WorldWideScience

Sample records for project california mid-valley

  1. Geologic summary of the Owens Valley drilling project, Owens and Rose Valleys, Inyo County, California

    International Nuclear Information System (INIS)

    Schaer, D.W.

    1981-07-01

    The Owens Valley Drilling Project consists of eight drill holes located in southwest Inyo County, California, having an aggregate depth of 19,205 feet (5853 m). Project holes penetrated the Coso Formation of upper Pliocene or early Pleistocene age and the Owens Lake sand and lakebed units of the same age. The project objective was to improve the reliability of uranium-potential-resource estimates assigned to the Coso Formation in the Owens Valley region. Uranium-potential-resource estimates for this area in $100 per pound U 3 O 8 forward-cost-category material have been estimatd to be 16,954 tons (15,384 metric tons). This estimate is based partly on project drilling results. Within the Owens Valley project area, the Coso Formation was encountered only in the Rose Valley region, and for this reason Rose Valley is considered to be the only portion of the project area favorable for economically sized uranium deposits. The sequence of sediments contained in the Owens Valley basin is considered to be largely equivalent but lithologically dissimilar to the Coso Formation of Haiwee Ridge and Rose Valley. The most important factor in the concentration of significant amounts of uranium in the rock units investigated appears to be the availability of reducing agents. Significant amounts of reductants (pyrite) were found in the Coso Formation. No organic debris was noted. Many small, disconnected uranium occurrences, 100 to 500 ppM U 3 O 8 , were encountered in several of the holes

  2. Seismic calibration shots conducted in 2009 in the Imperial Valley, southern California, for the Salton Seismic Imaging Project (SSIP)

    Science.gov (United States)

    Murphy, Janice; Goldman, Mark; Fuis, Gary; Rymer, Michael; Sickler, Robert; Miller, Summer; Butcher, Lesley; Ricketts, Jason; Criley, Coyn; Stock, Joann; Hole, John; Chavez, Greg

    2011-01-01

    Rupture of the southern section of the San Andreas Fault, from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard facing California in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of lifelines (freeways, aqueducts, power, petroleum, and communication lines) that would bring much of southern California to a standstill. As part of the Nation's efforts to prevent a catastrophe of this magnitude, a number of projects are underway to increase our knowledge of Earth processes in the area and to mitigate the effects of such an event. One such project is the Salton Seismic Imaging Project (SSIP), which is a collaborative venture between the United States Geological Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech). This project will generate and record seismic waves that travel through the crust and upper mantle of the Salton Trough. With these data, we will construct seismic images of the subsurface, both reflection and tomographic images. These images will contribute to the earthquake-hazard assessment in southern California by helping to constrain fault locations, sedimentary basin thickness and geometry, and sedimentary seismic velocity distributions. Data acquisition is currently scheduled for winter and spring of 2011. The design and goals of SSIP resemble those of the Los Angeles Region Seismic Experiment (LARSE) of the 1990's. LARSE focused on examining the San Andreas Fault system and associated thrust-fault systems of the Transverse Ranges. LARSE was successful in constraining the geometry of the San Andreas Fault at depth and in relating this geometry to mid-crustal, flower-structure-like decollements in the Transverse Ranges that splay upward into the network of hazardous thrust faults that caused the 1971 M 6.7 San Fernando and 1987 M 5

  3. Potential effects of drought on carrying capacity for wintering waterfowl in the Central Valley of California

    Science.gov (United States)

    Petrie, Mark J.; Fleskes, Joseph P.; Wolder, Mike A.; Isola, Craig R.; Yarris, Gregory S.; Skalos, Daniel A.

    2016-01-01

    We used the bioenergetics model TRUEMET to evaluate potential effects of California's recent drought on food supplies for waterfowl wintering in the Central Valley under a range of habitat and waterfowl population scenarios. In nondrought years in the current Central Valley landscape, food supplies are projected to be adequate for waterfowl from fall through early spring (except late March) even if waterfowl populations reach North American Waterfowl Management Plan goals. However, in all drought scenarios that we evaluated, food supplies were projected to be exhausted for ducks by mid- to late winter and by late winter or early spring for geese. For ducks, these results were strongly related to projected declines in winter-flooded rice fields that provide 45% of all the food energy available to ducks in the Central Valley in nondrought water years. Delayed flooding of some managed wetlands may help alleviate food shortages by providing wetland food resources better timed with waterfowl migration and abundance patterns in the Central Valley, as well as reducing the amount of water needed to manage these habitats. However, future research is needed to evaluate the impacts of delayed flooding on waterfowl hunting, and whether California's existing water delivery system would make delayed flooding feasible. Securing adequate water supplies for waterfowl and other wetland-dependent birds is among the greatest challenges facing resource managers in coming years, especially in the increasingly arid western United States.

  4. Groundwater quality in the Southern Sacramento Valley, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Southern Sacramento Valley is one of the study units being evaluated.

  5. Groundwater quality in the Northern Sacramento Valley, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Northern Sacramento Valley is one of the study units being evaluated.

  6. Groundwater availability of the Central Valley Aquifer, California

    Science.gov (United States)

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  7. Groundwater quality in Coachella Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  8. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  9. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  10. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  11. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  12. Groundwater quality in the western San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Western San Joaquin Valley is one of the study units being evaluated. 

  13. Groundwater quality in the Indian Wells Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  14. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    Directory of Open Access Journals (Sweden)

    Elliott L Matchett

    Full Text Available The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration

  15. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    Science.gov (United States)

    Matchett, Elliott L; Fleskes, Joseph P

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  16. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    Science.gov (United States)

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  17. California's restless giant: the Long Valley Caldera

    Science.gov (United States)

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  18. Status of groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units, 2005-08: California GAMA Priority Basin Project

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic

  19. West Valley Demonstration Project, West Valley, New York: Annual report

    International Nuclear Information System (INIS)

    1989-01-01

    Under the West Valley Demonstration Project Act, Public Law 96-368, liquid high-level radioactive waste stored at the Western New York Nuclear Services Center, West Valley, New York, that resulted from spent nuclear fuel reprocessing operations conducted between 1966 and 1972, is to be solidified in borosilicate glass and transported to a federal repository for geologic disposal. A major milestone was reached in May 1988 when the Project began reducing the volume of the liquid high-level waste. By the end of 1988, approximately 15 percent of the initial inventory had been processed into two waste streams. The decontaminated low-level liquid waste is being solidified in cement. The high-level waste stream is being stored in an underground tank pending its incorporation into borosilicate glass. Four tests of the waste glass melter system were completed. These tests confirmed equipment operability, control system reliability, and provided samples of waste glass for durability testing. In mid-1988, the Department validated an integrated cost and schedule plan for activities required to complete the production of the waste borosilicate glass. Design of the radioactive Vitrification Facility continued

  20. Climatic implications of reconstructed early - Mid Pliocene equilibrium-line altitudes in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Krusic, A.G.; Prentice, M.L.; Licciardi, J.M.

    2009-01-01

    Early-mid Pliocene moraines in the McMurdo Dry Valleys, Antarctica, are more extensive than the present alpine glaciers in this region, indicating substantial climatic differences between the early-mid Pliocene and the present. To quantify this difference in the glacier-climate regime, we estimated the equilibrium-line altitude (ELA) change since the early-mid Pliocene by calculating the modern ELA and reconstructing the ELAs of four alpine glaciers in Wright and Taylor Valleys at their early-mid Pliocene maxima. The area-altitude balance ratio method was used on modern and reconstructed early-mid Pliocene hypsometry. In Wright and Victoria Valleys, mass-balance data identify present-day ELAs of 800-1600 m a.s.l. and an average balance ratio of 1.1. The estimated ELAs of the much larger early-mid Pliocene glaciers in Wright and Taylor Valleys range from 600 to 950 ?? 170 m a.s.l., and thus are 250-600 ??170 m lower than modern ELAs in these valleys. The depressed ELAs during the early-mid-Pliocene most likely indicate a wetter and therefore warmer climate in the Dry Valleys during this period than previous studies have recognized.

  1. 78 FR 45114 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2013-07-26

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District AGENCY... the Antelope Valley Air Quality Management District (AVAQMD) portion of the California State... for the South Coast Air Quality Management District (SCAQMD). The Antelope Valley Air Pollution...

  2. 78 FR 53113 - Approval and Promulgation of Implementation Plans; California; San Joaquin Valley; Contingency...

    Science.gov (United States)

    2013-08-28

    ...] Approval and Promulgation of Implementation Plans; California; San Joaquin Valley; Contingency Measures for... California to address Clean Air Act nonattainment area contingency measure requirements for the 1997 annual... Air Act Requirements for Contingency Measures III. Review of the Submitted San Joaquin Valley PM 2.5...

  3. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

  4. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    International Nuclear Information System (INIS)

    1996-10-01

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field

  5. Groundwater quality in the shallow aquifers of the Monterey Bay, Salinas Valley, and adjacent highland areas, California

    Science.gov (United States)

    Burton, Carmen

    2018-05-30

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the groundwater basins around Monterey Bay, the Salinas Valley, and the highlands adjacent to the Salinas Valley constitute one of the study units.

  6. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    Science.gov (United States)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  7. Sacramento River Flood Control Project, California Mid-Valley Area, Phase 3. Design Memorandum Volume 1

    Science.gov (United States)

    1996-06-01

    in the study area. Plants that are candidates for Federal listing are the Suisun aster, heart-scale, California hibiscus , delta tule-pea. Mason’s...agricultural chemicals. According to Sutter County Environmental Health , the State Water Resources Control Board tested a sediment sample taken under the

  8. Sutter Buttes-the lone volcano in California's Great Valley

    Science.gov (United States)

    Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.

    2011-01-01

    The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.

  9. 76 FR 38589 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R09-OAR-2011-0383; FRL-9428-1] Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District AGENCY... the Antelope Valley Air Quality Management District (AVAQMD) portion of the California State...

  10. 76 FR 47076 - Revision to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-08-04

    ... California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District AGENCY... the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California...)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  11. 77 FR 214 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-01-04

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approval of revisions to the San Joaquin Valley Air Pollution Control District (SJVUAPCD) portion of the... used by the California Air Resources Board and air districts for evaluating air pollution control...

  12. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  13. Assessment of Climate Change Impacts on Agricultural Water Demands and Crop Yields in California's Central Valley

    Science.gov (United States)

    Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.

    2012-12-01

    Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary

  14. 78 FR 59840 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2013-09-30

    ...] Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District... of plan. * * * * * (c) * * * (428) * * * (i) * * * (B) Antelope Valley Air Quality Management...) * * * (i) * * * (B) Antelope Valley Air Quality Management District. (1) Rule 431.1, ``Sulfur Content of...

  15. 76 FR 56905 - The Central Valley Project, the California-Oregon Transmission Project, the Pacific Alternating...

    Science.gov (United States)

    2011-09-14

    ... Redding Electric Utility, California. Project Description A. History and Description of the CVP, PACI, and... Dams were also included in the authorization, along with high-voltage transmission lines designed to... three components: Component 1: [GRAPHIC] [TIFF OMITTED] TN14SE11.006 Where: FP Customer Load = An FP...

  16. Groundwater-flow and land-subsidence model of Antelope Valley, California

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Rewis, Diane L.; Martin, Peter; Phillips, Steven P.

    2014-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley groundwater basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, groundwater provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most groundwater pumping in the valley occurs in the Antelope Valley groundwater basin, which includes the rapidly growing cities of Lancaster and Palmdale. Groundwater-level declines of more than 270 feet in some parts of the groundwater basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may increase reliance on groundwater.

  17. 76 FR 38572 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2011-07-01

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District AGENCY... approve revisions to the Antelope Valley Air Quality Management District (AVAQMD) portion of the... approving with the dates that they were adopted by the Antelope Valley Air Quality Management District...

  18. Modeling The Evolution Of A Regional Aquifer System With The California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM)

    Science.gov (United States)

    Brush, C. F.; Dogrul, E. C.; Kadir, T. N.; Moncrief, M. R.; Shultz, S.; Tonkin, M.; Wendell, D.

    2006-12-01

    The finite element application IWFM has been used to develop an integrated groundwater-surface water model for California's Central Valley, an area of ~50,000 km2, to simulate the evolution of the groundwater flow system and historical groundwater-surface water interactions on a monthly time step from October 1921 to September 2003. The Central Valley's hydrologic system changed significantly during this period. Prior to 1920, most surface water flowed unimpeded from source areas in the mountains surrounding the Central Valley through the Sacramento-San Joaquin Delta to the Pacific Ocean, and groundwater largely flowed from recharge areas on the valley rim to discharge as evapotransipration in extensive marshes along the valley's axis. Rapid agricultural development led to increases in groundwater pumping from ~0.5 km3/yr in the early 1920's to 13-18 km3/yr in the 1940's to 1970's, resulting in strong vertical head gradients, significant head declines throughout the valley, and subsidence of >0.3 m over an area of 13,000 km2. Construction of numerous dams and development of an extensive surface water delivery network after 1950 altered the surface water flow regime and reduced groundwater pumping to the current ~10 km3/yr, increasing net recharge and leading to local head gradient reversals and water level recoveries. A model calibrated to the range of historical flow regimes in the Central Valley will provide robust estimations of stream-groundwater interactions for a range of projected future scenarios. C2VSIM uses the IWFM application to simulate a 3-D finite element groundwater flow process dynamically coupled with 1-D land surface, stream flow, lake and unsaturated zone processes. The groundwater flow system is represented with three layers each having 1393 elements. Land surface processes are simulated using 21 subregions corresponding to California DWR water-supply planning areas. The surface-water network is simulated using 431 stream nodes representing 72

  19. Increased body mass of ducks wintering in California's Central Valley

    Science.gov (United States)

    Fleskes, Joseph P.; Yee, Julie L.; Yarris, Gregory S.; Loughman, Daniel L.

    2016-01-01

    Waterfowl managers lack the information needed to fully evaluate the biological effects of their habitat conservation programs. We studied body condition of dabbling ducks shot by hunters at public hunting areas throughout the Central Valley of California during 2006–2008 compared with condition of ducks from 1979 to 1993. These time periods coincide with habitat increases due to Central Valley Joint Venture conservation programs and changing agricultural practices; we modeled to ascertain whether body condition differed among waterfowl during these periods. Three dataset comparisons indicate that dabbling duck body mass was greater in 2006–2008 than earlier years and the increase was greater in the Sacramento Valley and Suisun Marsh than in the San Joaquin Valley, differed among species (mallard [Anas platyrhynchos], northern pintail [Anas acuta], America wigeon [Anas americana], green-winged teal [Anas crecca], and northern shoveler [Anas clypeata]), and was greater in ducks harvested late in the season. Change in body mass also varied by age–sex cohort and month for all 5 species and by September–January rainfall for all except green-winged teal. The random effect of year nested in period, and sometimes interacting with other factors, improved models in many cases. Results indicate that improved habitat conditions in the Central Valley have resulted in increased winter body mass of dabbling ducks, especially those that feed primarily on seeds, and this increase was greater in regions where area of post-harvest flooding of rice and other crops, and wetland area, has increased. Conservation programs that continue to promote post-harvest flooding and other agricultural practices that benefit wintering waterfowl and continue to restore and conserve wetlands would likely help maintain body condition of wintering dabbling ducks in the Central Valley of California.

  20. 76 FR 45212 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-07-28

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... proposing to approve San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) Rule 3170... the environment. San Joaquin Valley Unified Air Pollution Control District SJVUAPCD is an extreme...

  1. Effects of Groundwater Development on Uranium: Central Valley, California, USA

    Science.gov (United States)

    Jurgens, B.C.; Fram, M.S.; Belitz, K.; Burow, K.R.; Landon, M.K.

    2010-01-01

    Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world. Journal compilation ?? 2009 National Ground Water Association. No claim to original US government works.

  2. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

    Science.gov (United States)

    Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria

    2017-07-19

    The increasing demands on groundwater for water supply in desert areas in California and the western United States have resulted in the need to better understand groundwater sources, availability, and sustainability. This is true for a 650-square-mile area that encompasses the Antelope Valley, El Mirage Valley, and Upper Mojave River Valley groundwater basins, about 50 miles northeast of Los Angeles, California, in the western part of the Mojave Desert. These basins have been adjudicated to ensure that groundwater rights are allocated according to legal judgments. In an effort to assess if the boundary between the Antelope Valley and El Mirage Valley groundwater basins could be better defined, the U.S. Geological Survey began a cooperative study in 2014 with the Mojave Water Agency to better understand the hydrogeology in the area and investigate potential controls on groundwater flow and availability, including basement topography.Recharge is sporadic and primarily from small ephemeral washes and streams that originate in the San Gabriel Mountains to the south; estimates range from about 400 to 1,940 acre-feet per year. Lateral underflow from adjacent basins has been considered minor in previous studies; underflow from the Antelope Valley to the El Mirage Valley groundwater basin has been estimated to be between 100 and 1,900 acre-feet per year. Groundwater discharge is primarily from pumping, mostly by municipal supply wells. Between October 2013 and September 2014, the municipal pumpage in the Antelope Valley and El Mirage Valley groundwater basins was reported to be about 800 and 2,080 acre-feet, respectively.This study was motivated by the results from a previously completed regional gravity study, which suggested a northeast-trending subsurface basement ridge and saddle approximately 3.5 miles west of the boundary between the Antelope Valley and El Mirage Valley groundwater basins that might influence groundwater flow. To better define potential basement

  3. 78 FR 49925 - Revisions to California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2013-08-16

    ... California State Implementation Plan, Antelope Valley Air Quality Management District and Ventura County Air...: EPA is taking direct final action to approve revisions to the Antelope Valley Air Quality Air Management District (AVAQMD) and Ventura County Air Pollution Control District (VCAPCD) portions of the...

  4. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    Science.gov (United States)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  5. Sacramento River Flood Control Project, California, Mid-Valley Area, Phase III. Design Memorandum, Volume 1 of 2

    Science.gov (United States)

    1995-08-01

    the Suisun aster, heart-scale, California hibiscus , delta tule-pea, Mason’s lilaeopsis, little mousetail, and Colusa grass. No sites in the study...Environmental Health , the State Water Resources Control Board tested a sediment sample taken under the South Bridge on Highway 113 at the Sutter Bypass

  6. 77 FR 2469 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-01-18

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District and Imperial... Quality Management District (AVAQMD) and Imperial County Air Pollution Control District (ICAPCD) portions... Technology (RACT),'' adopted on February 23, 2010. * * * * * (G) Antelope Valley Air Quality Management...

  7. 78 FR 58459 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2013-09-24

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District, Santa Barbara County Air Pollution Control District, South Coast Air Quality Management District and Ventura.... SUMMARY: EPA is finalizing approval of revisions to the Antelope Valley Air Quality Management District...

  8. 78 FR 25011 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2013-04-29

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District, Santa Barbara County Air Pollution Control District, South Coast Air Quality Management District and Ventura... rule. SUMMARY: EPA is proposing to approve revisions to the Antelope Valley Air Quality Management...

  9. 77 FR 12526 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-03-01

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District and Mojave Desert Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the Antelope Valley Air Quality Management District...

  10. Polyfluoroalkyl substance exposure in the Mid-Ohio River Valley, 1991-2012.

    Science.gov (United States)

    Herrick, Robert L; Buckholz, Jeanette; Biro, Frank M; Calafat, Antonia M; Ye, Xiaoyun; Xie, Changchun; Pinney, Susan M

    2017-09-01

    Industrial discharges of perfluorooctanoic acid (PFOA) to the Ohio River, contaminating water systems near Parkersburg, WV, were previously associated with nearby residents' serum PFOA concentrations above US general population medians. Ohio River PFOA concentrations downstream are elevated, suggesting Mid-Ohio River Valley residents are exposed through drinking water. Quantify PFOA and 10 other per- and polyfluoroalkyl substances (PFAS) in Mid-Ohio River Valley resident sera collected between 1991 and 2013 and determine whether the Ohio River and Ohio River Aquifer are exposure sources. We measured eleven PFAS in 1608 sera from 931 participants. Serum PFOA concentration and water source associations were assessed using linear mixed-effects models. We estimated between-sample serum PFOA using one-compartment pharmacokinetics for participants with multiple samples. In serum samples collected as early as 1991, PFOA (median = 7.6 ng/mL) was detected in 99.9% of sera; 47% had concentrations greater than US population 95th percentiles. Five other PFAS were detected in greater than 82% of samples; median other PFAS concentrations were similar to the US general population. Serum PFOA was significantly associated with water source, sampling year, age at sampling, tap water consumption, pregnancy, gravidity and breastfeeding. Serum PFOA was 40-60% lower with granular activated carbon (GAC) use. Repeated measurements and pharmacokinetics suggest serum PFOA peaked 2000-2006 for participants using water without GAC treatment; where GAC was used, serum PFOA concentrations decreased from 1991 to 2012. Mid-Ohio River Valley residents appear to have PFOA, but not other PFAS, serum concentrations above US population levels. Drinking water from the Ohio River and Ohio River Aquifer, primarily contaminated by industrial discharges 209-666 km upstream, is likely the primary exposure source. GAC treatment of drinking water mitigates, but does not eliminate, PFOA exposure. Copyright

  11. Sacramento Metropolitan Area, California

    Science.gov (United States)

    1992-02-01

    addition, several Federal candidate species, the California Hibiscus , California tiger salamander, Sacramento Anthicid Beetle, Sacramento Valley tiger...Board, California Waste Management Board, and Department of Health Services contribute to this list. The Yolo County Health Services Agency maintains and...operation and maintenance of the completed recreational facility. Recreation development is limited to project lands unless health and safety

  12. Rock-fall potential in the Yosemite Valley, California

    Science.gov (United States)

    Wieczorek, G.F.; Morrissey, M.M.; Iovine, Giulio; Godt, Jonathan

    1999-01-01

    We used two methods of estimating rock-fall potential in the Yosemite Valley, California based on (1) physical evidence of previous rock-fall travel, in which the potential extends to the base of the talus, and (2) theoretical potential energy considerations, in which the potential can extend beyond the base of the talus, herein referred to as the rock-fall shadow. Rock falls in the valley commonly range in size from individual boulders of less than 1 m3 to moderate-sized falls with volumes of about 100,000 m3. Larger rock falls exceeding 100,000 m3, referred to as rock avalanches, are considered to be much less likely to occur based on the relatively few prehistoric rock-fall avalanche deposits in the Yosemite Valley. Because the valley has steep walls and is relatively narrow, there are no areas that are absolutely safe from large rock avalanches. The map shows areas of rock-fall potential, but does not predict when or how frequently a rock fall will occur. Consequently, neither the hazard in terms of probability of a rock fall at any specific location, nor the risk to people or facilities to such events can be assessed from this map.

  13. 77 FR 2496 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-01-18

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R09-OAR-2011-0987; FRL-9617-5] Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District and Imperial... rule. SUMMARY: EPA is proposing to approve revisions to the Antelope Valley Air Quality Management...

  14. 78 FR 49992 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2013-08-16

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R09-OAR-2013-0394; FRL-9845-4] Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District and Ventura... rule. SUMMARY: EPA is proposing to approve revisions to the Antelope Valley Air Quality Management...

  15. Groundwater quality in the shallow aquifers of the Madera–Chowchilla and Kings subbasins, San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.; Shelton, Jennifer L.

    2018-01-08

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking-water supply and increases public access to groundwater-quality information. Many households and small communities in the Madera– Chowchilla and Kings subbasins of the San Joaquin Valley rely on private domestic wells for their drinking-water supplies.

  16. 76 FR 5276 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-01-31

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the... protection, Air pollution control, Incorporation by reference, Intergovernmental relations, Nitrogen dioxide...

  17. 76 FR 37044 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-06-24

    ... premature mortality, aggravation of respiratory and cardiovascular disease, decreased lung function... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of...

  18. 76 FR 52623 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-08-23

    ... respiratory and cardiovascular disease, decreased lung function, visibility impairment, and damage to... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of...

  19. 75 FR 28509 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2010-05-21

    ..., aggravation of respiratory and cardiovascular disease, decreased lung function, visibility impairment, and... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of...

  20. 76 FR 56706 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-09-14

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of... of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Intergovernmental...

  1. Status and understanding of groundwater quality in the Santa Clara River Valley, 2007-California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Montrella, Joseph; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 460-square-mile Santa Clara River Valley study unit was investigated from April through June 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The Santa Clara River Valley study unit contains eight groundwater basins located in Ventura and Los Angeles Counties and is within the Transverse and Selected Peninsular Ranges hydrogeologic province. The Santa Clara River Valley study unit was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2007 by the USGS from 42 wells on a spatially distributed grid, and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined as that part of the aquifer system corresponding to the perforation intervals of wells listed in the CDPH database for the Santa Clara River Valley study unit. The quality of groundwater in the primary aquifer system may differ from that in shallow or deep water-bearing zones; for example, shallow groundwater may be more vulnerable to surficial contamination. Eleven additional wells were sampled by the USGS to improve understanding of factors affecting water quality.The status assessment of the quality of the groundwater used data from samples analyzed for anthropogenic constituents, such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources in the primary aquifers of the Santa Clara River Valley study unit

  2. 75 FR 1715 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2010-01-13

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVAPCD) portion of the...)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  3. 76 FR 69135 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-11-08

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the... of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Incorporation by...

  4. An aerial radiological survey of the West Valley Demonstration Project and surrounding area, West Valley, New York

    International Nuclear Information System (INIS)

    Berry, H.A.

    1991-09-01

    An aerial radiological survey of the West Valley Demonstration Project and the surrounding area was conducted from mid-August through early September 1984 by EG ampersand G Energy Measurements, Inc. for the United States Department of Energy. The radiological survey was part of the United States Department of Energy Comprehensive Integrated Remote Sensing (CIRS) program, which provides state-of-the-art remote sensing to support the needs of the various DOE facilities. The survey consisted of airborne measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. These measurements allowed an estimate of the distribution of isotopic concentrations in the area surrounding the project site. Results are reported as isopleths superimposed on aerial photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. 8 refs., 16 figs., 9 tabs

  5. 76 FR 56134 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-09-12

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of... preempt Tribal law. List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  6. 75 FR 60623 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2010-10-01

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approval and limited disapproval of revisions to the San Joaquin Valley Unified Air Pollution Control... 30, 2008) \\2\\; and Ventura County Air Pollution Control District (VCAPCD) Rule 74.15 (as amended...

  7. 75 FR 57862 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2010-09-23

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the... section 307(b)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...

  8. Feasibility and potential effects of the proposed Amargosa Creek Recharge Project, Palmdale, California

    Science.gov (United States)

    Christensen, Allen H.; Siade, Adam J.; Martin, Peter; Langenheim, V.E.; Catchings, Rufus D.; Burgess, Matthew K.

    2015-09-17

    Historically, the city of Palmdale and vicinity have relied on groundwater as the primary source of water, owing, in large part, to the scarcity of surface water in the region. Despite recent importing of surface water, groundwater withdrawal for municipal, industrial, and agricultural use has resulted in groundwater-level declines near the city of Palmdale in excess of 200 feet since the early 1900s. To meet the growing water demand in the area, the city of Palmdale has proposed the Amargosa Creek Recharge Project (ACRP), which has a footprint of about 150 acres along the Amargosa Creek 2 miles west of Palmdale, California. The objective of this study was to evaluate the long-term feasibility of recharging the Antelope Valley aquifer system by using infiltration of imported surface water from the California State Water Project in percolation basins at the ACRP.

  9. Geological literature on the San Joaquin Valley of California

    Science.gov (United States)

    Maher, J.C.; Trollman, W.M.; Denman, J.M.

    1973-01-01

    The following list of references includes most of the geological literature on the San Joaquin Valley and vicinity in central California (see figure 1) published prior to January 1, 1973. The San Joaquin Valley comprises all or parts of 11 counties -- Alameda, Calaveras, Contra Costa, Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare (figure 2). As a matter of convenient geographical classification the boundaries of the report area have been drawn along county lines, and to include San Benito and Santa Clara Counties on the west and Mariposa and Tuolumne Counties on the east. Therefore, this list of geological literature includes some publications on the Diablo and Temblor Ranges on the west, the Tehachapi Mountains and Mojave Desert on the south, and the Sierra Nevada Foothills and Mountains on the east.

  10. 76 FR 56132 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-09-12

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of... did the State submit? B. Are there other versions of this rule? C. What is the purpose of the...

  11. Polyfluoroalkyl substance exposure in the Mid-Ohio River Valley, 1991–2012

    International Nuclear Information System (INIS)

    Herrick, Robert L.; Buckholz, Jeanette; Biro, Frank M.; Calafat, Antonia M.; Ye, Xiaoyun; Xie, Changchun; Pinney, Susan M.

    2017-01-01

    Background: Industrial discharges of perfluorooctanoic acid (PFOA) to the Ohio River, contaminating water systems near Parkersburg, WV, were previously associated with nearby residents' serum PFOA concentrations above US general population medians. Ohio River PFOA concentrations downstream are elevated, suggesting Mid-Ohio River Valley residents are exposed through drinking water. Objectives: Quantify PFOA and 10 other per- and polyfluoroalkyl substances (PFAS) in Mid-Ohio River Valley resident sera collected between 1991 and 2013 and determine whether the Ohio River and Ohio River Aquifer are exposure sources. Methods: We measured eleven PFAS in 1608 sera from 931 participants. Serum PFOA concentration and water source associations were assessed using linear mixed-effects models. We estimated between-sample serum PFOA using one-compartment pharmacokinetics for participants with multiple samples. Results: In serum samples collected as early as 1991, PFOA (median = 7.6 ng/mL) was detected in 99.9% of sera; 47% had concentrations greater than US population 95th percentiles. Five other PFAS were detected in greater than 82% of samples; median other PFAS concentrations were similar to the US general population. Serum PFOA was significantly associated with water source, sampling year, age at sampling, tap water consumption, pregnancy, gravidity and breastfeeding. Serum PFOA was 40–60% lower with granular activated carbon (GAC) use. Repeated measurements and pharmacokinetics suggest serum PFOA peaked 2000–2006 for participants using water without GAC treatment; where GAC was used, serum PFOA concentrations decreased from 1991 to 2012. Conclusions: Mid-Ohio River Valley residents appear to have PFOA, but not other PFAS, serum concentrations above US population levels. Drinking water from the Ohio River and Ohio River Aquifer, primarily contaminated by industrial discharges 209–666 km upstream, is likely the primary exposure source. GAC treatment of drinking

  12. Geotechnical environmental aspects of geothermal power generation at Herber, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    1976-10-01

    The feasibility of constructing a 25-50 MWe geothermal power plant using low salinity hydrothermal fluid as the energy source was assessed. Here, the geotechnical aspects of geothermal power generation and their relationship to environmental impacts in the Imperial Valley of California were investigated. Geology, geophysics, hydrogeology, seismicity and subsidence are discussed in terms of the availability of data, state-of-the-art analytical techniques, historical and technical background and interpretation of current data. Estimates of the impact of these geotechnical factors on the environment in the Imperial Valley, if geothermal development proceeds, are discussed.

  13. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    Science.gov (United States)

    Hanson, R. T.; Lockwood, B.; Schmid, Wolfgang

    2014-11-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within ;water-balance subregions; (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori. The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations and

  14. Mapping Drought Impacts on Agricultural Production in California's Central Valley

    Science.gov (United States)

    Melton, F. S.; Guzman, A.; Johnson, L.; Rosevelt, C.; Verdin, J. P.; Dwyer, J. L.; Mueller, R.; Zakzeski, A.; Thenkabail, P. S.; Wallace, C.; Jones, J.; Windell, S.; Urness, J.; Teaby, A.; Hamblin, D.; Post, K. M.; Nemani, R. R.

    2014-12-01

    The ongoing drought in California has substantially reduced surface water supplies for millions of acres of irrigated farmland in California's Central Valley. Rapid assessment of drought impacts on agricultural production can aid water managers in assessing mitigation options, and guide decision making with respect to requests for local water transfers, county drought disaster designations, and allocation of emergency funds to mitigate drought impacts. Satellite remote sensing offers an efficient way to provide quantitative assessments of drought impacts on agricultural production and increases in idle acreage associated with reductions in water supply. A key advantage of satellite-based assessments is that they can provide a measure of land fallowing that is consistent across both space and time. We describe an approach for monthly and seasonal mapping of uncultivated agricultural acreage developed as part of a joint effort by USGS, USDA, NASA, and the California Department of Water Resources to provide timely assessments of land fallowing during drought events. This effort has used the Central Valley of California as a pilot region for development and testing of an operational approach. To provide quantitative measures of uncultivated agricultural acreage from satellite data early in the season, we developed a decision tree algorithm and applied it to timeseries of data from Landsat TM, ETM+, OLI, and MODIS. Our effort has been focused on development of indicators of drought impacts in the March - August timeframe based on measures of crop development patterns relative to a reference period with average or above average rainfall. To assess the accuracy of the algorithms, monthly ground validation surveys were conducted across 640 fields from March - September, 2014. We present the algorithm along with updated results from the accuracy assessment, and discuss potential applications to other regions.

  15. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  16. Summer transport patterns affecting the Mohave Power Project emission

    Energy Technology Data Exchange (ETDEWEB)

    Farber, R.J.; Hoffer, T.E.; Green, M.C.; Walsh, P.A. [Southern California Edison, Rosemead, CA (United States)

    1997-03-01

    The Mohave Power Project (MPP) is an isolated 1580-MW coal-fired electric generating plant located in Laughlin, NV. Laughlin is a small desert gambling town situated in the lower Colorado River Valley near the junction of three states: Nevada, California, and Arizona. The location of the MPP is approximately 155 km southwest of the western end of the Grand Canyon National Park and about 240 km southwest from the Grand Canyon Village. This paper describes the summer transport patterns of the MPP emittants using illustrated examples from the Project MOHAVE (measurements of Haze and Visual Effects) 1992 summer intensive study. The intensive study lasted 50 days from mid-July through August and encompassed the major meteorological patterns associated with southwestern US summer meteorology. The MPP emittants were transported towards the Grand Canyon (north to the northeast) during more than 80% of the total hours. Airflow as from the south most of the time due to a combination of the semi-permanent thermal low, differential heating between the Gulf of California and lower Colorado River Valley, and upslope heating of the southern and western slopes of the nearby Colorado Plateau. 14 refs., 12 figs., 2 tabs.

  17. Quantitative rock-fall hazard and risk assessment for Yosemite Valley, Yosemite National Park, California

    Science.gov (United States)

    Stock, Greg M.; Luco, Nicolas; Collins, Brian D.; Harp, Edwin L.; Reichenbach, Paola; Frankel, Kurt L.

    2014-01-01

    Rock falls are common in Yosemite Valley, California, posing substantial hazard and risk to the approximately four million annual visitors to Yosemite National Park. Rock falls in Yosemite Valley over the past few decades have damaged structures and caused injuries within developed regions located on or adjacent to talus slopes highlighting the need for additional investigations into rock-fall hazard and risk. This assessment builds upon previous investigations of rock-fall hazard and risk in Yosemite Valley and focuses on hazard and risk to structures posed by relatively frequent fragmental-type rock falls as large as approximately 100,000 (cubic meters) in volume.

  18. California; Antelope Valley Air Quality Management District; VOCs from Motor Vehicle Assembly Coating Operations

    Science.gov (United States)

    EPA is proposing to approve a revision to the Antelope Valley Air Quality Management District portion of the California SIP concerning emissions of volatile organic compounds (VOCs) from motor vehicle assembly coating operations.

  19. Groundwater quality in the shallow aquifers of the Monterey Bay, Salinas Valley, and adjacent highland areas, Southern Coast Ranges, California

    Science.gov (United States)

    Burton, Carmen

    2018-05-30

    The Monterey-Salinas Shallow Aquifer study unit covers approximately 7,820 square kilometers (km2) in Santa Cruz, Monterey, and San Luis Obispo Counties in the Central Coast Hydrologic Region of California. The study unit was divided into four study areas—Santa Cruz, Pajaro Valley, Salinas Valley, and Highlands. More than 75 percent of the water used for drinking-water supply in the Central Coast Hydrologic Region of California is groundwater, and there are more than 8,000 well driller’s logs for domestic wells (California Department of Water Resources, 2013).

  20. The expected greenhouse benefits from developing magma power at Long Valley, California

    International Nuclear Information System (INIS)

    Haraden, John.

    1995-01-01

    Magma power is the production of electricity from shallow magma bodies. Before magma becomes a practical source of power, many engineering problems must still be solved. When they are solved, the most likely site for the first magma power plant is Long Valley, California, USA. In this paper, we examine the greenhouse benefits from developing Long Valley. By generating magma power and by curtailing an equal amount of fossil power, we estimate the expected mass and the expected discounted value of reduced CO 2 emissions. For both measures, the expected benefits seem to be substantial. (author)

  1. A conceptual model for site-level ecology of the giant gartersnake (Thamnophis gigas) in the Sacramento Valley, California

    Science.gov (United States)

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.; Hansen, Eric C.; Scherer, Rick D.; Patterson, Laura C.

    2015-08-14

    Giant gartersnakes (Thamnophis gigas) comprise a species of semi-aquatic snakes precinctive to marshes in the Central Valley of California (Hansen and Brode, 1980; Rossman and others, 1996). Because more than 90 percent of their historical wetland habitat has been converted to other uses (Frayer and others, 1989; Garone, 2007), giant gartersnakes have been listed as threatened by the State of California (California Department of Fish and Game Commission , 1971) and the United States (U.S. Fish and Wildlife Service, 1993). Giant gartersnakes currently occur in a highly modified landscape, with most extant populations occurring in the rice - growing regions of the Sacramento Valley, especially near areas that historically were tule marsh habitat (Halstead and others, 2010, 2014).

  2. Subsidence and Rebound in California's Central Valley: Effects of Pumping, Geology, and Precipitation

    Science.gov (United States)

    Farr, T. G.; Fairbanks, A.

    2017-12-01

    Recent rains in California caused a pause, and even a reversal in some areas, of the subsidence that has plagued the Central Valley for decades. The 3 main drivers of surface deformation in the Central Valley are: Subsurface hydro-geology, precipitation and surface water deliveries, and groundwater pumping. While the geology is relatively fixed in time, water inputs and outputs vary greatly both in time and space. And while subsurface geology and water inputs are reasonably well-known, information about groundwater pumping amounts and rates is virtually non-existent in California. We have derived regional maps of surface deformation in the region for the period 2006 - present which allow reconstruction of seasonal and long-term changes. In order to understand the spatial and temporal patterns of subsidence and rebound in the Central Valley, we have been compiling information on the geology and water inputs and have attempted to infer pumping rates using maps of fallowed fields and published pumping information derived from hydrological models. In addition, the spatial and temporal patterns of hydraulic head as measured in wells across the region allow us to infer the spatial and temporal patterns of groundwater pumping and recharge more directly. A better understanding of how different areas (overlying different stratigraphy) of the Central Valley respond to water inputs and outputs will allow a predictive capability, potentially defining sustainable pumping rates related to water inputs. * work performed under contract to NASA and the CA Dept. of Water Resources

  3. Groundwater quality in the Southern Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tehachapi-Cummings Valley and Kern River Valley basins and surrounding watersheds in the Southern Sierra Nevada constitute one of the study units being evaluated.

  4. 77 FR 12527 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-03-01

    ...EPA is proposing to approve revisions to the Antelope Valley Air Quality Management District (AVAQMD) and San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portions of the California State Implementation Plan (SIP). These revisions concern negative declarations for volatile organic compound (VOC) and oxides of sulfur source categories. We are proposing to approve these negative declarations under the Clean Air Act as amended in 1990 (CAA or the Act).

  5. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  6. Vitrification facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project's vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project's background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing

  7. Childhood asthma, air quality, and social suffering among Mexican Americans in California's San Joaquin Valley: "Nobody talks to us here".

    Science.gov (United States)

    Schwartz, Norah Anita; Pepper, David

    2009-10-01

    Nearly one in five Mexican American children residing in California's San Joaquin Valley (the Valley) in 2007 had an asthma attack at some point in their life. Numerous epidemiological studies have suggested that compared with other ethnic groups and Latino subgroups residing in the United States, Mexican origin children have the lowest rates of pediatric asthma. Ethnographic research conducted in central California, however, suggests otherwise. Known for its agricultural produce, extreme poverty, and poor air quality, the Valley is a magnet for the Mexican immigrant farm worker population. We conducted an exploratory ethnographic study to examine health disparities, social suffering, and childhood asthma in the Valley. Many Valley residents believe that their children's health concerns are being ignored. Open-ended interviews uncovered a largely rural community suffering not only from the effects of childhood asthma but the inability to have their experiences taken seriously.

  8. Drought Impacts on Agricultural Production and Land Fallowing in California's Central Valley in 2015

    Science.gov (United States)

    Rosevelt, C.; Melton, F. S.; Johnson, L.; Guzman, A.; Verdin, J. P.; Thenkabail, P. S.; Mueller, R.; Jones, J.; Willis, P.

