of waste glass aqueous corrosion; effects of experimental parameters

    International Nuclear Information System (INIS)

    Ebert, W.L.; Mazer, J.J.

    1993-01-01

    A literature survey has been performed to assess the effects of the temperature, glass surface area/leachate volume ratio, leachant composition, leachant flow rate, and glass composition (actual radioactive vs. simulated glass) used in laboratory tests on the measured glass reaction rate. The effects of these parameters must be accounted for in mechanistic models used to project glass durability over long times. Test parameters can also be utilized to highlight particular processes in laboratory tests. Waste glass corrosion results as water diffusion, ion-exchange, and hydrolysis reactions occur simultaneously to devitrify the glass and release soluble glass components into solution. The rates of these processes are interrelated by the affects of the solution chemistry and glass alteration phases on each process, and the dominant (fastest) process may change as the reaction progresses. Transport of components from the release sites into solution may also affect the observed corrosion rate. The reaction temperature will affect the rate of each process, while other parameters will affect the solution chemistry and which processes are observed during the test. The early stages of corrosion will be observed under test conditions which maintain dilute leachates and the later stages will be observed under conditions that generate more concentrated leachate solutions. Typically, water diffusion and ion-exchange reactions dominate the observed glass corrosion in dilute solutions while hydrolysis reactions dominant in more concentrated solutions. Which process(es) controls the long-term glass corrosion is not fully understood, and the long-term corrosion rate may be either transport- or reaction-limited

  12. Effects of laser shock processing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion

    International Nuclear Information System (INIS)

    Zhang, L.; Zhang, Y.K.; Lu, J.Z.; Dai, F.Z.; Feng, A.X.; Luo, K.Y.; Zhong, J.S.; Wang, Q.W.; Luo, M.; Qi, H.

    2013-01-01

    Highlights: ► Weldments were done with laser shock processing impacts after cavitation erosion. ► Laser shock processing enhanced the erosion and corrosion resistance of weldments. ► Tensile residual stress and surface roughness decreased by laser shock processing. ► Microstructure was observed to explain the improvement by laser shock processing. ► Obvious passivation areas occurred with laser shock processing impacts. - Abstract: Effects of laser shock processing (LSP) on electrochemical corrosion resistance of weldments after cavitation erosion were investigated by X-ray diffraction (XRD) technology, scanning electron microscope (SEM), roughness tester and optical microscope (OM). Some main factors to influence erosion and corrosion of weldments, residual stresses, surface roughness, grain refinements and slip, were discussed in detail. Results show that LSP impacts can induce compressive residual stresses, decrease surface roughness, refine grains and generate the slip. Thus, the erosion and corrosion resistance with LSP impacts is improved.

  13. Corrosion/94 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The approximately 500 papers from this conference are divided into the following sections: Rail transit systems--stray current corrosion problems and control; Total quality in the coatings industry; Deterioration mechanisms of alloys at high temperatures--prevention and remediation; Research needs and new developments in oxygen scavengers; Computers in corrosion control--knowledge based system; Corrosion and corrosivity sensors; Corrosion and corrosion control of steel reinforced concrete structures; Microbiologically influenced corrosion; Practical applications in mitigating CO 2 corrosion; Mineral scale deposit control in oilfield-related operations; Corrosion of materials in nuclear systems; Testing nonmetallics for life prediction; Refinery industry corrosion; Underground corrosion control; Mechanisms and applications of deposit and scale control additives; Corrosion in power transmission and distribution systems; Corrosion inhibitor testing and field application in oil and gas systems; Decontamination technology; Ozone in cooling water applications, testing, and mechanisms; Corrosion of water and sewage treatment, collection, and distribution systems; Environmental cracking of materials; Metallurgy of oil and gas field equipment; Corrosion measurement technology; Duplex stainless steels in the chemical process industries; Corrosion in the pulp and paper industry; Advances in cooling water treatment; Marine corrosion; Performance of materials in environments applicable to fossil energy systems; Environmental degradation of and methods of protection for military and aerospace materials; Rail equipment corrosion; Cathodic protection in natural waters; Characterization of air pollution control system environments; and Deposit-related problems in industrial boilers. Papers have been processed separately for inclusion on the data base

  14. Research on corrosion aspects of the advanced cold process canister

    International Nuclear Information System (INIS)

    Blackwood, D.J.; Hoch, A.R.; Naish, C.C.; Rance, A.

    1994-01-01

    The Advanced Cold Process Canister (ACPC) is a waste canister being developed jointly by SKB and TVO for the disposal of spent nuclear fuel. It comprises an outer copper canister, with a carbon steel canister inside. A concern regarding the use of the ACPC is that, in the unlikely event that the outer copper canister is penetrated, the anaerobic corrosion of the carbon steel container may result in the formation of hydrogen gas bubbles. These bubbles could disrupt the backfill, and thus increase water flow through the near field and the flux of radionuclides to the host geology. A number of factors that influence the rate at which hydrogen evolves as a result of the anaerobic corrosion of carbon steel in artificial granitic groundwaters have been investigated. A previously observed, time-dependent decline in the hydrogen evolution rate has been confirmed as being due to the production of magnetite film. Once the magnetite film is about 0.7-1.0 μm thick, the rate of hydrogen evolution reaches a steady state value. The pH and the ionic strength of the groundwater were both found to influence the long-term hydrogen evolution rate. The results of the experimental programme were used to update a model of the corrosion behaviour and hydrogen production from the Advanced Cold Process Canister. 36 figs, 5 tabs, 13 refs

  15. Mineralogical issues in long-term corrosion of iron and iron-nickel alloys

    International Nuclear Information System (INIS)

    VanOrden, A.C.; McNeil, M.B.

    1988-01-01

    Prediction of very long term corrosion behavior of buried objects in general requires taking into account that the corrosion processes themselves after the local conditions. Recent work has analyzed corrosion processes in terms of trajectories on Pourbaix diagrams and appears to offer the prospect for using short-term corrosion tests to project corrosion behavior over very long periods. Two different classes of materials are considered here: essentially pure iron, which is an analogue to the carbon steel design overpacks for the salt and basalt sites (on which work has been suspended at present, and iron-nickel alloys, which are the best analogues available for some of the alloys being considered on the tuff site. There are a number of sources of data on corrosion of iron over archaeological times; the data used in this paper are from the recent National Bureau of Standards work on Roman iron nails for Inchtuthill in Scotland, which can be dated fairly precisely to about 70 A.D. and whose method of production is understood. The only available source of natural-analogue data on Fe-Ni alloys is the corrosion of meteorites

  16. Modelling of Corrosion Cracks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....

  17. Optimising corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.; Andersen, A.

    2002-01-01

    A three-year project - financially supported by the Nordic Industrial Fund - on monitoring of corrosion in district heating systems has been initiated with participation of researchers and industrial partners in Denmark, Finland, Iceland, Norway and Sweden. The primary objective of the project...... is to improve the quality control in district heating systems by corrosion monitoring. In Danish systems electrochemical impedance spectroscopy (EIS), linear polarisation resistance (LPR), high-sensitive electrical resistance (ER) technology, crevice corrosion probes, as well as weight loss coupons...

  18. EIS study on corrosion and scale processes and their inhibition in cooling system media

    International Nuclear Information System (INIS)

    Marin-Cruz, J.; Cabrera-Sierra, R.; Pech-Canul, M.A.; Gonzalez, I.

    2006-01-01

    A study of the carbon steel/cooling water interface was carried out using electrochemical impedance spectroscopy (EIS). EIS spectra reveal that a layer of corrosion and scale products forms naturally and evolves with the immersion time modifying the carbon steel/cooling water interface and giving rise to corrosion and scale processes. In addition, the nature of the layer formed on the metal was found to depend on the inhibitor used. It was established that the corrosion inhibitor (hydroxyphosphonoacetic acid (HPA)) chelates with Ca(II) ion generating a layer with resistive properties that provides good protection against corrosion. In contrast, the scale inhibitor (1-hydroxy-ethane-1,1-diphosphonic acid (HEDP)) is incorporated into the calcium carbonate crystals at the surface, modifying the structure and diminishing scale formation in the surface; this additive additionally inhibited corrosion. These observations were supported by scanning electronic microscopy (SEM) and corroborate previous studies performed by other techniques on HPA and HEDP. Finally, a synergistic effect was observed between these inhibitors that provides good protection to steel against corrosion and scaling in cooling media

  19. EIS study on corrosion and scale processes and their inhibition in cooling system media

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Cruz, J. [Universidad Autonoma Metropolitana, Departamento de Quimica, Apdo. Postal 55-534, 09340 Mexico, DF (Mexico) and Instituto Mexicano del Petroleo, Coordinacion de Ingenieria Molecular, Competencia de Quimica Aplicada, Eje Central Lazaro Cardenas No. 152, CP 07730, DF (Mexico)]. E-mail: jmarin@imp.mx; Cabrera-Sierra, R. [Universidad Autonoma Metropolitana, Departamento de Quimica, Apdo. Postal 55-534, 09340 Mexico, DF (Mexico); Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE-IPN), Departamento de Metalurgia, UPALM Zacatenco AP 75-874, CP 07338, DF (Mexico); Pech-Canul, M.A. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios, Avanzados del IPN, AP 73 Cordemex, CP 97310, Merida, Yucatan (Mexico); Gonzalez, I. [Universidad Autonoma Metropolitana, Departamento de Quimica, Apdo. Postal 55-534, 09340 Mexico, DF (Mexico)]. E-mail: igm@xanum.uam.mx

    2006-01-20

    A study of the carbon steel/cooling water interface was carried out using electrochemical impedance spectroscopy (EIS). EIS spectra reveal that a layer of corrosion and scale products forms naturally and evolves with the immersion time modifying the carbon steel/cooling water interface and giving rise to corrosion and scale processes. In addition, the nature of the layer formed on the metal was found to depend on the inhibitor used. It was established that the corrosion inhibitor (hydroxyphosphonoacetic acid (HPA)) chelates with Ca(II) ion generating a layer with resistive properties that provides good protection against corrosion. In contrast, the scale inhibitor (1-hydroxy-ethane-1,1-diphosphonic acid (HEDP)) is incorporated into the calcium carbonate crystals at the surface, modifying the structure and diminishing scale formation in the surface; this additive additionally inhibited corrosion. These observations were supported by scanning electronic microscopy (SEM) and corroborate previous studies performed by other techniques on HPA and HEDP. Finally, a synergistic effect was observed between these inhibitors that provides good protection to steel against corrosion and scaling in cooling media.

  20. Magnetic strength and corrosion of rare earth magnets.

    Science.gov (United States)

    Ahmad, Khalid A; Drummond, James L; Graber, Thomas; BeGole, Ellen

    2006-09-01

    Rare earth magnets have been used in orthodontics, but their corrosion tendency in the oral cavity limits long-term clinical application. The aim of this project was to evaluate several; magnet coatings and their effects on magnetic flux density. A total of 60 neodymium-iron-boron magnets divided into 6 equal groups--polytetrafluoroethylene-coated (PTFE), parylene-coated, and noncoated--were subjected to 4 weeks of aging in saline solution, ball milling, and corrosion testing. A significant decrease in magnet flux density was recorded after applying a protective layer of parylene, whereas a slight decrease was found after applying a protective layer of PTFE. After 4 weeks of aging, the coated magnets were superior to the noncoated magnets in retaining magnetism. The corrosion-behavior test showed no significant difference between the 2 types of coated magnets, and considerable amounts of iron-leached ions were seen in all groups. Throughout the processes of coating, soaking, ball milling, and corrosion testing, PTFE was a better coating material than parylene for preserving magnet flux density. However, corrosion testing showed significant metal leaching in all groups.

  1. Corrosion mechanisms downstream the nuclear cycle: from processing-recycling to transmutation

    International Nuclear Information System (INIS)

    Balbaud-Celerier, F.

    2010-01-01

    The author gives a detailed overview of his scientific and research activities in the field of material behaviour in environments met during the downstream part of the nuclear cycle. In the first part, he presents his works on material corrosion in concentrated and high temperature nitric acid, and more particularly on the phenomenon which governs this corrosion: the nitric acid reduction mechanism. In the second part, he reports researches performed within the frame of hybrid reactor development for the processing of future fuels. In both parts, he also discusses the perspectives for new researches and developments

  2. Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 3: Corrosion and data modeling

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; McCright, R.D.; Roy, A.K.; Jones, D.A.

    1995-08-01

    This three-volume report serves several purposes. The first volume provides an introduction to the engineered materials effort for the Yucca Mountain Site Characterization Project. It defines terms and outlines the history of selection and characterization of these materials. A summary of the recent engineered barrier materials characterization workshop is presented, and the current candidate materials are listed. The second volume tabulates design data for engineered materials, and the third volume is devoted to corrosion data, radiation effects on corrosion, and corrosion modeling. The second and third volumes are intended to be evolving documents, to which new data will be added as they become available from additional studies. The initial version of Volume 3 is devoted to information currently available for environments most similar to those expected in the potential Yucca Mountain repository. This is volume three

  3. Launch Pad Coatings for Smart Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  4. The corrosion behaviour of stainless steels in natural seawater: results of an european collaborative project

    Energy Technology Data Exchange (ETDEWEB)

    Scotto, V.; Mollica, A. [Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France); Feron, D. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees; Rogne, T.; Steinsmo, U. [Stiftelsen for Industriell og Teknisk Forskning (SINTEF), Trondheim (Norway); Compere, C.; Festy, D.; Audouard, J.P.; Taxen, C.; Thierry, D.

    1996-12-31

    One of the goals of the European collaborative Project `Marine Bio-film on Stainless steels: effects, monitoring and prevention`, started in 1992 and partially funded by the European Communities in the framework of the Marine Science and Technologies Program, was to give some conclusive and general remarks regarding the possible link, outlined in literature, between aerobic bio-film settlement and both the increased risk of localized corrosion onset and the propagation rate of ongoing localized corrosion on Stainless Steels. For this purpose several SS types of European production (austenitic and duplex), in form of tubes and plates, with and without artificial crevices preformed on their surfaces, have been exposed to flowing and quite seawater (flow rate from 0 to 1.5 m/s), at different marine stations (respectively located in the Mediterranean Sea, in the Eastern Atlantic, in the North and Baltic Seas) and the tests were repeated during each season of the year when seawater temperatures ranged from 6 up to 28 deg C. During each exposure, the SS free corrosion potentials were recorded. (authors).

  5. Corrosion on Mars: An Investigation of Corrosion Mechanisms Under Relevant Simulated Martian Environments

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Johansen, Michael R.; Buhrow, Jerry W.; Calle, Carlos I.

    2017-01-01

    This one-year project was selected by NASA's Science Innovation Fund in FY17 to address Corrosion on Mars which is a problem that has not been addressed before. Corrosion resistance is one of the most important properties in selecting materials for landed spacecraft and structures that will support surface operations for the human exploration of Mars. Currently, the selection of materials is done by assuming that the corrosion behavior of a material on Mars will be the same as that on Earth. This is understandable given that there is no data regarding the corrosion resistance of materials in the Mars environment. However, given that corrosion is defined as the degradation of a metal that results from its chemical interaction with the environment, it cannot be assumed that corrosion is going to be the same in both environments since they are significantly different. The goal of this research is to develop a systematic approach to understand corrosion of spacecraft materials on Mars by conducting a literature search of available data, relevant to corrosion in the Mars environment, and by performing preliminary laboratory experiments under relevant simulated Martian conditions. This project was motivated by the newly found evidence for the presence of transient liquid brines on Mars that coincided with the suggestion, by a team of researchers, that some of the structural degradation observed on Curiosity's wheels may be caused by corrosive interactions with the brines, while the most significant damage was attributed to rock scratching. An extensive literature search on data relevant to Mars corrosion confirmed the need for further investigation of the interaction between materials used for spacecraft and structures designed to support long-term surface operations on Mars. Simple preliminary experiments, designed to look at the interaction between an aerospace aluminum alloy (AA7075-T73) and the gases present in the Mars atmosphere, at 20degC and a pressure of 700 Pa

  6. Environmental Friendly Coatings and Corrosion Prevention For Flight Hardware Project

    Science.gov (United States)

    Calle, Luz

    2014-01-01

    Identify, test and develop qualification criteria for environmentally friendly corrosion protective coatings and corrosion preventative compounds (CPC's) for flight hardware an ground support equipment.

  7. Salt fog corrosion behavior in a powder-processed icosahedral-phase-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Watson, T.J.; Gordillo, M.A.; Ernst, A.T.; Bedard, B.A.; Aindow, M.

    2017-01-01

    Highlights: • Pitting corrosion resistance has been evaluated for an Al-Cr-Mn-Co-Zr alloy. • Pit densities and depths are far lower than for other high-strength Al alloys. • Corrosion proceeds by selective oxidation of the Al matrix around the other phases. - Abstract: The pitting corrosion resistance has been evaluated for a powder-processed Al-Cr-Mn-Co-Zr alloy which contains ≈35% by volume of an icosahedral quasi-crystalline phase and a little Al 9 Co 2 in an Al matrix. ASTM standard salt fog exposure tests show that the alloy exhibits far lower corrosion pit densities and depths than commercial high-strength aerospace Al alloys under the same conditions. Electron microscopy data show that the salt fog exposure leads to the selective oxidation of the face-centered cubic Al matrix around the other phases, and to the development of a porous outer oxide scale.

  8. Corrosion control for low-cost reliability

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This conference was held September 19-24, 1993 in Houston, Texas to provide a forum for exchange of state-of-the-art information on corrosion. Topics of interest focus on the following: atmospheric corrosion; chemical process industry corrosion; high temperature corrosion; and corrosion of plant materials. Individual papers have been processed separately for inclusion in the appropriate data bases

  9. Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process

    Science.gov (United States)

    Levy, Galit Katarivas; Aghion, Eli

    Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.

  10. Effect of forging process on microstructure, mechanical and corrosion properties of biodegradable Mg-1Ca alloy

    International Nuclear Information System (INIS)

    Harandi, Shervin Eslami; Hasbullah Idris, Mohd; Jafari, Hassan

    2011-01-01

    Research highlights: → Forging temperature demonstrates more pronounced effect compared to forging speed. → Precipitation of Mg 2 Ca phase at grain boundaries accelerates corrosion rate. → Forging process doesn't provide the corrosion resistance required for bone healing. -- Abstract: The performance of Mg-1Ca alloy, a biodegradable metallic material, may be improved by hot working in order that it may be of use in bone implant applications. In this study, Mg-1Ca cast alloy was preheated to different temperatures before undergoing forging process with various forging speeds. Macro- and microstructure of the samples were examined by stereo and scanning electron microscopes (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), respectively. To determine the mechanical properties of the alloy, hardness value and plastic deformation ability of the samples were measured. To investigate the corrosion behaviour of the alloy, immersion and electrochemical tests were performed on the samples in simulated body fluid and the corrosion products were characterized by SEM/EDS. The results showed that increasing forging temperature decreased grain size led to improved hardness value and plastic deformation ability of the alloy, whereas no significant effect was observed by changing forging speed. Moreover, forging at higher temperatures led to an increase in the amount of Mg 2 Ca phase at grain boundaries resulted in higher corrosion rates. It can be concluded that although forging process improved the mechanical properties of the alloy, it does not satisfy the corrosion resistance criteria required for bone healing.

  11. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    Directory of Open Access Journals (Sweden)

    Weiliang Jin

    2013-09-01

    Full Text Available The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  12. A new corrosion sensor to determine the start and development of embedded rebar corrosion process at coastal concrete.

    Science.gov (United States)

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-09-30

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  13. Data Analysis and reduction in Hanford's corrosion monitoring systems

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    A project to improve the Hanford Site's corrosion monitoring strategy was started in 1995. The project is designed to integrate EN-based corrosion monitoring into the site's corrosion monitoring strategy. In order to monitor multiple tanks, a major focus of this project has been to automate the data collection and analysis process. Data collection and analysis from the early EN corrosion monitoring equipment (241-AZ-101 and 241-AN-107) was primarily performed manually by a trained operator skilled in the analysis of EN data. Thousands of raw data files were collected, manually sorted and stored. Further statistical analysis of these files was performed by manually stripping out data from thousands of raw data files and calculating statistics in a spreadsheet format. Plotting and other graphical display analyses were performed by manually exporting data from the data files or spreadsheet into another plotting or presentation software package. In 1999, an Amulet/PRP system was procured and employed on the 241-AN-102 corrosion monitoring system. A duplicate system was purchased for use on the upcoming 241-AN-105 system. A third system has been procured and will eventually be used to upgrade the 241-AN-107 system. The Amulet software has greatly improved the automation of waste tank EN data analysis. In contrast with previous systems, the Amulet operator no longer has to manually collect, sort, store, and analyze thousands of raw EN data files. Amulet writes all data to a single database. Statistical analysis, uniform corrosion rate, and other derived parameters are automatically calculated in Amulet from the raw data while the raw data are being collected. Other improvements in plotting and presentation make inspection of the data a much quicker and relatively easy task. These and other improvements have greatly improved the speed at which EN data can be analyzed in addition to improving the quality of the final interpretation. The increase in data automation offered

  14. An example of transition from a corrosion process in gaseous phase to corrosion in aqueous environment: the case of Z2CN18-10 stainless steel by iodine and water in vapour phase

    International Nuclear Information System (INIS)

    Mathieu, Bruno

    1990-01-01

    This research thesis addresses an example of transition of a corrosion process in gaseous phase towards corrosion in aqueous environment, specifically in the case of the corrosion of the Z2CN18-10 stainless steel by gaseous iodine in presence of water vapour (and possibly nitrogen dioxide). This transition occurs in two steps: initiation in gaseous phase and growth in aqueous environment. This transition is due to hygroscopic properties of mostly chromium iodides and, to a lesser extent, iron iodides. Morphological, electrochemical and thermogravimetry studies have been performed by varying different parameters governing corrosion processes: corrosion temperature, iodine concentration, relative humidity, and reaction time [fr

  15. Investigation into the cause of leak in the pipe of the corrosion test apparatus of IS process

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Furukawa, Tomohiro; Inagaki, Yoshiyuki; Suwa, Hirokazu

    2008-12-01

    The thermochemical water-splitting hydrogen production IS process utilizes corrosive chemicals such as sulfuric acid and hydriodic acid. Corrosion tests in IS process environments have been carried out to get the corrosion data of materials. In the corrosion test in 90wt% sulfuric acid at 400degC, the leak of sulfuric acid was observed in a pipe connected with a reflux condenser. The cause of the leakage is a significant knowledge for the operation of the test apparatus. Therefore the cause was investigated. A 1mm wide through hole was detected in the pipe around the welding bead. By visual observation after cutting the pipe, the wall thickness of the pipe became thin at the inside welding bead around the through hole. In addition, EMPA showed that the inhomogeneous distribution of the constituent elements of the pipe was observed around the through hole. For these reasons, it is estimated that the lowering of the corrosion resistance by the sensitization at the welding caused the leakage. (author)

  16. Construction and Application of a National Data-Sharing Service Network of Material Environmental Corrosion

    Directory of Open Access Journals (Sweden)

    Xiaogang Li

    2007-12-01

    Full Text Available This article discusses the key features of a newly developed national data-sharing online network for material environmental corrosion. Written in Java language and based on Oracle database technology, the central database in the network is supported with two unique series of corrosion failure data, both of which were accumulated during a long period of time. The first category of data, provided by national environment corrosion test sites, is corrosion failure data for different materials in typical environments (atmosphere, seawater and soil. The other category is corrosion data in production environments, provided by a variety of firms. This network system enables standardized management of environmental corrosion data, an effective data sharing process, and research and development support for new products and after-sale services. Moreover this network system provides a firm base and data-service platform for the evaluation of project bids, safety, and service life. This article also discusses issues including data quality management and evaluation in the material corrosion data sharing process, access authority of different users, compensation for providers of shared historical data, and finally, the related policy and law legal processes, which are required to protect the intellectual property rights of the database.

  17. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    Science.gov (United States)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  18. Electrochemical corrosion behaviour of nickel chromium-chromium carbide coating by HVOF process

    Science.gov (United States)

    Amudha, A.; Nagaraja, H. S.; Shashikala, H. D.

    2018-04-01

    To overcome the corrosion problem in marine industry, coatings are one of the most economical solutions. In this paper, the corrosion behaviour of 25(NiCr)-75Cr3C2 cermet coating on low carbon steel substrate by HVOF process is studied. Different phases such as Cr7C3 and Cr3C2, along with Ni and chromium oxide(Cr3O2) constituents present in the coating were revealed by X-Ray Diffraction (XRD) analysis. The morphology of the coating obtained by scanning electron microscope (SEM) gave confirmation for the XRD analysis. Electrochemical corrosion techniques such as Linear Polarization Resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS) were used to study the corrosion behaviour of the cermet in 3.5wt% NaCl electrolyte solution. The corrosion current density of the coated sample and substrate were found to be 6.878µA/cm-2 and 21.091µA/cm-2 respectively. The Nyquist Impedance spectra were used to derive an equivalent circuit to analyze the interaction between the coating and electrolyte. The Bode Impedance plots obtained by EIS for the coating showed a typical passive material capacitive behaviour, indicated by medium to low frequency with phase angle approaching -60o, suggesting that a stable film is formed on the tested material in the electrolyte used.

  19. Accelerated Test Method for Corrosion Protective Coatings

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as...

  20. Internal Corrosion Detection in Liquids Pipelines

    Science.gov (United States)

    2012-01-01

    PHMSA project DTRS56-05-T-0005 "Development of ICDA for Liquid Petroleum Pipelines" led to the development of a Direct Assessment (DA) protocol to prioritize locations of possible internal corrosion. The underlying basis LP-ICDA is simple; corrosion ...

  1. Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al

    International Nuclear Information System (INIS)

    Liu, Yanjie; Wang, Zhenyao; Ke, Wei

    2014-01-01

    Highlights: •Corrosion products layer is only formed in coastal atmosphere. •In coastal atmosphere, rate controlling step is diffusion process. •In rural atmosphere, rate controlling step is charge transfer process. •Pitting area increases greatly in coastal site, but slightly in rural site. -- Abstract: Effects of native oxide and corrosion products on atmospheric corrosion of aluminium in rural and coastal sites were studied by electrochemical impedance spectroscopy (EIS), open-circuit potential (OCP) and scanning electron microscope (SEM) techniques after outdoor exposure. In the rural atmosphere, only the compact, adhesive native oxide layer exists, and the rate controlling step is diffusion process, while in the coastal atmosphere, another loose, inadhesive corrosion products layer exists, and a charge transfer process controls the corrosion process. The pitting area in the coastal atmosphere increases over time more obviously than that in the rural atmosphere

  2. A study of the effect of clinical washing decontamination process on corrosion resistance of Martensitic Stainless Steel 420.

    Science.gov (United States)

    Xu, Yunwei; Huang, Zhihong; Corner, George

    2016-09-28

    Corrosion of surgical instruments provides a seat for contamination and prevents proper sterilisation, placing both patients and medical staff at risk of infection. Corrosion can also compromise the structural integrity of instruments and lead to mechanical failure in use. It is essential to understand the various factors affecting corrosion resistance of surgical instruments and how it can be minimised.This paper investigates the effect on corrosion resistance from the clinical washing decontamination (WD) process, specifically by studying the changes in surface roughness and Cr/Fe ratio. Results indicate that the WD process provides a positive effect on smooth polished samples, while a lesser positive effect was observed on rough reflection reduced samples.

  3. Correlation of Process Data and Electrochemical Noise to Assess Kraft Digester Corrosion: Kamloops Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, SJ

    2002-05-09

    Electrochemical noise (ECN) probes were deployed in a carbon steel continuous kraft digester at five locations roughly equi-spaced from top to bottom of the vessel. Current and potential noise, the temperature at each probe location, and the value of about 60 process parameters (flow rates, liquor chemistry, etc.) were monitored continuously for a period of one year. Historical vessel inspection data, including inspections accomplished immediately prior to and immediately following probe deployment, and post-test evaluation of the probe components were used to assess/compare corrosion indications from the probes with physical changes in wall thickness and corrosion patterns on the digester shell. The results indicate that furnish composition is a significant variable influencing digester corrosion, with increasing amounts of Douglas fir in the nominal furnish correlating directly with increased corrosion activity on the ECN probes. All five probes detected changes in furnish composition approximately simultaneously, indicating rapid chemical communication through the liquor, but the effect was strongest and persisted longest relatively high in the digester. The ECN probes also indicate significant corrosion activity occurred at each probe position during shutdown/restart transients. Little or no correlation between ECN probe corrosion activity and other operational variables was observed. Post-test evaluation of the probes confirmed general corrosion of a magnitude that closely agreed with corrosion current sums calculated for each probe over the exposure period and with historical average corrosion rates for the respective locations. Further, no pitting was observed on any of the electrodes, which is consistent with the ECN data, relevant polarization curves developed for steel in liquor removed from the digester, and the post-test inspection of the digester.

  4. Application of thin layer activation technique for monitoring corrosion of carbon steel in hydrocarbon processing environment.

    Science.gov (United States)

    Saxena, R C; Biswal, Jayashree; Pant, H J; Samantray, J S; Sharma, S C; Gupta, A K; Ray, S S

    2018-05-01

    Acidic crude oil transportation and processing in petroleum refining and petrochemical operations cause corrosion in the pipelines and associated components. Corrosion monitoring is invariably required to test and prove operational reliability. Thin Layer Activation (TLA) technique is a nuclear technique used for measurement of corrosion and erosion of materials. The technique involves irradiation of material with high energy ion beam from an accelerator and measurement of loss of radioactivity after the material is subjected to corrosive environment. In the present study, TLA technique has been used to monitor corrosion of carbon steel (CS) in crude oil environment at high temperature. Different CS coupons were irradiated with a 13 MeV proton beam to produce Cobalt-56 radioisotope on the surface of the coupons. The corrosion studies were carried out by subjecting the irradiated coupons to a corrosive environment, i.e, uninhibited straight run gas oil (SRGO) containing known amount of naphthenic acid (NA) at high temperature. The effects of different parameters, such as, concentration of NA, temperature and fluid velocity (rpm) on corrosion behaviour of CS were studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Pressurized water reactor fuel performance problems connected with fuel cladding corrosion processes

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2008-01-01

    Generally, Pressurized Water Reactor (WWER, PWR) Fuel Element Performance is connected with fuel cladding corrosion and crud deposition processes. By transient to extended fuel cycles in nuclear power reactors, aiming to achieve higher burnup and better fuel utilization, the role of these processes increases significantly. This evolution modifies the chemical and electrochemical conditions in the reactor primary system, including change of fuel claddings' environment. The higher duty cores are always attended with increased boiling (sub-cooled nucleate boiling) mainly on the feed fuel assemblies. This boiling process on fuel cladding surfaces can cause different consequences on fuel element cladding's environment characteristics. In the case of boiling at the cladding surfaces without or with some cover of corrosion product deposition, the behavior of gases dissolved in water phase is strongly influenced by the vapor generation. The increase of vapor partial pressure will reduce the partial pressures of dissolved gases and will cause their stripping out. By these circumstances the concentrations of dissolved gases in cladding wall water layer can dramatically decrease, including also the case by which all dissolved gases to be stripped out. On the other hand it is known that the hydrogen is added to primary coolant in order to avoid the production of oxidants by radiolysis of water. It is clear that if boiling strips out dissolved hydrogen, the creation of oxidizing conditions at the cladding surfaces will be favored. In this case the local production of oxidants will be a result from local processes of water radiolysis, by which not only both oxygen (O 2 ) and hydrogen (H 2 ) but also hydrogen peroxide (H 2 O 2 ) will be produced. While these hydrogen and oxygen will be stripped out preferentially by boiling, the bigger part of hydrogen peroxide will remain in wall water phase and will act as the most important factor for creation of oxidizing conditions in fuel

  6. Spent nuclear fuel project recommended reaction rate constants for corrosion of N-Reactor fuel

    International Nuclear Information System (INIS)

    Cooper, T.D.; Pajunen, A.L.

    1998-01-01

    The US Department of Energy (DOE) established the Spent Nuclear Fuel Project (SNF Project) to address safety and environmental concerns associated with deteriorating spent nuclear fuel presently stored in the Hanford Site's K Basins. The SNF Project has been tasked by the DOE with moving the spent N-Reactor fuel from wet storage to contained dry storage in order to reduce operating costs and environmental hazards. The chemical reactivity of the fuel must be understood at each process step and during long-term dry storage. Normally, the first step would be to measure the N-fuel reactivity before attempting thermal-hydraulic transfer calculations; however, because of the accelerated project schedule, the initial modeling was performed using literature values for uranium reactivity. These literature values were typically found for unirradiated, uncorroded metal. It was fully recognized from the beginning that irradiation and corrosion effects could cause N-fuel to exhibit quite different reactivities than those commonly found in the literature. Even for unirradiated, uncorroded uranium metal, many independent variables affect uranium metal reactivity resulting in a wide scatter of data. Despite this wide reactivity range, it is necessary to choose a defensible model and estimate the reactivity range of the N-fuel until actual reactivity can be established by characterization activities. McGillivray, Ritchie, and Condon developed data and/or models that apply for certain samples over limited temperature ranges and/or reaction conditions (McGillivray 1994, Ritchie 1981 and 1986, and Condon 1983). These models are based upon small data sets and have relatively large correlation coefficients

  7. Improving pitting corrosion resistance of aluminum by anodizing process

    International Nuclear Information System (INIS)

    John, P.; Khan, I.U.

    2013-01-01

    Summary: Anodizing of aluminum was studied in sulphuric/citric/boric acid electrolyte system to improve pitting corrosion resistance. Maximum oxide film thickness was obtained using 5% sulphuric acid, 3% citric acid and 0.5% boric acid electrolyte composition. The corrosion resistance of aluminum sample was determined to find the effectiveness of oxide coating by potentiodynamic polarization test. The surface morphology of aluminum samples was investigated using scanning electron microscope (SEM) before and after corrosion test. It was found that the coated aluminum sample obtained by anodizing in sulphuric/citric/boric acid electrolyte system exhibited better pitting corrosion resistance with no significant difference in surface morphology. (author)

  8. Erosion/corrosion concerns in feed preparation systems at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Gee, J.T.; Chandler, C.T.; Daugherty, W.L.; Imrich, K.J.; Jenkins, C.F.

    1997-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the high level radioactive waste resulting from these processes as a durable borosilicate glass. The DWPF, after having undergone extensive testing, has been approved for operations and is currently immobilizing radioactive waste. To ensure reliability of the DWPF remote canyon processing equipment, a materials evaluation program was performed prior to radioactive operations to determine to what extent erosion/corrosion would impact design life of equipment. The program consisted of performing pre-service baseline inspections on critical equipment and follow-up inspections after completion of DWPF cold chemical demonstration runs. Non-destructive examination (NDE) techniques were used to assess erosion/corrosion as well as evaluation of corrosion coupon racks. These results were used to arrive at predicted equipment life for selected feed preparation equipment. It was concluded with the exception of the coil and agitator for the slurry mix evaporator (SME), which are exposed to erosive glass frit particles, all of the equipment should meet its design life

  9. The synergy of corrosion and fretting wear process on Inconel 690 in the high temperature high pressure water environment

    Science.gov (United States)

    Wang, Zihao; Xu, Jian; Li, Jie; Xin, Long; Lu, Yonghao; Shoji, Tetsuo; Takeda, Yoichi; Otsuka, Yuichi; Mutoh, Yoshiharu

    2018-04-01

    The synergistic effect of corrosion and fretting process of the steam generator (SG) tube was investigated by using a self-designed high temperature test rig in this paper. The experiments were performed at 100°C , 200°C and 288°C , respectively. The fretting corrosion damage was studied by optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Raman spectroscopy and auger electron spectroscopy (AES). The results demonstrated that the corrosion process in high temperature high pressure (HTHP) water environment had a distinct interaction with the fretting process of Inconel 690. With the increment of temperature, the damage mechanism changed from a simple mechanical process to a mechanochemical process.

  10. Integrated analytical methodologies for the study of corrosion processes in archaeological bronzes

    Energy Technology Data Exchange (ETDEWEB)

    Alberghina, Maria Francesca; Barraco, Rosita; Brai, Maria; Schillaci, Tiziano, E-mail: tschillaci@unipa.it; Tranchina, Luigi

    2011-02-15

    The investigations on structure and micro-chemical composition of archaeological metal alloys are needed in archaeometry. The aim of this study is devoted both to acquire information about their provenance and production technology, and to improve our understanding about the corrosion processes. In this paper we present the study of the corrosion phenomena of bronze samples, laboratory-made according to binary, ternary and quaternary alloys typical of Roman archaeometallurgical production through an integrated methodology based on the use of non or micro invasive physical techniques. Among the analysed samples, two were artificially aged through burial in the archaeological site of Tharros, along the west coast of Sardinia (Italy). The corrosion products, typical of the bronzes in archaeological sites near the sea, have been characterized by non invasive and micro-destructive measurements. In particular, the corrosion patinas were examined through optical microscopy, scanning electron microscopy and microanalysis, X-ray fluorescence and laser ablation spectroscopy. The use of integrated technologies allowed us to determine both the elemental composition and surface morphology of the patina, highlighting the correlation between patina nature and chemical composition of the burial context. Moreover, data obtained by the laser-induced breakdown spectroscopy along the depth profile on the samples, have yielded information about the stratigraphic layers of corrosion products and their growth. Finally, the depth profiles allowed us to verify both the chemical elements constituting the patina, the metal ions constituting the alloy and the occurrence of migration phenomena from bulk to the surface.

  11. Integrated analytical methodologies for the study of corrosion processes in archaeological bronzes

    International Nuclear Information System (INIS)

    Alberghina, Maria Francesca; Barraco, Rosita; Brai, Maria; Schillaci, Tiziano; Tranchina, Luigi

    2011-01-01

    The investigations on structure and micro-chemical composition of archaeological metal alloys are needed in archaeometry. The aim of this study is devoted both to acquire information about their provenance and production technology, and to improve our understanding about the corrosion processes. In this paper we present the study of the corrosion phenomena of bronze samples, laboratory-made according to binary, ternary and quaternary alloys typical of Roman archaeometallurgical production through an integrated methodology based on the use of non or micro invasive physical techniques. Among the analysed samples, two were artificially aged through burial in the archaeological site of Tharros, along the west coast of Sardinia (Italy). The corrosion products, typical of the bronzes in archaeological sites near the sea, have been characterized by non invasive and micro-destructive measurements. In particular, the corrosion patinas were examined through optical microscopy, scanning electron microscopy and microanalysis, X-ray fluorescence and laser ablation spectroscopy. The use of integrated technologies allowed us to determine both the elemental composition and surface morphology of the patina, highlighting the correlation between patina nature and chemical composition of the burial context. Moreover, data obtained by the laser-induced breakdown spectroscopy along the depth profile on the samples, have yielded information about the stratigraphic layers of corrosion products and their growth. Finally, the depth profiles allowed us to verify both the chemical elements constituting the patina, the metal ions constituting the alloy and the occurrence of migration phenomena from bulk to the surface.

  12. Corrosion and Corrosion Fatigue of Aluminum Alloys: Chemistry, Micromechanics and Reliability

    National Research Council Canada - National Science Library

    Wei, Robert

    1998-01-01

    ... No. F49620-98-1-0198, to further develop a basic mechanistic understanding of the damage evolution processes of localized corrosion and corrosion fatigue crack nucleation and growth in aluminum alloys...

  13. Research Opportunities in Corrosion Science for Long-Term Prediction of Materials Performance: A Report of the DOE Workshop on “Corrosion Issues of Relevance to the Yucca Mountain Waste Repository”.

    Energy Technology Data Exchange (ETDEWEB)

    Payer, Joe H. [Case Western Reserve Univ., Cleveland, OH (United States); Scully, John R. [Univ. of Virginia, Charlottesville, VA (United States)

    2003-07-29

    The report summarizes the findings of a U.S. Department of Energy workshop on “Corrosion Issues of Relevance to the Yucca Mountain Waste Repository”. The workshop was held on July 29-30, 2003 in Bethesda, MD, and was co-sponsored by the Office of Basic Energy Sciences and Office of Civilian Radioactive Waste Management. The workshop focus was corrosion science relevant to long-term prediction of materials performance in hostile environments, with special focus on relevance to the permanent disposal of nuclear waste at the Yucca Mountain Repository. The culmination of the workshop is this report that identifies both generic and Yucca Mountain Project-specific research opportunities in basic and applied topic areas. The research opportunities would be realized well after the U.S. Nuclear Regulatory Commission’s initial construction-authorization licensing process. At the workshop, twenty-three invited scientists deliberated on basic and applied science opportunities in corrosion science relevant to long-term prediction of damage accumulation by corrosive processes that affect materials performance.

  14. The influence of the cathodic process on the interpretation of electrochemical noise signals arising from pitting corrosion of stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Klapper, Helmuth Sarmiento [Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany)], E-mail: Helmuth.sarmiento-klapper@bam.de; Goellner, Joachim [Otto von Guericke University Magdeburg, P.O. Box 4120, Magdeburg (Germany); Heyn, Andreas [Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany); Otto von Guericke University Magdeburg, P.O. Box 4120, Magdeburg (Germany)

    2010-04-15

    The use of electrochemical noise (EN) measurements for the investigation and monitoring of corrosion has allowed many interesting advances in the corrosion science in recent years. A special advantage of EN measurements includes the possibility to detect and study the early stages of localized corrosion. Nevertheless, the understanding of the electrochemical information included in the EN signal is actually very limited. The role of the cathodic process on the EN signals remains uncertain and has not been sufficiently investigated to date. Thus, an accurate understanding of the influence of the cathodic process on the EN signal is still lacking. On the basis of different kinetics of the oxygen reduction it was established that the anodic amplitude of transients arising from pitting corrosion on stainless steel can be decreased by the corresponding electron consumption of the cathodic process. Therefore, the stronger the electron consumption, the weaker the anodic amplitude of the EN signal becomes. EN signals arising from pitting corrosion on stainless steel can be measured because the cathodic process is inhibited by the passive layer. This was confirmed by means of EN measurements under cathodic polarisation. Since the cathodic process plays a decisive role on the form of transients arising from pitting corrosion, its influence must be considered in the evaluation and interpretation of the EN signals.

  15. Influence of chemical bonding of chlorides with aluminates in cement hidratation process on corrosion steel bars in concrete

    Directory of Open Access Journals (Sweden)

    Bikić Farzet H.

    2010-01-01

    Full Text Available The presence of chlorides in concrete is a permanent subject of research because they cause corrosion of steel bars. Chlorides added to the concrete during preparation, as accelerators of the bonding of cement minerals process, enter into reaction with aluminates, creating a phase known as chloroaluminate hydrates. In everyday conditions the product of chemical bonding between chlorides and aluminates is usually monochloridealuminate C3A·CaCl2·Hx, better known as Friedel's salt. In this paper, the influence of chemical bonding of chlorides with aluminates during the process of cement hydration on corrosion of steel bars in concrete was investigated. The process of chlorides bonding with aluminates yielding monochloride aluminate is monitored by XRD analyses. It was found that the amount of chlorides bonding with aluminates increases with an increase of temperature, and as a result, reduces the amount of 'free' chlorides in concrete. Potentiodynamic measurements have shown that increase in temperature of the heat treatment of working electrodes by chlorides leads to a reduction of steel bars corrosion as a result of either the increase of the monochloride-aluminate content or the decrease of free chlorides amount. Chlorides bound in chloroaluminate hydrates do not cause activation of steel bars corrosion in concrete. It was also proven that the increase of free chlorides concentration in the concrete leads to intensification of steel bars corrosion. This additionally approves that free chlorides are only the activators of process of steel bars corrosion in the concrete.

  16. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    OpenAIRE

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-01-01

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete u...

  17. High temperature corrosion in the service environments of a nuclear process heat plant

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1987-01-01

    In a nuclear process heat plant the heat-exchanging components fabricated from nickel- and Fe-Ni-based alloys are subjected to corrosive service environments at temperatures up to 950 0 C for service lives of up to 140 000 h. In this paper the corrosion behaviour of the high temperature alloys in the different service environments will be described. It is shown that the degree of protection provided by Cr 2 O 3 -based surface oxide scales against carburization and decarburization of the alloys is primarily determined not by the oxidation potential of the atmospheres but by a dynamic process involving, on the one hand, the oxidizing gas species and the metal and, on the other hand, the carbon in the alloy and the oxide scale. (orig.)

  18. SCAP: the Nea project on stress corrosion cracking and cable ageing

    International Nuclear Information System (INIS)

    Yamamoto, A.; Huerta, A.; Gott, K.; Koshy, T.

    2007-01-01

    Two subjects - stress corrosion cracking (SCC) and degradation of cable insulation - were selected as the focus of the SCC and Cable Ageing Project (SCAP) due to their relevance for plant ageing assessments and their implication on inspection practices. Fourteen NEA member countries agreed to contribute to the project. The main SCAP objectives are to: establish a complete database with regard to major ageing phenomena for SCC and degradation of cable insulation through collective efforts by OECD/NEA members; establish a knowledge base in these areas by compiling and evaluating the collected data and information systematically; perform an assessment of the data and identify the basis for commendable practices which would help regulators and operators to enhance ageing management. The aim of the knowledge base is to provide a state-of-the-art description of the degradation mechanisms, the main influencing factors, the most susceptible materials and locations, and common strategies available for mitigation and repair. The SCAP project is currently in the development phase, defining and refining the database performance requirements, data format and coding guidelines. The project is scheduled to last four years. It is anticipated that the database definition and the collection of data from member countries will take approximately two years. The subsequent assessment and the commendable practices report are expected to take one year each

  19. Influence of processing variables and alloy chemistry on the corrosion behavior of ZIRLO nuclear fuel cladding

    International Nuclear Information System (INIS)

    Comstock, R.J.; Sabol, G.P.; Schoenberger, G.

    1996-01-01

    Variations in the thermal heat treatments used during the fabrication of ZIRLO (Zr-1Nb-1Sn-0.1Fe) fuel clad tubing and in ZIRLO alloy chemistry were explored to develop a further understanding of the relationship between processing, microstructure, and cladding corrosion performance. Heat treatment variables included intermediate tube annealing temperatures as well as a beta-phase heat treatment during the latter stages of the tube reduction schedule. Chemistry variables included deviations in niobium and tin content from the nominal composition. The effects of both heat treatment and chemistry on corrosion behavior were assessed by autoclave tests in both pure and lithiated water and high-temperature steam. Analytical electron microscopy demonstrated that the best out-reactor corrosion performance is obtained for microstructures containing a fine distribution of beta-niobium and Zr-Nb-Fe particles. Deviations from this microstructure, such as the presence of beta-zirconium phase, tend to degrade corrosion resistance. ZIRLO fuel cladding was irradiated in four commercial reactors. In all cases, the microstructure in the cladding included beta-niobium and Zr-Nb-Fe particles. ZIRLO fuel cladding processed with a late-stage beta heat treatment to further refine the second-phase particle size exhibited in-reactor corrosion behavior that was similar to reference ZIRLO cladding. Variations of the in-reactor corrosion behavior of ZIRLO were correlated to tin content, with higher oxide thickness observed in the ZIRLO cladding containing higher tin. The results of these studies indicate that optimum corrosion performance of ZIRLO is achieved by maintaining a uniform distribution of fine second-phase particles and controlled levels of tin

  20. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  1. Fighting corrosion in India

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, K S; Rangaswamy, N S

    1979-03-01

    A survey covers the cost of corrosion in India; methods of preventing corrosion in industrial plants; some case histories, including the prevention of corrosion in pipes through which fuels are pumped to storage and the stress-corrosion cracking of evaporators in fertilizer plants; estimates of the increase in demand in 1979-89 for anticorrosion products and processes developed by the Central Electrochemical Research Institute (CECRI) at Karaikudi, India; industries that may face corrosion problems requiring assistance from CECRI, including the light and heavy engineering structural, and transport industries and the chemical industry; and some areas identified for major efforts, including the establishment of a Corrosion Advisory Board with regional centers and the expansion of the Tropical Corrosion Testing Station at Mandapam Camp, Tamil Nadu.

  2. Research and development on is process components for hydrogen production. (2) Corrosion resistance of glass lining in high temperature sulfuric acid

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Iwatsuki, Jin; Kubo, Shinji; Terada, Atsuhiko; Onuki, Kaoru

    2009-01-01

    Japan Atomic Energy Agency has been conducting a research and development on hydrogen production system using High Temperature Gas-Cooled Reactor. As a part of this effort, thermochemical water-splitting cycle featuring iodine- and sulfur-compounds (IS process) is under development considering its potential of large-scale economical hydrogen production. The IS process constitutes very severe environments on the materials of construction because of the corrosive nature of process chemicals, especially of the high temperature acidic solution of sulfuric acid and hydriodic acid dissolving iodine. Therefore, selection of the corrosion-resistant materials and development of the components has been studied as a crucial subject of the process development. This paper discusses corrosion resistance of commercially available glass-lining material in high temperature sulfuric acid. Corrosion resistance of a soda glass used for glass-lining was examined by immersion tests. The experiments were performed in 47-90wt% sulfuric acids at temperatures of up to 400degC and for the maximum immersion time of 100 hours using an autoclave designed for the concerned tests. In every condition tested, no indication of localized corrosion such as defect formation or pitting corrosion was observed. Also, the corrosion rates decreased with the progress of immersion, and were low enough (≅0.1 mm/year) after 60-90 hours of immersion probably due to formation of a silica rich surface. (author)

  3. The resistance of titanium to pitting, microbially induced corrosion and corrosion in unsaturated conditions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Ikeda, B.M.

    1997-04-01

    Titanium and its alloys (Grades-2, -12, -16) are candidate materials for Canadian nuclear waste containers on the basis of their apparent immunity to many localized corrosion processes. This simplifies markedly the effort needed to justify the use of these materials and to develop models to predict the lifetimes of containers. Here we review the pitting, microbially influenced corrosion (MIC), and corrosion under unsaturated conditions, of titanium. For all these processes, the properties of the passive oxide film are paramount in determining the metal's resistance to corrosion. A review of these oxide properties is included and the conditions to which the metal must be exposed if localized corrosion is to occur are defined. Since these conditions cannot be achieved under Canadian waste vault conditions, it can be concluded that pitting and MIC will not occur and that corrosion under unsaturated conditions is extremely unlikely. (author)

  4. Corrosion processes of triangular silver nanoparticles compared to bulk silver

    Energy Technology Data Exchange (ETDEWEB)

    Keast, V. J., E-mail: vicki.keast@newcastle.edu.au; Myles, T. A. [University of Newcastle, School of Mathematical and Physical Sciences (Australia); Shahcheraghi, N.; Cortie, M. B. [University of Technology Sydney, Institute for Nanoscale Technology (Australia)

    2016-02-15

    Excessive corrosion of silver nanoparticles is a significant impediment to their use in a variety of potential applications in the biosensing, plasmonic and antimicrobial fields. Here we examine the environmental degradation of triangular silver nanoparticles (AgNP) in laboratory air. In the early stages of corrosion, transmission electron microscopy shows that dissolution of the single-crystal, triangular, AgNP (side lengths 50–120 nm) is observed with the accompanying formation of smaller, polycrystalline Ag particles nearby. The new particles are then observed to corrode to Ag{sub 2}S and after 21 days nearly full corrosion has occurred, but some with minor Ag inclusions remaining. In contrast, a bulk Ag sheet, studied in cross section, showed an adherent corrosion layer of only around 20–50 nm in thickness after over a decade of being exposed to ambient air. The results have implications for antibacterial properties and ecotoxicology of AgNP during corrosion as the dissolution and reformation of Ag particles during corrosion will likely be accompanied by the release of Ag{sup +} ions.

  5. IMPACT OF WATER CHEMISTRY ON LOCALIZED CORROSION OF COPPER PITTING

    Science.gov (United States)

    This project will help identify what waters are problematic in causing the corrosion of copper pipes and improve understanding of how water distribution leads to corrosion. This project will also focus on the prevention of pinhole leaks and how to reverse them once they occur. ...

  6. Corrosion probe. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designed to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned

  7. The role of hydrogenotrophic iron-reducing bacteria on the corrosion process in the context of geological disposal

    International Nuclear Information System (INIS)

    Kerber-Schutz, Marta

    2013-01-01

    The nuclear industry must to demonstrate the feasibility and safety of high level nuclear waste (HLNW) disposal. The generally recognised strategy for HLNW disposal is based on a multi-barrier system made by metallic packages surrounded by geological formation. The nuclear waste repository will be water re-saturated with time, and then the metallic corrosion process will take place. The aqueous corrosion will produce dihydrogen (H 2 ) that represents a new energetic source (electron donor) for microbial development. Moreover, the formation of Fe(II,III) solid corrosion products, such as magnetite (Fe 3 O 4 ), will provide electron acceptors favoring the development of iron-reducing bacteria (IRB). The activity of hydrogenotrophic and IRB can potentially alter the protective properties of passivating oxide layers (i.e. magnetite) which could reactivate corrosion. The main objective of this study is to evaluate the role of hydrogenotrophic and IRB activities on anoxic corrosion process by using geochemical indicators. Shewanella oneidensis strain MR-1 was chosen as model organism, and both abiotic and biotic conditions were investigated. In a first setup of experiments, our results indicate that synthetic magnetite is destabilized in the presence of hydrogenotrophic IRB due to structural Fe(III) reduction coupled to H 2 oxidation. The extent of Fe(III) bioreduction is notably enhanced with the increase in the H 2 concentration in the system: 4% H 2 ≤ 10% H 2 ≤ 60% H 2 . In a second setup of experiments, our results indicate that corrosion extent changes according to the solution composition and the surface of metallic sample (iron powder and carbon steel coupon). Moreover, the solid corrosion products are different for each sample: vivianite, siderite and chukanovite are the main mineral phases identified in the experiments with iron powder, while vivianite and magnetite are identified with carbon steel coupons. Our results demonstrate that corrosion rate is

  8. Predictions and implications of a poisson process model to describe corrosion of transuranic waste drums

    International Nuclear Information System (INIS)

    Lyon, B.F.; Holmes, J.A.; Wilbert, K.A.

    1995-01-01

    A risk assessment methodology is described in this paper to compare risks associated with immediate or near-term retrieval of transuranic (TRU) waste drums from bermed storage versus delayed retrieval. Assuming a Poisson process adequately describes corrosion, significant breaching of drums is expected to begin at - 15 and 24 yr for pitting and general corrosion, respectively. Because of this breaching, more risk will be incurred by delayed than by immediate retrieval

  9. Biodegradable Orthopedic Magnesium-Calcium (MgCa Alloys, Processing, and Corrosion Performance

    Directory of Open Access Journals (Sweden)

    Yuebin Guo

    2012-01-01

    Full Text Available Magnesium-Calcium (Mg-Ca alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the key issue facing a biodegradable Mg-Ca implant is the fast corrosion in the human body environment. The ability to adjust degradation rate of Mg-Ca alloys is critical for the successful development of biodegradable orthopedic implants. This paper focuses on the functions and requirements of bone implants and critical issues of current implant biomaterials. Microstructures and mechanical properties of Mg-Ca alloys, and the unique properties of novel magnesium-calcium implant materials have been reviewed. Various manufacturing techniques to process Mg-Ca based alloys have been analyzed regarding their impacts on implant performance. Corrosion performance of Mg-Ca alloys processed by different manufacturing techniques was compared. In addition, the societal and economical impacts of developing biodegradable orthopedic implants have been emphasized.

  10. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinsong [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  11. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    International Nuclear Information System (INIS)

    Jinsong Liu

    2006-04-01

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10 5 years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10 5 years

  12. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  13. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    International Nuclear Information System (INIS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-01-01

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  14. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Guo, Changhong; Jiang, Guirong [College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen, Dejiu, E-mail: DejiuShen@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-08-15

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  15. Corrosion testing and prediction in SCWO environments

    International Nuclear Information System (INIS)

    Kriksunov, L.B.; Macdonald, D.D.

    1995-01-01

    The authors review recent advances in corrosion monitoring and modeling in SCWO systems. Techniques and results of experimental corrosion measurements at high temperatures are presented. Results of modeling corrosion in high subcritical and supercritical aqueous systems indicate the primary importance of density of water in corrosion processes. A phenomenological model has been developed to simulate corrosion processes at nearcritical and supercritical temperatures in SCWO systems. They discuss as well the construction of Pourbaix diagrams for metals in SCW

  16. Corrosion of research reactor aluminium clad spent fuel in water

    International Nuclear Information System (INIS)

    2009-12-01

    A large variety of research reactor spent fuel with different fuel meats, different geometries and different enrichments in 235 U are presently stored underwater in basins located around the world. More than 90% of these fuels are clad in aluminium or aluminium based alloys that are notoriously susceptible to corrosion in water of less than optimum quality. Some fuel is stored in the reactor pools themselves, some in auxiliary pools (or basins) close to the reactor and some stored at away-from-reactor pools. Since the early 1990s, when corrosion induced degradation of the fuel cladding was observed in many of the pools, corrosion of research reactor aluminium clad spent nuclear fuel stored in light water filled basins has become a major concern, and programmes were implemented at the sites to improve fuel storage conditions. The IAEA has since then established a number of programmatic activities to address corrosion of research reactor aluminium clad spent nuclear fuel in water. Of special relevance was the Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase I) initiated in 1996, whose results were published in IAEA Technical Reports Series No. 418. At the end of this CRP it was considered necessary that a continuation of the CRP should concentrate on fuel storage basins that had demonstrated significant corrosion problems and would therefore provide additional insight into the fundamentals of localized corrosion of aluminium. As a consequence, the IAEA started a new CRP entitled Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II), to carry out more comprehensive research in some specific areas of corrosion of aluminium clad spent nuclear fuel in water. In addition to this CRP, one of the activities under IAEA's Technical Cooperation Regional Project for Latin America Management of Spent Fuel from Research Reactors (2001-2006) was corrosion monitoring and surveillance of research

  17. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    OpenAIRE

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-01-01

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is ...

  18. The resistance of titanium to pitting, microbially induced corrosion and corrosion in unsaturated conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D W; Ikeda, B M

    1997-04-01

    Titanium and its alloys (Grades-2, -12, -16) are candidate materials for Canadian nuclear waste containers on the basis of their apparent immunity to many localized corrosion processes. This simplifies markedly the effort needed to justify the use of these materials and to develop models to predict the lifetimes of containers. Here we review the pitting, microbially influenced corrosion (MIC), and corrosion under unsaturated conditions, of titanium. For all these processes, the properties of the passive oxide film are paramount in determining the metal`s resistance to corrosion. A review of these oxide properties is included and the conditions to which the metal must be exposed if localized corrosion is to occur are defined. Since these conditions cannot be achieved under Canadian waste vault conditions, it can be concluded that pitting and MIC will not occur and that corrosion under unsaturated conditions is extremely unlikely. (author) 114 refs., 1 tab., 18 figs.

  19. Effect of Multipass Friction Stir Processing on Mechanical and Corrosion Behavior of 2507 Super Duplex Stainless Steel

    Science.gov (United States)

    Mishra, M. K.; Gunasekaran, G.; Rao, A. G.; Kashyap, B. P.; Prabhu, N.

    2017-02-01

    The microstructure, mechanical properties, and corrosion behavior of 2507 super duplex stainless steel after multipass friction stir processing (FSP) were examined. A significant refinement in grain size of both ferrite and austenite was observed in stir zone resulting in improved yield and tensile strength. Electrochemical impedance spectroscopy and anodic polarization studies in 3.5 wt.% NaCl solution showed nobler corrosion characteristics with increasing number of FSP passes. This was evident from the decrease in corrosion current density, decrease in passive current density, and increase in polarization resistance. Also, the decrease in density of defects, based on Mott-Schottky analysis, further confirms the improvement in corrosion resistance of 2507 super duplex stainless steel after multipass FSP.

  20. Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes

    Science.gov (United States)

    Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Lee, Hyeon-Geun; Park, Ji Yeon; Kim, Weon-Ju

    2017-08-01

    Multi-layered SiC composites consisting of monolithic SiC and a SiCf/SiC composite are one of the accident tolerant fuel cladding concepts in pressurized light water reactors. To evaluate the integrity of the SiC fuel cladding under normal operating conditions of a pressurized light water reactor, the hydrothermal corrosion behavior of multi-layered SiC composite tubes was investigated in the simulated primary water environment of a pressurized water reactor without neutron fluence. The results showed that SiC phases with good crystallinity such as Tyranno SA3 SiC fiber and monolithic SiC deposited at 1200 °C had good corrosion resistance. However, the SiC phase deposited at 1000 °C had less crystallinity and severely dissolved in water, particularly the amorphous SiC phase formed along grain boundaries. Dissolved hydrogen did not play a significant role in improving the hydrothermal corrosion resistance of the CVI-processed SiC phases containing amorphous SiC, resulting in a significant weight loss and reduction of hoop strength of the multi-layered SiC composite tubes after corrosion.

  1. Correlation between designed wall thickness of gas pipelines and external and internal corrosion processes; Adequacao de espessura de parede projetada em funcao de processos de corrosao externa e interna em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Jose Antonio da Cunha Ponciano [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Engenharia Metalurgica

    2004-07-01

    Corrosion control on gas pipelines plays an important role on the assessment of pipeline integrity and reliability. In many countries a great extension of buried pipelines is used on transport and distribution systems. This extension will be certainly increased in a near future due to the increasing consumption of natural gas. Inadequate corrosion control can drive to pipeline failures, bringing up the possibility of accidents in populated or environmental protected areas, bringing together severe economical, legal and environmental consequences. Corrosion is frequently considered as a natural and inevitable phenomenon. Based upon this assumption, some recommendations are included on design standards of gas pipelines in order to compensate its detrimental effect. The aim of this work is to present a review of the correlation between external corrosion process and the guidelines established during the project phase of gas pipelines. It is intended to contribute for a better understanding of the impacts of corrosion on integrity, reliability and readiness of gas transport and distribution systems. Some aspects regarding external corrosion of pipelines extracted from technical papers will be summarised. Information provided will be compared to design criterion prescribed by the NBR 12712 Standard. (author)

  2. Prediction of Corrosion of Alloys in Mixed-Solvent Environments

    Energy Technology Data Exchange (ETDEWEB)

    Anderko, Andrzej [OLI Systems Inc. Morris Plains (United States); Wang, Peiming [OLI Systems Inc. Morris Plains (United States); Young, Robert D. [OLI Systems Inc. Morris Plains (United States); Riemer, Douglas P. [OLI Systems Inc. Morris Plains (United States); McKenzie, Patrice [OLI Systems Inc. Morris Plains (United States); Lencka, Malgorzata M. [OLI Systems Inc. Morris Plains (United States); Babu, Sudarsanam Suresh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2003-06-05

    Corrosion is much less predictable in organic or mixed-solvent environments than in aqueous process environments. As a result, US chemical companies face greater uncertainty when selecting process equipment materials to manufacture chemical products using organic or mixed solvents than when the process environments are only aqueous. Chemical companies handle this uncertainty by overdesigning the equipment (wasting money and energy), rather than by accepting increased risks of corrosion failure (personnel hazards and environmental releases). Therefore, it is important to develop simulation tools that would help the chemical process industries to understand and predict corrosion and to develop mitigation measures. To create such tools, we have developed models that predict (1) the chemical composition, speciation, phase equilibria, component activities and transport properties of the bulk (aqueous, nonaqueous or mixed) phase that is in contact with the metal; (2) the phase equilibria and component activities of the alloy phase(s) that may be subject to corrosion and (3) the interfacial phenomena that are responsible for corrosion at the metal/solution or passive film/solution interface. During the course of this project, we have completed the following: (1) Development of thermodynamic modules for calculating the activities of alloy components; (2) Development of software that generates stability diagrams for alloys in aqueous systems; these diagrams make it possible to predict the tendency of metals to corrode; (3) Development and extensive verification of a model for calculating speciation, phase equilibria and thermodynamic properties of mixed-solvent electrolyte systems; (4) Integration of the software for generating stability diagrams with the mixed-solvent electrolyte model, which makes it possible to generate stability diagrams for nonaqueous or mixed-solvent systems; (5) Development of a model for predicting diffusion coefficients in mixed-solvent electrolyte

  3. Corrosion and anticorrosion. Industrial practice

    International Nuclear Information System (INIS)

    Beranger, G.; Mazille, H.

    2002-01-01

    This book comprises 14 chapters written with the collaboration of about 50 French experts of corrosion. It is complementary to another volume entitled 'corrosion of metals and alloys' and published by the same editor. This volume comprises two parts: part 1 presents the basic notions of corrosion phenomena, the properties of surfaces, the electrochemical properties of corrosion etc.. Part 2 describes the most frequent forms of corrosion encountered in industrial environments and corresponding to specific problems of protection: marine environment, atmospheric corrosion, galvanic corrosion, tribo-corrosion, stress corrosion etc.. The first 8 chapters (part 1) treat of the corrosion problems encountered in different industries and processes: oil and gas production, chemical industry, phosphoric acid industry, PWR-type power plants, corrosion of automobile vehicles, civil engineering and buildings, corrosion of biomaterials, non-destructive testing for the monitoring of corrosion. The other chapters (part 2) deal with anticorrosion and protective coatings and means: choice of materials, coatings and surface treatments, thick organic coatings and enamels, paints, corrosion inhibitors and cathodic protection. (J.S.)

  4. On-line Corrosion Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Richter, Sonja; Thorarinsdottir, R.I.; Hilbert, Lisbeth Rischel

    2005-01-01

    The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress, ......, precipitation of deposits or crevices. The authors describe methods used for on-line monitoring of corrosion, cover the complications and the main results of a Nordic project.......The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress...

  5. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Science.gov (United States)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  6. Corrosion and failure processes in high-level waste tanks

    International Nuclear Information System (INIS)

    Mahidhara, R.K.; Elleman, T.S.; Murty, K.L.

    1992-11-01

    A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted

  7. USAF Corrosion Prevention and Control Enterprise - Sustainability Links

    Science.gov (United States)

    2014-11-18

    projects and $84M  Example of potential synergy: From FY05-14, the DoD Corrosion Program funded 21 projects on hexavalent chromium reduction  OSD...coatings, effects on structural integrity, environmental effects, etc  Some topics of interest  Inhibitor mechanisms for mg-rich primer (non- chrome ...approach  Financial and engineering resources are limited  Potential costs of corrosion are significant  Supporting replacements for hexavalent

  8. Corrosion and Wear Analysis in Marine Transport Constructions

    OpenAIRE

    Urbahs, A; Savkovs, K; Rijkuris, G; Andrejeva, D

    2018-01-01

    Corrosion is one of the most common naturally occurring processes studied by thermodynamics, which includes oxidation process, metal disruption, and its chemical and electrochemical effects under environmental influence. Corrosion of metal and equipment accounts for a considerable proportion of total corrosion losses, thus providing the impetus for further investigation and developments related to corrosion protection in order to provide transport systems and industry with corrosion preventiv...

  9. Corrosion resistance of steel fibre reinforced concrete – a literature review

    DEFF Research Database (Denmark)

    Marcos Meson, Victor; Michel, Alexander; Solgaard, Anders

    2016-01-01

    Steel fibre reinforced concrete (SFRC) is increasingly being used in the construction of prefabricated segmental linings for bored tunnels, since it entails simplified production processes and higher quality standards. However, international standards and guidelines are not consistent regarding...... the consideration of steel fibres for the structural verification of SFRC elements exposed to corrosive environments, hampering the development of civil infrastructure built of SFRC. In particular, the long-term effect of exposure to chlorides is in focus and under discussion. This paper reviews the existing...... the existence of a critical crack width, below 0.20 mm, where corrosion of carbon-steel fibres is not critical and the structural integrity of the exposed SFRC can be ensured over the long-term. A doctoral project investigating chloride-induced corrosion of steel fibres on cracked SFRC has been initiated...

  10. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment

  11. Hanford transuranic storage corrosion review

    International Nuclear Information System (INIS)

    Nelson, J.L.; Divine, J.R.

    1980-12-01

    The rate of atmospheric corrosion of the transuranic (TRU) waste drums at the US Department of Energy's Hanford Project, near Richland, Washington, was evaluated by Pacific Northwest Laboratory (PNL). The rate of corrosion is principally contingent upon the effects of humidity, airborne pollutants, and temperature. Results of the study indicate that actual penetration of barrels due to atmospheric corrosion will probably not occur within the 20-year specified recovery period. Several other US burial sites were surveyed, and it appears that there is sufficient uncertainty in the available data to prevent a clearcut statement of the corrosion rate at a specific site. Laboratory and site tests are recommended before any definite conclusions can be made. The corrosion potential at the Hanford TRU waste site could be reduced by a combination of changes in drum materials (for example, using galvanized barrels instead of the currently used mild steel barrels), environmental exposure conditions (for example, covering the barrels in one of numerous possible ways), and storage conditions

  12. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion

  13. Effect of Flow Velocity on Corrosion Rate and Corrosion Protection Current of Marine Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Jong [Kunsan National University, Kunsan (Korea, Republic of); Han, Min Su; Jang, Seok Ki; Kim, Seong Jong [Mokpo National Maritime University, Mokpo (Korea, Republic of)

    2015-10-15

    In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

  14. Extremely high resolution corrosion monitoring of pipelines: retrofittable, non-invasive and real-time

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, Oeystein; Tveit, Edd [Sensorlink AS, Trondheim (Norway); Verley, Richard [StatoilHydro ASA, Stockholm (Sweden)

    2009-07-01

    The Ultramonit unit is a clamp-on tool (removable) that uses an array of sensors to provide online, real-time, reliable and repeatable high accuracy ultrasonic wall thickness measurements and corrosion monitoring at selected locations along the pipeline. The unit can be installed on new or existing pipelines by diver or ROV. The system is based on the well-established ultrasonic pulse-echo method (A-scan). Special processing methods, and the fact that the unit is fixed to the pipeline, enable detection of changes in wall thickness in the micro-meter range. By utilizing this kind of resolution, it is possible to project corrosion rates in hours or days. The tool is used for calibration of corrosion inhibitor programs, verification and calibration of inspection pig data and general corrosion monitoring of new and existing pipelines. (author)

  15. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models

    International Nuclear Information System (INIS)

    Vanaei, H.R.; Eslami, A.; Egbewande, A.

    2017-01-01

    Pipelines are the very important energy transmission systems. Over time, pipelines can corrode. While corrosion could be detected by in-line inspection (ILI) tools, corrosion growth rate prediction in pipelines is usually done through corrosion rate models. For pipeline integrity management and planning selecting the proper corrosion ILI tool and also corrosion growth rate model is important and can lead to significant savings and safer pipe operation. In this paper common forms of pipeline corrosion, state of the art ILI tools, and also corrosion growth rate models are reviewed. The common forms of pipeline corrosion introduced in this paper are Uniform/General Corrosion, Pitting Corrosion, Cavitation and Erosion Corrosion, Stray Current Corrosion, Micro-Bacterial Influenced Corrosion (MIC). The ILI corrosion detection tools assessed in this study are Magnetic Flux Leakage (MFL), Circumferential MFL, Tri-axial MFL, and Ultrasonic Wall Measurement (UT). The corrosion growth rate models considered in this study are single-value corrosion rate model, linear corrosion growth rate model, non-linear corrosion growth rate model, Monte-Carlo method, Markov model, TD-GEVD, TI-GEVD model, Gamma Process, and BMWD model. Strengths and limitations of ILI detection tools, and also corrosion predictive models with some practical examples are discussed. This paper could be useful for those whom are supporting pipeline integrity management and planning. - Highlights: • Different forms of pipeline corrosion are explained. • Common In-Line Inspection (ILI) tools and corrosion growth rate models are introduced. • Strength and limitations of corrosion growth rate models/ILI tools are discussed. • For pipeline integrity management programs using more than one corrosion growth rate model/ILI tool is suggested.

  16. Summary of INCO corrosion tests in power plant flue gas scrubbing processes

    International Nuclear Information System (INIS)

    Hoxie, E.C.; Tuffnell, G.W.

    1976-01-01

    Corrosion tests in a number of flue-gas desulfurization units have shown that carbon steel, low alloy steels, and Type 304L stainless steel are inadequate in the wet portions of the scrubbers. Type 316L stainless steel is sometimes subject to localized corrosive attack in scrubber environments with certain combinations of pH and chloride content. A corollary is that corrosion of Type 316L stainless steel might be controlled by control of scrubbing media pH and chloride content. Although an attempt was made to correlate the pitting and crevice corrosion obtained on the Type 316 stainless steel test samples with chloride and pH measurements, relatively wide scatter in the data indicated only a modest correlation. This is attributed to variations in local conditions, especially beneath deposits, that differ from the liquor samples obtained for analysis, to processing upsets, to temperature differences, and to some extent to inaccuracies in measurement of pH and chloride levels. The data do show, however, that molybdenum as an alloying element in stainless steels and high nickel alloys was very beneficial in conferring resistance to localized attack in scrubber environments. High nickel alloys containing appreciable amounts of molybdenum such as Hastelloy alloy C-276 and Inconel alloy 625 can be used for critical components. Chloride stress corrosion cracking (SCC) of austenitic stainless steels has generally not been a problem in FGD scrubbers, apparently because operating temperatures are comparatively low. An exception is reheater tubing where some failures have occurred because of elevated temperatures in conjunction with condensate that forms during shut-down periods or carryover of chloride laden mist from the scrubber. This problem can be overcome by proper alloy selection or maintaining dry conditions

  17. Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits

    International Nuclear Information System (INIS)

    Valor, A.; Caleyo, F.; Alfonso, L.; Rivas, D.; Hallen, J.M.

    2007-01-01

    In this work, a new stochastic model capable of simulating pitting corrosion is developed and validated. Pitting corrosion is modeled as the combination of two stochastic processes: pit initiation and pit growth. Pit generation is modeled as a nonhomogeneous Poisson process, in which induction time for pit initiation is simulated as the realization of a Weibull process. In this way, the exponential and Weibull distributions can be considered as the possible distributions for pit initiation time. Pit growth is simulated using a nonhomogeneous Markov process. Extreme value statistics is used to find the distribution of maximum pit depths resulting from the combination of the initiation and growth processes for multiple pits. The proposed model is validated using several published experiments on pitting corrosion. It is capable of reproducing the experimental observations with higher quality than the stochastic models available in the literature for pitting corrosion

  18. Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits

    Energy Technology Data Exchange (ETDEWEB)

    Valor, A. [Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado, 10400 Havana (Cuba); Caleyo, F. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)]. E-mail: fcaleyo@gmail.com; Alfonso, L. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico); Rivas, D. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico); Hallen, J.M. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2007-02-15

    In this work, a new stochastic model capable of simulating pitting corrosion is developed and validated. Pitting corrosion is modeled as the combination of two stochastic processes: pit initiation and pit growth. Pit generation is modeled as a nonhomogeneous Poisson process, in which induction time for pit initiation is simulated as the realization of a Weibull process. In this way, the exponential and Weibull distributions can be considered as the possible distributions for pit initiation time. Pit growth is simulated using a nonhomogeneous Markov process. Extreme value statistics is used to find the distribution of maximum pit depths resulting from the combination of the initiation and growth processes for multiple pits. The proposed model is validated using several published experiments on pitting corrosion. It is capable of reproducing the experimental observations with higher quality than the stochastic models available in the literature for pitting corrosion.

  19. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    Science.gov (United States)

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  20. Selection of dissolution process for spent fuels and preparation of corrosion test solution simulated to dissolver (contract research)

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Terakado, Shogo; Koya, Toshio; Hamada, Shozo; Kiuchi, Kiyoshi

    2001-03-01

    In order to evaluate the reliability of reprocessing equipment materials used in the Rokkasho Reprocessing Plant, we have proceeded a mock-up test and laboratory tests for getting corrosion parameters. In a dissolver made of zirconium, the simulation of test solutions to the practical solution which includes the high concentration of radioactive elements such as FP and TRU is one of the important issues with respect to the life prediction. On this experiment, the dissolution process of spent fuels and the preparation of test solution for evaluating the corrosion resistance of dissolver materials were selected. These processes were tested in the No.3 cell of WASTEF. The test solution for corrosion tests was prepared by adjusting the uranium and nitric acid concentrations. (author)

  1. Alternatives to reduce corrosion of carbon steel storage drums

    International Nuclear Information System (INIS)

    Zirker, L.R.; Beitel, G.A.

    1995-11-01

    The major tasks of this research were (a) pollution prevention opportunity assessments on the overpacking operations for failed or corroded drums, (b) research on existing container corrosion data, (c) investigation of the storage environment of the new Resource Conservation and Recovery Act Type II storage modules, (d) identification of waste streams that demonstrate deleterious corrosion affects on drum storage life, and (e) corrosion test cell program development. Twenty-one waste streams from five US Department of Energy (DOE) sites within the DOE Complex were identified to demonstrate a deleterious effect to steel storage drums. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure: 0.5 to 2 years. The results of this research support the position that pollution prevention evaluations at the front end of a project or process will reduce pollution on the back end

  2. Corrosion chemistry closing comments: opportunities in corrosion science facilitated by operando experimental characterization combined with multi-scale computational modelling.

    Science.gov (United States)

    Scully, John R

    2015-01-01

    Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways.

  3. Astrakhan-Mangyshlak water main (pipeline): corrosion state of the inner surface, and methods for its corrosion protection. Part III. The effects of KW2353 inhibitor. Part IV. Microbiological corrosion

    International Nuclear Information System (INIS)

    Reformatskaya, I.I.; Ashcheulova, I.I.; Barinova, M.A.; Kostin, D.V.; Prutchenko, S.G.; Ivleva, G.A.; Taubaldiev, T.S.; Murinov, K.S.; Tastanov, K.Kh.

    2003-01-01

    The effect of the KW2353 corrosion inhibitor, applied on the Astrakhan-Mangyshlak water main (pipeline) since 1997, on the corrosion processes, occurring on the 17G1S steel surface, is considered. The properties of the surface sediments are also considered. The role of the microbiological processes in the corrosion behavior of the water main (pipeline) inner surface is studied. It is shown, that application of the polyphosphate-type inhibitors, including the KW2353 one, for the anticorrosive protection of the inner surface of the extended water main (pipelines) is inadmissible: at the temperature of ∼20 deg C this corrosion inhibitor facilitates the development of the local corrosion processes on the water main (pipeline) inner surface. At the temperature of ∼8 deg C the above inhibitor discontinues to effect the corrosive stability of the 17G1S steel. The optimal way of the anticorrosive protection of the steel equipment, contacting with the water media, is the increase in the oxygen content therein [ru

  4. Hydrogen generation by aluminum corrosion in aqueous alkaline solutions of inorganic promoters: The AlHidrox process

    International Nuclear Information System (INIS)

    Macanas, Jorge; Soler, Lluis; Candela, Angelica Maria; Munoz, Maria; Casado, Juan

    2011-01-01

    The research of alternative processes to obtain clean fuels has become a main issue because of the concerns related to the current energy system, both from economical and environmental points of view. Hydrogen storage and production methods are being investigated for stationary and portable applications. Up to now, a significant part of H 2 production on demand was thought to be fulfilled by using chemical hydrides, but recent studies have proved the limitations of this approach. Conversely, H 2 production based in the corrosion of light metals in water solutions is an interesting alternative. Among all of them, Al is probably the most adequate metal for energetic purposes due to its high electron density and oxidation potential. But concerning H 2 production from Al corrosion in water, a major issue remains unsolved: metal passivation due to the formation of Al(OH) 3 inhibits H 2 evolution. In this work we show the last results obtained for the generation of H 2 from water using Al powder using diverse alkaline solutions. It is confirmed that corrosion is not affected solely by the solution pH but also by the nature of the ionic species found in the aqueous medium. Moreover, we describe the AlHidrox process, which minimizes Al passivation under mild conditions by the addition of different inorganic salts as corrosion promoters, allowing 100% yields and flow rates up to 2.9 L/min per gram of Al. The feasibility of the process has been regarded in terms of stability (by conducting several successive runs) and self-initiation without an external heating. -- Highlights: → The AlHidrox process minimizes Al passivation by the addition of inorganic salts. → Al corrosion to produce H 2 greatly depends on the nature of the dissolved species. → The maximum flow achieved was 2.9 dm 3 H 2 min -1 .per gram of Al using Fe 2 (SO 4 ) 3 . → We found conditions to start up H 2 generation without external energy input.

  5. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    Science.gov (United States)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  6. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  7. Smart Coatings for Launch Site Corrosion Protection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Corrosion is a serious problem that has enormous costs for the nation (4.2% GDP in 2007) and worldwide. Kennedy Space Center is located in one of the most naturally...

  8. Recent Natural Corrosion Inhibitors for Mild Steel: An Overview

    Directory of Open Access Journals (Sweden)

    Marko Chigondo

    2016-01-01

    Full Text Available Traditionally, reduction of corrosion has been managed by various methods including cathodic protection, process control, reduction of the metal impurity content, and application of surface treatment techniques, as well as incorporation of suitable alloys. However, the use of corrosion inhibitors has proven to be the easiest and cheapest method for corrosion protection and prevention in acidic media. These inhibitors slow down the corrosion rate and thus prevent monetary losses due to metallic corrosion on industrial vessels, equipment, or surfaces. Inorganic and organic inhibitors are toxic and costly and thus recent focus has been turned to develop environmentally benign methods for corrosion retardation. Many researchers have recently focused on corrosion prevention methods using green inhibitors for mild steel in acidic solutions to mimic industrial processes. This paper provides an overview of types of corrosion, corrosion process, and mainly recent work done on the application of natural plant extracts as corrosion inhibitors for mild steel.

  9. Corrosion behaviour of mooring chain steel in seawater

    NARCIS (Netherlands)

    Zhang, X.; Noel, N.; Ferrari, G.; Hoogland, M.G.

    2016-01-01

    Failures of mooring lines on floating production, storage and offloading systems (FPSOs) raise concern to the offshore industry. Localized corrosion of mooring chain is regarded as one of main failure mechanisms. The project of Localized Mooring Chain Corrosion (LMCC) is aiming at studying the

  10. Online, real-time corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2005-01-01

    The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress, ......, precipitation of deposits or crevices. The authors describe methods used for on-line monitoring of corrosion, cover the complications and the main results of a Nordic project.......The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress...

  11. Corrosion of beryllium

    International Nuclear Information System (INIS)

    Mueller, J.J.; Adolphson, D.R.

    1987-01-01

    The corrosion behavior of beryllium in aqueous and elevated-temperature oxidizing environments has been extensively studied for early-intended use of beryllium in nuclear reactors and in jet and rocket propulsion systems. Since that time, beryllium has been used as a structural material in les corrosive environments. Its primary applications include gyro systems, mirror and reentry vehicle structures, and aircraft brakes. Only a small amount of information has been published that is directly related to the evaluation of beryllium for service in the less severe or normal atmospheric environments associated with these applications. Despite the lack of published data on the corrosion of beryllium in atmospheric environments, much can be deduced about its corrosion behavior from studies of aqueous corrosion and the experiences of fabricators and users in applying, handling, processing, storing, and shipping beryllium components. The methods of corrosion protection implemented to resist water and high-temperature gaseous environments provide useful information on methods that can be applied to protect beryllium for service in future long-term structural applications

  12. Microstructure, Mechanical and Corrosion Properties of Friction Stir-Processed AISI D2 Tool Steel

    Science.gov (United States)

    Yasavol, Noushin; Jafari, Hassan

    2015-05-01

    In this study, AISI D2 tool steel underwent friction stir processing (FSP). The microstructure, mechanical properties, and corrosion resistance of the FSPed materials were then evaluated. A flat WC-Co tool was used; the rotation rate of the tool varied from 400 to 800 rpm, and the travel speed was maintained constant at 385 mm/s during the process. FSP improved mechanical properties and produced ultrafine-grained surface layers in the tool steel. Mechanical properties improvement is attributed to the homogenous distribution of two types of fine (0.2-0.3 μm) and coarse (1.6 μm) carbides in duplex ferrite-martensite matrix. In addition to the refinement of the carbides, the homogenous dispersion of the particles was found to be more effective in enhancing mechanical properties at 500 rpm tool rotation rate. The improved corrosion resistance was observed and is attributed to the volume fraction of low-angle grain boundaries produced after friction stir process of the AISI D2 steel.

  13. Corrosion studies on PREPP waste form

    International Nuclear Information System (INIS)

    Welch, J.M.; Neilson, R.M. Jr.

    1984-05-01

    Deformation or Failure Test and Accelerated Corrosion Test procedures were conducted to investigate the effect of formulation variables on the corrosion of oversize waste in Process Experimental Pilot Plant (PREPP) concrete waste forms. The Deformation or Failure Test did not indicate substantial waste form swelling from corrosion. The presence or absence of corrosion inhibitor was the most significant factor relative to measured half-cell potentials identified in the Accelerated Corrosion Test. However, corrosion inhibitor was determined to be only marginally beneficial. While this study produced no evidence that corrosion is of sufficient magnitude to produce serious degradation of PREPP waste forms, the need for corrosion rate testing is suggested. 11 references, 4 figures, 8 tables

  14. Initiation and inhibition of pitting corrosion on reinforcing steel under natural corrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Abd El Wanees, S., E-mail: s_wanees@yahoo.com [Chemistry Department, Faculty of Science, University of Tabuk, Tabuk (Saudi Arabia); Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519 (Egypt); Bahgat Radwan, A. [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Alsharif, M.A. [Chemistry Department, Faculty of Science, University of Tabuk, Tabuk (Saudi Arabia); Abd El Haleem, S.M. [Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519 (Egypt)

    2017-04-01

    Initiation and inhibition of pitting corrosion on reinforcing steel in saturated, naturally aerated Ca(OH){sub 2} solutions, under natural corrosion conditions, are followed through measurements of corrosion current, electrochemical impedance spectroscopy and SEM investigation. Induction period for pit initiation and limiting corrosion current for pit propagation are found to depend on aggressive salt anion and cation-types, as well as, concentration. Ammonium chlorides and sulfates are more corrosive than the corresponding sodium salts. Benzotriazole and two of its derivatives are found to be good inhibitors for pitting corrosion of reinforcing steel. Adsorption of these compounds follows a Langmuir adsorption isotherm. The thermodynamic functions ΔE{sup ∗}, ΔH{sup ∗} and ΔS{sup ∗} for pitting corrosion processes in the absence and presence of inhibitor are calculated and discussed. - Highlights: • Cl{sup −} and SO{sub 4} {sup 2-} induce pitting corrosion on passive reinforcing steel. • Initiation and propagation of pitting depend on cation and anion types. • Inhibition is based on adsorption according to Langmuir isotherm.

  15. Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications.

    Science.gov (United States)

    Sikora-Jasinska, M; Paternoster, C; Mostaed, E; Tolouei, R; Casati, R; Vedani, M; Mantovani, D

    2017-12-01

    Recently, Fe and Fe-based alloys have shown their potential as degradable materials for biomedical applications. Nevertheless, the slow corrosion rate limits their performance in certain situations. The shift to iron matrix composites represents a possible approach, not only to improve the mechanical properties, but also to accelerate and tune the corrosion rate in a physiological environment. In this work, Fe-based composites reinforced by Mg 2 Si particles were proposed. The initial powders were prepared by different combinations of mixing and milling processes, and finally consolidated by hot rolling. The influence of the microstructure on mechanical properties and corrosion behavior of Fe/Mg 2 Si was investigated. Scanning electron microscopy and X-ray diffraction were used for the assessment of the composite structure. Tensile and hardness tests were performed to characterize the mechanical properties. Potentiodynamic and static corrosion tests were carried out to investigate the corrosion behavior in a pseudo-physiological environment. Samples with smaller Mg 2 Si particles showed a more homogenous distribution of the reinforcement. Yield and ultimate tensile strength increased when compared to those of pure Fe (from 400MPa and 416MPa to 523MPa and 630MPa, respectively). Electrochemical measurements and immersion tests indicated that the addition of Mg 2 Si could increase the corrosion rate of Fe even twice (from 0.14 to 0.28mm·year -1 ). It was found that the preparation method of the initial composite powders played a major role in the corrosion process as well as in the corrosion mechanism of the final composite. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Pipe Lines – External Corrosion

    Directory of Open Access Journals (Sweden)

    Dan Babor

    2008-01-01

    Full Text Available Two areas of corrosion occur in pipe lines: corrosion from the medium carried inside the pipes; corrosion attack upon the outside of the pipes (underground corrosion. Electrolytic processes are also involved in underground corrosion. Here the moisture content of the soil acts as an electrolyte, and the ions required to conduct the current are supplied by water-soluble salts (chlorides, sulfates, etc. present in the soil. The nature and amount of these soluble materials can vary within a wide range, which is seen from the varying electrical conductivity and pH (varies between 3 and 10. Therefore the characteristics of a soil will be an important factor in under-ground corrosion.

  17. Research projects on life management: materials ageing

    International Nuclear Information System (INIS)

    Gomez Briceno, D.

    1997-01-01

    Materials ageing is a time-dependent process, that involves the loss of availability of nuclear plants. Radiation embrittlement, stress corrosion cracking, irradiation assisted stress corrosion cracking, and thermal ageing are the most relevant time-dependent material degradation mechanisms that can be identified in the materials ageing process. The Materials Programme of Nuclear Energy Institute at CIEMAT carries out research projects and metallurgical examinations of failed components to gain some insight into the mechanisms of materials degradation with a direct impact on the life management of nuclear plants. (Author)

  18. Research Opportunities in Corrosion Science for Long-Term Prediction of Materials Performance: A Report of the DOE Workshop on ''Corrosion Issues of Relevance to the Yucca Mountain Waste Repository''

    International Nuclear Information System (INIS)

    Payer, Joe H.; Scully, John R.

    2003-01-01

    The report summarizes the findings of a U.S. Department of Energy workshop on ''Corrosion Issues of Relevance to the Yucca Mountain Waste Repository''. The workshop was held on July 29-30, 2003 in Bethesda, MD, and was co-sponsored by the Office of Basic Energy Sciences and Office of Civilian Radioactive Waste Management. The workshop focus was corrosion science relevant to long-term prediction of materials performance in hostile environments, with special focus on relevance to the permanent disposal of nuclear waste at the Yucca Mountain Repository. The culmination of the workshop is this report that identifies both generic and Yucca Mountain Project-specific research opportunities in basic and applied topic areas. The research opportunities would be realized well after the U.S. Nuclear Regulatory Commission's initial construction-authorization licensing process. At the workshop, twenty-three invited scientists deliberated on basic and applied science opportunities in corrosion science relevant to long-term prediction of damage accumulation by corrosive processes that affect materials performance.