    2015-12-01

    The ongoing drought in California substantially reduced surface water supplies for millions of acres of irrigated farmland in California's Central Valley. Rapid assessment of drought impacts on agricultural production can aid water managers in assessing mitigation options, and guide decision making with respect to mitigation of drought impacts. Satellite remote sensing offers an efficient way to provide quantitative assessments of drought impacts on agricultural production and increases in fallow acreage associated with reductions in water supply. A key advantage of satellite-based assessments is that they can provide a measure of land fallowing that is consistent across both space and time. We describe an approach for monthly and seasonal mapping of uncultivated agricultural acreage developed as part of a joint effort by USGS, USDA, NASA, and the California Department of Water Resources to provide timely assessments of land fallowing during drought events. This effort has used the Central Valley of California as a pilot region for development and testing of an operational approach. To provide quantitative measures of uncultivated agricultural acreage from satellite data early in the season, we developed a decision tree algorithm and applied it to timeseries of data from Landsat TM, ETM+, OLI, and MODIS. Our effort has been focused on development of indicators of drought impacts in the March - August timeframe based on measures of crop development patterns relative to a reference period with average or above average rainfall. To assess the accuracy of the algorithms, monthly ground validation surveys were conducted across 650 fields from March - September in 2014 and 2015. We present the algorithm along with updated results from the accuracy assessment, and data and maps of land fallowing in the Central Valley in 2015.

  9. Ward Valley transfer stalled by Babbitt

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Interior Secretary Bruce Babbitt announced on November 24 that he would not authorize the land transfer for the proposed low-level waste disposal site at Ward Valley, California, until a legal challenge to the facility's license and environmental impact statement is resolved. Even if the matter is resolved quickly, there exists the possibility that yet another hearing will be held on the project, even though state courts in California have stated flatly that no such hearings are required

  10. Cheap for Whom? Migration, Farm Labor, and Social Reproduction in the Imperial Valley-Mexicali Borderlands, 1942-1969

    OpenAIRE

    Mendez, Alina Ramirez

    2017-01-01

    This dissertation argues that the agriculture industry in California’s Imperial Valley has enjoyed ample access to cheap labor since the mid-twentieth century because Mexicali, Baja California Norte, its Mexican neighbor, has subsidized the reproduction of a transborder labor force employed in agriculture but otherwise denied social membership in the United States. This subsidy from Mexicali to the Imperial Valley began in 1942 with the start of the Bracero Program and continued well past the...

  11. Rock-fall Hazard In The Yosemite Valley, California

    Science.gov (United States)

    Guzzetti, F.; Reichenbach, P.; Wieczorek, G. F.

    Rock slides and rock falls are the most frequent slope movements in Yosemite Na- tional Park, California. In historical time (1851-2001), more than 400 rock falls and rock slides have been documented in the valley, and some of them have been mapped in detail. We present the preliminary results of an attempt to assess rockfall hazard in the Yosemite Valley using STONE, a 3-dimensional rock-fall simulation computer program. The software computes 3-dimensional rock-fall trajectories starting from a digital terrain model (DTM), the location of rock-fall release points (source areas), and maps of the dynamic rolling coefficient and of the coefficients of normal and tan- gential energy restitution. For each DTM cell the software also calculates the number of rock falls passing through the cell, the maximum rock-fall velocity and the maxi- mum flying height. For the Yosemite Valley, a DTM with a ground resolution of 10 x 10 m was prepared using topographic contour lines from USGS 1:24,000-scale maps. Rock-fall release points were identified as DTM cells having a slope steeper than 60 degrees, an assumption based on the location of historical rock falls. Maps of the nor- mal and tangential energy restitution coefficients and of the rolling friction coefficient were produced from a surficial geologic map. The availability of historical rock falls mapped in detail allowed us to check the computer program performance and to cali- brate the model parameters. Visual and statistical comparison of the model results with the mapped rock falls confirmed the accuracy of the model. The model results are also compared with a geomorphic assessment of rock-fall hazard based on potential energy referred to as a "shadow angle" approach, recently completed for the Yosemite Valley.

  12. 77 FR 12491 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-03-01

    ...EPA is taking direct final action to approve revisions to the Antelope Valley Air Quality Management District (AVAQMD) and San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portions of the California State Implementation Plan (SIP). These revisions concern negative declarations for volatile organic compound (VOC) and oxides of sulfur source categories for the AVAQMD and SJVUAPCD. We are approving these negative declarations under the Clean Air Act as amended in 1990 (CAA or the Act).

  13. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    Science.gov (United States)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    Green Valley Creek (GVC) is a small (101 sq km) aquatic habitat refugium in the Russian River watershed (3,840 sq km) in coastal northern California. Coho salmon (Onchorhynchus kisutch) is endangered per the Federal Endangered Species Act, and GVC is one stream where coho have persisted. Fish surveys in GVC have found high species diversity, growth rates, and over-summer survival. The upper portion of GVC comprises a principal tributary (20 sq km) that provides spawning and rearing habitat for coho. The second principal tributary, Atascadero Creek, is comparable in size, but has few fish. Atascadero Creek and lower GVC have broad, densely vegetated floodplains. A Recovery Plan for the Central Coastal California coho Evolutionarily Significant Unit has been developed by the National Marine Fisheries Service (NMFS), which applies to the Russian River and its tributaries. Cooperative research regarding fish populations and habitat, a captive breeding and release program for native coho salmon, and efforts to plan for and restore habitat are ongoing. These regional efforts are particularly active in GVC, and participants include NMFS, the California Department of Fish and Wildlife, the Gold Ridge Resource Conservation District, the California Coastal Conservancy, the University of California Cooperative Extension, and the National Fish and Wildlife Foundation, among others. Our research focuses on hydrologic, geomorphic and hydrogeologic characteristics of the watershed in relation to aquatic habitat. Natural watershed factors contributing to habitat for coho include proximity to the coastal summer fog belt with cool temperatures, the Wilson Grove Formation aquifer that maintains dry season stream flow, and structural geology favorable for active floodplain morphology. Human impacts include water use and agriculture and rural residential development. Historic human impacts include stream clearing and draining of wetlands and floodplain for agriculture, which likely

  14. Preliminary digital geologic maps of the Mariposa, Kingman, Trona, and Death Valley Sheets, California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1995-01-01

    Parts of four 1:250,000-scale geologic maps by the California Department of Natural Resources, Division of Mines and Geology have been digitized for use in hydrogeologic characterization. These maps include the area of California between lat. 35 degree N; Long. 115 degree W and lat. 38 degree N, long. 118 degree W of the Kingman Sheet (Jennings, 1961), Trona Sheet (Jennings and others, 1962), Mariposa Sheet (Strand, 1967), and Death Valley Sheet (Streitz and Stinson, 1974). These digital maps are being released by the US Geological Survey in the ARC/INFO Version 6.1 Export format. The digitized data include geologic unit boundaries, fault traces, and identity of geologic units. The procedure outlined in US Geological Survey Circular 1054 (Soller and others, 1990) was sued during the map construction. The procedure involves transferring hard-copy data into digital format by scanning manuscript maps, manipulating the digital map data, and outputting the data. Most of the work was done using Environmental Systems Research Institute's ARC/INFO software. The digital maps are available in ARC/INFO Rev. 6.1 Export format, from the USGS, Yucca Mountain Project, in Denver, Colorado

  15. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin

    Science.gov (United States)

    Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.

    1997-01-01

    The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.

  16. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    Science.gov (United States)

    Hanson, Randall T.; Lockwood, Brian; Schmid, Wolfgang

    2014-01-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within “water-balance subregions” (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori.

  17. Ward Valley transfer stalled by Babbitt

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Interior Secretary Bruce Babbitt announced on November 24 that he would not authorize the land transfer for the proposed low-level waste disposal site at Ward Valley, California, until a legal challenge to the facility's license and environmental impact statement is resolved. Even if the matter is resolved quickly, there exists the possibility that yet another hearing will be held on the project, even though state courts in California have stated flatly that no such hearings are required.

  18. 77 FR 12495 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-03-01

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District and Mojave Desert Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final... Quality Management District (AVAQMD) and Mojave Desert Air Quality Management District (MDAQMD) portion of...

  19. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2005-09-30

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

  20. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    International Nuclear Information System (INIS)

    2005-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004

  1. Proposed Approval of California Air Plan Revision; San Joaquin Valley Unified Air Pollution Control District; Reasonably Available Control Technology Demonstration

    Science.gov (United States)

    EPA isproposing to approve revisions to the SJVUAPCD portion of the California SIP applying to the San Joaquin Valley of California concerning demonstration regarding RACT requirements for the 2008 8-hour ozone National Ambient Air Quality Standard (NAAQS)

  2. Uranium-series dating of pedogenic carbonates from the Livermore Valley, California

    International Nuclear Information System (INIS)

    Knauss, K.G.

    1981-01-01

    A uranium-series dating technique has been applied to pedogenic carbonates from the Livermore Valley in California. The results from geomorphologically distinct Quaternary alluvial units are internally consistent and for one alluvial unit are corroborated by a concordant 14 C age for an associated wood fragment. In appropriate situations, age dates for pedogenic carbonates derived using this technique may provide a time stratigraphy for alluvial units and hence provide some limits (minimum age) for last fault movement

  3. 75 FR 39581 - Yosemite Valley Plan; Yosemite National Park; Mariposa, Madera, and Tuolumne Counties, California...

    Science.gov (United States)

    2010-07-09

    ... DEPARTMENT OF THE INTERIOR National Park Service Yosemite Valley Plan; Yosemite National Park; Mariposa, Madera, and Tuolumne Counties, California; Notice of Revised Record of Decision SUMMARY: On December 29, 2000, the National Park Service (NPS) executed a Record of Decision selecting Alternative 2...

  4. Late quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    International Nuclear Information System (INIS)

    Brogan, G.E.; Kellogg, K.S.; Terhune, C.L.; Slemmons, D.B.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest- trending pull-apart basin

  5. 75 FR 70020 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2010-11-16

    ... office on Central Valley Project water conservation best management practices that shall ``* * * develop... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior ACTION: Notice of Availability. SUMMARY: The...

  6. 76 FR 12756 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2011-03-08

    ... office on Central Valley Project water conservation best management practices that shall ``* * * develop... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  7. 77 FR 64544 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2012-10-22

    ... Central Valley Project water conservation best management practices that shall ``develop criteria for... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  8. 78 FR 21414 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2013-04-10

    ... Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are available for review... establish and administer an office on Central Valley Project water conservation best management practices...

  9. 76 FR 54251 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2011-08-31

    ... and administer an office on Central Valley Project water conservation best management practices that... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  10. 75 FR 38538 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2010-07-02

    ... to establish and administer an office on Central Valley Project water conservation best management... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  11. Structural evolution of the east Sierra Valley system (Owens Valley and vicinity), California: a geologic and geophysical synthesis

    Science.gov (United States)

    Stevens, Calvin H.; Stone, Paul; Blakely, Richard J.

    2013-01-01

    The tectonically active East Sierra Valley System (ESVS), which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm), which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3-3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.

  12. Staggering successes amid controversy in California water management

    Science.gov (United States)

    Lund, J. R.

    2012-12-01

    Water in California has always been important and controversial, and it probably always will be. California has a large, growing economy and population in a semi-arid climate. But California's aridity, hydrologic variability, and water controversies have not precluded considerable economic successes. The successes of California's water system have stemmed from the decentralization of water management with historically punctuated periods of more centralized strategic decision-making. Decentralized management has allowed California's water users to efficiently explore incremental solutions to water problems, ranging from early local development of water systems (such as Hetch Hetchy, Owens Valley, and numerous local irrigation projects) to more contemporary efforts at water conservation, water markets, wastewater reuse, and conjunctive use of surface and groundwater. In the cacophony of local and stakeholder interests, strategic decisions have been more difficult, and consequently occur less frequently. California state water projects and Sacramento Valley flood control are examples where decades of effort, crises, floods and droughts were needed to mobilize local interests to agree to major strategic decisions. Currently, the state is faced with making strategic environmental and water management decisions regarding its deteriorating Sacramento-San Joaquin Delta. Not surprisingly, human uncertainties and physical and fiscal non-stationarities dominate this process.

  13. Pesticide Risk Communication, Risk Perception, and Self-Protective Behaviors among Farmworkers in California's Salinas Valley

    Science.gov (United States)

    Cabrera, Nolan L.; Leckie, James O.

    2009-01-01

    Agricultural pesticide use is the highest of any industry, yet there is little research evaluating farmworkers' understandings of the health risks chemical exposure poses. This study examines pesticide education, risk perception, and self-protective behaviors among farmworkers in California's Salinas Valley. Fifty current and former farmworkers…

  14. Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The Madera and Chowchilla subbasins of the San Joaquin Valley constitute one of the study units being evaluated. The Madera-Chowchilla study unit is about 860 square miles and consists of the Madera and Chowchilla groundwater subbasins of the San Joaquin Valley Basin (California Department of Water Resources, 2003; Shelton and others, 2009). The study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 11 to 15 inches, most of which occurs between November and February. The main surface-water features in the study unit are the San Joaquin, Fresno, and Chowchilla Rivers, and the Madera and Chowchilla canals. Land use in the study unit is about 69 percent (%) agricultural, 28% natural (mainly grasslands), and 3% urban. The primary crops are orchards and vineyards. The largest urban area is the city of Madera. The primary aquifer system is defined as those parts of the aquifer corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. In the Madera-Chowchilla study unit, these wells typically are drilled to depths between 200 and 800 feet, consist of a solid casing from land surface to a depth of about 140 to 400 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer system. The primary aquifer system in the study unit consists of Quaternary-age alluvial-fan and fluvial deposits that were formed by the rivers draining the Sierra Nevada. Sediments consist of gravels, sands

  15. 76 FR 38340 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-06-30

    ... also harm human health and the environment by causing, among other things, premature mortality, aggravation of respiratory and cardiovascular disease, visibility impairment, and damage to vegetation and... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District...

  16. American Fuel Cell Bus Project Evaluation: Third Report

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Post, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jeffers, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-01

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB, which was developed as part of the Federal Transit Administration's (FTA) National Fuel Cell Bus Program, was delivered to SunLine in November 2011 and was put in revenue service in mid-December 2011. Two new AFCBs with an upgraded design were delivered in June/July of 2014 and a third new AFCB was delivered in February 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory to evaluate the buses in revenue service. This report covers the performance of the AFCBs from July 2015 through December 2016.

  17. ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

  18. Prevalence of hepatitis B infection among young and unsuspecting Hmong blood donors in the Central California Valley.

    Science.gov (United States)

    Sheikh, Muhammad Y; Atla, Pradeep R; Raoufi, Rahim; Sadiq, Humaira; Sadler, Patrick C

    2012-02-01

    Chronic hepatitis B virus (HBV) infection may result in cirrhosis and/or hepatocellular carcinoma and is one of the leading causes of mortality in Asian Americans including Hmong Americans. The Central California Valley is home to a huge Hmong population. To date, the true prevalence of HBV among Hmong is largely unknown. The aim of this study was to contribute to the limited data on HBV prevalence and its trends in Hmong population in the Central California Valley. Between fiscal years 2006 and 2010, a total of 219, 450 voluntary donors were identified at Central California Blood Center in Fresno. Of these, 821 (399 males and 422 females) were Hmong donors. A cross-sectional review of the HBV (hepatitis B surface antigen) positivity among all donors was carried out. Prevalence estimates with 95% confidence intervals (CI) were calculated. Ninety-two percent of Hmong donors were between age groups 16 and 35 years, and only 8% were ≥36 years. The overall prevalence in Hmong was noted at 3.41% (95%CI 2.3-4.9) compared to 0.06% (95%CI 0.05-0.07) in donors of all ethnicities. The calculated prevalence could be an underestimate of the true HBV prevalence in Hmong as the study enrolled only healthy blood donors with predominant younger age (≤35 years) population. These results underscore the persistent burden of HBV infection and potentially increased risk of premature death even in the second generation Hmong community of the Central California Valley. This study reemphasizes the unequivocal need to develop robust preventive and treatment strategies for HBV in Hmong community.

  19. Water resources development in Santa Clara Valley, California: insights into the human-hydrologic relationship

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jesse L. [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Groundwater irrigation is critical to food production and, in turn, to humankind's relationship with its environment. The development of groundwater in Santa Clara Valley, California during the early twentieth century is instructive because (1) responses to unsustainable resource use were largely successful; (2) the proposals for the physical management of the water, although not entirely novel, incorporated new approaches which reveal an evolving relationship between humans and the hydrologic cycle; and (3) the valley serves as a natural laboratory where natural (groundwater basin, surface watershed) and human (county, water district) boundaries generally coincide. Here, I investigate how water resources development and management in Santa Clara Valley was influenced by, and reflective of, a broad understanding of water as a natural resource, including scientific and technological innovations, new management approaches, and changing perceptions of the hydrologic cycle. Market demands and technological advances engendered reliance on groundwater. This, coupled with a series of dry years and laissez faire government policies, led to overdraft. Faith in centralized management and objective engineering offered a solution to concerns over resource depletion, and a group dominated by orchardists soon organized, fought for a water conservation district, and funded an investigation to halt the decline of well levels. Engineer Fred Tibbetts authored an elaborate water salvage and recharge plan that optimized the local water resources by integrating multiple components of the hydrologic cycle. Informed by government investigations, groundwater development in Southern California, and local water law cases, it recognized the limited surface storage possibilities, the spatial and temporal variability, the relatively closed local hydrology, the interconnection of surface and subsurface waters, and the value of the groundwater basin for its storage, transportation, and

  20. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    Science.gov (United States)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  1. Groundwater quality in the shallow aquifers of the Tulare, Kaweah, and Tule Groundwater Basins and adjacent highlands areas, Southern San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-01-18

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.

  2. 3D View of Death Valley, California

    Science.gov (United States)

    2000-01-01

    This 3-D perspective view looking north over Death Valley, California, was produced by draping ASTER nighttime thermal infrared data over topographic data from the US Geological Survey. The ASTER data were acquired April 7, 2000 with the multi-spectral thermal infrared channels, and cover an area of 60 by 80 km (37 by 50 miles). Bands 13, 12, and 10 are displayed in red, green and blue respectively. The data have been computer enhanced to exaggerate the color variations that highlight differences in types of surface materials. Salt deposits on the floor of Death Valley appear in shades of yellow, green, purple, and pink, indicating presence of carbonate, sulfate, and chloride minerals. The Panamint Mtns. to the west, and the Black Mtns. to the east, are made up of sedimentary limestones, sandstones, shales, and metamorphic rocks. The bright red areas are dominated by the mineral quartz, such as is found in sandstones; green areas are limestones. In the lower center part of the image is Badwater, the lowest point in North America.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide

  3. 76 FR 35167 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-06-16

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R09-OAR-2011-0312; FRL-9319-8] Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Intergovernmental relations...

  4. Abundance and sexual size dimorphism of the giant gartersnake (Thamnophis gigas) in the Sacramento valley of California

    Science.gov (United States)

    Wylie, G.D.; Casazza, Michael L.; Gregory, C.J.; Halstead, B.J.

    2010-01-01

    The Giant Gartersnake (Thamnophis gigas) is restricted to wetlands of the Central Valley of California. Because of wetland loss in this region, the Giant Gartersnake is both federally and state listed as threatened. We conducted markrecapture studies of four populations of the Giant Gartersnake in the Sacramento Valley (northern Central Valley), California, to obtain baseline data on abundance and density to assist in recovery planning for this species. We sampled habitats that ranged from natural, unmanaged marsh to constructed managed marshes and habitats associated with rice agriculture. Giant Gartersnake density in a natural wetland (1.90 individuals/ha) was an order of magnitude greater than in a managed wetland subject to active season drying (0.17 individuals/ha). Sex ratios at all sites were not different from 1 1, and females were longer and heavier than males. Females had greater body condition than males, and individuals at the least disturbed sites had significantly greater body condition than individuals at the managed wetland. The few remaining natural wetlands in the Central Valley are important, productive habitat for the Giant Gartersnake, and should be conserved and protected. Wetlands constructed and restored for the Giant Gartersnake should be modeled after the permanent, shallow wetlands representative of historic Giant Gartersnake habitat. ?? 2010 Society for the Study of Amphibians and Reptiles.

  5. Structural Evolution of the East Sierra Valley System (Owens Valley and Vicinity, California: A Geologic and Geophysical Synthesis

    Directory of Open Access Journals (Sweden)

    Richard J. Blakely

    2013-04-01

    Full Text Available The tectonically active East Sierra Valley System (ESVS, which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm, which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3–3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.

  6. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Vlaming, V. de [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States)]. E-mail: vldevlaming@ucdavis.edu; DiGiorgio, C. [Department of Water Resources, P.O. Box 942836, Sacramento, CA 94236 (United States); Fong, S. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Deanovic, L.A. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Paz Carpio-Obeso, M. de la [Colorado River Basin Region Water Quality Control Board, 73-720 Fred Waring Drive, Suite 100, Palm Desert, CA 92260 (United States); Miller, J.L. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Miller, M.J. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Richard, N.J. [Division of Water Quality, State Water Resources Control Board, 1001 I Street, Sacramento, CA 95814 (United States)

    2004-11-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California.

  7. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    International Nuclear Information System (INIS)

    Vlaming, V. de; DiGiorgio, C.; Fong, S.; Deanovic, L.A.; Paz Carpio-Obeso, M. de la; Miller, J.L.; Miller, M.J.; Richard, N.J.

    2004-01-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California

  8. 76 FR 69895 - Approval and Promulgation of Implementation Plans; California; 2008 San Joaquin Valley PM2.5

    Science.gov (United States)

    2011-11-09

    ... Board, 1001 I Street, Sacramento, California 95812 San Joaquin Valley Air Pollution Control District.../reasonably available control technology demonstration, reasonable further progress demonstration, attainment... 5, 2015 and approving commitments to measures and reductions by the SJV Unified Air Pollution...

  9. Introduction. [usefulness of modern remote sensing techniques for studying components of California water resources

    Science.gov (United States)

    Colwell, R. N.

    1973-01-01

    Since May 1970, personnel on several campuses of the University of California have been conducting investigations which seek to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Emphasis has been given to California's water resources as exemplified by the Feather River project and other aspects of the California Water Plan. This study is designed to consider in detail the supply, demand, and impact relationships. The specific geographic areas studied are the Feather River drainage in northern California, the Chino-Riverside Basin and Imperial Valley areas in southern California, and selected portions of the west side of San Joaquin Valley in central California. An analysis is also given on how an effective benefit-cost study of remote sensing in relation to California's water resources might best be made.

  10. 76 FR 58840 - Central Valley Project Improvement Act; Refuge Water Management Plans

    Science.gov (United States)

    2011-09-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act; Refuge Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: To meet the requirements of the Central Valley Project Improvement Act of 1992 (CVPIA) and subsequent...

  11. Winter habitat associations of diurnal raptors in Californias Central Valley

    Science.gov (United States)

    Pandolrno, E.R.; Herzog, M.P.; Hooper, S.L.; Smith, Z.

    2011-01-01

    The wintering raptors of California's Central Valley are abundant and diverse. Despite this, little information exists on the habitats used by these birds in winter. We recorded diurnal raptors along 19 roadside survey routes throughout the Central Valley for three consecutive winters between 2007 and 2010. We obtained data sufficient to determine significant positive and negative habitat associations for the White-tailed Kite (Elanus leucurus), Bald Eagle {Haliaeetus leucocephalus), Northern Harrier (Circus cyaneus), Red-tailed Hawk (Buteo jamaicensis), Ferruginous Hawk (Buteo regalis), Rough-legged Hawk (Buteo lagopus), American Kestrel (Falco sparverius), and Prairie Falcon (Falco mexicanus). The Prairie Falcon and Ferruginous and Rough-legged hawks showed expected strong positive associations with grasslands. The Bald Eagle and Northern Harrier were positively associated not only with wetlands but also with rice. The strongest positive association for the White-tailed Kite was with wetlands. The Red-tailed Hawk was positively associated with a variety of habitat types but most strongly with wetlands and rice. The American Kestrel, Northern Harrier, and White-tailed Kite were positively associated with alfalfa. Nearly all species were negatively associated with urbanized landscapes, orchards, and other intensive forms of agriculture. The White-tailed Kite, Northern Harrier, Redtailed Hawk, Ferruginous Hawk, and American Kestrel showed significant negative associations with oak savanna. Given the rapid conversion of the Central Valley to urban and intensive agricultural uses over the past few decades, these results have important implications for conservation of these wintering raptors in this region.

  12. Quaternary tectonics and basin history of Pahrump and Stewart Valleys, Nevada and California

    International Nuclear Information System (INIS)

    Hoffard, J.L.

    1991-05-01

    The Pahrump fault system is an active fault system located in Pahrump and Stewart Valleys, Nevada and California, in the southern part of the Basin and Range Province. This system is 50 km long by 30 km wide and is comprised of three fault zones: the right-lateral East Nopah fault zone, the right-oblique Pahrump Valley fault zone, and the normal West Spring Mountains fault zone. All three zones have geomorphic evidence for late Quaternary activity. Analysis of active fault patterns and seismic reflection lines suggests that the Pahrump basin has had a two-stage genesis, an early history associated with a period of low angle detachment faulting probably active 10-15 Ma, and a more recent history related to the present dextral shear system, probably active post-4 Ma

  13. Vegetation (MCV / NVCS) Mapping Projects - California [ds515

    Data.gov (United States)

    California Natural Resource Agency — This metadata layer shows the footprint of vegetation mapping projects completed in California that have used the Manual California of Vegetation ( MCV 1st edition)...

  14. Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    Science.gov (United States)

    Han, Liang; Hole, John; Stock, Joann; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan; Davenport, Kathy; Livers, Amanda

    2016-01-01

    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65–90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ∼7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ∼1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ∼3 km depth in most of the valley, but at only ∼1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7–8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.

  15. Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    Science.gov (United States)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan R.; Davenport, Kathy K.; Livers, Amanda J.

    2016-11-01

    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65-90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ˜7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ˜1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ˜3 km depth in most of the valley, but at only ˜1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7-8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.

  16. Phenotypic variation in California populations of valley oak (Quercus lobata Née) sampled along elevational gradients

    Science.gov (United States)

    Ana L. Albarrán-Lara; Jessica W. Wright; Paul F. Gugger; Annette Delfino-Mix; Juan Manuel Peñaloza-Ramírez; Victoria L. Sork

    2015-01-01

    California oaks exhibit tremendous phenotypic variation throughout their range. This variation reflects phenotypic plasticity in tree response to local environmental conditions as well as genetic differences underlying those phenotypes. In this study, we analyze phenotypic variation in leaf traits for valley oak adults sampled along three elevational transects and in...

  17. Early Tertiary magmatism and probable Mesozoic fabrics in the Black Mountains, Death Valley, California

    Science.gov (United States)

    Miller, Martin G.; Friedman, Richard M.

    1999-01-01

    We report two early Tertiary U-Pb zircon ages for pegmatite from the Black Mountains of Death Valley, California. These ages, 54.7 ± 0.6 Ma and 56 ± 3 Ma, are unique for much of southeastern California. The samples belong to a pegmatite suite that occupies part of the footwall of the Badwater turtleback, a late Tertiary extensional feature; similar but undated pegmatite intrudes the footwalls of the Copper Canyon and Mormon Point turtlebacks farther south. The pegmatite suite demonstrates that fabric development on the turtlebacks was at least a two-stage process. Fabrics cut by these pegmatites likely formed during the Mesozoic, whereas those that involve them formed during late Tertiary extension.

  18. Projected impacts of climate, urbanization, water management, and wetland restoration on waterbird habitat in California’s Central Valley

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  19. Spatially distributed pesticide exposure assessment in the Central Valley, California, USA

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [Department of Land, Air, and Water Resources, University of California, Davis, CA 95616 (United States); Zhang Minghua, E-mail: mhzhang@ucdavis.ed [Department of Land, Air, and Water Resources, University of California, Davis, CA 95616 (United States)

    2010-05-15

    Field runoff is an important transport mechanism by which pesticides move into the hydrologic environment of intensive agricultural regions such as California's Central Valley. This study presents a spatially explicit modeling approach to extend Pesticide Root Zone Model (PRZM), a field-scale pesticide transport model, into basin level. The approach was applied to simulate chlorpyrifos use in the Central Valley during 2003-2007. The average value of loading as percent of use (LAPU) is 0.031%. Results of this study provide strong evidence that surface runoff generation and pesticide application timing are the two influencing factors on the spatial and temporal variability of chlorpyrifos sources from agricultural fields. This is one of the first studies in coupling GIS and field-scale models and providing simulations for the dynamics of pesticides over an agriculturally dominated landscape. The demonstrated modeling approach may be useful for implementations of best management practice (BMP) and total maximum daily load (TMDL). - Runoff generation and application timing are governing factors on spatiotemporal variability of pesticide sources.

  20. Spatially distributed pesticide exposure assessment in the Central Valley, California, USA

    International Nuclear Information System (INIS)

    Luo Yuzhou; Zhang Minghua

    2010-01-01

    Field runoff is an important transport mechanism by which pesticides move into the hydrologic environment of intensive agricultural regions such as California's Central Valley. This study presents a spatially explicit modeling approach to extend Pesticide Root Zone Model (PRZM), a field-scale pesticide transport model, into basin level. The approach was applied to simulate chlorpyrifos use in the Central Valley during 2003-2007. The average value of loading as percent of use (LAPU) is 0.031%. Results of this study provide strong evidence that surface runoff generation and pesticide application timing are the two influencing factors on the spatial and temporal variability of chlorpyrifos sources from agricultural fields. This is one of the first studies in coupling GIS and field-scale models and providing simulations for the dynamics of pesticides over an agriculturally dominated landscape. The demonstrated modeling approach may be useful for implementations of best management practice (BMP) and total maximum daily load (TMDL). - Runoff generation and application timing are governing factors on spatiotemporal variability of pesticide sources.

  1. 77 FR 745 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-01-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R09-OAR-2011-0547; FRL-9480-1] Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) Correction In rule document 2011-33660 appearing on pages 214-217 in the issue of Wednesday, January 4, 2012, make the following corrections...

  2. California Hydrogen Infrastructure Project

    Energy Technology Data Exchange (ETDEWEB)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling

  3. Nitrate Contamination of Deep Aquifers in the Salinas Valley, California

    Science.gov (United States)

    Moran, J. E.; Esser, B. K.; Hillegonds, D. J.; Holtz, M.; Roberts, S. K.; Singleton, M. J.; Visser, A.; Kulongoski, J. T.; Belitz, K.

    2011-12-01

    The Salinas Valley, known as 'the salad bowl of the world', has been an agricultural center for more than 100 years. Irrigated row crops such as lettuce and strawberries dominate both land use and water use. Groundwater is the exclusive supply for both irrigation and drinking water. Some irrigation wells and most public water supply wells in the Salinas Valley are constructed to draw water from deep portions of the aquifer system, where contamination by nitrate is less likely than in the shallow portions of the aquifer system. However, a number of wells with top perforations greater than 75 m deep, screened below confining or semi-confining units, have nitrate concentrations greater than the Maximum Contaminant Limit (MCL) of 45 mg/L as NO3-. This study uses nitrate concentrations from several hundred irrigation, drinking water, and monitoring wells (Monterey County Water Resources Agency, 1997), along with tritium-helium groundwater ages acquired at Lawrence Livermore National Laboratory through the State of California Groundwater Monitoring and Assessment (GAMA) program (reported in Kulongoski et al., 2007 and in Moran et al., in press), to identify nitrate 'hot spots' in the deep aquifer and to examine possible modes of nitrate transport to the deep aquifer. In addition, observed apparent groundwater ages are compared with the results of transport simulations that use particle tracking and a stochastic-geostatistical framework to incorporate aquifer heterogeneity to determine the distribution of travel times from the water table to each well (Fogg et al., 1999). The combined evidence from nitrate, tritium, tritiogenic 3He, and radiogenic 4He concentrations, reveals complex recharge and flow to the capture zone of the deep drinking water wells. Widespread groundwater pumping for irrigation accelerates vertical groundwater flow such that high nitrate groundwater reaches some deep drinking water wells. Deeper portions of the wells often draw in water that recharged

  4. Borehole-explosion and air-gun data acquired in the 2011 Salton Seismic Imaging Project (SSIP), southern California: description of the survey

    Science.gov (United States)

    Rose, Elizabeth J.; Fuis, Gary S.; Stock, Joann M.; Hole, John A.; Kell, Annie M.; Kent, Graham; Driscoll, Neal W.; Goldman, Mark; Reusch, Angela M.; Han, Liang; Sickler, Robert R.; Catchings, Rufus D.; Rymer, Michael J.; Criley, Coyn J.; Scheirer, Daniel S.; Skinner, Steven M.; Slayday-Criley, Coye J.; Murphy, Janice M.; Jensen, Edward G.; McClearn, Robert; Ferguson, Alex J.; Butcher, Lesley A.; Gardner, Max A.; Emmons, Iain; Loughran, Caleb L.; Svitek, Joseph R.; Bastien, Patrick C.; Cotton, Joseph A.; Croker, David S.; Harding, Alistair J.; Babcock, Jeffrey M.; Harder, Steven H.; Rosa, Carla M.

    2013-01-01

    The Imperial and Coachella Valleys are being formed by active plate-tectonic processes. From the Imperial Valley southward into the Gulf of California, plate motions are rifting the continent apart. In the Coachella Valley, the plates are sliding past one another along the San Andreas and related faults (fig. 1). These processes build the stunning landscapes of the region, but also produce damaging earthquakes. Rupture of the southern section of the San Andreas Fault (SAF), from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard that California will face in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of infrastructure (freeways, aqueducts, power, petroleum, and communication lines) that might bring much of southern California to a standstill. As part of the nation’s efforts to avert a catastrophe of this magnitude, a number of projects have been undertaken to more fully understand and mitigate the effects of such an event. The Salton Seismic Imaging Project (SSIP), funded jointly by the National Science Foundation (NSF) and the U.S. Geological Survey (USGS), seeks to understand, through seismic imaging, the structure of the Earth surrounding the SAF, including the sedimentary basins on which cities are built. The principal investigators (PIs) of this collaborative project represent the USGS, Virginia Polytechnic Institute and State University (Virginia Tech), California Institute of Technology (Caltech), Scripps Institution of Oceanography (Scripps), University of Nevada, Reno (UNR), and Stanford University. SSIP will create images of underground structure and sediments in the Imperial and Coachella Valleys and adjacent mountain ranges to investigate the earthquake hazards posed to cities in this area. Importantly, the images will help determine the underground geometry of the SAF, how deep the sediments are, and how fast

  5. An overview of the West Valley demonstration project

    International Nuclear Information System (INIS)

    Hannum, W.H.; Boswell, M.B.; De Boer, T.K.; Duckworth, J.P.

    1984-01-01

    This session is titled ''DOE Special Waste Management Projects.'' West Valley and TMI are indeed special projects, in that they represent today's problems. They may well have been the two most visible symbols as to how nuclear wastes can poison the entire civilian nuclear power program. Each in its own way has been perceived as a major threat to the environment and to public health and safety; in both cases this threat has been perceived to be grossly more severe than it has been in fact. It is the Department of Energy' intent that both of these problems be made to disappear. This paper serves to introduce a series of paper describing the status of the West Valley Project. In the West Valley case substantial progress is being made and we believe we are well on the way toward transforming what has been a skeleton along the road to progress into positive and unmistakable evidence that high-level nuclear wastes such as those resulting from reprocessing can be managed, understood, and prepared for disposal by a straightforward adaptation and application of existing technologies. Further, we now have evidence that the costs of doing this are not exorbitant. Subsequent papers will describe waste characterization; the plans and designs for solidification; and the ancillary and supporting programs for handling effluents and wastes, for D and D to utilize existing facilities, and environmental support. In this paper we describe the history of this plant and the wastes being used in the demonstration; the legislation and intent of the Project; the accomplishments to date; and the projected schedule and costs

  6. Quantitative rock-fall hazard and risk assessment for Yosemite Valley, California

    Science.gov (United States)

    Stock, G. M.; Luco, N.; Collins, B. D.; Harp, E.; Reichenbach, P.; Frankel, K. L.

    2011-12-01

    Rock falls are a considerable hazard in Yosemite Valley, California with more than 835 rock falls and other slope movements documented since 1857. Thus, rock falls pose potentially significant risk to the nearly four million annual visitors to Yosemite National Park. Building on earlier hazard assessment work by the U.S. Geological Survey, we performed a quantitative rock-fall hazard and risk assessment for Yosemite Valley. This work was aided by several new data sets, including precise Geographic Information System (GIS) maps of rock-fall deposits, airborne and terrestrial LiDAR-based point cloud data and digital elevation models, and numerical ages of talus deposits. Using Global Position Systems (GPS), we mapped the positions of over 500 boulders on the valley floor and measured their distance relative to the mapped base of talus. Statistical analyses of these data yielded an initial hazard zone that is based on the 90th percentile distance of rock-fall boulders beyond the talus edge. This distance was subsequently scaled (either inward or outward from the 90th percentile line) based on rock-fall frequency information derived from a combination of cosmogenic beryllium-10 exposure dating of boulders beyond the edge of the talus, and computer model simulations of rock-fall runout. The scaled distances provide the basis for a new hazard zone on the floor of Yosemite Valley. Once this zone was delineated, we assembled visitor, employee, and resident use data for each structure within the hazard zone to quantitatively assess risk exposure. Our results identify areas within the new hazard zone that may warrant more detailed study, for example rock-fall susceptibility, which can be assessed through examination of high-resolution photographs, structural measurements on the cliffs, and empirical calculations derived from LiDAR point cloud data. This hazard and risk information is used to inform placement of existing and potential future infrastructure in Yosemite Valley.

  7. Subsidence due to Excessive Groundwater Withdrawal in the San Joaquin Valley, California

    Science.gov (United States)

    Corbett, F.; Harter, T.; Sneed, M.

    2011-12-01

    Francis Corbett1, Thomas Harter1 and Michelle Sneed2 1Department of Land Air and Water Resources, University of California, Davis. 2U.S. Geological Survey Western Remote Sensing and Visualization Center, Sacramento. Abstract: Groundwater development within the Central Valley of California began approximately a century ago. Water was needed to supplement limited surface water supplies for the burgeoning population and agricultural industries, especially within the arid but fertile San Joaquin Valley. Groundwater levels have recovered only partially during wet years from drought-induced lows creating long-term groundwater storage overdraft. Surface water deliveries from Federal and State sources led to a partial alleviation of these pressure head declines from the late 1960s. However, in recent decades, surface water deliveries have declined owing to increasing environmental pressures, whilst water demands have remained steady. Today, a large portion of the San Joaquin Valley population, and especially agriculture, rely upon groundwater. Groundwater levels are again rapidly declining except in wet years. There is significant concern that subsidence due to groundwater withdrawal, first observed at a large scale in the middle 20th century, will resume as groundwater resources continue to be depleted. Previous subsidence has led to problems such as infrastructure damage and flooding. To provide a support tool for groundwater management on a naval air station in the southern San Joaquin Valley (Tulare Lake Basin), a one-dimensional MODFLOW subsidence model covering the period 1925 to 2010 was developed incorporating extensive reconstruction of historical subsidence and water level data from various sources. The stratigraphy used for model input was interpreted from geophysical logs and well completion reports. Gaining good quality data proved problematic, and often values needed to be estimated. In part, this was due to the historical lack of awareness/understanding of

  8. Radiation safety at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    1997-01-01

    This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable

  9. Long Period Earthquakes Beneath California's Young and Restless Volcanoes

    Science.gov (United States)

    Pitt, A. M.; Dawson, P. B.; Shelly, D. R.; Hill, D. P.; Mangan, M.

    2013-12-01

    The newly established USGS California Volcano Observatory has the broad responsibility of monitoring and assessing hazards at California's potentially threatening volcanoes, most notably Mount Shasta, Medicine Lake, Clear Lake Volcanic Field, and Lassen Volcanic Center in northern California; and Long Valley Caldera, Mammoth Mountain, and Mono-Inyo Craters in east-central California. Volcanic eruptions occur in California about as frequently as the largest San Andreas Fault Zone earthquakes-more than ten eruptions have occurred in the last 1,000 years, most recently at Lassen Peak (1666 C.E. and 1914-1917 C.E.) and Mono-Inyo Craters (c. 1700 C.E.). The Long Valley region (Long Valley caldera and Mammoth Mountain) underwent several episodes of heightened unrest over the last three decades, including intense swarms of volcano-tectonic (VT) earthquakes, rapid caldera uplift, and hazardous CO2 emissions. Both Medicine Lake and Lassen are subsiding at appreciable rates, and along with Clear Lake, Long Valley Caldera, and Mammoth Mountain, sporadically experience long period (LP) earthquakes related to migration of magmatic or hydrothermal fluids. Worldwide, the last two decades have shown the importance of tracking LP earthquakes beneath young volcanic systems, as they often provide indication of impending unrest or eruption. Herein we document the occurrence of LP earthquakes at several of California's young volcanoes, updating a previous study published in Pitt et al., 2002, SRL. All events were detected and located using data from stations within the Northern California Seismic Network (NCSN). Event detection was spatially and temporally uneven across the NCSN in the 1980s and 1990s, but additional stations, adoption of the Earthworm processing system, and heightened vigilance by seismologists have improved the catalog over the last decade. LP earthquakes are now relatively well-recorded under Lassen (~150 events since 2000), Clear Lake (~60 events), Mammoth Mountain

  10. Cleanup criteria for the West Valley demonstration project

    International Nuclear Information System (INIS)

    Parrott, J.D.

    1999-01-01

    The US Nuclear Regulatory Commission (NRC) is prescribing decontamination and decommissioning (cleanup) criteria for the West Valley Demonstration Project and the West Valley, New York, site. The site is contaminated with various forms of residual radioactive contamination and contains a wide variety of radioactive waste. The NRC is planning to issue cleanup criteria for public comment in Fall 1999. Due to the complexity of the site, and the newness of NRC's cleanup criteria policy, applying NRC's cleanup criteria to this site will be an original regulatory undertaking. (author)

  11. Collaboration, Participation and Technology: The San Joaquin Valley Cumulative Health Impacts Project

    Directory of Open Access Journals (Sweden)

    Jonathan K. London

    2011-11-01

    Full Text Available Community-university partnerships have been shown to produce significant value for both sets of partners by providing reciprocal learning opportunities, (rebuilding bonds of trust, and creating unique venues to formulate and apply research that responds to community interests and informs collaborative solutions to community problems. For such partnerships to be mutually empowering, certain design characteristics are necessary. These include mutual respect for different modes and expressions of knowledge, capacity-building for all parties, and an environment that promotes honest and constructive dialogue about the inevitable tensions associated with the interplay of power/knowledge. This article explores an innovative case of community-university partnerships through participatory action research involving a coalition of environmental justice and health advocates, the San Joaquin Valley Cumulative Health Impacts Project, and researchers affiliated with the University of California, Davis. In particular, we examine how participatory GIS and community mapping can promote co-learning and interdependent science. Keywords Community-based participatory research, environmental justice, Public Participation Geographic Information System

  12. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Vance, R.F. [West Valley Nuclear Services Co., Inc., NY (United States)

    1995-02-01

    The West Valley Demonstration Project was established by Public Law 96-368, the {open_quotes}West Valley Demonstration Project Act, {close_quotes} on October 1, l980. Under this act, Congress directed the Department of Energy to carry out a high level radioactive waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The purpose of this project is to demonstrate solidification techniques which can be used for preparing high level radioactive waste for disposal. In addition to developing this technology, the West Valley Demonstration Project Act directs the Department of Energy to: (1) develop containers suitable for permanent disposal of the high level waste; (2) transport the solidified high level waste to a Federal repository; (3) dispose of low level and transuranic waste produced under the project; and (4) decontaminate and decommission the facilities and materials associated with project activities and the storage tanks originally used to store the liquid high level radioactive waste. The process of vitrification will be used to solidify the high level radioactive liquid wastes into borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems which are used in the vitrification process.

  13. Seroprevalence of Hepatitis B and C Infections among Healthy Volunteer Blood Donors in the Central California Valley.

    Science.gov (United States)

    Sheikh, Muhammad Y; Atla, Pradeep R; Ameer, Adnan; Sadiq, Humaira; Sadler, Patrick C

    2013-01-01

    The Central California Valley has a diverse population with significant proportions of Hispanics and Asians. This cross-sectional study was conducted to evaluate the prevalence of hepatitis B virus (HBV) and hepatitis C virus (HCV) in healthy blood donors in the Valley. A total of 217,738 voluntary blood donors were identified between 2006 and 2010 (36,795 first-time donors; 180,943 repeat donors). Among the first-time donors, the HBV and HCV prevalence was 0.28% and 0.52%, respectively. Higher HBV prevalence seen in Asians (3%) followed by Caucasians (0.05%), African Americans (0.15%), and Hispanics (0.05%). Hmong had a HBV prevalence of 7.63% with a peak prevalence of 8.76% among the 16- to 35-year-old age group. Highest HCV prevalence in Native Americans (2.8) followed by Caucasians (0.59%), Hispanics (0.45%), African Americans (0.38%), and Asians (0.2%). Ethnic disparities persist with regard to the prevalence of HBV and HCV in the Central California Valley. The reported prevalence may be an underestimate because our study enrolled healthy volunteer blood donors only. The development of aggressive public health measures to evaluate the true prevalence of HBV and HCV and to identify those in need of HBV and HCV prevention measures and therapy is critically important.

  14. Vulnerability of California specialty crops to projected mid-century temperature changes

    Science.gov (United States)

    Increasing global temperatures are likely to have major impacts on agriculture, but the effects will vary by crop and location. This paper describes the temperature sensitivity and exposure of selected specialty crops in California. We used literature synthesis to create several sensitivity indices ...

  15. Availability of high-magnitude streamflow for groundwater banking in the Central Valley, California

    Science.gov (United States)

    Kocis, Tiffany N.; Dahlke, Helen E.

    2017-08-01

    California’s climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF) for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. The results show that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for 25-30 days between November and April. The results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  16. Ozone Laminae and Their Entrainment Into a Valley Boundary Layer, as Observed From a Mountaintop Monitoring Station, Ozonesondes, and Aircraft Over California's San Joaquin Valley

    Science.gov (United States)

    Faloona, I. C.; Conley, S. A.; Caputi, D.; Trousdell, J.; Chiao, S.; Eiserloh, A. J., Jr.; Clark, J.; Iraci, L. T.; Yates, E. L.; Marrero, J. E.; Ryoo, J. M.; McNamara, M. E.

    2016-12-01

    The San Joaquin Valley of California is wide ( 75 km) and long ( 400 km), and is situated under strong atmospheric subsidence due, in part, to the proximity of the midlatitude anticyclone of the Pacific High. The capping effect of this subsidence is especially prominent during the warm season when ground level ozone is a serious air quality concern across the region. While relatively clean marine boundary layer air is primarily funneled into the valley below the strong subsidence inversion at significant gaps in the upwind Coast Range mountains, airflow aloft also spills over these barriers and mixes into the valley from above. Because this transmountain flow occurs under the influence of synoptic subsidence it tends to present discrete, laminar sheets of differing air composition above the valley boundary layer. Meanwhile, although the boundary layers tend to remain shallow due to the prevailing subsidence, orographic and anabatic venting of valley boundary layer air around the basin whips up a complex admixture of regional air masses into a "buffer layer" just above the boundary layer (zi) and below the lower free troposphere. We present scalar data of widely varying lifetimes including ozone, methane, NOx, and thermodynamic observations from upwind and within the San Joaquin Valley to better explain this layering and its subsequent erosion into the valley boundary layer via entrainment. Data collected at a mountaintop monitoring station on Chews Ridge in the Coast Range, by coastal ozonesondes, and aircraft are analyzed to document the dynamic layering processes around the complex terrain surrounding the valley. Particular emphasis will be made on observational methods whereby distal ozone can be distinguished from the regional ozone to better understand the influence of exogenous sources on air quality in the valley.

  17. Final Approval of California Air Plan Revision; Antelope Valley Air Quality Management District; VOCs From Motor Vehicle Assembly Coating Operations

    Science.gov (United States)

    EPA is taking final action to approve a revision to the Antelope Valley Air Quality Management District (AVAQMD) portion of the California SIP concerning the emissions of volatile organic compounds (VOCs) from motor vehicle assembly coating operations.

  18. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California

    Science.gov (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour

    1964-01-01

    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  19. Use of a three-dimensional model for the analysis of the ground-water flow system in Parker Valley, Arizona and California

    Science.gov (United States)

    Tucci, Patrick

    1982-01-01

    A three-dimensional, finite-difference model was used to simulate ground-water flow conditions in Parker Valley. The study evaluated present knowledge and concepts of the ground-water system and the ability of the model to represent the system. Modeling assumptions and generalized physical parameters that were used may have transfer value in the construction and calibration of models of other basins along the lower Colorado River. The aquifer was simulated in two layers to represent the three-dimensional system. Ground-water conditions were simulated for 1940-41, the mid-1960's, and 1980. Overall model results generally compared favorably with available field information. The model results showed that for 1940-41 the Colorado River was a losing stream through out Parker Valley. Infiltration of surface water from the river was the major source of recharge. The dominant mechanism of discharge was evapotranspiration by phreatophytes. Agricultural development between 1941 and the mid-1960 's resulted in significant changes to the ground-water system. Model results for conditions in the mid-1960 's showed that the Colorado River had become a gaining stream in the northern part of the valley as a result of higher water levels. The rise in water levels was caused by infiltration of applied irrigation water. Diminished water-level gradients from the river in the rest of the valley reduced the amount of infiltration of surface water from the river. Models results for conditions in 1980 showed that ground-water level rises of several feet caused further reduction in the amount of surface-water infiltration from the river. (USGS)

  20. Sacramento River Flood Control Project, California, Mid-Valley Area, Phase III. Design Memorandum, Volume 2 of 2

    Science.gov (United States)

    1995-08-01

    a mix of native grasses upon completion of construction. The lime treatment construction alternative would render the top 4 feet of treated soil...project area. Site CA-Sut-il is a prehistoric burial mound recorded in 1934 by R.F. Heizer . He noted that this mound could be "a key mound to...Endangered Species section. The topical lime treatment construction alternative proposed for Sites 3, 12, 12A, 13, 15, 15A, and 15B, would render the

  1. An Investigation into the Involvement of California Central Valley High School Students with Disabilities in the IEP Process

    Science.gov (United States)

    Anderson, Cheryle Ann

    2012-01-01

    The purpose of this study was to investigate the involvement of California Central Valley high school students with disabilities in the Individual Education Plan (IEP) process. Specifically, this study investigated the involvement of students with disabilities in the development of the IEP and IEP meetings. In addition, this study explored the…

  2. Draft environmental impact statement - BPA/Lower Valley transmission project

    International Nuclear Information System (INIS)

    1997-06-01

    Bonneville Power Administration and Lower Valley Power and Light, Inc., propose to solve a voltage stability problem in the Jackson and Afton, Wyoming areas. For the Agency Proposed Action, BPA and Lower Valley would construct a new 115-kV line from BPA's Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA's Teton Substation near Jackson in Teton County, Wyoming. The new line would be next to an existing 115-kV line. Most of the line would be supported by a mix of single-circuit wood pole H-frame structures would be used. The Single-Circuit Line Alternative has all the components of the Agency Proposed Action except that the entire line would be supported by single-circuit structures. The Short Line Alternative has all the components of the Single-Circuit Line Alternative except it would then be removed. For the Static Var Compensation Alternative, BPA would install a Static Var Compensator (SVC) at Teton or Jackson Substation. An SVC is a group of electrical equipment placed at a substation to help control voltage on a transmission system. The No Action Alternative assumes that no new transmission line is built, and no other equipment is added to the transmission system. The USFS (Targhee and Bridger-Teton National Forests) must select al alternative based on their needs and objectives, decide if the project complies with currently approved forest plans, decide if special use permits or easements are needed for construction, operation, and maintenance of project facilities, and decide if they would issue special use permits and letters of consent to grant easements for the project

  3. 31 flavors to 50 shades of grey: battling Phytophthoras in native habitats managed by the Santa Clara Valley Water District

    Science.gov (United States)

    Janet Hillman; Tedmund J. Swiecki; Elizabeth A. Bernhardt; Heather K. Mehl; Tyler B. Bourret; David Rizzo

    2017-01-01

    The Santa Clara Valley Water District (District) is a wholesale water supplier for 1.8 million people in Santa Clara County, California. Capital, water utility, and stream maintenance projects result in extensive, long-term mitigation requirements in riparian, wetland, and upland habitats throughout the county. In 2014, several restoration sites on the valley floor and...

  4. 77 FR 66548 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-11-06

    ...EPA is approving revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State Implementation Plan (SIP). This action was proposed in the Federal Register on April 26, 2012 and concerns oxides of nitrogen (NOX) from solid fuel fired boilers. We are approving a local rule that regulates these emission sources under the Clean Air Act (CAA or the Act).

  5. A comprehensive analysis of high-magnitude streamflow and trends in the Central Valley, California

    Science.gov (United States)

    Kocis, T. N.; Dahlke, H. E.

    2017-12-01

    California's climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US. This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF "metrics") over multiple time periods for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. In addition, we present trend analyses conducted on the same dataset and all HMF metrics using generalized additive models, the Mann-Kendall trend test, and the Signal to Noise Ratio test. The results of the comprehensive analysis show, in short, that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta, often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for a total of 25-30 days between November and April. Preliminary trend tests suggest that all HMF metrics show limited change over the last 50 years. As a whole, the results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  6. Investigating Groundwater Depletion and Aquifer Degradation in Central Valley California from Space

    Science.gov (United States)

    Ojha, C.; Shirzaei, M.; Werth, S.; Argus, D. F.

    2017-12-01

    The Central Valley in California includes one of the world's largest and yet most stressed aquifer systems. The large demand for groundwater, accelerated by population growth and extreme droughts, has been depleting the region's groundwater resources for decades. However, the lack of dense monitoring networks and inaccurate information on geophysical aquifer response pose serious challenges to water management efforts in the area and put the groundwater at high risk. Here, we performed a joint analysis of large SAR interferometric data sets acquired by ALOS L-band satellite in conjunction with the groundwater level observations across the Central Valley. We used 420 L-band SAR images acquired on the ascending orbit track during period Dec 24, 2006 - Jan 1, 2010, and generated more than 1600 interferograms with a pixel size of 100 m × 100 m. We also use data from 1600 observational wells providing continuous measurements of groundwater level within the study period for our analysis. We find that in the south and near Tulare Lake, north of Tule and south of Kaweah basin in San Joaquin valley, the subsidence rate is greatest at up to 20-25 cm/yr, while in Sacramento Valley the subsidence rate is lower at 1-3 cm/yr. From the characterization of the elastic and inelastic storage coefficients, we find that Kern, Tule, Tulare, Kaweah and Merced basins in the San Joaquin Valley are more susceptible to permanent compaction and aquifer storage loss. Kern County shows 0.23%-1.8% of aquifer storage loss during the study period, and has higher percentage loss than adjacent basins such as Tule and Tulare Lake with 0.15%-1.2% and 0.2 %-1.5% loss, respectively. Overall, we estimate that the aquifers across the valley lost a total of 28 km3 of groundwater and 2% of their storage capacity during the study period. Our unique observational evidence including valley-wide estimate of mechanical properties of aquifers and model results will not only facilitate monitoring water deficits

  7. Social Disparities in Drinking Water Quality in California's San Joaquin Valley

    Science.gov (United States)

    Ray, I.; Balazs, C.; Hubbard, A.; Morello-Frosch, R.

    2011-12-01

    Social Disparities in Drinking Water Quality in California's San Joaquin Valley Carolina Balazs, Rachel Morello-Frosch, Alan Hubbard and Isha Ray Little attention has been given to research on social disparities and environmental justice in access to safe drinking water in the USA. We examine the relationship between nitrate and arsenic concentrations in community water systems (CWS) and the ethnic and socioeconomic characteristics of their customers. We hypothesized that systems in the San Joaquin Valley that serve a higher proportion of minority (especially Latino) residents, and/or lower socioeconomic status (proxied by rates of home ownership) residents, have higher nitrate levels and higher arsenic levels. We used water quality monitoring datasets (1999-2001) to estimate nitrate as well as arsenic levels in CWS, and source location and Census block group data to estimate customer demographics. We found that percent Latino was associated with a .04 mg NO3/L increase in a CWS' estimated nitrate ion concentration (95% CI, -.08, .16) and rate of home ownership was associated with a .16 mg NO3/L decrease (95% CI, -.32, .002). We also found that each percent increase in home ownership rate was associated with a .30 ug As/L decrease in arsenic concentrations (pcompliance burdens in accordance with EPA standards fell most heavily on socio-economically disadvantaged communities. Selected References Cory DC, Rahman T. 2009. Environmental justice and enforcement of the safe drinking water act: The arizona arsenic experience. Ecological Economics 68: 1825-1837. Krieger N, Williams DR, Moss NE. 1997. Measuring social class in us public health research: Concepts, methodologies, and guidelines. Annual Review of Public Health 18(341-378). Moore E, Matalon E, Balazs C, Clary J, Firestone L, De Anda S, Guzman, M. 2011. The human costs of nitrate-contaminated drinking water in the San Joaquin Valley. Oakland, CA: Pacific Institute. Morello-Frosch R, Pastor M, Sadd J. 2001

  8. September-March survival of female northern pintails radiotagged in San Joaquin Valley, California

    Science.gov (United States)

    Fleskes, J.P.; Jarvis, R.L.; Gilmer, D.S.

    2002-01-01

    To improve understanding of pintail ecology, we radiotagged 191 hatch-year (HY) and 228 after-hatch-year (AHY) female northern pintails (Anas acuta) in the San Joaquin Valley (SJV), and studied their survival throughout central California, USA, during September-March, 1991-1994. We used adjusted Akaike Information Criterion (AICc) values to contrast known-fate models and examine variation in survival rates relative to year, interval, wintering region (AJV, other central California), pintail age, body mass at capture, capture date, capture area, and radio type. The best-fitting model included only interval x year and age x body mass; the next 2 best-fitting models also included wintering region and capture date. Hunting caused 83% of the mortalities we observed, and survival was consistently lower during hunting than nonhunting intervals. Nonhunting and hunting mortality during early winter was highest during the 1991-1992 drought year. Early-winter survival improved during the study along with habitat conditions in the Grassland Ecological Area (EA), where most radiotagged pintails spent early winter. Survival was more closely related to body mass at capture for HY than AHY pintails, even after accounting for the later arrival (based on capture date) of HY pintails, suggesting HY pintails are less adept at improving their condition. Thus, productivity estimates based on harvest age ratios may be biased if relative vulnerability of HY and AHY pintails is assumed to be constant because fall body condition of pintails may vary greatly among years. Cumulative winter survival was 75.6% (95% CI = 68.3% to 81.7%) for AHY and 65.4% (56.7% to 73.1%) for HY female pintails. Daily odds of survival in the cotton-agriculture landscape of the SJV were -21.3% (-40.3% to +3.7%) lower than in the rice-agriculture landscape of the Sacramento Valley (SACV) and other central California areas. Higher hunting mortality may be 1 reason pintails have declined more in SJV than in SACV.

  9. Mid-Columbia coho reintroduction feasibility project. Preliminary environmental assessment

    International Nuclear Information System (INIS)

    1999-01-01

    Before the Bonneville Power Administration (BPA) decides whether to fund a program to reintroduce coho salmon to mid-Columbia River basin tributaries, research is needed to determine the ecological risks and biological feasibility of such an effort. Since the early 1900s, the native stock of coho has been decimated in the tributaries of the middle reach of the Columbia River. The four Columbia River Treaty Tribes identified coho reintroduction in the mid-Columbia as a priority in the Tribal Restoration Plan. It is a comprehensive plan put forward by the Tribes to restore the Columbia River fisheries. In 1996, the Northwest Power Planning Council (NPPC) recommended the tribal mid-Columbia reintroduction project for funding by BPA. It was identified as one of fifteen high-priority supplementation projects for the Columbia River basin, and was incorporated into the NPPC's Fish and Wildlife Program. The release of coho from lower Columbia hatcheries into mid-Columbia tributaries is also recognized in the Columbia River Fish Management Plan

  10. Mid-Columbia Coho Salmon Reintroduction Feasibility Project : Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Washington (State) Department of Fish and Wildlife; Confederated Tribes and Bands of the Yakama Nation

    1999-01-01

    Before the Bonneville Power Administration (BPA) decides whether to fund a program to reintroduce coho salmon to mid-Columbia River basin tributaries, research is needed to determine the ecological risks and biological feasibility of such an effort. Since the early 1900s, the native stock of coho has been decimated in the tributaries of the middle reach of the Columbia River. The four Columbia River Treaty Tribes identified coho reintroduction in the mid-Columbia as a priority in the Tribal Restoration Plan. It is a comprehensive plan put forward by the Tribes to restore the Columbia River fisheries. In 1996, the Northwest Power Planning Council (NPPC) recommended the tribal mid-Columbia reintroduction project for funding by BPA. It was identified as one of fifteen high-priority supplementation projects for the Columbia River basin, and was incorporated into the NPPC`s Fish and Wildlife Program. The release of coho from lower Columbia hatcheries into mid-Columbia tributaries is also recognized in the Columbia River Fish Management Plan.

  11. Abre La Boca: A Component of the California Plan for the Education of Migrant Children.

    Science.gov (United States)

    Levene, Carol

    A 1969 summer program under the Region III Migrant Education Project in Merced County, California, brought dental services to migrant children in the northern San Joaquin Valley. The goal was to screen and test as many children of migratory agricultural workers as possible in a set span of time. The University of California School of Dentistry was…

  12. Rod consolidation at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1986-12-01

    A rod consolidation demonstration with irradiated pressurized water reactor fuel was recently conducted by personnel from Nuclear Assurance Corporation and West Valley Nuclear Services Company at the West Valley Demonstration Project in West Valley, New York. The rod consolidation demonstration involved pulling all of the fuel rods from six fuel Assemblies. In general, the rod pulling proceeded smoothly. The highest compaction ratio attained was 1:8:1. Among the total of 1074 fuel rods were some known degraded rods (they had collapsed cladding, a result of in-reactor fuel densification), but no rods were broken or dropped during the demonstration. One aim was to gather information on the effect of rod consolidation operations on the integrity of the fuel rods during subsequent handling and storage. Another goal was to collect information on the condition and handling of intact, damaged, and failed fuel that has been in storage for an extended period. 9 refs., 8 figs., 1 tab

  13. Understanding surface-water availability in the Central Valley as a means to projecting future groundwater storage with climate variability

    Science.gov (United States)

    Goodrich, J. P.; Cayan, D. R.

    2017-12-01

    California's Central Valley (CV) relies heavily on diverted surface water and groundwater pumping to supply irrigated agriculture. However, understanding the spatiotemporal character of water availability in the CV is difficult because of the number of individual farms and local, state, and federal agencies involved in using and managing water. Here we use the Central Valley Hydrologic Model (CVHM), developed by the USGS, to understand the relationships between climatic variability, surface water inputs, and resulting groundwater use over the historical period 1970-2013. We analyzed monthly surface water diversion data from >500 CV locations. Principle components analyses were applied to drivers constructed from meteorological data, surface reservoir storage, ET, land use cover, and upstream inflows, to feed multiple regressions and identify factors most important in predicting surface water diversions. Two thirds of the diversion locations ( 80% of total diverted water) can be predicted to within 15%. Along with monthly inputs, representations of cumulative precipitation over the previous 3 to 36 months can explain an additional 10% of variance, depending on location, compared to results that excluded this information. Diversions in the southern CV are highly sensitive to inter-annual variability in precipitation (R2 = 0.8), whereby more surface water is used during wet years. Until recently, this was not the case in the northern and mid-CV, where diversions were relatively constant annually, suggesting relative insensitivity to drought. In contrast, this has important implications for drought response in southern regions (eg. Tulare Basin) where extended dry conditions can severely limit surface water supplies and lead to excess groundwater pumping, storage loss, and subsidence. In addition to fueling our understanding of spatiotemporal variability in diversions, our ability to predict these water balance components allows us to update CVHM predictions before

  14. Surficial geology and land classification, Mackenzie Valley Transportation Corridor

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, O L; Pilon, J; Veilette, J

    1974-01-01

    The objective of this project, continued from 1971 and 1972 is to provide an inventory of surficial geology and permafrost distribution data pertinent to pipeline construction, road building, and other land use activities that might take place in the Mackenzie Valley Transportation Corridor. Hughes together with N.W. Rutter devoted one month to reconnaissance examination of the area encompassed by this project and Project 710047 (see this report). A primary objective was to insure uniform usage of map-units throughout the 2 areas. Construction on the Mackenzie Highway was examined in order to evaluate terrain performance of various map-units crossed by the highway. Limited geological studies, including shallow borings and measurement of sections, were conducted to supplement field work of 1971 and 1972. J. Veillette conducted diamond drilling in permanently frozen surficial deposits during the period mid-March to mid-April.

  15. Status of groundwater quality in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Parsons, Mary C.; Hancock, Tracy Connell; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 963-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southern California in San Bernardino, Riverside, San Diego, and Imperial Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected by the U.S. Geological Survey from 52 wells (49 grid wells and 3 understanding wells) and on water-quality data from the California Department of Public Health database. The primary aquifer system was defined by the depth intervals of the wells listed in the California Department of Public Health database for the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, not the

  16. Rockfall hazard and risk assessment in the Yosemite Valley, California, USA

    Science.gov (United States)

    Guzzetti, F.; Reichenbach, P.; Wieczorek, G. F.

    Rock slides and rock falls are the most frequent types of slope movements in Yosemite National Park, California. In historical time (1857-2002) 392 rock falls and rock slides have been documented in the valley, and some of them have been mapped in detail. We present the results of an attempt to assess rock fall hazards in the Yosemite Valley. Spatial and temporal aspects of rock falls hazard are considered. A detailed inventory of slope movements covering the 145-year period from 1857 to 2002 is used to determine the frequency-volume statistics of rock falls and to estimate the annual frequency of rock falls, providing the temporal component of rock fall hazard. The extent of the areas potentially subject to rock fall hazards in the Yosemite Valley were obtained using STONE, a physically-based rock fall simulation computer program. The software computes 3-dimensional rock fall trajectories starting from a digital elevation model (DEM), the location of rock fall release points, and maps of the dynamic rolling friction coefficient and of the coefficients of normal and tangential energy restitution. For each DEM cell the software calculates the number of rock falls passing through the cell, the maximum rock fall velocity and the maximum flying height. For the Yosemite Valley, a DEM with a ground resolution of 10 × 10 m was prepared using topographic contour lines from the U.S. Geological Survey 1:24 000-scale maps. Rock fall release points were identified as DEM cells having a slope steeper than 60°, an assumption based on the location of historical rock falls. Maps of the normal and tangential energy restitution coefficients and of the rolling friction coefficient were produced from a surficial geologic map. The availability of historical rock falls mapped in detail allowed us to check the computer program performance and to calibrate the model parameters. Visual and statistical comparison of the model results with the mapped rock falls confirmed the accuracy of

  17. Rockfall hazard and risk assessment in the Yosemite Valley, California, USA

    Directory of Open Access Journals (Sweden)

    F. Guzzetti

    2003-01-01

    Full Text Available Rock slides and rock falls are the most frequent types of slope movements in Yosemite National Park, California. In historical time (1857–2002 392 rock falls and rock slides have been documented in the valley, and some of them have been mapped in detail. We present the results of an attempt to assess rock fall hazards in the Yosemite Valley. Spatial and temporal aspects of rock falls hazard are considered. A detailed inventory of slope movements covering the 145-year period from 1857 to 2002 is used to determine the frequency-volume statistics of rock falls and to estimate the annual frequency of rock falls, providing the temporal component of rock fall hazard. The extent of the areas potentially subject to rock fall hazards in the Yosemite Valley were obtained using STONE, a physically-based rock fall simulation computer program. The software computes 3-dimensional rock fall trajectories starting from a digital elevation model (DEM, the location of rock fall release points, and maps of the dynamic rolling friction coefficient and of the coefficients of normal and tangential energy restitution. For each DEM cell the software calculates the number of rock falls passing through the cell, the maximum rock fall velocity and the maximum flying height. For the Yosemite Valley, a DEM with a ground resolution of 10 × 10 m was prepared using topographic contour lines from the U.S. Geological Survey 1:24 000-scale maps. Rock fall release points were identified as DEM cells having a slope steeper than 60°, an assumption based on the location of historical rock falls. Maps of the normal and tangential energy restitution coefficients and of the rolling friction coefficient were produced from a surficial geologic map. The availability of historical rock falls mapped in detail allowed us to check the computer program performance and to calibrate the model parameters. Visual and statistical comparison of the model results with the mapped rock falls

  18. 78 FR 21581 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2013-04-11

    ...EPA is proposing to approve revisions to the Antelope Valley Air Quality Management District (AVAQMD), Monterey Bay Unified Air Pollution Control District (MBUAPCD) and Santa Barbara County Air Pollution Control District (SCAPCD) portions of the California State Implementation Plan (SIP). We are proposing to approve revisions local rules that address emission statements for AVAQMD, rule rescissions that address public records for MBUAPCD, and define terms for SBCAPCD, under the Clean Air Act as amended in 1990 (CAA or the Act).

  19. 77 FR 33240 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2012-06-05

    ... Project water conservation best management practices that shall ``develop criteria for evaluating the... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  20. 75 FR 24408 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2010-05-05

    ...EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVAPCD) portion of the California State Implementation Plan (SIP). These revisions were proposed in the Federal Register on January 22, 2010 and concern oxides of nitrogen (NOx) emissions from residential water heaters. We are approving a local rule that regulates this emission source under the Clean Air Act as amended in 1990 (CAA or the Act).

  1. 76 FR 16818 - Central Valley Project Improvement Act, Standard Criteria for Ag and Urban Water Management Plans

    Science.gov (United States)

    2011-03-25

    ... Valley Project water conservation best management practices (BMPs) that shall develop Criteria for... project contractors using best available cost- effective technology and best management practices.'' The... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Standard...

  2. 78 FR 63491 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2013-10-24

    ... Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are available for review: Westside... project contractors using best available cost-effective technology and best management practices.'' These...

  3. SRTM Perspective View with Landsat Overlay: Mt. Pinos and San Joaquin Valley, California

    Science.gov (United States)

    2000-01-01

    Ask any astronomer where the best stargazing site in Southern California is, and chances are they'll say Mt. Pinos. In this perspective view generated from SRTM elevation data the snow-capped peak is seen rising to an elevation of 2,692 meters (8,831 feet), in stark contrast to the flat agricultural fields of the San Joaquin valley seen in the foreground. Below the summit, but still well away from city lights, the Mt. Pinos parking lot at 2,468 meters (8,100 feet) is a popular viewing area for both amateur and professional astronomers and astro-photographers. For visualization purposes, topographic heights displayed in this image are exaggerated two times.The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena.Distance to Horizon: 176 kilometers (109 miles) Location: 34.83 deg. North lat., 119.25 deg. West lon. View: Toward the Southwest Date Acquired: February 16, 2000 SRTM, December 14, 1984 Landsat

  4. Vegetation - San Felipe Valley [ds172

    Data.gov (United States)

    California Natural Resource Agency — This Vegetation Map of the San Felipe Valley Wildlife Area in San Diego County, California is based on vegetation samples collected in the field in 2002 and 2005 and...

  5. Reclaiming agricultural drainage water with nanofiltration membranes: Imperial Valley, California, USA

    Science.gov (United States)

    Kharaka, Y.K.; Schroeder, R.A.; Setmire, J.G.; ,

    2003-01-01

    We conducted pilot-scale field experiments using nanofiltration membranes to lower the salinity and remove Se, As and other toxic contaminants from saline agricultural wastewater in the Imperial Valley, California, USA. Farmlands in the desert climate (rainfall - 7.4 cm/a) of Imperial Valley cover -200,000 ha that are irrigated with water (-1.7 km3 annually) imported from the Colorado River. The salinity (-850 mg/L) and concentration of Se (-2.5 ??g/L) in the Colorado River water are high and evapotranpiration further concentrates salts in irrigation drainage water, reaching salinities of 3,000-15,000 mg/L TDS and a median Se value of -30 ??g/L. Experiments were conducted with two commercially available nanofiltration membranes, using drainage water of varying composition, and with or without the addition of organic precipitation inhibitors. Results show that these membranes selectively remove more than 95% of Se, SO4, Mo, U and DOC, and -30% of As from this wastewater. Low percentages of Cl, NO3 and HCO3, with enough cations to maintain electrical neutrality also were removed. The product water treated by these membranes comprised more than 90% of the wastewater tested. Results indicate that the treated product water from the Alamo River likely will have less than 0.2 ??g/L Se, salinity of 300-500 mg/L TDS and other chemical concentrations that meet the water quality criteria for irrigation and potable use. Because acceptability is a major issue for providing treated wastewater to urban centers, it may be prudent to use the reclaimed water for irrigation and creation of lower salinity wetlands near the Salton Sea; an equivalent volume of Colorado River water can then be diverted for the use of increasing populations of San Diego and other urban centers in southern California. Nanofiltration membranes yield greater reclaimed-water output and require lower pressure and less pretreatment, and therefore are generally more cost effective than traditional reverse

  6. Pink bollworm integrated management using sterile insects under field trial conditions, Imperial Valley, California

    International Nuclear Information System (INIS)

    Walters, M.L.; Staten, R.T.; Roberson, R.C.

    2000-01-01

    The pink bollworm moth (Pectinophora gossypiella Saunders) feeds almost exclusively on cotton (Gossypium spp.) and causes economic loss (Pfadt 1978). The pink bollworm (PBW) is often the key pest of cotton in Arizona, southern California, and northwestern Mexico. The larvae (immature stages) bore into the developing cotton fruit, where they feed on the cotton lint and seeds, causing significant damage and dramatically reducing the yield of cotton lint (Pfadt 1978). The PBW is difficult to control with conventional means (insecticides) because it spends the destructive larval phase inside the cotton boll where it is well protected from control measures. Cultural controls, such as a short growing season, have successfully decreased the population in the Imperial Valley (Chu et al. 1992) to the point where eradication may be possible using sterile insects and genetically engineered cotton. Because the PBW is an introduced insect, with few plant hosts other than cultivated cotton, its eradication from continental USA is a desirable and economically attractive alternative to the continued use of pesticides and/or further loss to the pest. Mass releases of sterile insects began in earnest in 1970 in the San Joaquin Valley, California, in order to inhibit normal reproduction and to eradicate the pest in an environmentally responsible manner. Sterile release involves mass production and sexual sterilisation using irradiation (20 krad for PBW adults). This was accomplished by building a rearing facility in Phoenix, AZ. The facility has 6,410 square metres of permanent laboratories, rearing and irradiation chambers and insect packing rooms. The facility operates the year round but with a variable production rate, that is, maximal during the cotton growing season (May through September). Sterile insect technology is based on the monitoring of the native and sterile populations in the field and the subsequent release of appropriate numbers of sterile insects in order to

  7. Vitrification process equipment design for the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Chapman, C.C.; Drosjack, W.P.

    1988-10-01

    The vitrification process and equipment design is nearing completion for the West Valley Project. This report provides the basis and current status for the design of the major vessels and equipment within the West Valley Vitrification Plant. A review of the function and key design features of the equipment is also provided. The major subsystems described include the feed preparation and delivery systems, the melter, the canister handling systems, and the process off-gas system. 11 refs., 33 figs., 4 tabs

  8. Projected reformulated gasoline and AFV use in California

    International Nuclear Information System (INIS)

    Bemis, G.R.

    1995-01-01

    In the spring to summer of 1996, California will switch from conventional and oxygenated gasolines to reformulated gasoline. This gasoline will be a designer fuel, and generally not available from sources outside California, since California's fuel specifications then will be unique. Thus, it will be important for California refiners to be able to meet the California reformulated gasoline (Cal-RFG) demand. California refiners are investing over $4 billion to upgrade their facilities for Cal-RFG. This represents approximately 40% of the total cost of making Cal-RFG, and is expected to cost 5--15 cents/gallon more than conventional gasoline to produce. Starting in the year 2000, EPA will require use of a similar fuel in seven geographical areas outside of California. The discussion below focuses on the supply, demand and price projections for Cal-RFG

  9. HCMM: Soil moisture in relation to geologic structure and lithology, northern California. [Sacramento Valley, California

    Science.gov (United States)

    Rich, E. I. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Empirical observations on the ground and examination of aerial color IR photographs indicate that in grassland terrain, the vegetation overlying sandstone tends to become less vigorous sooner in the late spring season than does the area overlain by an adjacent shale unit. The reverse relationship obtains in the fall. These relationships are thought to be a reflection of the relative porosity of each of the units and hence of their ability to retain or lose soil moisture. A comparison of the optically enlarged day and nite IR imagery of the Late Mesozoic interbedded sandstone and shale units along the western margin of the Sacramento Valley, California, taken at seasonally critical times of the year (late spring/early summer and late fall/early winter) reveals subtle seasonal variations of graytone which tend to support the empirical observations after consideration of Sun angle and azimuth, and the internal consistency of the data on each set of satellite imagery.

  10. 77 FR 26475 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-05-04

    ...EPA is proposing to approve revisions to the Antelope Valley Air Quality Management District (AVAQMD), Eastern Kern Air Pollution Control District (EKAPCD), and Santa Barbara County Air Pollution Control District (SBCAPCD) portions of the California State Implementation Plan (SIP). We are proposing to approve revisions to local rules that define terms used in other air pollution regulations in these areas and a rule rescission that address Petroleum Coke Calcining Operations--Oxides of Sulfur, under the Clean Air Act as amended in 1990 (CAA or the Act).

  11. Mapping Aquifer Systems with Airborne Electromagnetics in the Central Valley of California

    Science.gov (United States)

    Knight, R. J.; Smith, R.; Asch, T. H.; Abraham, J.; Cannia, J.; Fogg, G. E.; Viezzoli, A.

    2016-12-01

    The Central Valley of California is an important agricultural region struggling to meet the need for irrigation water. Recent periods of drought have significantly reduced the delivery of surface water, resulting in extensive pumping of groundwater. This has exacerbated an already serious problem in the Central Valley, where a number of areas have experienced declining water levels for several decades leading to ongoing concerns about depletion of aquifers and impacts on ecosystems, as well as subsidence of the ground surface. The overdraft has been so significant, that there are now approximately140 million acre-feet (MAF) of unused groundwater storage in the Central Valley, storage that could be used to complement the 42 MAF of surface storage. The alluvial sedimentary geology of the Central Valley is typically composed of more than 50 to 70 percent fine-grained deposits dominated by silt and clay beds. These fine grained deposits can block potential recharge, and are associated with the large amount of observed subsidence. Fortunately, the geologic processes that formed the region created networks of sand and gravel which provide both a supply of water and pathways for recharge from the surface to the aquifers. The challenge is to find these sand and gravel deposits and thus identify optimal locations for surface spreading techniques so that recharge could be dramatically increased, and re-pressurization of the confined aquifer networks could be accomplished. We have acquired 100 line kilometers of airborne electromagnetic data over an area in the San Joaquin Valley, imaging the subsurface hydrostratigraphy to a depth of 500 m with spatial resolution on the order of meters to tens of meters. Following inversion of the data to obtain resistivity models along the flight lines, we used lithology logs in the area to transform the models to images displaying the distribution of sand and gravel, clay, and mixed fine and coarse materials. The quality of the data and

  12. 77 FR 35327 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-06-13

    ...EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) emissions from the manufacture of polystyrene, polyethylene, and polypropylene products. We are approving a local rule that regulates these emission sources under the Clean Air Act (CAA or the Act). We are taking comments on this proposal and plan to follow with a final action.

  13. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1994-04-01

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters

  14. Postcrystalline deformation of the Pelona Schist bordering Leona Valley, southern California

    Science.gov (United States)

    Evans, James George

    1978-01-01

    Detailed structural investigations in part of the Leona Valley segment of the San Andreas fault zone, 5-16 km west of Palm dale, focused on the postcrystalline deformation of the block of Mesozoic(?) Pelona Schist underlying Portal and Ritter Ridges. The early fabric of the schist is modified and in places obliterated by cataclasis along shear zones near the San Andreas fault and the Hitchbrook fault, a major west-striking branch of the San Andreas fault system. Anastomosing shear foliations, fabric elements of the postcrystalline deformation, intersect at small angles to one another and are generally vertical or steeply dipping to the north-northeast; they are subparallel to the Hitchbrook fault. Many of these shear foliations are nearly parallel to the compositional layering and schistosity, which commonly dip at moderately steep angles to the northwest. Folds in the shear foliation, commonly intrafolial, generally plunge at moderately steep angles to the north-northeast or are nearly vertical. Other folds, various in form, have axes parallel to the intersections of the early schistosity and the shear foliations and plunge in many other directions. Faults, roughly similar in orientation to the shear foliations, have orientations subparallel to large-scale structures and structural features in the Leona Valley area and in southern California: the San Andreas fault zone in Leona Valley, the Hitchbrook fault, the Garlock fault zone, steep northward-striking faults, the San Andreas fault zone north and south of the Transverse Ranges, and the generally northwest-dipping early compositional layering of the schist. Slickensides on some of the minor faults indicate that the latest movements on the steep faults are predominantly strike slip with indications of less common episodes of predominantly dip slip. The low-angle faults have oblique slip with a large dip component.

  15. Groundwater Pumping and Streamflow in the Yuba Basin, Sacramento Valley, California

    Science.gov (United States)

    Moss, D. R.; Fogg, G. E.; Wallender, W. W.

    2011-12-01

    Water transfers during drought in California's Sacramento Valley can lead to increased groundwater pumping, and as yet unknown effects on stream baseflow. Two existing groundwater models of the greater Sacramento Valley together with localized, monitoring of groundwater level fluctuations adjacent to the Bear, Feather, and Yuba Rivers, indicate cause and effect relations between the pumping and streamflow. The models are the Central Valley Hydrologic Model (CVHM) developed by the U.S. Geological Survey and C2VSIM developed by Department of Water Resources. Using two models which have similar complexity and data but differing approaches to the agricultural water boundary condition illuminates both the water budget and its uncertainty. Water budget and flux data for localized areas can be obtained from the models allowing for parameters such as precipitation, irrigation recharge, and streamflow to be compared to pumping on different temporal scales. Continuous groundwater level measurements at nested, near-stream piezometers show seasonal variations in streamflow and groundwater levels as well as the timing and magnitude of recharge and pumping. Preliminary results indicate that during years with relatively wet conditions 65 - 70% of the surface recharge for the groundwater system comes from irrigation and precipitation and 30 - 35% comes from streamflow losses. The models further indicate that during years with relatively dry conditions, 55 - 60% of the surface recharge for the groundwater system comes from irrigation and precipitation while 40 - 45% comes from streamflow losses. The models irrigation water demand, surface-water and groundwater supply, and deep percolation are integrated producing values for irrigation pumping. Groundwater extractions during the growing season, approximately between April and October, increase by almost 200%. The effects of increased pumping seasonally are not readily evident in stream stage measurements. However, during dry time

  16. An Integrated Hydrologic Model and Remote Sensing Synthesis Approach to Study Groundwater Extraction During a Historic Drought in the California Central Valley

    Science.gov (United States)

    Thatch, L. M.; Maxwell, R. M.; Gilbert, J. M.