  19. Ionic Liquid (1-Butyl-3-Metylimidazolium Methane Sulphonate Corrosion and Energy Analysis for High Pressure CO2 Absorption Process

    Directory of Open Access Journals (Sweden)

    Aqeel Ahmad Taimoor

    2018-05-01

    Full Text Available This study explores the possible use of ionic liquids as a solvent in a commercial high-pressure CO2 removal process, to gain environmental and energy benefits. There are two main constraints in realizing this: ionic liquids can be corrosive, specifically when mixed with a water/amine solution with dissolved O2 & CO2; and CO2 absorption within this process is not very well understood. Therefore, scavenging CO2 to ppm levels from process gas comes with several risks. We used 1-butyl-3-methylimidazoium methane sulphonate [bmim][MS] as an ionic liquid because of its high corrosiveness (due to its acidic nature to estimate the ranges of expected corrosion in the process. TAFEL technique was used to determine these rates. Further, the process was simulated based on the conventional absorption–desorption process using ASPEN HYSYS v 8.6. After preliminary model validation with the amine solution, [bmim][MS] was modeled based on the properties found in the literature. The energy comparison was then provided and the optimum ratio of the ionic liquid/amine solution was calculated.

  20. Zircaloy nodular corrosion analysis by an image processing technique

    International Nuclear Information System (INIS)

    Kawashima, Junko; Sato, Kanemitsu; Kuwae, Ryosho; Higashinakagawa, Emiko

    1987-01-01

    An image processor has been fabricated to examine out-of-pile nodular corrosion for Zircaloy-2 tubings. The covering fraction, which is the percentage of the nodule occupying area on the Zircaloy surface, was measured with the processor. The covering fraction showed a strong correlation with the weight gain at any corrosion time of this experiment. The correlation observed can be explained by a model for the lenticular shape of the nodules. The image processor also gives unfolded pictures of the whole Zircaloy surface. By analyzing the picture, the location of the nodules generated was found to be determined in an early stage of corrosion. New nodules were not produced later, and the nodules only grew larger with time. (orig.)

  1. Corrosion and protection of metals in the rural atmosphere of El Pardo Spain (PATINA/CYTED project)

    International Nuclear Information System (INIS)

    Simancas, J.; Castano, J. G.; Morcillo, M.

    2003-01-01

    Atmospheric corrosion tests of metallic and organic coatings on steel, zinc and aluminium have been conducted in el Pardo (Spain) as part of the PATINA/CYTED project Anticorrosive Protection of Metals in the Atmosphere. This is a rural atmosphere with the following ISO corrosivity categories: C2 (Fe), C'' (Zn), Cu (Cu) and C1 (Al). Its average temperature and relative humidity is 13 degree centigrade and 62.8, respectively, and it has low SO 2 and C1''- contents. Results of 42 months exposure are discussed. Atmospheric exposure tests were carried out for the following types of coatings: conventional paint coatings for steel and hot-dip galvanized steel (group 1), new painting technologies for steel and galvanized steel (group 2), zinc-base metallic coatings (group 3), aluminium-base metallic coatings (group 4), coatings on aluminium (group 5) and coil-coatings on steel, hot-dip galvanized steel and 55% Al-Zn coated steel (group 6). (Author) 9 refs

  2. Corrosion characteristics of K-claddings

    International Nuclear Information System (INIS)

    Park, J. Y.; Choi, B. K.; Jung, Y. H.; Jung, Y. H.

    2004-01-01

    The Improvement of the corrosion resistance of nuclear fuel claddings is the critical issue for the successful development of the high burn-up fuel. KAERI have developed the K-claddings having a superior corrosion resistance by controlling the alloying element addition and optimizing the manufacturing process. The comparative evaluation of the corrosion resistance for K-claddings and the foreign claddings was performed and the effect of the heat treatment on the corrosion behavior of K-claddings was also examined. Corrosion tests were carried out in the conditions of 360 .deg. C pure water, PWR-simulating loop and 400 .deg. C steam, From the results of the corrosion tests, it was found that the corrosion resistance of K-claddings is superior to those of Zry4 and A claddings and K6 showed a better corrosion resistance than K3. The corrosion behavior of K-cladding was strongly influenced by the final annealing rather than the intermediate annealing, and the corrosion resistance increased with decreasing the final annealing temperature

  3. Improving regulatory practices through the OECD-NEA Stress Corrosion Cracking and Cable Ageing Project (SCAP)

    International Nuclear Information System (INIS)

    Yamamoto, A.; Huerta, A.; Sekimura, N.; Gott, K.; Koshy, T.

    2012-01-01

    For regulatory authorities, it is important to verify the adequacy of ageing management methods applied by the licensees, based on reliable technical evidence. In order to achieve that goal, 14 NEA member countries joined the SCAP (Project) in 2006 to share knowledge and three more countries joined during the course of the project. The project focused on two important safety issues, the stress corrosion cracking (SCC) and the degradation of cable insulation, due to their relevance for plant ageing assessments and their implication on inspection practices. The commendable practices identified in the project are intended to strengthen technical approaches to optimize ageing management in the areas of SCC and cable ageing. The SCAP SCC and Cable data- and knowledge bases provided extensive information to benefit all stakeholders in designing, constructing, operating and regulating Nuclear Power Plants and also provide commendable practices applicable to new reactors. The paper presents the product of SCAP work resulting from 4 years of technical interactions and shared knowledge from all participants from June 2006 to June 2010. (author)

  4. Current status of studies on nodular corrosion

    International Nuclear Information System (INIS)

    Yasuda, Takayoshi; Kawasaki, Satoru; Echigoya, Hironori; Kinoshita, Yutaka; Kubota, Hiroyuki; Konishi, Takao; Yamanaka, Tuneyasu.

    1993-01-01

    The studies on nodular corrosion formed on the outer surface of BWR fuel cladding tubes were reviewed. Main factors affecting the corrosion behavior were material and environmental conditions and combined effect. The effects of such material conditions as fabrication process, alloy elements, texture and surface treatment and environmental factors as neutron irradiation, thermo-hydrodynamic, water chemistry, purity of the coolant and contact with foreign metals on the corrosion phenomena were surveyed. Out-of-reactor corrosion test methods and models for the corrosion mechanism were also reviewed. Suppression of the accumulated annealing temperature during tube reduction process improved the nodular corrosion resistance of Zircaloys. Improved resistance for the nodular corrosion was reported for the unirradiated Zircaloys with some additives. Detailed irradiation test under the BWR conditions is needed to confirm the trend. Concerning the environmental factors, boiling on the cladding surface due to heat flux reduces the nodular corrosion susceptibility, while oxidizing radical generated from dissolved oxygen accelerates the corrosion. Concerning corrosion mechanisms, importance of such phenomena as the depleted zone of alloying elements in zirconium matrix, reduction of H + to H 2 in oxide layer, electrochemical property of precipitates, crystallographic anisotropy of oxidation rates were revealed. (author) 59 refs

  5. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  6. A study on corrosive behavior of spring steel by shot-peening process

    International Nuclear Information System (INIS)

    An, Jae Pil; Park, Keyung Dong

    2004-01-01

    In this study, the influence of shot peening on the corrosion was investigated on spring steel immersed in 3.5% NaCl. The immersion test was performed on the two kinds of specimens. Corrosion potential, polarization curve, residual stress and etc. were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated. In case of corrosion potential, shot peened specimen shows more activated negative direction as compared with parent metal. Surface of specimen, which is treated with the shot peened, is placed as more activated state against inner base metal. It can cause the anti-corrosion effect on the base metal

  7. The dual role of microbes in corrosion.

    Science.gov (United States)

    Kip, Nardy; van Veen, Johannes A

    2015-03-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.

  8. The dual role of microbes in corrosion

    Science.gov (United States)

    Kip, Nardy; van Veen, Johannes A

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  9. Corrosion of research reactor aluminium clad spent fuel in water. Additional information

    International Nuclear Information System (INIS)

    2009-12-01

    A large variety of research reactor spent fuel with different fuel meats, different geometries and different enrichments in 235 U are presently stored underwater in basins located around the world. More than 90% of these fuels are clad in aluminium or aluminium based alloys that are notoriously susceptible to corrosion in water of less than optimum quality. Some fuel is stored in the reactor pools themselves, some in auxiliary pools (or basins) close to the reactor and some stored at away-from-reactor pools. Since the early 1990s, when corrosion induced degradation of the fuel cladding was observed in many of the pools, corrosion of research reactor aluminium clad spent nuclear fuel stored in light water filled basins has become a major concern, and programmes were implemented at the sites to improve fuel storage conditions. The IAEA has since then established a number of programmatic activities to address corrosion of research reactor aluminium clad spent nuclear fuel in water. Of special relevance was the Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase I) initiated in 1996, whose results were published in IAEA Technical Reports Series No. 418. At the end of this CRP it was considered necessary that a continuation of the CRP should concentrate on fuel storage basins that had demonstrated significant corrosion problems and would therefore provide additional insight into the fundamentals of localized corrosion of aluminium. As a consequence, the IAEA started a new CRP entitled Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II), to carry out more comprehensive research in some specific areas of corrosion of aluminium clad spent nuclear fuel in water. In addition to this CRP, one of the activities under IAEA's Technical Cooperation Regional Project for Latin America Management of Spent Fuel from Research Reactors (2001-2006) was corrosion monitoring and surveillance of research

  10. Corrosion in seawater systems

    International Nuclear Information System (INIS)

    Henrikson, S.

    1988-01-01

    Highly alloyed stainless steels have been exposed to natural chlorinated and chlorine-free seawater at 35 deg. C. Simulated tube-tubesheet joints, weld joints and galvanic couples with titanium, 90/10 CuNi and NiAl bronze were tested and evaluated for corrosion. The corrosion rates of various anode materials - zinc, aluminium and soft iron - were also determined. Finally the risk of hydrogen embrittlement of tubes of ferritic stainless steels and titanium as a consequence of cathodic protection was studied. An attempt was also made to explain the cracking mechanism of the ferritic steels by means of transmission electron microscopy. One important conclusion of the project is that chlorinated seawater is considerably more corrosive to stainless steels than chlorine-free water, whereas chlorination reduces the rate of galvanic corrosion of copper materials coupled to stainless steels. Hydrogen embrittlement of ferritic stainless steels and titanium as a consequence of cathodic protection of carbon steel or cast iron in the same structure can be avoided by strict potentiostatic control of the applied potential. (author)

  11. Predicting concrete corrosion of sewers using artificial neural network.

    Science.gov (United States)

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Corrosion in Electronics

    DEFF Research Database (Denmark)

    Ambat, Rajan; Gudla, Helene Virginie Conseil; Verdingovas, Vadimas

    2017-01-01

    Electronic control units, power modules, and consumer electronics are used today in a wide variety of varying climatic conditions. Varying external climatic conditions of temperature and humidity can cause an uncontrolled local climate inside the device enclosure. Uncontrolled humidity together...... and high density packing combined with the use of several materials, which can undergo electrochemical corrosion in the presence of water film formed due to humidity exposure and bias conditions on the PCBA surface. This article provides a short review of the corrosion reliability issues of electronics due...... to the use of electronics under varying humidity conditions. Important PCBA aspects, which are fundamental to the corrosion cell formation under humid conditions, are discussed. Effect of hygroscopic residues from the process and service and their role in assisting water film build up and corrosion...

  13. Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors

    International Nuclear Information System (INIS)

    Zhou, Biner; Wang, Yishan; Zuo, Yu

    2015-01-01

    Highlights: • Inhibition effect of LaCl 3 and SDBS for AA 2024 in NaCl solution (pH 10) was studied. • At the beginning the active polarization behavior of the alloy changed to passivation. • The passive behavior gradually disappeared with time and pitting happened at S-phases. • The compounded inhibitors showed good inhibition but cannot totally inhibit pitting. • The adsorption of SDBS played the key role for inhibition to the corrosion process. - Abstract: The evolution of the corrosion process of AA 2024-T3 in 0.58 g L −1 NaCl solution (pH 10) with sodium dodecylbenzenesulfonate (SDBS) and lanthanum chloride inhibitors was studied with electrochemical and surface analysis methods. With the addition of the compounded LaCl 3 and SDBS inhibitors, in the early stage the polarization behavior of AA 2024-T3 changed from active corrosion to passivation, and both the general corrosion and pitting corrosion were inhibited. However, with the immersion time extended, the passive behavior gradually disappeared and pitting happened at the Cu-rich phases. After 24 h immersion, the compounded inhibitors still showed good inhibition for general corrosion, but the polarization curve again presented the characteristic similar to active polarization. The compounded inhibitors also inhibited the pitting corrosion to some extent. The acting mechanism of the inhibitors SDBS and La 3 Cl on the corrosion process of AA 2024-T3 in the test solution was discussed.

  14. Characterisation of the aqueous corrosion process in NdFeB melt spun ribbon and MQI bonded magnets

    Science.gov (United States)

    McCain, Stephen

    A major factor limiting the use and longevity of rare earth based magnetic materials is their susceptibility to aqueous corrosion and associated detrimental effects upon the magnetic properties of the material. This process was investigated through a combination of exposure to simulated environmental conditions and hydrogen absorption/desorption studies (HADS) in conjunction with magnetic characterisation. This study utilises NdFeB MQP-B melt-spun ribbon manufactured by Magnequench, in the form of MQI bonded magnets and also in its unbonded state as MQ powder. Specifically, it was concerned with how effective a variety of bonding media (epoxy resin,PTFE, zinc) and surface coatings (PTFE, Qsil, zinc LPPS, Dex-Cool) were at limiting the impact of aqueous corrosion in MQI bonded magnets. To characterise the effect of hydrogen absorption upon the magnetic properties of the MQP-B, hydrogen uptake was induced followed by a series of outgassing heat treatments with subsequent magnetic characterisation accompanied by HADS techniques performed after each outgas. This allowed comparisons to be made between the effects of aqueous corrosion process and hydrogen absorption upon the magnetic properties of the alloy.. This study has clearly demonstrated the link between the abundance of environmental moisture and rate of Hci losses in MQI bonded magnets. In addition to this the key mechanism responsible for the degradation of magnetic properties has been identified. These losses have been attributed to the absorption of hydrogen generated by the dissociation of water in the presence of NdFeB during the aqueous corrosion process. It has been shown that the use of a bonding media that is impermeable to water can limit the effects of aqueous corrosion by limiting water access to the Magnequench particles (MQP) and also the positive effects of the use of suitable surface coatings has been shown to be effective for the same reason..

  15. [Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes].

    Science.gov (United States)

    Qiuxia, Yang; Ying, Yang; Han, Xu; Di, Wu; Ke, Guo

    2016-02-01

    This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes in a simulated oral environment. A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH = 5.0). The specimens were soaked in fluorine for 24 h, and the surface microstructure was observed under a field emission scanning electron microscope after immersing the specimens in the test solution at constant temperature. The corrosion potential (Ecorr) value of the cobalt-chromium alloy cast decreased with increasing fluoride concentration in acidic artificial saliva. The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes changed significantly when the fluoride concentration was 0.20% (P technology processes exhibited a statistically significant difference. The Icorr value of the cobalt-chromium alloy cast was higher than that in the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P technology processes. The corrosion resistance of the cobalt-chromium alloy cast was worse than that of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20%.

  16. High temperature corrosion control and monitoring for processing acidic crudes

    Energy Technology Data Exchange (ETDEWEB)

    Cross, C. [Betz/GE Water and Process Technologies, Woodlands, TX (United States)

    2009-07-01

    The challenge of processing heavy crudes and bitumen in a reliable and economical way was discussed. Many refiners use a conservative approach regarding the rate at which they use discounted crudes or depend upon capital-intensive upgrades to equipment. New strategies based on data-driven decisions are needed in order to obtain the greatest benefit from heavy feedstock. The feasibility of successfully processing more challenging feed can be estimated more accurately by better understanding the interactions between a particular feed and a particular crude unit. This presentation reviewed newly developed techniques that refiners can use to determine the feeds corrosion potential and the probability for this potential to manifest itself in a given crude unit. tabs., figs.

  17. Recent Corrosion Research Trends in Weld Joints

    International Nuclear Information System (INIS)

    Kim, Hwan Tae; Kil, Sang Cheol; Hwang, Woon Suk

    2007-01-01

    The increasing interest in the corrosion properties of weld joints in the corrosive environment is placing stringent demands on the manufacturing techniques and performance requirements, and the manufacture employs the high quality and efficiency welding process to produce welds. Welding plays an important role in the fabrication of chemical plants, nuclear power plant, ship construction, and this has led to an increasing attention to the corrosion resistant weld joints. This paper covers recent technical trends of welding technologies for corrosion resistance properties including the COMPENDEX DB analysis of welding materials, welding process, and welding fabrications

  18. Elucidating the iodine stress corrosion cracking (SCC) process for zircaloy tubing

    International Nuclear Information System (INIS)

    Nagai, M.; Shimada, S.; Nishimura, S.; Amano, K.

    1984-01-01

    Several experimental investigations were made to enhance understanding of the iodine stress corrosion cracking (SCC) process for Zircaloy: (1) oxide penetration process, (2) crack initiation process, and (3) crack propagation process. Concerning the effect of the oxide layer produced by conventional steam-autoclaving, no significant difference was found between results for autoclaved and as-pickled samples. Tests with 15 species of metal iodides revealed that only those metal iodides which react thermodynamically with zirconium to produce zirconium tetraiodide (ZrI 4 ) caused SCC of Zircaloy. Detailed SEM examinations were made on the SCC fracture surface of irradiated specimens. The crack propagation rate was expressed with a da/dt=C Ksup(n) type equation by combining results of tests and calculations with a finite element method. (author)

  19. Corrosion Processes of the CANDU Steam Generator Materials in the Presence of Silicon Compounds

    International Nuclear Information System (INIS)

    Lucan, Dumitra; Fulger, Manuela; Velciu, Lucian; Lucan, Georgiana; Jinescu, Gheorghita

    2006-01-01

    The feedwater that enters the steam generators (SG) under normal operating conditions is extremely pure but, however, it contains low levels (generally in the μg/l concentration range) of impurities such as iron, chloride, sulphate, silicate, etc. When water is converted into steam and exits the steam generator, the non-volatile impurities are left behind. As a result of their concentration, the bulk steam generator water is considerably higher than the one in the feedwater. Nevertheless, the concentrations of corrosive impurities are in general sufficiently low so that the bulk water is not significantly aggressive towards steam generator materials. The impurities and corrosion products existing in the steam generator concentrate in the porous deposits on the steam generator tubesheet. The chemical reactions that take place between the components of concentrated solutions generate an aggressive environment. The presence of this environment and of the tubesheet crevices lead to localized corrosion and thus the same tubes cannot ensure the heat transfer between the fluids of the primary and secondary circuits. Thus, it becomes necessary the understanding of the corrosion process that develops into SG secondary side. The purpose of this paper is the assessment of corrosion behavior of the tubes materials (Incoloy-800) at the normal secondary circuit parameters (temperature = 2600 deg C, pressure = 5.1 MPa). The testing environment was demineralized water containing silicon compounds, at a pH=9.5 regulated with morpholine and cyclohexyl-amine (all volatile treatment - AVT). The paper presents the results of metallographic examinations as well as the results of electrochemical measurements. (authors)

  20. Chemical Industry Corrosion Management: A Comprehensive Information System (ASSET 2). Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John, Randy C. [Shell Global Solutions, Houston, TX (United States); Young, Arthur L. [Humberside Solutions, Toronto, ON (Canada); Pelton, Arthur D. [CRCT, Ecole Polytechnique de Montreal, Quebec (Canada); Thompson, William T. [Royal Military College of Canada, Kingston, ON (Canada); Wright, Ian G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2008-10-10

    The research sponsored by this project has greatly expanded the ASSET corrosion prediction software system to produce a world-class technology to assess and predict engineering corrosion of metals and alloys corroding by exposure to hot gases. The effort included corrosion data compilation from numerous industrial sources and data generation at Shell Oak Ridge National Laboratory and several other companies for selected conditions. These data were organized into groupings representing various combinations of commercially available alloys and corrosion by various mechanisms after acceptance via a critical screening process to ensure the data were for alloys and conditions, which were adequately well defined, and of sufficient repeatability. ASSET is the largest and most capable, publicly-available technology in the field of corrosion assessment and prediction for alloys corroding by high temperature processes in chemical plants, hydrogen production, energy conversion processes, petroleum refining, power generation, fuels production and pulp/paper processes. The problems addressed by ASSET are: determination of the likely dominant corrosion mechanism based upon information available to the chemical engineers designing and/or operating various processes and prediction of engineering metal losses and lifetimes of commercial alloys used to build structural components. These assessments consider exposure conditions (metal temperatures, gas compositions and pressures), alloy compositions and exposure times. Results of the assessments are determination of the likely dominant corrosion mechanism and prediction of the loss of metal/alloy thickness as a function of time, temperature, gas composition and gas pressure. The uses of these corrosion mechanism assessments and metal loss predictions are that the degradation of processing equipment can be managed for the first time in a way which supports efforts to reduce energy consumption, ensure structural integrity of equipment

  1. Plasma source ion implantation process for corrosion protection of 6061 aluminum

    International Nuclear Information System (INIS)

    Zhang, L.; Booske, J.H.; Shohet, J.L.; Jacobs, J.R.; Bernardini, A.J.

    1995-01-01

    This paper describes results of an investigation of the feasibility of using nitrogen plasma source ion implantation (PSII) treatment to improve corrosion resistance of 6061 aluminum to salt water. Flat Al samples were implanted with various doses of nitrogen. The surface microstructures and profiles of Al and N in the flat samples were examined using transmission electron microscopy (TEM), scanning Auger microprobe, x-ray diffraction. Corrosion properties of the samples and the components were evaluated using both a 500 hour salt spray field test and a laboratory electrochemical corrosion system. The tested samples were then analyzed by scanning electron microscopy. Corrosion measurements have demonstrated that PSII can significantly improve the pitting resistance of 6061 aluminum. By correlating the analytical results with the corrosion test results, it has been verified that the improved corrosion resistance in PSII-treated coupons is due to the formation of a continuous AlN layer. It was also identified that the formation of a continuous AlN layer. It was also identified that the formation of a continuous AlN layer is mainly determined by the bias voltage and the total integrated implantation dose, and relatively insensitive to factors such as the plasma source, pulse length, or frequency

  2. Structurally Integrated Coatings for Wear and Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    Wear and corrosion of structures cuts across industries and continues to challenge materials scientists and engineers to develop cost effective solutions. Industries typically seek mature technologies that can be implemented for production with rapid or minimal development and have little appetite for the longer-term materials research and development required to solve complex problems. The collaborative work performed in this project addressed the complexity of this problem in a multi-year program that industries would be reluctant to undertake without government partnership. This effort built upon the prior development of Advanced Abrasion Resistant Materials conduct by Caterpillar Inc. under DOE Cooperative Agreement No. DE-FC26-01NT41054. In this referenced work, coatings were developed that exhibited significant wear life improvements over standard carburized heat treated steel in abrasive wear applications. The technology used in this referenced work, arc lamp fusing of thermal spray coatings, was one of the primary technical paths in this work effort. In addition to extending the capability of the coating technology to address corrosion issues, additional competitive coating technologies were evaluated to insure that the best technology was developed to meet the goals of the program. From this, plasma transferred arc (PTA) welding was selected as the second primary technology that was investigated. Specifically, this project developed improved, cost effective surfacing materials and processes for wear and corrosion resistance in both sliding and abrasive wear applications. Materials with wear and corrosion performance improvements that are 4 to 5 times greater than heat treated steels were developed. The materials developed were based on low cost material systems utilizing ferrous substrates and stainless steel type matrix with hard particulates formed from borides and carbides. Affordability was assessed against other competing hard surfacing or coating

  3. PROJECT SCOPE MANAGEMENT PROCESS

    Directory of Open Access Journals (Sweden)

    Yana Derenskaya

    2018-01-01

    Full Text Available The purpose of the article is to define the essence of project scope management process, its components, as well as to develop an algorithm of project scope management in terms of pharmaceutical production. Methodology. To carry out the study, available information sources on standards of project management in whole and elements of project scope management in particular are analysed. Methods of system and structural analysis, logical generalization are used to study the totality of subprocesses of project scope management, input and output documents, and to provide each of them. Methods of network planning are used to construct a precedence diagram of project scope management process. Results of the research showed that components of the project scope management are managing the scope of the project product and managing the content of project work. It is the second component is investigated in the presented work as a subject of research. Accordingly, it is defined that project scope management process is to substantiate and bring to the realization the necessary amount of work that ensures the successful implementation of the project (achievement of its goal and objectives of individual project participants. It is also determined that the process of managing the project scope takes into account the planning, definition of the project scope, creation of the structure of project work, confirmation of the scope and management of the project scope. Participants of these subprocesses are: customer, investor, and other project participants – external organizations (contractors of the project; project review committee; project manager and project team. It is revealed that the key element of planning the project scope is the formation of the structure of design work, the justification of the number of works, and the sequence of their implementation. It is recommended to use the following sequence of stages for creating the structure of project work

  4. Statistical lifetime modeling of FeNiCr alloys for high temperature corrosion in waste to energy plants and metal dusting in syngas production plants

    OpenAIRE

    Camperos Guevara, Sheyla Herminia

    2016-01-01

    Over the last decades, the corrosion control of alloys exposed to severe and complex conditions in industrial applications has been a great challenge. Currently, corrosion costs are increasing and preventive strategies have become an important industrial demand. The SCAPAC project funded by the French National Research Agency has proposed to study the corrosion for two separate processes: Steam Methane Reforming (SMR) and Waste to Energy (WtE). Although the operating conditions of both proces...

  5. Nodular Corrosion Characteristics of Zirconium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Gil; Jeong, Y. H.; Park, S. Y.; Lee, D. J

    2003-01-15

    This study was reported the effect of the nodular corrosion on the nuclear reactor environmental along with metallurgical influence, also suggested experimental scheme related to evaluate nodular corrosion characteristics of Zr-1 Nb alloy. Remedial strategies against the nodular corrosion should firstly develop plan to assess the effect of the water quality condition (Oxygen, Hydrogen) as well as the boiling on the nodular corrosion, secondarily establish plan to control heat treatment process to keep a good resistance on nodular corrosion in Zr-1Nb alloy as former western reactor did.

  6. A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite

    International Nuclear Information System (INIS)

    Qi, Kai; Sun, Yimin; Duan, Hongwei; Guo, Xingpeng

    2015-01-01

    Highlights: • Solution-processable polymer-grafted graphene nanocomposite is synthesized. • The nanocomposite exhibits synergistic properties of both building blocks. • The nanocomposite can be easily applied to form a protective coating on metals. • The coating can effectively prevent corrosion of copper substrate. - Abstract: A new type of solution-processable graphene coating has been synthesized by grafting polymethylmethacrylate (PMMA) brushes on graphene oxide (GO) via surface-initiated atom transfer radical polymerization (ATRP). One major finding is that the PMMA-grafted GO nanocomposite exhibits synergistic properties of both building blocks, i.e., permeation inhibition of GO and solubility of PMMA in a variety of solvents, which makes it compatible with commonly used coating methods to form uniform coatings with controlled thickness. Our results demonstrate that PMMA-grafted GO coating can effectively block charge transfer at the metal–electrolyte interface and prevent corrosion of the copper substrate under aggressive saline conditions

  7. Corrosion control in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Steele, D.F.

    1986-01-01

    This article looks in detail at tribology-related hazards of corrosion in irradiated fuel reprocessing plants and tries to identify and minimize problems which could contribute to disaster. First, the corrosion process is explained. Then the corrosion aspects at each of four stages in reprocessing are examined, with particular reference to oxide fuel reprocessing. The four stages are fuel receipt and storage, fuel breakdown and dissolution, solvent extraction and product concentration and waste management. Results from laboratory and plant corrosion trails are used at the plant design stage to prevent corrosion problems arising. Operational procedures which minimize corrosion if it cannot be prevented at the design stage, are used. (UK)

  8. Lithium-system corrosion/erosion studies for the FMIT project

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G D [comp.

    1983-04-01

    The corrosion behavior of selected materials in a liquid lithium environment has been studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. The liquid lithium test resources and the capabilities of several laboratories were used to study specific concerns associated with the overall objective. Testing conditions ranged from approx. 3700 hours to approx. 6500 hours of exposure to flowing lithium at temperatures from 230/sup 0/C to 270/sup 0/C and static lithium at temperatures from 200/sup 0/C to 500/sup 0/C. Principal areas of investigation included lithium corrosion/erosion effects of FMIT lithium system materials (largely Type 304 and Type 304L austenitic stainless steels) and candidate materials for major system components.

  9. Lithium-system corrosion/erosion studies for the FMIT project

    International Nuclear Information System (INIS)

    Bazinet, G.D.

    1983-04-01

    The corrosion behavior of selected materials in a liquid lithium environment has been studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. The liquid lithium test resources and the capabilities of several laboratories were used to study specific concerns associated with the overall objective. Testing conditions ranged from approx. 3700 hours to approx. 6500 hours of exposure to flowing lithium at temperatures from 230 0 C to 270 0 C and static lithium at temperatures from 200 0 C to 500 0 C. Principal areas of investigation included lithium corrosion/erosion effects of FMIT lithium system materials (largely Type 304 and Type 304L austenitic stainless steels) and candidate materials for major system components

  10. Case histories of microbial induced corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Birketveit, Oe.; Liengen, T.

    2006-03-15

    Recent years bacterial activity has caused process problems and corrosion on several of Hydro s installations in the North Sea. The process problems are related to iron sulphide formed in process equipment and increased oil in discharge water. The corrosion problem is seen in downstream pipelines made of carbon steel, where deposits and formation of biofilm cause the corrosion inhibitor to be ineffective. In most cases the bacteria reproduce in the topside system and especially in the reclaimed oil sump tank. The problems observed, related to bacterial activity, are often a result of how the content from the reclaimed oil sump tank is re-circulated to the process system. Process modifications, changes in biocide treatment strategy, sulphide measurements, cleaning strategy and bio monitoring are presented. (author) (tk)

  11. Corrosion control. 2. ed.

    International Nuclear Information System (INIS)

    Bradford, S.A.

    2001-01-01

    The purpose of this text is to train engineers and technologists not just to understand corrosion but to control it. Materials selection, coatings, chemical inhibitors, cathodic and anodic protection, and equipment design are covered in separate chapters. High-temperature oxidation is discussed in the final two chapters ne on oxidation theory and one on controlling oxidation by alloying and with coatings. This book treats corrosion and high-temperature oxidation separately. Corrosion is divided into three groups: (1) chemical dissolution including uniform attack, (2) electrochemical corrosion from either metallurgical or environmental cells, and (3) stress-assisted corrosion. Corrosion is logically grouped according to mechanisms rather than arbitrarily separated into different types of corrosion as if they were unrelated. For those university students and industry personnel who approach corrosion theory very hesitantly, this text will present the electrochemical reactions responsible for corrosion summed up in only five simple half-cell reactions. When these are combined on a polarization diagram, which is also explained in detail, the electrochemical processes become obvious. For those who want a text stripped bare of electrochemical theory, several noted sections can be omitted without loss of continuity. However, the author has presented the material in such a manner that these sections are not beyond the abilities of any high school graduate who is interested in technology

  12. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela

    2011-01-01

    ) was conducted to describe the impact of water-to-cement ratio and corrosion current density (i.e., corrosion rate) on the reinforcement corrosion process. Focus was placed, in particular on the determination of the corrosion accommodating region (CAR) and time to corrosion-induced cracking. Experimental results...... showed that x-ray attenuation measurements allow determination of the actual concentrations of corrosion products averaged through the specimen thickness. The total mass loss of steel measured by x-ray attenuation was found to be in very good agreement with the calculated mass loss obtained by Faraday......’s law. Furthermore, experimental results demonstrated that the depth of penetration of corrosion products as well as time to corrosion-induced cracking is varying for the different water-to-cement ratios and applied corrosion current densities....

  13. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr–1Nb alloy

    International Nuclear Information System (INIS)

    Yang, Jiaoxi; Wang, Xin; Wen, Qiang; Wang, Xibing; Wang, Rongshan; Zhang, Yanwei; Xue, Wenbin

    2015-01-01

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr–1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr–1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr–1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO 2 phase to t-ZrO 2 phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400. - Highlights: • Pre-oxide film was fabricated on Zr–1Nb cladding tube by MAO+ excimer laser processing. • Excimer laser processing induced the transformation of m-ZrO 2 to t-ZrO 2 . • The Rietveld quantitative analysis of the pre-oxide film was made. • We investigated the high temperature corrosion and corrosion mechanism of the oxide film. • The parameters of MAO+ excimer laser processing were optimized.

  14. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr–1Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiaoxi, E-mail: yangjiaoxi@bjut.edu.cn [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Wang, Xin; Wen, Qiang; Wang, Xibing [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Wang, Rongshan; Zhang, Yanwei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Xue, Wenbin [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-12-15

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr–1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr–1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr–1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO{sub 2} phase to t-ZrO{sub 2} phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400. - Highlights: • Pre-oxide film was fabricated on Zr–1Nb cladding tube by MAO+ excimer laser processing. • Excimer laser processing induced the transformation of m-ZrO{sub 2} to t-ZrO{sub 2}. • The Rietveld quantitative analysis of the pre-oxide film was made. • We investigated the high temperature corrosion and corrosion mechanism of the oxide film. • The parameters of MAO+ excimer laser processing were optimized.

  15. Specific features of corrosion processes in a crack tip in chloride solution

    International Nuclear Information System (INIS)

    Kurov, O.V.; Vasilenko, I.I.

    1981-01-01

    Electrode potentials of metal and pH solution are measured by means of microelectrodes on structural materials-45 and 12Kh18N10T steels, AT3 titanium alloy and D16 aluminium alloy in the vertex of corrosion crack formed during corrosion cracking in 3% NaCl solution. Metal corrosion is shown to be followed by hydrogen liberation on all the investigated materials at corrosion potentials. The effects of chemical composition of alloys as well as external polarization on the solution pH in the crack vertex are determined

  16. The anti corrosive design of structural metallic elements in buildings with large exploitation period

    International Nuclear Information System (INIS)

    Avila Ayon, V.; Rodriguez Quesada, A. L.

    2009-01-01

    The corrosion deterioration in metallic structural elements, with the consistent loss of his physical and mechanical properties, is cause by errors in the design or fabrication, that allows the accumulation of humidity and contaminants in the surfaces, or acceleration zones of the corrosion processes, as the bimetalics pairs. The aggressiveness of the environment and the productive processes that develop in industrial installations, causes the apparition of premature failures that engage the edification use. The identification of design errors is the first step in the conservation of these structures. the elimination and made a project adapted to the proper installations conditions, is essential procedures to prolong the edification useful life with an optimum and rational use of the resources that destined for this end. The investigation is about the results obtained in the diagnostic and the conservation of industrial installment, with large exploitation periods, in which existed evidences of failures by corrosion, specifically to the elimination of errors of design. (Author) 12 refs

  17. Development of corrosion models to ensure reliable performance of nuclear power plants

    International Nuclear Information System (INIS)

    Kritzky, V.G.; Stjazhkin, P.S.

    1993-01-01

    The safety and reliability of the coolant circuits in nuclear power plants depend much on corrosion and corrosion products transfer processes. Various empirical models have been developed which are applicable to particular sets of operational conditions. In our laboratory a corrosion model has been worked out, which is based on the thermodynamic properties of the compounds, participating in corrosion process and on the assumption, that the corrosion process is controlled by the solubilities of the corrosion products forming the surface oxide layer. The validity of the model has been verified by use of retrospective experimental data, which have been obtained for a series of structural materials such as e.g., carbon and stainless steels, Cu-, Al-, and Zr alloys. With regard for hydriding the model satisfactorily describes stress corrosion cracking process in water-salt environments. This report describes a model based on the thermodynamic properties of the compounds participating in the corrosion process, and on the assumption that the corrosion process is controlled by the solubilities of the corrosion products forming the surface oxide layer

  18. Atmospheric corrosion and runoff processes on copper and zinc as roofing materials

    OpenAIRE

    He, Wenle

    2002-01-01

    An extensive investigation with parallel field andlaboratory exposures has been conducted to elucidateatmospheric corrosion and metal runoff processes on copper andzinc used for roofing applications. Detailed studies have beenperformed to disclose the effect of various parameters on therunoff rate including: surface inclination and orientation,natural patination (age), patina composition, rain duration andvolume, rain pH, and length of dry periods inbetween rainevents. Annual and average corr...

  19. Bacterial corrosion in low-temperature geothermal. Mechanisms of corrosion by sulphate-reducing bacteria

    International Nuclear Information System (INIS)

    Daumas, Sylvie

    1987-01-01

    Within the frame of researches aimed at determining the causes of damages noticed on geothermal equipment, this research thesis aims at assessing the respective importance of physical-chemical processes and bacterial intervention in corrosion phenomena. It proposes an ecological approach of the fluid sampled in the Creil geothermal power station. The aim is to define the adaptation and activity degree of isolated sulphate-reducing bacteria with respect to their environment conditions. The author studied the effect of the development of these bacteria on the corrosion of carbon steel used in geothermal. Thus, he proposes a contribution to the understanding of mechanisms related to iron attack by these bacteria. Electrochemical techniques have been adapted to biological processes and used to measure corrosion [fr

  20. Corrosion processes on weathering steel railway bridge in Prague

    OpenAIRE

    Urban, Viktor; Křivý, Vít; Buchta, Vojtěch

    2016-01-01

    This contribution deals with experimental corrosion tests carried out on the weathering steel railway bridge in Prague. The basic specific property of the weathering steel is an ability to create in favourable environment a protective patina layer on its surface. Since 1968 weathering steel is used under the name “Atmofix” in the Czech Republic and can be used as a standard structural material without any corrosion protection. The weathering steel Atmofix is mostly used for bridge structures ...

  1. General Corrosion and Localized Corrosion of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  2. General Corrosion and Localized Corrosion of the Drip Shield

    International Nuclear Information System (INIS)

    F. Hua

    2004-01-01

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847])

  3. Corrosion calculations report for the safety assessment SR-Site

    International Nuclear Information System (INIS)

    2010-12-01

    This report is a compilation of the quantitative assessments of corrosion of the copper canisters in a KBS-3 repository. The calculations are part of the safety assessment SR-Site that is the long-term safety assessment to support the license application for building a final repository for spent nuclear fuel at Forsmark, Sweden. The safety assessment methodology gives the frame for the structured and documented approach to assess all conceivable corrosion processes. The quantitative assessments are done in different ways depending on the nature of the process and on the implications for the long-term safety. The starting point for the handling of the corrosion processes is the description of all known corrosion processes for copper with the current knowledge base and applied to the specific system and geology. Already at this stage some processes are excluded for further analysis, for example if the repository environment is not a sufficient prerequisite for the process to occur. The next step is to identify processes where the extent of corrosion could be bounded, e.g. by a mass balance approach. For processes where a mass balance is not limiting, the mass transport of corrodants (or corrosion products) is taken into account. A simple approach would be just to calculate the diffusive transport of corrodants through the bentonite, but generally the transport resistance for the interface between groundwater in a rock fracture intersecting the deposition hole and the bentonite buffer is more important. In SR-Site, the concept of equivalent flowrate, Q eq , is used. This assessment is done integrated with the evaluation of the geochemical and hydrogeological evolution of the repository. For most of the corrosion processes analysed, the corrosion depth is much smaller than the copper shell thickness, even for the assessment time of 10 6 years. Several processes give corrosion depths less than 100 μm, but no process give corrosion depths larger than a few millimetres

  4. Corrosion calculations report for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    This report is a compilation of the quantitative assessments of corrosion of the copper canisters in a KBS-3 repository. The calculations are part of the safety assessment SR-Site that is the long-term safety assessment to support the license application for building a final repository for spent nuclear fuel at Forsmark, Sweden. The safety assessment methodology gives the frame for the structured and documented approach to assess all conceivable corrosion processes. The quantitative assessments are done in different ways depending on the nature of the process and on the implications for the long-term safety. The starting point for the handling of the corrosion processes is the description of all known corrosion processes for copper with the current knowledge base and applied to the specific system and geology. Already at this stage some processes are excluded for further analysis, for example if the repository environment is not a sufficient prerequisite for the process to occur. The next step is to identify processes where the extent of corrosion could be bounded, e.g. by a mass balance approach. For processes where a mass balance is not limiting, the mass transport of corrodants (or corrosion products) is taken into account. A simple approach would be just to calculate the diffusive transport of corrodants through the bentonite, but generally the transport resistance for the interface between groundwater in a rock fracture intersecting the deposition hole and the bentonite buffer is more important. In SR-Site, the concept of equivalent flowrate, Q{sub eq}, is used. This assessment is done integrated with the evaluation of the geochemical and hydrogeological evolution of the repository. For most of the corrosion processes analysed, the corrosion depth is much smaller than the copper shell thickness, even for the assessment time of 106 years. Several processes give corrosion depths less than 100 mum, but no process give corrosion depths larger than a few

  5. Corrosion of structural materials for Generation IV systems

    International Nuclear Information System (INIS)

    Balbaud-Celerier, F.; Cabet, C.; Courouau, J.L.; Martinelli, L.; Arnoux, P.

    2009-01-01

    The Generation IV International Forum aims at developing future generation nuclear energy systems. Six systems have been selected for further consideration: sodium-cooled fast reactor (SFR), gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR) and very high temperature reactor (VHTR). CEA, in the frame of a national program, of EC projects and of the GIF, contributes to the structural materials developments and research programs. Particularly, corrosion studies are being performed in the complex environments of the GEN IV systems. As a matter of fact, structural materials encounter very severe conditions regarding corrosion concerns: high temperatures and possibly aggressive chemical environments. Therefore, the multiple environments considered require also a large diversity of materials. On the other hand, the similar levels of working temperatures as well as neutron spectrum imply also similar families of materials for the various systems. In this paper, status of the research performed in CEA on the corrosion behavior of the structural material in the different environments is presented. The materials studied are either metallic materials as austenitic (or Y, La, Ce doped) and ferrito-martensitic steels, Ni base alloys, ODS steels, or ceramics and composites. In all the environments studied, the scientific approach is identical, the objective being in all cases the understanding of the corrosion processes to establish recommendations on the chemistry control of the coolant and to predict the long term behavior of the materials by the development of corrosion models. (author)

  6. Irradiation-accelerated corrosion of reactor core materials

    International Nuclear Information System (INIS)

    Bartels, David; Was, Gary; Jiao, Zhijie

    2012-09-01

    The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, but also applies to most all other GenIV concepts. Of these four drivers, the combination of radiation and corrosion presents a unique and extremely challenging environment for materials, for which an understanding of the fundamental science is essentially absent. Irradiation can affect corrosion or oxidation in at least three different ways. Radiation interaction with water results in the decomposition of water into radicals and oxidizing species that will increase the electrochemical corrosion potential and lead to greater corrosion rates. Irradiation of the solid surface can produce excited states that can alter corrosion, such as in the case of photo-induced corrosion. Lastly, displacement damage in the solid will result in a high flux of defects to the solid-solution interface that can alter and perhaps, accelerate interface reactions. While there exists reasonable understanding of how corrosion is affected by irradiation of the aqueous environment, there is little understanding of how irradiation affects corrosion through its impact on the solid, whether metal or oxide. The reason is largely due to the difficulty of conducting experiments that can measure this effect separately. We have undertaken a project specifically to separate the several effects of irradiation on the mechanisms of corrosion. We seek to answer the question: How does radiation damage to the solution-oxide couple affect the oxidation process differently from radiation damage to either component alone? The approach taken in this work is to closely compare corrosion accelerated by (1) proton irradiation, (2) electron irradiation, and (3) chemical corrosion potential effects alone, under typical PWR operating conditions at 300 deg. C. Both 316 stainless steel and zirconium are to be studied. The proton

  7. Environmentally Preferable Coatings for Structural Steel Project

    Science.gov (United States)

    Lewis, Pattie L. (Editor)

    2014-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described a the "launch support and infrastructure modernization program" in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion resistant coatings for launch facilities and ground support equipment. The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. Number of facilities/structures with metallic structural and non-structural components in a highly corrosive environment. Metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the application of corrosion protective coating system.

  8. Implementation of Agile project management in spent nuclear fuel characterization process

    International Nuclear Information System (INIS)

    Vinas Pena, P.

    2015-01-01

    Full text of publication follows. Spent nuclear fuel characterization (SNFC) is a complex process that covers different areas of analysis and whose final goal is to provide an accurate description of spent nuclear fuel (SNF) status for its future classification for storage and transport. The need to reduce the SNFC processing time maintaining the quality of the product has motivated ENUSA to research and implement Agile project management and human performance techniques. The Agile management techniques are focused in accommodate changes or new requirements in the project during the elaboration process without suffering delays or lose of quality. For its SNF projects ENUSA uses 2 complementary techniques: SCRUM and Kanban. SCRUM methodology is based on divide the process into activities blocks. Each block is a finished part of the final product which allows periodical deliveries of the product and the easy introduction of changes if they are necessary. The characterization process is formed by blocks of activities based on different analysis for every fuel assembly as the existence of leaking rods; the analysis of the structural integrity considering the existence of missing rods, broken or missing grids or grid straps or grid springs...; the corrosion phenomenon on the rod that could affect its integrity during the storage and transport; the burnup of the fuel assembly; the analysis of the rod internal pressure and its effect on rod failure mechanism as creep or on the material embrittlement due to the radial hydride precipitation; the compatibility with the container to avoid operational problems during cask loading and unloading, and any new input based on the regulatory evolution and the industry state of the art. The different analysis can be developed at the same time as they are independent. Kanban methodology consists in a visual representation of the evolution of the process. In a chart, the different activities needed to perform any of the analysis

  9. Corrosion-resistant coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, D.M.; Martin, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  10. Crevice Corrosion on Ni-Cr-Mo Alloys

    International Nuclear Information System (INIS)

    P. Jakupi; D. Zagidulin; J.J. Noel; D.W. Shoesmith

    2006-01-01

    Ni-Cr-Mo alloys were developed for their exceptional corrosion resistance in a variety of extreme corrosive environments. An alloy from this series, Alloy-22, has been selected as the reference material for the fabrication of nuclear waste containers in the proposed Yucca Mountain repository located in Nevada (US). A possible localized corrosion process under the anticipated conditions at this location is crevice corrosion. therefore, it is necessary to assess how this process may, or may not, propagate if the use of this alloy is to be justified. Consequently, the primary objective is the development of a crevice corrosion damage function that can be used to assess the evolution of material penetration rates. They have been using various electrochemical methods such as potentiostatic, galvanostatic and galvanic coupling techniques. Corrosion damage patterns have been investigated using surface analysis techniques such as scanning electron microscopy (SEM) and optical microscopy. All crevice corrosion experiments were performed at 120 C in 5M NaCl solution. Initiating crevice corrosion on these alloys has proven to be difficult; therefore, they have forced it to occur under either potentiostatic or galvanostatic conditions

  11. The corrosion behavior of DWPF glasses

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.