    2017-12-01

    Over the past century, groundwater levels in California's San Joaquin Valley have dropped more than 30 meters in some areas due to excessive groundwater extraction to irrigate agricultural lands and feed a growing population. Between 2012 and 2016 California experienced the worst drought in its recorded history, further exacerbating this groundwater depletion. Due to lack of groundwater regulation, exact quantities of extracted groundwater in California are unknown and hard to quantify. We use a synthesis of integrated hydrologic model simulations and remote sensing products to quantify the impact of drought and groundwater pumping on the Central Valley water tables. The Parflow-CLM model was used to evaluate groundwater depletion in the San Joaquin River basin under multiple groundwater extraction scenarios simulated from pre-drought through recent drought years. Extraction scenarios included pre-development conditions, with no groundwater pumping; historical conditions based on decreasing groundwater level measurements; and estimated groundwater extraction rates calculated from the deficit between the predicted crop water demand, based on county land use surveys, and available surface water supplies. Results were compared to NASA's Gravity Recover and Climate Experiment (GRACE) data products to constrain water table decline from groundwater extraction during severe drought. This approach untangles various factors leading to groundwater depletion within the San Joaquin Valley both during drought and years of normal recharge to help evaluate which areas are most susceptible to groundwater overdraft, as well as further evaluating the spatially and temporally variable sustainable yield. Recent efforts to improve water management and ensure reliable water supplies are highlighted by California's Sustainable Groundwater Management Act (SGMA) which mandates Groundwater Sustainability Agencies to determine the maximum quantity of groundwater that can be withdrawn through

  17. Burrowing Owl - Palo Verde Valley [ds197

    Data.gov (United States)

    California Natural Resource Agency — These burrowing owl observations were collected during the spring and early summer of 1976 in the Palo Verde Valley, eastern Riverside County, California. This is an...

  18. Economic and Water Supply Effects of Ending Groundwater Overdraft in California's Central Valley

    Directory of Open Access Journals (Sweden)

    Timothy Nelson

    2016-03-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss1art7Surface water and groundwater management are often tightly linked, even when linkage is not intended or expected. This link is especially common in semi-arid regions, such as California. This paper summarizes a modeling study on the effects of ending long-term overdraft in California’s Central Valley, the state’s largest aquifer system. The study focuses on economic and operational aspects, such as surface water pumping and diversions, groundwater recharge, water scarcity, and the associated operating and water scarcity costs. This analysis uses CALVIN, a hydro-economic optimization model for California’s water resource system that suggests operational changes to minimize net system costs for a given set of conditions, such as ending long-term overdraft. Based on model results, ending overdraft might induce some major statewide operational changes, including large increases to Delta exports, more intensive conjunctive-use operations with increasing artificial and in-lieu recharge, and greater water scarcity for Central Valley agriculture. The statewide costs of ending roughly 1.2 maf yr-1 of groundwater overdraft are at least $50 million per year from additional direct water shortage and additional operating costs. At its worst, the costs of ending Central Valley overdraft could be much higher, perhaps comparable to the recent economic effects of drought. Driven by recent state legislation to improve groundwater sustainability, ending groundwater overdraft has important implications statewide for water use and management, particularly in the Sacramento–San Joaquin Delta. Ending Central Valley overdraft will amplify economic pressure to increase Delta water exports rather than reduce them, tying together two of California’s largest water management problems.

  19. An overview of waste management systems at the West Valley demonstration project

    International Nuclear Information System (INIS)

    McIntosh, T.W.; Bixby, W.W.; Krauss, J.E.; Leap, D.R.

    1988-01-01

    In 1980, the United States Congress passed into law the West Valley Demonstration Project Act authorizing the Department of Energy (DOE) to conduct a nuclear waste management project at a former commercial nuclear fuel reprocessing facility located in West Valley, New York. The Project's main objective is to solidify approximately two million litres of high-level radioactive liquid waste into a form suitable for transport to a federal repository for final disposal. The majority of the liquid waste was produced as a by-product of the PUREX extraction process and is stored in an underground steel tank. A waste characterization program has shown that the neutralized waste has settled into two distinct layers: a clear alkaline liquid (supernatant) layer and a dense precipitate (sludge) layer. The principle radioactive elements in the waste are cesium 137 (supernatant) and strontium 90 (sludge). This paper describes the overall project strategy, the waste management systems, the present project engineering and construction status and the project schedule leading to radioactive operation

  20. 77 FR 26448 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-05-04

    ...EPA is taking direct final action to approve revisions to the Antelope Valley Air Quality Management District (AVAQMD), Eastern Kern Air Pollution Control District (EKAPCD), and Santa Barbara County Air Pollution Control District (SBCAPCD) portions of the California State Implementation Plan (SIP). Under authority of the Clean Air Act as amended in 1990 (CAA or the Act), we are approving local rules that define terms used in other air pollution regulation in these areas and approving a rule rescission that addresses Petroleum Coke Calcining Operations--Oxides of Sulfur.

  1. Terrestrial Cosmogenic-Nuclide Dating of Alluvial Fans in Death Valley, California

    Science.gov (United States)

    Machette, Michael N.; Slate, Janet L.; Phillips, Fred M.

    2008-01-01

    We have used terrestrial cosmogenic nuclides (TCN) to establish the age of some of the most extensive Quaternary alluvial fans in Death Valley, California. These intermediate-age alluvial fans are most extensive on the western side of the valley, where tectonic deformation is considerably less pronounced than on the eastern side of the valley. These fans are characterized by a relatively smooth, densely packed desert pavement formed by well-varnished (blackened) clasts. These surfaces have been mapped as the Q2 gravel by previous workers and as unit Qai (intermediate age) by us. However, the intermediate-age gravels probably contain multiple subunits, as evidenced by slight differences in morphologic expression, soil formation, and inset geomorphic relations. The TCN technique used herein sums the cosmogenic 36Cl in approximately 2.5-meter-deep profiles through soil and host alluvium, thus avoiding some of the problems associated with the more typical surface-exposure dating of boulders or smaller clasts. Our TCN 36Cl dating of 12 depth profiles indicates that these intermediate-age (Qai) alluvial fans range from about 100 to 40 kilo-annum (ka), with a mean age of about 70 ka. An alternative interpretation is that alluvial unit Qai was deposited in two discrete episodes from 90 to 80 ka and from 60 to 50 ka, before and after MIS (marine oxygen-isotope stage) 4 (respectively). Without an intermediate-age unit, such as MIS 4 lake deposits, we can neither disprove nor prove that Qai was deposited in two discrete intervals or over a longer range of time. Thus, in Death Valley, alluvial unit Qai largely brackets MIS 4, which is not associated with a deep phase of Lake Manly. These Qai fans extend to elevations of about -46 meters (150 feet below sea level) and have not been transgressed by Lake Manly, suggesting that MIS 4 or MIS 2 lakes were rather shallow in Death Valley, perhaps because they lacked inflow from surface runoff of the Sierra Nevada drainages through

  2. Seismic site characterization of an urban dedimentary basin, Livermore Valley, California: Site tesponse, basin-edge-induced surface waves, and 3D simulations

    Science.gov (United States)

    Hartzell, Stephen; Leeds, Alena L.; Ramirez-Guzman, Leonardo; Allen, James P.; Schmitt, Robert G.

    2016-01-01

    Thirty‐two accelerometers were deployed in the Livermore Valley, California, for approximately one year to study sedimentary basin effects. Many local and near‐regional earthquakes were recorded, including the 24 August 2014 Mw 6.0 Napa, California, earthquake. The resulting ground‐motion data set is used to quantify the seismic response of the Livermore basin, a major structural depression in the California Coast Range Province bounded by active faults. Site response is calculated by two methods: the reference‐site spectral ratio method and a source‐site spectral inversion method. Longer‐period (≥1  s) amplification factors follow the same general pattern as Bouguer gravity anomaly contours. Site response spectra are inverted for shallow shear‐wave velocity profiles, which are consistent with independent information. Frequency–wavenumber analysis is used to analyze plane‐wave propagation across the Livermore Valley and to identify basin‐edge‐induced surface waves with back azimuths different from the source back azimuth. Finite‐element simulations in a 3D velocity model of the region illustrate the generation of basin‐edge‐induced surface waves and point out strips of elevated ground velocities along the margins of the basin.

  3. 75 FR 10690 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Science.gov (United States)

    2010-03-09

    ...EPA is finalizing approval of revisions to the San Joaquin Valley Air Pollution Control District (SJVAPCD) portion of the California State Implementation Plan (SIP). These revisions were proposed in the Federal Register on December 18, 2009 and concern reduction of animal matter and volatile organic compound (VOC) emissions from crude oil production, cutback asphalt, and petroleum solvent dry cleaning. We are approving local rules that regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).

  4. 77 FR 24883 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-04-26

    ...EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State Implementation Plan (SIP). These revisions concern oxides of nitrogen (NOX) from solid fuel fired boilers, steam generators and process heaters. We are approving a local rule that regulates these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act). We are taking comments on this proposal and plan to follow with a final action.

  5. 77 FR 35329 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-06-13

    ...EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) emissions from crude oil production sumps and refinery wastewater separators. We are approving local rules that regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act). We are taking comments on this proposal and plan to follow with a final action.

  6. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  7. Steelhead Critical Habitat, Central Valley - NOAA [ds123

    Data.gov (United States)

    California Natural Resource Agency — This layer depicts areas designated for Steelhead Critical Habitat as well as habitat type and quality in the California Central Valley Evolutionary Significant Unit...

  8. Chaparral in southern and central coastal California in the mid-1990s: area, ownership, condition, and change.

    Science.gov (United States)

    Jeremy S. Fried; Charles L. Bolsinger; Debby Beardsley

    2004-01-01

    This report summarizes an inventory of chaparral-dominated lands in southern California conducted during the mid-1990s and provides a review of contemporary literature on the ecological dynamics of chaparral vegetation with emphases on stand development, species composition, and the role of fire. Detailed tables provide estimates of chaparral area by owner, type, size...

  9. Bird Use of Imperial Valley Crops [ds427

    Data.gov (United States)

    California Natural Resource Agency — Agriculture crops in the Imperial Valley of California provide valuable habitat for many resident and migratory birds and are a very important component of the...

  10. 77 FR 66429 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2012-11-05

    ...EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State Implementation Plan (SIP). These revisions concern volatile organic compounds (VOC), carbon monoxide (CO), oxides of nitrogen (NOX), oxides of sulfur (SOX), and particulate matter (PM) emissions from glass melting furnaces. We are approving a local rule that regulates these emission sources under the Clean Air Act (CAA or the Act). We are taking comments on this proposal and plan to follow with a final action.

  11. Data for four geologic test holes in the Sacramento Valley, California

    Science.gov (United States)

    Berkstresser, C.F.; French, J.J.; Schaal, M.E.

    1985-01-01

    The report provides geological and geophysical data for four of seven test holes drilled as a part of the Central Valley Aquifer Project, which is part of the Regional Aquifer Systems Analysis. The holes were drilled with a rotary well drilling machine to depths of 900 feet in the southwestern part of the Sacramento Valley in Solano and Yolo Counties. Geologic data for each well include lithology, texture, color, character of the contact, sorting, rounding, and cementation, determined from cuttings, cores, and sidewall covers. Fifty cores, 3 feet long, were obtained from each hole, and from eight to fourteen sidewall cores were collected. Geophysical data include a dual-induction log, spherically focused log (SFL), compensated neutron-formation density log, gamma-ray log, and a caliper log. These data are presented in four tables and on four plates. (USGS)

  12. West Valley Demonstration Project site environmental report calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  13. West Valley Demonstration Project site environmental report, calendar year 1999

    Energy Technology Data Exchange (ETDEWEB)

    None Available

    2000-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  14. West Valley Demonstration Project site environmental report, calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  15. Modeling applications for precision agriculture in the California Central Valley

    Science.gov (United States)

    Marklein, A. R.; Riley, W. J.; Grant, R. F.; Mezbahuddin, S.; Mekonnen, Z. A.; Liu, Y.; Ying, S.

    2017-12-01

    Drought in California has increased the motivation to develop precision agriculture, which uses observations to make site-specific management decisions throughout the growing season. In agricultural systems that are prone to drought, these efforts often focus on irrigation efficiency. Recent improvements in soil sensor technology allow the monitoring of plant and soil status in real-time, which can then inform models aimed at improving irrigation management. But even on farms with resources to deploy soil sensors across the landscape, leveraging that sensor data to design an efficient irrigation scheme remains a challenge. We conduct a modeling experiment aimed at simulating precision agriculture to address several questions: (1) how, when, and where does irrigation lead to optimal yield? and (2) What are the impacts of different precision irrigation schemes on yields, soil organic carbon (SOC), and total water use? We use the ecosys model to simulate precision agriculture in a conventional tomato-corn rotation in the California Central Valley with varying soil water content thresholds for irrigation and soil water sensor depths. This model is ideal for our question because it includes explicit process-based functions for the plant growth, plant water use, soil hydrology, and SOC, and has been tested extensively in agricultural ecosystems. Low irrigation thresholds allows the soil to become drier before irrigating compared to high irrigation thresholds; as such, we found that the high irrigation thresholds use more irrigation over the course of the season, have higher yields, and have lower water use efficiency. The irrigation threshold did not affect SOC. Yields and water use are highest at sensor depths of 0.5 to 0.15 m, but water use efficiency was also lowest at these depths. We found SOC to be significantly affected by sensor depth, with the highest SOC at the shallowest sensor depths. These results will help regulate irrigation water while maintaining yield

  16. Potential impact on water resources from future volcanic eruptions at Long Valley, Mono County, California, U.S.A

    International Nuclear Information System (INIS)

    Hopson, R.F.

    1991-01-01

    Earthquakes, ground deformation, and increased geothermal activity at Long Valley caldera after mid-1980 suggest the possibility of a volcanic eruption in the near future. An eruption there could have serious consequences for the City of Los Angeles, depending on the magnitude and volume of materials ejected because surface water in Mono Basin plus surface and groundwater in Owens Valley accounts for about 80% of its water supply. Eruptions of moderate to very large magnitude could impede the supply of water from this area for several days, weeks, or even years by discharging small to large volumes of volcanic ash and causing lahars. Soon after an eruption, water quality would likely be affected by the accumulation of organic debris and microorganisms in surface waters

  17. The Virtual Museum of the Tiber Valley Project

    Directory of Open Access Journals (Sweden)

    Antonia Arnoldus Huyzendveld

    2012-11-01

    Full Text Available The aim of the Virtual Museum of the Tiber Valley project is the creation of an integrated digital system for the knowledge, valorisation and communication of the cultural landscape, archaeological and naturalistic sites along the Tiber Valley, in the Sabina area between Monte Soratte and the ancient city of Lucus Feroniae (Capena. Virtual reality applications, multimedia contents, together with a web site, are under construction and they will be accessed inside the museums of the territory and in a central museum in Rome. The different stages of work will cover the building of a geo-spatial archaeological database, the reconstruction of the ancient potential landscape and the creation of virtual models of the major archaeological sites. This paper will focus on the methodologies used and on present and future results.

  18. Full-Wave Ambient Noise Tomography of the Long Valley Volcanic Region (California)

    Science.gov (United States)

    Flinders, A. F.; Shelly, D. R.; Dawson, P. B.; Hill, D. P.; Shen, Y.

    2017-12-01

    In the late 1970s, and throughout the 1990s, Long Valley Caldera (California) experienced intense periods of unrest characterized by uplift of the resurgent dome, earthquake swarms, and CO2 emissions around Mammoth Mountain. While modeling of the uplift and gravity changes support the possibility of new magmatic intrusions beneath the caldera, geologic interpretations conclude that the magmatic system underlying the caldera is moribund. Geophysical studies yield diverse versions of a sizable but poorly resolved low-velocity zone at depth (> 6km), yet whether this zone is indicative of a significant volume of crystal mush, smaller isolated pockets of partial melt, or magmatic fluids, is inconclusive. The nature of this low-velocity zone, and the state of volcano's magmatic system, carry important implications for the significance of resurgent-dome inflation and the nature of associated hazards. To better characterize this low-velocity zone we present preliminary results from a 3D full-waveform ambient-noise seismic tomography model derived from the past 25 years of vertical component broadband and short-period seismic data. This new study uses fully numerical solutions of the wave equation to account for the complex wave propagation in a heterogeneous, 3D earth model, including wave interaction with topography. The method ensures that wave propagation is modeled accurately in 3D, enabling the full use of seismic records. By using empirical Green's functions, derived from ambient noise and modeled as Rayleigh surface waves, we are able to extend model resolution to depths beyond the limits of previous local earthquake studies. The model encompasses not only the Long Valley Caldera, but the entire Long Valley Volcanic Region, including Mammoth Mountain and the Mono Crater/Inyo Domes volcanic chain.

  19. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California

    Science.gov (United States)

    Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.

    2011-01-01

    We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.

  20. 75 FR 2796 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Science.gov (United States)

    2010-01-19

    ...EPA is finalizing approval of revisions to the San Joaquin Valley Air Pollution Control District portion of the California State Implementation Plan (SIP). These revisions were proposed in the Federal Register on June 16, 2009 and concern volatile organic compound (VOC) emissions from coating of metal parts, large appliances, metal furniture, motor vehicles, mobile equipment, cans, coils, organic solvent cleaning, and storage and disposal related to such operations. We are approving local rules that regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).

  1. 76 FR 16696 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Science.gov (United States)

    2011-03-25

    ...EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVAPCD) portion of the California State Implementation Plan (SIP). These revisions were proposed in the Federal Register on November 5, 2010 and concern oxides of nitrogen (NOX), carbon monoxide (CO), oxides of sulfur (SO2) and particulate matter emissions from boilers, steam generators and process heaters greater than 5.0 MMbtu/hour. We are approving a local rule that regulates these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).

  2. A hydrogeologic map of the Death Valley region, Nevada, and California, developed using GIS techniques

    International Nuclear Information System (INIS)

    Faunt, C.C.; D'Agnese, F.A.; Turner, A.K.

    1997-01-01

    In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km 2 along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing

  3. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics

    Science.gov (United States)

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Wannamaker, Phil E.

    2016-01-01

    Though shallow flow of hydrothermal fluids in Long Valley Caldera, California, has been well studied, neither the hydrothermal source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic system and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2–5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow hydrothermal system, is found 3 km below the medial graben, which could originate from a zone of 5–10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5–10% basaltic partial melt.

  4. Continental rupture and the creation of new crust in the Salton Trough rift, southern California and northern Mexico: Results from the Salton Seismic Imaging Project

    Science.gov (United States)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Kell, Annie; Driscoll, Neal W.; Kent, Graham M.; Rymer, Michael J.; Gonzalez-Fernandez, Antonio; Aburto-Oropeza, Octavio

    2016-01-01

    A refraction and wide-angle reflection seismic profile along the axis of the Salton Trough, California and Mexico, was analyzed to constrain crustal and upper mantle seismic velocity structure during active continental rifting. From the northern Salton Sea to the southern Imperial Valley, the crust is 17-18 km thick and approximately one-dimensional. The transition at depth from Colorado River sediment to underlying crystalline rock is gradual and is not a depositional surface. The crystalline rock from ~3 to ~8 km depth is interpreted as sediment metamorphosed by high heat flow. Deeper felsic crystalline rock could be stretched pre-existing crust or higher grade metamorphosed sediment. The lower crust below ~12 km depth is interpreted to be gabbro emplaced by rift-related magmatic intrusion by underplating. Low upper-mantle velocity indicates high temperature and partial melting. Under the Coachella Valley, sediment thins to the north and the underlying crystalline rock is interpreted as granitic basement. Mafic rock does not exist at 12-18 depth as it does to the south, and a weak reflection suggests Moho at ~28 km depth. Structure in adjacent Mexico has slower mid-crustal velocity and rocks with mantle velocity must be much deeper than in the Imperial Valley. Slower velocity and thicker crust in the Coachella and Mexicali valleys define the rift zone between them to be >100 km wide in the direction of plate motion. North American lithosphere in the central Salton Trough has been rifted apart and is being replaced by new crust created by magmatism, sedimentation, and metamorphism.

  5. Keeping the History in Historical Seismology: The 1872 Owens Valley, California Earthquake

    International Nuclear Information System (INIS)

    Hough, Susan E.

    2008-01-01

    The importance of historical earthquakes is being increasingly recognized. Careful investigations of key pre-instrumental earthquakes can provide critical information and insights for not only seismic hazard assessment but also for earthquake science. In recent years, with the explosive growth in computational sophistication in Earth sciences, researchers have developed increasingly sophisticated methods to analyze macroseismic data quantitatively. These methodological developments can be extremely useful to exploit fully the temporally and spatially rich information source that seismic intensities often represent. For example, the exhaustive and painstaking investigations done by Ambraseys and his colleagues of early Himalayan earthquakes provides information that can be used to map out site response in the Ganges basin. In any investigation of macroseismic data, however, one must stay mindful that intensity values are not data but rather interpretations. The results of any subsequent analysis, regardless of the degree of sophistication of the methodology, will be only as reliable as the interpretations of available accounts - and only as complete as the research done to ferret out, and in many cases translate, these accounts. When intensities are assigned without an appreciation of historical setting and context, seemingly careful subsequent analysis can yield grossly inaccurate results. As a case study, I report here on the results of a recent investigation of the 1872 Owen's Valley, California earthquake. Careful consideration of macroseismic observations reveals that this event was probably larger than the great San Francisco earthquake of 1906, and possibly the largest historical earthquake in California. The results suggest that some large earthquakes in California will generate significantly larger ground motions than San Andreas fault events of comparable magnitude

  6. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  7. Breathing Valley Fever

    Centers for Disease Control (CDC) Podcasts

    2014-02-04

    Dr. Duc Vugia, chief of the Infectious Diseases Branch in the California Department of Public Health, discusses Valley Fever.  Created: 2/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/5/2014.

  8. Socioeconomic effects of power marketing alternatives for the Central Valley and Washoe Projects: 2005 regional econmic impact analysis using IMPLAN

    International Nuclear Information System (INIS)

    Anderson, D.M.; Godoy-Kain, P.; Gu, A.Y.; Ulibarri, C.A.

    1996-11-01

    The Western Area Power Administration (Western) was founded by the Department of Energy Organization Act of 1977 to market and transmit federal hydroelectric power in 15 western states outside the Pacific Northwest, which is served by the Bonneville Power Administration. Western is divided into four independent Customer Service Regions including the Sierra Nevada Region (Sierra Nevada), the focus of this report. The Central Valley Project (CVP) and the Washoe Project provide the primary power resources marketed by Sierra Nevada. Sierra Nevada also purchases and markets power generated by the Bonneville Power Administration, Pacific Gas and Electric (PG ampersand E), and various power pools. Sierra Nevada currently markets approximately 1,480 megawatts of power to 77 customers in northern and central California. These customers include investor-owned utilities, public utilities, government agencies, military bases, and irrigation districts. Methods and conclusions from an economic analysis are summarized concerning distributional effects of alternative actions that Sierra Nevada could take with it's new marketing plan

  9. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-09-27

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2011. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2011. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2011 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  10. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL • B& amp; W West Valley, LLC (CHBWV); Steiner, Alison F. [URS Professional Solutions (URSPS); Klenk, David P. [CH2M HILL • B& amp; W West Valley, LLC (CHBWV)

    2013-09-19

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2012. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2012. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2012 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  11. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    International Nuclear Information System (INIS)

    2011-01-01

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  12. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2MHILL • B& W West Valley, LLC (CHBWV); Steiner, Alison F. [CH2MHILL • B& W West Valley, LLC (CHBWV); Pendl, Michael P. [CH2MHILL • B& W West Valley, LLC (CHBWV)

    2014-09-16

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2013. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2013. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2013 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  13. pep-up: a review of the umgeni valley pro.ject evaluation process

    African Journals Online (AJOL)

    The evaluation process at the Umgeni Valle~ Project is.described. Its evolution, background and ... mental Education circles in Southern Africa. The ... t? the percei~ed need for evaluation of the Umgen1 Valley ProJect. ... This group, insisting that they were facilitating .... Phase : An integrated summary of all fielc and working ...

  14. Population Structure of Xylella fastidiosa Associated with Almond Leaf Scorch Disease in the San Joaquin Valley of California.

    Science.gov (United States)

    Lin, Hong; Islam, Md Sajedul; Cabrera-La Rosa, Juan C; Civerolo, Edwin L; Groves, Russell L

    2015-06-01

    Xylella fastidiosa causes disease in many commercial crops, including almond leaf scorch (ALS) disease in susceptible almond (Prunus dulcis). In this study, genetic diversity and population structure of X. fastidiosa associated with ALS disease were evaluated. Isolates obtained from two almond orchards in Fresno and Kern County in the San Joaquin Valley of California were analyzed for two successive years. Multilocus simple-sequence repeat (SSR) analysis revealed two major genetic clusters that were associated with two host cultivars, 'Sonora' and 'Nonpareil', respectively, regardless of the year of study or location of the orchard. These relationships suggest that host cultivar selection and adaptation are major driving forces shaping ALS X. fastidiosa population structure in the San Joaquin Valley. This finding will provide insight into understanding pathogen adaptation and host selection in the context of ALS disease dynamics.

  15. Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current

    Science.gov (United States)

    Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.

    2015-12-01

    Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the

  16. Clean Cities Award Winning Coalition: Coachella Valley

    Energy Technology Data Exchange (ETDEWEB)

    ICF Kaiser

    1999-05-20

    Southern California's Coachella Valley became a Clean Cities region in 1996. Since then, they've made great strides. SunLine Transit, the regional public transit provider, was the first transit provider to replace its entire fleet with compressed natural gas buses. They've also built the foundation for a nationally recognized model in the clean air movement, by partnering with Southern California Gas Company to install a refueling station and developing a curriculum for AFV maintenance with the College of the Desert. Today the valley is home to more than 275 AFVs and 15 refueling stations.

  17. 2013 NOAA Coastal California TopoBathy Merge Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project merged recently collected topographic, bathymetric, and acoustic elevation data along the entire California coastline from approximately the 10 meter...

  18. Water savings from reduced alfalfa cropping in California's Upper San Joaquin Valley

    Science.gov (United States)

    Singh, K. K.; Gray, J.

    2017-12-01

    Water and food and forage security are inextricably linked. In fact, 90% of global freshwater is consumed for food production. Food demand increases as populations grow and diets change, making water increasingly scarce. This tension is particularly acute, contentious, and popularly appreciated in California's Central Valley, which is one of the most important non-grain cropping areas in the United States. While the water-intensive production of tree nuts like almonds and pistachios has received the most popular attention, it is California's nation-leading alfalfa production that consumes the most water. Alfalfa, the "Queen of Forages" is the preferred feedstock for California's prodigious dairy industry. It is grown year-round, and single fields can be harvested more than four times a year; a practice which can require in excess of 1.5 m of irrigation water. Given the water scarcity in the region, the production of alfalfa is under increasing scrutiny with respect to long-term sustainability. However, the potential water savings associated with alternative crops, and various levels of alfalfa replacement have not been quantified. Here, we address that knowledge gap by simulating the ecohydrology of the Upper San Joaquin's cropping system under various scenarios of alfalfa crop replacement with crops of comparable economic value. Specifically, we use the SWAT model to evaluate the water savings that would be realized at 33%, 66%, and 100% alfalfa replacement with economically comparable, but more water efficient crops such as tomatoes. Our results provide an important quantification of the potential water savings under alternative cropping systems that, importantly, also addresses the economic concerns of farmers. Results like these provide critical guidance to farmers and land/water decision makers as they plan for a more sustainable and productive agricultural future.

  19. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Environmental Services LLC (WVES) and URS Corporation

    2010-09-17

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2009. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program by the DOE ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2009 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  20. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-09-28

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  1. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2009. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program by the DOE ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2009 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  2. 1982 environmental-monitoring program report for the West Valley Demonstration Project site

    International Nuclear Information System (INIS)

    1983-05-01

    This report is prepared and submitted in accordance with the requirements of DOE Order 5484.1 and presents environmental monitoring program data collected at the West Valley Demonstration Project (WVDP) site from February 26, 1982, through December 31, 1982. The WVDP objective is to solidify approximately 600,000 gallons of high-level liquid radioactive waste stored at the former Nuclear Fuel Services reprocessing facility at West Valley, New York. Nuclear Fuel Services conducted an environmental monitoring program in accordance with Nuclear Regulatory Commission requirements which were appropriate for shutdown maintenance operations conducted at the site. That program was embraced by West Valley Nuclear Services Company (WVNS) at the time of transition (February 26, 1982) and will be modified to provide a comprehensive monitoring program in preparation for waste solidification operations scheduled for startup in June 1988. As such, the data presented in this report is considered preoperational in nature in accordance with DOE Order 5484.1, Chapter III, Paragraph 1. The environmental monitoring program planned for the operating phase of the project will be fully implemented by fiscal year 1985 and will provide at least two years of preoperational data prior to startup

  3. Interpretation of shallow crustal structure of the Imperial Valley, California, from seismic reflection profiles

    Energy Technology Data Exchange (ETDEWEB)

    Severson, L.K.

    1987-05-01

    Eight seismic reflection profiles (285 km total length) from the Imperial Valley, California, were provided to CALCRUST for reprocessing and interpretation. Two profiles were located along the western margin of the valley, five profiles were situated along the eastern margin and one traversed the deepest portion of the basin. These data reveal that the central basin contains a wedge of highly faulted sediments that thins to the east. Most of the faulting is strike-slip but there is evidence for block rotations on the scale of 5 to 10 kilometers within the Brawley Seismic Zone. These lines provide insight into the nature of the east and west edges of the Imperial Valley. The basement at the northwestern margin of the valley, to the north of the Superstition Hills, has been normal-faulted and blocks of basement material have ''calved'' into the trough. A blanket of sediments has been deposited on this margin. To the south of the Superstition Hills and Superstition Mountain, the top of the basement is a detachment surface that dips gently into the basin. This margin is also covered by a thick sequence sediments. The basement of the eastern margin consists of metamorphic rocks of the upper plate of the Chocolate Mountain Thrust system underlain by the Orocopia Schist. These rocks dip to the southeast and extend westward to the Sand Hills Fault but do not appear to cross it. Thus, the Sand Hills Fault is interpreted to be the southern extension of the San Andreas Fault. North of the Sand Hills Fault the East Highline Canal seismicity lineament is associated with a strike-slip fault and is probably linked to the Sand Hills Fault. Six geothermal areas crossed by these lines, in agreement with previous studies of geothermal reservoirs, are associated with ''faded'' zones, Bouguer gravity and heat flow maxima, and with higher seismic velocities than surrounding terranes.

  4. Environmental Assessment: Military Family Housing Revitalization Travis Air Force Base, California

    Science.gov (United States)

    2007-05-01

    area that, with the San Joaquin Valley to the south, forms the Great Central Valley of California. The Coast Ranges bound the valley to the west. In...Endangered Species Common Name Scientific Name Federal Status State Status Plants Colusa grass Neostapfia colusana T E Contra Costa goldfields...federally listed species, Contra Costa goldfields, vernal pool fairy shrimp, California tiger salamander, and alkali milk-vetch (Astragalus tener var. tener

  5. Energy Efficient Community Development in California: Chula Vista Research Project

    Energy Technology Data Exchange (ETDEWEB)

    Gas Technology Institute

    2009-03-31

    In 2007, the U.S. Department of Energy joined the California Energy Commission in funding a project to begin to examine the technical, economic and institutional (policy and regulatory) aspects of energy-efficient community development. That research project was known as the Chula Vista Research Project for the host California community that co-sponsored the initiative. The researches proved that the strategic integration of the selected and economically viable buildings energy efficiency (EE) measures, photovoltaics (PV), distributed generation (DG), and district cooling can produce significant reductions in aggregate energy consumption, peak demand and emissions, compared to the developer/builder's proposed baseline approach. However, the central power plant emission reductions achieved through use of the EE-DG option would increase local air emissions. The electric and natural gas utility infrastructure impacts associated with the use of the EE and EE-PV options were deemed relatively insignificant while use of the EE-DG option would result in a significant reduction of necessary electric distribution facilities to serve a large-scale development project. The results of the Chula Vista project are detailed in three separate documents: (1) Energy-Efficient Community Development in California; Chula Vista Research Project report contains a detailed description of the research effort and findings. This includes the methodologies, and tools used and the analysis of the efficiency, economic and emissions impacts of alternative energy technology and community design options for two development sites. Research topics covered included: (a) Energy supply, demand, and control technologies and related strategies for structures; (b) Application of locally available renewable energy resources including solar thermal and PV technology and on-site power generation with heat recovery; (c) Integration of local energy resources into district energy systems and existing

  6. Characterizing Drought Impacted Soils in the San Joaquin Valley of California Using Remote Sensing

    Science.gov (United States)

    Wahab, L. M.; Miller, D.; Roberts, D. A.

    2017-12-01

    California's San Joaquin Valley is an extremely agriculturally productive region of the country, and understanding the state of soils in this region is an important factor in maintaining this high productivity. In this study, we quantified changing soil cover during the drought and analyzed spatial changes in salinity, organic matter, and moisture using unique soil spectral characteristics. We used data from the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) from Hyperspectral Infrared Imager (HyspIRI) campaign flights in 2013 and 2014 over the San Joaquin Valley. A mixture model was applied to both images that identified non- photosynthetic vegetation, green vegetation, and soil cover fractions through image endmembers of each of these three classes. We optimized the spectral library used to identify these classes with Iterative Endmember Selection (IES), and the images were unmixed using Multiple Endmember Spectral Mixture Analysis (MESMA). Maps of soil electrical conductivity, organic matter, soil saturated moisture, and field moisture were generated for the San Joaquin Valley based on indices developed by Ben-Dor et al. [2002]. Representative polygons were chosen to quantify changes between years. Maps of spectrally distinct soils were also generated for 2013 and 2014, in order to determine the spatial distribution of these soil types as well as their temporal dynamics between years. We estimated that soil cover increased by 16% from 2013-2014. Six spectrally distinct soil types were identified for the region, and it was determined that the distribution of these soil types was not constant for most areas between 2013 and 2014. Changes in soil pH, electrical conductivity, and soil moisture were strongly tied in the region between 2013 and 2014.

  7. Modeling the long-term fate of agricultural nitrate in groundwater in the San Joaquin Valley, California

    Science.gov (United States)

    Chapelle, Francis H.; Campbell, Bruce G.; Widdowson, Mark A.; Landon, Mathew K.

    2013-01-01

    Nitrate contamination of groundwater systems used for human water supplies is a major environmental problem in many parts of the world. Fertilizers containing a variety of reduced nitrogen compounds are commonly added to soils to increase agricultural yields. But the amount of nitrogen added during fertilization typically exceeds the amount of nitrogen taken up by crops. Oxidation of reduced nitrogen compounds present in residual fertilizers can produce substantial amounts of nitrate which can be transported to the underlying water table. Because nitrate concentrations exceeding 10 mg/L in drinking water can have a variety of deleterious effects for humans, agriculturally derived nitrate contamination of groundwater can be a serious public health issue. The Central Valley aquifer of California accounts for 13 percent of all the groundwater withdrawals in the United States. The Central Valley, which includes the San Joaquin Valley, is one of the most productive agricultural areas in the world and much of this groundwater is used for crop irrigation. However, rapid urbanization has led to increasing groundwater withdrawals for municipal public water supplies. That, in turn, has led to concern about how contaminants associated with agricultural practices will affect the chemical quality of groundwater in the San Joaquin Valley. Crop fertilization with various forms of nitrogen-containing compounds can greatly increase agricultural yields. However, leaching of nitrate from soils due to irrigation has led to substantial nitrate contamination of shallow groundwater. That shallow nitrate-contaminated groundwater has been moving deeper into the Central Valley aquifer since the 1960s. Denitrification can be an important process limiting the mobility of nitrate in groundwater systems. However, substantial denitrification requires adequate sources of electron donors in order to drive the process. In many cases, dissolved organic carbon (DOC) and particulate organic carbon

  8. West Valley Demonstration Project Annual Site Environmental Report (ASER) Calendar Year (2016)

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Alison F. [CH2M Hill BWXT West Valley, LLC, NY (United States); Pendl, Michael P. [CH2M Hill BWXT West Valley, LLC, NY (United States); Steiner, II, Robert E. [CH2M Hill BWXT West Valley, LLC, NY (United States); Fox, James R. [CH2M Hill BWXT West Valley, LLC, NY (United States); Hoch, Jerald J. [CH2M Hill BWXT West Valley, LLC, NY (United States); Williams, Janice D. [CH2M Hill BWXT West Valley, LLC, NY (United States); Wrotniak, Chester M. [CH2M Hill BWXT West Valley, LLC, NY (United States); Werchowski, Rebecca L. [CH2M Hill BWXT West Valley, LLC, NY (United States)

    2017-09-12

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2016. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2016. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2016 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  9. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2005

    International Nuclear Information System (INIS)

    West Valley Nuclear Services Company WVNSCO and URS Group, Inc.

    2006-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2005. The report summarizes calendar year (CY) 2005 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs

  10. Pep-up: A review of the Umgeni Valley Project evaulation process ...

    African Journals Online (AJOL)

    Pep-up: A review of the Umgeni Valley Project evaulation process. Tim Wright. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License.

  11. Ground-Water Quality Data in the Coachella Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 820 square-mile Coachella Valley Study Unit (COA) was investigated during February and March 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground water used for public-water supplies within the Coachella Valley, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from 35 wells in Riverside County. Nineteen of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Sixteen additional wells were sampled to evaluate changes in water chemistry along selected ground-water flow paths, examine land use effects on ground-water quality, and to collect water-quality data in areas where little exists. These wells were referred to as 'understanding wells'. The ground-water samples were analyzed for a large number of organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (uranium, tritium, carbon-14, and stable isotopes of hydrogen, oxygen, and boron), and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled

  12. West Valley Demonstration Project Annual Site Environmental Report Calendard Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2006-09-21

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2005. The report summarizes calendar year (CY) 2005 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs.

  13. Status and understanding of groundwater quality in the two southern San Joaquin Valley study units, 2005-2006 - California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Shelton, Jennifer L.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the southern San Joaquin Valley was investigated from October 2005 through March 2006 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. There are two study units located in the southern San Joaquin Valley: the Southeast San Joaquin Valley (SESJ) study unit and the Kern County Subbasin (KERN) study unit. The GAMA Priority Basin Project in the SESJ and KERN study units was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifers. The status assessment is based on water-quality and ancillary data collected in 2005 and 2006 by the USGS from 130 wells on a spatially distributed grid, and water-quality data from the California Department of Public Health (CDPH) database. Data was collected from an additional 19 wells for the understanding assessment. The aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the CDPH database for the SESJ and KERN study units. The status assessment of groundwater quality used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources within the primary aquifers in the SESJ and KERN study units, not the quality of drinking water delivered to consumers. Although the status assessment applies to untreated groundwater, Federal and California regulatory and non-regulatory water-quality benchmarks that apply to drinking water are used

  14. Status and understanding of groundwater quality in the Bear Valley and Lake Arrowhead Watershed Study Unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen

    2017-06-20

    Groundwater quality in the 112-square-mile Bear Valley and Lake Arrowhead Watershed (BEAR) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit comprises two study areas (Bear Valley and Lake Arrowhead Watershed) in southern California in San Bernardino County. The GAMA-PBP is conducted by the California State Water Resources Control Board (SWRCB) in cooperation with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory.The GAMA BEAR study was designed to provide a spatially balanced, robust assessment of the quality of untreated (raw) groundwater from the primary aquifer systems in the two study areas of the BEAR study unit. The assessment is based on water-quality collected by the USGS from 38 sites (27 grid and 11 understanding) during 2010 and on water-quality data from the SWRCB-Division of Drinking Water (DDW) database. The primary aquifer system is defined by springs and the perforation intervals of wells listed in the SWRCB-DDW water-quality database for the BEAR study unit.This study included two types of assessments: (1) a status assessment, which characterized the status of the quality of the groundwater resource as of 2010 by using data from samples analyzed for volatile organic compounds, pesticides, and naturally present inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the BEAR study unit, not the treated drinking water delivered to consumers. Bear Valley study area and the Lake Arrowhead Watershed study area were also compared statistically on the basis of water-quality results and factors potentially affecting the groundwater quality.Relative concentrations (RCs

  15. A visual progression of the Fort Valley Restoration Project treatments using remotely sensed imagery (P-53)

    Science.gov (United States)

    Joseph E. Crouse; Peter Z. Fule

    2008-01-01

    The landscape surrounding the Fort Valley Experimental Forest in northern Arizona has changed dramatically in the past decade due to the Fort Valley Restoration Project, a collaboration between the Greater Flagstaff Forest Partnership, Coconino National Forest, and Rocky Mountain Research Station. Severe wildfires in 1996 sparked community concern to start restoration...

  16. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  17. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2008-12-17

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment.

  18. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007

    International Nuclear Information System (INIS)

    2008-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment

  19. Changes in the status of harvested rice fields in the Sacramento Valley, California: Implications for wintering waterfowl.

    Science.gov (United States)

    Miller, Michael R.; Garr, Jay D.; Coates, Peter S.