    1995-01-01

    The authors analyzed the corroded surfaces of reference glasses developed for the Defense Waste Processing Facility (DWPF) to characterize their corrosion behavior. The corrosion mechanism of nuclear waste glasses must be known in order to provide source terms describing radionuclide release for performance assessment calculations. Different DWPF reference glasses were corroded under conditions that highlighted various aspects of the corrosion process and led to different extents of corrosion. The glasses corroded by similar mechanisms, and a phenomenological description of their corrosion behavior is presented here. The initial leaching of soluble glass components results in the formation of an amorphous gel layer on the glass surface. The gel layer is a transient phase that transforms into a layer of clay crystallites, which equilibrates with the solution as corrosion continues. The clay layer does not act as a barrier to either water penetration or glass dissolution, which continues beneath it, and may eventually separate from the glass. Solubility limits for glass components may be established by the eventual precipitation of secondary phases; thus, corrosion of the glass becomes controlled by the chemical equilibrium between the solution and the assemblage of secondary phases. In effect, the solution is an intermediate phase through which the glass transforms to an energetically more favorable assemblage of phases. Implications regarding the prediction of long-term glass corrosion behavior are discussed

  12. Effect of ion nitridation process on hardness and the corrosion resistance of biomaterials

    International Nuclear Information System (INIS)

    Wirjoadi; Lely Susita; Bambang Siswanto; Sudjatmoko

    2012-01-01

    Ion nitriding process has been performed on metal biomaterials to improve their mechanical properties of materials, particularly to increase hardness and corrosion resistance. This metallic biomaterials used for artificial bone or a prosthetic graft and used as devices of orthopedic biomaterials are usually of 316L SS metal-type and Ti-6Al-4V alloy. The purpose of this study is to research the development and utilization of ion nitridation method in order to get iron and titanium nitride thin films on the metallic biomaterials for artificial bone that has wear resistance and corrosion resistance is better. Microhardness of the samples was measured using a microhardness tester, optimum hardness of SS 316L samples are about 582 VHN, this was obtained at the nitriding temperature of 500 °C, the nitriding time of 3 hours and the nitrogen gas pressure of 1.6 mbar, while optimum hardness of Ti-6Al-4V alloy is 764 VHN, this was obtained at the nitriding temperature of 500 °C, the nitriding time of 4 hours and the nitrogen gas pressure of 1.6 mbar. The hardness value of SS 316L sample and Ti-6Al-4V alloy increase to 143% and 153%, if compared with standard samples. The optimum corrosion resistance at temperature of 350 °C for SS 316L and Ti-6Al-4V are 260,12 and 110,49 μA/cm 2 or corrosion rate are 29,866 and 15,189 mpy, respectively. (author)

  13. Project management process.

    Science.gov (United States)

    2007-03-01

    This course provides INDOT staff with foundational knowledge and skills in project management principles and methodologies. INDOTs project management processes provide the tools for interdisciplinary teams to efficiently and effectively deliver pr...

  14. Test Production of Anti-Corrosive Paint in Laboratory Scale

    International Nuclear Information System (INIS)

    Thein Thein Win, Daw; Khin Aye Tint, Daw; Wai Min Than, Daw

    2003-02-01

    The main purpose of this project is to produce the anti-corrosive paint in laboratory scale. In these experiments, local raw materials, natural resin (shellac), pine oil, turpentine and ethyl alcohol wer applied basically. Laboratory trials were undrtaken to determine the suitablity of raw materials ane their composition for anti-corrosive paint manufacture.The results obtained show that the anti-corrosive paint from experiment No.(30) is suitable for steel plate and this is also considered commercially economics

  15. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    International Nuclear Information System (INIS)

    J.H. Payer

    2005-01-01

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective

  16. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Guodong Sun

    2013-12-01

    Full Text Available This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source, which monitors the corrosion events in reinforced concrete (RC structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  17. Events as power source: wireless sustainable corrosion monitoring.

    Science.gov (United States)

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-12-17

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf) energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  18. Corrosion of aluminium in soft drinks.

    Science.gov (United States)

    Seruga, M; Hasenay, D

    1996-04-01

    The corrosion of aluminium (Al) in several brands of soft drinks (cola- and citrate-based drinks) has been studied, using an electrochemical method, namely potentiodynamic polarization. The results show that the corrosion of Al in soft drinks is a very slow, time-dependent and complex process, strongly influenced by the passivation, complexation and adsorption processes. The corrosion of Al in these drinks occurs principally due to the presence of acids: citric acid in citrate-based drinks and orthophosphoric acid in cola-based drinks. The corrosion rate of Al rose with an increase in the acidity of soft drinks, i.e. with increase of the content of total acids. The corrosion rates are much higher in the cola-based drinks than those in citrate-based drinks, due to the facts that: (1) orthophosphoric acid is more corrosive to Al than is citric acid, (2) a quite different passive oxide layer (with different properties) is formed on Al, depending on whether the drink is cola or citrate based. The method of potentiodynamic polarization was shown as being very suitable for the study of corrosion of Al in soft drinks, especially if it is combined with some non-electrochemical method, e.g. graphite furnace atomic absorption spectrometry (GFAAS).

  19. Corrosion investigations of high-alloyed steels carried out in different marine area organized by European Federation of Corrosion

    International Nuclear Information System (INIS)

    Birn, J.; Skalski, I.

    1999-01-01

    Research works arranged by EFC Working Party on Marine Corrosion are described. The research was performed in sea areas of Norway, Finland, Sweden, France, Italy, Poland and Netherlands. Subjected to test were three corrosion resistant steel grades; 316, 904 and UNS S 31524. Two corrosion tests were carried out in the years 1993 and 1994 each of min. 6 month duration. The results show that chemical composition of water at salinity level of more than 0.7% has not great effect on corrosion aggressivity in relation to corrosion resistant steels. On the other hand temperature of sea water has great influence on corrosion process. (author)

  20. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    International Nuclear Information System (INIS)

    J.H. Payer

    2005-01-01

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape, size, and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective. A major component of the long-term strategy for safe disposal of nuclear waste at the Yucca Mountain Repository is first to completely isolate the radionuclides in the waste packages for long times and to greatly retard the egress and transport of radionuclides from penetrated packages. Therefore, long-lived waste packages are important. The corrosion resistance of the waste package outer canister is reviewed, and a framework for the analysis of localized corrosion processes is presented. An overview is presented of the Materials Performance targeted thrust of the U.S. Department of Energy/Office of Civilian Radioactive Waste Management's Office of Science and Technology and International. The thrust program strives for increased scientific understanding, enhanced process models and advanced technologies for corrosion control

  1. Effect of Annealing on the Pitting Corrosion Resistance of Anodized Aluminum-Magnesium Alloy Processed by Equal Channel Angular Pressing

    Energy Technology Data Exchange (ETDEWEB)

    Son, In Joon; Nakano, Hiroaki; Oue, Satoshi; Fukushima, Hisaaki; Horita, Zenji [Kyushu University, Fukuoka (Japan); Kobayashi, Shigeo [Kyushu Sangyo University, Fukuoka (Japan)

    2007-12-15

    The effect of annealing on the pitting corrosion resistance of anodized Al-Mg alloy (AA5052) processed by equal-channel angular pressing (ECAP) was investigated by electrochemical techniques in a solution containing 0.2 mol/L of AlCl{sub 3} and also by surface analysis. The Al-Mg alloy was annealed at a fixed temperature between 473 and 573 K for 120 min in air after ECAP. Anodizing was conducted for 40 min at 100-400 A/m{sup 2} at 293 K in a solution containing 1.53 mol/L of H{sub 2}SO{sub 4} and 0.0185 mol/L of Al{sub 2}(SO{sub 4}){sub 3}. The internal stress generated in anodic oxide films during anodization was measured with a strain gauge to clarify the effect of ECAP on the pitting corrosion resistance of anodized Al-Mg alloy. The time required to initiate the pitting corrosion of anodized Al-Mg alloy was shorter in samples subjected to ECAP, indicating that ECAP decreased the pitting corrosion resistance. however, the pitting corrosion resistance was greatly improved by annealing after ECAP. The time required to initiate pitting corrosion increased with increasing annealing temperature. The strain gauge attached to Al-Mg alloy revealed that the internal stress present in the anodic oxide films was compressive stress, and that the stress was larger with ECAP than without. The compressive internal stress gradually decreased with increasing annealing temperature. Scanning electron microscopy showed that cracks occurred in the anodic oxide film on Al-Mg alloy during initial corrosion and that the cracks were larger with ECAP than without. The ECAP process of severe plastic deformation produces large internal stresses in the Al-Mg alloy: the stresses remain in the anodic oxide films, increasing the likelihood of cracks. it is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from ECAP. The improvement in the pitting corrosion resistance of anodized AlMg alloy as a result of annealing appears to be

  2. Effect of Annealing on the Pitting Corrosion Resistance of Anodized Aluminum-Magnesium Alloy Processed by Equal Channel Angular Pressing

    International Nuclear Information System (INIS)

    Son, In Joon; Nakano, Hiroaki; Oue, Satoshi; Fukushima, Hisaaki; Horita, Zenji; Kobayashi, Shigeo

    2007-01-01

    The effect of annealing on the pitting corrosion resistance of anodized Al-Mg alloy (AA5052) processed by equal-channel angular pressing (ECAP) was investigated by electrochemical techniques in a solution containing 0.2 mol/L of AlCl 3 and also by surface analysis. The Al-Mg alloy was annealed at a fixed temperature between 473 and 573 K for 120 min in air after ECAP. Anodizing was conducted for 40 min at 100-400 A/m 2 at 293 K in a solution containing 1.53 mol/L of H 2 SO 4 and 0.0185 mol/L of Al 2 (SO 4 ) 3 . The internal stress generated in anodic oxide films during anodization was measured with a strain gauge to clarify the effect of ECAP on the pitting corrosion resistance of anodized Al-Mg alloy. The time required to initiate the pitting corrosion of anodized Al-Mg alloy was shorter in samples subjected to ECAP, indicating that ECAP decreased the pitting corrosion resistance. however, the pitting corrosion resistance was greatly improved by annealing after ECAP. The time required to initiate pitting corrosion increased with increasing annealing temperature. The strain gauge attached to Al-Mg alloy revealed that the internal stress present in the anodic oxide films was compressive stress, and that the stress was larger with ECAP than without. The compressive internal stress gradually decreased with increasing annealing temperature. Scanning electron microscopy showed that cracks occurred in the anodic oxide film on Al-Mg alloy during initial corrosion and that the cracks were larger with ECAP than without. The ECAP process of severe plastic deformation produces large internal stresses in the Al-Mg alloy: the stresses remain in the anodic oxide films, increasing the likelihood of cracks. it is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from ECAP. The improvement in the pitting corrosion resistance of anodized AlMg alloy as a result of annealing appears to be attributable to a decrease in

  3. In-reactor fuel cladding external corrosion measurement process and results

    International Nuclear Information System (INIS)

    Thomazet, J.; Musante, Y.; Pigelet, J.

    1999-01-01

    Analysis of the zirconium alloy cladding behaviour calls for an on-site corrosion measurement device. In the 80's, a FISCHER probe was used and allowed oxide layer measurements to be taken along the outer generating lines of the peripheral fuel rods. In order to allow measurements on inner rods, a thin Eddy current probe called SABRE was developed by FRAMATOME. The SABRE is a blade equipped with two E.C coils is moved through the assembly rows. A spring allows the measurement coil to be clamped on each of the generating lines of the scanned rods. By inserting this blade on all four assembly faces, measurements can also be performed along several generating lines of the same rod. Standard rings are fitted on the device and allow on-line calibration for each measured row. Signal acquisition and processing are performed by LAGOS, a dedicated software program developed by FRAMATOME. The measurements are generally taken at the cycle outage, in the spent fuel pool. On average, data acquisition calls for one shift per assembly (eight hours): this corresponds to more than 2500 measurement points. These measurements are processed statistically by the utility program SAN REMO. All the results are collected in a database for subsequent behaviour analysis: examples of investigated parameters are the thermal/hydraulic conditions of the reactors, the irradiation history, the cladding material, the water chemistry This analysis can be made easier by comparing the behaviour measurement and prediction by means of the COROS-2 corrosion code. (author)

  4. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    International Nuclear Information System (INIS)

    Zhang, Haiya; Tian, Yimei; Wan, Jianmei; Zhao, Peng

    2015-01-01

    Highlights: • Compared to sterile water, biofilm in reclaimed water promoted corrosion process significantly. • Corrosion rate was accelerated by the biofilm in the first 7 days but was inhibited afterwards. • There was an inverse correlation between the biofilm thickness and general corrosion rate. • Corrosion process was influenced by bacteria, EPS and corrosion products comprehensively. • The corrosion process can be divided into three different stages in our study. - Abstract: Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  5. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haiya, E-mail: flying850612@126.com; Tian, Yimei, E-mail: ymtian_2000@126.com; Wan, Jianmei, E-mail: 563926510@qq.com; Zhao, Peng, E-mail: zhpeng@tju.edu.cn

    2015-12-01

    Highlights: • Compared to sterile water, biofilm in reclaimed water promoted corrosion process significantly. • Corrosion rate was accelerated by the biofilm in the first 7 days but was inhibited afterwards. • There was an inverse correlation between the biofilm thickness and general corrosion rate. • Corrosion process was influenced by bacteria, EPS and corrosion products comprehensively. • The corrosion process can be divided into three different stages in our study. - Abstract: Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  6. Report on materials characterization center workshop on stress corrosion cracking for the Salt Repository Project, December 16-17, 1986, Seattle, Washington: Workshop summary

    International Nuclear Information System (INIS)

    Merz, M.D.; Shannon, D.W.

    1986-09-01

    The Materials Characterization Center (MCC) at Pacific Northwest Laboratory (PNL) conducted a Workshop on Stress Corrosion Cracking for the Salt Repository Project on December 16 and 17, 1986 in Seattle, Washington. The workshop was held to formulate recommendations for addressing stress corrosion cracking (SCC) in a salt repository. It was attended by 24 representatives from major laboratories, universities, and industry. This report presents the recommendations of the workshop, along with the agenda, list of participants, questions and comments, summaries of working groups on low-strength steel and alternate materials, and materials handed out by the speakers

  7. Corrosion tests of high temperature alloys in impure helium

    International Nuclear Information System (INIS)

    Berka, Jan; Kalivodova, Jana; Vilemova, Monika; Skoumalova, Zuzana; Brabec, Petr

    2014-01-01

    Czech research organizations take part several projects concerning technologies and materials for advanced gas cooled reactors, as an example international project ARCHER supported by EU within FP7, also several national projects supported by Technology Agency of the Czech Republic are solved in cooperation with industrial and research organization. Within these projects the material testing program is performed. The results presented in these paper concerning high temperature corrosion and degradation of alloys (800 H, SS 316 and P91) in helium containing minor impurities (H_2, CO, CH_4, HZO) at temperatures up to 760°C. After corrosion tests (up to 1500 hours) the specimens was investigated by several methods (gravimetry, SEM-EDX, optical microscopy, hardness and micro-hardness testing etc. (author)

  8. Process-based software project management

    CERN Document Server

    Goodman, F Alan

    2006-01-01

    Not connecting software project management (SPM) to actual, real-world development processes can lead to a complete divorcing of SPM to software engineering that can undermine any successful software project. By explaining how a layered process architectural model improves operational efficiency, Process-Based Software Project Management outlines a new method that is more effective than the traditional method when dealing with SPM. With a clear and easy-to-read approach, the book discusses the benefits of an integrated project management-process management connection. The described tight coup

  9. Decontamination and materials corrosion concerns in the BWR

    International Nuclear Information System (INIS)

    Gordon, B.M.; Gordon, G.M.

    1988-01-01

    The qualification of chemical decontamination processes to decontaminate complete systems or individual components in essential if effective inspection, maintenance, repair or replacement of plant components is to be achieved with minimum exposure of workers to ionizing radiation. However, it is critical that the benefits of decontamination processes are not overshadowed by deleterious materials/ corrosion side effects during the application of the process or during subsequent operation. This paper discusses such potential corrosion/materials problems in the BWR and presents relevant available corrosion data for the various commercial decontamination processes. (author)

  10. IT Project Prioritization Process

    DEFF Research Database (Denmark)

    Shollo, Arisa; Constantiou, Ioanna

    2013-01-01

    In most of the large companies IT project prioritization process is designed based on principles of evidencebased management. We investigate a case of IT project prioritization in a financial institution, and in particular, how managers practice evidence-based management during this process. We use...... a rich dataset built from a longitudinal study of the prioritization process for the IT projects. Our findings indicate that managers reach a decision not only by using evidence but from the interplay between the evidence and the judgment devices that managers employ. The interplay between evidence...

  11. Atmospheric corrosion of metals in industrial city environment

    OpenAIRE

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the s...

  12. Corrosion surveillance program of aluminum spent fuel elements in wet storage sites

    International Nuclear Information System (INIS)

    Linardi, E; Haddad, R

    2012-01-01

    Due to different degradation issues observed in aluminum-clad spent fuel during long term storage in water, the IAEA implemented in 1996 a Coordinated Research Project (CRP) and a Regional Project for Latin America, on Corrosion of Research Reactor Aluminum Clad Spent Fuel in Water. Argentine has been among the participant countries of these projects, carrying out spent fuel corrosion surveillance activities in its storage facilities. As a result of the research a large database on corrosion of aluminum-clad fuel has been generated. It was determined that the main types of corrosion affecting the spent fuel are pitting and galvanic corrosion due to contact with stainless steel. It was concluded that the quality of the water is the critical factor to control in a spent fuel storage facility. Another phase of the program is being conducted currently, which began in 2011 with the immersion of test racks in the RA1 reactor pool, and in the Research Reactor Spent Fuel Storage Facility (FACIRI), located in Ezeiza Atomic Center. This paper presents the results of the chemical analysis of the water performed so far, and its relationship with the examination of the coupons extracted from the sites (author)

  13. Effect of Thermomechanical Processing and Crystallographic Orientation on the Corrosion Behavior of API 5L X70 Pipeline Steel

    Science.gov (United States)

    Ohaeri, Enyinnaya; Omale, Joseph; Eduok, Ubong; Szpunar, Jerzy

    2018-04-01

    This work presents the electrochemical response of X70 pipeline steel substrates thermomechanically processed at different conditions. The WE sample was hot rolled at a temperature range of 850 °C to 805 °C and cooled at a rate of 42.75 °C/s. Another sample WD was hot rolled from 880 °C to 815 °C and cooled at a faster rate of 51.5 °C/s. Corrosion tests were conducted electrochemically by potentiodynamic polarization in hydrogen-charged and non-hydrogen-charged environments. A lower corrosion rate was measured with hydrogen charging due to the rapid formation of corrosion product film on pipeline substrate, but WE specimen emerged as the most susceptible to corrosion with and without hydrogen charging. Variations in thermomechanical rolling conditions influenced grain orientation, protective film properties, corrosion, and cracking behavior on both specimens. Cracks were seen in both specimens after hydrogen charging, but specimen WE experienced a more intense deterioration of protective corrosion product film and subsequent cracking. A large part of specimen WD retained its protective corrosion product film after the polarization test, and sites where spalling occurred resulted in pitting with less cracking. Despite weak crystallographic texture noticed in both specimens, WD showed a higher intensity of corrosion-resistant 111||ND-oriented grains, while WE showed a more random distribution of 111||ND-, 011||ND-, and 001||ND-oriented grains with a lower intensity.

  14. Effect of Thermomechanical Processing and Crystallographic Orientation on the Corrosion Behavior of API 5L X70 Pipeline Steel

    Science.gov (United States)

    Ohaeri, Enyinnaya; Omale, Joseph; Eduok, Ubong; Szpunar, Jerzy

    2018-06-01

    This work presents the electrochemical response of X70 pipeline steel substrates thermomechanically processed at different conditions. The WE sample was hot rolled at a temperature range of 850 °C to 805 °C and cooled at a rate of 42.75 °C/s. Another sample WD was hot rolled from 880 °C to 815 °C and cooled at a faster rate of 51.5 °C/s. Corrosion tests were conducted electrochemically by potentiodynamic polarization in hydrogen-charged and non-hydrogen-charged environments. A lower corrosion rate was measured with hydrogen charging due to the rapid formation of corrosion product film on pipeline substrate, but WE specimen emerged as the most susceptible to corrosion with and without hydrogen charging. Variations in thermomechanical rolling conditions influenced grain orientation, protective film properties, corrosion, and cracking behavior on both specimens. Cracks were seen in both specimens after hydrogen charging, but specimen WE experienced a more intense deterioration of protective corrosion product film and subsequent cracking. A large part of specimen WD retained its protective corrosion product film after the polarization test, and sites where spalling occurred resulted in pitting with less cracking. Despite weak crystallographic texture noticed in both specimens, WD showed a higher intensity of corrosion-resistant 111|| ND-oriented grains, while WE showed a more random distribution of 111|| ND-, 011|| ND-, and 001|| ND-oriented grains with a lower intensity.

  15. Oxidation effect on steel corrosion and thermal loads during corium melt in-vessel retention

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A.; Almjashev, V.I. [Alexandrov Scientific-Research Technology Institute (NITI), Sosnovy Bor (Russian Federation); Bechta, S.V. [KTH, Stockholm (Sweden); Gusarov, V.V. [SPb State Technology University (SPbGTU), St. Petersburg (Russian Federation); Barrachin, M. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), St Paul lez Durance (France); Bottomley, P.D., E-mail: paul.bottomley@ec.europa.eu [EC-Joint Research Centre, Institute for Transuranium Elements (ITU), Karlsruhe (Germany); Fischer, M. [AREVA GmbH, Erlangen (Germany); Piluso, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Cadarache, St Paul lez Durance (France)

    2014-10-15

    Highlights: • The METCOR facility simulates vessel steel corrosion in contact with corium. • Steel corrosion rates in UO{sub 2+x}–ZrO{sub 2}–FeO{sub y} coria accelerate above 1050 K. • However corrosion rates can also be limited by melt O{sub 2} supply. • The impact of this on in-vessel retention (IVR) strategy is discussed. - Abstract: During a severe accident with core meltdown, the in-vessel molten core retention is challenged by the vessel steel ablation due to thermal and physicochemical interaction of melt with steel. In accidents with oxidizing atmosphere above the melt surface, a low melting point UO{sub 2+x}–ZrO{sub 2}–FeO{sub y} corium pool can form. In this case ablation of the RPV steel interacting with the molten corium is a corrosion process. Experiments carried out within the International Scientific and Technology Center's (ISTC) METCOR Project have shown that the corrosion rate can vary and depends on both surface temperature of the RPV steel and oxygen potential of the melt. If the oxygen potential is low, the corrosion rate is controlled by the solid phase diffusion of Fe ions in the corrosion layer. At high oxygen potential and steel surface layer temperature of 1050 °C and higher, the corrosion rate intensifies because of corrosion layer liquefaction and liquid phase diffusion of Fe ions. The paper analyzes conditions under which corrosion intensification occurs and can impact on in-vessel melt retention (IVR)

  16. Waste Tank Corrosion Program at Savannah River Site

    International Nuclear Information System (INIS)

    Chandler, J.R.; Hsu, T.C.; Hobbs, D.T.; Iyer, N.C.; Marra, J.E.; Zapp, P.E.

    1993-01-01

    The Savannah River Site (SRS) has approximately 30 million gallons of high level radioactive waste stored in 51 underground tanks. SRS has maintained an active corrosion research and corrosion control and monitoring program throughout the operating history of SRS nuclear waste storage tanks. This program is largely responsible for the successful waste storage experience at SRS. The program has consisted of extensive monitoring of the tanks and surrounding environment for evidence of leaks, extensive research to understand the potential corrosion processes, and development and implementation of corrosion chemistry control. Current issues associated with waste tank corrosion are primarily focused on waste processing operations and are being addressed by a number of active programs and initiatives

  17. Flow velocity effect on the corrosion/erosion in water injection systems; Efecto de la velocidad de flujo en la corrosion/erosion en sistemas de inyeccion de agua

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, C.; Mendez, J. [PDVSA Exploracion y reduccion, Departamento de Ingenieria de Instalaciones, Torres Petroleras EX-MRV, Torre Lama, Piso No. 6, Zulia, Apartado 4013, Venezuela (Venezuela)

    1998-12-31

    The main causes of fails at water injection lines on the secondary petroleum recovery systems are related with corrosion/erosion problems which are influenced by the flow velocity, the presence of dissolved oxygen, solids in the medium and the microorganisms proliferation. So too, this corrosion process promotes the suspended solids generation which affects the water quality injected, causing wells tamponage and loss of injectivity, with the consequent decrease in the crude production. This situation has been impacted in meaning order at the production processes of an exploration enterprise which utilizes the Maracaibo lake as water resource for their injection by pattern projects. Stating that, it was developed a study for determining in experimental order the effect of flow velocity on the corrosion/erosion process joined to the presence of dissolved oxygen which allows to determine the optimum range of the said working velocity for the water injection systems. This range is defined by critical velocities of bio layers deposition and erosion. They were realized simulation pilot tests of the corrosion standard variables, concentration of dissolved oxygen and fluid velocity in the injection systems with filtered and non filtered water. For the development of these tests it was constructed a device which allows to install and expose cylindrical manometers of carbon steel according to predetermined conditions which was obtained the necessary information to make correlations the results of these variables. Additionally, they were determined the mathematical models that adjusts to dynamical behavior of the corrosion/erosion process, finding the optimum range of the flow velocity for the control of this process, being necessary to utilize the following techniques: Scanning Electron Microscopy (SEM), X-ray dispersion analysis (EDX) for encourage the surface studies. They were effected morphological analysis of the surfaces studies and the values were determined of

  18. Corrosion analysis in mooring chain links; Analise de corrosao em elos de amarras

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Silvia N.; Pereira, Marcos V. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia; Costa, Luis C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Motta, Sergio H. [Brasilamarras - Companhia Brasileira de Amarras, Niteroi, RJ (Brazil)

    2004-07-01

    The purpose of this work was to characterize the localized corrosion phenomenon in the weld region of offshore mooring chain links type ORQ. In this sense, a number of chain links were selected after finishing their projected life time without corrosion signs (chains without corrosion) as well as chain links which showed a reduced life time caused by localized corrosion (chains with corrosion). In the sequence, electrochemistry tests evaluated the corrosion susceptibility of the different regions of the weld joint. The results showed that the heat affected zone concerning the chains with corrosion was the anodic region, with high corrosion rate, while the same region on the not corroded chains was the cathodic one, with low corrosion rate. (author)

  19. Six Sigma Evaluation of the High Level Waste Tank Farm Corrosion Control Program at the Savannah River Site

    International Nuclear Information System (INIS)

    Hill, P. J.

    2003-01-01

    Six Sigma is a disciplined approach to process improvement based on customer requirements and data. The goal is to develop or improve processes with defects that are measured at only a few parts per million. The process includes five phases: Identify, Measure, Analyze, Improve, and Control. This report describes the application of the Six Sigma process to improving the High Level Waste (HLW) Tank Farm Corrosion Control Program. The report documents the work performed and the tools utilized while applying the Six Sigma process from September 28, 2001 to April 1, 2002. During Fiscal Year 2001, the High Level Waste Division spent $5.9 million to analyze samples from the F and H Tank Farms. The largest portion of these analytical costs was $2.45 million that was spent to analyze samples taken to support the Corrosion Control Program. The objective of the Process Improvement Project (PIP) team was to reduce the number of analytical tasks required to support the Corrosion Control Program by 50 percent. Based on the data collected, the corrosion control decision process flowchart, and the use of the X-Y Matrix tool, the team determined that analyses in excess of the requirements of the corrosion control program were being performed. Only two of the seven analytical tasks currently performed are required for the 40 waste tanks governed by the Corrosion Control Program. Two additional analytical tasks are required for a small subset of the waste tanks resulting in an average of 2.7 tasks per sample compared to the current 7 tasks per sample. Forty HLW tanks are sampled periodically as part of the Corrosion Control Program. For each of these tanks, an analysis was performed to evaluate the stability of the chemistry in the tank and then to determine the statistical capability of the tank to meet minimum corrosion inhibitor limits. The analyses proved that most of the tanks were being sampled too frequently. Based on the results of these analyses and th e use of additional

  20. Corrosion-Resistant High-Entropy Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Yunzhu Shi

    2017-02-01

    Full Text Available Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods on the corrosion resistance are analyzed in detail. Furthermore, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.

  1. Effect of Different Welding Processes on Electrochemical and Corrosion Behavior of Pure Nickel in 1 M NaCl Solution

    Directory of Open Access Journals (Sweden)

    Xijing Wang

    2017-11-01

    Full Text Available A plasma arc welding (PAW-tungsten inert gas (TIG hybrid welding process is proposed to weld pure nickel. In PAW-TIG welding, the arc of the PAW was first to be ignited, then TIG was ignited, while in PAW welding, only the PAW arc was launched. This paper investigated the effect of different welding processes on electrochemical and corrosion performance of between a pure nickel joint and a base metal in an aerated 1 M NaCl solution, respectively. The average grain size of the joint fabricated by PAW welding (denoted as JP joint is 463.57 μm, the joint fabricated by PAW-TIG welding(denoted as JP-T joint is 547.32 μm, and the base metal (BM is 47.32 μm. In this work, the passivity behaviors of samples were characterized for two welding processes by electrochemical impedance spectroscopy (EIS, open circuit potential versus immersion time (OCP-t, and the potentiodynamic polarization plots. EIS spectra, attained with different immersion times, were analyzed and fitted by an equivalent electrical circuit. Photomicrographs of BM, JP, and JP-T were also taken with a scanning electron microscope (SEM to reveal the morphological structure of the pit surfaces. Electrochemical tests show that the sequence of the corrosion resistance is BM > JP > JP-T. The size and quantity of the hemispherical corrosion pits of all samples are different. The corrosion morphology observations found a consistency with the consequence of the electrochemical measurements. The results show that an increase of the grain dimensions due to different heat treatments decreased the pure nickel stability to pitting corrosion.

  2. Automatic identification of corrosion damage using image processing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bento, Mariana P.; Ramalho, Geraldo L.B.; Medeiros, Fatima N.S. de; Ribeiro, Elvis S. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Medeiros, Luiz C.L. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper proposes a Nondestructive Evaluation (NDE) method for atmospheric corrosion detection on metallic surfaces using digital images. In this study, the uniform corrosion is characterized by texture attributes extracted from co-occurrence matrix and the Self Organizing Mapping (SOM) clustering algorithm. We present a technique for automatic inspection of oil and gas storage tanks and pipelines of petrochemical industries without disturbing their properties and performance. Experimental results are promising and encourage the possibility of using this methodology in designing trustful and robust early failure detection systems. (author)

  3. Atmospheric corrosion of metals in industrial city environment.

    Science.gov (United States)

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-06-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  4. Liquid metal corrosion considerations in alloy development

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Liquid metal corrosion can be an important consideration in developing alloys for fusion and fast breeder reactors and other applications. Because of the many different forms of liquid metal corrosion (dissolution, alloying, carbon transfer, etc.), alloy optimization based on corrosion resistance depends on a number of factors such as the application temperatures, the particular liquid metal, and the level and nature of impurities in the liquid and solid metals. The present paper reviews the various forms of corrosion by lithium, lead, and sodium and indicates how such corrosion reactions can influence the alloy development process

  5. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance.

    Science.gov (United States)

    Li, Jian; Wu, Runni; Jing, Zhijiao; Yan, Long; Zha, Fei; Lei, Ziqiang

    2015-10-06

    A simple method was used to generate colorful hydrophobic stearate particles via chemical reactions between inorganic salts and sodium stearate. Colored self-cleaning superhydrophobic coatings were prepared through a facile one-step spray-coating process by spraying the stearate particle suspensions onto stainless steel substrates. Furthermore, the colorful superhydrophobic coating maintains excellent chemical stability under both harsh acidic and alkaline circumstances. After being immersed in a 3.5 wt % NaCl aqueous solution for 1 month, the as-prepared coatings remained superhydrophobic; however, they lost their self-cleaning property with a sliding angle of about 46 ± 3°. The corrosion behavior of the superhydrophobic coatings on the Al substrate was characterized by the polarization curve and electrochemical impedance spectroscopy (EIS). The electrochemical corrosion test results indicated that the superhydrophobic coatings possessed excellent corrosion resistance, which could supply efficient and long-term preservation for the bare Al substrate.

  6. The use of nitrogen to improve the corrosion resistance of FeCrNiMo alloys for the chemical process industries

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, J.R.; Deverell, H.E.

    1987-06-01

    The addition of 0.1 to 0.25 wt% nitrogen to austenitic alloys has been shown to enhance resistance to localized corrosion in oxidizing chloride and reducing acid solutions. Further tests of FeCrNiMo alloys assess the effects of nitrogen additions on: mechanical properties, chloride and caustic stress corrosion cracking resistance, passivation characteristics, and general corrosion rates in various acid, alkali, and salt solutions pertinent to the chemical process industries. The precipitation of chromium-rich secondary phases was retarded by solid solution additions of 0.1 to 0.25 wt% nitrogen. The corrosion resistance of FeCrNiMoN alloys in the welded condition was improved by using shield-gas mixtures of argon and 2.5 to 5.0 wt% nitrogen.

  7. Fast breeder project (PSB)

    International Nuclear Information System (INIS)

    1976-07-01

    Activities performed during the 1st quarter of 1976 at or on behalf of the Gesellschaft fuer Kernforschung mbH, Karlsruhe, within the framework of the Fast Breeder Project are given a survey. The following project subdivisions are dealt with: Fuel rod development; materials testing and developments; corrosion studies and coolant analyses; physical experiments; reactor theory; safety of fast breeders; instrumentation and signal processing for core monitoring; effects on the environment; sodium technology tests; thermodynamic and fluid flow tests in gas. (HR) [de

  8. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    International Nuclear Information System (INIS)

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-01-01

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a given opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied

  9. M.A. Streicher findings regarding high-level waste tank corrosion issues

    International Nuclear Information System (INIS)

    Husa, E.I.

    1994-01-01

    Dr. Michael A. Streicher is a nationally recognized metallurgist and corrosion scientist. He has served on the Department of Energy, Headquarters Tank Structural Integrity panel as the primary corrosion technical expert since the panel's inception in October 1991. Attachments 3 through 13 are Dr. Streicher's correspondence and presentations to the panel between November 1991 and May 1994. This compilation addresses Dr. Streicher's findings on High-Level Waste tank corrosion issues such as: corrosion mechanisms in carbon steels; hydrogen generation from waste tank corrosion; stress corrosion cracking in carbon steel tanks; water line attack in Hanford's single-shell tanks; stress corrosion cracking of austenitic stainless steels; and materials selection for new Hanford waste tanks. These papers discuss both generic and specific corrosion issues associated with waste tanks and transfer systems at Hanford, Savannah River, Idaho National Engineering Laboratory, and West Valley Demonstration Project

  10. Characterisation of corrosion processes of using electron micro-probe, scanning probe microscopy and synchrotron-generated x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Neufeld, A.K.; Cole, I.S.; Furman, S.A.; Isaacs, H.S.

    2002-01-01

    Full text: With recent advances in computerized technology, the study of chemical reactions can now be visualized as they occur in real time and has resulted in analytical techniques with orders of magnitude greater sensitivity and resolution. This ability offers the corrosion scientist a unique opportunity to study the processes relevant to degradation science which could only be theoretically considered. Neufeld el al (1,2) have attempted to explain in great detail the mechanism of corrosion initiation of zinc by using X-ray micro-probe, Scanning Kelvin probe, and more recently by using synchrotron-generated X-rays and X-ray fluorescence imaging. New results are presented from the synchrotron studies where the transport of ions in-situ has been investigated. The synthesis of information from the techniques will also be discussed in its relevance to atmospheric corrosion processes. Copyright (2002) Australian Society for Electron Microscopy Inc

  11. Simultaneous improvement of strength, ductility and corrosion resistance of Al2024 alloy processed by cryoforging followed by ageing

    International Nuclear Information System (INIS)

    Kumar Singh, Amit; Ghosh, Sumit; Mula, Suhrit

    2016-01-01

    The aim of the present study is to simultaneous improvement of strength and ductility as well as corrosion resistance of ultrafine grained 2024 Al-alloy processed by multiaxial cryoforging (MAF) and cryorolling followed by ageing. The evolution of ultrafine grained microstructure during MAF followed by ageing is investigated using optical and transmission electron microscopy. Both multiaxially forged (MAFed) and cryorolled (CRed) samples showed an improvement in yield strength (YS) with a corresponding decrease in the ductility. Aging treatment not only improved the YS, but also its ductility. Improvement in the ductility after ageing is confirmed by the fractography analysis. Corrosion resistance of the MAFed+aged samples found to be higher compared to that of the MAFed and coarse grained counterpart. The corrosion behavior has been analyzed in the light of open circuit potential (OCP), solutionizing, grain size and precipitation strengthening mechanisms. SEM images of the corroded samples also corroborated the corrosion test results.

  12. Corrosion inhibitors. Manufacture and technology

    International Nuclear Information System (INIS)

    Ranney, M.W.

    1976-01-01

    Detailed information is presented relating to corrosion inhibitors. Areas covered include: cooling water, boilers and water supply plants; oil well and refinery operations; fuel and lubricant additives for automotive use; hydraulic fluids and machine tool lubes; grease compositions; metal surface treatments and coatings; and general processes for corrosion inhibitors

  13. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  14. INTERWELD - European project to determine irradiation induced material changes in the heat affected zones of austenitic stainless steel welds that influence the stress corrosion behaviour in high-temperature water

    International Nuclear Information System (INIS)

    Roth, A.; Schaaf, Bob van der; Castano, M.L.; Ohms, C.; Gavillet, D.; Dyck, S. van

    2003-01-01

    PWR and BWR RPV internals have experienced stress corrosion cracking in service. The objective of the INTERWELD project is to determine the radiation induced material changes that promote stress corrosion cracking in the heat affected zone of austenitic stainless steel welds. To achieve this goal, welds in austenitic stainless steel types AISI 304/347 have been fabricated, respectively. Stress-relief annealing was applied optionally. The pre-characterisation of both the as-welded and stress relieved material conditions comprises the examination of the weld residual stresses by the ring-core-technique and neutron diffraction, the degree of sensitisation by EPR, and the stress corrosion behaviour by SSRT testing in high-temperature water. The weldments will be irratiated to 2 neutron fluence levels and a postirradiation examination will determine micromechanical, microchemical and microstructural changes in the materials. In detail, the evolution of the residual stress levels and the stress corrosion behaviour after irradiation will be determined. Neutron diffraction will be utilized for the first time with respect to neutron irradiated material. In this paper, the current state of the project will be described and discussed. (orig.)

  15. A generic statistical methodology to predict the maximum pit depth of a localized corrosion process

    International Nuclear Information System (INIS)

    Jarrah, A.; Bigerelle, M.; Guillemot, G.; Najjar, D.; Iost, A.; Nianga, J.-M.

    2011-01-01

    Highlights: → We propose a methodology to predict the maximum pit depth in a corrosion process. → Generalized Lambda Distribution and the Computer Based Bootstrap Method are combined. → GLD fit a large variety of distributions both in their central and tail regions. → Minimum thickness preventing perforation can be estimated with a safety margin. → Considering its applications, this new approach can help to size industrial pieces. - Abstract: This paper outlines a new methodology to predict accurately the maximum pit depth related to a localized corrosion process. It combines two statistical methods: the Generalized Lambda Distribution (GLD), to determine a model of distribution fitting with the experimental frequency distribution of depths, and the Computer Based Bootstrap Method (CBBM), to generate simulated distributions equivalent to the experimental one. In comparison with conventionally established statistical methods that are restricted to the use of inferred distributions constrained by specific mathematical assumptions, the major advantage of the methodology presented in this paper is that both the GLD and the CBBM enable a statistical treatment of the experimental data without making any preconceived choice neither on the unknown theoretical parent underlying distribution of pit depth which characterizes the global corrosion phenomenon nor on the unknown associated theoretical extreme value distribution which characterizes the deepest pits. Considering an experimental distribution of depths of pits produced on an aluminium sample, estimations of maximum pit depth using a GLD model are compared to similar estimations based on usual Gumbel and Generalized Extreme Value (GEV) methods proposed in the corrosion engineering literature. The GLD approach is shown having smaller bias and dispersion in the estimation of the maximum pit depth than the Gumbel approach both for its realization and mean. This leads to comparing the GLD approach to the GEV one

  16. Measurement of electrochemical noise for the study of corrosion processes of metallic alloys; Medida de ruido electroquimico para el estudio de rocesoso de corrosion de aleaciones metalicas

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Amaya, J. M.; Bethencourt, M.; Gonzalez-Rovira, L.; Botana, F. J.

    2009-07-01

    Electrochemical noise (EN) is a technique that allows the estimation of both the rate and the corrosion mechanism of different metallic alloys by means of the measurement and the analysis of the fluctuations of current and voltage. Its main advantage against other electrochemical techniques is that during the measurement process, the corrosive systems under study are not instrumentally disturbed, and therefore, the systems are kept at their natural corrosion potential. Two steps are necessary to use this technique: measurement and analysis of the EN signals. In this paper, the most important concepts related only to the measurement of EN are revised. The parameters most employed in the literature to analyse the EN signals will be described in another paper. In the present article, the experimental devices normally used to measure EN signals are firstly analysed. Subsequently, the most important properties of the EN signals are studied. Finally, the external sources of instrumental noise that can affect to the EN signals are described. (Author) 65 refs.

  17. Radiation Corrosion of in-reactor and nuclear Waste Canister overpack Materials

    International Nuclear Information System (INIS)

    Kim, Young Jin

    1986-01-01

    The effect of γ-radiation on the corrosion processes in aqueous environments has been reviewed, with particular emphasis on radiolysis of aqueous solutions and its effect on the corrosion mechanisms. A potentially critical feature of the corrosion environment would be the presence of a high γ-radiation field which could have a significant effect on corrosion processes. The radiation of an aqueous solution causes radiolysis of the water to produce a variety of products, such as H, OH, H 2 , O 2 , H 2 O 2 , etc. The radiolysis products would alter its redox chemistry, which could change the kinetics of both the initiation and propagation of corrosion processes. Similar, though not necessarily identical, effects are expected at a metal/solution interface. The possibility of different interactions at the interface is particularly relevant in determining the effects of radiation on corrosion processes. This review is divided into two section in terms of the action of radiation on: (1) the aqueous environment and (2) the corrosion process. The first part of this review focuses on the effects of γ-radiation on radiolysis of the aqueous environments, and the effects of γ-radiation on the metallic corrosion processes will be discussed later

  18. Use of a free-jet expansion, molecular beam mass spectrometer to understand processes involving volatile corrosion products

    International Nuclear Information System (INIS)

    Jacobson, N.S.

    1997-01-01

    Many high-temperature corrosion processes generate volatile products in addition to condensed phase products. Examples of these volatile products are chlorides, oxychlorides, and certain oxides and hydroxyl species. One of the best techniques to identify high temperature vapor molecules is mass spectrometry. Most mass spectrometers operate in high vacuum and are generally used to examine processes ocurring at greatly reduced pressures. However, a free-jet expansion, molecular beam mass spectrometer system allows direct sampling of volatile corrosion products. This instrument is described. Several examples from our studies on chlorination/oxidation of metals and ceramics are discussed. In addition, reactions of Cr 2 O 3 , SiO 2 , and Al 2 O 3 with water vapor, which produce volatile hydroxyl species are discussed. (orig.)