    2010-01-01

    Harvested rice fields provide critical foraging habitat for wintering waterfowl in North America, but their value depends upon post-harvest treatments. We visited harvested ricefields in the Sacramento Valley, California, during the winters of 2007 and 2008 (recent period) and recorded their observed status as harvested (standing or mechanically modified stubble), burned, plowed, or flooded. We compared these data with those from identical studies conducted during the 1980s (early period). We documented substantial changes in field status between periods. First, the area of flooded rice increased 4-5-fold, from about 15% to >40% of fields, because of a 3-4-fold increase in the percentage of fields flooded coupled with a 37-41% increase in the area of rice produced. Concurrently, the area of plowed fields increased from 35% of fields, burned fields declined from about 40% to 1%, and fields categorized as harvested declined from 22-54% to rice field status survey in the Sacramento Valley and other North American rice growing regions as appropriate to support long-term monitoring programs and wetland habitat conservation planning for wintering waterfowl.

  20. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    Science.gov (United States)

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural

  1. Installation and Implementation of a Comprehensive Groundwater Monitoring Program for the Indian Wells Valley, California

    Science.gov (United States)

    2010-04-01

    Location: Project Number: COC Number: --- --- --- --- CAMBELL RANCH Receive Date: Sampling Date: Sample Depth: Sample Matrix: --- 02/22/2007 11:10 02/02...Manager: Indian Wells Valley Water [none] Mike Stoner Reported: 03/27/2007 11:18 BCL Sample ID: 0702234-10 Client Sample Name: CAMBELL RANCH, 2/2/2007

  2. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

  3. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    International Nuclear Information System (INIS)

    1992-01-01

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs

  4. Proposed modifications to the Lower Mokelumne River Project, California: FERC Project No. 2916-004

    International Nuclear Information System (INIS)

    1993-11-01

    This final environmental impact statement (FEIS) has been prepared for the Federal Energy Regulatory Commission (Commission) to consider modifications to the existing Lower Mokelumne River Project (LMRP) (FERC Project No. 2916-004) in California. Chinook salmon and steelhead trout populations in the lower Mokelumne River have experienced recent declines and fish kills associated, in part, with discharges from Camanche Dam. The California Department of Fish and Game and the California Sportfishing Protection Alliance have asked the Commission to investigate and correct these problems. A wide range of different mitigation actions has been proposed by parties participating in the scoping of this proceeding, and staff has evaluated these proposed actions in this assessment. The staff is recommending a combination of flow and non-flow modifications to the existing license, including new minimum flow and minimum pool elevation requirements at Camanche Reservoir, ramping rates on dam releases, interim attraction and out-migrant spike flows, instream habitat improvements, and a series of studies and monitoring to determine feasible means for solving off-site fish passage problems

  5. Appraisal of ground-water resources in the San Antonio Creek Valley, Santa Barbara County, California

    Science.gov (United States)

    Hutchinson, C.B.

    1980-01-01

    A nearly threefold increase in demand for water in the 154-square-mile San Antonio Creek valley in California during the period 1958-77 has increased the potential for overdraft on the ground-water basin. The hydrologic budget for this period showed a perennial yield of about 9,800 acre-feet per year and an annual ground-water discharge of about 11,400 acre-feet per year, comprising net pumpage of 7,100 acre-feet, phreatophyte evapotranspiration of 3,000 acre-feet, and base streamflow of 1 ,300 acre-feet. The base flow in San Antonio Creek could diminish to zero when net pumpage reaches 13,500 acre-feet per year. The environmentally sensitive marshland area of Barka Slough may then become stressed as water normally lost through evapotranspiration is captured by pumpage. The aquifer consists of alluvial valley fill that ranges in thickness from 0 to 3,500 feet. Ground water moves seaward from recharge areas along mountain fronts to a consolidated rock barrier about 5 miles east of the Pacific coast. Upwelling of ground water just east of the barrier has resulted in the 550-acre Barka Slough. Transmissivity of the aquifer ranges from 2,600 to 34,000 feet squared per day, with the lowest values occurring in the central part of the valley where the aquifer is thickest but probably finer grained. The salinity problems are increasing in the agricultural parts of the valley, which is east of the barrier. West of the barrier, stream and ground-water quality is poor, owing to seepage of saline water from the marine shale that underlies the area at shallow depths. A proposed basinwide monitoring program includes 17 water-level sites, 12 water-quality sampling sites, 3 streamflow measuring sites, and periodic infrared aerial photography of Barka Slough. A computer model of the ground-water flow system could be developed to assess the impact of various water-management alternatives. (USGS)

  6. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    International Nuclear Information System (INIS)

    2003-01-01

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in the final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning

  7. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-12

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in the final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9

  8. Update on the status of the West Valley demonstration project

    International Nuclear Information System (INIS)

    Greeves, J.T.; Camper, L.W.; Orlando, D.A.; Glenn, C.J.; Buckley, J.T.; Giardina, P.A.

    2002-01-01

    From 1966 to 1972, under an Atomic Energy Commission (AEC) license, Nuclear Fuel Services (NFS) reprocessed 640 metric tons of spent fuel at its West Valley, New York, facility-, the only commercial spent fuel reprocessing plant in the U.S. The facility shut down in 1972, for modifications to increase its seismic stability and to expand its capacity. In 1976, without restarting the operation, NFS withdrew from the reprocessing business and returned control of the facilities to the site owner, the New York State Energy Research and Development Authority (NYSERDA). The reprocessing activities resulted in about 2.3 million liters (600,000 gallons) of liquid high-level waste (HLW) stored below ground in tanks, other radioactive wastes, and residual radioactive contamination. The West Valley site was licensed by AEC, and then the U.S. Nuclear Regulatory Commission (NRC), until 1981, when the license was suspended to execute the 1980 West Valley Demonstration Project (WVDP) Act. The WVDP Act outlines the responsibilities of the U.S. Department of Energy (DOE), NRC, and NYSERDA at the site, including the NRC's responsibility to develop decommissioning criteria for the site. The Commission published the final policy statement on decommissioning criteria for the WVDP at the West Valley site after considering comments from interested stakeholders. In that regard, the Commission prescribed the License Termination Rule (LTR) criteria for the WVDP at the West Valley site, reflecting the fact that the applicable decommissioning goal for the entire NRC-licensed site is compliance with the requirements of the LTR. This paper will describe the history of the site, provide an update of the status of the decommissioning of the site and an overview of the technical and policy issues facing Federal and State regulators and other stakeholders as they strive to complete the remediation of the site. (author)

  9. ENHANCED WARM H2 EMISSION IN THE COMPACT GROUP MID-INFRARED ''GREEN VALLEY''

    International Nuclear Information System (INIS)

    Cluver, M. E.; Ogle, P.; Guillard, P.; Appleton, P. N.; Jarrett, T. H.; Rasmussen, J.; Lisenfeld, U.; Verdes-Montenegro, L.; Antonucci, R.; Bitsakis, T.; Charmandaris, V.; Boulanger, F.; Egami, E.; Xu, C. K.; Yun, M. S.

    2013-01-01

    We present results from a Spitzer mid-infrared spectroscopy study of a sample of 74 galaxies located in 23 Hickson Compact Groups (HCGs), chosen to be at a dynamically active stage of H I depletion. We find evidence for enhanced warm H 2 emission (i.e., above that associated with UV excitation in star-forming regions) in 14 galaxies (∼20%), with 8 galaxies having extreme values of L(H 2 S(0)-S(3))/L(7.7 μm polycyclic aromatic hydrocarbon), in excess of 0.07. Such emission has been seen previously in the compact group HCG 92 (Stephan's Quintet), and was shown to be associated with the dissipation of mechanical energy associated with a large-scale shock caused when one group member collided, at high velocity, with tidal debris in the intragroup medium. Similarly, shock excitation or turbulent heating is likely responsible for the enhanced H 2 emission in the compact group galaxies, since other sources of heating (UV or X-ray excitation from star formation or active galactic nuclei) are insufficient to account for the observed emission. The group galaxies fall predominantly in a region of mid-infrared color-color space identified by previous studies as being connected to rapid transformations in HCG galaxy evolution. Furthermore, the majority of H 2 -enhanced galaxies lie in the optical ''green valley'' between the blue cloud and red sequence, and are primarily early-type disk systems. We suggest that H 2 -enhanced systems may represent a specific phase in the evolution of galaxies in dense environments and provide new insight into mechanisms which transform galaxies onto the optical red sequence.

  10. West Valley Demonstration Project site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The West Valley Demonstration Project (WVDP), the site of a US Department of Energy environmental cleanup activity operated by West Valley Nuclear Services Co., Inc., (WVNS), is in the process of solidifying liquid high-level radioactive waste remaining at the site after commercial nuclear fuel reprocessing was discontinued. The Project is located in Western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1996 by environmental monitoring personnel. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. Appendix A is a summary of the site environmental monitoring schedule. Appendix B lists the environmental permits and regulations pertaining to the WVDP. Appendices C through F contain summaries of data obtained during 1996 and are intended for those interested in more detail than is provided in the main body of the report.

  11. Monitoring the Thermal Regime at Hot Creek and Vicinity, Long Valley Caldera, Eastern California

    Science.gov (United States)

    Clor, L. E.; Hurwitz, S.; Howle, J.

    2015-12-01

    Hot Creek Gorge contains the most obvious surface expression of the hydrothermal system in Long Valley Caldera, California, discharging 200-300 L/s of thermal water according to USGS measurements made since 1988. Formerly, Hot Creek was a popular public swimming area, but it was closed in 2006 due to unpredictable temperature fluctuations and sporadic geysering of thermal water within the creek (Farrar et al. USGS Fact Sheet2007-3045). The USGS has monitored the thermal regime in the area since the mid-1980s, including a long-term series of studies 0.6 km away at well CH-10b. Temperature measurements in the ~100 m deep well, which have been performed on an intermittent basis since it was drilled in 1983, reveal a complex temperature profile. Temperatures increase with depth to a maximum at about 45 meters below the ground surface, and then decrease steadily to the bottom of the well. The depth of the temperature maximum in the well (~45 m) corresponds to an elevation of ~2,120 m, roughly equivalent to the elevation of Hot Creek, and appears to sample the same hydrothermal flow system that supplies thermal features at the surface in the gorge. Starting in the early 1990s, the maximum temperature in CH-10b rose from 93.4°C to its peak in 2007 at 101.0°C. A cooling trend was observed beginning in 2009 and continues to present (99.3°C in June 2015). As the input into CH-10b is at the elevation of the creek, it exhibits the potential for response to thermal events at Hot Creek, and could provide a useful tool for monitoring future hazards. On short timescales, CH-10b also responds to large global earthquakes, greater than ~M7. These responses are captured with continuously logged high-frequency data (5s), and are usually characterized by a co-seismic water level drop of up to ten centimeters. Water levels tend to recover to pre-earthquake levels within a few hours to days.

  12. Phase 1 studies summary of major findings of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    Science.gov (United States)

    Valoppi, Laura

    2018-04-02

    Wildlife, the Santa Clara Valley Water District, the U.S. Army Corps of Engineers, and the U.S. Fish and Wildlife Service.To implement the AMP, the PMT have selected and funded applied studies and monitoring projects to address key uncertainties. This information is used by the PMT to make decisions about current management of the project area and future restoration actions in order to meet project.This document summarizes the major scientific findings from studies conducted from 2009 to 2016, as part of the science program that was conducted in conjunction with Phase 1 restoration and management actions. Additionally, this report summarizes the management response to the study results under the guidance of the AMP framework and provides a list of suggested studies to be conducted in “Phase 2–A scorecard summarizing the Project’s progress toward meeting the AMP goals for a range of Project objectives.” The scoring to date indicates that the Project is meeting or exceeding expectations for sediment accretion and western snowy plover (Charadrius alexandrinus nivosus) recovery. There is uncertainty with respect to objectives for California gulls (Larus californicus), California least tern (Sternula antillarum), steelhead trout (Oncorhynchus mykiss), and regulatory water quality objectives. Water quality and algal blooms, specifically of the managed ponds, is indicated as trending negative. However, the vast majority of objectives are trending positive, including increased abundance for a number of bird guilds, increasing marsh habitat, maintenance of mudflats, visitor experience, estuarine fish numbers, and special-status marsh species numbers.

  13. Ground-Water Quality Data in the Southern Sacramento Valley, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Milby Dawson, Barbara J.; Bennett, George L.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 2,100 square-mile Southern Sacramento Valley study unit (SSACV) was investigated from March to June 2005 as part of the Statewide Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. This study was designed to provide a spatially unbiased assessment of raw ground-water quality within SSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 83 wells in Placer, Sacramento, Solano, Sutter, and Yolo Counties. Sixty-seven of the wells were selected using a randomized grid-based method to provide statistical representation of the study area. Sixteen of the wells were sampled to evaluate changes in water chemistry along ground-water flow paths. Four additional samples were collected at one of the wells to evaluate water-quality changes with depth. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator constituents), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, matrix spikes

  14. Biomonitoring with Micronuclei Test in Buccal Cells of Female Farmers and Children Exposed to Pesticides of Maneadero Agricultural Valley, Baja California, Mexico

    OpenAIRE

    Idalia Jazmin Castañeda-Yslas; María Evarista Arellano-García; Marco Antonio García-Zarate; Balam Ruíz-Ruíz; María Guadalupe Zavala-Cerna; Olivia Torres-Bugarín

    2016-01-01

    Feminization of the agricultural labor is common in Mexico; these women and their families are vulnerable to several health risks including genotoxicity. Previous papers have presented contradictory information with respect to indirect exposure to pesticides and DNA damage. We aimed to evaluate the genotoxic effect in buccal mucosa from female farmers and children, working in the agricultural valley of Maneadero, Baja California. Frequencies of micronucleated cells (MNc) and nuclear abnormali...

  15. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006

    International Nuclear Information System (INIS)

    2007-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment

  16. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2007-09-27

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment.

  17. Tomographic Rayleigh wave group velocities in the Central Valley, California, centered on the Sacramento/San Joaquin Delta

    Science.gov (United States)

    Fletcher, Jon B.; Erdem, Jemile; Seats, Kevin; Lawrence, Jesse

    2016-04-01

    If shaking from a local or regional earthquake in the San Francisco Bay region were to rupture levees in the Sacramento/San Joaquin Delta, then brackish water from San Francisco Bay would contaminate the water in the Delta: the source of freshwater for about half of California. As a prelude to a full shear-wave velocity model that can be used in computer simulations and further seismic hazard analysis, we report on the use of ambient noise tomography to build a fundamental mode, Rayleigh wave group velocity model for the region around the Sacramento/San Joaquin Delta in the western Central Valley, California. Recordings from the vertical component of about 31 stations were processed to compute the spatial distribution of Rayleigh wave group velocities. Complex coherency between pairs of stations was stacked over 8 months to more than a year. Dispersion curves were determined from 4 to about 18 s. We calculated average group velocities for each period and inverted for deviations from the average for a matrix of cells that covered the study area. Smoothing using the first difference is applied. Cells of the model were about 5.6 km in either dimension. Checkerboard tests of resolution, which are dependent on station density, suggest that the resolving ability of the array is reasonably good within the middle of the array with resolution between 0.2 and 0.4°. Overall, low velocities in the middle of each image reflect the deeper sedimentary syncline in the Central Valley. In detail, the model shows several centers of low velocity that may be associated with gross geologic features such as faulting along the western margin of the Central Valley, oil and gas reservoirs, and large crosscutting features like the Stockton arch. At shorter periods around 5.5 s, the model's western boundary between low and high velocities closely follows regional fault geometry and the edge of a residual isostatic gravity low. In the eastern part of the valley, the boundaries of the low

  18. Tomographic Rayleigh-wave group velocities in the Central Valley, California centered on the Sacramento/San Joaquin Delta

    Science.gov (United States)

    Fletcher, Jon Peter B.; Erdem, Jemile; Seats, Kevin; Lawrence, Jesse

    2016-01-01

    If shaking from a local or regional earthquake in the San Francisco Bay region were to rupture levees in the Sacramento/San Joaquin Delta then brackish water from San Francisco Bay would contaminate the water in the Delta: the source of fresh water for about half of California. As a prelude to a full shear-wave velocity model that can be used in computer simulations and further seismic hazard analysis, we report on the use of ambient noise tomography to build a fundamental-mode, Rayleigh-wave group velocity model for the region around the Sacramento/San Joaquin Delta in the western Central Valley, California. Recordings from the vertical component of about 31 stations were processed to compute the spatial distribution of Rayleigh wave group velocities. Complex coherency between pairs of stations were stacked over 8 months to more than a year. Dispersion curves were determined from 4 to about 18 seconds. We calculated average group velocities for each period and inverted for deviations from the average for a matrix of cells that covered the study area. Smoothing using the first difference is applied. Cells of the model were about 5.6 km in either dimension. Checkerboard tests of resolution, which is dependent on station density, suggest that the resolving ability of the array is reasonably good within the middle of the array with resolution between 0.2 and 0.4 degrees. Overall, low velocities in the middle of each image reflect the deeper sedimentary syncline in the Central Valley. In detail, the model shows several centers of low velocity that may be associated with gross geologic features such as faulting along the western margin of the Central Valley, oil and gas reservoirs, and large cross cutting features like the Stockton arch. At shorter periods around 5.5s, the model’s western boundary between low and high velocities closely follows regional fault geometry and the edge of a residual isostatic gravity low. In the eastern part of the valley, the boundaries

  19. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste-characterization of the Death Valley region, Nevada and California

    International Nuclear Information System (INIS)

    Bedinger, M.S.; Sargent, K.A.; Langer, W.H.

    1989-01-01

    The Death Valley region, Nevada and California, in the Basin and Range province, is an area of about 80,200 sq km located in southern Nevada and southeastern California. Precambrian metamorphic and intrusive basement rocks are overlain by a thick section of Paleozoic clastic and evaporitic sedimentary rocks. Mesozoic and Cenozoic rocks include extrusive and intrusive rocks and clastic sedimentary rocks. Structural features within the Death Valley indicate a long and complex tectonic evolution from late Precambrian to the present. Potential repository host media in the region include granite and other coarse-grained plutonic rocks, ashflow tuff, basaltic and andesitic lava flows, and basin fill. The Death Valley region is composed largely of closed topographic basins that are apparently coincident with closed groundwater flow systems. In these systems, recharge occurs sparingly at higher altitudes by infiltration of precipitation or by infiltration of ephemeral runoff. Discharge occurs largely by spring flow and by evaporation and transpiration in the playas. Death Valley proper, for which the region was named, is the ultimate discharge area for a large, complex system of groundwater aquifers that occupy the northeastern part of the region. The deepest part of the system consists of carbonate aquifers that connect closed topographic basins at depth. The discharge from the system occurs in several intermediate areas that are geomorphically, stratigraphically, and structurally controlled. Ultimately, most groundwater flow terminates by discharge to Death Valley; groundwater is discharged to the Colorado River from a small part of the region

  20. The Yosemite Extreme Panoramic Imaging Project: Monitoring Rockfall in Yosemite Valley with High-Resolution, Three-Dimensional Imagery

    Science.gov (United States)

    Stock, G. M.; Hansen, E.; Downing, G.

    2008-12-01

    Yosemite Valley experiences numerous rockfalls each year, with over 600 rockfall events documented since 1850. However, monitoring rockfall activity has proved challenging without high-resolution "basemap" imagery of the Valley walls. The Yosemite Extreme Panoramic Imaging Project, a partnership between the National Park Service and xRez Studio, has created an unprecedented image of Yosemite Valley's walls by utilizing gigapixel panoramic photography, LiDAR-based digital terrain modeling, and three-dimensional computer rendering. Photographic capture was accomplished by 20 separate teams shooting from key overlapping locations throughout Yosemite Valley. The shots were taken simultaneously in order to ensure uniform lighting, with each team taking over 500 overlapping shots from each vantage point. Each team's shots were then assembled into 20 gigapixel panoramas. In addition, all 20 gigapixel panoramas were projected onto a 1 meter resolution digital terrain model in three-dimensional rendering software, unifying Yosemite Valley's walls into a vertical orthographic view. The resulting image reveals the geologic complexity of Yosemite Valley in high resolution and represents one of the world's largest photographic captures of a single area. Several rockfalls have already occurred since image capture, and repeat photography of these areas clearly delineates rockfall source areas and failure dynamics. Thus, the imagery has already proven to be a valuable tool for monitoring and understanding rockfall in Yosemite Valley. It also sets a new benchmark for the quality of information a photographic image, enabled with powerful new imaging technology, can provide for the earth sciences.

  1. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

  2. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied. The terminal waste form processes considered were: borosilicate glass, low-alkali glass, marbles-in-lead matrix, and crystallinolecular potential and molecular dynamics calculations of the effect are yet to be completed. Cous oxide was also investigated. The reaction is first order in nitrite ion, second order in hydrogen ion, and between zero and first order in hydroxylamine monosulfonate, depending on the concentration

  3. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2015

    International Nuclear Information System (INIS)

    Rendall, John D.; Steiner, Alison F.; Pendl, Michael P.; Biedermann, Charles A.; Steiner II, Robert E.; Fox, James R.; Hoch, Jerald J.; Wrotniak, Chester M.; Werchowski, Rebecca L.

    2016-01-01

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2015. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2015. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2015 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  4. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, Alison F. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Pendl, Michael P. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Biedermann, Charles A. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, II, Robert E. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Fox, James R. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Hoch, Jerald J. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Werchowski, Rebecca L. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States)

    2015-09-15

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2014. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2014. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2014 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  5. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, Alison F. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Pendl, Michael P. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Biedermann, Charles A. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, II, Robert E. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Fox, James R. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Hoch, Jerald J. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Wrotniak, Chester M. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Werchowski, Rebecca L. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States)

    2016-09-15

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2015. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2015. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2015 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  6. California's disposal plan goes nowhere fast

    International Nuclear Information System (INIS)

    Cohen, J.

    1994-01-01

    California desperately needs a place to store as much as 5.5 million cubic feet of low-level radioactive waste over the next 30 years. Ward Valley, a barren stretch of the Mojave Desert located some 250 miles east of Los Angeles, was supposed to be that place. Last year, trenches dug in the arid, seismically stable valley were supposed to be that place. Last year, trenches dug in the arid, seismically stable valley were supposed to begin holding wastes like the gadolinium-153 used to detect osteoporosis and the selenium-75 used to study proteins, as well as wastes from nuclear power plants. But construction crews haven't even begun to dig, because Ward Valley has become ground zero in the fierce national debate over radioactive waste disposal. Lawsuits filed by opponents, who fear the waste will contaminate the environment, and the intervention of influential politicians such as Sen. Barbara Boxer (D-CA) have blocked the Interior Department from selling the federally owned Ward Valley land to California to begin construction. As a result, universities, biotechnology companies, and hospitals may be stuck with wastes piling up at their institutions, which could have repercussions

  7. Regional three-dimensional seismic velocity model of the crust and uppermost mantle of northern California

    Science.gov (United States)

    Thurber, C.; Zhang, H.; Brocher, T.; Langenheim, V.

    2009-01-01

    We present a three-dimensional (3D) tomographic model of the P wave velocity (Vp) structure of northern California. We employed a regional-scale double-difference tomography algorithm that incorporates a finite-difference travel time calculator and spatial smoothing constraints. Arrival times from earthquakes and travel times from controlled-source explosions, recorded at network and/or temporary stations, were inverted for Vp on a 3D grid with horizontal node spacing of 10 to 20 km and vertical node spacing of 3 to 8 km. Our model provides an unprecedented, comprehensive view of the regional-scale structure of northern California, putting many previously identified features into a broader regional context and improving the resolution of a number of them and revealing a number of new features, especially in the middle and lower crust, that have never before been reported. Examples of the former include the complex subducting Gorda slab, a steep, deeply penetrating fault beneath the Sacramento River Delta, crustal low-velocity zones beneath Geysers-Clear Lake and Long Valley, and the high-velocity ophiolite body underlying the Great Valley. Examples of the latter include mid-crustal low-velocity zones beneath Mount Shasta and north of Lake Tahoe. Copyright 2009 by the American Geophysical Union.

  8. Natural recharge estimation and uncertainty analysis of an adjudicated groundwater basin using a regional-scale flow and subsidence model (Antelope Valley, California, USA)

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Martin, Peter

    2015-01-01

    Groundwater has provided 50–90 % of the total water supply in Antelope Valley, California (USA). The associated groundwater-level declines have led the Los Angeles County Superior Court of California to recently rule that the Antelope Valley groundwater basin is in overdraft, i.e., annual pumpage exceeds annual recharge. Natural recharge consists primarily of mountain-front recharge and is an important component of the total groundwater budget in Antelope Valley. Therefore, natural recharge plays a major role in the Court’s decision. The exact quantity and distribution of natural recharge is uncertain, with total estimates from previous studies ranging from 37 to 200 gigaliters per year (GL/year). In order to better understand the uncertainty associated with natural recharge and to provide a tool for groundwater management, a numerical model of groundwater flow and land subsidence was developed. The transient model was calibrated using PEST with water-level and subsidence data; prior information was incorporated through the use of Tikhonov regularization. The calibrated estimate of natural recharge was 36 GL/year, which is appreciably less than the value used by the court (74 GL/year). The effect of parameter uncertainty on the estimation of natural recharge was addressed using the Null-Space Monte Carlo method. A Pareto trade-off method was also used to portray the reasonableness of larger natural recharge rates. The reasonableness of the 74 GL/year value and the effect of uncertain pumpage rates were also evaluated. The uncertainty analyses indicate that the total natural recharge likely ranges between 34.5 and 54.3 GL/year.

  9. Induced dynamic nonlinear ground response at Gamer Valley, California

    Science.gov (United States)

    Lawrence, Z.; Bodin, P.; Langston, C.A.; Pearce, F.; Gomberg, J.; Johnson, P.A.; Menq, F.-Y.; Brackman, T.

    2008-01-01

    We present results from a prototype experiment in which we actively induce, observe, and quantify in situ nonlinear sediment response in the near surface. This experiment was part of a suite of experiments conducted during August 2004 in Garner Valley, California, using a large mobile shaker truck from the Network for Earthquake Engineering Simulation (NEES) facility. We deployed a dense accelerometer array within meters of the mobile shaker truck to replicate a controlled, laboratory-style soil dynamics experiment in order to observe wave-amplitude-dependent sediment properties. Ground motion exceeding 1g acceleration was produced near the shaker truck. The wave field was dominated by Rayleigh surface waves and ground motions were strong enough to produce observable nonlinear changes in wave velocity. We found that as the force load of the shaker increased, the Rayleigh-wave phase velocity decreased by as much as ???30% at the highest frequencies used (up to 30 Hz). Phase velocity dispersion curves were inverted for S-wave velocity as a function of depth using a simple isotropic elastic model to estimate the depth dependence of changes to the velocity structure. The greatest change in velocity occurred nearest the surface, within the upper 4 m. These estimated S-wave velocity values were used with estimates of surface strain to compare with laboratory-based shear modulus reduction measurements from the same site. Our results suggest that it may be possible to characterize nonlinear soil properties in situ using a noninvasive field technique.

  10. Exhumation of the Black Mountains in Death Valley, California, with new thermochronometric data from the Badwater Turtleback

    Science.gov (United States)

    Sizemore, T. M.; Cemen, I.; Wielicki, M. M.; Stockli, D. F.; Heizler, M. T.; Lutz, B. M.

    2017-12-01

    The Black Mountains, in Death Valley, California, are one of the key areas to better understand Basin and Range extension because they contain Cenozoic igneous and sedimentary rocks overlying mid- to deep-crustal, 1.74 Ga basement gneiss with abundant fault striations, large-scale extensional folds, and tectonite fabrics containing top-to-the-northwest shear-sense indicators. These rocks make up the footwall of three prominent, high-relief "turtleback" fault surfaces in the western flank of the Black Mountains, which are thought to have accommodated a significant amount of strain in the Death Valley area. It is unknown whether the missing Paleozoic and Mesozoic strata in the Black Mountains were removed in association with high-angle faulting, or along a continuous detachment surface with a rolling-hinge style of faulting as the hanging wall moved to the west, now forming the Panamint Range. The turtlebacks play an important role in resolving this question because they are commonly cited as containing conflicting evidence of both hypotheses. To provide insight into this problem, we are building an exhumation model across the Black Mountains using previously published thermochronometric data as well as new transect-based (U-Th)/He and Ar-Ar thermochronology and U-Pb geochronology for the Badwater turtleback. The model will provide a four-dimensional view of the exhumation history of the Black Mountains, to serve as evidence for either of the two previously mentioned hypotheses, or possibly some other style of exhumation. Additionally, we will compare the exhumation history of the Black Mountains to that of the Panamint Range using previously published data and interpretations. Our preliminary zircon U-Pb data suggest a crystallization age for the gneissic rocks on the Badwater turtleback of 1.74 Ga (207Pb/206Pb, 2σ error=31.8 Ma, n=6) with two younger populations at 1.46 Ga (207Pb/206Pb, 2σ error=51.8 Ma, n=3) and 79.6 Ma (206Pb/238U, 2σ error=10.0 Ma, n=2

  11. Prediction and visualization of redox conditions in the groundwater of Central Valley, California

    Science.gov (United States)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2017-01-01

    Regional-scale, three-dimensional continuous probability models, were constructed for aspects of redox conditions in the groundwater system of the Central Valley, California. These models yield grids depicting the probability that groundwater in a particular location will have dissolved oxygen (DO) concentrations less than selected threshold values representing anoxic groundwater conditions, or will have dissolved manganese (Mn) concentrations greater than selected threshold values representing secondary drinking water-quality contaminant levels (SMCL) and health-based screening levels (HBSL). The probability models were constrained by the alluvial boundary of the Central Valley to a depth of approximately 300 m. Probability distribution grids can be extracted from the 3-D models at any desired depth, and are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions.Models were constructed using a Boosted Regression Trees (BRT) machine learning technique that produces many trees as part of an additive model and has the ability to handle many variables, automatically incorporate interactions, and is resistant to collinearity. Machine learning methods for statistical prediction are becoming increasing popular in that they do not require assumptions associated with traditional hypothesis testing. Models were constructed using measured dissolved oxygen and manganese concentrations sampled from 2767 wells within the alluvial boundary of the Central Valley, and over 60 explanatory variables representing regional-scale soil properties, soil chemistry, land use, aquifer textures, and aquifer hydrologic properties. Models were trained on a USGS dataset of 932 wells, and evaluated on an independent hold-out dataset of 1835 wells from the California Division of Drinking Water. We used cross-validation to assess the predictive performance of

  12. Prediction and visualization of redox conditions in the groundwater of Central Valley, California

    Science.gov (United States)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2017-03-01

    Regional-scale, three-dimensional continuous probability models, were constructed for aspects of redox conditions in the groundwater system of the Central Valley, California. These models yield grids depicting the probability that groundwater in a particular location will have dissolved oxygen (DO) concentrations less than selected threshold values representing anoxic groundwater conditions, or will have dissolved manganese (Mn) concentrations greater than selected threshold values representing secondary drinking water-quality contaminant levels (SMCL) and health-based screening levels (HBSL). The probability models were constrained by the alluvial boundary of the Central Valley to a depth of approximately 300 m. Probability distribution grids can be extracted from the 3-D models at any desired depth, and are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Models were constructed using a Boosted Regression Trees (BRT) machine learning technique that produces many trees as part of an additive model and has the ability to handle many variables, automatically incorporate interactions, and is resistant to collinearity. Machine learning methods for statistical prediction are becoming increasing popular in that they do not require assumptions associated with traditional hypothesis testing. Models were constructed using measured dissolved oxygen and manganese concentrations sampled from 2767 wells within the alluvial boundary of the Central Valley, and over 60 explanatory variables representing regional-scale soil properties, soil chemistry, land use, aquifer textures, and aquifer hydrologic properties. Models were trained on a USGS dataset of 932 wells, and evaluated on an independent hold-out dataset of 1835 wells from the California Division of Drinking Water. We used cross-validation to assess the predictive performance of

  13. West Valley Demonstration Project annual report to Congress

    International Nuclear Information System (INIS)

    1990-01-01

    By the end of the fiscal year, the West Valley Demonstration Project had processed 757,000 litres of liquid high-level waste, removing most of the radioactive constituents by ion exchange. The radioactive ion exchange material is being stored in an underground tank pending its incorporation, along with sludge still in the tank, into borosilicate glass. The decontaminated salt solution was solidified into a cement low-level waste form which has been reviewed and endorsed by the Nuclear Regulatory Commission. Five tests of the waste glass melter system were completed. A Notice of Intent was published to prepare a joint federal/state Environmental Impact Statement. Design of the Vitrification Facility, a major milestone, was completed and construction of the facility enclosure has begun. A Department of Energy Tiger Team and Technical Safety Appraisal of the Project found no undue risks to worker or public health and safety or the environment

  14. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  15. 75 FR 62853 - Notice of Availability of the Record of Decision for the Imperial Valley Solar Project and...

    Science.gov (United States)

    2010-10-13

    ... Management Plan (RMP) for the project site and the surrounding areas) located in the California Desert... Associated Amendment to the California Desert Conservation Area Resource Management Plan-Amendment, Imperial... the proprietary SunCatcher technology and facilities. The IVS project site is proposed on...

  16. Evaluating Options for Improving California's Drought Resilience

    Science.gov (United States)

    Ray, P. A.; Schwarz, A.; Wi, S.; Correa, M.; Brown, C.

    2015-12-01

    Through a unique collaborative arrangement, the University of Massachusetts (UMass) and the California Department of Water Resources (DWR) have together performed a baseline climate change analysis of the California state (State Water Project) and federal (Central Valley Project) water systems. The first step in the baseline analysis was development of an improved basinwide hydrologic model covering a large area of California including all major tributaries to the state and federal water systems. The CalLite modeling system used by DWR for planning purposes allowed simulation of the system of reservoirs, rivers, control points, and deliveries which are then used to create performance metrics that quantify a wide range of system characteristics including water deliveries, water quality, and environmental/ecological factors. A baseline climate stress test was conducted to identify current vulnerabilities to climate change through the linking of the modeling chain with Decision Scaling concepts through the UMass bottom-up climate stress-testing algorithm. This procedure allowed the first comprehensive climate stress analysis of the California state and federal water systems not constrained by observed historical variability and wet-dry year sequences. A forward-looking drought vulnerability and adaptation assessment of the water systems based on this workflow is ongoing and preliminary results will be presented. Presentation of results will include discussion of the collaborative arrangement between DWR and UMass, which is instrumental to both the success of the research and the education of policy makers.

  17. Ground-Water Quality Data in the Middle Sacramento Valley Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Schmitt, Stephen J.; Fram, Miranda S.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,340 square mile Middle Sacramento Valley study unit (MSACV) was investigated from June through September, 2006, as part of the California Groundwater Ambient Monitoring and Assessment (GAMA) program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Middle Sacramento Valley study was designed to provide a spatially unbiased assessment of raw ground-water quality within MSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 108 wells in Butte, Colusa, Glenn, Sutter, Tehama, Yolo, and Yuba Counties. Seventy-one wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells), 15 wells were selected to evaluate changes in water chemistry along ground-water flow paths (flow-path wells), and 22 were shallow monitoring wells selected to assess the effects of rice agriculture, a major land use in the study unit, on ground-water chemistry (RICE wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. Quality-control samples (blanks

  18. Regulatory, Land Ownership, and Water Availability Factors for a Magma Well: Long Valley Caldera and Coso Hot Springs, California

    Energy Technology Data Exchange (ETDEWEB)

    Blackett, Robert

    1985-09-01

    The U.S. Department of Energy is currently engaged in a program to demonstrate the engineering feasibility of extracting thermal energy from high-level molten magma bodies. The program is being carried out under the direction of Sandia National Laboratories where a number of individual projects support the overall program. The existing program elements include (1) high-temperature materials compatibility testing; (2) studies of properties of melts of various compositions; and (3) the investigation of the economics of a magma energy extraction system. Another element of the program is being conducted with the cooperation of the U.S. Geological Survey, and involves locating and outlining magma bodies at selected sites using various geophysical techniques. The ultimate goal here will be to define the limits of a magma body as a drilling target. During an earlier phase of the program, more than twenty candidate study sites considered were evaluated based upon: (1) the likelihood of the presence of a shallow magma chamber, (2) the accessibility of the site, and (3) physical and institutional constraints associated with each site with respect to performing long-term experiments. From these early phase activities, the number of candidate sites were eventually narrowed to just 2. The sites currently under consideration are Coso Hot Springs and the Long Valley caldera (Figure 1). This report describes certain attributes of these sites in order to help identify potential problems related to: (1) state and federal regulations pertaining to geothermal development; (2) land ownership; and (3) water resource availability. The information sources used in this study were mainly maps, publications, and informative documents gathered from the California Division of Oil and Gas and the U.S. Department of the Interior. Environmental studies completed for the entire Long Valley caldera study area, and for portions of the Coso Hot Springs study area were also used for reference.

  19. Deformation from the 1989 Loma Prieta earthquake near the southwest margin of the Santa Clara Valley, California

    Science.gov (United States)

    Schmidt, Kevin M.; Ellen, Stephen D.; Peterson, David M.

    2014-01-01

    Damage to pavement and near-surface utility pipes, caused by the 17 October 1989, Loma Prieta earthquake, provides evidence for ground deformation in a 663 km2 area near the southwest margin of the Santa Clara Valley, California (USA). A total of 1427 damage sites, collected from more than 30 sources, are concentrated in four zones, three of which lie near previously mapped faults. In one of these zones, the channel lining of Los Gatos Creek, a 2-km-long concrete strip trending perpendicular to regional geologic structure, was broken by thrusts that were concentrated in two belts, each several tens of meters wide, separated by more than 300 m of relatively undeformed concrete.

  20. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  1. Analysis of the quality of image data acquired by the LANDSAT-4 thematic mapper and multispectral scanners. [Central Valley, California

    Science.gov (United States)

    Colwell, R. N. (Principal Investigator)

    1983-01-01

    Image products and numeric data were extracted from both TM and MSS data in an effort to evaluate the quality of these data for interpreting major agricultural resources and conditions in California's Central Valley. The utility of TM data appears excellent for meeting most of the inventory objectives of the agricultural resource specialist. These data should be extremely valuable for crop type and area proportion estimation, for updating agricultural land use survey maps at 1:24,000-scale and smaller, for field boundary definition, and for determining the size and location of individual farmsteads.

  2. FINDING SOLUTIONS AT THE WEST VALLEY DEMONSTRATION PROJECT

    International Nuclear Information System (INIS)

    Drake, John L.; Gramling, James M.; Houston, Helene M.

    2003-01-01

    The United States Department of Energy Office of Environmental Management (DOE-EM) faces a number of sizeable challenges as it begins to transform its mission from managing risk to reducing and eliminating risk throughout the DOE Complex. One of the greatest challenges being addressed by DOE-EM as this transformation takes place is accelerating the deactivation and decommissioning of thousands of facilities within the DOE Complex that were once used to support nuclear-related programs and projects. These facilities are now unused and aging. Finding solutions to complete the cleanup of these aging facilities more safely, efficiently, and effectively while reducing costs is critical to successfully meeting DOE-EM's cleanup challenge. The Large-Scale Demonstration and Deployment Project (LSDDP) of Hot Cells at the West Valley Demonstration Project (WVDP) is a near-term project funded through the DOE's National Energy Technology Laboratory (DOE-NETL) for the specific purpose of identifying, evaluating, demonstrating, and deploying commercially available technologies that are capable of streamlining the cleanup of hot cells in unused facilities while improving worker safety. Two DOE project sites are participating in this LSDDP: the WVDP site in West Valley, New York and the Hanford River Corridor Project (RCP) site in Richland, Washington. The WVDP site serves as the host site for the project. Technologies considered for demonstration and potential deployment at both LSDDP sites are targeted for application in hot cells that require the use of remote and semi-remote techniques to conduct various cleanup-related activities because of high radiation or high contamination levels. These hot cells, the type of cleanup activities being conducted, and technologies selected for demonstration are the main topics discussed in this paper. The range of cleanup-related activities addressed include in-situ characterization, size-reduction, contamination control, decontamination, in

  3. Chinook Critical Habitat, Central Valley - NOAA [ds125

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Chinook Critical Habitat as well as habitat type and quality in the Central Valley Spring-run Evolutionary Significant Unit...

  4. Chinook Critical Habitat, Central Valley - NOAA [ds125

    Data.gov (United States)

    California Natural Resource Agency — This layer depicts areas designated for Chinook Critical Habitat as well as habitat type and quality in the Central Valley Spring-run Evolutionary Significant Unit...

  5. Analog model study of the ground-water basin of the Upper Coachella Valley, California

    Science.gov (United States)

    Tyley, Stephen J.

    1974-01-01

    An analog model of the ground-water basin of the upper Coachella Valley was constructed to determine the effects of imported water on ground-water levels. The model was considered verified when the ground-water levels generated by the model approximated the historical change in water levels of the ground-water basin caused by man's activities for the period 1986-67. The ground-water basin was almost unaffected by man's activities until about 1945 when ground-water development caused the water levels to begin to decline. The Palm Springs area has had the largest water-level decline, 75 feet since 1986, because of large pumpage, reduced natural inflow from the San Gorgonio Pass area, and diversions of natural inflows at Snow and Falls Creeks and Chino Canyon starting in 1945. The San Gorgonio Pass inflow had been reduced from about 18,000 acre-feet in 1986 to about 9,000 acre-feet by 1967 because of increased ground-water pumpage in the San Gorgonio Pass area, dewatering of the San Gorgonio Pass area that took place when the tunnel for the Metropolitan Water District of Southern California was drilled, and diversions of surface inflow at Snow and Falls Creeks. In addition, 1944-64 was a period of below-normal precipitation which, in part, contributed to the declines in water levels in the Coachella Valley. The Desert Hot Springs, Garnet Hill, and Mission Creek subbasins have had relatively little development; consequently, the water-level declines have been small, ranging from 5 to 15 feet since 1986. In the Point Happy area a decline of about 2 feet per year continued until 1949 when delivery of Colorado River water to the lower valley through the Coachella Canal was initiated. Since 1949 the water levels in the Point Happy area have been rising and by 1967 were above their 1986 levels. The Whitewater River subbasin includes the largest aquifer in the basin, having sustained ground-water pumpage of about 740,000 acre-feet from 1986 to 1967, and will probably

  6. Solar energy innovation and Silicon Valley

    Science.gov (United States)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  7. The evolution of project financing in the geothermal industry

    International Nuclear Information System (INIS)

    Cardenas, G.S.; Miller, D.M.

    1990-01-01

    Sound underlying economics and beneficial contractual relationships are the fundamentals of any project financing. Given these essential elements, the successful transaction must properly allocate the costs, benefits and risks to the appropriate participants in the most efficient manner. In this paper the authors examine four instances in which project financing offered optimal solutions to this problem in a series of transactions for the successive development of the 70 MW Ormesa Geothermal Energy Complex in the Imperial Valley of California

  8. 77 FR 31037 - Notice of Segregation of Public Lands for the Proposed Hyder Valley Solar Energy Project in...

    Science.gov (United States)

    2012-05-24

    ...; AZA34425] Notice of Segregation of Public Lands for the Proposed Hyder Valley Solar Energy Project in... of up to 2 years. This is for the purpose of processing one solar energy right-of-way (ROW) application submitted by Pacific Solar Investments, LLC, to construct and operate the Hyder Valley Solar...

  9. Spatiotemporal Patterns of Ice Mass Variations and the Local Climatic Factors in the Riparian Zone of Central Valley, California

    Science.gov (United States)

    Inamdar, P.; Ambinakudige, S.

    2016-12-01

    Californian icefields are natural basins of fresh water. They provide irrigation water to the farms in the central valley. We analyzed the ice mass loss rates, air temperature and land surface temperature (LST) in Sacramento and San Joaquin basins in California. The digital elevation models from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to calculate ice mass loss rate between the years 2002 and 2015. Additionally, Landsat TIR data were used to extract the land surface temperature. Data from local weather stations were analyzed to understand the spatiotemporal trends in air temperature. The results showed an overall mass recession of -0.8 ± 0.7 m w.e.a-1. We also noticed an about 60% loss in areal extent of the glaciers in the study basins between 2000 and 2015. Local climatic factors, along with the global climate patterns might have influenced the negative trends in the ice mass loss. Overall, there was an increase in the air temperature by 0.07± 0.02 °C in the central valley between 2000 and 2015. Furthermore, LST increased by 0.34 ± 0.4 °C and 0.55± 0.1 °C in the Sacramento and San Joaquin basins. Our preliminary results show the decrease in area and mass of ice mass in the basins, and changing agricultural practices in the valley.

  10. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1994-01-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities

  11. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration

    1994-10-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities.

  12. Numerical simulation of groundwater artificial recharge in a semiarid-climate basin of northwest Mexico, case study the Guadalupe Valley Aquifer, Baja California

    Science.gov (United States)

    Campos-Gaytan, J. R.; Herrera-Oliva, C. S.

    2013-05-01

    In this study was analyzed through a regional groundwater flow model the effects on groundwater levels caused by the application of different future groundwater management scenarios (2007-2025) at the Guadalupe Valley, in Baja California, Mexico. Among these studied alternatives are those scenarios designed in order to evaluate the possible effects generated for the groundwater artificial recharge in order to satisfy a future water demand with an extraction volume considered as sustainable. The State of Baja California has been subject to an increment of the agricultural, urban and industrials activities, implicating a growing water-demand. However, the State is characterized by its semiarid-climate with low surface water availability; therefore, has resulted in an extensive use of groundwater in local aquifer. Water level measurements indicate there has been a decline in water levels in the Guadalupe Valley for the past 30 years. The Guadalupe Valley aquifer represents one the major sources of water supply in Ensenada region. It supplies about 25% of the water distributed by the public water supplier at the city of Ensenada and in addition constitutes the main water resource for the local wine industries. Artificially recharging the groundwater system is one water resource option available to the study zone, in response to increasing water demand. The existing water supply system for the Guadalupe Valley and the city of Ensenada is limited since water use demand periods in 5 to 10 years or less will require the construction of additional facilities. To prepare for this short-term demand, one option available to water managers is to bring up to approximately 3.0 Mm3/year of treated water of the city of Ensenada into the valley during the low-demand winter months, artificially recharge the groundwater system, and withdraw the water to meet the summer demands. A 2- Dimensional groundwater flow was used to evaluate the effects of the groundwater artificial recharge

  13. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA

    Directory of Open Access Journals (Sweden)

    P. Bertolo

    2005-01-01

    Full Text Available This study compares documented debris flow runout distances with numerical simulations in the Yosemite Valley of California, USA, where about 15% of historical events of slope instability can be classified as debris flows and debris slides (Wieczorek and Snyder, 2004. To model debris flows in the Yosemite Valley, we selected six streams with evidence of historical debris flows; three of the debris flow deposits have single channels, and the other three split their pattern in the fan area into two or more channels. From field observations all of the debris flows involved coarse material, with only very small clay content. We applied the one dimensional DAN (Dynamic ANalysis model (Hungr, 1995 and the two-dimensional FLO-2D model (O'Brien et al., 1993 to predict and compare the runout distance and the velocity of the debris flows observed in the study area. As a first step, we calibrated the parameters for the two softwares through the back analysis of three debris- flows channels using a trial-and-error procedure starting with values suggested in the literature. In the second step we applied the selected values to the other channels, in order to evaluate their predictive capabilities. After parameter calibration using three debris flows we obtained results similar to field observations We also obtained a good agreement between the two models for velocities. Both models are strongly influenced by topography: we used the 30 m cell size DTM available for the study area, that is probably not accurate enough for a highly detailed analysis, but it can be sufficient for a first screening.

  14. Monitoring Subsidence in California with InSAR

    Science.gov (United States)

    Farr, T. G.; Jones, C. E.; Liu, Z.; Neff, K. L.; Gurrola, E. M.; Manipon, G.

    2016-12-01

    Subsidence caused by groundwater pumping in the rich agricultural area of California's Central Valley has been a problem for decades. Over the last few years, interferometric synthetic aperture radar (InSAR) observations from satellite and aircraft platforms have been used to produce maps of subsidence with cm accuracy. We are continuing work reported previously, using ESA's Sentinel-1 to extend our maps of subsidence in time and space, in order to eventually cover all of California. The amount of data to be processed has expanded exponentially in the course of our work and we are now transitioning to the use of the ARIA project at JPL to produce the time series. ARIA processing employs large Amazon cloud instances to process single or multiple frames each, scaling from one to many (20+) instances working in parallel to meet the demand (700 GB InSAR products within 3 hours). The data are stored in Amazon long-term storage and an http view of the products are available for users of the ARIA system to download the products. Higher resolution InSAR data were also acquired along the California Aqueduct by the NASA UAVSAR from 2013 - 2016. Using multiple scenes acquired by these systems, we are able to produce time series of subsidence at selected locations and transects showing how subsidence varies both spatially and temporally. The maps show that subsidence is continuing in areas with a history of subsidence and that the rates and areas affected have increased due to increased groundwater extraction during the extended western US drought. Our maps also identify and quantify new, localized areas of accelerated subsidence. The California Department of Water Resources (DWR) funded this work to provide the background and an update on subsidence in the Central Valley to support future policy. Geographic Information System (GIS) files are being furnished to DWR for further analysis of the 4 dimensional subsidence time-series maps. Part of this work was carried out at the

  15. Monitoring air quality in California's Central Valley with aircraft and continuous mountaintop observations - attribution insights gained by considering the scalar budget equation

    Science.gov (United States)

    Faloona, I. C.; Trousdell, J.; Caputi, D.; Conley, S. A.

    2017-12-01

    Ozone is one of the six criteria pollutants established by the US EPA's Clean Air Act, and one of two that still routinely violates federal standards as it is a secondary pollutant and therefore subject to indirect control strategies on complex, non-linear atmospheric chemistry. While improvements have been seen in many regions where ozone controls are in place, gains in California's San Joaquin Valley have lagged many other districts across the state. We present airborne measurements from several different campaigns in the valley (DISCOVER-AQ, ArvinO3, and CABOTS) along with data from a mountaintop monitoring site on its upwind side near the Pacific coast that has been operational for 5 years, and we shed light on several outstanding questions concerning air pollution in California's vast Central Valley. The framework of analysis is centered on the primitive equation of any atmospheric constituent - the scalar budget equation. By measuring each term in this equation, we gain insights into the relative impacts of exogenous (due to long range transport) vs. endogenous ozone (due to local photochemical production). We further argue that small aircraft campaigns with an emphasis on scalar budgeting sorties are a cost-effective tool in uncovering specific shortcomings of regional air quality models (e.g., lateral boundary conditions can be tested by comparing horizontal advection, turbulence parameterizations by comparing vertical fluxes, and chemical mechanisms by comparing net photochemical production rates.) In the case of NOx and CH4, for instance, we find that solving for surface emissions points toward inventory underestimates of both species by at least a factor of two. We discuss possible causes of these discrepancies, and suggest other ways to specifically vet aspects of regional air quality models with airborne measurements of meteorological and chemical variables.

  16. The ammonium nitrate particle equivalent of NOx emissions for wintertime conditions in Central California's San Joaquin Valley

    International Nuclear Information System (INIS)

    Stockwell, W.R.; Watson, J.G.; Robinson, N.F.; Sylte, W.W.

    2000-01-01

    A new method has been developed to assess the aerosol particle formation reactivity of nitrogen oxide (NO x ) emissions. The method involves using a photochemical box model with gas-phase photochemistry, aerosol production and deposition to calculate the ammonium nitrate particle equivalent of NO x emissions. The yields of ammonium nitrate particles used in the box model were determined from parametric simulations made with an equilibrium model that calculated the fraction of nitric acid that reacts to produce ammonium nitrate from the temperature, relative humidity and ammonium-to-nitrate ratios. For the wintertime conditions of emissions and meteorology in the San Joaquin Valley of central California, approximately 80% of the moles of nitric acid produced was found to be in the particulate nitrate phase and about 33% of the moles of emitted NO x was converted to particulate nitrate. The particle equivalent of NO x emissions was found to be on the order of 0.6 g of ammonium nitrate for each gram of NO x emitted (the mass of NO x calculated as NO 2 ). This estimate is in reasonable agreement with an analysis of field measurements made in central California. (author)

  17. 75 FR 15453 - Central Valley Project Improvement Act, Westlands Water District Drainage Repayment Contract

    Science.gov (United States)

    2010-03-29

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Westlands Water District Drainage Repayment Contract AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of Proposed Repayment Contract. SUMMARY: The Bureau of Reclamation will be initiating negotiations with the...

  18. San Joaquin Valley Aerosol Health Effects Research Center (SAHERC)

    Data.gov (United States)

    Federal Laboratory Consortium — At the San Joaquin Valley Aerosol Health Effects Center, located at the University of California-Davis, researchers will investigate the properties of particles that...

  19. Technical safety appraisal of the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1989-09-01

    This report presents the results of one in a series of Technical Safety Appraisals (TSAs) being conducted of DOE nuclear operations by the Assistant Secretary for Environment, Safety, and Health Office of Safety Appraisals TSAs are one of the ititiatives announced by the Secretary of Energy on September 18, 1985, to enhance the DOE environment, safety and health program. This report presents the results of a TSA of the West Valley Demonstration Project (WVDP). The appraisal was conducted by a team of exerts assembled by the DOE Office of Safety Appraisal and was conducted during onsite visits of June 26-30 and July 10-21, 1989. West Valley, about 30 miles south of Buffalo, New York is the location of the only commercial nuclear fuel reprocessing facility operated in the United States. Nuclear Fuels Services, Inc. (NFS) operated the plant from 1966 to 1972 and processed about 640 metric tons of spent reactor fuel. The reprocessing operation generated about 560,000 gallons of high-level radioactive waste, which was transferred into underground tanks for storage. In 1972 NFS closed the plant and subsequently decided not to reopen it

  20. 27 CFR 9.37 - California Shenandoah Valley.

    Science.gov (United States)

    2010-04-01

    ... “Shenandoah Valley” qualified by the word “California” in direct conjunction with the name “Shenandoah Valley... meets Big Indian Creek. (2) Then south, following Big Indian Creek, until Big Indian Creek meets the... until this boundary meets Big Indian Creek. (6) Then following Big Indian Creek in a northeasterly...

  1. Environmental Setting of the Lower Merced River Basin, California

    Science.gov (United States)

    Gronberg, Jo Ann M.; Kratzer, Charles R.

    2006-01-01

    In 1991, the U.S. Geological Survey began to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology as part of the National Water-Quality Assessment (NAWQA) Program. As part of this program, the San Joaquin-Tulare Basins study unit is assessing parts of the lower Merced River Basin, California. This report provides descriptions of natural and anthropogenic features of this basin as background information to assess the influence of these and other factors on water quality. The lower Merced River Basin, which encompasses the Mustang Creek Subbasin, gently slopes from the northeast to the southwest toward the San Joaquin River. The arid to semiarid climate is characterized by hot summers (highs of mid 90 degrees Fahrenheit) and mild winters (lows of mid 30 degrees Fahrenheit). Annual precipitation is highly variable, with long periods of drought and above normal precipitation. Population is estimated at about 39,230 for 2000. The watershed is predominately agricultural on the valley floor. Approximately 2.2 million pounds active ingredient of pesticides and an estimated 17.6 million pounds active ingredient of nitrogen and phosphorus fertilizer is applied annually to the agricultural land.

  2. 78 FR 26317 - Klamath National Forest, California, Jess Project

    Science.gov (United States)

    2013-05-06

    ... contributing to rural economic health. The project area is south of Sawyers Bar, California. Treatments are... Bar Wildfire Community Protection Plan: Manage fuel loadings to reduce the risk of wildfires affecting.../burning brush on about 150 acres for stand health and big game habitat enhancement. Acres by treatment...

  3. Pre-Calculus California Content Standards: Standards Deconstruction Project. Version 1.0

    Science.gov (United States)

    Arnold, Bruce; Cliffe, Karen; Cubillo, Judy; Kracht, Brenda; Leaf, Abi; Legner, Mary; McGinity, Michelle; Orr, Michael; Rocha, Mario; Ross, Judy; Teegarden, Terrie; Thomson, Sarah; Villero, Geri

    2008-01-01

    This project was coordinated and funded by the California Partnership for Achieving Student Success (Cal-PASS). Cal-PASS is a data sharing system linking all segments of education. Its purpose is to improve student transition and success from one educational segment to the next. Cal-PASS' standards deconstruction project was initiated by the…

  4. Low-Level Legacy Waste Processing Experience at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Valenti, P.J.; Rowell, L.E.; Kurasch, D.H.; Moore, H.R.

    2006-01-01

    This paper presents detailed results and lessons learned from the very challenging and highly successful 2005 low level radioactive waste sorting, packaging, and shipping campaign that removed over 95% of the available inventory of 350,000 ft 3 of legacy low level waste at the West Valley Demonstration Project near West Valley, New York. First some programmatic perspective and site history is provided to provide pertinent context for DOE's waste disposal mandates at the site. This is followed by a detailed description of the waste types, the storage locations, the containers, and the varied sorting and packaging facilities used to accomplish the campaign. The overall sorting and packaging protocols for this inventory of wastes are defined. This is followed by detailed sorting data and results concluding with lessons learned. (authors)

  5. Long Valley Caldera-Mammoth Mountain unrest: The knowns and unknowns

    Science.gov (United States)

    Hill, David P.

    2017-01-01

    This perspective is based largely on my study of the Long Valley Caldera (California, USA) over the past 40 years. Here, I’ll examine the “knowns” and the “known unknowns” of the complex tectonic–magmatic system of the Long Valley Caldera volcanic complex. I will also offer a few brief thoughts on the “unknown unknowns” of this system.

  6. Modeled Perfluorooctanoic Acid (PFOA) Exposure and Liver Function in a Mid-Ohio Valley Community.

    Science.gov (United States)

    Darrow, Lyndsey A; Groth, Alyx C; Winquist, Andrea; Shin, Hyeong-Moo; Bartell, Scott M; Steenland, Kyle

    2016-08-01

    , Steenland K. 2016. Modeled perfluorooctanoic acid (PFOA) exposure and liver function in a Mid-Ohio Valley community. Environ Health Perspect 124:1227-1233; http://dx.doi.org/10.1289/ehp.1510391.

  7. Ground-Water Quality Data in the Owens and Indian Wells Valleys Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Densmore, Jill N.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 1,630 square-mile Owens and Indian Wells Valleys study unit (OWENS) was investigated in September-December 2006 as part of the Priority Basin Project of Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board (SWRCB). The Owens and Indian Wells Valleys study was designed to provide a spatially unbiased assessment of raw ground-water quality within OWENS study unit, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 74 wells in Inyo, Kern, Mono, and San Bernardino Counties. Fifty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 21 wells were selected to evaluate changes in water chemistry in areas of interest (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater- indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3- trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. This study evaluated the quality of raw ground water in the aquifer in the OWENS study unit and did not attempt to evaluate the quality of treated water

  8. Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions.

    Science.gov (United States)

    Polade, Suraj D; Gershunov, Alexander; Cayan, Daniel R; Dettinger, Michael D; Pierce, David W

    2017-09-07

    In most Mediterranean climate (MedClim) regions around the world, global climate models (GCMs) consistently project drier futures. In California, however, projections of changes in annual precipitation are inconsistent. Analysis of daily precipitation in 30 GCMs reveals patterns in projected hydrometeorology over each of the five MedClm regions globally and helps disentangle their causes. MedClim regions, except California, are expected to dry via decreased frequency of winter precipitation. Frequencies of extreme precipitation, however, are projected to increase over the two MedClim regions of the Northern Hemisphere where projected warming is strongest. The increase in heavy and extreme precipitation is particularly robust over California, where it is only partially offset by projected decreases in low-medium intensity precipitation. Over the Mediterranean Basin, however, losses from decreasing frequency of low-medium-intensity precipitation are projected to dominate gains from intensifying projected extreme precipitation. MedClim regions are projected to become more sub-tropical, i.e. made dryer via pole-ward expanding subtropical subsidence. California's more nuanced hydrological future reflects a precarious balance between the expanding subtropical high from the south and the south-eastward extending Aleutian low from the north-west. These dynamical mechanisms and thermodynamic moistening of the warming atmosphere result in increased horizontal water vapor transport, bolstering extreme precipitation events.

  9. Air Pollution, Neighbourhood Socioeconomic Factors, and Neural Tube Defects in the San Joaquin Valley of California.

    Science.gov (United States)

    Padula, Amy M; Yang, Wei; Carmichael, Suzan L; Tager, Ira B; Lurmann, Frederick; Hammond, S Katharine; Shaw, Gary M

    2015-11-01

    Environmental pollutants and neighbourhood socioeconomic factors have been associated with neural tube defects, but the potential impact of interaction between ambient air pollution and neighbourhood socioeconomic factors on the risks of neural tube defects is not well understood. We used data from the California Center of the National Birth Defects Study and the Children's Health and Air Pollution Study to investigate whether associations between air pollutant exposure in early gestation and neural tube defects were modified by neighbourhood socioeconomic factors in the San Joaquin Valley of California, 1997-2006. There were 5 pollutant exposures, 3 outcomes, and 9 neighbourhood socioeconomic factors included for a total of 135 investigated associations. Estimates were adjusted for maternal race-ethnicity, education, and multivitamin use. We present below odds ratios (ORs) that exclude 1 and a chi-square test of homogeneity P-value of <0.05. We observed increased odds of spina bifida comparing the highest to lowest quartile of particulate matter <10 μm (PM10 ) among those living in a neighbourhood with: (i) median household income of less than $30 000 per year [OR 5.1, 95% confidence interval (CI) 1.7, 15.3]; (ii) more than 20% living below the federal poverty level (OR 2.6, 95% CI 1.1, 6.0); and (iii) more than 30% with less than or equal to a high school education (OR 3.2, 95% CI 1.4, 7.4). The ORs were not statistically significant among those higher socioeconomic status (SES) neighbourhoods. Our results demonstrate effect modification by neighbourhood socioeconomic factors in the association of particulate matter and neural tube defects in California. © 2015 John Wiley & Sons Ltd.

  10. Technical and administrative approach for the West Valley Demonstration Project Safety Program

    International Nuclear Information System (INIS)

    Newsom, P.C.; Roberts, C.J.; Yuchien Yuan; Marchetti, S.

    1987-06-01

    The principal objective of the West Valley Demonstration Project (WVDP) is to vitrify the 2.2 million liters of high-level radioactive waste (HLW) stored at the Western New York Nuclear Service Center (WNYNSC). This simple statement of purpose, however, does not convey a sense of the complexity of the undertaking. The vitrification task is not only complex in and of itself, but requires a myriad of other activities to be accomplished on an intricate and fast paced schedule in order to support it. The West Valley Demonstration Project Act (P.L 96-368), U.S. Department of Energy Order DOE-5481.1A, Idaho Operations Office Order ID-5481.1 and standard nuclear industry practice all require that proposed systems and operations involving hazards not routinely encountered by the general public be analyzed to identify potential hazards and consequences, and to assure that reasonable measures are taken to eliminate, control, or mitigate these potential consequences. Virtually every substantive aspect of the WVDP involves hazards beyond those routinely encountered and accepted by the general public. In order to assure the safety of the public and the workers at the WVDP, a system of hazard identification, categorization, analysis and review has been established. In parallel with this system, a procedure for developing the minimum design specifications and quality assurance requirements has been developed for Project systems, components, and structures which play a role in the safety of a specific major facility or the overall Project. 29 refs., 3 figs., 6 tabs

  11. HCMM: Soil moisture in relation to geologic structure and lithology, northern California. [Sacremento Valley

    Science.gov (United States)

    Rich, E. I. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. A preliminary analysis of the HCMM imagery of the project area indicated that locally some differentiation of lithologic units within the Northern Coast Range may be possible. Of significance, however, was a thermally cool linear area that appeared on the 30 May 1978 Nite-IR. This linear feature seemed to coincide with the Bear Mt. Fault and with the axis of the Chico Monocline along the eastern margin of the Sacramento Valley.

  12. Efficient crop type mapping based on remote sensing in the Central Valley, California

    Science.gov (United States)

    Zhong, Liheng

    Most agricultural systems in California's Central Valley are purposely flexible and intentionally designed to meet the demands of dynamic markets. Agricultural land use is also impacted by climate change and urban development. As a result, crops change annually and semiannually, which makes estimating agricultural water use difficult, especially given the existing method by which agricultural land use is identified and mapped. A minor portion of agricultural land is surveyed annually for land-use type, and every 5 to 8 years the entire valley is completely evaluated. So far no effort has been made to effectively and efficiently identify specific crop types on an annual basis in this area. The potential of satellite imagery to map agricultural land cover and estimate water usage in the Central Valley is explored. Efforts are made to minimize the cost and reduce the time of production during the mapping process. The land use change analysis shows that a remote sensing based mapping method is the only means to map the frequent change of major crop types. The traditional maximum likelihood classification approach is first utilized to map crop types to test the classification capacity of existing algorithms. High accuracy is achieved with sufficient ground truth data for training, and crop maps of moderate quality can be timely produced to facilitate a near-real-time water use estimate. However, the large set of ground truth data required by this method results in high costs in data collection. It is difficult to reduce the cost because a trained classification algorithm is not transferable between different years or different regions. A phenology based classification (PBC) approach is developed which extracts phenological metrics from annual vegetation index profiles and identifies crop types based on these metrics using decision trees. According to the comparison with traditional maximum likelihood classification, this phenology-based approach shows great advantages

  13. Hydrology of modern and late Holocene lakes, Death Valley, California

    International Nuclear Information System (INIS)

    Grasso, D.N.

    1996-01-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi 2 , closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area

  14. Hydrology of modern and late Holocene lakes, Death Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  15. EXPOSURES AND HEALTH OF FARM WORKER CHILDREN IN CALIFORNIA

    Science.gov (United States)

    The EPA STAR Program Center of Excellence in Children's Environmental Health and Disease Prevention Research at the University of California at Berkeley is currently conducting exposure and health studies for children of farm workers in the Salinas Valley of California. The Exp...

  16. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California (ver. 2.0, January 2018)

    Science.gov (United States)

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-06-30

    As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and also for preparing emergency response plans.The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault Zone to the east of the study area.In this report, an earthquake scenario is intended to depict the potential consequences of significant earthquakes. A scenario earthquake is not necessarily the largest or most damaging earthquake possible on a recognized fault. Rather it is both large enough and likely enough that emergency planners should consider it in regional emergency response plans. In particular, the ground motion predicted for a given scenario earthquake does not represent a full probabilistic hazard assessment, and thus it does not provide the basis for hazard zoning and earthquake-resistant building design.Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM). Alternatives

  17. Status and understanding of groundwater quality in the Monterey Bay and Salinas Valley Basins, 2005-California GAMA Priority Basin Project

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 1,000 square mile (2,590 km2) Monterey Bay and Salinas Valley Basins (MS) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in central California in Monterey, Santa Cruz, and San Luis Obispo Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA MS study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers). The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 97 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth intervals of the wells listed in the CDPH database for the MS study unit. The quality of groundwater in the primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the MS study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California regulatory or

  18. 75 FR 69698 - Central Valley Project Improvement Act, Criteria for Developing Refuge Water Management Plans

    Science.gov (United States)

    2010-11-15

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Criteria for Developing Refuge Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The ``Criteria for Developing Refuge Water Management Plans'' (Refuge...

  19. Biogeochemical studies of wintering waterfowl in the Imperial and Sacramento Valleys

    Energy Technology Data Exchange (ETDEWEB)

    Koranda, J.J.; Stuart, M.; Thompson, S.; Conrado, C.

    1979-10-01

    Trace and major elemental composition were determined in the organs of wintering waterfowl in the Imperial and Sacramento Valleys of California, and in soils, sediments, and agricultural fertilizer that constitute the various sources of elements in the waterfowl. These data provide a biogeochemical baseline for waterfowl populations wintering in an area being developed for geothermal power. This baseline in the Imperial Valley is affected by soil and sediment composition, agricultural effluents in irrigation and stream water, and spent shot deposited by hunters in waterfowl habitats. The waterfowl acquire a set of trace elements from these sources and concentrations increase in their organs over the wintering period. Nickel, arsenic, selenium, bromine, and lead are the primary elements acquired from soil sources, agricultural effluents, and spent shot in the Imperial Valley. The assessment of effects from geothermal effluents on waterfowl populations in complex because there are large influxes of materials into the Imperial Valley ecosystem that contain trace elements, i.e., irrigation water, phosphatic fertilizers, pesticides, and lead shot. Multiple sources exist for many elements prominent in the expected geothermal effluents. The relationships between the two California valleys, the Imperial and Sacramento, are apparent in the trace element concentrations in the organs of waterfowl obtained in those two valleys. Arsenic is absent in the waterfowl organs obtained in the Sacramento Valley and relatively common in the Imperial Valley waterfowl. The effect of any release of geothermal effluent in the Imperial Valley waterfowl habitats will be difficult to describe because of the complexity of the biogeochemical baseline and the multiple sources of trace and major elements in the ecosystem.

  20. Hydrologic models and analysis of water availability in Cuyama Valley, California

    Science.gov (United States)

    Hanson, R.T.; Flint, Lorraine E.; Faunt, Claudia C.; Gibbs, Dennis R.; Schmid, Wolfgang

    2014-01-01

    Changes in population, agricultural development practices (including shifts to more water-intensive crops), and climate variability are placing increasingly larger demands on available water resources, particularly groundwater, in the Cuyama Valley, one of the most productive agricultural regions in Santa Barbara County. The goal of this study was to produce a model capable of being accurate at scales relevant to water management decisions that could be considered in the evaluation of the sustainable water supply. The Cuyama Valley Hydrologic Model (CUVHM) was designed to simulate the most important natural and human components of the hydrologic system, including components dependent on variations in climate, thereby providing a reliable assessment of groundwater conditions and processes that can inform water users and help to improve planning for future conditions. Model development included a revision of the conceptual model of the flow system, construction of a precipitation-runoff model using the Basin Characterization Model (BCM), and construction of an integrated hydrologic flow model with MODFLOW-One-Water Hydrologic Flow Model (MF-OWHM). The hydrologic models were calibrated to historical conditions of water and land use and, then, used to assess the use and movement of water throughout the Valley. These tools provide a means to understand the evolution of water use in the Valley, its availability, and the limits of sustainability. The conceptual model identified inflows and outflows that include the movement and use of water in both natural and anthropogenic systems. The groundwater flow system is characterized by a layered geologic sedimentary sequence that—in combination with the effects of groundwater pumping, natural recharge, and the application of irrigation water at the land surface—displays vertical hydraulic-head gradients. Overall, most of the agricultural demand for water in the Cuyama Valley in the initial part of the growing season is

  1. Potential future land use threats to California's protected areas

    Science.gov (United States)

    Wilson, Tamara Sue; Sleeter, Benjamin Michael; Davis, Adam Wilkinson

    2015-01-01

    Increasing pressures from land use coupled with future changes in climate will present unique challenges for California’s protected areas. We assessed the potential for future land use conversion on land surrounding existing protected areas in California’s twelve ecoregions, utilizing annual, spatially explicit (250 m) scenario projections of land use for 2006–2100 based on the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios to examine future changes in development, agriculture, and logging. We calculated a conversion threat index (CTI) for each unprotected pixel, combining land use conversion potential with proximity to protected area boundaries, in order to identify ecoregions and protected areas at greatest potential risk of proximal land conversion. Our results indicate that California’s Coast Range ecoregion had the highest CTI with competition for extractive logging placing the greatest demand on land in close proximity to existing protected areas. For more permanent land use conversions into agriculture and developed uses, our CTI results indicate that protected areas in the Central California Valley and Oak Woodlands are most vulnerable. Overall, the Eastern Cascades, Central California Valley, and Oak Woodlands ecoregions had the lowest areal percent of protected lands and highest conversion threat values. With limited resources and time, rapid, landscape-level analysis of potential land use threats can help quickly identify areas with higher conversion probability of future land use and potential changes to both habitat and potential ecosystem reserves. Given the broad range of future uncertainties, LULC projections are a useful tool allowing land managers to visualize alternative landscape futures, improve planning, and optimize management practices.

  2. Three-Dimensional P-wave Velocity Structure Beneath Long Valley Caldera, California, Using Local-Regional Double-Difference Tomography

    Science.gov (United States)

    Menendez, H. M.; Thurber, C. H.

    2011-12-01

    Eastern California's Long Valley Caldera (LVC) and the Mono-Inyo Crater volcanic systems have been active for the past ~3.6 million years. Long Valley is known to produce very large silicic eruptions, the last of which resulted in the formation of a 17 km by 32 km wide, east-west trending caldera. Relatively recent unrest began between 1978-1980 with five ML ≥ 5.7 non-double-couple (NDC) earthquakes and associated aftershock swarms. Similar shallow seismic swarms have continued south of the resurgent dome and beneath Mammoth Mountain, surrounding sites of increased CO2 gas emissions. Nearly two decades of increased volcanic activity led to the 1997 installation of a temporary three-component array of 69 seismometers. This network, deployed by the Durham University, the USGS, and Duke University, recorded over 4,000 high-frequency events from May to September. A local tomographic inversion of 283 events surrounding Mammoth Mountain yielded a velocity structure with low Vp and Vp/Vs anomalies at 2-3 km bsl beneath the resurgent dome and Casa Diablo hot springs. These anomalies were interpreted to be CO2 reservoirs (Foulger et al., 2003). Several teleseismic and regional tomography studies have also imaged low Vp anomalies beneath the caldera at ~5-15 km depth, interpreted to be the underlying magma reservoir (Dawson et al., 1990; Weiland et al., 1995; Thurber et al., 2009). This study aims to improve the resolution of the LVC regional velocity model by performing tomographic inversions using the local events from 1997 in conjunction with regional events recorded by the Northern California Seismic Network (NCSN) between 1980 and 2010 and available refraction data. Initial tomographic inversions reveal a low velocity zone at ~2 to 6 km depth beneath the caldera. This structure may simply represent the caldera fill. Further iterations and the incorporation of teleseismic data may better resolve the overall shape and size of the underlying magma reservoir.

  3. 75 FR 36438 - Notice of Interim Final Supplementary Rules for Public Lands Managed by the California Desert...

    Science.gov (United States)

    2010-06-25

    ... and areas that contain structures or capital improvements primarily used by the public for recreation... Office, 22835 Calle San Juan De Los Lagos, Moreno Valley, California 92553. FOR FURTHER INFORMATION..., 22835 Calle San Juan De Los Lagos, Moreno Valley, California 92553, phone: (951) 697-5233, or e-mail...

  4. Ion exchange and trace element surface complexation reactions associated with applied recharge of low-TDS water in the San Joaquin Valley, California

    International Nuclear Information System (INIS)

    McNab, Walt W.; Singleton, Michael J.; Moran, Jean E.; Esser, Bradley K.

    2009-01-01

    Stable isotope data, a dissolved gas tracer study, groundwater age dating, and geochemical modeling were used to identify and characterize the effects of introducing low-TDS recharge water in a shallow aerobic aquifer affected by a managed aquifer recharge project in California's San Joaquin Valley. The data all consistently point to a substantial degree of mixing of recharge water from surface ponds with ambient groundwater in a number of nearby wells screened at depths above 60 m below ground surface. Groundwater age data indicate that the wells near the recharge ponds sample recently recharged water, as delineated by stable O and C isotope data as well as total dissolved solids, in addition to much older groundwater in various mixing proportions. Where the recharge water signature is present, the specific geochemical interactions between the recharge water and the aquifer material appear to include ion exchange reactions (comparative enrichment of affected groundwater with Na and K at the expense of Ca and Mg) and the desorption of oxyanion-forming trace elements (As, V, and Mo), possibly in response to the elevated pH of the recharge water

  5. Changes in active eolian sand at northern Coachella Valley, California

    Science.gov (United States)

    Katra, Itzhak; Scheidt, Stephen; Lancaster, Nicholas

    2009-04-01

    Climate variability and rapid urbanization have influenced the sand environments in the northern Coachella Valley throughout the late 20th century. This paper addresses changes in the spatial relationships among different sand deposits at northern Coachella Valley between two recent time periods by using satellite data acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The approach employed here, involving multispectral thermal infrared (TIR) data and spectral mixture analysis, has shown that the major sand deposits can be spatially modeled at northern Coachella Valley. The "coarse-grained (quartz-rich) sand" deposit is associated with active eolian sand, and the "mixed sandy soil" and "fine-grained (quartz-rich) sand" deposits are associated with inactive eolian sand. The fractional abundance images showed a significant decrease between 2000 and 2006 in the percentage of active sand in the major depositional area for fluvial sediment, the Whitewater River, but also in two downwind areas: the Whitewater and Willow Hole Reserves. The pattern of the active sand appears to be related to variations in annual precipitation (wet and dry years) and river discharge in the northern Coachella Valley. We suggest here that recent human modifications to the major watercourses that supply sand affect the capability of fluvial deposition areas to restore sediments over time and consequently the responses of the sand transport system to climate change, becoming more sensitive to dry years where areas of active sand may shrink, degrade, and/or stabilize faster. The approach utilized in this study can be advantageous for future monitoring of sand in the northern Coachella Valley for management of these and similar environments.

  6. 75 FR 9827 - Proposed Expansion of the Santa Maria Valley Viticultural Area (2008R-287P)

    Science.gov (United States)

    2010-03-04

    ...,'' by Harry P. Bailey, University of California Press, 1966). The maritime fringe climate derives from... California Press, 1975.) Soils: According to the petition, the current Santa Maria Valley viticultural area... viticultural area in Santa Barbara and San Luis Obispo Counties, California, by 18,790 acres. We designate...

  7. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    International Nuclear Information System (INIS)

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites

  8. Climate Change, Public Health, and Policy: A California Case Study.

    Science.gov (United States)

    Ganesh, Chandrakala; Smith, Jason A

    2018-04-01

    Anthropogenic activity will bring immediate changes and disruptions to the global climate with accompanying health implications. Although policymakers and public health advocates are beginning to acknowledge the health implications of climate change, current policy approaches are lagging behind. We proposed that 4 key policy principles are critical to successful policymaking in this arena: mainstreaming, linking mitigation and adaptation policy, applying population perspectives, and coordination. We explored California's progress in addressing the public health challenges of climate change in the San Joaquin Valley as an example. We discussed issues of mental health and climate change, and used the San Joaquin Valley of California as an example to explore policy approaches to health issues and climate change. The California experience is instructive for other jurisdictions.

  9. Groundwater Quality Data for the Northern Sacramento Valley, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Bennett, Peter A.; Bennett, George L.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 1,180-square-mile Northern Sacramento Valley study unit (REDSAC) was investigated in October 2007 through January 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within REDSAC and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 66 wells in Shasta and Tehama Counties. Forty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 23 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of nitrogen and oxygen in nitrate, stable isotopes of hydrogen and oxygen of water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 275 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and sampmatrix spikes) were collected at approximately 8

  10. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project

  11. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  12. Groundwater quality in the San Diego Drainages Hydrogeologic Province, California

    Science.gov (United States)

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    More than 40 percent of California's drinking water is from groundwater. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The San Diego Drainages Hydrogeologic Province (hereinafter referred to as San Diego) is one of the study units being evaluated. The San Diego study unit is approximately 3,900 square miles and consists of the Temecula Valley, Warner Valley, and 12 other alluvial basins (California Department of Water Resources, 2003). The study unit also consists of all areas outside defined groundwater basins that are within 3 kilometers of a public-supply well. The study unit was separated, based primarily on hydrogeologic settings, into four study areas: Temecula Valley, Warner Valley, Alluvial Basins, and Hard Rock (Wright and others, 2005). The sampling density for the Hard Rock study area, which consists of areas outside of groundwater basins, was much lower than for the other study areas. Consequently, aquifer proportions for the Hard Rock study area are not used to calculate the aquifer proportions shown by the pie charts. An assessment of groundwater quality for the Hard Rock study area can be found in Wright and Belitz, 2011. The temperatures in the coastal part of the study unit are mild with dry summers, moist winters, and an average annual rainfall of about 10 inches. The temperatures in the mountainous eastern part of the study unit are cooler than in the coastal part, with an annual precipitation of about 45 inches that occurs mostly in the winter. The primary aquifers consist of Quaternary-age alluvium and weathered bedrock in the Temecula Valley, Warner Valley, and Alluvial Basins study areas, whereas in the Hard Rock study area the primary aquifers consist mainly of fractured and

  13. Robinson Rancheria Strategic Energy Plan; Middletown Rancheria Strategic Energy Plan, Scotts Valley Rancheria Strategic Energy Plan, Elem Indian Colony Strategic Energy Plan, Upperlake Rancheria Strategic Energy Plan, Big Valley Rancheria Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis and Associates LLC

    2008-08-01

    The Scotts Valley Band of Pomo Indians is located in Lake County in Northern California. Similar to the other five federally recognized Indian Tribes in Lake County participating in this project, Scotts Valley Band of Pomo Indians members are challenged by generally increasing energy costs and undeveloped local energy resources. Currently, Tribal decision makers lack sufficient information to make informed decisions about potential renewable energy resources. To meet this challenge efficiently, the Tribes have committed to the Lake County Tribal Energy Program, a multi Tribal program to be based at the Robinson Rancheria and including The Elem Indian Colony, Big Valley Rancheria, Middletown Rancheria, Habematolel Pomo of Upper Lake and the Scotts Valley Pomo Tribe. The mission of this program is to promote Tribal energy efficiency and create employment opportunities and economic opportunities on Tribal Lands through energy resource and energy efficiency development. This program will establish a comprehensive energy strategic plan for the Tribes based on Tribal specific plans that capture economic and environmental benefits while continuing to respect Tribal cultural practices and traditions. The goal is to understand current and future energy consumption and develop both regional and Tribe specific strategic energy plans, including action plans, to clearly identify the energy options for each Tribe.

  14. Phase III Drilling Operations at the Long Valley Exploratory Well (LVF 51-20)

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.

    1999-06-01

    During July-September, 1998, a jointly funded drilling operation deepened the Long Valley Exploratory Well from 7178 feet to 9832 feet. This was the third major drilling phase of a project that began in 1989, but had sporadic progress because of discontinuities in tiding. Support for Phase III came from the California Energy Commission (CEC), the International Continental Drilling Program (ICDP), the US Geological Survey (USGS), and DOE. Each of these agencies had a somewhat different agenda: the CEC wants to evaluate the energy potential (specifically energy extraction from magma) of Long Valley Caldera; the ICDP is studying the evolution and other characteristics of young, silicic calderas; the USGS will use this hole as an observatory in their Volcano Hazards program; and the DOE, through Sandia, has an opportunity to test new geothermal tools and techniques in a realistic field environment. This report gives a description of the equipment used in drilling and testing; a narrative of the drilling operations; compiled daily drilling reports; cost information on the project; and a brief summary of engineering results related to equipment performance and energy potential. Detailed description of the scientific results will appear in publications by the USGS and other researchers.