  19. Corrosion control for low-cost reliability: Preceedings

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This book is Volume 6 of the preceedings from the 12th International Corrosion Congress. The electric power industry workshop dealt with water chemistry control; monitoring of chemical, electrochemical, and biological corrosion; corrosion product analyses; and nuclear and fossil-fuel power plants. All papers have been processed separately for inclusion on the data base

  20. Potential for erosion corrosion of SRS high level waste tanks

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1994-01-01

    SRS high-level radioactive waste tanks will not experience erosion corrosion to any significant degree during slurry pump operations. Erosion corrosion in carbon steel structures at reported pump discharge velocities is dominated by electrochemical (corrosion) processes. Interruption of those processes, as by the addition of corrosion inhibitors, sharply reduces the rate of metal loss from erosion corrosion. The well-inhibited SRS waste tanks have a near-zero general corrosion rate, and therefore will be essentially immune to erosion corrosion. The experimental data on carbon steel erosion corrosion most relevant to SRS operations was obtained at the Hanford Site on simulated Purex waste. A metal loss rate of 2.4 mils per year was measured at a temperature of 102 C and a slurry velocity comparable to calculated SRS slurry velocities on ground specimens of the same carbon steel used in SRS waste tanks. Based on these data and the much lower expected temperatures, the metal loss rate of SRS tanks under waste removal and processing conditions should be insignificant, i.e. less than 1 mil per year

  1. Hydrogen Storage and Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Abhijit [Univ. of Arkansas, Little Rock, AR (United States); Biris, A. S. [Univ. of Arkansas, Little Rock, AR (United States); Mazumder, M. K. [Univ. of Arkansas, Little Rock, AR (United States); Karabacak, T. [Univ. of Arkansas, Little Rock, AR (United States); Kannarpady, Ganesh [Univ. of Arkansas, Little Rock, AR (United States); Sharma, R. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  2. Stress-Assisted Corrosion in Boiler Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  3. Corrosion Monitoring of PEO-Pretreated Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gnedenkov, A. S.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Gnedenkov, S. V.; Sergienko, V. I. [Institute of Chemistry, Vladivostok (Russian Federation)

    2017-06-15

    The MA8 alloy (formula Mg-Mn-Ce) has been shown to have greater corrosion stability than the VMD10 magnesium alloy (formula Mg-Zn-Zr-Y) in chloride-containing solutions by Scanning Vibrating Electrode Technique (SVET) and by optical microscopy, gravimetry, and volumetry. It has been established that the crucial factor for the corrosion activity of these samples is the occurrence of microgalvanic coupling at the sample surface. The peculiarities of the kinetics and mechanism of the corrosion in the local heterogeneous regions of the magnesium alloy surface were investigated by localized electrochemical techniques. The stages of the corrosion process in artificial defects in the coating obtained by plasma electrolytic oxidation (PEO) at the surface of the MA8 magnesium alloy were also studied. The analysis of the experimental data enabled us to determine that the corrosion process in the defect zone develops predominantly at the magnesium/coating interface. Based on the measurements of the corrosion rate of the samples with PEO and composite polymer-containing coatings, the best anticorrosion properties were displayed by the composite polymer-containing coatings.

  4. Atmospheric corrosion of metals in industrial city environment

    Directory of Open Access Journals (Sweden)

    Elzbieta Kusmierek

    2015-06-01

    Full Text Available Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  5. Inhibition of aluminum corrosion using Opuntia extract

    International Nuclear Information System (INIS)

    El-Etre, A.Y.

    2003-01-01

    The inhibitive action of the mucilage extracted from the modified stems of prickly pears, toward acid corrosion of aluminum, is tested using weight loss, thermometry, hydrogen evolution and polarization techniques. It was found that the extract acts as a good corrosion inhibitor for aluminum corrosion in 2.0 M HCl solution. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. It was found that the adsorption of the extract on aluminum surface is a spontaneous process. The inhibition efficiency (IE) increases as the extract concentration is increased. The effect of temperature on the IE was studied. It was found that the presence of extract increases the activation energy of the corrosion reaction. Moreover, the thermodynamic parameters of the adsorption process were calculated. It was found also that the Opuntia extract provides a good protection to aluminum against pitting corrosion in chloride ion containing solutions

  6. Development of a phosphating process for corrosion protection in NdFeB magnets

    International Nuclear Information System (INIS)

    Silva, Adonis Marcelo Saliba

    2001-01-01

    NdFeB magnets are important materials, which produce better energy efficiency in electrical devices, but they are rather vulnerable to corrosion. In this study, a phosphating treatment for protection against corrosion of NdFeB magnets has been investigated. Phosphating is generally used as a pretreatment in the application of protective coatings. This treatment increases the corrosion assistance in defective areas of the coating as well as improves the adhesion between coating and substrate. A commercial NdFeB magnet produced by powder metallurgy has been used and the effect of the following parameters on phosphating was studied: time of phosphating; pH of phosphating solution; anodic polarization and molybdate addition to the phosphating solution. The results showed a significant increase in the corrosion resistance of magnets phosphated in a solution concentrated between 10-20 g/L NaH 2 PO 4 , pH in the range of 3 to 4.6, acidulated preferably with H 3 PO 4 at room temperature (20±1) deg C. Conversion coatings formed at solutions of pH 3.8 showed better corrosion resistance. Phosphating times longer than 4 hours increased the magnet corrosion resistance 10 to 20 times. This resistance improves with higher immersion times. Anodic polarization of the magnet in the range 200-400 mV SCE accelerated phosphating. Results indicated that molybdate interacts preferentially with Nd rich phase of the magnet. In addition to the newly developed technology in this work for NdFeB corrosion protection, two methodologies have been introduced to facilitate electrochemical analyses: selection of samples of similar electrochemical behavior, based on the current density after 200s of constant anodic polarization; and evaluation of the corrosion protection provided by conversion coatings by monitoring of gas evolution during corrosion in acid solution. (author)

  7. A study on corrosion resistance of the Ti-10Mo experimental alloy after different processing methods

    International Nuclear Information System (INIS)

    Alves, A.P.R.; Santana, F.A.; Rosa, L.A.A.; Cursino, S.A.; Codaro, E.N.

    2004-01-01

    The purpose of this work was to evaluate the microstructure and corrosion resistance of the experimental Ti-10Mo (wt.%) alloy as-cast and treated. These alloys were divided into three groups for analysis: as-cast, after solution heat treatment at 1000 deg. C in argon atmosphere and remelting in centrifugal machine (investment casting). The microstructure formed from each condition was studied using optical microscopy. Corrosion behavior of titanium-molybdenum alloys in fluoridated physiological serum (0.15 M NaCl+0.03 M NaF [pH=6]) was studied and compared with Ti-6Al-4V alloy. In all electrodes systems, similar electrochemical response was obtained. In naturally aerated physiological serum, the corrosion rate is mainly controlled by dissolution process of a complex passive film. This film appears to be formed by titanium species with different oxidation states. Experimental Ti-10Mo alloy exhibit the lowest passive current densities, in particular, samples after heat treatment

  8. INVESTIGATIONS ON THE CORROSION OF CONSTRUCTIONAL ...

    African Journals Online (AJOL)

    BCSE

    The corrosion behavior of three constructional steels used in Senegal, S235, .... the attack is deep and the pits propagate in depth with a high current density. ..... Equivalent electrical circuit parameters for the corrosion process of S355 and ...

  9. A Review of Evidence for Corrosion of Copper by water

    Energy Technology Data Exchange (ETDEWEB)

    Apted, Michael J. (Monitor Scientific LLC (United Kingdom)); Bennett, David G. (TerraSalus Limited (United Kingdom)); Saario, Timo (VTT Materials and Building (Finland))

    2009-09-15

    The planned spent nuclear fuel repository in Sweden relies on a copper cast iron canister as the primary engineered barrier. The corrosion behaviour of copper in the expected environment needs to be thoroughly understood as a basis for the post-closure safety analysis. It has been shown that corrosion may indeed be the primary canister degradation process during the utilised assessment period of 1 million years (this period is the longest time for which risk calculations will be needed according guidelines issued by the Swedish Radiation Safety Authority). Previous analysis work has been based on that copper is corroded during the initial oxic environment as well as by sulphide in groundwater once reducing conditions have been restored. The quantitative analyses of these processes consider upper-bound amounts of atmospheric oxidation as well as representative sulphide concentrations coupled with the transport limitation of the bentonite buffer and of the surrounding bedrock. A group of researchers at the Royal Institute of Technology (KTH), Stockholm, Sweden suggest, based on published experimental results, that disposed canisters will also be corroded by water itself under hydrogen evolution. The purpose of the project is to evaluate the findings of the KTH research group based on an assessment of their experimental methods and chemical analysis work, thermodynamic models, and a discussion of reaction mechanisms as well as comparison with the analogue behaviour of native copper. As a background, the authors also provide a brief overview of other corrosion processes and safety assessment significance. The authors conclude that the KTH researchers have not convincingly demonstrated that copper will indeed be corroded by pure water and that it is in any case very unlikely that this process will be dominant under the reducing chemical conditions that are expected in the repository environment. How-ever, the authors do not completely rule out that copper may corrode

  10. Developing a Systematic Corrosion Control Evaluation Approach in Flint

    Science.gov (United States)

    Presentation covers what the projects were that were recommended by the Flint Safe Drinking Water Task Force for corrosion control assessment for Flint, focusing on the sequential sampling project, the pipe rigs, and pipe scale analyses.

  11. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    Science.gov (United States)

    Gąsiorek, Jolanta; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-01

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented. PMID:29373540

  12. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation.

    Science.gov (United States)

    Gąsiorek, Jolanta; Szczurek, Anna; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-26

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  13. In-situ investigations of corrosion processes on glass and metal surfaces by scanning probe microscopy (SPM)

    International Nuclear Information System (INIS)

    Nicolussi-Leck, G.

    1996-09-01

    The corrosion of potash-lime-silica glass was observed in-situ by AFM (atomic force microscopy) for the first time. The topographic changes with time due to the interaction of a replica glass with the ambient atmosphere were studied. A comparison of dynamic mode AFM and static mode AFM has demonstrated their potential for the investigation of soft, sensitive specimens. A combination of both methods yielded a correlation between structural changes during the corrosion process and different corrosion products on glass. The activation of surface reactions by the tip touching the surface could be observed with dynamic mode AFM. In-situ sample preparation and introduction of a defined atmosphere consisting of nitrogen with adjustable amounts of relative humidity and varying contents of SO 2 and NO 2 allowed model studies of the atmospheric corrosion. A replica glass with medieval composition was used in order to investigate the impact of the above described conditions. Besides the influence of the relative humidity the effects of SO 2 and NO 2 as well as their, synergistic effects could be studied. The evaluation of the phase signal in dynamic mode AFM in addition to the topographic information allowed the identification of humid domains in and on corrosion products, respectively. The observed contrast and thus the adhesion forces, are mainly related to the different water coverage of the surface regions or the hydroscopic properties, respectively. Furthermore, the topographic changes of copper-nickel, and palladium surfaces exposed to humidified nitrogen with SO 2 have been observed in-situ. Contrary to the assumption of the metal surfaces being covered by a homogeneous layer of corrosion products, distinct clusters of products could be observed. In case of different kinds of products these clusters were arranged adjacent to each other rather than in different stacked layers. (author)

  14. Effect of Welding Process on Microstructure, Mechanical and Pitting Corrosion Behaviour of 2205 Duplex Stainless Steel Welds

    Science.gov (United States)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    An attempt has been made to weld 2205 Duplex stainless steel of 6mm thick plate using conventional gas tungsten arc welding (GTAW) and activated gas tungsten arc welding (A- GTAW) process using silica powder as activated flux. Present work is aimed at studying the effect of welding process on depth of penetration, width of weld zone of 2205 duplex stainless steel. It also aims to observe the microstructural changes and its effect on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel welds. Metallography is done to observe the microstructural changes of the welds using image analyzer attached to the optical microscopy. Hardness studies, tensile and ductility bend tests were evaluated for mechanical properties. Potentio-dynamic polarization studies were carried out using a basic GillAC electro-chemical system in 3.5% NaCl solution to observe the pitting corrosion behaviour. Results of the present investigation established that increased depth of penetration and reduction of weld width in a single pass by activated GTAW with the application of SiO2 flux was observed when compared with conventional GTAW process. It may be attributed to the arc constriction effect. Microstructure of the weld zones for both the welds is observed to be having combination of austenite and delta ferrite. Grain boundary austenite (GBA) with Widmanstatten-type austenite (WA) of plate-like feature was nucleated from the grain boundaries in the weld zone of A-GTAW process. Mechanical properties are relatively low in activated GTAW process and are attributed to changes in microstructural morphology of austenite. Improved pitting corrosion resistance was observed for the welds made with A-GTAW process.

  15. Data book of anti-corrosion method

    International Nuclear Information System (INIS)

    Lee, Ui Ho

    1997-07-01

    This book deals with cases, influence, cause, standard of corrosion of steel structure, which includes bridges, steel tower, corrosion data, the ocean, ports, and RC structure for civil engineering, exterior materials of construction, building equipment pipes, processing industries such as chemical equipment, oil device, pump and coolant, environment facility like trash incinerator, and sewage process, thermal power generation and nuclear energy generation, and energy industry.

  16. Corrosion of Al-7075 by uranium hexafluoride

    International Nuclear Information System (INIS)

    1989-01-01

    The results of the Al-7075 corrosion by uranium hexafluoride are presented in this work. The kinetic study shows that corrosion process occurs by two temperature dependent mechanism and that the alloy can be safely used up to 140 0 C. The corrosion film is formed by uranium oxifluoride with variable composition in depth. Two alternative corrosion models are proposed in order to explain the experimental results, as well as the tests taht will be carried out to confirm one of them [pt

  17. Influence of Corrosion on the Abrasion of Cutter Steels Used in TBM Tunnelling

    Science.gov (United States)

    Espallargas, N.; Jakobsen, P. D.; Langmaack, L.; Macias, F. J.

    2015-01-01

    Abrasion on tunnel boring machine (TBM) cutters may be critical in terms of project duration and costs. Several researchers are currently studying the degradation of TBM cutter tools used for excavating hard rock, soft ground and loose soil. So far, the primary focus of this research has been directed towards abrasive wear. Abrasive wear is a very common process in TBM excavation, but with a view to the environment in which the tools are working, corrosion may also exert an influence. This paper presents a selection of techniques that can be used to evaluate the influence of corrosion on abrasion on TBM excavation tools. It also presents the influence of corrosion on abrasive wear for some initial tests, with constant steel and geomaterial and varying properties of the excavation fluids (soil conditioners, anti-abrasion additives and water). The results indicate that the chloride content in the water media greatly influences the amount of wear, providing evidence of the influence of corrosion on the abrasion of the cutting tools. The presence of conditioning additives tailored to specific rock or soil conditions reduces wear. However, when chloride is present in the water, the additives minimise wear rates but fail to suppress corrosion of the cutting tools.

  18. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    Science.gov (United States)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  19. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D. D.; Lvov, S. N.

    2000-01-01

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system

  20. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  1. Remote measurement of corrosion using ultrasonic techniques

    International Nuclear Information System (INIS)

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy's treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation

  2. Corrosion control of carbon steel radioactive-liquid storage tanks

    International Nuclear Information System (INIS)

    Chang, Ji Young.

    1997-05-01

    As the West Valley Demonstration Project (WVDP) continues vitrification operation and begins decontamination activities, it is vital to continue to maintain the integrity of the high-level waste tanks and prevent further corrosion that may disrupt the operation. This report describes the current operational status and some corrosion concerns with corresponding control measure recommendations. 14 refs., 5 figs., 6 tabs

  3. Self-Powered Wireless Sensor Network for Automated Corrosion Prediction of Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Dan Su

    2018-01-01

    Full Text Available Corrosion is one of the key issues that affect the service life and hinders wide application of steel reinforcement. Moreover, corrosion is a long-term process and not visible for embedded reinforcement. Thus, this research aims at developing a self-powered smart sensor system with integrated innovative prediction module for forecasting corrosion process of embedded steel reinforcement. Vibration-based energy harvester is used to harvest energy for continuous corrosion data collection. Spatial interpolation module was developed to interpolate corrosion data at unmonitored locations. Dynamic prediction module is used to predict the long-term corrosion based on collected data. Utilizing this new sensor network, the corrosion process can be automated predicted and appropriate mitigation actions will be recommended accordingly.

  4. Application of secondary ion mass spectrometry to the study of a corrosion process: oxidation of uranium by water

    International Nuclear Information System (INIS)

    Cristy, S.S.; Condon, J.B.

    1985-01-01

    Corrosion of metals is an extremely important field with great economic and engineering implications at the Oak Ridge Y-12 Plant. To effectively combat corrosion, one must understand the processes occurring. This paper shows the utility of Secondary Ion Mass Spectrometry (SIMS) data for elucidating the processes occurring in one particular corrosion process - the oxidation of uranium by water - and for validating a theoretical model. It had long been known that the oxidation of uranium by water is retarded by the presence of oxygen gas and the retardation has been assumed to occur by site blocking at the surface. However, when alternate isotopic exposures were made, followed by exposure to a mixture of 16 O 2 and 18 OH 2 , the rapid exchange of 16 O and 18 O occurred in the oxide layer, but the further oxidation by water in this and subsequent exposures was retarded for up to 21 hours. This shows graphically that OH 2 is not held up at the surface and that the retarding mechanism is effective at the oxide/metal interface rather than at the surface. The effectiveness of the O 2 to retard the further water oxidation was much reduced if no water-formed oxide layer were present. The effectiveness was also crystallite related. 12 refs., 5 figs

  5. Diagnostic of corrosion defects in steam generator tubes using advanced signal processing from Eddy current testing

    International Nuclear Information System (INIS)

    Formigoni, Andre L.; Lopez, Luiz A.N.M.; Ting, Daniel K.S.

    2009-01-01

    Recently, the Brazilian Angra I PWR nuclear power plant went into a programmed shutdown for substitution of its Steam Generator (SG) which life was shortened due to stress corrosion in its tubes. The total cost of investment were around R$724 million. The signals generated during an Eddy-current Testing (ECT) inspection in SG tubes of nuclear plant allows for the localization and dimensioning of defects in the tubes. The defects related with corrosion generate complex signals that are difficult to analyze and are the most common cause in SG replacement in nuclear power plants around the world. The objective of this paper is the development of a methodology that allows for the characterization of corrosion signals by ECT inspections applied in the heat exchangers tubes of SG of a nuclear power plant. In this present work, the aim is to investigate distributed type defects by inducing controlled corrosion in sample tubes of different materials The ECT signals obtained from these samples tubes with corrosion implanted, will be analyzed using Zetec ECT equipment, the MIZ-17ET and its probes. The data acquisition will use a NI PC A/D CARD 700 card and the LabVIEW program. Subsequently, we will apply mathematical tools for signal processing like time windowed Fast Fourier transforms and Wavelets transforms, in MATLAB platform, which will allow effectiveness to remove the noises and to extract representative characteristics for the defect being analyzed. Previously obtained results as well as the proposal for the future work will be presented. (author)

  6. Corrosion penetration monitoring of advanced ceramics in hot aqueous fluids

    Directory of Open Access Journals (Sweden)

    Klaus G. Nickel

    2004-03-01

    Full Text Available Advanced ceramics are considered as components in energy related systems, because they are known to be strong, wear and corrosion resistant in many environments, even at temperatures well exceeding 1000 °C. However, the presence of additives or impurities in important ceramics, for example those based on Silicon Nitride (Si3N4 or Al2O3 makes them vulnerable to the corrosion by hot aqueous fluids. The temperatures in this type of corrosion range from several tens of centigrade to hydrothermal conditions above 100 °C. The corrosion processes in such media depend on both pH and temperature and include often partial leaching of the ceramics, which cannot be monitored easily by classical gravimetric or electrochemical methods. Successful corrosion penetration depth monitoring by polarized reflected light optical microscopy (color changes, Micro Raman Spectroscopy (luminescence changes and SEM (porosity changes will be outlined. The corrosion process and its kinetics are monitored best by microanalysis of cross sections, Raman spectroscopy and eluate chemistry changes in addition to mass changes. Direct cross-calibrations between corrosion penetration and mechanical strength is only possible for severe corrosion. The methods outlined should be applicable to any ceramics corrosion process with partial leaching by fluids, melts or slags.

  7. Makeup water system performance and impact on PWR steam generator corrosion

    International Nuclear Information System (INIS)

    Bell, M.J.; Sawocha, S.G.; Smith, L.A.

    1984-01-01

    The object of this EPRI-funded project was to assess the possible relation of pressurized water reactor (PWR) steam generator corrosion at fresh water sites to makeup water impurity ingress. Makeup water system design, operation and performance reviews were based on site visits, plant design documents, performance records and grab sample analyses. Design features were assessed in terms of their effect on makeup system performance. Attempts were made to correlate the makeup plant source water, system design characteristics, and typical makeup water qualities to steam generator corrosion observations, particularly intergranular attack (IGA). Direct correlations were not made since many variables are involved in the corrosion process and in the case of IGA, the variables have not been clearly established. However, the study did demonstrate that makeup systems can be a significant source of contaminants that are suspected to lead to both IGA and denting. Additionally, it was noted that typical makeup system performance with respect to organic removal was not good. The role of organics in steam generator damage has not been quantified and may deserve further study

  8. Scoping corrosion tests on candidate waste package basket materials for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Konynenburg, R.A. van; Curtis, P.G.; Summers, T.S.E.

    1998-03-01

    A scoping corrosion test was performed on candidate waste package basket materials. The corrosion medium was a pH-buffered solution of chemical species expected to be produced by radiolysis. The test was conducted at 90 C for 96 hours. Samples included aluminum-, copper-, stainless steel- and zirconium-based metallic materials and several ceramics, incorporating neutron-absorbing elements. Sample weight losses and solution chemical changes were measured. Both corrosion of the host materials and dissolution of the neutron-absorbing elements were studied. The ceramics and the zirconium-based materials underwent only minor corrosion. The stainless steel-based materials performed well except for a welded sample. The aluminum- and copper-based materials exhibited the highest corrosion rates. Boron dissolution depends on its chemical form. Boron oxide and many metal borides dissolve readily in acidic solutions while high-chromium borides and boron carbide, though thermodynamically unstable, exhibit little dissolution in short times. The results of solution chemical analyses were consistent with this. Gadolinium did not dissolve significantly from monazite, and hafnium showed little dissolution from a variety of host materials, in keeping with its low solubility

  9. The use of an electro-chemical process for corrosion testing of different quality materials no. 1.4306 in nitric acid

    International Nuclear Information System (INIS)

    Simon, R.; Schneider, M.; Leistikow, S.

    1987-01-01

    A typical appearance of corrosion in austenitic steels, which are used in reprocessing plants as container and construction materials, is intercrystalline corrosion at high anodic potentials, grain decomposition and the attack on widened grain boundaries stimulated by corrosion products. For safety reasons, the materials used in the nitric acid Purex process area are subjected to extensive corrosion tests. A particularly suitable process for testing materials for chemically and thermally highly stressed parts of the plant is the standard HUEY test standardised on by ASTM and Euronorm, which, however, is time, cost and labour intensive. The test routine introduced here, anodic polarisation at +1250 mV (nhe) makes it possible to give comparative information on the liability to intercrystalline corrosion of Austenitic steels of similar composition after a much shorter time. The principle consists of an electrochemical simulation of the actual potential causing intercrystalline corrosion of the group of materials. While the results are comparable with those of the HUEY test, the necessary test time is shortened from 5x48 hours to 1 hour. The evaluation of the surface and structure attack, which has occurred is done by observation of the measured electrical, metallographic and gravimetric data. The test routine described here offers an alternative (at least for the purpose of pre-selection) with a value equivalent to a standard HUEY test, but with greatly reduced amounts of time and work. However, it requires electro-chemical pre-examination of the groups of materials of interest in nitric acid to determine the critical anodic potentials, due to the constant effects of which it is possible to shorten the test period. (orig./RB) [de

  10. Measurements of copper corrosion in the LOT Project at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Rosborg, B.; Karnland, O.; Quirk, G.; Werme, L.

    2003-01-01

    Real-time monitoring, of corrosion by means of electrochemical noise and other electrochemical techniques may offer interesting possibilities to estimate the kind and degree of corrosion in a sample or component, and further visualize the corrosion resistance of pure copper in repository environments. As a pilot effort, three cylindrical copper electrodes for such measurements, each of about 100 cm 2 surface area, have been installed in a test parcel in the Aespoe Hard Rock Laboratory and electrochemical measurements using InterCorr's SmartCET system were initiated in May 2001. The first results from real-time monitoring of copper corrosion in the Aespoe HRL under actual repository environment conditions by means of linear polarisation resistance, harmonic distortion analysis and electrochemical noise techniques are presented, and compared with the results obtained from one of the retrieved test parcels. (authors)

  11. Multi-secular corrosion behaviour of low carbon steel in anoxic soils: Characterisation of corrosion system on archaeological artefacts

    International Nuclear Information System (INIS)

    Saheb, M.; Neff, D.; Dillmann, P.; Foy, E.; Saheb, M.; Dillmann, P.; Matthiesen, H.; Bellot-Gurlet, L.

    2009-01-01

    In the context of the prediction of materials behaviour used in the nuclear waste storage, the understanding of iron corrosion mechanisms in anoxic environment is of great importance. Information can be obtained using complementary analytical tools. Interactions between burial soil and archaeological artefacts are studied by performing on site soil measurements. Moreover, archaeological artefacts are studied on transverse sections using a combination of microbeam techniques. The specific interest of this project lies in the study of ferrous thick corrosion layers formed in anoxic environment. (authors)

  12. A Multifunctional Smart Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  13. Prediction of metal corrosion using feed-forward neural networks

    International Nuclear Information System (INIS)

    Mahjani, M.G.; Jalili, S.; Jafarian, M.; Jaberi, A.

    2004-01-01

    The reliable prediction of corrosion behavior for the effective control of corrosion is a fundamental requirement. Since real world corrosion never seems to involve quite the same conditions that have previously been tested, using corrosion literature does not provide the necessary answers. In order to provide a methodology for predicting corrosion in real and complex situations, artificial neural networks can be utilized. Feed-forward artificial neural network (FFANN) is an information-processing paradigm inspired by the way the densely interconnected, parallel structure of the human brain process information.The aim of the present work is to predict corrosion behavior in critical conditions, such as industrial applications, based on some laboratory experimental data. Electrochemical behavior of stainless steel in different conditions were studied, using polarization technique and Tafel curves. Back-propagation neural networks models were developed to predict the corrosion behavior. The trained networks result in predicted value in good comparison to the experimental data. They have generally been claimed to be successful in modeling the corrosion behavior. The results are presented in two tables. Table 1 gives corrosion behavior of stainless-steel as a function of pH and CuSO 4 concentration and table 2 gives corrosion behavior of stainless - steel as a function of electrode surface area and CuSO 4 concentration. (authors)

  14. Corrosion performance of new Zircaloy-2-based alloys

    International Nuclear Information System (INIS)

    Rudling, P.; Mikes-Lindbaeck, M.; Lethinen, B.; Andren, H.O.; Stiller, K.

    1994-01-01

    A material development project was initiated to develop a new zirconium alloy, outside the ASTM specifications for Zircaloy-2 and Zircaloy-4, with optimized hydriding and corrosion properties for both boiling water reactors and pressurized water reactors. A number of different alloys were manufactured. These alloys were long-term corrosion tested in autoclaves at 400 C in steam. Also, a 520 C/24 h steam test was carried out. The zirconium metal microstructure and the chemistry of precipitates were characterized by analytical electron microscopy. The metal matrix chemistry was determined by atom probe analysis. The paper describes the correlations between corrosion material performance and zirconium alloy microstructure

  15. Examination of corrosion on primary selector valve bellows

    International Nuclear Information System (INIS)

    Rickards, G.K.

    1975-07-01

    The stainless steel bellows of the primary selector valves from the burst can detection system of the Sizewell 'A' reactor were found to have spots of corrosion. These corrosion spots were thought to be caused by the cleaning process employed during manufacture. Samples subjected to the manufacturing cleaning process were examined in the scanning electron microscope equipped with an X-ray energy dispersive analysis system. The corrosion was shown to be associated with the acid cleaning process employed. Deposits were also left on samples not acid cleaned and it is suggested that these have come from contaminated washing water. (author)

  16. Corrosion management in nuclear industry

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.

    2012-01-01

    Corrosion is a major degradation mechanism of metals and alloys which significantly affects the global economy with an average loss of 3.5% of GDP of several countries in many important industrial sectors including chemical, petrochemical, power, oil, refinery, fertilizer etc. The demand for higher efficiency and achieving name plate capacity, in addition to ever increasing temperatures, pressures and complexities in equipment geometry of industrial processes, necessitate utmost care in adopting appropriate corrosion management strategies in selecting, designing, fabricating and utilising various materials and coatings for engineering applications in industries. Corrosion control and prevention is an important focus area as the savings achieved from practicing corrosion control and prevention would bring significant benefits to the industry. Towards this, advanced corrosion management strategies starting from design, manufacturing, operation, maintenance, in-service inspection and online monitoring are essential. At the Indira Gandhi Centre for Atomic Research (IGCAR) strategic corrosion management efforts have been pursued in order to provide solutions to practical problems emerging in the plants, in addition to innovative efforts to provide insight into mechanism and understanding of corrosion of various engineering materials and coatings. In this presentation the author highlights how the nuclear industry benefited from the practical approach to successful corrosion management, particularly with respect to fast breeder reactor programme involving both reactor and associated reprocessing plants. (author)

  17. Corrosion mapping in pipelines

    International Nuclear Information System (INIS)

    Zscherpel, U.; Alekseychuk, O.; Bellon, C.; Ewert, U.; Rost, P.; Schmid, M.

    2002-01-01

    In a joint research project, BASF AG and BAM analyzed the state of the art of tangential radiography of pipes and developed more efficient methods of evaluation. Various PC applications were developed and tested: 1. A program for routine evaluation of digital radiographic images. 2. 3D simulation of the tangential projection of pipes for common radiation sources and various different detectors. 3. Preliminary work on combined evaluation of digital projections and wall thickness changes in radiation direction resulted in a new manner of image display, i.e. the so-called 'corrosion mapping', in which the wall thickness is displayed as a 2D picture above the pipe surface [de

  18. Waterside corrosion of zirconium alloys in nuclear power plants

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Baek, B. J.; Park, S. Y. and others

    1999-08-01

    The overview of corrosion and hydriding behaviors of Zr-based alloy under the conditions of the in-reactor service and in the absence of irradiation is introduced in this report. The metallurgical characteristics of Zr-based alloys and the thermo-mechanical treatments on the microstructures and the textures in the manufacturing process for fuel cladding are also introduced. The factors affecting the corrosion of Zr alloy in reactor are summarized. And the corrosion mechanism and hydrogen up-take are discussed based on the laboratory and in-reactor results. The phenomenological observations of zirconium alloy corrosion in reactors are summarized and the models of in-reactor corrosion are exclusively discussed. Finally, the effects of irradiation on the corrosion process in Zr alloy were investigated mainly based on the literature data. (author). 538 refs., 26 tabs., 105 figs

  19. Evaluating Steam Generator Tubing Corrosion through Shutdown Nickel and Cobalt Releases

    International Nuclear Information System (INIS)

    Marks, Chuck; Little, Mike; Krull, Peter; Dennis Hussey; Kenny Epperson

    2012-09-01

    During power operation in PWRs, steam generator tubing corrodes. In PWRs with nickel alloy steam generator tubing this leads to the release of nickel into the coolant. While not structurally significant, this process leads to corrosion product deposition on the fuel surfaces that can threaten fuel integrity, provide a site for boron precipitation, and, through activation and subsequent release, lead to increased out-of-core radiation fields. During shutdown, decreases in temperature and pH and an increase in the oxidation potential lead to dissolution of some corrosion products from the core. This work evaluated the masses of corrosion products released during shutdown as a proxy for steam generator tubing corrosion rates. The masses were evaluated for trends with time (e.g., the number of cycles) and for the influence of design and operating features such as tubing manufacturer, plant design (e.g., three loop versus four loop), and operating chemistry program. This project utilized the EPRI PWR Chemistry Monitoring and Assessment database. Data from over 20 units, many over several cycles, were assessed. The focus was on corrosion product release from Alloy 690TT tubing and all data were from units that had replaced steam generators. Data were analyzed using models developed from corrosion rate test data reported in the literature with a heavy reliance on data from the EDF BOREAL testing. The most striking result of this analysis was a clear division between plants that exhibited corrosion with a falling rate (i.e., following an exponential decay as has been observed, for example, in the BOREAL testing) and those that showed a constant corrosion rate, sustained for many outages. This difference appears to be most closely correlated with the manufacturer of the tubing. Within the two distinct plant groups (decaying corrosion rate and constant corrosion rate), details of the trends were evaluated for correlation with zinc addition history, plant type, and operating

  20. K Basin Sludge Conditioning Process Testing Project. Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    International Nuclear Information System (INIS)

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1998-06-01

    Approximately 73 m 3 of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process

  1. Downhole corrosion mechanisms and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, D. [Baker Hughes Canada, Calgary, AB (Canada)

    2010-07-01

    Pipeline corrosion refers to its deterioration because of a reaction with its environment. Although the physical condition of the metal at the anode initiates the corrosion process, it is the chemistry and composition of the electrolyte that controls the rate of the corrosion reaction and the severity of the corrosion. This presentation described the role of corrosion rate accelerators, with particular reference to dissolved gases such as oxygen, hydrogen sulfides and carbon dioxide, as well as pH levels, salinity, flow rate, temperature and presence of solids such as iron sulfides and sulfur. The effects of these accelerators were shown to be additive. Mitigation strategies include using materials such as resistant metal alloys or fiberglass, and applying coatings and chemical inhibitors. The importance of corrosion monitoring was also emphasized, with particular reference to the value of examining the number of corrosion related failures that have occurred over a fixed period of time. It was concluded that the ability to analyze samples of failed materials results in a better understanding of the cause of the failure, and is an integral part of designing any successful corrosion control program. tabs., figs.

  2. Chemical-cleaning process evaluation: Westinghouse steam generators. Final report

    International Nuclear Information System (INIS)

    Cleary, W.F.; Gockley, G.B.

    1983-04-01

    The Steam Generator Owners Group (SGOG)/Electric Power Research Institute (EPRI) Steam Generator Secondary Side Chemical Cleaning Program, under develpment since 1978, has resulted in a generic process for the removal of accumulated corrosion products and tube deposits in the tube support plate crevices. The SGOG/EPRI Project S150-3 was established to obtain an evaluation of the generic process in regard to its applicability to Westinghouse steam generators. The results of the evaluation form the basis for recommendations for transferring the generic process to a plant specific application and identify chemical cleaning corrosion guidelines for the materials in Westinghouse Steam Generators. The results of the evaluation, recommendations for plant-specific applications and corrosion guidelines for chemical cleaning are presented in this report

  3. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    Directory of Open Access Journals (Sweden)

    Jolanta Gąsiorek

    2018-01-01

    Full Text Available Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  4. Reengineering the Project Design Process

    Science.gov (United States)

    Casani, E.; Metzger, R.

    1994-01-01

    In response to NASA's goal of working faster, better and cheaper, JPL has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center and the Flight System Testbed. Reengineering at JPL implies a cultural change whereby the character of its design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and cost estimating.

  5. Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process

    International Nuclear Information System (INIS)

    Khorsand, S.; Raeissi, K.; Ashrafizadeh, F.

    2014-01-01

    A super-hydrophobic nickel film with micro-nano structure was successfully fabricated by electrodeposition process. By controlling electrodeposition parameters and considering different storage times for the coatings in air, various nickel films with different wettability were fabricated. Surface morphology of nickel films was examined by means of scanning electron microscopy (SEM). The results showed that the micro-nano nickel film was well-crystallized and exhibited pine cone-like microstructure with nano-cone arrays randomly dispersed on each micro-protrusion. The wettability of the micro-nano nickel film varied from super-hydrophilicity (water contact angle 5.3°) to super-hydrophobicity (water contact angle 155.7°) by exposing the surface in air at room temperature. The corrosion resistance of the super-hydrophobic film was estimated by electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The potentiodynamic curves revealed that the corrosion rate of superhydrophobic surface was only 0.16% of the bare copper substrate. Moreover, EIS measurements and appropriate equivalent circuit models revealed that the corrosion resistance of nickel films considerably improved with an increase in the hydrophobicity. The superhydrophobic surface also exhibited an excellent long-term durability in neutral 3.5 wt.% NaCl solution.

  6. From Project Management to Process Management - Effectively Organising Transdisciplinary Projects

    OpenAIRE

    Moschitz, Heidrun

    2013-01-01

    In transdisciplinary projects, the roles of researchers change. In addition to being a source of knowledge, they are required to engage in knowledge exchange processes. This results in an alteration at project level: researchers need to creatively manage projects as group processes.

  7. Corrosion of research reactor aluminium clad spent fuel in water

    International Nuclear Information System (INIS)

    2003-01-01

    This report describes research performed in ten laboratories within the framework of the IAEA Co-ordinated Research Project on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water. The project consisted of exposure of standard racks of corrosion coupons in the spent fuel pools of the participating research reactor laboratories and the evaluation of the coupons after predetermined exposure times, along with periodic monitoring of the storage water. A group of experts in the field contributed a state of the art review and provided technical supervision of the project. Localized corrosion mechanisms are notoriously difficult to understand, and it was clear from the outset that obtaining consistency in the results and their interpretation from laboratory to laboratory would depend on the development of an excellent set of experimental protocols. These experimental protocols are described in the report together with guidelines for the maintenance of optimum water chemistry to minimize the corrosion of aluminium clad research reactor fuel in wet storage. A large database on corrosion of aluminium clad materials has been generated from the CRP and the SRS corrosion surveillance programme. An evaluation of these data indicates that the most important factors contributing to the corrosion of the aluminium are: (1) High water conductivity (100-200 μS/cm); (2) Aggressive impurity ion concentrations (Cl - ); (3) Deposition of cathodic particles on aluminium (Fe, etc.); (4) Sludge (containing Fe, Cl - and other ions in concentrations greater than ten times the concentrations in the water); (5) Galvanic couples between dissimilar metals (stainless steel-aluminium, aluminium-uranium, etc); (6) Scratches and imperfections (in protective oxide coating on cladding); (7) Poor water circulation. These factors operating both independently and synergistically may cause corrosion of the aluminium. The single most important key to preventing corrosion is maintaining good

  8. Corrosion control of vanadium in aqueous solutions by amino acids

    International Nuclear Information System (INIS)

    El-Rabiee, M.M.; Helal, N.H.; El-Hafez, Gh.M. Abd; Badawy, W.A.

    2008-01-01

    The electrochemical behavior of vanadium in amino acid free and amino acid containing aqueous solutions of different pH was studied using open-circuit potential measurements, polarization techniques and electrochemical impedance spectroscopy (EIS). The corrosion current density, i corr , the corrosion potential, E corr and the corrosion resistance, R corr , were calculated. A group of amino acids, namely, glycine, alanine, valine, histidine, glutamic and cysteine has been investigated as environmentally safe inhibitors. The effect of Cl - on the corrosion inhibition efficiency especially in acid solutions was investigated. In neutral and basic solutions, the presence of amino acids increases the corrosion resistance of the metal. The electrochemical behavior of V before and after the corrosion inhibition process has shown that some amino acids like glutamic acid and histidine have promising corrosion inhibition efficiency at low concentration (≅25 mM). The inhibition efficiency (η) was found to depend on the structure of the amino acid and the constituents of the corrosive medium. The corrosion inhibition process is based on the adsorption of the amino acid molecules on the metal surface and the adsorption process follows the Freundlich isotherm. The adsorption free energy for valine on V in acidic solutions was found to be -9.4 kJ/mol which reveals strong physical adsorption of the amino acid molecules on the vanadium surface

  9. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Jiangdong [School of Material Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Mechanical and Electrical Department, Nantong Shipping College, Nantong, Jiangsu 226010 (China); Zhang, Junsong [School of Material Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Hua, Yinqun, E-mail: huayq@ujs.edu.cn [School of Material Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Chen, Ruifang [School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Li, Zhibao [School of Material Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Ye, Yunxia [School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2017-03-15

    The effects of laser shock processing on microstructure, the residual stress, and hot corrosion behavior of the Ni-based superalloy GH202 were investigated. The microstructures of GH202 before and after laser shock processing (LSP) were characterized by electron backscattered diffraction (EBSD) and transmission electron microscope (TEM). A large number of crystal defects (twins, dislocation arrays, and high dense tangles) were generated on the surface of GH202 treated with LSP. The cross-sectional compressive residual stress and micro-hardness of specimens treated by LSP were improved significantly. The corrosion kinetics of GH202 with or without LSP treatment at 800 °C and 900 °C were investigated. Analysis by X-ray diffraction (XRD) revealed that the corrosion products mainly consist of Cr{sub 2}O{sub 3}, TiO{sub 2}, Al{sub 2}O{sub 3}, NiO, CrS, Ni{sub 3}S{sub 2}, and Na{sub 2}CrO{sub 4}. The surface and cross-section morphologies were observed by scanning electron microscope (SEM) combined with energy dispersive spectroscopy (EDS). The results confirmed that the crystal defects induced by LSP promotes the creation of diffusion paths for elements (Cr, Al, and Ti), allowing the formation of tiny homogeneous oxidation films in a very short time. Additionally, the spallation of oxidation film on the treated specimens was alleviated significantly. Overall, the hot corrosion resistance of Ni-based GH202 induced by LSP was improved in Na{sub 2}SO{sub 4} and NaCl molten salt from 800 °C to 900 °C. - Highlights: • Microstructure changes of GH202 before and after LSP were observed by EBSD and TEM. • The hardness and residual compressive stress after LSP were significantly increased. • The increased diffusion paths for elements helped to form oxidation films quickly. • Hot corrosion resistance of GH202 after LSP was significantly improved.

  10. Protection of welded joints against corrosion degradation

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2013-01-01

    Full Text Available Welded joints form an integral part of steel constructions. Welded joints are undetachable joints, which are however subjects of corrosion processes. The internal energy increases during the fusion welding especially in the heat affected places around the welded joint, which become initiating spot of corrosion degradation.The aim of the experiment is to put a welded joint produced by the MAG method to a test of corrosion degradation under the conditions of the norm ČSN ISO 9227 (salt-spray test. Organic and inorganic anticorrosion protections were applied on welded beads. First of all, there were prepared welded beads using the method MAG; secondly, metallographical analyses of welded metal, heat affected places and base material were processed. Further, microhardness as well as analysis of chemical composition using the EDS microscope were analysed. Based on a current trend in anticorrosion protections, there were chosen three types of protective coatings. First protective system was a double-layer synthetic system, where the base layer is formed by paint Pragroprimer S2000 and the upper layer by finishing paint Industrol S 2013. Second protective system is a duplex system formed by a combination of a base zinc coating with Zinorex paint. The last protective system was formed by zinc dipping only. Corrosion resistance of the individual tested samples was evaluated based on degradation of protective coating. The corrosion origin as well as the corrosion process were observed, the main criteria was the observation of welded bead.

  11. Less-Toxic Coatings for Inhibiting Corrosion of Aluminum

    Science.gov (United States)

    Minevski, Zoran; Clarke, Eric; Eylem, Cahit; Maxey, Jason; Nelson, Carl

    2003-01-01

    Two recently invented families of conversion- coating processes have been found to be effective in reducing or preventing corrosion of aluminum alloys. These processes offer less-toxic alternatives to prior conversion-coating processes that are highly effective but have fallen out of favor because they generate chromate wastes, which are toxic and carcinogenic. Specimens subjected to these processes were found to perform well in standard salt-fog corrosion tests.

  12. Effect of additive on electrochemical corrosion properties of plasma electrolytic oxidation coatings formed on CP Ti under different processing frequency

    Energy Technology Data Exchange (ETDEWEB)

    Babaei, Mahdi, E-mail: mahdi.babaei@ut.ac.ir; Dehghanian, Changiz; Vanaki, Mojtaba

    2015-12-01

    Highlights: • PEO coatings formed on Cp Ti from phosphate electrolyte with zirconate additive. • The SEM results provide information of microdischarge behavior. • The effect of additive on structure and long-term corrosion behavior was investigated. • The additive influence on coating performance varies with processing frequency. - Abstract: The plasma electrolytic oxidation (PEO) coating containing zirconium oxide was fabricated on CP Ti at different processing frequencies viz., 100 Hz and 1000 Hz in a (Na{sub 2}ZrO{sub 3}, Na{sub 2}SiO{sub 3})-additive containing NaH{sub 2}PO{sub 4}-based solution, and long-term electrochemical corrosion behavior of the coatings was studied using electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. Electrochemical degradation behavior of two-layered coatings formed at different frequencies was turned out to be governed by concentration of electrolyte additive. With increasing additive concentration, the coating obtained at frequency of 1000 Hz exhibited enhanced corrosion resistance. However, corrosion resistance of the coating prepared at 100 Hz was found to decrease with increased additive, which was attributed to intensified microdischarges damaging the protective effect of inner layer. Nevertheless, the electrolyte additive was found to mitigate the long-term degradation of the coatings to a significant extent.

  13. Atmospheric-Induced Stress Corrosion Cracking of Grade 2205 Duplex Stainless Steel—Effects of 475 °C Embrittlement and Process Orientation

    Directory of Open Access Journals (Sweden)

    Cem Örnek

    2016-07-01

    Full Text Available The effect of 475 °C embrittlement and microstructure process orientation on atmospheric-induced stress corrosion cracking (AISCC of grade 2205 duplex stainless steel has been investigated. AISCC tests were carried out under salt-laden, chloride-containing deposits, on U-bend samples manufactured in rolling (RD and transverse directions (TD. The occurrence of selective corrosion and stress corrosion cracking was observed, with samples in TD displaying higher propensity towards AISCC. Strains and tensile stresses were observed in both ferrite and austenite, with similar magnitudes in TD, whereas, larger strains and stresses in austenite in RD. The occurrence of 475 °C embrittlement was related to microstructural changes in the ferrite. Exposure to 475 °C heat treatment for 5 to 10 h resulted in better AISCC resistance, with spinodal decomposition believed to enhance the corrosion properties of the ferrite. The austenite was more susceptible to ageing treatments up to 50 h, with the ferrite becoming more susceptible with ageing in excess of 50 h. Increased susceptibility of the ferrite may be related to the formation of additional precipitates, such as R-phase. The implications of heat treatment at 475 °C and the effect of process orientation are discussed in light of microstructure development and propensity to AISCC.