  15. Proposed modifications to the Lower Mokelumne River Project, California: FERC Project No. 2916-004. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This final environmental impact statement (FEIS) has been prepared for the Federal Energy Regulatory Commission (Commission) to consider modifications to the existing Lower Mokelumne River Project (LMRP) (FERC Project No. 2916-004) in California. Chinook salmon and steelhead trout populations in the lower Mokelumne River have experienced recent declines and fish kills associated, in part, with discharges from Camanche Dam. The California Department of Fish and Game and the California Sportfishing Protection Alliance have asked the Commission to investigate and correct these problems. A wide range of different mitigation actions has been proposed by parties participating in the scoping of this proceeding, and staff has evaluated these proposed actions in this assessment. The staff is recommending a combination of flow and non-flow modifications to the existing license, including new minimum flow and minimum pool elevation requirements at Camanche Reservoir, ramping rates on dam releases, interim attraction and out-migrant spike flows, instream habitat improvements, and a series of studies and monitoring to determine feasible means for solving off-site fish passage problems.

  16. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  17. 2013 NOAA Coastal California TopoBathy Merge Project Digital Elevation Model (DEM)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project merged recently collected topographic, bathymetric, and acoustic elevation data along the entire California coastline from approximately the 10 meter...

  18. Environmental and economic effects of subsidence: Category 4, Project 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Viets, V.F.; Vaughan, C.K.; Harding, R.C.

    1979-05-01

    A list of more than 70 subsidence areas was screened to select those areas which seemed to have the best potential for providing reliable data. The screening process is described in an appendix. Nine areas were selected for detailed case studies to collect all available data on the environmental and economic effects of the subsidence. Available information from the subsidence areas not selected as case studies was tabulated for each area and is included in an appendix. The nine case study areas are: Arizona; San Joaquin Valley, California; Baldwin Hills, California; Santa Clara Valley, California; Wilmington, California; Las Vegas Valley, Nevada; Houston-Galveston area, Texas; Mexico City, Mexico; and Wairakei, New Zealand. (MHR)

  19. GPS Imaging suggests links between climate, magmatism, seismicity, and tectonics in the Sierra Nevada-Long Valley Caldera-Walker Lane system, western United States

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.; Kreemer, C.; Smith, K.

    2017-12-01

    The Walker Lane is a region of complex active crustal transtension in the western Great Basin of the western United States, accommodating about 20% of the 50 mm/yr relative motion between the Pacific and North American plates. The Long Valley caldera lies in the central Walker Lane in eastern California, adjacent to the eastern boundary of the Sierra Nevada/Great Valley microplate, and experiences intermittent inflation, uplift, and volcanic unrest from the magma chamber that resides at middle crustal depths. Normal and transform faults accommodating regional tectonic transtension pass by and through the caldera, complicating the interpretation of the GPS-measured strain rate field, estimates of fault slip rates, and seismic hazard. Several dozen continuously recording GPS stations measure strain and uplift in the area with mm precision. They observe that the most recent episode of uplift at Long Valley began in mid-2011, continuing until late 2016, raising the surface by 100 mm in 6 years. The timing of the initiation of uplift coincides with the beginning of severe drought in California. Furthermore, the timing of a recent pause in uplift coincides with the very wet 2016-2017 winter, which saw approximately double normal snow pack. In prior studies, we showed that the timing of changes in geodetically measured uplift rate of the Sierra Nevada coincides with the timing of drought conditions in California, suggesting a link between hydrological loading and Sierra Nevada elevation. Here we take the analysis three steps further to show that changes in Sierra Nevada uplift rate coincide in time with 1) enhanced inflation at the Long Valley caldera, 2) shifts in the patterns and rates of horizontal tensor strain rate, and 3) seismicity patterns in the central Walker Lane. We use GPS solutions from the Nevada Geodetic Laboratory and the new GPS Imaging technique to produce robust animations of the time variable strain and uplift fields. The goals of this work are to

  20. Distribution and movements of female northern pintails radiotagged in San Joaquin Valley, California

    Science.gov (United States)

    Fleskes, Joseph P.; Jarvis, Robert L.; Gilmer, David S.

    2002-01-01

    To improve understanding of northern pintail (Anas acuta) distribution in central California (CCA), we radiotagged 191 Hatch-Year (HY) and 228 After-Hatch-Year (AHY) female northern pintails during late August-early October, 1991-1993, in the San Joaquin Valley (SJV) and studied their movements through March each year. Nearly all (94.3%) wintered in CCA, but 5.7% went to southern California, Mexico, or unknown areas; all that went south left before hunting season. Of the 395 radiotagged pintails that wintered in CCA, 83% flew from the SJV north to other CCA areas (i.e., Sacramento Valley [SACV], Sacramento-San Joaquin River Delta [Delta], Suisun Marsh, San Francisco Bay) during September-January; most went during December. Movements coincid- ed with start of hunting seasons and were related to pintail age, mass, capture location, study year, and weather. Among pintails with less than average mass, AHY individuals tended to leave the SJV earlier than HY individuals. Weekly distribution was similar among capture locations and years but a greater percentage of pintails radiotagged in Tulare Basin (south part of SJV) were known to have (10.3% vs. 0.9%) or probably (13.8% vs. 4.6%) wintered south of CCA than pintails radiotagged in northern SJV areas (i.e., Grassland Ecological Area [EA] and Mendota Wildlife Area [WA]). Also, a greater percentage of SJV pintails went to other CCA areas before hunting season in the drought year of 1991-1992 than later years (10% vs. 3-5%). The percent of radiotagged pintails from Grass- land EA known to have gone south of CCA also was greater during 1991-1992 than later years (2% vs. 0%), but both the known (19% vs. 4%) and probable (23% vs. 12%) percent from Tulare Basin that went south was greatest during 1993-1994, when availability of flooded fields there was lowest. The probability of pintails leaving the SJV was 57% (95% CI = 8-127%) greater on days with than without rain, and more movements per bird out of SJV occurred in years

  1. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems

  2. Mid term report for IDEAL project

    DEFF Research Database (Denmark)

    Bellini, Anna

    2004-01-01

    The main objective of this report is to describe the progresses in the WP4 achived at the mid term of the IDEAL project. The main objective of work package 4 is threefold: Firstly, obtaining a reliable forecast of the residual stresses and strains directly from the casting simulation. For this pu...... of the casting simulation, the heat treatment simulation as well as a possible subsequent load analysis together and thereby addressing the entire CAE-chain........ For this purpose the process simulation must include a thorough thermomechanical analysis itself. This is already possible in the FV-based process optimisation tool MAGMAsoft, although it is further being developed in the work package with respect to the constitutive description of the aluminium parts at high...... temperatures. Secondly, establishing a reliable model for the thermomechanical conditions during the subsequent heat treatment of the cast aluminium parts. In this process, several approaches involving both simple visco-plastic models as well as more complex unified models are taken. Thirdly, coupling...

  3. Impacts of projected mid-century temperatures on thermal regimes for select specialty and fieldcrops common to the southwestern U.S.

    Science.gov (United States)

    Elias, E.; Lopez-Brody, N.; Dialesandro, J.; Steele, C. M.; Rango, A.

    2015-12-01

    The impacts of projected temperature increases in agricultural ecosystems are complex, varyingby region, cropping system, crop growth stage and humidity. We analyze the impacts of mid-century temperature increases on crops grown in five southwestern states: Arizona, California,New Mexico, Nevada and Utah. Here we present a spatial impact assessment of commonsouthwestern specialty (grapes, almonds and tomatoes) and field (alfalfa, cotton and corn)crops. This analysis includes three main components: development of empirical temperaturethresholds for each crop, classification of predicted future climate conditions according to thesethresholds, and mapping the probable impacts of these climatic changes on each crop. We use30m spatial resolution 2012 crop distribution and seasonal minimum and maximumtemperature normals (1970 to 2000) to define the current thermal envelopes for each crop.These represent the temperature range for each season where 95% of each crop is presentlygrown. Seasonal period change analysis of mid-century temperatures changes downscaled from20 CMIP5 models (RCP8.5) estimate future temperatures. Change detection maps representareas predicted to become more or less suitable, or remain unchanged. Based upon mid-centurytemperature changes, total regional suitable area declined for all crops except cotton, whichincreased by 20%. For each crop there are locations which change to and from optimal thermalenvelope conditions. More than 80% of the acres currently growing tomatoes and almonds willshift outside the present 95% thermal range. Fewer acres currently growing alfalfa (14%) andcotton (20%) will shift outside the present 95% thermal range by midcentury. Crops outsidepresent thermal envelopes by midcentury may adapt, possibly aided by adaptation technologiessuch as misters or shade structures, to the new temperature regime or growers may elect togrow alternate crops better suited to future thermal envelopes.

  4. Examining Dimethyl Sulfide Emissions in California's San Joaquin Valley

    Science.gov (United States)

    Huber, D.; Hughes, S.; Blake, D. R.

    2017-12-01

    Dimethyl Sulfide (DMS) is a sulfur-containing compound that leads to the formation of aerosols which can lead to the formation of haze and fog. Whole air samples were collected on board the NASA C-23 Sherpa aircraft during the 2017 Student Airborne Research Program (SARP) over dairies and agricultural fields in the San Joaquin Valley. Analysis of the samples indicate average DMS concentrations of 23 ± 9 pptv, with a maximum concentration of 49 pptv. When compared with DMS concentrations from previous SARP missions (2009-2016), 2017 by far had the highest frequency of elevated DMS in this region. For this study, agricultural productivity of this region was analyzed to determine whether land use could be contributing to the elevated DMS. Top down and bottom up analysis of agriculture and dairies were used to determine emission rates of DMS in the San Joaquin Valley. Correlations to methane and ethanol were used to determine that DMS emissions were strongly linked to dairies, and resulted in R2 values of 0.61 and 0.43, respectively. These values indicate a strong correlation between dairies and DMS emissions. Combined with NOAA HySPLIT back trajectory data and analysis of ground air samples, results suggest that the contribution of dairies to annual DMS emissions in the San Joaquin Valley exceeds those from corn and alfalfa production.

  5. Petroleum data for the pre-mid-Devonian basal clastics play, southern Mackenzie Valley

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, Y. [Natural Resources Canada, Yellowknife, NT (Canada). Geological Survey of Canada; Gal, L.P. [Northwest Territories Geoscience Office, Yellowknife, NT (Canada)

    2008-07-01

    This document presented petroleum data from the Mackenzie Corridor exploration area in the Northwest Territories. Both quantitative and qualitative geoscience data was compiled as part of a project under the Secure Canadian Energy Supply program of the Geological Survey of Canada. Three separate reservoir facies have been identified within the study area for their attributes relevant to petroleum exploration. This document defined and described the pre-mid-Devonian basal clastics play in the southern Great Slave Plains region where potential Lower Paleozoic source rocks include organic-rich beds of the Mirage Point and Chinchaga Formations, and regionally widespread, Middle to lower Upper Devonian shale. The play is analogous to the oil producing Middle Devonian clastic plays onlapping the Peace River Arch in northwestern Alberta. The seals, migration and trap styles for the reservoirs were discussed. Exploration risks include a thin and discontinuous reservoir with poor porosity; isolation from potential source beds; inadequate reservoir seals; and timing of hydrocarbon migration with respect to trap development. The petroleum play information was based on very few well penetrations. As such, the pre-mid-Devonian basal clastics play is considered to be a conceptual play that has not yet been adequately explored. 40 refs., 3 tabs., 12 figs.

  6. Land use compounds habitat losses under projected climate change in a threatened California ecosystem.

    Directory of Open Access Journals (Sweden)

    Erin Coulter Riordan

    Full Text Available Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st century land use and climate change on California sage scrub (CSS, a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century in two ecoregions in California (Central Coast and South Coast. Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change

  7. Ecosystem Services Mapping for Sustainable Agricultural Water Management in California's Central Valley.

    Science.gov (United States)

    Matios, Edward; Burney, Jennifer

    2017-03-07

    Accurate information on agricultural water needs and withdrawals at appropriate spatial and temporal scales remains a key limitation to joint water and land management decision-making. We use InVEST ecosystem service mapping to estimate water yield and water consumption as functions of land use in Fresno County, a key farming region in California's Central Valley. Our calculations show that in recent years (2010-2015), the total annual water yield for the county has varied dramatically from ∼0.97 to 5.37 km 3 (all ±17%; 1 MAF ≈ 1.233 km 3 ), while total annual water consumption has changed over a smaller range, from ∼3.37 to ∼3.98 km 3 (±20%). Almost all of the county's water consumption (∼96% of total use) takes place in Fresno's croplands, with discrepancy between local annual surface water yields and crop needs met by surface water allocations from outside the county and, to a much greater extent, private groundwater irrigation. Our estimates thus bound the amount of groundwater needed to supplement consumption each year (∼1.76 km 3 on average). These results, combined with trends away from field crops and toward orchards and vineyards, suggest that Fresno's land and water management have become increasingly disconnected in recent years, with the harvested area being less available as an adaptive margin to hydrological stress.

  8. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    International Nuclear Information System (INIS)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the δ 18 O values of groundwater were relatively homogeneous (mostly -7.0 ± 0.5 per-thousand), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high 18 O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low 18 O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in δ 18 O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are ∼10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for ∼40 years, creating cones of depression ∼25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low 18 O water (-11.0 per-thousand) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp 18 O gradients in our groundwater isotope map

  9. Proximity to citrus influences Pierce's disease in Temecula Valley vineyards

    OpenAIRE

    Perring, Thomas M.; Farrar, Charles A.; Blua, Matthew

    2001-01-01

    Pierce's disease has caused extensive losses to grapes in the Temecula Valley. The primary vector of Pierce's disease in the region is the glassy-winged sharpshooter (GWSS), which has been found in large numbers in citrus trees. We examined the role of citrus in the Temecula Valley Pierce's disease epidemic and found that citrus groves have influenced the incidence and severity of Pierce's disease in grapes. Because GWSS inhabit citrus in large numbers, California grape growers should take ad...

  10. Hydrothermal contamination of public supply wells in Napa and Sonoma Valleys, California

    International Nuclear Information System (INIS)

    Forrest, M.J.; Kulongoski, J.T.; Edwards, M.S.; Farrar, C.D.; Belitz, K.; Norris, R.D.

    2013-01-01

    Highlights: ► We analyzed the geochemistry of 44 public supply wells in Napa and Sonoma Valleys. ► We investigated mixing of groundwater with hydrothermal fluids. ► We used multivariate statistical analyses and modeling to characterize wells. ► We found that nine public supply wells contained 14–30% hydrothermal fluids. ► Some contaminated wells contain potentially harmful concentrations of As, F and B. - Abstract: Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper hydrothermal fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these hydrothermal systems, and investigate hydrothermal contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO 2 ) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, hydrothermal fluids, or mixed hydrothermal fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of hydrothermal fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the hydrothermal fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as hydrothermal, 28 as fresh groundwater, two as

  11. You Can't Unscramble an Egg: Population Genetic Structure of Oncorhynchus mykiss in the California Central Valley Inferred from Combined Microsatellite and Single Nucleotide Polymorphism Data

    Directory of Open Access Journals (Sweden)

    Devon E. Pearse

    2015-12-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2015v13iss4art3Steelhead/rainbow trout (Oncorhynchus mykiss are found in all of the major tributaries of the Sacramento and San Joaquin rivers, which flow through California’s Central Valley and enter the ocean through San Francisco Bay and the Golden Gate. This river system is heavily affected by water development, agriculture, and invasive species, and salmon and trout hatchery propagation has been occurring for over 100 years. We collected genotype data for 18 highly variable microsatellite loci and 95 single nucleotide polymorphisms (SNPs from more than 1,900 fish from Central Valley drainages to analyze genetic diversity, population structure, differentiation between populations above and below dams, and the relationship of Central Valley O. mykiss populations to coastal California steelhead. In addition, we evaluate introgression by both hatchery rainbow trout strains, which have primarily native Central Valley ancestry, and imported coastal steelhead stocks. In contrast to patterns typical of coastal steelhead, Central Valley O. mykiss above and below dams within the same tributary were not found to be each others’ closest relatives, and we found no relationship between genetic and geographic distance among below-barrier populations. While introgression by hatchery rainbow trout strains does not appear to be widespread among above-barrier populations, steelhead in the American River and some neighboring tributaries have been introgressed by coastal steelhead. Together, these results demonstrate that the ancestral population genetic structure that existed among Central Valley tributaries has been significantly altered in contemporary populations. Future conservation, restoration, and mitigation efforts should take this into account when working to meet recovery planning goals.

  12. Assessing Drought Impacts on Water Storage using GRACE Satellites and Regional Groundwater Modeling in the Central Valley of California

    Science.gov (United States)

    Scanlon, B. R.; Zhang, Z.; Save, H.; Faunt, C. C.; Dettinger, M. D.

    2015-12-01

    Increasing concerns about drought impacts on water resources in California underscores the need to better understand effects of drought on water storage and coping strategies. Here we use a new GRACE mascons solution with high spatial resolution (1 degree) developed at the Univ. of Texas Center for Space Research (CSR) and output from the most recent regional groundwater model developed by the U.S. Geological Survey to evaluate changes in water storage in response to recent droughts. We also extend the analysis of drought impacts on water storage back to the 1980s using modeling and monitoring data. The drought has been intensifying since 2012 with almost 50% of the state and 100% of the Central Valley under exceptional drought in 2015. Total water storage from GRACE data declined sharply during the current drought, similar to the rate of depletion during the previous drought in 2007 - 2009. However, only 45% average recovery between the two droughts results in a much greater cumulative impact of both droughts. The CSR GRACE Mascons data offer unprecedented spatial resolution with no leakage to the oceans and no requirement for signal restoration. Snow and reservoir storage declines contribute to the total water storage depletion estimated by GRACE with the residuals attributed to groundwater storage. Rates of groundwater storage depletion are consistent with the results of regional groundwater modeling in the Central Valley. Traditional approaches to coping with these climate extremes has focused on surface water reservoir storage; however, increasing conjunctive use of surface water and groundwater and storing excess water from wet periods in depleted aquifers is increasing in the Central Valley.

  13. Monitoring the hydrologic system for potential effects of geothermal and ground-water development in the Long Valley Caldera, Mono County, California, USA

    International Nuclear Information System (INIS)

    Farrar, C.D.; Lyster, D.L.

    1990-01-01

    In the early 1980's, renewed interest in the geothermal potential of the Long valley caldera, California, highlighted the need to balance the benefits of energy development with the established recreational activities of the area. The Long Valley Hydrologic Advisory Committee, formed in 1987, instituted a monitoring program to collect data during the early stages of resource utilization to evaluate potential effects on the hydrologic system. This paper reports that early data show declines in streamflow, spring flow, and ground-water levels caused by 6 years of below-average precipitation. Springs in the Hot Creek State Fish Hatchery area discharge water that is a mixture of nonthermal and hydrothermal components. Possible sources of nonthermal water have been identified by comparing deuterium concentrations in streams and springs. The equivalent amount of undiluted thermal water discharged from the springs was calculated on the basis of boron and chloride concentrations. Quantifying the thermal and nonthermal fractions of the total flow may allow researchers to assess changes in flow volume or temperature of the springs caused by ground-water or geothermal development

  14. Development of a State-Wide 3-D Seismic Tomography Velocity Model for California

    Science.gov (United States)

    Thurber, C. H.; Lin, G.; Zhang, H.; Hauksson, E.; Shearer, P.; Waldhauser, F.; Hardebeck, J.; Brocher, T.

    2007-12-01

    We report on progress towards the development of a state-wide tomographic model of the P-wave velocity for the crust and uppermost mantle of California. The dataset combines first arrival times from earthquakes and quarry blasts recorded on regional network stations and travel times of first arrivals from explosions and airguns recorded on profile receivers and network stations. The principal active-source datasets are Geysers-San Pablo Bay, Imperial Valley, Livermore, W. Mojave, Gilroy-Coyote Lake, Shasta region, Great Valley, Morro Bay, Mono Craters-Long Valley, PACE, S. Sierras, LARSE 1 and 2, Loma Prieta, BASIX, San Francisco Peninsula and Parkfield. Our beta-version model is coarse (uniform 30 km horizontal and variable vertical gridding) but is able to image the principal features in previous separate regional models for northern and southern California, such as the high-velocity subducting Gorda Plate, upper to middle crustal velocity highs beneath the Sierra Nevada and much of the Coast Ranges, the deep low-velocity basins of the Great Valley, Ventura, and Los Angeles, and a high- velocity body in the lower crust underlying the Great Valley. The new state-wide model has improved areal coverage compared to the previous models, and extends to greater depth due to the data at large epicentral distances. We plan a series of steps to improve the model. We are enlarging and calibrating the active-source dataset as we obtain additional picks from investigators and perform quality control analyses on the existing and new picks. We will also be adding data from more quarry blasts, mainly in northern California, following an identification and calibration procedure similar to Lin et al. (2006). Composite event construction (Lin et al., in press) will be carried out for northern California for use in conventional tomography. A major contribution of the state-wide model is the identification of earthquakes yielding arrival times at both the Northern California Seismic

  15. Groundwater-Quality Data in the Antelope Valley Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Schmitt, Stephen J.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 1,600 square-mile Antelope Valley study unit (ANT) was investigated from January to April 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within ANT, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 57 wells in Kern, Los Angeles, and San Bernardino Counties. Fifty-six of the wells were selected using a spatially distributed, randomized, grid-based method to provide statistical representation of the study area (grid wells), and one additional well was selected to aid in evaluation of specific water-quality issues (understanding well). The groundwater samples were analyzed for a large number of organic constituents (volatile organic compounds [VOCs], gasoline additives and degradates, pesticides and pesticide degradates, fumigants, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (gross alpha and gross beta radioactivity, radium isotopes, and radon-222). Naturally occurring isotopes (strontium, tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 239 constituents and water-quality indicators (field parameters) were investigated. Quality

  16. Antelope Valley Community College District Education Center.

    Science.gov (United States)

    Newmyer, Joe

    An analysis is provided of a proposal to the Board of Governors of the California Community Colleges by the Antelope Valley Community College District (AVCCD) to develop an education center in Palmdale to accommodate rapid growth. First, pros and cons are discussed for the following major options: (1) increase utilization and/or expand the…

  17. Waste rice seed in conventional and stripper-head harvested fields in California: Implications for wintering waterfowl

    Science.gov (United States)

    Fleskes, Joseph P.; Halstead, Brian J.; Casazza, Michael L.; Coates, Peter S.; Kohl, Jeffrey D.; Skalos, Daniel A.

    2012-01-01

    Waste rice seed is an important food for wintering waterfowl and current estimates of its availability are needed to determine the carrying capacity of rice fields and guide habitat conservation. We used a line-intercept method to estimate mass-density of rice seed remaining after harvest during 2010 in the Sacramento Valley (SACV) of California and compared results with estimates from previous studies in the SACV and Mississippi Alluvial Valley (MAV). Posterior mean (95% credible interval) estimates of total waste rice seed mass-density for the SACV in 2010 were 388 (336–449) kg/ha in conventionally harvested fields and 245 (198–307) kg/ha in stripper-head harvested fields; the 2010 mass-density is nearly identical to the mid-1980s estimate for conventionally harvested fields but 36% lower than the mid-1990s estimate for stripped fields. About 18% of SACV fields were stripper-head harvested in 2010 vs. 9–15% in the mid-1990s and 0% in the mid-1980s; but due to a 50% increase in planted rice area, total mass of waste rice seed in SACV remaining after harvest in 2010 was 43% greater than in the mid-1980s. However, total mass of seed-eating waterfowl also increased 82%, and the ratio of waste rice seed to seed-eating waterfowl mass was 21% smaller in 2010 than in the mid-1980s. Mass-densities of waste rice remaining after harvest in SACV fields are within the range reported for MAV fields. However, because there is a lag between harvest and waterfowl use in the MAV but not in the SACV, seed loss is greater in the MAV and estimated waste seed mass-density available to wintering waterfowl in SACV fields is about 5–30 times recent MAV estimates. Waste rice seed remains an abundant food source for waterfowl wintering in the SACV, but increased use of stripper-head harvesters would reduce this food. To provide accurate data on carrying capacities of rice fields necessary for conservation planning, trends in planted rice area, harvest method, and postharvest field

  18. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1995). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will assess potential environmental impacts and provide stakeholder a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information available for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  19. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1995-09-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1995). The DOE's goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will assess potential environmental impacts and provide stakeholder a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information available for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology

  20. Sex-related differences in habitat associations of wintering American Kestrels in California's Central Valley

    Science.gov (United States)

    Pandolfino, E.R.; Herzog, M.P.; Smith, Z.

    2011-01-01

    We used roadside survey data collected from 19 routes over three consecutive winters from 200708 to 200910 to compare habitat associations of male and female American Kestrels (Falco sparverius) in the Central Valley of California to determine if segregation by sex was evident across this region. As a species, American Kestrels showed positive associations with alfalfa and other forage crops like hay and winter wheat, as well as grassland, irrigated pasture, and rice. Habitat associations of females were similar, with female densities in all these habitats except rice significantly higher than average. Male American Kestrels showed a positive association only with grassland and were present at densities well below those of females in alfalfa, other forage crops, and grassland. Males were present in higher densities than females in most habitats with negative associations for the species, such as orchards, urbanized areas, and oak savannah. The ratio of females to males for each route was positively correlated with the overall density of American Kestrels on that route. Our findings that females seem to occupy higher quality habitats in winter are consistent with observations from elsewhere in North America. ?? 2011 The Raptor Research Foundation, Inc.

  1. Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California.

    Science.gov (United States)

    Larsen, Ashley E; Gaines, Steven D; Deschênes, Olivier

    2017-08-29

    Virtually all agricultural communities worldwide are exposed to agricultural pesticides. Yet, the health consequences of such exposure are poorly understood, and the scientific literature remains ambiguous. Using individual birth and demographic characteristics for over 500 000 birth observations between 1997-2011 in the agriculturally dominated San Joaquin Valley, California, we statistically investigate if residential agricultural pesticide exposure during gestation, by trimester, and by toxicity influences birth weight, gestational length, or birth abnormalities. Overall, our analysis indicates that agricultural pesticide exposure increases adverse birth outcomes by 5-9%, but only among the population exposed to very high quantities of pesticides (e.g., top 5th percentile, i.e., ~4200 kg applied over gestation). Thus, policies and interventions targeting the extreme right tail of the pesticide distribution near human habitation could largely eliminate the adverse birth outcomes associated with agricultural pesticide exposure documented in this study.The health consequences of exposure to pesticides are uncertain and subject to much debate. Here, the effect of exposure during pregnancy is investigated in an agriculturally dominated residential area, showing that an increase in adverse birth outcomes is observed with very high levels of pesticide exposure.

  2. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California

    Directory of Open Access Journals (Sweden)

    John M. Boland

    2016-06-01

    Full Text Available The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp., an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball, and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav. Pers.. Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60% in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70% of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley

  3. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California.

    Science.gov (United States)

    Boland, John M

    2016-01-01

    The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp.), an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball), and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav.) Pers.). Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60%) in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70%) of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley, Ricinus

  4. Future impacts of distributed power generation on ambient ozone and particulate matter concentrations in the San Joaquin Valley of California.

    Science.gov (United States)

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.

  5. Geophysical Surveys of the Hydrologic Basin Underlying Yosemite Valley, California.

    Science.gov (United States)

    Maher, E. L.; Shaw, K. A.; Carey, C.; Dunn, M. E.; Whitman, S.; Bourdeau, J.; Eckert, E.; Louie, J. N.; Stock, G. M.

    2017-12-01

    UNR students in an Applied Geophysics course conducted geophysical investigations in Yosemite Valley during the months of March and August 2017. The goal of the study is to understand better the depth to bedrock, the geometry of the bedrock basin, and the properties of stratigraphy- below the valley floor. Gutenberg and others published the only prior geophysical investigation in 1956, to constrain the depth to bedrock. We employed gravity, resistivity, and refraction microtremor(ReMi) methods to investigate the interface between valley fill and bedrock, as well as shallow contrasts. Resistivity and ReMi arrays along three north-south transects investigated the top 50-60m of the basin fill. Gravity results constrained by shallow measurements suggest a maximum depth of 1000 m to bedrock. ReMi and resistivity techniques identified shallow contrasts in shear velocity and electrical resistivity that yielded information about the location of the unconfined water table, the thickness of the soil zone, and spatial variation in shallow sediment composition. The upper several meters of sediment commonly showed shear velocities below 200 m/s, while biomass-rich areas and sandy river banks could be below 150 m/s. Vs30 values consistently increased towards the edge of the basin. The general pattern for resistivity profiles was a zone of relatively high resistivity, >100 ohm-m, in the top 4 meters, followed by one or more layers with decreased resistivity. According to gravity measurements, assuming either -0.5 g/cc or -0.7 g/cc density contrast between bedrock and basin sediments, a maximum depth to bedrock is found south of El Capitan at respectively, 1145 ± 215 m or 818 ± 150 m. Longitudinal basin geometry coincides with the basin depth geometry discussed by Gutenberg in 1956. Their results describe a "double camel" shape where the deepest points are near El Capitan and the Ahwahnee Hotel and is shallowest near Yosemite Falls, in a wider part of the valley. An August Deep

  6. Geochemistry of waters in the Valley of Ten Thousand Smokes region, Alaska

    Science.gov (United States)

    Keith, T.E.C.; Thompson, J.M.; Hutchinson, R.A.; White, L.D.

    1992-01-01

    Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8??C in early summer and from 15 to 17??C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area. Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953-1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation. ?? 1992.

  7. Effectiveness of the Solar Panels in the Castro Valley Unified School District Based on Projected Amount of Energy to be Produced

    Science.gov (United States)

    Sparks, J. R.; Palmer, T. C.; Siegel, A. P.

    2014-12-01

    In recent years Americans have warmed to the idea of installing solar panels to their homes and businesses. These panels help reduce the cost of receiving energy from power plants that lose a lot of energy in transportation. These power plants provide energy by burning gas or coal producing emissions that add to the growing problem of pollution and global warming. In 2010 the Castro Valley Unified School District decided to add solar panels to Canyon Middle School, Castro Valley High School, and Castro Valley Adult School. We researched whether the solar panels reached their projected amount of energy (74%) for the sites where the panels were placed. The solar panels at all three sites were found to exceed these projected amounts. The solar panels at each site produce a little over 74% for the each school.

  8. Potential increase in floods in California's Sierra Nevada under future climate projections

    Science.gov (United States)

    Das, T.; Dettinger, M.D.; Cayan, D.R.; Hidalgo, H.G.

    2011-01-01

    California's mountainous topography, exposure to occasional heavily moisture-laden storm systems, and varied communities and infrastructures in low lying areas make it highly vulnerable to floods. An important question facing the state-in terms of protecting the public and formulating water management responses to climate change-is "how might future climate changes affect flood characteristics in California?" To help address this, we simulate floods on the western slopes of the Sierra Nevada Mountains, the state's primary catchment, based on downscaled daily precipitation and temperature projections from three General Circulation Models (GCMs). These climate projections are fed into the Variable Infiltration Capacity (VIC) hydrologic model, and the VIC-simulated streamflows and hydrologic conditions, from historical and from projected climate change runs, allow us to evaluate possible changes in annual maximum 3-day flood magnitudes and frequencies of floods. By the end of the 21st Century, all projections yield larger-than-historical floods, for both the Northern Sierra Nevada (NSN) and for the Southern Sierra Nevada (SSN). The increases in flood magnitude are statistically significant (at p models, while under the third scenario, GFDL CM2. 1, frequencies remain constant or decline slightly, owing to an overall drying trend. These increases appear to derive jointly from increases in heavy precipitation amount, storm frequencies, and days with more precipitation falling as rain and less as snow. Increases in antecedent winter soil moisture also play a role in some areas. Thus, a complex, as-yet unpredictable interplay of several different climatic influences threatens to cause increased flood hazards in California's complex western Sierra landscapes. ?? 2011 Springer Science+Business Media B.V.

  9. 2009-2011 CA Coastal California TopoBathy Merged Project Digital Elevation Model (DEM)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project merged recently collected topographic, bathymetric, and acoustic elevation data along the entire California coastline from approximately the 10 meter...

  10. Latest Pleistocene and Holocene surficial deposits and landforms of Yosemite Valley, California

    Science.gov (United States)

    Haddon, E. K.; Stock, G. M.; Booth, D. B.

    2016-12-01

    Field studies on the surficial geology and geomorphology of Yosemite Valley since the 1870's formed an early basis for our understanding of Quaternary landscape evolution in the central Sierra Nevada. These landmark studies described the erosional origin of Yosemite's iconic scenery, but left details of the latest Pleistocene and Holocene sedimentary record for later investigation. We combined mapping of deposits and landforms with geochronology to reconstruct the geomorphic evolution of Yosemite Valley since the 15 ka retreat of the Last Glacial Maximum (LGM) valley glacier. We document a sustained period of relative landscape stability, characterized by valley-bottom aggradation of glacial till, fluvial sediments, and lacustrine silts, as well as valley-margin accumulation of talus and fan alluvium. Recessional moraines, episodically emplaced rock avalanches, and alluvial fans impeded surface flow and controlled the local base level. This predominantly aggradational regime then shifted to incision in the earliest Holocene, likely due to a diminishing supply of glacial sediment, and created a flight of fluvial terraces inset by up to 9 m. The volume of fringing talus and fan alluvium in comparison with fluvial terrace sequences emphasizes the importance of valley-wall erosion as a sediment source. Cosmogenic 10Be exposure ages from rock avalanche boulders and 14C charcoal ages from deltaic sequences and inset fluvial gravels suggest variable rates of Holocene river incision. Although some incision events likely record local base level changes at the El Capitan LGM recessional moraine, the presence of perched, well-developed outwash terraces downstream indicates a more regional climatic forcing. These findings, including the depositional record of land-use disturbances over the past two centuries, help illuminate the geologic evolution of this celebrated landscape and inform ongoing river-restoration work.

  11. Anthropogenic Methane Emissions in California's San Joaquin Valley: Characterizing Large Point Source Emitters

    Science.gov (United States)

    Hopkins, F. M.; Duren, R. M.; Miller, C. E.; Aubrey, A. D.; Falk, M.; Holland, L.; Hook, S. J.; Hulley, G. C.; Johnson, W. R.; Kuai, L.; Kuwayama, T.; Lin, J. C.; Thorpe, A. K.; Worden, J. R.; Lauvaux, T.; Jeong, S.; Fischer, M. L.

    2015-12-01

    Methane is an important atmospheric pollutant that contributes to global warming and tropospheric ozone production. Methane mitigation could reduce near term climate change and improve air quality, but is hindered by a lack of knowledge of anthropogenic methane sources. Recent work has shown that methane emissions are not evenly distributed in space, or across emission sources, suggesting that a large fraction of anthropogenic methane comes from a few "super-emitters." We studied the distribution of super-emitters in California's southern San Joaquin Valley, where elevated levels of atmospheric CH4 have also been observed from space. Here, we define super-emitters as methane plumes that could be reliably detected (i.e., plume observed more than once in the same location) under varying wind conditions by airborne thermal infrared remote sensing. The detection limit for this technique was determined to be 4.5 kg CH4 h-1 by a controlled release experiment, corresponding to column methane enhancement at the point of emissions greater than 20% above local background levels. We surveyed a major oil production field, and an area with a high concentration of large dairies using a variety of airborne and ground-based measurements. Repeated airborne surveys (n=4) with the Hyperspectral Thermal Emission Spectrometer revealed 28 persistent methane plumes emanating from oil field infrastructure, including tanks, wells, and processing facilities. The likelihood that a given source type was a super-emitter varied from roughly 1/3 for processing facilities to 1/3000 for oil wells. 11 persistent plumes were detected in the dairy area, and all were associated with wet manure management. The majority (11/14) of manure lagoons in the study area were super-emitters. Comparing to a California methane emissions inventory for the surveyed areas, we estimate that super-emitters comprise a minimum of 9% of inventoried dairy emissions, and 13% of inventoried oil emissions in this region.

  12. A pilot project: Antioch Delta Cove, Antioch, California

    International Nuclear Information System (INIS)

    Minder, M.

    1994-01-01

    The project involves the restoration of the Hickmott cannery site, comprising approximately 15 acres (three five acre parcels) located on the Delta in inter-city Antioch. Hickmott Foods, Inc., operated a fruit and vegetable cannery between 1905 and the early 1970's, during which time tomato skins, peach and apricot pits, and asparagus butts were discharged on the site. The decaying fruit pits have caused cyanide contamination. Additionally, the site contains some petroleum hydrocarbon contamination as well as gypsum board contamination, apparently from nearby manufacturing operations. The Antioch Delta Cove Pilot shows how interested parties can work together to clean up contaminated sites and use the clean up process to stimulate technology transfer. The Antioch project is a blueprint that can be replicated at other sites across California

  13. A century of plant virus management in the Salinas valley of California, 'East of Eden'.

    Science.gov (United States)

    Wisler, G C; Duffus, J E

    2000-11-01

    The mild climate of the Salinas Valley, CA lends itself well to a diverse agricultural industry. However, the diversity of weeds, crops and insect and fungal vectors also provide favorable conditions for plant virus disease development. This paper considers the incidence and management of several plant viruses that have caused serious epidemics and been significant in the agricultural development of the Salinas Valley during the 20th century. Beet curly top virus (BCTV) almost destroyed the newly established sugarbeet industry soon after its establishment in the 1870s. A combination of resistant varieties, cultural management of beet crops to provide early plant emergence and development, and a highly coordinated beet leafhopper vector scouting and spray programme have achieved adequate control of BCTV. These programmes were first developed by the USDA and still operate. Lettuce mosaic virus was first recognized as causing a serious disease of lettuce crops in the 1930s. The virus is still a threat but it is controlled by a lettuce-free period in December and a seed certification programme that allows only seed lots with less than one infected seed in 30000 to be grown. 'Virus Yellows' is a term used to describe a complex of yellows inducing viruses which affect mainly sugarbeet and lettuce. These viruses include Beet yellows virus and Beet western yellows virus. During the 1950s, the complex caused significant yield losses to susceptible crops in the Salinas Valley. A beet-free period was introduced and is still used for control. The fungus-borne rhizomania disease of sugarbeet caused by Beet necrotic yellow vein virus was first detected in Salinas Valley in 1983. Assumed to have been introduced from Europe, this virus has now become widespread in California wherever beets are grown and crop losses can be as high as 100%. Movement of infested soil and beets accounts for its spread throughout the beet-growing regions of the United States. Control of rhizomania

  14. California Energy Commission Public Interest EnergyResearch/Energy System Integration -- Transmission-Planning Research&Development Scoping Project

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

    2004-07-01

    The objective of this Public Interest Energy Research (PIER)scoping project is to identify options for public-interest research and development (R&D) to improve transmission-planning tools, techniques, and methods. The information presented was gathered through a review of current California utility, California Independent System Operator (ISO), and related western states electricity transmission-planning activities and emerging needs. This report presents the project teams findings organized under six topic areas and identifies 17 distinct R&D activities to improve transmission-planning in California and the West. The findings in this report are intended for use, along with other materials, by PIER staff, to facilitate discussions with stakeholders that will ultimately lead to development of a portfolio of transmission-planning R&D activities for the PIER program.

  15. Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.; Brill, B.A.; Carl, D.E.

    1997-06-01

    The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented

  16. Our Home Forever. The Hupa Indians of Northern California. [1988 Reprint].

    Science.gov (United States)

    Nelson, Byron, Jr.