  14. Project Communication in Functions, Process and Project-Oriented Industiral Companies

    Science.gov (United States)

    Samáková, Jana; Koltnerová, Kristína; Rybanský, Rudolf

    2012-12-01

    The article is focused on the project communication management. Industrial enterprises, which use project management must constantly search the new ways for improving. One of the possibilities is the change of management from a functional oriented to the projectoriented or process-oriented. Process-oriented and project-oriented companies have better project communication management during the all project life cycle. Communication in the project is a very important factor. According to the arguments of several authors, one of the biggest problem is that threaten the success of the project is just the communication. In each project is an important pillar - and that is communication. Only on the base of communication can the project move forward and achieve the target.

  15. Microbially influenced corrosion: studies on enterobacteria isolated from seawater environment and influence of toxic metals on bacterial biofilm and bio-corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bermond-Tilly, D.; Pineau, S.; Dupont-Morral, I. [Corrodys, 50 - Equeurdreville (France); Janvier, M.; Grimont, P.A.D. [Institut Pasteur, Unite BBPE, 75 - Paris (France)

    2004-07-01

    Full text of publication follows: The most widely involved bacteria in Microbially Induced Corrosion (MIC usually called bio-corrosion) are sulfate/thiosulfate-reducing bacteria. The sulfate-reducing bacteria (SRB) are major contributors to the anaerobic bio-corrosion of steel. However, corrosion process of pipelines (or off shores platforms) was found to be associated with many other bacteria. These bacteria are able to produce sulfides from the reduction of thiosulfate in anaerobic conditions. By this way, a thiosulfate-reducing non sulfate-reducing bacteria, Dethiosulfovibrio peptidovorans, showed a significant corrosive activity similar to or higher than that recorded for SRB involved in bio-corrosion, (Magot et al., 1997). Furthermore, a bacteria, Citrobacter amalonaticus, which belongs to the family of the Enterobacteriaceae, is involved in severe pitting corrosion process (Angeles Chavez et al., 2002). Recently, some bacteria (Citrobacter freundii, Proteus mirabilis and Klebsiella planticola characterized as belonging to the family of Enterobacteriaceae) were isolated from biofilm developed on carbon steel coupons immersed in natural seawater. The latter bacteria were also associated in severe pitting corrosion process on carbon steel coupons (Bermond-Tilly et al., 2003). Biofilm forms a protective layer, reducing the exposure of the metal surface to the external environment. However, bacteria included in the biofilm could also cause localized corrosion by consuming cathodic hydrogen from the steel or by producing corrosive metabolic end products and by the Extracellular Polymeric Substances (EPS) production. Thus, EPS can also play an important role in the corrosion of the metals (e.g. can complex metal ions). However, sulfate/thiosulfate-reducing bacteria and some Enterobacteria are highly efficient to bioremediation by precipitation of toxic metals from wastewater as metal sulfides. Recently it was shown that toxic metal may be involved in the formation

  16. Interaction of corrosion defects in pipelines – Part 1: Fundamentals

    International Nuclear Information System (INIS)

    Benjamin, Adilson C.; Freire, José Luiz F.; Vieira, Ronaldo D.; Cunha, Divino J.S.

    2016-01-01

    Corrosion defects, also called metal loss due to corrosion, are frequently found in carbon steel pipelines. Corrosion defects may occur singly or in colonies. Usually the failure pressure of a colony of closely spaced corrosion defects is smaller than the failure pressures that the defects would attain if they were isolated. This reduction in the corroded pipe pressure strength is due to the interaction between adjacent defects. The interaction of corrosion defects in pipelines is the subject of two companion papers. In the present paper (the Part 1 paper) a literature review and the fundamentals of interaction of corrosion defects in pipelines are presented. In the subsequent paper (the Part 2 paper) initially the database of corroded pipe tests generated during the MTI JIP is described. Then the failure pressures contained in the MTI JIP database of corroded pipe tests are compared with those predicted by six of the currently available assessment methods. MTI JIP is the acronym for Mixed Type Interaction Joint Industry Project.

  17. Hydrogen Sulphide Corrosion of Carbon and Stainless Steel Alloys Immersed in Mixtures of Renewable Fuel Sources and Tested Under Co-processing Conditions

    Directory of Open Access Journals (Sweden)

    Gergely András

    2016-10-01

    Full Text Available In accordance with modern regulations and directives, the use of renewable biomass materials as precursors for the production of fuels for transportation purposes is to be strictly followed. Even though, there are problems related to processing, storage and handling in wide range of subsequent uses, since there must be a limit to the ratio of biofuels mixed with mineral raw materials. As a key factor with regards to these biomass sources pose a great risk of causing multiple forms of corrosion both to metallic and non-metallic structural materials. To assess the degree of corrosion risk to a variety of engineering alloys like low-carbon and stainless steels widely used as structural metals, this work is dedicated to investigating corrosion rates of economically reasonable engineering steel alloys in mixtures of raw gas oil and renewable biomass fuel sources under typical co-processing conditions. To model a desulphurising refining process, corrosion tests were carried out with raw mineral gasoline and its mixture with used cooking oil and animal waste lard in relative quantities of 10% (g/g. Co-processing was simulated by batch-reactor laboratory experiments. Experiments were performed at temperatures between 200 and 300ºC and a pressure in the gas phase of 90 bar containing 2% (m3/m3 hydrogen sulphide. The time span of individual tests were varied between 1 and 21 days so that we can conclude about changes in the reaction rates against time exposure of and extrapolate for longer periods of exposure. Initial and integral corrosion rates were defined by a weight loss method on standard size of coupons of all sorts of steel alloys. Corrosion rates of carbon steels indicated a linear increase with temperature and little variation with composition of the biomass fuel sources. Apparent activation energies over the first 24-hour period remained moderate, varying between 35.5 and 50.3 kJ mol−1. Scales developed on carbon steels at higher

  18. Experiments and models of general corrosion and flow-assisted corrosion of materials in nuclear reactor environments

    Science.gov (United States)

    Cook, William Gordon

    Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.

  19. Corrosion of pure magnesium under thin electrolyte layers

    International Nuclear Information System (INIS)

    Zhang Tao; Chen Chongmu; Shao Yawei; Meng Guozhe; Wang Fuhui; Li Xiaogang; Dong Chaofang

    2008-01-01

    The corrosion behavior of pure magnesium was investigated by means of cathodic polarization curve, electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) under aerated and deaerated thin electrolyte layers (TEL) with various thicknesses. Based on shot noise theory and stochastic theory, the EN results were quantitatively analyzed by using the Weibull and Gumbel distribution function, respectively. The results show that the cathodic process of pure magnesium under thin electrolyte layer was dominated by hydrogen reduction. With the decreasing of thin electrolyte layer thickness, cathodic process was retarded slightly while the anodic process was inhibited significantly, which indicated that both the cathodic and anodic process were inhibited in the presence of oxygen. The absence of oxygen decreased the corrosion resistance of pure magnesium in case of thin electrolyte layer. The corrosion was more localized under thin electrolyte layer than that in bulk solution. The results also demonstrate that there exist two kinds of effects for thin electrolyte layer on the corrosion behavior of pure magnesium: (1) the rate of pit initiation was evidently retarded compared to that in bulk solution; (2) the probability of pit growth oppositely increased. The corrosion model of pure magnesium under thin electrolyte layer was suggested in the paper

  20. Digital speckle correlation for nondestructive testing of corrosion

    Science.gov (United States)

    Paiva, Raul D., Jr.; Soga, Diogo; Muramatsu, Mikiya; Hogert, Elsa N.; Landau, Monica R.; Ruiz Gale, Maria F.; Gaggioli, Nestor G.

    1999-07-01

    This paper describes the use of optical correlation speckle patterns to detect and analyze the metallic corrosion phenomena, and shows the experimental set-up used. We present some new results in the characterization of the corrosion process using a model based in electroerosion phenomena. We also provide valuable information about surface microrelief changes, which is also useful in numerous engineering applications. The results obtained are good enough for showing that our technique is very useful for giving new possibilities to the analysis of the corrosion and oxidation process, particularly in real time.

  1. Reinforcement Corrosion: Numerical Simulation and Service Life Prediction

    DEFF Research Database (Denmark)

    Michel, Alexander

    defects and b) define the end of service life once reinforcement corrosion is initiated neglecting corrosion processes during the propagation stage. The goal of this work was to develop a framework for the service life prediction of reinforced concrete covering initiation and propagation of chloride......Modelling of deterioration processes in concrete structures plays an increasing role in the design of reinforced concrete structures. Large sums are spent every year to ensure the durability of concrete structures, especially towards reinforcement corrosion. Improved durability provides increased...... structural reliability, economical improvements in form of less need for maintenance and repair as well as increased sustainability due to an increased energy and resource efficiency. Several service life prediction models dealing with reinforcement corrosion in concrete structurescan be found...

  2. The Leakage determination on corrosion fretting machine

    International Nuclear Information System (INIS)

    Sriyono; Satmoko, Ari; Hafid, Abdul; Febrianto; Prasetio, Joko; Abtokhi; Sumarno, Edy; Handoyo, Ismu; Hidayati, Nur Rahmah; Histori

    1998-01-01

    Fretting machine is an experimental loop to learn fretting corrosion phenomena wich is caused by loading and vibration. On the steam generator, one of the corrosion process that's occurred, it can be caused by vibration between tubes and bending material. Because of high flow rate inside the tube, the high frequency vibration will appeared so it can make the corrosion on bending material more faster. This process can be simulate by fretting machine. This machine has already damage because of leakage. So it will be repaired by dismantling, radiography testing and redrawing. from the result of radiography, the leakage is caused by cracking on bellows seals of the dynamic main support

  3. The study on corrosion resistance of decorative satin nickel plating

    Directory of Open Access Journals (Sweden)

    LU Wenya

    2012-10-01

    Full Text Available This study examined the corrosion resistance of satin nickel plating on conductive plastic.The electrochemical tests were to analyze the corrosion behavior of satin nickel plating with different processes in 3.5% NaCl solution.The results show that,because the satin nickel plating has an organic film on its surface due to process characteristics,the film results in different corrosion resistance.By increasing satin additive dosage,the nickel plating chroma decreases,the microsurface of the plating becomes rough,and the corrosion resistance is followed by decrease.

  4. Corrosion resistance of materials of construction for high temperature sulfuric acid service in thermochemical IS process. Alloy 800, Alloy 600, SUSXM15J1 and SiC

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Onuki, Kaoru; Shimizu, Saburo; Yamaguchi, Akihisa

    2006-01-01

    Exposure tests of candidate materials were carried out up to 1000 hr in the sulfuric acid environments of thermochemical hydrogen production IS process, focusing on the corrosion of welded portion and of crevice area. In the gas phase sulfuric acid decomposition condition at 850degC, welded samples of Alloy 800 and of Alloy 600 showed the same good corrosion resistance as the base materials. In the boiling condition of 95 wt% sulfuric acid solution, test sample of SiC showed the same good corrosion resistance. Also negligible corrosion was observed in crevice corrosion. (author)

  5. Corrosion in airframes

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    The introductory chapter provides a brief reference to the issue of corrosion and corrosion damage to aircraft structures. Depending on the nature and dimensions of this non uniformity, three different categories of corrosion are defined: uniform, selective and localized corrosion. The following chapters present the forms of corrosion that can occur in three defined categories of corrosion. Conditions that cause certain types of corrosion in various corrosive environments are discussed. Examp...

  6. Corrosion and Rupture of Steam Generator Tubings in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seong Sik; Kim, Hong Pyo

    2007-08-15

    This report is intended to provide corrosion engineers in the filed of nuclear energy with information on the corrosion and rupture behavior of steam generator tubing in PWRs. Various types of corrosion in PWR steam generator tubing have been reported all around the world, and countermeasures such as the addition of corrosion inhibitors, a water chemistry control, a tube plugging and sleeving have been applied. Steam generators equipped with alloy 600 tubing, which are not so resistant to a stress corrosion cracking (SCC), have generally been replaced with new steam generators made of alloy 690 TT (Thermally treated). Pull tube examination results which were performed of KAERI are summarized. The tubes were affected by a pitting, SCC, and a denting. Nondestructive examination method for the tubes and repair techniques are also reviewed. In addition, the regulatory guidance of some countries are reviewed. As a part of a tube integrity project in Korea, some results on a tube rupture and leak behaviors for axial cracks are also mentioned.

  7. Corrosion and Rupture of Steam Generator Tubings in PWRs

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Kim, Hong Pyo

    2007-08-01

    This report is intended to provide corrosion engineers in the filed of nuclear energy with information on the corrosion and rupture behavior of steam generator tubing in PWRs. Various types of corrosion in PWR steam generator tubing have been reported all around the world, and countermeasures such as the addition of corrosion inhibitors, a water chemistry control, a tube plugging and sleeving have been applied. Steam generators equipped with alloy 600 tubing, which are not so resistant to a stress corrosion cracking (SCC), have generally been replaced with new steam generators made of alloy 690 TT (Thermally treated). Pull tube examination results which were performed of KAERI are summarized. The tubes were affected by a pitting, SCC, and a denting. Nondestructive examination method for the tubes and repair techniques are also reviewed. In addition, the regulatory guidance of some countries are reviewed. As a part of a tube integrity project in Korea, some results on a tube rupture and leak behaviors for axial cracks are also mentioned

  8. Study on corrosion products from ear piercing studs

    International Nuclear Information System (INIS)

    Rogero, Sizue O.; Costa, Isolda; Saiki, Mitiko

    2000-01-01

    In this work instrumental neutron activation analysis was applied to analyse elemental composition of commercial gold coated ear piercing substrate and metals present in their corrosion products. The cytotoxic effect was also verified in these corrosion product extracts, probably, due to the lixiviation of Ni present in high quantity in their substrates. The analysis of gold coated ear piercing surfaces by scanning electron microscopy before and after the corrosion test showed coating defects and the occurrence of corrosion process. (author)

  9. Bioenergy/Biotechnology projects

    Energy Technology Data Exchange (ETDEWEB)

    Napper, Stan [Louisiana Tech Univ., Ruston, LA (United States); Palmer, James [Louisiana Tech Univ., Ruston, LA (United States); Wilson, Chester [Louisiana Tech Univ., Ruston, LA (United States); Guilbeau, Eric [Louisiana Tech Univ., Ruston, LA (United States); Allouche, Erez [Louisiana Tech Univ., Ruston, LA (United States)

    2012-06-30

    This report describes the progress of five different projects. The first is an enzyme immobilization study of cellulase to reduce costs of the cellulosic ethanol process. High reusability and use of substrates applicable to large scale production were focus areas for this study. The second project was the development of nanostructured catalysts for conversion of syngas to diesel. Cobalt nanowire catalyst was used in Fischer-Tropsch synthesis. The third project describes work on developing a microfluidic calorimeter to measure reaction rates of enzymes. The fourth project uses inorganic polymer binders that have the advantage of a lower carbon footprint than Portland cement while also providing excellent performance in elevated temperature, high corrosion resistance, high compressive and tensile strengths, and rapid strength gains. The fifth project investigates the potential of turbines in drop structures (such as sewer lines in tall buildings) to recover energy.

  10. Corrosion engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, M.G.

    1986-01-01

    This book emphasizes the engineering approach to handling corrosion. It presents corrosion data by corrosives or environments rather than by materials. It discusses the corrosion engineering of noble metals, ''exotic'' metals, non-metallics, coatings, mechanical properties, and corrosion testing, as well as modern concepts. New sections have been added on fracture mechanics, laser alloying, nuclear waste isolation, solar energy, geothermal energy, and the Statue of Liberty. Special isocorrosion charts, developed by the author, are introduced as a quick way to look at candidates for a particular corrosive.

  11. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.

    Science.gov (United States)

    Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

    2004-04-01

    Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel.

  12. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    Science.gov (United States)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  13. Effect of welding processes on corrosion resistance of UNS S31803 duplex stainless steel

    International Nuclear Information System (INIS)

    Chiu, Liu Ho; Hsieh, Wen Chin

    2003-01-01

    An attractive combination of corrosion resistance and mechanical properties in the temperature range -50 to 250 .deg. C is offered by duplex stainless steel. However, undesirable secondary precipitation phase such as σ, γ 2 and Cr 2 N may taken place at the cooling stage from the welding processes. Therefore, this paper describes the influence of different welding procedures such as manual metal arc welding (MMA), tungsten inert gas welding (TIG) and vacuum brazing on corrosion resistance of the welded joint for UNS S31803 duplex stainless steel. Microstructure and chemical compositions of the welded joint were examined. The weight loss of specimens immersed in 6% FeCl 3 solution at 47.5 .deg. C for 24-hours was determined and used to evaluate the pitting resistance of duplex stainless steel and their welds. The region of heat-affected zone of specimen obtained by the MMA is much wider than that resulted from TIG, therefore, the weight loss of welds by MMA was larger than that of weld by TIG. The weight loss of brazed specimens cooled from slow cooling rate was larger than those of specimens cooled from high cooling rate, because the precipitation of σ phase. Beside that, the weight loss of brazed specimen is greater than those of the welded specimens. The galvanic corrosion was observed in brazed duplex stainless steel joints in the chloride solution

  14. Intergranular stress corrosion cracking: A rationalization of apparent differences among stress corrosion cracking tendencies for sensitized regions in the process water piping and in the tanks of SRS reactors

    International Nuclear Information System (INIS)

    Louthan, M.R.

    1990-01-01

    The frequency of stress corrosion cracking in the near weld regions of the SRS reactor tank walls is apparently lower than the cracking frequency near the pipe-to-pipe welds in the primary cooling water system. The difference in cracking tendency can be attributed to differences in the welding processes, fabrication schedules, near weld residual stresses, exposure conditions and other system variables. This memorandum discusses the technical issues that may account the differences in cracking tendencies based on a review of the fabrication and operating histories of the reactor systems and the accepted understanding of factors that control stress corrosion cracking in austenitic stainless steels

  15. Effects of Induction Heat Bending Process on Microstructure and Corrosion Properties of ASME SA312 Gr.TP304 Stainless Steel Pipes

    International Nuclear Information System (INIS)

    Kim, Nam In; Kim, Young Sik; Kim, Kyung Soo; Chang, Hyun Young; Park, Heung Bae; Sung, Gi Ho; Sung, Gi Ho

    2015-01-01

    The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001 - 0.075 % were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel

  16. Corrosion resistance of ceramic materials in pyrochemical reprocessing atmosphere by using molten salt for spent nuclear oxide fuel. Corrosion research under chlorine gas condition

    International Nuclear Information System (INIS)

    Takeuchi, Masayuki; Hanada, Keiji; Koizumi, Tsutomu; Aose, Shinichi; Kato, Toshihiro

    2002-12-01

    Pyrochemical reprocessing using molten salts (RIAR process) has been recently developed for spent nuclear oxide fuel and discussed in feasibility study. It is required to improve the corrosion resistance of equipments such as electrolyzer because the process is operated in severe corrosion environment. In this study, the corrosion resistance of ceramic materials was discussed through the thermodynamic calculation and corrosion test. The corrosion test was basically carried out in alkali molten salt under chlorine gas condition. And further consideration about the effects of oxygen, carbon and main fission product's chlorides were evaluated in molten salt. The result of thermodynamic calculation shows most of ceramic oxides have good chemical stability on chlorine, oxygen and uranyl chloride, however the standard Gibb's free energies with carbon have negative value. On the other hand, eleven kinds of ceramic materials were examined by corrosion test, then silicon nitride, mullite and cordierite have a good corrosion resistance less than 0.1 mm/y. Cracks were not observed on the materials and flexural strength did not reduce remarkably after 480 hours test in molten salt with Cl 2 -O 2 bubbling. In conclusion, these three ceramic materials are most applicable materials for the pyrochemical reprocessing process with chlorine gas condition. (author)

  17. Erosion–corrosion and corrosion properties of DLC coated low temperature Erosion–corrosion and corrosion properties of DLC coated low temperature

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Christiansen, Thomas; Hilbert, Lisbeth Rischel

    2009-01-01

    of AISI 316 as substrate for DLC coatings are investigated. Corrosion and erosion–corrosion measurements were carried out on low temperature nitrided stainless steel AISI 316 and on low temperature nitrided stainless steel AISI 316 with a top layer of DLC. The combination of DLC and low temperature...... nitriding dramatically reduces the amount of erosion–corrosion of stainless steel under impingement of particles in a corrosive medium....

  18. SNF project engineering process improvement plan

    International Nuclear Information System (INIS)

    KELMENSON, R.L.

    1999-01-01

    This Engineering Process Improvement Plan documents the activities and plans to be taken by the SNF Project (the Project) to support its engineering process and to produce a consolidated set of engineering procedures that are fully compliant with the requirements of HNF-PRO-1819 (1819). These requirements are imposed on all engineering activities performed for the Project and apply to all life-cycle stages of the Project's systems, structures and components (SSCs). This Plan describes the steps that will be taken by the Project during the transition period to ensure that new procedures are effectively integrated into the Project's work process as these procedures are issued. The consolidated procedures will be issued and implemented by September 30, 1999

  19. Inspection indications, stress corrosion cracks and repair of process piping in nuclear materials production reactors

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; West, S.L.; Nelson, D.Z.

    1991-01-01

    Ultrasonic inspection of Schedule 40 Type 304 stainless steel piping in the process water system of the Savannah River Site reactors has provided indications of discontinuities in less than 10% of the weld heat affected zones. Pipe sections containing significant indications are replaced with Type 304L components. Post removal metallurgical evaluation showed that the indications resulted from stress corrosion cracking in weld heat-affected zones and that the overall weld quality was excellent. The evaluation also revealed weld fusion zone discontinuities such as incomplete penetration, incomplete fusion, inclusions, underfill at weld roots and hot cracks. Service induced extension of these discontinuities was generally not significant although stress corrosion cracking in one weld fusion zone was noted. One set of UT indications was caused by metallurgical discontinuities at the fusion boundary of an extra weld. This extra weld, not apparent on the outer pipe surface, was slightly overlapping and approximately parallel to the weld being inspected. This extra weld was made during a pipe repair, probably associated with initial construction processes. The two nearly parallel welds made accurate assessment of the UT signal difficult. The implications of these observations to the inspection and repair of process water systems of nuclear reactors is discussed

  20. MATHEMATICAL MODELING AND NUMERICAL SOLUTION OF IRON CORROSION PROBLEM BASED ON CONDENSATION CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Basuki Widodo

    2012-02-01

    Full Text Available Corrosion process is a natural case that happened at the various metals, where the corrosion process in electrochemical can be explained by using galvanic cell. The iron corrosion process is based on the acidity degree (pH of a condensation, iron concentration and condensation temperature of electrolyte. Those are applied at electrochemistry cell. The iron corrosion process at this electrochemical cell also able to generate electrical potential and electric current during the process takes place. This paper considers how to build a mathematical model of iron corrosion, electrical potential and electric current. The mathematical model further is solved using the finite element method. This iron corrosion model is built based on the iron concentration, condensation temperature, and iteration time applied. In the electric current density model, the current based on electric current that is happened at cathode and anode pole and the iteration time applied. Whereas on the potential  electric model, it is based on the beginning of electric potential and the iteration time applied. The numerical results show that the part of iron metal, that is gristle caused by corrosion, is the part of metal that has function as anode and it has some influences, such as time depth difference, iron concentration and condensation temperature on the iron corrosion process and the sum of reduced mass during corrosion process. Moreover, difference influence of time and beginning electric potential has an effect on the electric potential, which emerges during corrosion process at the electrochemical cell. Whereas, at the electrical current is also influenced by difference of depth time and condensation temperature applied.Keywords: Iron Corrosion, Concentration of iron, Electrochemical Cell and Finite Element Method

  1. Strain-induced corrosion cracking in ferritic components of BWR primary circuits

    International Nuclear Information System (INIS)

    Seifert, H.-P.; Ritter, S.; Ineichen, U.; Tschanz, U.; Gerodetti, B.

    2003-04-01

    The present final report of the RIKORR project is a summary of a literature survey and of the experimental work performed by PSI on the environmentally-assisted cracking (EAC) and dynamic strain ageing (DSA) susceptibility of low-alloy steels (LAS) in high-temperature (HT) water. Within this project, the EAC crack growth behaviour of different low-alloy RPV steels, weld filler and weld heat-affected zone materials has been investigated under simulated transient and steady-state BWR/NWC power operation conditions. The strain-induced corrosion cracking (SICC) / low-frequency corrosion fatigue (CF) and stress corrosion cracking (SCC) crack growth behaviour of different low-alloy RPV steels under simulated transient and stationary BWR/NWC conditions was characterized by slow rising load / low-frequency corrosion fatigue and constant load / periodical partial unloading / ripple load tests with pre-cracked fracture mechanics specimens in oxygenated HT water at temperatures of either 288, 250, 200 or 150 o C. Modern high-temperature water loops, on-line crack growth monitoring and fractographic analysis by scanning electron microscopy (SEM) were used to quantify the cracking response. (author)

  2. FUNDAMENTAL MECHANISMS OF CORROSION OF ADVANCED LIGHT WATER REACTOR FUEL CLADDING ALLOYS AT HIGH BURNUP

    International Nuclear Information System (INIS)

    Lott, Randy G.

    2003-01-01

    OAK (B204) The corrosion behavior of nuclear fuel cladding is a key factor limiting the performance of nuclear fuel elements, improved cladding alloys, which resist corrosion and radiation damage, will facilitate higher burnup core designs. The objective of this project is to understand the mechanisms by which alloy composition, heat treatment and microstructure affect corrosion rate. This knowledge can be used to predict the behavior of existing alloys outside the current experience base (for example, at high burn-up) and predict the effects of changes in operation conditions on zirconium alloy behavior. Zirconium alloys corrode by the formation f a highly adherent protective oxide layer. The working hypothesis of this project is that alloy composition, microstructure and heat treatment affect corrosion rates through their effect on the protective oxide structure and ion transport properties. The experimental task in this project is to identify these differences and understand how they affect corrosion behavior. To do this, several microstructural examination techniques including transmission electron microscope (TEM), electrochemical impedance spectroscopy (EIS) and a selection of fluorescence and diffraction techniques using synchrotron radiation at the Advanced Photon Source (APS) were employed

  3. Development of corrosion and wear resistant coatings by an improved HVOF spraying process

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Y.; Kawakita, J.; Kuroda, S. [National Inst. for Materials Science, Tsukuba (Japan)

    2005-07-01

    We have developed an improved HVOF spray process called ''Gas-shrouded HVOF'' (GS-HVOF) over the past several years. By using an extension nozzle at the exit of a commercial HVOF spray gun, GS-HVOF is capable of controlling the oxidation of sprayed materials during flight as well as achieving higher velocity of sprayed particles. These features result in extremely dense and clean microstructure of the sprayed coatings. The process has been successfully applied to corrosion resistant alloys such as SUS316L, Hastelloy C, and alloy 625 as well as cermets such as WC-Cr{sub 3}C{sub 2}-Ni. The spray process, coatings microstructure and property evaluation will be discussed with potential industrial applications in the near future. (orig.)

  4. Corrosion and deposit evaluation in large diameter pipes using radiography

    International Nuclear Information System (INIS)

    Boateng, A.

    2012-01-01

    The reliability and safety of industrial equipment in the factories and processing industries are substantially influenced by degradation processes such as corrosion, erosion, deposits and blocking of pipes. These might lead to low production, unpredictable and costly shutdowns due to repair and replacement and sometimes combined environmental pollution and risk of personnel injuries. Only periodic inspection for the integrity of pipes and equipment can reduce the risk in connection with other maintenance activities. The research explored two methods of radiographic inspection techniques, the double wall technique and the tangential radiographic technique using Ir-192 for evaluating deposits and corrosion attacks across the inner and outer walls of steel pipes with diameter greater than 150 mm with or without insulation. The application of both techniques was conducted depending on pipe diameter, wall thickness, radiation source (Ir-92) and film combination. The iridium source was positioned perpendicular with respect to the pipe axis projecting the double wall of the pipe on the plated radiographic film. With the tangential radiographic technique, the source was placed tangential to the pipe wall and because of its large diameter, the source was collimated to prevent backscatter and also to focus the beam at the target area of interest. All measurements were performed on special designed test pieces to simulate corrosion attack and deposits on industrial pipes. Pitting corrosion measurements based on Tangential Radiographic Technique were more sophisticated, and therefore magnification factor and correction were used to establish the estimated pit depth on the film. The insulating material used to conserve the thermodynamic properties of the transported media had relatively negligible attenuation coefficient compared to the concrete deposit. The two explored techniques were successful in evaluating corrosion attack and deposit on the walls of the pipe and the risk

  5. Corrosion and thermal plant section: 1983 review and 1984 programs

    International Nuclear Information System (INIS)

    Brown, J.

    1984-01-01

    The projects and achievements of the Corrosion and Thermal Plant Section in 1983 are reviewed. Proposed projects and objectives for 1984 are described in outline and an overview of the changes in direction of the work of the section is presented

  6. Corrosion Map for Metal Pipes in Coastal Louisiana : Tech Summary

    Science.gov (United States)

    2017-12-01

    The objective of this project was to create a guidance document with maps that delineates zones where metal pipe is prone to increased corrosion due to environmental conditions. Results from this project will provide a logical rationale to support DO...

  7. Corrosion Evaluation and Corrosion Control of Steam Generators

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M.

    2008-06-01

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants

  8. Influence of biofilm formation on corrosion and scaling in geothermal plants

    Science.gov (United States)

    Kleyböcker, Anne; Lerm, Stephanie; Monika, Kasina; Tobias, Lienen; Florian, Eichinger; Andrea, Seibt; Markus, Wolfgramm; Hilke, Würdemann

    2017-04-01

    Process failures may occur due to corrosion and scaling processes in open loop geothermal systems. Especially after heat extraction, sulfate reducing bacteria (SRB) contribute to corrosion processes due to a more favorable temperature for their growth. In biofilms containing FeS scales, corrosion processes are enhanced. Furthermore, scales can lead to reduced pipe profiles, to a diminished heat transfer and a decrease in the wellbore injectivity. Inhibitors are frequently applied to minimize scaling in technical systems. A prerequisite for the application of inhibitors in geothermal plants located in the Molasse basin is their degradability under reservoir conditions, e. g. in a reduced environment. In order to determine the effects of scale-inhibitors on the subsurface and microbial processes, laboratory experiments were performed focusing on the microbial inhibitor degradation. First results indicate that the inhibitor degradation under anaerobic conditions is possible. Besides the inhibitor application also other techniques are investigated to economically reduce corrosion and scaling in geothermal plants. In a mobile bypass system, the influence of biofilm formation on corrosion and scaling was investigated. The bypass system was tested at a geothermal heat store in the North German Basin. The plant is operated with highly saline fluid (salinity 130 g/L) and known to be affected by SRB. The SRB contributed to corrosion damages especially at the pump in the well on the cold side. Heat shocks were successfully used in the bypass system to reduce biofilm formation as well as corrosion and scaling processes.

  9. The dual role of microbes in corrosion

    NARCIS (Netherlands)

    Kip, D.J.; Van Veen, J.A.

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced

  10. Probabilistic models for steel corrosion loss and pitting of marine infrastructure

    International Nuclear Information System (INIS)

    Melchers, R.E.; Jeffrey, R.J.

    2008-01-01

    With the increasing emphasis on attempting to retain in service ageing infrastructure models for the description and prediction of corrosion losses and for maximum pit depth are of increasing interest. In most cases assessment and prediction will be done in a probabilistic risk assessment framework and this then requires probabilistic corrosion models. Recently, novel models for corrosion loss and maximum pit depth under marine immersion conditions have been developed. The models show that both corrosion loss and pit depth progress in a non-linear fashion with increased exposure time and do so in a non-monotonic manner as a result of the controlling corrosion process changing from oxidation to being influenced by bacterial action. For engineers the importance of this lies in the fact that conventional 'corrosion rates' have no validity, particularly for the long-term corrosion effects as relevant to deteriorated infrastructure. The models are consistent with corrosion science principles as well as current understanding of the considerable influence of bacterial processes on corrosion loss and pitting. The considerable practical implications of this are described

  11. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  12. Anomalous dissolution of metals and chemical corrosion

    Directory of Open Access Journals (Sweden)

    DRAGUTIN M. DRAZIC

    2005-03-01

    Full Text Available An overview is given of the anomalous behavior of some metals, in particular Fe and Cr, in acidic aqueous solutions during anodic dissolution. The anomaly is recognizable by the fact that during anodic dissolutionmore material dissolves than would be expected from the Faraday law with the use of the expected valence of the formed ions. Mechanical disintegration, gas bubble blocking, hydrogen embrittlement, passive layer cracking and other possible reasons for such behavior have been discussed. It was shown, as suggested by Kolotyrkin and coworkers, that the reason can be, also, the chemical reaction in which H2O molecules with the metal form metal ions and gaseous H2 in a potential independent process. It occurs simultaneously with the electrochemical corrosion process, but the electrochemical process controls the corrosion potential. On the example of Cr in acid solution itwas shown that the reason for the anomalous behavior is dominantly chemical dissolution, which is considerably faster than the electrochemical corrosion, and that the increasing temperature favors chemical reaction, while the other possible reasons for the anomalous behavior are of negligible effect. This effect is much smaller in the case of Fe, but exists. The possible role of the chemical dissolution reacton and hydrogen evolution during pitting of steels and Al and stress corrosion cracking or corrosion fatigue are discussed.

  13. Reengineering the project design process

    Science.gov (United States)

    Kane Casani, E.; Metzger, Robert M.

    1995-01-01

    In response to the National Aeronautics and Space Administration's goal of working faster, better, and cheaper, the Jet Propulsion Laboratory (JPL) has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Development Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center (PDC) and the Flight System Testbed (FST). Reengineering at JPL implies a cultural change whereby the character of the Laboratory's design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and more accurate cost estimating. These improvements signal JPL's commitment to meeting the challenges of space exploration in the next century.

  14. Exfoliation Corrosion and Pitting Corrosion and Their Role in Fatigue Predictive Modeling: State-of-the-Art Review

    Directory of Open Access Journals (Sweden)

    David W. Hoeppner

    2012-01-01

    Full Text Available Intergranular attack (IG and exfoliation corrosion (EC have a detrimental impact on the structural integrity of aircraft structures of all types. Understanding the mechanisms and methods for dealing with these processes and with corrosion in general has been and is critical to the safety of critical components of aircraft. Discussion of cases where IG attack and exfoliation caused issues in structural integrity in aircraft in operational fleets is presented herein along with a much more detailed presentation of the issues involved in dealing with corrosion of aircraft. Issues of corrosion and fatigue related to the structural integrity of aging aircraft are introduced herein. Mechanisms of pitting nucleation are discussed which include adsorption-induced, ion migration-penetration, and chemicomechanical film breakdown theories. In addition, pitting corrosion (PC fatigue models are presented as well as a critical assessment of their application to aircraft structures and materials. Finally environmental effects on short crack behavior of materials are discussed, and a compilation of definitions related to corrosion and fatigue are presented.

  15. Research of state of metal welded joint by deformation and corrosion surface projection parameters

    Directory of Open Access Journals (Sweden)

    Demchenko Maria Vyacheslavovna

    2017-10-01

    Full Text Available At industrial enterprises in building structures and equipment one can see corrosion damage, as well as damage accumulated during operation period. The areas of stress concentration are welded joints as their structure is heterogeneous. From the point of view of the scale hierarchy, the welded joint represents the welded and base metal zones at the meso-macrolevel, the weld zone, the thermal zone, the base metal at the micro-mesolevel, the grain constituents at the nano-microlevel. Borders are the stress concentrators at different scale levels, thus they becomes the most dangerous places of metal structure. Modeling by the molecular dynamics method at the atomic level has shown nanocracks initiation in triple junctions of grain boundaries and on the ledges of the grain boundaries. Due to active development of nanotechnology, it became possible to evaluate the state of the weld metal at the nanoscale, where irreversible changes take place from the very beginning. Existing methods of nondestructive testing can detect damage only at the meso- and macrolevel. Modern equipment makes it possible to use other methods of control and approaches. For example, according to GOST R55046-2012 and R57223-2016, the analysis of the parameters of the surface projection deformation performed by confocal laser scanning microscopy should be taken into account when the evaluation of state of metal pipelines is carried out. However, there is a problem to monitore it due to various factors affecting the surface during operation. The paper proposes an additional method to estimate the state of weld metal at any stage of deformation that uses 3D analysis of the parameters of the «artificial» corrosion relief of surface. During the operation period changes in the stress-strain state and structure of the metal take place, as the result the character and depth of etching of the grains of the structural components and their boundaries change too. Evaluation of the

  16. New corrosion issues in gas sweetening plants

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G. (CLI International and Asperger Technologies, Houston, TX (United States))

    Gas treating plants are experiencing corrosion problems which impact on efficiency and safety. While general corrosion is not particularly hazardous in the gas processing industry, local corrosion is very dangerous since it has several different mechanisms, all of which have dangerously high rates, and it occurs at locations which are hard to find and hard to predict. A newly discovered, velocity-dependent type of corrosion is reported. It is related to yet-undefined species which cause excessively high corrosion in areas of turbulence. This accelerated corrosion is not due to erosion or cavitation, but to a diffusion-limited reaction accelerated by turbulence. A full-flow test loop was built to evaluate the corrosiveness of gas plant solutions at their normal temperature and flow rates. Test runs were conducted with Co[sub 2]-loaded amine solutions for periods of 12 days. Carbon steel specimens mounted in the test loop were examined and corrosion rates calculated. Chromium alloys were shown to be attacked by corrodents in the low-velocity part of the loop and very aggressively attacked in the high-velocity part. The tests demonstrate the need for rigorous monitoring of corrosion in areas of higher velocity such as piping elbows and other points of turbulence. 5 refs., 2 figs., 3 tabs.

  17. Corrosion of copper-based materials in irradiated moist air systems

    International Nuclear Information System (INIS)

    Reed, D.T.; Van Konynenburg, R.A.

    1991-06-01

    The atmospheric corrosion of oxygen-free copper (CDA-102), 70/30 copper-nickel (CDA-715), and 7% aluminum bronze (CDA-613) in an irradiated moist air environment was investigated. Experiments were performed in both dry and 40% RH (at sign 90 degree C) air at temperatures of 90 and 150 degree C. Initial corrosion rates were determined based on a combination of weight gain and weight loss measurements. Corrosion products observed were identified. These experiments support efforts by the Yucca Mountain Project (YMP) to evaluate possible metallic barrier materials for nuclear waste containers. 8 refs., 1 fig., 2 tabs

  18. Zircaloy cladding corrosion degradation in a Tuff repository: initial experimental plan

    International Nuclear Information System (INIS)

    Smith, H.D.

    1984-07-01

    The projected environmental history of a Tuff repository sited in an unsaturated hydrologic setting is evaluated to identify the potentially most severe corrosion conditions for Zircaloy spent fuel cladding. Three distinct corrosion periods are identified over the projected history. In two of those, liquid water may be present which is believed to produce the most severe corrosive environment for Zircaloy spent fuel cladding. In the time interval 100 to 1000 years after emplacement in the repository, the most severe condition is exposure to 170 0 C water at about 100 psi in an unbreached canister. This condition will be reproduced experimentally in an autoclave. For times after 1000 years, the most severe condition is exposure to 90 0 C water that is equilibrated with the tuff and invades breached canisters. This condition will be reproduced with a water bath system

  19. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    Science.gov (United States)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  20. Thermomechanical processing of 5083 aluminum to increase strength without increasing susceptibility to stress corrosion cracking

    International Nuclear Information System (INIS)

    Edstrom, C.M.; Blakeslee, J.J.

    1980-01-01

    5083 aluminium with 25% cold work must be processed above 215 0 C or below 70 0 C to avoid forming continuous precipitate in the grain boundaries which makes the material susceptible to stress corrosion cracking. Time at temperature above 215 0 C should be held to minimum (less than 30 min) to retain some strength from the 25% cold work

  1. Development of a unit suitable for corrosion monitoring in district heating systems. Experiences with the LOCOR-cell test method

    DEFF Research Database (Denmark)

    Andersen, Asbjørn; Hilbert, Lisbeth Rischel

    2004-01-01

    A by-pass unit suitable for placement of a number of different probes for corrosion monitoring has been designed. Also measurements of water parameters are allowed in a side stream from the unit. The project is a part of the Nordic Innovation Fund project KORMOF. The by-pass unit has been installed...... in 6 pressurised circulating heating systems and in one cooling system. 7 different corrosion monitoring methods have been used to study corrosion rates and types in dependency of water chemistry. This paper describes the design of the by-pass unit including water analysis methods. It also describes...... the purpose, background and gained results of one of the used monitoring techniques, the crevice corrosion measurements obtained by the LOCOR-Cell„§. The crevice corrosion cell was developed by FORCE Technology in a previous district heating project financed by Nordic Industrial Fund (1)(2). Results from...

  2. Electrochemical noise based corrosion monitoring: FY 2001 final report

    International Nuclear Information System (INIS)

    EDGAR, C.

    2001-01-01

    Underground storage tanks made of mild steel are used to contain radioactive waste generated by plutonium production at the Hanford Site. Corrosion of the walls of these tanks is a major issue. Corrosion monitoring and control are currently provided at the Hanford Site through a waste chemistry sampling and analysis program. In this process, tank waste is sampled, analyzed and compared to a selection of laboratory exposures of coupons in simulated waste. Tank wall corrosion is inferred by matching measured tank chemistries to the results of the laboratory simulant testing. This method is expensive, time consuming, and does not yield real-time data. Corrosion can be monitored through coupon exposure studies and a variety of electrochemical techniques. A small number of these techniques have been tried at Hanford and elsewhere within the DOE complex to determine the corrosivity of nuclear waste stored in underground tanks [1]. Coupon exposure programs, linear polarization resistance (LPR), and electrical resistance techniques have all been tried with limited degrees of success. These techniques are most effective for monitoring uniform corrosion, but are not well suited for early detection of localized forms of corrosion such as pitting and stress corrosion cracking (SCC). Pitting and SCC have been identified as the most likely modes of corrosion failure for Hanford Double Shell Tanks (DST'S) [2-3]. Over the last 20 years, a new corrosion monitoring system has shown promise in detecting localized corrosion and measuring uniform corrosion rates in process industries [4-20]. The system measures electrochemical noise (EN) generated by corrosion. The term EN is used to describe low frequency fluctuations in current and voltage associated with corrosion. In their most basic form, EN-based corrosion monitoring systems monitor and record fluctuations in current and voltage over time from electrodes immersed in an environment of interest. Laboratory studies and field

  3. Monitoring on corrosion behavior of steam generator tubings

    International Nuclear Information System (INIS)

    Takamatsu, H.; Isobe, S.; Sato, M.; Arioka, K.; Tsuruta, T.

    1988-01-01

    The importance of chemistry in high temperature aqueous solutions is widely recognized for understanding corrosion phenomena in PWR SG crevice environments. Potential and pH are two important parameters, among other environmental factors affecting localized corrosion processes, such as IGA and/or SCC in SG crevices. In this article, we discuss the potential-pH-IGA/SCC diagram of Alloy 600 as a basis for evaluating the corrosion behavior of SG tubings, and two examples of monitoring, corrosion potential monitoring in the bulk secondary water and pH monitoring in simulated SG crevices. (author)

  4. Influence of the surface finishing on the corrosion behaviour of AISI 316L stainless steel

    Czech Academy of Sciences Publication Activity Database

    Dundeková, S.; Zatkalíková, V.; Fintová, Stanislava; Hadzima, B.; Škorík, Viktor

    2015-01-01

    Roč. 22, č. 1 (2015), s. 48-53 ISSN 1335-0803 R&D Projects: GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : AISI 316L stainless steel * Corrosion * Immersion test * Corrosion rate Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://ojs.mateng.sk/index.php/Mateng/article/view/166/251

  5. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  6. Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications

    Science.gov (United States)

    Mostaed, Ehsan; Vedani, Maurizio; Hashempour, Mazdak; Bestetti, Massimiliano

    2014-01-01

    Equal channel angular pressing (ECAP) was performed on ZK60 alloy and pure Mg in the temperature range 150–250 °C. A significant grain refinement was detected after ECAP, leading to an ultrafine grain size (UFG) and enhanced formability during extrusion process. Comparing to conventional coarse grained samples, fracture elongation of pure Mg and ZK60 alloy were significantly improved by 130% and 100%, respectively, while the tensile strength remained at high level. Extrusion was performed on ECAP processed billets to produce small tubes (with outer/inner diameter of 4/2.5 mm) as precursors for biodegradable stents. Studies on extruded tubes revealed that even after extrusion the microstructure and microhardness of the UFG ZK60 alloy were almost stable. Furthermore, pure Mg tubes showed an additional improvement in terms of grain refining and mechanical properties after extrusion. Electrochemical analyses and microstructural assessments after corrosion tests demonstrated two major influential factors in corrosion behavior of the investigated materials. The presence of Zn and Zr as alloying elements simultaneously increases the nobility by formation of a protective film and increase the local corrosion damage by amplifying the pitting development. ECAP treatment decreases the size of the second phase particles thus improving microstructure homogeneity, thereby decreasing the localized corrosion effects. PMID:25482411

  7. A comparison of corrosion resistance of cobalt-chromium-molybdenum metal ceramic alloy fabricated with selective laser melting and traditional processing.

    Science.gov (United States)

    Zeng, Li; Xiang, Nan; Wei, Bin

    2014-11-01

    A cobalt-chromium-molybdenum alloy fabricated by selective laser melting is a promising material; however, there are concerns about the change in its corrosion behavior. The purpose of this study was to evaluate the changes in corrosion behavior of a cobalt-chromium-molybdenum alloy fabricated by the selective laser melting technique before and after ceramic firing, with traditional processing of cobalt-chromium-molybdenum alloy serving as a control. Two groups of specimens were designated as group selective laser melting and group traditional. For each group, 20 specimens with a cylindrical shape were prepared and divided into 4 cells: selective laser melting as-cast, selective laser melting fired in pH 5.0 and 2.5, traditional as-cast, and traditional fired in pH 5.0 and 2.5. Specimens were prepared with a selective laser melting system for a selective laser melting alloy and the conventional lost wax technique for traditional cast alloy. After all specimen surfaces had been wet ground with silicon carbide paper (1200 grit), each group of 10 specimens was put through a series of ceramic firing cycles. Microstructure, Vickers microhardness, surface composition, oxide film thickness, and corrosion behavior were examined for specimens before and after ceramic firing. Three-way ANOVA was used to evaluate the effect of porcelain firing and pH values on the corrosion behavior of the 2 alloys (α=.05). Student t tests were used to compare the Vickers hardness. Although porcelain firing changed the microstructure, microhardness, and x-ray photoelectron spectroscopy results, it showed no significant influence on the corrosion behavior of the selective laser melting alloy and traditional cast alloy (P>.05). No statistically significant influence was found on the corrosion behavior of the 2 alloys in different pH value solutions (P>.05). The porcelain firing process had no significant influence on the corrosion resistance results of the 2 alloys. Compared with traditional

  8. Corrosion properties of sealing surface material for RPV under abnormal working conditions

    International Nuclear Information System (INIS)

    Liu Jinhua; Wen Yan; Zhang Xuemei; Hou Songmin; Gong Bin; He Yanchun

    2012-01-01

    Based on the corrosion issue of sealing surface material for RPV in some nuclear projects, the corrosion properties of sealing surface material for RPV under abnormal working conditions were investigated. The corrosion behavior of 308L stainless steel were studied by using autoclave in different contents of Cl - solutions, and these samples were observed and analyzed by means of the metalloscope and Scanning electron microscope (SEM). Results show that no pitting, crevice and stress corrosion occurred, when the content of Cl - was lower than 1 mg/L at the temperatures of 270℃ and the pressure of 5.5 MPa. However, with the increase of the content of Cl - , the susceptibility to pitting, crevice and stress corrosion of 308L was enhanced remarkably. (authors)

  9. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  10. Modelling aqueous corrosion of nuclear waste phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A. [Bochvar All-Russian Scientific Research Institute for Inorganic Materials (VNIINM), Moscow (Russian Federation); Ojovan, Michael I., E-mail: m.ojovan@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2017-02-15

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface. - Highlights: • The radionuclides yield is determined by the transport from the glass through the surface corrosion layer. • Formation of the surface layer is due to the dissolution of the glass network and the formation of insoluble compounds. • The model proposed accounts for glass dissolution, formation of corrosion layer, specie diffusion and chemical reactions. • Analytical solutions are found for corrosion layer growth rate and glass components component leaching rates.

  11. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  12. Nanocontainer-based corrosion sensing coating

    International Nuclear Information System (INIS)

    Maia, F; Tedim, J; Bastos, A C; Ferreira, M G S; Zheludkevich, M L

    2013-01-01

    The present paper reports on the development of new sensing active coating on the basis of nanocontainers containing pH-indicating agent. The coating is able to detect active corrosion processes on different metallic substrates. The corrosion detection functionality based on the local colour change in active cathodic zones results from the interaction of hydroxide ions with phenolphthalein encapsulated in mesoporous nanocontainers which function as sensing nanoreactors. The mesoporous silica nanocontainers are synthesized and loaded with pH indicator phenolphthalein in a one-stage process. The resulting system is mesoporous, which together with bulkiness of the indicator molecules limits their leaching. At the same time, penetration of water molecules and ions inside the container is still possible, allowing encapsulated phenolphthalein to be sensitive to the pH in the surrounding environment and outperforming systems when an indicator is directly dispersed in the coating layer. The performed tests demonstrate the pH sensitivity of the developed nanocontainers being dispersed in aqueous solutions. The corrosion sensing functionality of the protective coatings with nanocontainers are proven for aluminium- and magnesium-based metallic substrates. As a result, the developed nanocontainers show high potential to be used in a new generation of active protective coatings with corrosion-sensing coatings. (paper)

  13. Corrosive wear. Evaluation of wear and corrosive resistant materials; Noetningskorrosion. Utvaerdering av noetnings- och korrosionsbestaendiga material

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H.; Hjertsen, D.; Waara, P.; Prakash, B.; Hardell, J.

    2007-12-15

    With a new purchase of a waste conveyer screw at hand, for the 'A-warehouse' at the combined power and heating plant at E.ON Norrkoeping, the request for improved construction materials was raised. The previous screw required maintenance with very short intervals due to the difficult operation conditions. With the new screw the expectation is to manage 6 months of operation without interruption. The environment for the screw has two main components that sets the demand on the materials, on one hand the corrosive products that comes along and which forms at digestion of the waste and on the other hand the abrasive content in the waste. The term of the mechanism is wear-corrosion and can give considerably higher material loss than the two mechanisms wear and corrosion separately. Combination of a strong corrosive environment together with extensive wear is something that we today have limited knowledge about. The overall objective of the project has been to establish better wear and corrosive resistant construction materials for a waste conveyer screw that will lead to reduced operational disturbance costs. The evaluation has been performed in both controlled laboratory environments and in field tests, which has given us a better understanding of what materials are more suitable in this tough environment and has given us a tool for future predictions of the wear rate of the different material. The new conveyer screw, installed in February 2007 and with which the field test have been performed, has considerably reduced the wear of the construction and the target of 6 month maintenance-free operation is met with this screw for all the evaluated materials. The wear along the screw varies very much and with a clear trend for all the materials to increase towards the feeding direction of the screw. As an example, the wear plate SS2377 (stainless duplex steel) has a useful life at the most affected areas that is calculated to be 1077 days of operation with the

  14. Investigation of corrosion behavior of Mg-steel laser-TIG hybrid lap joints

    International Nuclear Information System (INIS)

    Liu Liming; Xu Rongzheng

    2012-01-01

    Highlights: ► Galvanic corrosion increases the corrosion rate of the Mg-steel joint. ► Fe splashes lower the corrosion resistance of the joint greatly. ► The effect of grain refinement on the corrosion behavior of the joint is slight. ► Ni or Cu interlayer could not improve the corrosion resistance of fusion zone. ► The arc-sprayed coating could enhance the reliability of weld joint. - Abstract: The paper investigates the corrosion behavior of the lap joint of AZ31 magnesium alloy to Q235 steel with salt solution immersion testing and electrochemical testing. It is demonstrated that grain refinement resulting from the welding process has little effect on the corrosion behavior of the lap joint. However, the cathodic phases formed in the welding process and the galvanic corrosion between magnesium alloy and steel decrease the corrosion resistance of the joint greatly. Besides, neither Cu nor Ni, as filler material, could improve the corrosion resistance of the joint, but the arc-sprayed Al coating acting as a protective layer could.

  15. Metallurgical aspects of corrosion resistance of aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, M.C. [Pechiney Voreppe Research Centre France (France); CNRS-INP Grenoble, SIMAP-INP Grenoble, Universite France, Saint Martin d' Heres Cedex (France); Baroux, B. [SIMAP-INP, Grenoble University, 1130 rue de la piscine, Saint Martin d' Heres Cedex (France)

    2011-03-15

    Aluminium is the second most often used metal after steel. In this paper, the most current uses of aluminium alloys are first summarised. Then, their different corrosion modes, i.e. pitting, crevice, filiform, galvanic and structural corrosion (including inter-granular, exfoliation and stress corrosion cracking) are reviewed, with particular attention paid to metallurgical factors controlling the corrosion process. For each mode, some instances of possible in-service failure are given, followed by the discussion of the involved mechanisms and the presentation of appropriate solutions to prevent corrosion. Last, passivity and polarisation behaviour are discussed with reference to stainless steels. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  17. Corrosion and protection in reinforced concrete : Pulse cathodic protection: an improved cost-effective alternative

    NARCIS (Netherlands)

    Koleva, D.A.

    2007-01-01

    Corrosion and protection in reinforced concrete. Pulse cathodic protection: an improved cost-effective alternative. The aim of the research project was to study the possibilities for establishing a new or improved electrochemical method for corrosion prevention/protection for reinforced concrete.

  18. Studies on broad spectrum corrosion resistant oxide coatings

    Indian Academy of Sciences (India)

    Unknown

    Corrosion resistant coating materials and their application ... technology demand such corrosion resistant coatings having a ... mill additives used are as follows: China clay, 3⋅0–10⋅0; .... stage involves modification in processing of the deve-.

  19. Effect of 1,2,4-triazole on galvanic corrosion between cobalt and copper in CMP based alkaline slurry

    Science.gov (United States)

    Fu, Lei; Liu, Yuling; Wang, Chenwei; Han, Linan

    2018-04-01

    Cobalt has become a new type of barrier material with its unique advantages since the copper-interconnects in the great-large scale integrated circuits (GLSI) into 10 nm and below technical nodes, but cobalt and copper have severe galvanic corrosion during chemical–mechanical flattening. The effect of 1,2,4-triazole on Co/Cu galvanic corrosion in alkaline slurry and the control of rate selectivity of copper and cobalt were investigated in this work. The results of electrochemical experiments and polishing experiments had indicated that a certain concentration of 1,2,4-triazole could form a layer of insoluble and dense passive film on the surface of cobalt and copper, which reduced the corrosion potential difference between cobalt and copper. Meantime, the removal rate of cobalt and copper could be effectively controlled according to demand during the CMP process. When the study optimized slurry was composed of 0.5 wt% colloidal silica, 0.1 %vol. hydrogen peroxide, 0.05 wt% FA/O, 345 ppm 1,2,4-triazole, cobalt had higher corrosion potential than copper and the galvanic corrosion could be reduced effectively when the corrosion potential difference between them decreased to 1 mV and the galvanic corrosion current density reached 0.02 nA/cm2. Meanwhile, the removal rate of Co was 62.396 nm/min, the removal rate of Cu was 47.328 nm/min, so that the removal rate ratio of cobalt and copper was 1.32 : 1, which was a good amendment to the dishing pits. The contact potential corrosion of Co/Cu was very weak, which could be better for meeting the requirements of the barrier CMP. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Outstanding Young Science and Technology Innovation Fund of Hebei University of Technology (No. 2015007).

  20. Corrosion of API XL 52 steel in presence of Clostridium celerecrescens

    Energy Technology Data Exchange (ETDEWEB)

    Monroy, O.A. Ramos; Ordaz, N. Ruiz; Ramirez, C. Juarez [Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Prolongacion de Carpio y Plan de Ayala, Mexico D. F., C. P. 11340 (Mexico); Gayosso, M.J. Hernandez; Olivares, G. Zavala [Instituto Mexicano del Petroleo, Grupo Corrosion, Eje Central Lazaro Cardenas 152, Col. San Bartolo Atepehuacan, Mexico D. F., C. P. 07730 (Mexico)

    2011-09-15

    During the characterization of sediments formed in pipelines transporting hydrocarbons, the knowledge of the microbiological diversity becomes very interesting, especially when it is related to microbiologically influenced corrosion (MIC). The presence of microorganisms is considered as one of the factors that affect the corrosion processes occurring at the pipeline; therefore, their corrosiveness must be determined. In this way, the identification of new species affecting the MIC processes is still considered relevant. In this work, the effect of Clostridium celerecrescens upon the corrosion of API KL 52 steel was evaluated. This microorganism was isolated and identified from the sediments collected during the inner cleaning procedures of a gas pipeline. The polarization resistance (PR) and electrochemical impedance spectroscopy (EIS) techniques were considered to estimate the microorganism behavior during the corrosion process. The results were complemented with a metal surface analysis, using a scanning electron microscope (SEM). The resistance values induced by the presence of the microorganisms clearly indicated that C. celerecrescens has an effect on the corrosion process occurring at the API XL 52 steel surface. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Basic aspects of the carbon dioxide corrosion in oil and gas production; Aspectos basicos de la corrosion por dioxido de carbono en la produccion de petroleo y gas

    Energy Technology Data Exchange (ETDEWEB)

    Angulo Macias, J.

    2010-07-01

    Carbon dioxide (CO{sub 2}) is a non-corrosive gas within the driven conditions in the oil and gas industry, but the presence of water converts it, maybe, in the most important component in the corrosive processes in this industry. Corrosion has an important impact inside the oil and gas companies, no only in economics but also in safety, environmental and social aspects. After several decades of investigation of these corrosion processes, there are still several mechanisms not fully understood. (Author) 19 refs.

  2. Surface Corrosion Resistance in Turning of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-01-01

    Full Text Available This work addresses the issues associated with implant surface modification. We propose a method to form the oxide film on implant surfaces by dry turning to generate heat and injecting oxygen-rich gas at the turning-tool flank. The morphology, roughness, composition, and thickness of the oxide films in an oxygen-rich atmosphere were characterized using scanning electron microscopy, optical profiling, and Auger electron spectroscopy. Electrochemical methods were used to study the corrosion resistance of the modified surfaces. The corrosion resistance trends, analyzed relative to the oxide film thickness, indicate that the oxide film thickness is the major factor affecting the corrosion resistance of titanium alloys in a simulated body fluid (SBF. Turning in an oxygen-rich atmosphere can form a thick oxide film on the implant surface. The thickness of surface oxide films processed at an oxygen concentration of 80% was improved to 4.6 times that of films processed at an oxygen concentration of 21%; the free corrosion potential shifted positively by 0.357 V, which significantly improved the corrosion resistance of titanium alloys in the SBF. Therefore, the proposed method may (partially replace the subsequent surface oxidation. This method is significant for biomedical development because it shortens the process flow, improves the efficiency, and lowers the cost.

  3. Protection by high velocity thermal spraying coatings on thick walled permanent and interim store components for the diminution of repairs, corrosion and costs 'SHARK'. Overview at the end of the project; Schutz durch Hochgeschwindigkeitsflammspritzschichten auf dickwandigen End- und Zwischenlagerbauteilen zur Reduktion von Reparaturen, Korrosion und Kosten 'SHARK'. Ein Ueberblick zum Abschluss des Projektes

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Sabine; Hassel, Thomas; Bach, Friedrich-Wilhelm [Unterwassertechnikum Hannover, Garbsen (Germany). Inst. fuer Werkstoffkunde; Steinwarz, Wolfgang; Dyllong, Nobert; Tragsdorf, Inga Maren [Siempelkamp Nukleartechnik GmbH, Krefeld (Germany)

    2012-04-15

    The corrosion protection of the internal space of thick-walled interim and permanent storage facility components, such as Castor {sup copyright} containers, are ensured nowadays by a galvanic nickel layer. The method has proved itself and protects the base material of the containers at the underwater loading in the Nuclear power station from a corrosive attack. Although, the galvanic nickel plating is a relatively time consuming method, it lasts for several days for each container, and is with a layer thickness of 1,000 {mu}m also expensive. To develop an alternative, faster and more economical method, a BMBF research project named - 'SHARK - protection by high velocity thermal spraying layers on thick-walled permanent and interim store components for the diminution of repairs, corrosion and costs' in cooperation between Siempelkamp Nukleartechnik GmbH and the Institute of Materials Science of the Leibniz University of Hanover was established to investigate the suitability of the high velocity oxy fuel spraying technology (HVOF) for the corrosion protective coating of thickwalled interim and permanent storage facility components. Since the permanent storage depot components are manufactured from cast iron with globular graphite, this material was exclusively used as a base material in this project. The evaluation of the economical features of the application of different nickel base spraying materials on cast iron substratum was in focus, as well as the scientific characterization of the coating systems with regard to the corrosion protective properties. Furthermore, the feasibility of the transfer of the laboratory results on a large industrial setup as well as a general suitability of the coating process for a required repair procedure was to be investigated. The preliminary examination program identified chromium containing spraying materials as successful. Results of the preliminary examination program have been used for investigations with the CASOIK

  4. Study of API 5L X70 steel corrosion processes when in contact with some Brazilian soils

    International Nuclear Information System (INIS)

    Jesus, Sergio Luis de

    2007-01-01

    Pipelines, fuel storage tanks and other metallic structures are in permanent contact and exposed to different types of soils, of horizons or layers, or of soil aggressiveness. This interaction may cause expressive damages to the environment and to the planned work. Contamination may occur due to leakage of stored products, splitting during transportation, accidents caused by pipelines without extensive maintenance. The result of these accidents could be, among others, some financial losses. In order to recognize the dynamic interactions between metallic surfaces and the environment it is crucial to have preventive actions and to develop better-applied materials. API steel 5L X70 has been used in structures of low and high pressure with high mechanical strength and corrosion and, even so, it is susceptible to etching corrosion since it is in contact with different environments from mangrove regions to industrial environments. The present case evaluated the role of 5L X70 API steel in contact with different soil horizons representative of the Brazilian soil. This investigation correlated chemical species with solute ions in soil solution, secondary and primary phase minerals besides physical and chemical characteristics as pH, electric conductivity, total dissolved solids, among others, to the results of corrosion resistance and ways of corrosion. The evaluation was carried out using x-ray diffractometry, scanning electron microscopy, total reflection x-ray fluorescence, fuel injection flow besides texture and gravimetric analyses to soil characterization and mineralogy, identification of corrosion products, soil solution analyses, evaluation of tested materials and classification of ways and types of corrosion. This was an attempt to integrate the data to a better understanding of the process involving reagents and products. The results showed that different soil horizons such as different types of analyzed soils produce specific etching in metallic structures

  5. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  6. Nondestructive study of corrosion by the analysis of diffused light

    Science.gov (United States)

    Hogert, Elsa N.; Landau, Monica R.; Marengo, Jose A.; Ruiz Gale, Maria F.; Gaggioli, Nestor G.; Paiva, Raul D., Jr.; Soga, Diogo; Muramatsu, Mikiya

    1999-07-01

    This work describes the application of mean intensity diffusion analysis to detect and analyze metallic corrosion phenomena. We present some new results in the characterization of the corrosion process using a model based in electroerosion phenomena. Valuable information is provided about surface microrelief changes, which is also useful for numerous engineering applications. The quality of our results supports the idea that this technique can contribute to a better analysis of corrosion processes, in particular in real time.

  7. The study on corrosion resistance of decorative satin nickel plating

    OpenAIRE

    LU Wenya; CHENG Xianhua

    2012-01-01

    This study examined the corrosion resistance of satin nickel plating on conductive plastic.The electrochemical tests were to analyze the corrosion behavior of satin nickel plating with different processes in 3.5% NaCl solution.The results show that,because the satin nickel plating has an organic film on its surface due to process characteristics,the film results in different corrosion resistance.By increasing satin additive dosage,the nickel plating chroma decreases,the microsurface of the p...

  8. Environmentally Friendly Coating Technology for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael; hide

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.

  9. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  10. Improving the corrosion properties of magnesium AZ31 alloy GTA weld metal using microarc oxidation process

    Institute of Scientific and Technical Information of China (English)

    M.Siva Prasad; M.Ashfaq; N.Kishore Babu; A.Sreekanth; K.Sivaprasad; V.Muthupandi

    2017-01-01

    In this work,the morphology,phase composition,and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated.Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode.A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times.The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy.The oxide film improved the corrosion resistance substantially compared to the uncoated specimens.The sample coated for 10 min exhibited better corrosion properties.The corrosion resistance of the coatings was concluded to strongly depend on the morphology,whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.

  11. The corrosive well waters of Egypt's western desert

    Science.gov (United States)

    Clarke, Frank Eldridge

    1979-01-01

    The discovery that ground waters of Egypt's Western Desert are highly corrosive is lost in antiquity. Inhabitants of the oases have been aware of the troublesome property for many decades and early investigators mention it in their reports concerning the area. Introduction of modern well-drilling techniques and replacements of native wood casing with steel during the 20th century increased corrosion problems and, in what is called the New Valley Project, led to an intense search for causes and corrective treatments. This revealed that extreme corrosiveness results from combined effects of relatively acidic waters with significant concentrations of destructive sulfide ion; unfavorable ratios of sulfate and chloride to less aggressive ions; mineral equilibria and electrode potential which hinder formation of protective films; relative high chemical reaction rates because of abnormal temperatures, and high surface velocities related to well design. There is general agreement among investigators that conventional corrosion control methods such as coating metal surfaces, chemical treatment of the water, and electrolytic protection with impressed current and sacrificial electrodes are ineffective or impracticable for wells in the Western Desert's New Valley. Thus, control must be sought through the use of materials more resistant to corrosion than plain carbon steel wherever well screens and casings are necessary. Of the alternatives considered, stainless steel appears to. be the most promising where high strength and long-term services are required and the alloy's relatively high cost is acceptable. Epoxy resin-bonded fiberglass and wood appear to be practicable, relatively inexpensive alternatives for installations which do. not exceed their strength limitations. Other materials such as high strength aluminum and Monel Metal have shown sufficient promise to. merit their consideration in particular locations and uses. The limited experience with pumping in these desert

  12. Corrosion and conservation of weapons and military equipment

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdić

    2012-01-01

    Full Text Available This paper analyzed the conditions for the occurrence of corrosion processes on historically important weapons and military equipment made of steel during the period in outdoor environment. A considerable attention has been given to the characteristics of the most important corrosion products formed on the steel surface. The formation of akaganite, β-FeOOH is a sign of active corrosion under a layer of corrosion products. The conditions that cause the formation and regeneration of hydrochloric and sulphuric acid during the exposure to the elements were analyzed. The most often applied methods of diagnostics and procedures of removing active corrosion anions (desalination were described as well. The NaOH solution of certain pH values still has the most important application for the desalination process. The procedures for cleaning the surface before the application of protective coatings and the application of chemicals that transform rust into stable compounds were discussed. As protective coatings, different types of organic coatings plated on well-prepared steel surfaces were used and sometimes special types of waxes as well. This paper presents the results of the tests of corrosion products taken from the exhibits of weapons and military equipment from the Military Museum in Belgrade.

  13. Modification of metallic corrosion by ion implantation

    International Nuclear Information System (INIS)

    Clayton, C.R.

    1981-01-01

    This review will consider some of the properties of surface alloys, formed by ion implantation, which are effective in modifying corrosion behaviour. Examples will be given of the modification of the corrosion behaviour of pure metals, steels and other engineering alloys, resulting from implantation with metals and metalloids. Emphasis will be given to the modification of anodic processes produced by ion implantation since a review will be given elsewhere in the proceedings concerning the modification of cathodic processes. (orig.)

  14. Review of corrosion causes and corrosion control in a technical facility

    International Nuclear Information System (INIS)

    Charng, T.; Lansing, F.

    1982-06-01

    Causes of corrosion of metals and their alloys are reviewed. The corrosion mechanism is explained by electrochemical reaction theory. The causes and methods of controlling of both physiochemical corrosion and biological corrosion are presented. Factors which influence the rate of corrosion are also discussed

  15. Corrosion of breached UF6 storage cylinders

    International Nuclear Information System (INIS)

    Barber, E.J.; Taylor, M.S.; DeVan, J.H.

    1993-01-01

    This paper describes the corrosion processes that occurred following the mechanical failure of two steel 14-ton storage cylinders containing depleted UF 6 . The failures both were traced to small mechanical tears that occurred during stacking of the cylinders. Although subsequent corrosion processes greatly extended the openings in the wall. the reaction products formed were quite protective and prevented any significant environmental insult or loss of uranium. The relative sizes of the two holes correlated with the relative exposure times that had elapsed from the time of stacking. From the sizes and geometries of the two holes, together with analyses of the reaction products, it was possible to determine the chemical reactions that controlled the corrosion process and to develop a scenario for predicting the rate of hydrolysis of UF 6 , the loss rate of HF, and chemical attack of a breached UF 6 storage cylinder

  16. Corrosion of carbon steel under waste disposal conditions

    International Nuclear Information System (INIS)

    Marsh, G.

    1990-01-01

    The corrosion of carbon steel has been studied in the United Kingdom under granitic groundwater conditions, with pH between 5 and 10 and possibly substantial amounts of Cl - , SO 4 2- and HCO 3 - /CO 3 2- . Corrosion modes considered include uniform corrosion under both aerobic and anaerobic conditions; passive corrosion; localized attack in the form of pitting or crevice corrosion; and environmentally assisted cracking - hydrogen embrittlement or stress corrosion cracking. Studies of these processes are being carried out in order to predict the metal thicknesses required to give container lifetimes of 500 to 1000 years. A simple uniform corrosion model predicts a corrosion rate of around 13.4 μm/a at 20C, rising to 69 μm/a at 50C and 208 μm/a at 90C. A radiation dose of 10 5 rad/h and a G-value of 2.8 for the production of oxidizing species would account for an increase in corrosion rate of 7 μm/a. This model overestimates slightly the results actually achieved for experimental samples exposed for two years, the difference being due to a protective film formed on the samples. These corrosion rates predict that the container must be 227 mm thick to withstand uniform corrosion; however, they predict very high levels of hydrogen production. Conditions will be favourable for localized or pitting corrosion for about 125 years, leading to a maximum penetration of 160 mm. Since the exposure environment cannot be predicted precisely, one cannot state that stress corrosion cracking is impossible. Thus the container must be stress relieved. Other corrosion mechanisms such as microbial corrosion and hydrogen embrittlement are not considered significant

  17. Contribution to the study of corrosion in cementitious media for the phenomenological modelling of the long-term behaviour of reinforced concrete structures

    International Nuclear Information System (INIS)

    L'hostis, V.

    2010-12-01

    Many of the facilities and structures involved in the nuclear industry call for reinforced concrete (RC) in their construction. The corrosion of rebars is the main ageing pathology that those RC structures will meet during their service life (leading to concrete cracking and structural bearing capacity decrease). Concrete carbonation and chloride ingress in concrete are both at the origin of the active corrosion state. Passive corrosion has also to be considered in a context of very long lifetime (waste management). It is of primary importance to dispose of accurate and validated tools in order to predict where and how damages will appear. In 2002, the Commissariat a l Energie atomique decided to develop an intensive research programme dedicated to predicting the long-term behaviour of RC structures affected by steel corrosion (CIMETAL Project). This document aims at synthesize the main outputs coming from the project and exposes the scientific strategy was drawn and applied in order to predict the long-term behaviour of RCs that were mainly exposed to carbonation conditions. That strategy includes experiments for the characterisation of 'short-term' and 'long-term' corrosion layouts and processes, as well as modelling stages, with a view not only to predicting the behaviour of RC, but also to pointing out phenomena that are further verified experimentally. (author)

  18. Fokker-Planck modeling of pitting corrosion in underground pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, Eliana Nogueira [Risco Ambiental Engenharia, Rio de Janeiro, RJ (Brazil); Melo, Paulo F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Saldanha, Pedro Luiz C. [Comissao Nacional de Energia Nuclear (CGRC/CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Reatores e Ciclo do Combustivel; Silva, Edson de Pinho da [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Dept. of Physics

    2011-07-01

    Full text: The stochastic nature of pitting corrosion has been recognized since the 1930s. It has been learned that this damage retains no memory of its past. Instead, the future state is determined only by the knowledge of its present state. This Markovian property that underlies the stochastic process governing pitting corrosion has been explored as a discrete Markovian process by many authors since the beginning of the 1990s for underground pipelines of the oil and gas industries and nuclear power plants. Corrosion is a genuine continuous time and space state Markovian process, so to model it as a discrete time and/or state space is an approximation to the problem. Markovian chains approaches, with an increasing number of states, could involve a large number of parameters, the transition rates between states, to be experimentally determined. Besides, such an increase in the number of states produces matrices with huge dimensions leading to time-consuming computational solutions. Recent approaches involving Markovian discrete process have overcome those difficulties but, on the other hand, a large number of soil and pipe stochastic variables have to be known. In this work we propose a continuous time and space state approach to the evolution of pit corrosion depths in underground pipelines. In order to illustrate the application of the model for defect depth growth a combination of real life data and Monte Carlo simulation was used. The process is described by a Fokker-Planck equation. The Fokker-Planck equation is completely determined by the knowledge of two functions known as the drift and diffusion coefficients. In this work we also show that those functions can be estimated from corrosion depth data from in-line inspections. Some particular forms of drift and diffusion coefficients lead to particular Fokker-Planck equations for which analytical solutions are known, as is the case for the Wiener process, the Ornstein-Uhlenbeck process and the Brownian motion

  19. Overview of Corrosion, Erosion, and Synergistic Effects of Erosion and Corrosion in the WTP Pre-treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Imrich, K. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-27

    Corrosion is an extremely complex process that is affected by numerous factors. Addition of a flowing multi-phase solution further complicates the analysis. The synergistic effects of the multiple corrosive species as well as the flow-induced synergistic effects from erosion and corrosion must be thoroughly evaluated in order to predict material degradation responses. Public domain data can help guide the analysis, but cannot reliably provide the design basis especially when the process is one-of-a-kind, designed for 40 plus years of service, and has no viable means for repair or replacement. Testing in representative simulants and environmental conditions with prototypic components will provide a stronger technical basis for design. This philosophy was exemplified by the Defense Waste Processing Facility (DWPF) at the Savannah River Site and only after 15 plus years of successful operation has it been validated. There have been “hiccups”, some identified during the cold commissioning phase and some during radioactive operations, but they were minor and overcome. In addition, the system is robust enough to tolerate most flowsheet changes and the DWPF design allows minor modifications and replacements – approaches not available with the Hanford Waste Treatment Plant (WTP) “Black Cell” design methodology. Based on the available data, the synergistic effect between erosion and corrosion is a credible – virtually certain – degradation mechanism and must be considered for the design of the WTP process systems. Testing is recommended due to the number of variables (e.g., material properties, process parameters, and component design) that can affect synergy between erosion and corrosion and because the available literature is of limited applicability for the complex process chemistries anticipated in the WTP. Applicable testing will provide a reasonable and defensible path forward for design of the WTP Black Cell and Hard-to-Reach process equipment. These

  20. Corrosion/95 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge

  1. Passivity and corrosion of special metals

    International Nuclear Information System (INIS)

    Schultze, J.W.; Elfenthal, L.; Meyer, A.; Hochfeld, A.

    1988-04-01

    The corrosion stability of the metals Zr and Ta and some Ti-alloys was investigated under the conditions of the Purex-process. In addition to classical methods new corrosion-tests and simulations of technical conditions were developed. Further a laser-microprobe analysis is described. While Ta is stable at all conditions Zr shows decreasing corrosion stability with increasing nitric acid-concentration and temperature during potentiodynamic tests. Electrode modifications which are important for the Purex-process were checked. It is the first time that the stability of passive films against radiation is treated fundamentally. α-radiation and hot atoms can be simulated by ion-implantation. In general an amorphisation takes place which makes the layer more flexible and therefore more stable against mechanical stresses. Further the enhancement of electronic conductivity stabilises the favourable potential region between 0-1 V. Electronic processes can be simulated by focussed laser-radiation which induces the growth of additional oxide. The dissolution of oxide films of Ta and Ti is investigated by analysis and electrochemical measurements and is discussed with reference to decontamination processes. (orig.) With 61 refs., 15 tabs., 87 figs., and abstracts of 17 publications in annex [de

  2. Application of Moessbauer spectroscopy on corrosion products of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Dekan, J., E-mail: julius.dekan@stuba.sk; Lipka, J.; Slugen, V. [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, SUT (Slovakia)

    2013-04-15

    Steam generator (SG) is generally one of the most important components at all nuclear power plants (NPP) with close impact to safe and long-term operation. Material degradation and corrosion/erosion processes are serious risks for long-term reliable operation. Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original 'Bohunice' design in period 1994-1998, in order to improve corrosion resistance of SGs. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Moessbauer spectroscopy during last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Moessbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in form of filters deposits. Newest results in our long-term corrosion study confirm good operational experiences and suitable chemical regimes (reduction environment) which results mostly in creation of magnetite (on the level 70 % or higher) and small portions of hematite, goethite or hydrooxides. Regular observation of corrosion/erosion processes is essential for keeping NPP operation on high safety level. The output from performed material analyses influences the optimisation of operating chemical regimes and it can be used in optimisation of regimes at decontamination and passivation of pipelines or secondary circuit components. It can be concluded that a longer passivation time leads more to magnetite fraction in the corrosion products composition.

  3. Corrosion of reinforcement bars in steel ibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe

    and the influence of steel fibres on initiation and propagation of cracks in concrete. Moreover, the impact of fibres on corrosion-induced cover cracking was covered. The impact of steel fibres on propagation of reinforcement corrosion was investigated through studies of their impact on the electrical resistivity...... of concrete, which is known to affect the corrosion process of embedded reinforcement. The work concerning the impact of steel fibres on initiation and propagation of cracks was linked to corrosion initiation and propagation of embedded reinforcement bars via additional studies. Cracks in the concrete cover...... are known to alter the ingress rate of depassivating substances and thereby influence the corrosion process. The Ph.D. study covered numerical as well as experimental studies. Electrochemically passive steel fibres are electrically isolating thus not changing the electrical resistivity of concrete, whereas...

  4. EUROCORR 2007 - The European corrosion congress - Progress by corrosion control. Book of Abstracts

    International Nuclear Information System (INIS)

    2007-01-01

    This book of abstracts contains lectures, workshops and posters which were held on the European Corrosion Congress 2007 in Freiburg (Germany). The main topics of the sessions and posters are: 1. Corrosion and scale inhibition; 2. Corrosion by hot gases and combustion products; 3. Nuclear corrosion; 4. Environment sensitive fracture; 5. Surface Science; 6. Physico-chemical methods of corrosion testing; 7. Marine corrosion; 8. Microbial corrosion; 9. Corrosion of steel in concrete; 10. Corrosion in oil and gas production; 11. Coatings; 12. Corrosion in the refinery industry; 13. Cathodic protection; 14. Automotive Corrosion; 15. Corrosion of polymer materials. The main topics of the workshops are: 1. High temperature corrosion in the chemical, refinery and petrochemical industries; 2. Bio-Tribocorrosion; 3. Stress corrosion cracking in nuclear power plants; 4. Corrosion monitoring in nuclear systems; 5. Cathodic protection for marine and offshore environments; 6. Self-healing properties of new surface treatments; 7. Bio-Tribocorrosion - Cost 533/Eureka-ENIWEP-Meeting; 8. Drinking water systems; 9. Heat exchangers for seawater cooling

  5. Corrosion surveillance programme for Latin American research reactor Al-clad spent fuel in water

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Haddad, R.; Ritchie, I.

    2002-01-01

    The objectives of the IAEA sponsored Regional Technical Co-operation Project for Latin America (Argentina, Brazil, Chile, Mexico, and Peru) are to provide the basic conditions to define a regional strategy for managing spent fuel and to provide solutions, taking into consideration the economic and technological realities of the countries involved. In particular, to determine the basic conditions for managing research reactor spent fuel during operation and interim storage as well as final disposal, and to establish forms of regional cooperation in the four main areas: spent fuel characterization, safety, regulation and public communication. This paper reports the corrosion surveillance activities of the Regional Project and these are based on the IAEA sponsored co-ordinated research project (CRP) on 'Corrosion of research reactor Al-clad spent fuel in water'. The overall test consists of exposing corrosion coupon racks at different spent fuel basins followed by evaluation. (author)

  6. Investigation of corrosion behavior of Mg-steel laser-TIG hybrid lap joints

    Energy Technology Data Exchange (ETDEWEB)

    Liu Liming, E-mail: liulm@dlut.edu.cn [Key Laboratory of Liaoning Advanced Welding and Joining Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Xu Rongzheng [Key Laboratory of Liaoning Advanced Welding and Joining Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Galvanic corrosion increases the corrosion rate of the Mg-steel joint. Black-Right-Pointing-Pointer Fe splashes lower the corrosion resistance of the joint greatly. Black-Right-Pointing-Pointer The effect of grain refinement on the corrosion behavior of the joint is slight. Black-Right-Pointing-Pointer Ni or Cu interlayer could not improve the corrosion resistance of fusion zone. Black-Right-Pointing-Pointer The arc-sprayed coating could enhance the reliability of weld joint. - Abstract: The paper investigates the corrosion behavior of the lap joint of AZ31 magnesium alloy to Q235 steel with salt solution immersion testing and electrochemical testing. It is demonstrated that grain refinement resulting from the welding process has little effect on the corrosion behavior of the lap joint. However, the cathodic phases formed in the welding process and the galvanic corrosion between magnesium alloy and steel decrease the corrosion resistance of the joint greatly. Besides, neither Cu nor Ni, as filler material, could improve the corrosion resistance of the joint, but the arc-sprayed Al coating acting as a protective layer could.

  7. Corrosion investigation of multilayered ceramics and experimental nickel alloys in SCWO process environments

    International Nuclear Information System (INIS)

    Garcia, K.M.; Mizia, R.

    1995-02-01

    A corrosion investigation was done at MODAR, Inc., using a supercritical water oxidation (SCWO) vessel reactor. Several types of multilayered ceramic rings and experimental nickel alloy coupons were exposed to a chlorinated cutting oil TrimSol, in the SCWO process. A corrosion casing was designed and mounted in the vessel reactor with precautions to minimize chances of degrading the integrity of the pressure vessel. Fifteen of the ceramic coated rings were stacked vertically in the casing at one time for each test. There was a total of 36 rings. The rings were in groupings of three rings that formed five sections. Each section saw a different SCWO environment, ranging from 650 to 300 degrees C. The metal coupons were mounted on horizontal threaded holders welded to a vertical rod attached to the casing cover in order to hang down the middle of the casing. The experimental nickel alloys performed better than the baseline nickel alloys. A titania multilayered ceramic system sprayed onto a titanium ring remained intact after 120-180 hours of exposure. This is the longest time any coating system has withstood such an environment without significant loss

  8. Corrosion investigation of multilayered ceramics and experimental nickel alloys in SCWO process environments

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, K.M.; Mizia, R.

    1995-02-01

    A corrosion investigation was done at MODAR, Inc., using a supercritical water oxidation (SCWO) vessel reactor. Several types of multilayered ceramic rings and experimental nickel alloy coupons were exposed to a chlorinated cutting oil TrimSol, in the SCWO process. A corrosion casing was designed and mounted in the vessel reactor with precautions to minimize chances of degrading the integrity of the pressure vessel. Fifteen of the ceramic coated rings were stacked vertically in the casing at one time for each test. There was a total of 36 rings. The rings were in groupings of three rings that formed five sections. Each section saw a different SCWO environment, ranging from 650 to 300{degrees}C. The metal coupons were mounted on horizontal threaded holders welded to a vertical rod attached to the casing cover in order to hang down the middle of the casing. The experimental nickel alloys performed better than the baseline nickel alloys. A titania multilayered ceramic system sprayed onto a titanium ring remained intact after 120-180 hours of exposure. This is the longest time any coating system has withstood such an environment without significant loss.

  9. Integrated modelling of corrosion-induced deterioration in rein-forced concrete structures

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, M.R.; Stang, Henrik

    2013-01-01

    at the reinforcement surface, a FEM based me-chanical model was used to simulate corrosion-induced concrete damage. Both FEM models were fully coupled, i.e. information, such as corrosion current density, dam-age state of concrete cover, etc., were constantly exchanged between the models. To demonstrate the potential......An integrated finite element based modelling approach is presented, which allows for fully coupled simulation of reinforcement corrosion and corrosion-induced concrete damage. While a finite element method (FEM) based corrosion model was used to describe electrochemical processes...... use of the modelling approach, a numerical example is presented which illustrates full coupling of formation of corrosion cells, propagation of corrosion, and subsequent development of corrosion-induced concrete damage....

  10. Corrosion Behavior of SA508 Coupled with and without Magnetite in Chemical Cleaning Environments

    International Nuclear Information System (INIS)

    Son, Yeong-Ho; Jeon, Soon-Hyeok; Song, Geun Dong; Hur, Do Haeng; Lee, Jong-Hyeon

    2017-01-01

    To mitigate these problems, chemical cleaning process has been widely used. However, the chemical cleaning solution can affect the corrosion of SG structural materials as well as the magnetite dissolution. During the chemical cleaning process, the galvanic corrosion between SG materials and magnetite is also anticipated because they are in electrical connection. However, the corrosion measurement or monitoring for the materials has been performed without consideration of galvanic effect coupled with magnetite during the chemical cleaning process. In this study, the effect of temperature and EDTA concentration on the corrosion behavior of SA508 tubesheet material with and without magnetite was studied in chemical cleaning solutions. The galvanic corrosion behavior between SA508 and magnetite is predicted by using the mixed potential theory and its effect on the corrosion rate of SA508 is also discussed. By newly designed immersion test, it was confirmed that the extent of galvanic corrosion effect between SA508 and magnetite increased with increasing temperature and EDTA concentration. The galvanic corrosion behavior of SA508 coupled with magnetite in chemical cleaning environments was predicted by the mixed potential theory and verified by ZRA and LP technique. Galvanic coupling increased the corrosion rate of SA508 due to the shift in its potential to the anodic direction. Therefore, the galvanic corrosion effect between SA508 and magnetite should be considered when the corrosion measurement is performed during the chemical cleaning process in steam generators.

  11. Study of corrosion-erosion behaviour of stainless alloys in industrial phosphoric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Guenbour, Abdellah [Laboratory of Electrochemistry-Corrosion, Av. Ibn Batouta, BP1014-Faculty of Science, Rabat (Morocco)]. E-mail: guenbour@fsr.ac.ma; Hajji, Mohamed-Adil [Group Corrosion and Protection of Materials, ENIM, Rabat (Morocco); Jallouli, El Miloudi [Group Corrosion and Protection of Materials, ENIM, Rabat (Morocco); Bachir, Ali Ben [Laboratory of Electrochemistry-Corrosion, Av. Ibn Batouta, BP1014-Faculty of Science, Rabat (Morocco)

    2006-12-30

    The corrosion and corrosion-abrasion resistance of some stainless steels in industrial phosphoric acid 30% P{sub 2}O{sub 5} has been studied using electrochemical techniques. The corrosion rate of materials increases with the increase of temperature. Alloys which contain chromium, molybdenum and nitrogen in sufficient quantities present the best behaviour. In the abrasion-corrosion conditions, the experimental device set up allowed to follow continually samples electrochemical behaviour. Under dynamic conditions and without solid particles, the increase of acid projection speed has no effect on the alloys corrosion behaviour. The adding of abrasive leads to a general increase of corrosion rate and to a decrease of material resistance. Under these conditions, materials attack is controlled by synergistic effect between the abrasion and the impurities. The cast 30% Cr shows good resistance according to his high chromium content.

  12. Study of corrosion-erosion behaviour of stainless alloys in industrial phosphoric acid medium

    International Nuclear Information System (INIS)

    Guenbour, Abdellah; Hajji, Mohamed-Adil; Jallouli, El Miloudi; Bachir, Ali Ben

    2006-01-01

    The corrosion and corrosion-abrasion resistance of some stainless steels in industrial phosphoric acid 30% P 2 O 5 has been studied using electrochemical techniques. The corrosion rate of materials increases with the increase of temperature. Alloys which contain chromium, molybdenum and nitrogen in sufficient quantities present the best behaviour. In the abrasion-corrosion conditions, the experimental device set up allowed to follow continually samples electrochemical behaviour. Under dynamic conditions and without solid particles, the increase of acid projection speed has no effect on the alloys corrosion behaviour. The adding of abrasive leads to a general increase of corrosion rate and to a decrease of material resistance. Under these conditions, materials attack is controlled by synergistic effect between the abrasion and the impurities. The cast 30% Cr shows good resistance according to his high chromium content

  13. Facility for simulating the corrosion fatigue process of steam generator tube materials

    International Nuclear Information System (INIS)

    Talpa, I.; Rosypal, F.

    1987-01-01

    A system is described for testing corrosion fatigue properties at parameters simulating the real loading of steam generator tubes. The test sample is fitted in an electrohydraulic pulsator controlled with an ADT 4500 control processor. The system of mechanical loading consists of a supply of pressure oil of a rated pressure of 25 MPa and a maximal delivered amount of 63 l/min, a cooling circuit of a maximum output of 180 l/min at a minimal pressure of 0.25 MPa, provided with a high capacity cooling equipment. The water circuit for the system of corrosion loading consists of elements for pressurizing, heating, circulation and measurement of corrosion medium quality. Demineralized water of required chemical composition is treated using a system of ion exchangers. Argon at a pressure of 20 kPa is used as cover gas. At a testing temperature of 340 degC the operating pressure in the water circuit is 16.0 MPa. An auxiliary circuit is used for controlling the quality of the corrosion medium in which pH (8.5 - 9.0), dissolved oxygen (7 - 700 ppb) and conductivity at 25 degC (2 μS/cm) are monitored. Both testing systems may operate autonomously. (J.B.). 2 figs., 1 tab., 16 refs

  14. Electrochemical and weight-loss study of carbon steel corrosion

    International Nuclear Information System (INIS)

    Thomas, V.J.; Olive, R.P.

    2007-01-01

    The Point Lepreau Generating Station (PLGS) will undergo an 18 month refurbishment project beginning in April, 2008. During this time, most of the carbon steel piping in the primary loop will be drained of water and dried. However, some water will remain during the shutdown due to the lack of drains in some lower points in the piping system. As a result, it is necessary to examine the effect of corrosion during the refurbishment. This study examined the effect of several variables on the corrosion rate of clean carbon steel. Specifically, the effect of oxygen in the system and the presence of chloride ions were evaluated. Corrosion rates were determined using both a weight-loss technique and electrochemical methods. The experiment was conducted at room temperature. The corrosion products from the experiment were analyzed using a Raman microscope. The results of the weight-loss measurements show that the corrosion rate of polished carbon steel is independent of both the presence of oxygen and chloride ions. The electrochemical method failed to yield meaningful results due to the lack of clearly interpretable data and the inherent subjectivity in the analysis. Lepidocricite was found to be the main corrosion product using the Raman microscope. (author)

  15. Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications.

    Science.gov (United States)

    Mostaed, Ehsan; Hashempour, Mazdak; Fabrizi, Alberto; Dellasega, David; Bestetti, Massimiliano; Bonollo, Franco; Vedani, Maurizio

    2014-09-01

    Ultra-fine grained ZK60 Mg alloy was obtained by multi-pass equal-channel angular pressing at different temperatures of 250°C, 200°C and 150°C. Microstructural observations showed a significant grain refinement after ECAP, leading to an equiaxed and ultrafine grain (UFG) structure with average size of 600nm. The original extrusion fiber texture with planes oriented parallel to extrusion direction was gradually undermined during ECAP process and eventually it was substituted by a newly stronger texture component with considerably higher intensity, coinciding with ECAP shear plane. A combination of texture modification and grain refinement in UFG samples led to a marked reduction in mechanical asymmetric behavior compared to the as-received alloy, as well as adequate mechanical properties with about 100% improvement in elongation to failure while keeping relatively high tensile strength. Open circuit potential, potentiodynamic and weight loss measurements in a phosphate buffer solution electrolyte revealed an improved corrosion resistance of UFG alloy compared to the extruded one, stemming from a shift of corrosion regime from localized pitting in the as-received sample to a more uniform corrosion mode with reduced localized attack in ECAP processed alloy. Compression tests on immersed samples showed that the rate of loss of mechanical integrity in the UFG sample was lower than that in the as-received sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Corrosion and stress corrosion cracking in supercritical water

    Science.gov (United States)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  17. Mechanism of Corrosion by Naphthenic Acids and Organosulfur Compounds at High Temperatures

    Science.gov (United States)

    Jin, Peng

    Due to the law of supply and demand, the last decade has witnessed a skyrocketing in the price of light sweet crude oil. Therefore, refineries are increasingly interested in "opportunity crudes", characterized by their discounted price and relative ease of procurement. However, the attractive economics of opportunity crudes come with the disadvantage of high acid/organosulfur compound content, which could lead to corrosion and even failure of facilities in refineries. However, it is generally accepted that organosulfur compounds may form protective iron sulfide layers on the metal surface and decrease the corrosion rate. Therefore, it is necessary to investigate the corrosive property of crudes at high temperatures, the mechanism of corrosion by acids (naphthenic acids) in the presence of organosulfur compounds, and methods to mitigate its corrosive effect. In 2004, an industrial project was initiated at the Institute for Corrosion and Multiphase Technology to investigate the corrosion by naphthenic acids and organosulfur compounds. In this project, for each experiment there were two experimentation phases: pretreatment and challenge. In the first pretreatment phase, a stirred autoclave was filled with a real crude oil fraction or model oil of different acidity and organosulfur compound concentration. Then, the stirred autoclave was heated to high temperatures to examine the corrosivity of the oil to different materials (specimens made from CS and 5% Cr containing steel were used). During the pretreatment, corrosion product layers were formed on the metal surface. In the second challenge phase, the steel specimens pretreated in the first phase were inserted into a rotating cylinder autoclave, called High Velocity Rig (HVR). The HVR was fed with a high-temperature oil solution of naphthenic acids to attack the iron sulfide layers. Based on the difference of specimen weight loss between the two steps, the net corrosion rate could be calculated and the protectiveness

  18. SNF Project Engineering Process Improvement Plan

    International Nuclear Information System (INIS)

    DESAI, S.P.

    2000-01-01

    This plan documents the SNF Project activities and plans to support its engineering process. It describes five SNF Project Engineering initiatives: new engineering procedures, qualification cards process; configuration management, engineering self assessments, and integrated schedule for engineering activities

  19. Image-analysis techniques for investigation localized corrosion processes

    International Nuclear Information System (INIS)

    Quinn, M.J.; Bailey, M.G.; Ikeda, B.M.; Shoesmith, D.W.

    1993-12-01

    We have developed a procedure for determining the mode and depth of penetration of localized corrosion by combining metallography and image analysis of corroded coupons. Two techniques, involving either a face-profiling or an edge-profiling procedure, have been developed. In the face-profiling procedure, successive surface grindings and image analyses were performed until corrosion was no longer visible. In this manner, the distribution of corroded sites on the surface and the total area of the surface corroded were determined as a function of depth into the specimen. In the edge-profiling procedure, surface grinding exposed successive cross sections of the corroded region. Image analysis of the cross section quantified the distribution of depths across the corroded section, and a three-dimensional distribution of penetration depths was obtained. To develop these procedures, we used artificially creviced Grade-2 titanium specimens that were corroded in saline solutions containing various amounts of chloride maintained at various fixed temperatures (105 to 150 degrees C) using a previously developed galvanic-coupling technique. We discuss some results from these experiments to illustrate how the procedures developed can be applied to a real corroded system. (author). 6 refs., 4 tabs., 21 figs

  20. Structural Characterization of Highly Corrosion-resistant Steel

    Czech Academy of Sciences Publication Activity Database

    Lančok, Adriana; Kmječ, T.; Štefánik, M.; Sklenka, L.; Miglierini, M.

    2015-01-01

    Roč. 88, č. 4 (2015), s. 355-361 ISSN 0011-1643 R&D Projects: GA ČR(CZ) GA14-12449S Institutional support: RVO:61388980 Keywords : Mossbauer spectroscopy * corrosion-resistant steel * LC200 * CEMS Subject RIV: CA - Inorganic Chemistry Impact factor: 0.732, year: 2015

  1. Understanding the corrosion phenomena to organize the nondestructive evaluation programs in the nuclear power plants; Connaitre les phenomenes de corrosion pour organiser les programmes d'end dans les centrales nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Berge, J.Ph. [Federation Europeenne de Corrosion, 75 - Paris (France); Samman, J. [Electricite de France (EDF), Div. du Production Nucleaire, 75 - Paris (France)

    2001-07-01

    The french nuclear power plants used PWR which components revealed many corrosion defects of different shapes as stress corrosion cracks or pits. Understanding the corrosion processes will help the inspection of in service power plants. The following examples describe some corrosion cases and present the corresponding developed control methods: corrosion on condenser, secondary circuit pipes and corrosion-erosion, steam generator pipes, vessels head penetration. (A.L.B.)

  2. Mechanical Properties and Corrosion Characteristics of Thermally Aged Alloy 22

    International Nuclear Information System (INIS)

    Rebak, R B; Crook, P

    2002-01-01

    Alloy 22 (UNS N06022) is a candidate material for the external wall of the high level nuclear waste containers for the potential repository site at Yucca Mountain. In the mill-annealed (MA) condition, Alloy 22 is a single face centered cubic phase. When exposed to temperatures on the order of 600 C and above for times higher than 1 h, this alloy may develop secondary phases that reduce its mechanical toughness and corrosion resistance. The objective of this work was to age Alloy 22 at temperatures between 482 C and 760 C for times between 0.25 h and 6,000 h and to study the mechanical and corrosion performance of the resulting material. Aging was carried out using wrought specimens as well as gas tungsten arc welded (GTAW) specimens. Mechanical and corrosion testing was carried out using ASTM standards. Results show-that the higher the aging temperature and the longer the aging time, the lower the impact toughness of the aged material and the lower its corrosion resistance. However, extrapolating both mechanical and corrosion laboratory data predicts that Alloy 22 will remain corrosion resistant and mechanically robust for the projected lifetime of the waste container

  3. On-line electrochemical monitoring of microbially influenced corrosion

    International Nuclear Information System (INIS)

    Dowling, N.J.E.; Stansbury, E.E.; White, D.C.; Borenstein, S.W.; Danko, J.C.

    1989-01-01

    Newly emerging electrochemical measurement techniques can provide on-line, non-destructive monitoring of the average corrosion rate and indications of localized pitting corrosion together with insight into fundamental electrochemical mechanisms responsible for the corrosion process. This information is relevant to evaluating, monitoring, understanding and controlling microbially influenced corrosion (MIC). MIC of coupons exposed in sidestream devices on site or in laboratory-based experiments, where the corrosion response is accelerated by exposure to active consortia of microbes recovered from specific sites, can be utilized to evaluate mitigation strategies. The average corrosion rates can be determined by small amplitude cyclic voltametry (SACV), and AC impedance spectroscopy (EIS). EIS can also give insight into the mechanisms of the MIC and indications of localized corrosion. Pitting corrosion can be detected non-destructively with open circuit potential monitoring (OCP). OCP also responds to bacterial biofilm activities such as oxygen depletion and other electrochemical activities. Utilizing these methods, accelerated tests can be designed to direct the selection of materials, surface treatments of materials, and welding filler materials, as well as the optimization of chemical and mechanical countermeasures with the microbial consortia recovered and characterized from the specific sites of interest

  4. Corrosion of materials for heat exchangers and the countermeasures

    International Nuclear Information System (INIS)

    Kawamoto, Teruaki

    1978-01-01

    When the materials for heat exchangers are selected, the heat transfer performance, mechanical strength, workability, cost, corrosion resistance and so on are taken in consideration. Most of the failure of heat exchangers is due to corrosion, and the corrosion failure on cooling water side occurs frequently, to which attention is not paid much usually. The rate of occurrence of corrosion failure is overwhelmingly high in heating tubes, and the failure owing to cooling water exceeds that owing to process fluid. The material of heating tubes is mostly aluminum brass, and local failure such as pitting corrosion or stress corrosion cracking holds a majority. The cause of corrosion failure due to cooling water is mostly the poor water quality. The mechanism of corrosion of metals can be explained by the electrochemical reaction between the metals and solutions. As for the factors affecting corrosion, dissolved oxygen, pH, Cl - ions, temperature, flow velocity, and foreign matters are enumerated. Copper alloys are sensitive to the effect of polluted sea water. Erosion corrosion is caused by eddies and bubbles owing to high flow velocity, and impingement attack is caused by scratching foreign matters. The quality of fresh water affects corrosion more than sea water in case of copper alloys. The preliminary examination of water quality is essential. (Kako, I.)

  5. Corrosion resistance characterization of porous alumina membrane supports

    Energy Technology Data Exchange (ETDEWEB)

    Dong Yingchao, E-mail: dongyc9@mail.ustc.edu.cn [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland); USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Lin Bin [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Zhou Jianer [Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Zhang Xiaozhen [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Ling Yihan; Liu Xingqin; Meng Guangyao [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Hampshire, Stuart [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-04-15

    Tubular porous alumina ceramic membrane supports were fabricated by an extrusion-drying-sintering process and then characterized in detail in terms of corrosion resistance in both H{sub 2}SO{sub 4} and NaOH aqueous solutions. Variations in the properties of the alumina supports such as mass loss percent, mechanical strength, open porosity and pore size distribution were studied before and after corrosion under different conditions. In addition, the microstructures were analyzed using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction before and after corrosion. The fabricated porous alumina supports offer possibilities for some potential applications as micro-filtration or ultra-filtration membrane supports, as well as in the pre-treatment of strongly acidic industrial waste-liquids. - Research highlights: {yields} Porous alumina membrane supports fabricated by extrusion-drying-sintering process. {yields} Corrosion resistance in 20 wt.% H{sub 2}SO{sub 4} and 1, 5, 10 wt.% NaOH aqueous solutions. {yields} Rapid mass loss and loss of flexural strength occurred in hot NaOH solution. {yields} Resistant to strong acid corrosion with low mass loss, low flexural strength loss. {yields} Porous alumina supports have potential for treatment of strong acid waste liquids.

  6. Process Technology Development of Ni Electroplating in Steam Generator Tube

    International Nuclear Information System (INIS)

    Kim, Joung Soo; Kim, H. P.; Lim, Y. S.; Kim, S. S.; Hwang, S. S.; Yi, Y. S.; Kim, D. J.; Jeong, M. K.

    2009-11-01

    Operating nuclear power steam generator tubing material, Alloy 600, having superior resistance to corrosion has many experiences of damage by various corrosion mechanisms during long term operation period. In this research project, a new Ni electroplating technology to be applied to repair the damaged steam generator tubes has been developed. In this technology development, the optimum conditions for variables affecting the Ni electroplating process, optimum process conditions for maximum adhesion forces at interface between were established. The various mechanical properties (RT and HT tensile, fatigue, creep, burst, etc.) and corrosion properties (general corrosion, pitting, crevice corrosion, stress corrosion cracking, boric acid corrosion, doped steam) of the Ni plated layers made at the established optimum conditions have been evaluated and confirmed to satisfy the specifications. In addition, a new ECT probe developed at KAERI enable to detect defects from magnetic materials was confirmed to be used for Ni electroplated Alloy 600 tubes at the field. For the application of this developed technology to operating plants, a mock-up electroplating system has been designed and manufactured, and set up at Doosan Heavy Industry Co. and also its performance test has been done. At same time, the anode probe has been modified and improved to be used with the established mock-up system without any problem

  7. Galvanic corrosion of laser weldments of AA6061 aluminium alloy

    International Nuclear Information System (INIS)

    Rahman, A.B.M. Mujibur; Kumar, S.; Gerson, A.R.

    2007-01-01

    Galvanic corrosion of laser welded AA6061 aluminium alloy, arising from the varying rest potentials of the various weldment regions, was examined. The weld fusion zone is found to be the most cathodic region of the weldment while the base material is the most anodic region. The rate of galvanic corrosion, controlled by the cathodic process at the weld fusion zone, increases with time until a steady state maximum is reached. On galvanic corrosion the corrosion potential of the weld fusion zone shifts in the positive direction and the free corrosion current increases. It is proposed that the cathodic process at the weld fusion zone causes a local increase in pH that in turn causes dissolution of the surface film resulting in the loss of Al to solution and the increase of intermetallic phases. The increase in galvanic corrosion may result from either the build up of the intermetallic phases in the surface layer and/or significant increase in surface area of the weld fusion zone due to the porous nature of the surface layer

  8. State write-ups on EERE funded projects

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitch, J.; Klareich, F.; Surek, D.

    1997-03-04

    Short summaries are presented on 43 projects funded under the hydrogen program in FY 1997 in California, Colorado, Connecticut, the District of Columbia, Florida, Hawaii, Maryland, Massachusetts, Michigan, New Jersey, New Mexico, New York, Oklahoma, Pennsylvania, South Carolina, Tennessee, and Virginia. The studies involve hydrogen production processes, hydrogen storage and delivery systems, environmental impacts, hydrogen fuel cells, information dissemination, marketing research, separation processes, transportation safety, materials corrosion and stability, hydrogen recovery at refineries, and infrastructure planning.

  9. Problems raised by corrosion in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tricot, R.; Boutonnet, G.; Perrot, M.; Blum, J.-M.

    1977-01-01

    In the uranium ore processing industry, materials which resist both mechanical abrasion and corrosion in an acid medium are required. Different typical cases are examined. For the reprocessing of irradiated fuels, two processes are possible: the conventional wet process, of the Purex type, and the fluoride volatilization process. In the latter case, the problems raised by fluoride corrosion in the presence of fission products is examined. The other parts of the fuel cycle are examined in the same manner [fr

  10. Erosion corrosion in wet steam

    International Nuclear Information System (INIS)

    Tavast, J.

    1988-03-01

    The effect of different remedies against erosion corrosion in wet steam has been studied in Barsebaeck 1. Accessible steam systems were inspected in 1984, 1985 and 1986. The effect of hydrogen peroxide injection of the transport of corrosion products in the condensate and feed water systems has also been followed through chemical analyses. The most important results of the project are: - Low alloy chromium steels with a chromium content of 1-2% have shown excellent resistance to erosion corrosion in wet steam. - A thermally sprayed coating has shown good resistance to erosion corrosion in wet steam. In a few areas with restricted accessibility minor attacks have been found. A thermally sprayed aluminium oxide coating has given poor results. - Large areas in the moisture separator/reheater and in steam extraction no. 3 have been passivated by injection of 20 ppb hydrogen peroxide to the high pressure steam. In other inspected systems no significant effect was found. Measurements of the wall thickness in steam extraction no. 3 showed a reduced rate of attack. - The injection of 20 ppb hydrogen peroxide has not resulted in any significant reduction of the iron level result is contrary to that of earlier tests. An increase to 40 ppb resulted in a slight decrease of the iron level. - None of the feared disadvantages with hydrogen peroxide injection has been observed. The chromium and cobalt levels did not increase during the injection. Neither did the lifetime of the precoat condensate filters decrease. (author)

  11. The corrosion of Zircaloy-4 fuel cladding in pressurized water reactors

    International Nuclear Information System (INIS)

    Van Swam, L.F.P.; Shann, S.H.

    1991-01-01

    This paper reports on the effects of thermo-mechanical processing of cladding on the corrosion of Zircaloy-4 in commercial PWRs that have been investigated. Visual observations and nondestructive measurements at poolside, augmented by observations in the hot cell, indicate that the initial black oxide transforms into a grey or tan later white oxide layer at a thickness of 10 to 15 μm independent of the thermal processing history of the tubing. At an oxide layer thickness of 60 to 80 μm, the oxide may spall depending somewhat on the particular oxide morphology formed and possibly on the frequency of power and temperature changes of the fuel rods. Because spalling of oxide lowers the metal-to-oxide interface temperature of fuel rods, it reduces the corrosion rate and is beneficial from that point of view. To determine the effect of thermo-mechanical processing on in-reactor corrosion of Zircaloy-4, oxide thickness measurements at poolside and in the hot cell have been analyzed with the MATPRO corrosion model. A calibrated corrosion parameter in this model provides a measure of the corrosion susceptibility of the Zircaloy-4 cladding. It was found necessary to modify the MATPRO equations with a burnup dependent term to obtain a near constant value of the corrosion parameter over a burnup range of approximately 10 to 45 MWd/kgU. Different calculational tests were performed to confirm that the modified model accurately predicts the corrosion behavior of fuel rods

  12. A finite element modeling method for predicting long term corrosion rates

    International Nuclear Information System (INIS)

    Fu, J.W.; Chan, S.

    1984-01-01

    For the analyses of galvanic corrosion, pitting and crevice corrosion, which have been identified as possible corrosion processes for nuclear waste isolation, a finite element method has been developed for the prediction of corrosion rates. The method uses a finite element mesh to model the corrosive environment and the polarization curves of metals are assigned as the boundary conditions to calculate the corrosion cell current distribution. A subroutine is used to calculate the chemical change with time in the crevice or the pit environments. In this paper, the finite element method is described along with experimental confirmation

  13. Summary of the Sixth Persh Workshop: Corrosion Policy Guiding Science and Technology

    Science.gov (United States)

    2016-01-01

    more positive definition that would cover not only traditional corrosion , but also other issues of environmental degradation processes, such as (but...expertise. This planning activity involves the following considerations: • Technological considerations covering corrosion variables, potential...solutions, corrosion impacts, and testing for corrosion (may utilize service laboratories) • Design considerations covering material and coatings

  14. Corrosion technology. V. 1

    International Nuclear Information System (INIS)

    Khan, I.H.

    1989-01-01

    This book has been produced for dissemination of information on corrosion technology, corrosion hazards and its control. Chapter one of this book presents an overall view of the subject and chapter 2-5 deals with electrochemical basics, types of corrosion, pourbaix diagrams and form of corrosion. The author explains polarization/kinetics of corrosion, passivity, aqueous corrosion and corrosion testing and monitoring in 6-11 chapters. The author hopes it will provide incentive to all those interested in the corrosion technology. (A.B.)

  15. Structural Characteristics and Corrosion Behavior of Bio-Degradable Zn-Li Alloys in Stent Application

    Science.gov (United States)

    Zhao, Shan

    Zinc has begun to be studied as a bio-degradable material in recent years due to its excellent corrosion rate and optimal biocompatibility. Unfortunately, pure Zn's intrinsic ultimate tensile strength (UTS; below 120 MPa) is lower than the benchmark (about 300 MPa) for cardiovascular stent materials, raising concerns about sufficient strength to support the blood vessel. Thus, modifying pure Zn to improve its mechanical properties is an important research topic. In this dissertation project, a new Zn-Li alloy has been developed to retain the outstanding corrosion behavior from Zn while improving the mechanical characteristics and uniform biodegradation once it is implanted into the artery of Sprague-Dawley rats. The completed work includes: Manufactured Zn-Li alloy ingots and sheets via induction vacuum casting, melt spinning, hot rolling deformation, and wire electro discharge machining (wire EDM) technique; processed alloy samples using cross sectioning, mounting, etching and polishing technique; • Characterized alloy ingots, sheets and wires using hardness and tensile test, XRD, BEI imaging, SEM, ESEM, FTIR, ICP-OES and electrochemical test; then selected the optimum composition for in vitro and in vivo experiments; • Mimicked the degradation behavior of the Zn-Li alloy in vitro using simulated body fluid (SBF) and explored the relations between corrosion rate, corrosion products and surface morphology with changing compositions; • Explanted the Zn-Li alloy wire in abdominal aorta of rat over 12 months and studied its degradation mechanism, rate of bioabsorption, cytotoxicity and corrosion product migration from histological analysis.

  16. Atmospheric corrosion in Gran Canaria specifically meteorological and pollution conditions

    International Nuclear Information System (INIS)

    Gonzalez, J.E.G.; Valles, M.L.; Mirza R, J.C.

    1998-01-01

    Carbon steel, copper, zinc and aluminium samples were exposed in different sizes with known ambient parameters in Gran Canaria Island and atmospheric corrosion was investigated. Weight-loss measurements used to determine corrosion damage were complemented with metallographic and XP S determination in order to characterize the structure and morphology of surface corrosion products. The ambient aggressiveness could be well evaluated from meteorological and pollution data. All atmospheric corrosion and environmental data were statistically processed for establishing general corrosion damage functions for carbon steel, copper, aluminium and zinc in terms of Gran Canaria extreme meteorological and pollution parameters. (Author)

  17. Interaction between corrosion crack width and steel loss in RC beams corroded under load

    International Nuclear Information System (INIS)

    Malumbela, Goitseone; Alexander, Mark; Moyo, Pilate

    2010-01-01

    This paper presents results and discussions on an experimental study conducted to relate the rate of widening of corrosion cracks with the pattern of corrosion cracks as well as the level of steel corrosion for RC beams (153 x 254 x 3000 mm) that were corroded whilst subjected to varying levels of sustained loads. Steel corrosion was limited to the tensile reinforcement and to a length of 700 mm at the centre of the beams. The rate of widening of corrosion cracks as well as strains on uncracked faces of RC beams was constantly monitored during the corrosion process, along the corrosion region and along other potential cracking faces of beams using a demec gauge. The distribution of the gravimetric mass loss of steel along the corrosion region was measured at the end of the corrosion process. The results obtained showed that: the rate of widening of each corrosion crack is dependent on the overall pattern of the cracks whilst the rate of corrosion is independent of the pattern of corrosion cracks. A mass loss of steel of 1% was found to induce a corrosion crack width of about 0.04 mm.

  18. Corrosion of candidate materials for canister: applications in rock salt formations

    International Nuclear Information System (INIS)

    Azkarate, I.; Madina, V.; Barrio, A. del; Macarro, J.M.

    1994-01-01

    Previous corrosion studies carried out on various metallic materials in typical salt rock environments show that carbon steel and titanium alloys are the most promising candidates for canister applications in this geological formation. Although carbon steels have a low corrosion resistance, they are considered acceptable as corrosion-allowance materials for a thick walled container due to their practical immunity to the localized corrosion phenomena such as stress corrosion cracking, pitting or crevice corrosion. Aiming to improve the performances of these materials, studies on the effect of small additions of Ni and V on the general corrosion are in process. The improvement in the resistance to general corrosion should not be accompanied by a sensitivity to stress corrosion cracking. On the contrary, alfa titanium alloys are considered the most resistant materials to general corrosion in salt brines. However, pitting, are potential deficiencies of this corrosion-resistant materials for a thin walled container. (Author)

  19. Surface films and corrosion of copper

    International Nuclear Information System (INIS)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M.

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  20. The effect of conditioning agents on the corrosive properties of molten urea

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, D E; Nguyen, D T; Norton, M M; Parker, B R; Daniels, L E

    1991-01-01

    From the process case histories of the failure of several heat exchanger tube bundles, it was revealed that molten urea containing lignosulfonate as a granulation conditioning-hardening agent (Urea LS[trademark]) is corrosive to Types 304 and 316 stainless steel. The results of field and laboratory immersion corrosion tests indicated that the corrosivity of molten urea is strongly dependent on the process temperature rather than the conditioner composition. At temperatures below 295F, molten Urea LS[trademark] is not aggressive to these stainless steels. However, at temperatures above 300F, the corrosion of these stainless steels is extremely severe. The corrosion rate of Types 304, 304L, 316, and 316L is as high as hundreds of mils per year. The corrosion mechanism tends to be more general than localized. The results of the laboratory corrosion test also revealed that among alloying elements, copper is detrimental to corrosion resistance of stainless steel exposed to molten Urea LS[trademark], chromium is the most beneficial, and nickel has only a minor effect. Thus, copper-free and chromium stainless steels have superior corrosion resistance to the molten Urea LS[trademark] at a wide range of temperatures up to 345F.

  1. Corrosion monitoring using FSM technology

    International Nuclear Information System (INIS)

    Strommen, R.; Horn, H.; Gartland, P.O.; Wold, K.; Haroun, M.

    1995-01-01

    FSM is a non-intrusive monitoring technique based on a patented principle, developed for the purpose of detection and monitoring of both general and localized corrosion, erosion, and cracking in steel and metal structures, piping systems, and vessels. Since 1991, FSM has been used for a wide range of applications, including for buried and open pipelines, process piping offshore, subsea pipelines and flowlines, applications in the nuclear power industry, and in materials, research in general. This paper describes typical applications of the FSM technology, and presents operational experience from some of the land-based and subsea installations. The paper also describes recent enhancements in the FSM technology and in the analysis of FSM readings, allowing for monitoring and detailed quantification of pitting and mesa corrosion, and of corrosion in welds

  2. Corrosion detection and monitoring in steam generators by means of ultrasound; Deteccion y monitoreo de corrosion por medio de ultrasonido en generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Nava, Jose G; Calva, Mauricio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Fuentes Samaniego, Raul [Universidad Autonoma de Nuevo Leon (Mexico); Peraza Garcia, Alejandro [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    The tube and component failures in steam generators due to corrosion cause huge economical losses. In this article the internal corrosion processes (hydrogen attack) and high temperature corrosion are described, as well as the ultrasound techniques used for its detection. The importance of obtaining corrosion rates, which are fundamental parameters for the detection of the tube`s residual life. The purpose is to prevent possible failures that would diminish the power plant availability. [Espanol] Las fallas de tuberia en componentes de generadores de vapor debidas a corrosion ocasionan considerables perdidas economicas. En este articulo se describen los procesos de corrosion interna (ataque por hidrogeno) y corrosion en alta temperatura, asi como tecnicas de ultrasonido empleadas para su deteccion. Se destaca la importancia de obtener valores de velocidad de corrosion, que es un parametro fundamental para la determinacion de la vida residual de tuberias. El proposito es poder prevenir posibles fallas que disminuyan la disponibilidad de centrales termoelectricas.

  3. Corrosion detection and monitoring in steam generators by means of ultrasound; Deteccion y monitoreo de corrosion por medio de ultrasonido en generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Nava, Jose G.; Calva, Mauricio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Fuentes Samaniego, Raul [Universidad Autonoma de Nuevo Leon (Mexico); Peraza Garcia, Alejandro [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    The tube and component failures in steam generators due to corrosion cause huge economical losses. In this article the internal corrosion processes (hydrogen attack) and high temperature corrosion are described, as well as the ultrasound techniques used for its detection. The importance of obtaining corrosion rates, which are fundamental parameters for the detection of the tube`s residual life. The purpose is to prevent possible failures that would diminish the power plant availability. [Espanol] Las fallas de tuberia en componentes de generadores de vapor debidas a corrosion ocasionan considerables perdidas economicas. En este articulo se describen los procesos de corrosion interna (ataque por hidrogeno) y corrosion en alta temperatura, asi como tecnicas de ultrasonido empleadas para su deteccion. Se destaca la importancia de obtener valores de velocidad de corrosion, que es un parametro fundamental para la determinacion de la vida residual de tuberias. El proposito es poder prevenir posibles fallas que disminuyan la disponibilidad de centrales termoelectricas.

  4. Corrosion potential monitoring in nuclear power environments

    International Nuclear Information System (INIS)

    Molander, A.

    2004-01-01

    Full text of publication follows: corrosion monitoring. The corrosion potential is usually an important parameter or even the prime parameter for many types of corrosion processes. One typical example of the strong influence of the corrosion potential on corrosion performance is stress corrosion of sensitized stainless steel in pure high temperature water corresponding to boiling water conditions. The use of in-plant monitoring to follow the effect of hydrogen addition to mitigate stress corrosion in boiling water reactors is now a well-established technique. However, different relations between the corrosion potential of stainless steel and the oxidant concentration have been published and only recently an improved understanding of the electrochemical reactions and other conditions that determine the corrosion potential in BWR systems have been reached. This improved knowledge will be reviewed in this paper. Electrochemical measurements has also been performed in PWR systems and mainly the feedwater system on the secondary side of PWRs. The measurements performed so far have shown that electrochemical measurements are a very sensitive tool to detect and follow oxygen transients in the feedwater system. Also determinations of the minimum hydrazine dosage to the feedwater have been performed. However, PWR secondary side monitoring has not yet been utilized to the same level as BWR hydrogen water chemistry surveillance. The future potential of corrosion potential monitoring will be discussed. Electrochemical measurements are also performed in other reactor systems and in other types of reactors. Experiences will be briefly reviewed. In a BWR on hydrogen water chemistry and in the PWR secondary system the corrosion potentials show a large variation between different system parts. To postulate the material behavior at different locations the local chemical and electrochemical conditions must be known. Thus, modeling of chemical and electrochemical conditions along

  5. Plant applications of online corrosion monitoring: CO2 capture amine plant case study

    NARCIS (Netherlands)

    Kane, R.D.; Srinivasan, S.; Khakharia, P.M.; Goetheer, E.L.V.; Mertens, J.; Vroey, S. de

    2015-01-01

    Over the past several years, there has been a significant effort to bring corrosion monitoring into the realm of online, real-time management with plant process control technology. As part of this new direction in corrosion monitoring, corrosion data (e.g. information on corrosion rate, measured

  6. Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy

    Science.gov (United States)

    Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip

    2018-03-01

    Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.

  7. Corrosion Compatibility Studies on Inconel-600 in NP Decontamination Solution

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    It is well known that corrosion and contamination process in the primary cooling circuit of nuclear reactors are essentially interrelated: the contaminant isotopes are mostly corrosion products activated in the reactor core, and the contamination takes place on the out-core of Inconel-600 surface. This radionuclide uptake takes place up to the inner oxide layer and oxide/metal interface. So, it is necessary to remove inner oxide layer as well as outer oxide layer for excellent decontamination effects. The outer oxide layers are composed of Fe{sub 3}O{sub 4} and NiFe{sub 2}O{sub 4}. On the other hand, the inner oxide layers are composed of Cr{sub 2}O{sub 3}, (Ni{sub 1-x}Ni{sub x})(Cr{sub 1-y}Fe{sub y}){sub 2}O{sub 4}, and FeCr{sub 2}O{sub 4}. Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and become hard to be decontaminated. Alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been used to dissolve the chromium-rich oxide. A disadvantage of AP process is the generation of a large volume of secondary waste. On the other hand, that of NP process is the high corrosion rate for Ni-base alloys. Therefore, for the safe use of oxidative phase in PWR system decontamination, it is necessary to reformulate the NP chemicals for decrease of corrosion rate. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. To evaluate the general corrosion properties, weight change of NP treated specimens was measured. NP treated specimen surface was observed using optical microscope (OM) and scanning electron microscopy (SEM) for the evaluation of the localized corrosion. The effect of additives on the corrosion of the specimens was also evaluated. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications

  8. Corrosion Compatibility Studies on Inconel-600 in NP Decontamination Solution

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon

    2013-01-01

    It is well known that corrosion and contamination process in the primary cooling circuit of nuclear reactors are essentially interrelated: the contaminant isotopes are mostly corrosion products activated in the reactor core, and the contamination takes place on the out-core of Inconel-600 surface. This radionuclide uptake takes place up to the inner oxide layer and oxide/metal interface. So, it is necessary to remove inner oxide layer as well as outer oxide layer for excellent decontamination effects. The outer oxide layers are composed of Fe 3 O 4 and NiFe 2 O 4 . On the other hand, the inner oxide layers are composed of Cr 2 O 3 , (Ni 1-x Ni x )(Cr 1-y Fe y ) 2 O 4 , and FeCr 2 O 4 . Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and become hard to be decontaminated. Alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been used to dissolve the chromium-rich oxide. A disadvantage of AP process is the generation of a large volume of secondary waste. On the other hand, that of NP process is the high corrosion rate for Ni-base alloys. Therefore, for the safe use of oxidative phase in PWR system decontamination, it is necessary to reformulate the NP chemicals for decrease of corrosion rate. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. To evaluate the general corrosion properties, weight change of NP treated specimens was measured. NP treated specimen surface was observed using optical microscope (OM) and scanning electron microscopy (SEM) for the evaluation of the localized corrosion. The effect of additives on the corrosion of the specimens was also evaluated. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. It is revealed that Inconel-600 specimen is more

  9. Corrosion of research reactor Al-clad spent fuel in water

    International Nuclear Information System (INIS)

    Bendereskaya, O.S.; De, P.K.; Haddad, R.; Howell, J.P.; Johnson, A.B. Jr.; Laoharojanaphand, S.; Luo, S.; Ramanathan, L.V.; Ritchie, I.; Hussain, N.; Vidowsky, I.; Yakovlev, V.

    2002-01-01

    A significant amount of aluminium-clad spent nuclear fuel from research and test reactors worldwide is currently being stored in water-filled basins while awaiting final disposition. As a result of corrosion issues, which developed from the long-term wet storage of aluminium-clad fuel, the International Atomic Energy Agency (IAEA) implemented a Co-ordinated Research Project (CRP) in 1996 on the 'Corrosion of Research Reactor Aluminium-Clad Spent Fuel in Water'. The investigations undertaken during the CRP involved ten institutes in nine different countries. The IAEA furnished corrosion surveillance racks with aluminium alloys generally used in the manufacture of the nuclear fuel cladding. The individual countries supplemented these racks with additional racks and coupons specific to materials in their storage basins. The racks were immersed in late 1996 in the storage basins with a wide range of water parameters, and the corrosion was monitored at periodic intervals. Results of these early observations were reported after 18 months at the second research co-ordination meeting (RCM) in Sao Paulo, Brazil. Pitting and crevice corrosion were the main forms of corrosion observed. Corrosion caused by deposition of iron and other particles on the coupon surfaces was also observed. Galvanic corrosion of stainless steel/aluminium coupled coupons and pitting corrosion caused by particle deposition was observed. Additional corrosion racks were provided to the CRP participants at the second RCM and were immersed in the individual basins by mid-1998. As in the first set of tests, water quality proved to be the key factor in controlling corrosion. The results from the second set of tests were presented at the third and final RCM held in Bangkok, Thailand in October 2000. An IAEA document giving details about this CRP and other guidelines for spent fuel storage is in pres. This paper presents some details about the CRP and the basis for its extension. (author)

  10. Advanced modelling of concrete deterioration due to reinforcement corrosion

    International Nuclear Information System (INIS)

    Isgor, O.B.; Razaqpur, A.G.

    2006-01-01

    A comprehensive model is presented for predicting the rate of steel corrosion in concrete structures and the consequent formation and propagation of cracks around the steel reinforcement. The corrosion model considers both the initiation and the propagation stages of corrosion. Processes commencing in the initiation stage, such as the transport of chloride ions and oxygen within the concrete and variation in temperature and moisture, are assumed to continue in the propagation stage while active corrosion is occurring contemporaneously. This allows the model to include the effects of changes in exposure conditions on the corrosion rate and the effects of the corrosion reactions on the transport properties of concrete. The corrosion rates are calculated by applying the finite-element solution of the Laplace equation for electrochemical potential, with appropriate boundary conditions. Because these boundary conditions are nonlinear, a nonlinear solution algorithm is used. The results of the analysis are compared with available test data, and the comparison is found to be satisfactory. (author)

  11. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    Science.gov (United States)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  12. Erosion and erosion-corrosion

    International Nuclear Information System (INIS)

    Isomoto, Yoshinori

    2008-01-01

    It is very difficult to interpret the technical term of erosion-corrosion' which is sometimes encountered in piping systems of power plants, because of complicated mechanisms and several confusing definitions of erosion-corrosion phenomena. 'FAC (flow accelerated corrosion)' is recently introduced as wall thinning of materials in power plant systems, as a representative of 'erosion-corrosion'. FAC is, however, not necessarily well understood and compared with erosion-corrosion. This paper describes firstly the origin, definition and fundamental understandings of erosion and erosion-corrosion, in order to reconsider and reconfirm the phenomena of erosion, erosion-corrosion and FAC. Next, typical mapping of erosion, corrosion, erosion-corrosion and FAC are introduced in flow velocity and environmental corrosiveness axes. The concept of damage rate in erosion-corrosion is finally discussed, connecting dissolution rate, mass transfer of metal ions in a metal oxide film and film growth. (author)

  13. REMOTE DETECTION OF INTERNAL PIPELINE CORROSION USING FLUIDIZED SENSORS

    Energy Technology Data Exchange (ETDEWEB)

    Narasi Sridhar; Garth Tormoen; Ashok Sabata

    2005-10-31

    Pipelines present a unique challenge to monitoring because of the great geographical distances they cover, their burial depth, their age, and the need to keep the product flowing without much interruption. Most other engineering structures that require monitoring do not pose such combined challenges. In this regard, a pipeline system can be considered analogous to the blood vessels in the human body. The human body has an extensive ''pipeline'' through which blood and other fluids are transported. The brain can generally sense damage to the system at any location and alert the body to provide temporary repair, unless the damage is severe. This is accomplished through a vast network of fixed and floating sensors combined with a vast and extremely complex communication/decision making system. The project described in this report mimics the distributed sensor system of our body, albeit in a much more rudimentary fashion. Internal corrosion is an important factor in pipeline integrity management. At present, the methods to assess internal corrosion in pipelines all have certain limitations. In-line inspection tools are costly and cannot be used in all pipelines. Because there is a significant time interval between inspections, any impact due to upsets in pipeline operations can be missed. Internal Corrosion Direct Assessment (ICDA) is a procedure that can be used to identify locations of possible internal corrosion. However, the uncertainties in the procedure require excavation and location of damage using more detailed inspection tools. Non-intrusive monitoring techniques can be used to monitor internal corrosion, but these tools also require pipeline excavation and are limited in the spatial extent of corrosion they can examine. Therefore, a floating sensor system that can deposit at locations of water accumulation and communicate the corrosion information to an external location is needed. To accomplish this, the project is divided into four main

  14. Corrosion behavior of Cu during graphene growth by CVD

    International Nuclear Information System (INIS)

    Dong, Yuhua; Liu, Qingqing; Zhou, Qiong

    2014-01-01

    Highlights: • Graphene films were deposited on the Cu by chemical vapor deposition method. • Annealing affects the corrosion property of Cu. • Graphene films improve corrosion performance of Cu for a short period of time. - Abstract: The corrosion performance of Cu samples may be affected by annealing at high temperatures during graphene growth via the chemical vapor deposition method. In this study, multiple graphene films were deposited on Cu and characterized by Raman spectroscopy and transmission electron microscopy. The corrosion behavior of Cu immersed in 3.5 wt.% NaCl solution was investigated using electrochemical impedance spectroscopy. The Cu morphology was observed by optical microscopy and scanning electron microscopy. Results indicated that annealing affects the corrosion process of Cu. The presence of graphene films on the Cu substrate improved the corrosion performance of the material for a short period of time

  15. Measurement of reinforcement corrosion in marine structures

    International Nuclear Information System (INIS)

    Mohammad Ismail; Nordin Yahaya

    1999-01-01

    The marine environment is known to be aggressive. Structures constructed on this belt need to undergo periodic assessment in order to ensure no defects or signs of deterioration had occurred. One of the most common deterioration that occurs on marine structures is corrosion of the reinforcement. Corrosion is an electrochemical process. The product of corrosion can increase the reinforcement volume, hence causing cracking on concrete cover. If no action is taken, delamination and spalling of concrete will follow and this will affect the structures integrity. It is therefore important to know the state of the structures condition by monitoring them periodically. NDT techniques that can detect the occurrence of corrosion of reinforcement in concrete uses half cell and resistivity meter. The method of application and interpretation of results are discussed. (author)

  16. OECD Halden Reactor Project

    International Nuclear Information System (INIS)

    1988-01-01

    The OECD Halden Reactor project is an agreement between OECD member countries. It was first signed in 1958 and since then regularly renewed every third year. The activities at the Project is centred around the Halden heavy water rector, the HBWR. The reseach programme comprizes studies of fuel performance under various operating conditions, and the application of computers for process control. The HBWR is equipped for exposing fuel rods to temperatures and pressures, and at heat ratings met in modern BWR's and PWR's. A range of in-core instruments are available, permitting detailed measurements of the reactions of the fuel, including mechanical deformations, thermal behaviour, fission gas release, and corrosion. In the area of computer application, the studies of the communication between operator and process, and the surveillance and control of the reactor core, are of particular interst for reactor operation. 1988 represents the 30th year since the Project was started, and this publication is produced to mark this event. It gives and account of the activities and achievements of the Project through the years 1958-1988

  17. Reactive-transport model for the prediction of the uniform corrosion behaviour of copper used fuel containers

    International Nuclear Information System (INIS)

    King, F.; Kolar, M.; Maak, P.

    2008-01-01

    Used fuel containers in a deep geological repository will be subject to various forms of corrosion. For containers made from oxygen-free, phosphorus-doped copper, the most likely corrosion processes are uniform corrosion, underdeposit corrosion, stress corrosion cracking, and microbiologically influenced corrosion. The environmental conditions within the repository are expected to evolve with time, changing from warm and oxidizing initially to cool and anoxic in the long-term. In response, the corrosion behaviour of the containers will also change with time as the repository environment evolve. A reactive-transport model has been developed to predict the time-dependent uniform corrosion behaviour of the container. The model is based on an experimentally-based reaction scheme that accounts for the various chemical, microbiological, electrochemical, precipitation/dissolution, adsorption/desorption, redox, and mass-transport processes at the container surface and in the compacted bentonite-based sealing materials within the repository. Coupling of the electrochemical interfacial reactions with processes in the bentonite buffer material allows the effect of the evolution of the repository environment on the corrosion behaviour of the container to be taken into account. The Copper Corrosion Model for Uniform Corrosion predicts the time-dependent corrosion rate and corrosion potential of the container, as well as the evolution of the near-field environment

  18. Automated-process gas-chromatograph system for use in accelerated corrosion testing of HTGR core-support posts

    International Nuclear Information System (INIS)

    Harper, R.E.; Herndon, P.G.

    1982-01-01

    An automated-process gas chromatograph is the heart of a gaseous-impurities-analysis system developed for the Oak Ridge National Laboratory Core Support Performance Test, at which graphite core-support posts for high-temperature gas-cooled fission reactors are being subjected to accelerated corrosion tests under tightly controlled conditions of atmosphere and temperature. Realistic estimation of in-core corrosion rates is critically dependent upon the accurate measurement of low concentrations of CO, CO 2 , CH 4 , H 2 , and O 2 in the predominantly helium atmosphere. In addition, the capital and labor investment associated with each test puts a premium upon the reliability of the analytical system, as excessive downtime or failure to obtain accurate data would result in unacceptable costs and schedule delays. After an extensive survey of available measurement techniques, gas chromatography was chosen for reasons of accuracy, flexibility, good-performance record, and cost

  19. Accelerated Corrosion Testing

    Science.gov (United States)

    1982-12-01

    Treaty Organization, Brussels, 1971), p. 449. 14. D. 0. Sprowls, T. J. Summerson, G. M. Ugianski, S. G. Epstein, and H. L. Craig , Jr., in Stress...National Association of Corrosion Engineers Houston, TX, 1972). 22. H. L. Craig , Jr. (ed.), Stress Corrosion-New Approaches, ASTM-STP- 610 (American...62. M. Hishida and H. Nakada, Corrosion 33 (11) 403 (1977). b3. D. C. Deegan and B. E. Wilde, Corrosion 34 (6), 19 (1978). 64. S. Orman, Corrosion Sci

  20. Initiation and developmental stages of steel corrosion in wet H2S environments

    International Nuclear Information System (INIS)

    Bai, Pengpeng; Zhao, Hui; Zheng, Shuqi; Chen, Changfeng

    2015-01-01

    Highlights: • The initiation and development stages of steel corrosion in wet H 2 S environment were investigated. • Preferential dissolution at the grain boundaries of steel allowed corrosion products to form and accumulate. • The shapes and crystal types of corrosion products at various steel layers differed. • With increasing duration time, the S 2− peak with a binding energy of 161.2 eV gradually decreased. • A model of the formation process of corrosion product films was proposed. - Abstract: The initiation and various developmental stages of steel corrosion in H 2 S environments were investigated using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Results revealed that grain boundaries corrode at the initiation stage and that corrosion products initially form on both sides of the grain boundary and then accumulate. Corrosion products grew at the interface between the steel and corrosion product layer at the developmental stage. XPS analyses showed the composition and valence states of the corrosion products, and a model of the formation process of corrosion product films was proposed