    For thousands of years, the people of the Hupa tribe have lived in villages beside the Trinity River in a beautiful rich valley in northwestern California. Hupa culture and traditions are extensive, elaborate, and intimately bound up with their homeland. The first white men entered the valley in 1828, although coastal traders' goods had filtered…

  17. Rockfall failure mechanisms in Yosemite Valley, California (USA)

    Science.gov (United States)

    Matasci, Battista; Guerin, Antoine; Carrea, Dario; Stock, Greg M.; Jaboyedoff, Michel; Collins, Brian

    2014-05-01

    Rockfall hazard is especially high in Yosemite Valley, with tens of rockfalls inventoried every year. A rockfall on 5 October 2013 from Ahwiyah Point consisted of a volume of 740 cubic meters and occurred within the perimeter of a larger event on 28 March 2009 that released 25'400 cubic meters of rock (Zimmer et al., 2012). In both events (2009 and 2013), the initial rockfall volumes dislodged a second one approximately equivalent in size by impacting the cliff below the source area during the fall. Rock fragments of up to several cubic meters were deposited on the talus slope, damaging a heavily used and recently reconstructed hiking path. We performed extensive mapping of structural features for several cliffs of Yosemite Valley to improve the assessment of the most susceptible rockfall areas. In particular we mapped and characterized the main brittle structures, the exfoliation joints and the failure mechanisms of the past rockfalls. Several failure mechanisms exist in Yosemite including the propagation of brittle structures that may lead to tensile, planar sliding, wedge sliding or toppling failures. Frequently, topographically-parallel exfoliation joints and topographically-oblique discontinuities coexist, resulting in complex failures. We also developed a methodology to examine how the distribution of joints within the cliff faces of Yosemite Valley affects overall stability with respect to the identified failure mechanisms. For these analyses, we used terrestrial laser scanning (TLS) to collect high resolution point clouds of the vertical and overhanging rock faces throughout the Valley. This provided the necessary 3D data to identify the main joint sets, perform spacing and trace length measurements, and calculate volumes of previous and potential rockfalls. We integrated this information with stability calculations to identify the likely failure mechanisms for each area of cliff and to obtain the number of potential failures per square meter of cliff face

  18. Decision analysis framing study; in-valley drainage management strategies for the western San Joaquin Valley, California

    Science.gov (United States)

    Presser, Theresa S.; Jenni, Karen E.; Nieman, Timothy; Coleman, James

    2010-01-01

    Constraints on drainage management in the western San Joaquin Valley and implications of proposed approaches to management were recently evaluated by the U.S. Geological Survey (USGS). The USGS found that a significant amount of data for relevant technical issues was available and that a structured, analytical decision support tool could help optimize combinations of specific in-valley drainage management strategies, address uncertainties, and document underlying data analysis for future use. To follow-up on USGS's technical analysis and to help define a scientific basis for decisionmaking in implementing in-valley drainage management strategies, this report describes the first step (that is, a framing study) in a Decision Analysis process. In general, a Decision Analysis process includes four steps: (1) problem framing to establish the scope of the decision problem(s) and a set of fundamental objectives to evaluate potential solutions, (2) generation of strategies to address identified decision problem(s), (3) identification of uncertainties and their relationships, and (4) construction of a decision support model. Participation in such a systematic approach can help to promote consensus and to build a record of qualified supporting data for planning and implementation. In December 2008, a Decision Analysis framing study was initiated with a series of meetings designed to obtain preliminary input from key stakeholder groups on the scope of decisions relevant to drainage management that were of interest to them, and on the fundamental objectives each group considered relevant to those decisions. Two key findings of this framing study are: (1) participating stakeholders have many drainage management objectives in common; and (2) understanding the links between drainage management and water management is necessary both for sound science-based decisionmaking and for resolving stakeholder differences about the value of proposed drainage management solutions. Citing

  19. Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    The Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (Y/ER-301) was prepared (1) to safely, cost-effectively, and efficiently evaluate the environmental impact of solid material in the two debris areas in the context of industrial land uses (as defined in the Bear Creek Valley Feasibility Study) to support the Engineering Evaluation/Cost Assessment and (2) to evaluate, define, and implement the actions to mitigate these impacts. This work was performed under Work Breakdown Structure 1.x.01.20.01.08

  20. 77 FR 42722 - Copper Valley Electric Association; Notice of Updated Environmental Analysis Preparation Schedule

    Science.gov (United States)

    2012-07-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-002] Copper Valley...: Original License Application. b. Project No.: 13124-002. c. Applicant: Copper Valley Electric Association (Copper Valley). d. Name of Project: Allison Creek Project. e. Location: On the south side of Port Valdez...

  1. Digital Elevation Model (DEM) file of topographic elevations for the Death Valley region of southern Nevada and southeastern California processed from US Geological Survey 1-degree Digital Elevation Model data files

    International Nuclear Information System (INIS)

    Turner, A.K.; D'Agnese, F.A.; Faunt, C.C.

    1996-01-01

    Elevation data have been compiled into a digital data base for an ∼100,000-km 2 area of the southern Great Basin, the Death Valley region of southern Nevada, and SE Calif., located between lat 35 degree N, long 115 degree W, and lat 38 degree N, long 118 degree W. This region includes the Nevada Test Site, Yucca Mountain, and adjacent parts of southern Nevada and eastern California and encompasses the Death Valley regional ground-water system. Because digital maps are often useful for applications other than that for which they were originally intended, and because the area corresponds to a region under continuing investigation by several groups, these digital files are being released by USGS

  2. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action(UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1996). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will be evaluated in the site-specific environmental assessment to determine potential environmental impacts and provide stakeholders a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  3. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1996-03-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action(UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1996). The DOE's goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will be evaluated in the site-specific environmental assessment to determine potential environmental impacts and provide stakeholders a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology

  4. GPS Imaging of Time-Variable Earthquake Hazard: The Hilton Creek Fault, Long Valley California

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.

    2016-12-01

    The Hilton Creek Fault, in Long Valley, California is a down-to-the-east normal fault that bounds the eastern edge of the Sierra Nevada/Great Valley microplate, and lies half inside and half outside the magmatically active caldera. Despite the dense coverage with GPS networks, the rapid and time-variable surface deformation attributable to sporadic magmatic inflation beneath the resurgent dome makes it difficult to use traditional geodetic methods to estimate the slip rate of the fault. While geologic studies identify cumulative offset, constrain timing of past earthquakes, and constrain a Quaternary slip rate to within 1-5 mm/yr, it is not currently possible to use geologic data to evaluate how the potential for slip correlates with transient caldera inflation. To estimate time-variable seismic hazard of the fault we estimate its instantaneous slip rate from GPS data using a new set of algorithms for robust estimation of velocity and strain rate fields and fault slip rates. From the GPS time series, we use the robust MIDAS algorithm to obtain time series of velocity that are highly insensitive to the effects of seasonality, outliers and steps in the data. We then use robust imaging of the velocity field to estimate a gridded time variable velocity field. Then we estimate fault slip rate at each time using a new technique that forms ad-hoc block representations that honor fault geometries, network complexity, connectivity, but does not require labor-intensive drawing of block boundaries. The results are compared to other slip rate estimates that have implications for hazard over different time scales. Time invariant long term seismic hazard is proportional to the long term slip rate accessible from geologic data. Contemporary time-invariant hazard, however, may differ from the long term rate, and is estimated from the geodetic velocity field that has been corrected for the effects of magmatic inflation in the caldera using a published model of a dipping ellipsoidal

  5. 78 FR 69363 - Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project AGENCY: Lake Tahoe Basin Management Unit, Forest Service, USDA...: The Epic Discovery Project is intended to enhance summer activities in response to the USDA Forest...

  6. Reservoir Operating Rule Optimization for California's Sacramento Valley

    Directory of Open Access Journals (Sweden)

    Timothy Nelson

    2016-03-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss1art6Reservoir operating rules for water resource systems are typically developed by combining intuition, professional discussion, and simulation modeling. This paper describes a joint optimization–simulation approach to develop preliminary economically-based operating rules for major reservoirs in California’s Sacramento Valley, based on optimized results from CALVIN, a hydro-economic optimization model. We infer strategic operating rules from the optimization model results, including storage allocation rules to balance storage among multiple reservoirs, and reservoir release rules to determine monthly release for individual reservoirs. Results show the potential utility of considering previous year type on water availability and various system and sub-system storage conditions, in addition to normal consideration of local reservoir storage, season, and current inflows. We create a simple simulation to further refine and test the derived operating rules. Optimization model results show particular insights for balancing the allocation of water storage among Shasta, Trinity, and Oroville reservoirs over drawdown and refill seasons, as well as some insights for release rules at major reservoirs in the Sacramento Valley. We also discuss the applicability and limitations of developing reservoir operation rules from optimization model results.

  7. Geohydrology of Big Bear Valley, California: phase 1--geologic framework, recharge, and preliminary assessment of the source and age of groundwater

    Science.gov (United States)

    Flint, Lorraine E.; Brandt, Justin; Christensen, Allen H.; Flint, Alan L.; Hevesi, Joseph A.; Jachens, Robert; Kulongoski, Justin T.; Martin, Peter; Sneed, Michelle

    2012-01-01

    The Big Bear Valley, located in the San Bernardino Mountains of southern California, has increased in population in recent years. Most of the water supply for the area is pumped from the alluvial deposits that form the Big Bear Valley groundwater basin. This study was conducted to better understand the thickness and structure of the groundwater basin in order to estimate the quantity and distribution of natural recharge to Big Bear Valley. A gravity survey was used to estimate the thickness of the alluvial deposits that form the Big Bear Valley groundwater basin. This determined that the alluvial deposits reach a maximum thickness of 1,500 to 2,000 feet beneath the center of Big Bear Lake and the area between Big Bear and Baldwin Lakes, and decrease to less than 500 feet thick beneath the eastern end of Big Bear Lake. Interferometric Synthetic Aperture Radar (InSAR) was used to measure pumping-induced land subsidence and to locate structures, such as faults, that could affect groundwater movement. The measurements indicated small amounts of land deformation (uplift and subsidence) in the area between Big Bear Lake and Baldwin Lake, the area near the city of Big Bear Lake, and the area near Sugarloaf, California. Both the gravity and InSAR measurements indicated the possible presence of subsurface faults in subbasins between Big Bear and Baldwin Lakes, but additional data are required for confirmation. The distribution and quantity of groundwater recharge in the area were evaluated by using a regional water-balance model (Basin Characterization Model, or BCM) and a daily rainfall-runoff model (INFILv3). The BCM calculated spatially distributed potential recharge in the study area of approximately 12,700 acre-feet per year (acre-ft/yr) of potential in-place recharge and 30,800 acre-ft/yr of potential runoff. Using the assumption that only 10 percent of the runoff becomes recharge, this approach indicated there is approximately 15,800 acre-ft/yr of total recharge in

  8. Log analysis in the shallow oil sands of the San Joaquin Valley, California

    International Nuclear Information System (INIS)

    Vohs, J.B.

    1976-01-01

    Many fields in the San Joaquin Valley of California produce oil from a depth of 2,500 ft or less. During the period of primary production in these fields, evaluation of potential pay intervals from logs was restricted to examination of ES logs and correlation. With the introduction of secondary and tertiary recovery techniques the need for more and better answers, more quickly available, became apparent. However, several log-analysis problems had to be resolved. Formation evaluation using well logs was complicated by the shaliness of the sand intervals, the low and variable salinity of the formation waters, and the presence of low-pressure-gas (depleted) zones in many of the shallow sands. Solutions to these problems have required more modern logging programs and interpretation techniques. Logs available for the evaluation of these sands are the dual induction-laterolog, the compensated formation density log, the compensated neutron log, and the microlaterolog or proximity log. With this suite of logs it is possible to determine the shale content, porosity, saturation in the flushed zone, and water saturation of the sand, and to locate the low-pressure-gas sands and depleted zones. In cases where freshwater and oil are interlayered, it is possible to tell which sands contain oil and which contain only water. Because a quick interpretation is required, wellsite techniques are called for. These will be described

  9. The roles of microbial selenate reduction and selenium sorption on selenium immobilization in littoral sediment from the hypersaline Salton Sea, California

    OpenAIRE

    Villa-Romero, Juan Fernando

    2015-01-01

    The Salton Sea in California was formed between 1905-1907 by an accident that diverted Colorado River water to the Salton Sea Basin of the Colorado desert. Since 1924 the Salton Sea serves as an agricultural drainage reservoir maintained by agricultural and municipal wastewater inputs from the Coachella and Imperial Valleys in California and the Mexicali Valley in Mexico. Today, the Salton Sea is California's largest lake by area (975 km2) and constitutes a vital habitat for more than a milli...

  10. Technical Analysis of In-Valley Drainage Management Strategies for the Western San Joaquin Valley, California

    Science.gov (United States)

    Presser, Theresa S.; Schwarzbach, Steven E.

    2008-01-01

    The western San Joaquin Valley is one of the most productive farming areas in the United States, but salt-buildup in soils and shallow groundwater aquifers threatens this area?s productivity. Elevated selenium concentrations in soils and groundwater complicate drainage management and salt disposal. In this document, we evaluate constraints on drainage management and implications of various approaches to management considered in: *the San Luis Drainage Feature Re-Evaluation (SLDFRE) Environmental Impact Statement (EIS) (about 5,000 pages of documentation, including supporting technical reports and appendices); *recent conceptual plans put forward by the San Luis Unit (SLU) contractors (i.e., the SLU Plans) (about 6 pages of documentation); *approaches recommended by the San Joaquin Valley Drainage Program (SJVDP) (1990a); and *other U.S. Geological Survey (USGS) models and analysis relevant to the western San Joaquin Valley. The alternatives developed in the SLDFRE EIS and other recently proposed drainage plans (refer to appendix A for details) differ from the strategies proposed by the San Joaquin Valley Drainage Program (1990a). The Bureau of Reclamation (USBR) in March 2007 signed a record of decision for an in-valley disposal option that would retire 194,000 acres of land, build 1,900 acres of evaporation ponds, and develop a treatment system to remove salt and selenium from drainwater. The recently proposed SLU Plans emphasize pumping drainage to the surface, storing approximately 33% in agricultural water re-use areas, treating selenium through biotechnology, enhancing the evaporation of water to concentrate salt, and identifying ultimate storage facilities for the remaining approximately 67% of waste selenium and salt. The treatment sequence of reuse, reverse osmosis, selenium bio-treatment, and enhanced solar evaporation is unprecedented and untested at the scale needed to meet plan requirements. All drainage management strategies that have been proposed

  11. Transport woes threaten California production

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    California oil producers face a loss of production this year because of constraints on pipeline and tanker transportation to Los Angeles area refineries. The potential bottleneck is occurring at a time when Outer Continental Shelf production is near capacity from Chevron Corp.'s Point Arguello project at the same time production is increasing from Exxon Corp.'s nearby Santa Ynex Unit (SYU) expansion. Both megaprojects must compete for pipeline space with onshore crude producers, notably in California's San Joaquin Valley (SJV). Recent development limiting transportation options include: An indefinite shutdown of Four Corners Pipe Line Co.'s 50,000 b/d Line No. 1, damaged by the Jan. 17 earthquake; Loss of a tanker permit by Chevron and partners for offshore Point Arguello production; Permanent shutdown of Exxon's offshore storage and treatment (OST) facility, which since 1981 has used tankers to transport about 20,000 b/d of SYU production from the Santa Barbara Channel to Los Angeles. The OST, the first commercial floating production system in the US -- placed in the Santa Barbara Channel in 1981 after a decade of precedent setting legal and political battles -- was shut down Apr. 4. The paper discusses these production concerns, available options, the OST shutdown, and the troubled history of the OST

  12. Researching Indigenous Indians in Southern California: Commentary, Bibliography, and Online Resources

    Science.gov (United States)

    Sutton, Imre

    2006-01-01

    This article seeks to present a continuing bibliography of research on Southern California Indians from the past 20 years, and sometimes beyond. The coverage reaches outside the variably defined bounds of Southern California so that it includes peripheral groups such as the Timbisha Shoshone of Death Valley and one or more groups in the Owens…

  13. Building support for your wind project : engaging stakeholders : the Dillon Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Philpott, G. [PPM Energy, Calgary, AB (Canada)

    2007-07-01

    Iberdrola, the world's largest renewable energy company, acquired Scottish Power PLC and its subsidiary PPM Energy in April 2007. Iberdrola operates 6,500 MW of wind energy worldwide. This presentation described PPM Energy's experience with the proposed 45 MW Dillon Wind Project in southern California. The proposed project includes fourty-five 1 MW 327 ft tall Mitsubishi turbines as well as associated facilities such as turbine access roads, underground collector lines, and a collector substation. The wind turbine array occupies 2 per cent of 1500 acres. The vacant rural desert properties surrounding the proposed project area already house 2,700 existing turbines within San Gorgonio Pass, 513 existing turbines within 1/2 of the proposed project, and 2 sites of formerly hosted wind turbines. PPM held an open house for interested residents and stakeholders to learn about the Dillon project and express concerns. The meetings were attended by local wildlife agencies, homeowner groups, the Coachella Valley Economic Partnership and Palm Springs Economic Development Council. The project would help California meet its renewable energy mandates and serve 13,500 homes. It would eliminate 186 million pounds of carbon dioxide, 9.6 million pounds of sulfur dioxide and 5.8 million pounds of nitrous oxides each year. Lessons learned by PPM were: engage in community outreach; emphasize project benefits; build flexibility into design; and address real environmental concerns. In response to public concerns, PPM Energy eliminated 2 turbines from the project. In addition, turbines were shifted away from residences and a scenic highway. All collector lines were placed underground, without any overhead lines. figs.

  14. Modeling nitrate at domestic and public-supply well depths in the Central Valley, California

    Science.gov (United States)

    Nolan, Bernard T.; Gronberg, JoAnn M.; Faunt, Claudia C.; Eberts, Sandra M.; Belitz, Ken

    2014-01-01

    Aquifer vulnerability models were developed to map groundwater nitrate concentration at domestic and public-supply well depths in the Central Valley, California. We compared three modeling methods for ability to predict nitrate concentration >4 mg/L: logistic regression (LR), random forest classification (RFC), and random forest regression (RFR). All three models indicated processes of nitrogen fertilizer input at the land surface, transmission through coarse-textured, well-drained soils, and transport in the aquifer to the well screen. The total percent correct predictions were similar among the three models (69–82%), but RFR had greater sensitivity (84% for shallow wells and 51% for deep wells). The results suggest that RFR can better identify areas with high nitrate concentration but that LR and RFC may better describe bulk conditions in the aquifer. A unique aspect of the modeling approach was inclusion of outputs from previous, physically based hydrologic and textural models as predictor variables, which were important to the models. Vertical water fluxes in the aquifer and percent coarse material above the well screen were ranked moderately high-to-high in the RFR models, and the average vertical water flux during the irrigation season was highly significant (p < 0.0001) in logistic regression.

  15. Modeling nitrate at domestic and public-supply well depths in the Central Valley, California

    Science.gov (United States)

    Nolan, Bernard T.; Gronberg, JoAnn M.; Faunt, Claudia C.; Eberts, Sandra M.; Belitz, Ken

    2014-01-01

    Aquifer vulnerability models were developed to map groundwater nitrate concentration at domestic and public-supply well depths in the Central Valley, California. We compared three modeling methods for ability to predict nitrate concentration >4 mg/L: logistic regression (LR), random forest classification (RFC), and random forest regression (RFR). All three models indicated processes of nitrogen fertilizer input at the land surface, transmission through coarse-textured, well-drained soils, and transport in the aquifer to the well screen. The total percent correct predictions were similar among the three models (69–82%), but RFR had greater sensitivity (84% for shallow wells and 51% for deep wells). The results suggest that RFR can better identify areas with high nitrate concentration but that LR and RFC may better describe bulk conditions in the aquifer. A unique aspect of the modeling approach was inclusion of outputs from previous, physically based hydrologic and textural models as predictor variables, which were important to the models. Vertical water fluxes in the aquifer and percent coarse material above the well screen were ranked moderately high-to-high in the RFR models, and the average vertical water flux during the irrigation season was highly significant (p in logistic regression.

  16. Groundwater quality in the Mojave area, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources

  17. Preliminary isostatic residual gravity anomaly map of Paso Robles 30 x 60 minute quadrangle, California

    Science.gov (United States)

    McPhee, D.K.; Langenheim, V.E.; Watt, J.T.

    2011-01-01

    This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in the central California Coast Ranges and will serve as a basis for modeling the shape of basins and for determining the location and geometry of faults within the Paso Robles quadrangle. Local spatial variations in the Earth\\'s gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithological or structural boundaries. High-density rocks exposed within the central Coast Ranges include Mesozoic granitic rocks (exposed northwest of Paso Robles), Jurassic to Cretaceous marine strata of the Great Valley Sequence (exposed primarily northeast of the San Andreas fault), and Mesozoic sedimentary and volcanic rocks of the Franciscan Complex [exposed in the Santa Lucia Range and northeast of the San Andreas fault (SAF) near Parkfield, California]. Alluvial sediments and Tertiary sedimentary rocks are characterized by low densities; however, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of older basement rocks.

  18. Methods, quality assurance, and data for assessing atmospheric deposition of pesticides in the Central Valley of California

    Science.gov (United States)

    Zamora, Celia; Majewski, Michael S.; Foreman, William T.

    2013-01-01

    The U.S. Geological Survey monitored atmospheric deposition of pesticides in the Central Valley of California during two studies in 2001 and 2002–04. The 2001 study sampled wet deposition (rain) and storm-drain runoff in the Modesto, California, area during the orchard dormant-spray season to examine the contribution of pesticide concentrations to storm runoff from rainfall. In the 2002–04 study, the number and extent of collection sites in the Central Valley were increased to determine the areal distribution of organophosphate insecticides and other pesticides, and also five more sample types were collected. These were dry deposition, bulk deposition, and three sample types collected from a soil box: aqueous phase in runoff, suspended sediment in runoff, and surficial-soil samples. This report provides concentration data and describes methods and quality assurance of sample collection and laboratory analysis for pesticide compounds in all samples collected from 16 sites. Each sample was analyzed for 41 currently used pesticides and 23 pesticide degradates, including oxygen analogs (oxons) of 9 organophosphate insecticides. Analytical results are presented by sample type and study period. The median concentrations of both chloryprifos and diazinon sampled at four urban (0.067 micrograms per liter [μg/L] and 0.515 μg/L, respectively) and four agricultural sites (0.079 μg/L and 0.583 μg/L, respectively) during a January 2001 storm event in and around Modesto, Calif., were nearly identical, indicating that the overall atmospheric burden in the region appeared to be fairly similar during the sampling event. Comparisons of median concentrations in the rainfall to those in the McHenry storm-drain runoff showed that, for some compounds, rainfall contributed a substantial percentage of the concentration in the runoff; for other compounds, the concentrations in rainfall were much greater than in the runoff. For example, diazinon concentrations in rainfall were about

  19. Siting a low-level radioactive waste disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1991-01-01

    US Ecology is the State of California's designee to site, develop and operate a low-level radioactive waste disposal facility. In March 1988, a site in the Ward Valley of California's Mojave Desert was chosen for development. Strong local community support has been expressed for the site. US Ecology anticipates licensing and constructing a facility to receive waste by early 1991. This schedule places California well ahead of the siting milestones identified in Federal law. (author) 1 fig., 2 refs

  20. Solar Energy within the Central Valley, CA: Current Practices and Potential

    Science.gov (United States)

    Hoffacker, M. K.; Hernandez, R. R.; Allen, M. F.

    2015-12-01

    Utility-scale solar energy (USSE, ≥ 1 megawatt [MW]) systems are rapidly being deployed in the Central Valley of California, generating clean electricity and new job opportunities. Utility-scale solar energy systems require substantial quantities of land or space, often prompting an evaluation of environmental impacts and trade-offs when selecting their placement. Utilizing salt-contaminated agricultural land (as the sodium absorption and electrical conductivity values are unsuitably high), unsuitable for food production, and lands within the built environment (developed), can serve as a co-benefit opportunity when reclamation of these lands for USSE development is prioritized. In this study, we quantify the theoretical and generation-based solar energy potential for the Central Valley according to land-cover type, crop type, and for salt-contaminated lands. Further, we utilize the Carnegie Energy and Environmental Compatibility (CEEC) model to identify and prioritize solar energy, integrating environmental resource opportunities and constraints most relevant to the Central Valley. We use the CEEC model to generate a value-based environmental compatibility output for the Central Valley. The Central Valley extends across nearly 60,000 km2 of California with the potential of generating 21,800 - 30,300 TWh y-1 and 41,600 TWh y-1 of solar energy for photovoltaic (PV) and concentrating solar power (CSP), respectively. Pasture, hay, and cultivated crops comprise over half of the Central Valley, much of which is considered prime agriculture or of statewide or local importance for farming (28,200 km2). Together, approximately one-third of this region is salt-contaminated (16%) or developed (11%). This confers a generation-based potential of 5713 - 7891 TWh y-1 and 2770 TWh y-1 for PV and CSP, respectively. As energy, food, and land are inextricably linked, our study shows how land favorable for renewable energy systems can be used more effectively in places where land is

  1. BPA/Lower Valley transmission project. Final environmental impact statement

    International Nuclear Information System (INIS)

    1998-06-01

    Bonneville Power Administration and Lower Valley Power and Light, Inc. propose to solve a voltage stability problem in the Jackson and Afton, Wyoming areas. Lower Valley buys electricity from BPA and then supplies it to the residences and businesses of the Jackson and Afton, Wyoming areas. BPA is considering five alternatives. For the Agency Proposed Action, BPA and Lower Valley would construct a new 115-kV line from BPA's Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA's Teton Substation near Jackson in Teton County, Wyoming. The new line would be next to an existing 115-kV line. The Single-Circuit Line Alternative has all the components of the Agency Proposed Action except that the entire line would be supported by single-circuit wood pole H-frame structures. the Short Line Alternative has all the components of the Single-Circuit Line Alternative except it would only be half as long. BPA would also construct a new switching station near the existing right-of-way, west or north of Targhee Tap. Targhee Tap would then be removed. For the Static Var Compensation Alternative, BPA would install a Static Var Compensator (SVC) at Teton or Jackson Substation. An SVC is a group of electrical equipment placed at a substation to help control voltage on a transmission system. The No Action Alternative assumes that no new transmission line is built, and no other equipment is added to the transmission system

  2. 76 FR 18542 - Copper Valley Electric Association; Notice of Scoping Document 2 and Soliciting Scoping Comments...

    Science.gov (United States)

    2011-04-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-002] Copper Valley.... Applicant: Copper Valley Electric Association (Copper Valley) d. Name of Project: Allison Creek Project. e.... 791(a)-825(r). g. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association, P.O...

  3. License application approach for the California LLRW disposal facility

    International Nuclear Information System (INIS)

    Gaynor, R.K.; Romano, S.A.; Hanrahan, T.P.

    1990-01-01

    US Ecology, Inc. is the State of California's license designee to site, develop and operate a low-level radioactive waste (LLRW) disposal facility to serve member states of the Southwestern Compact. US Ecology identified a proposed site in the Ward Valley of southeastern California in March 1988. Following proposed site selection, US Ecology undertook studies required to prepare a license application. US Ecology's license application for this desert site was deemed complete for detailed regulatory review by the California Department of Health Services (DHS) in December 1989. By mutual agreement, disposal of mixed waste is not proposed pending the State of California's decision on appropriate management of this small LLRW subset

  4. Accessing northern California earthquake data via Internet

    Science.gov (United States)

    Romanowicz, Barbara; Neuhauser, Douglas; Bogaert, Barbara; Oppenheimer, David

    The Northern California Earthquake Data Center (NCEDC) provides easy access to central and northern California digital earthquake data. It is located at the University of California, Berkeley, and is operated jointly with the U.S. Geological Survey (USGS) in Menlo Park, Calif., and funded by the University of California and the National Earthquake Hazard Reduction Program. It has been accessible to users in the scientific community through Internet since mid-1992.The data center provides an on-line archive for parametric and waveform data from two regional networks: the Northern California Seismic Network (NCSN) operated by the USGS and the Berkeley Digital Seismic Network (BDSN) operated by the Seismographic Station at the University of California, Berkeley.

  5. Site characterization quality assurance for the California LLRW Disposal Site Project

    International Nuclear Information System (INIS)

    Hanrahan, T.P.; Ench, J.E.; Serlin, C.L.; Bennett, C.B.

    1988-01-01

    In December of 1985 US Ecology was chosen as the license designee for the State of California's low-level radioactive waste disposal facility. In early 1987, three candidate sites were selected for characterization studies in preparation for identifying the preferred site. The geotechnical characterization activities along with studies of the ecological and archaeological attributes, as well as assessments of the socio-economic impacts and cultural resources all provide input towards selection of the proposed site. These technical studies in conjunction with comments from local citizen committees and other interested parties are used as a basis for determining the proposed site for which full site characterization as required by California licensing requirements are undertaken. The purpose of this paper is to present an overview of the program for Quality Assurance and Quality Control for the site characterization activities on the California LLRW Disposal Site Project. The focus is on three major perspectives: The composite QA Program and two of the primary characterization activities, the geotechnical and the meteorological investigations

  6. Ground-Water Quality Data in the Southeast San Joaquin Valley, 2005-2006 - Results from the California GAMA Program

    Science.gov (United States)

    Burton, Carmen A.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,800 square-mile Southeast San Joaquin Valley study unit (SESJ) was investigated from October 2005 through February 2006 as part of the Priority Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The SESJ study was designed to provide a spatially unbiased assessment of raw ground-water quality within SESJ, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 99 wells in Fresno, Tulare, and Kings Counties, 83 of which were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 16 of which were sampled to evaluate changes in water chemistry along ground-water flow paths or across alluvial fans (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine, and 1,2,3-trichloropropane), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately 10 percent of the wells, and the results

  7. Climate Change, Public Health, and Policy: A California Case Study

    Science.gov (United States)

    Smith, Jason A.

    2018-01-01

    Anthropogenic activity will bring immediate changes and disruptions to the global climate with accompanying health implications. Although policymakers and public health advocates are beginning to acknowledge the health implications of climate change, current policy approaches are lagging behind. We proposed that 4 key policy principles are critical to successful policymaking in this arena: mainstreaming, linking mitigation and adaptation policy, applying population perspectives, and coordination. We explored California’s progress in addressing the public health challenges of climate change in the San Joaquin Valley as an example. We discussed issues of mental health and climate change, and used the San Joaquin Valley of California as an example to explore policy approaches to health issues and climate change. The California experience is instructive for other jurisdictions. PMID:29072936

  8. A case study: Death Valley National Monument California-Nevada

    Science.gov (United States)

    Daniel Hamson; Ristau Toni

    1979-01-01

    With passage of the Mining in the Parks Act (P.L. 94-429) in 1976, the National Park Service, Department of the Interior, was given the responsibility of preparing a report to Congress outlining the environmental consequences of mining on claims within Death Valley National Monument. In addition, the Secretary of the Interior is required to formulate a recommendation...

  9. Future scenarios of impacts to ecosystem services on California rangelands

    Science.gov (United States)

    Byrd, Kristin; Alvarez, Pelayo; Flint, Lorraine; Flint, Alan

    2014-01-01

    The 18 million acres of rangelands in the Central Valley of California provide multiple benefits or “ecosystem services” to people—including wildlife habitat, water supply, open space, recreation, and cultural resources. Most of this land is privately owned and managed for livestock production. These rangelands are vulnerable to land-use conversion and climate change. To help resource managers assess the impacts of land-use change and climate change, U.S. Geological Survey scientists and their cooperators developed scenarios to quantify and map changes to three main rangeland ecosystem services—wildlife habitat, water supply, and carbon sequestration. Project results will help prioritize strategies to conserve these rangelands and the ecosystem services that they provide.

  10. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    Science.gov (United States)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  11. DECISION TOOL FOR RIPARIAN ECOSYSTEM MANAGMENT IN THE MID-ATLANTIC HIGHLANDS

    Science.gov (United States)

    In the Canaan Valley Highlands of the Mid-Atlantic, riparian zone restoration has been identified as a critical watershed management practice not only for the ecosystem services provided but also for the potential socioeconomic growth from environmental investment and job creatio...

  12. Environmental Assessment. Proposed Air Force Space Division Housing Project, White Point, Los Angeles, California

    Science.gov (United States)

    1984-07-01

    render any potential impactsnegligible. 5 E. Diking, Dredging and Shoreline Structures The project would have no effect on these areas of concern; see3...San Juan Capistrano Indians of Southern California [1812-1826]") and Hugo Reid’s letters I printed in the Los Angeles Star in the 1800’s ( Heizer 1968...California5 n.d. A Brief History of Fort MacArthur. Heizer , R. F. (ed.) 1968 The Indians of Los Angeles County: Hugo Reid’s Letters of 1852

  13. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2009-09-24

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  14. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008

    International Nuclear Information System (INIS)

    2009-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  15. Health Impact Assessment of an oil drilling project in California

    OpenAIRE

    Lindsay C. McCallum; Kathleen Souweine; Mary McDaniel; Bart Koppe; Christine McFarland; Katherine Butler; Christopher A. Ollson

    2016-01-01

    Objectives: The Health Impact Assessment (HIA) was conducted to evaluate the potential community health implications of a proposed oil drilling and production project in Hermosa Beach, California. The HIA considered 17 determinants of health that fell under 6 major categories (i.e., air quality, water and soil quality, upset conditions, noise and light emissions, traffic, and community livability). Material and Methods: This paper attempts to address some of the gaps within the HIA practice b...

  16. Residence Times in Central Valley Aquifers Recharged by Dammed Rivers

    Science.gov (United States)

    Loustale, M.; Paukert Vankeuren, A. N.; Visser, A.

    2017-12-01

    Groundwater is a vital resource for California, providing between 30-60% of the state's water supply. Recent emphasis on groundwater sustainability has induced a push to characterize recharge rates and residence times for high priority aquifers, including most aquifers in California's Central Valley. Flows in almost all rivers from the western Sierra to the Central Valley are controlled by dams, altering natural flow patterns and recharge to local aquifers. In eastern Sacramento, unconfined and confined shallow aquifers (depth recharged by a losing reach of the Lower American River, despite the presence of levees with slurry cut-off walls.1 Flow in the Lower American River is controlled through the operation of the Folsom and Nimbus Dams, with a minimum flow of 500 cfs. Water table elevation in wells in close proximity to the river are compared to river stage to determine the effect of river stage on groundwater recharge rates. Additionally, Tritium-3Helium dates and stable isotopes (∂18O and ∂2H) have been measured in monitoring wells 200- 2400 ft lateral distance from the river, and depths of 25 -225 feet BGS. Variation in groundwater age in the vertical and horizontal directions are used to determine groundwater flow path and velocity. These data are then used to calculate residence time of groundwater in the unconfined and confined aquifer systems for the Central Valley in eastern Sacramento. Applying groundwater age tracers can benefit future compliance metrics of the California Sustainable Groundwater Resources Act (SGMA), by quantifying river seepage rates and impacts of groundwater management on surface water resources. 1Moran et al., UCRL-TR-203258, 2004.

  17. Subsurface geometry of the San Andreas fault in southern California: Results from the Salton Seismic Imaging Project (SSIP) and strong ground motion expectations

    Science.gov (United States)

    Fuis, Gary S.; Bauer, Klaus; Goldman, Mark R.; Ryberg, Trond; Langenheim, Victoria; Scheirer, Daniel S.; Rymer, Michael J.; Stock, Joann M.; Hole, John A.; Catchings, Rufus D.; Graves, Robert; Aagaard, Brad T.

    2017-01-01

    The San Andreas fault (SAF) is one of the most studied strike‐slip faults in the world; yet its subsurface geometry is still uncertain in most locations. The Salton Seismic Imaging Project (SSIP) was undertaken to image the structure surrounding the SAF and also its subsurface geometry. We present SSIP studies at two locations in the Coachella Valley of the northern Salton trough. On our line 4, a fault‐crossing profile just north of the Salton Sea, sedimentary basin depth reaches 4 km southwest of the SAF. On our line 6, a fault‐crossing profile at the north end of the Coachella Valley, sedimentary basin depth is ∼2–3  km">∼2–3  km and centered on the central, most active trace of the SAF. Subsurface geometry of the SAF and nearby faults along these two lines is determined using a new method of seismic‐reflection imaging, combined with potential‐field studies and earthquakes. Below a 6–9 km depth range, the SAF dips ∼50°–60°">∼50°–60° NE, and above this depth range it dips more steeply. Nearby faults are also imaged in the upper 10 km, many of which dip steeply and project to mapped surface fault traces. These secondary faults may join the SAF at depths below about 10 km to form a flower‐like structure. In Appendix D, we show that rupture on a northeast‐dipping SAF, using a single plane that approximates the two dips seen in our study, produces shaking that differs from shaking calculated for the Great California ShakeOut, for which the southern SAF was modeled as vertical in most places: shorter‐period (TTfault.

  18. 76 FR 33362 - Request for Interest in Lease Arrangement on Federal Lands, San Luis Project, Los Banos, California

    Science.gov (United States)

    2011-06-08

    ... facilitating environmentally appropriate renewable-energy projects involving solar, wind and waves, geothermal... Federal Lands, San Luis Project, Los Banos, California AGENCY: Bureau of Reclamation, Interior. ACTION... energy project(s) in a lease arrangement on existing Reclamation lands in the vicinity of the San Luis...

  19. Pesticides and Population Declines of California Alpine Frogs

    Science.gov (United States)

    Airborne pesticides from the Central Valley of California have been implicated as a cause for population declines of several amphibian species, with the strongest evidence for the mountain yellow-legged frog complex (Rana muscosa and R. sierrae) in the Sierra Nevada. We measured ...

  20. A skin test survey of valley fever in Tijuana, Mexico.

    Science.gov (United States)

    Fredrich, B E

    1989-01-01

    Results of a study of the prevalence of valley fever among 1128 residents of Tijuana, Baja California are presented. Children from primary and middle schools (n = 497) and adults from technical institutes and maquiladoras (assembly plants) were tested for reaction to both spherulin and coccidioidin during 1985-1986, and they completed a questionnaire containing 23 variables on their socio-environment. Place of residence was mapped. The population sampled is largely middle class. Discriminant analysis indicates the distribution of positive cases is not clustered, nor can it be correlated with geomorphic factors such as mesa tops, canyons, or valley bottoms.

  1. Evaluation of volatile organic compounds in two Mojave Desert basins-Mojave River and Antelope Valley-in San Bernardino, Los Angeles, and Kern Counties, California, June-October 2002

    Science.gov (United States)

    Densmore, Jill N.; Belitz, Kenneth; Wright, Michael T.; Dawson, Barbara J.; Johnson, Tyler D.

    2005-01-01

    The California Aquifer Susceptibility Assessment of the Ground-Water Ambient Monitoring and Assessment Program was developed to assess water quality and susceptibility of ground-water resources to contamination from surficial sources. This study focuses on the Mojave River and the Antelope Valley ground-water basins in southern California. Volatile organic compound (VOC) data were evaluated in conjunction with tritium data to determine a potential correlation with aquifer type, depth to top of perforations, and land use to VOC distribution and occurrence in the Mojave River and the Antelope Valley Basins. Detection frequencies for VOCs were compiled and compared to assess the distribution in each area. Explanatory variables were evaluated by comparing detection frequencies for VOCs and tritium and the number of compounds detected. Thirty-three wells were sampled in the Mojave River Basin (9 in the floodplain aquifer, 15 in the regional aquifer, and 9 in the sewered subset of the regional aquifer). Thirty-two wells were sampled in the Antelope Valley Basin. Quality-control samples also were collected to identify, quantify, and document bias and variability in the data. Results show that VOCs generally were detected slightly more often in the Antelope Valley Basin samples than in the Mojave River Basin samples. VOCs were detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Tritium was detected more frequently in the Mojave River Basin samples than in the Antelope Valley Basin samples, and it was detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Most of the samples collected in both basins for this study contained old water (water recharged prior to 1952). In general, in these desert basins, tritium need not be present for VOCs to be present. When VOCs were detected, young water (water recharge after 1952) was slightly more likely to be contaminated than old water

  2. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices

  3. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices.

  4. Analysis of the Carmel Valley alluvial ground-water basin, Monterey County, California

    Science.gov (United States)

    Kapple, Glenn W.; Mitten, Hugh T.; Durbin, Timothy J.; Johnson, Michael J.

    1984-01-01

    A two-dimensional, finite-element, digital model was developed for the Carmel Valley alluvial ground-water basin using measured, computed, and estimated discharge and recharge data for the basin. Discharge data included evapotranspiration by phreatophytes and agricultural, municipal, and domestic pumpage. Recharge data included river leakage, tributary runoff, and pumping return flow. Recharge from subsurface boundary flow and rainfall infiltration was assumed to be insignificant. From 1974 through 1978, the annual pumping rate ranged from 5,900 to 9,100 acre-feet per year with 55 percent allotted to municipal use principally exported out of the valley, 44 percent to agricultural use, and 1 percent to domestic use. The pumpage return flow within the valley ranged from 900 to 1,500 acre-feet per year. The aquifer properties of transmissivity (about 5,900 feet squared per day) and of the storage coefficient (0.19) were estimated from an average alluvial thickness of 75 feet and from less well-defined data on specific capacity and grain-size distribution. During calibration the values estimated for hydraulic conductivity and storage coefficient for the lower valley were reduced because of the smaller grain size there. The river characteristics were based on field and laboratory analyses of hydraulic conductivity and on altitude survey data. The model is intended principally for simulation of flow conditions using monthly time steps. Time variations in transmissivity and short-term, highrecharge potential are included in the model. The years 1974 through 1978 (including "pre-" and "post-" drought) were selected because of the extreme fluctuation in water levels between the low levels measured during dry years and the above-normal water levels measured during the preceding and following wet years. Also, during this time more hydrologic information was available. Significantly, computed water levels were generally within a few feet of the measured levels, and computed

  5. Northern California CO2 Reduction Project

    Energy Technology Data Exchange (ETDEWEB)

    Hymes, Edward [C6 Resources LLC, Houston, TX (United States)

    2010-06-16

    C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO2 per year, so additional capacity will be available to accommodate CO2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO2 reduction requirements set

  6. Two Years of Ozone Vertical Profiles Collected from Aircraft over California and the Pacific Ocean

    Science.gov (United States)

    Austerberry, D.; Yates, E. L.; Roby, M.; Chatfield, R. B.; Iraci, L. T.; Pierce, B.; Fairlie, T. D.; Johnson, B. J.; Ives, M.

    2012-12-01

    Tropospheric ozone transported across the Pacific Ocean has been strongly suggested to contribute substantially to surface ozone levels at several sites within Northern California's Sacramento Valley. Because this contribution can affect a city's ability to meet regulatory ozone limits, the influence of Pacific ozone transport has implications for air quality control strategies in the San Joaquin Valley (SJV). The Alpha Jet Atmospheric Experiment is designed to collect a multi-year data set of tropospheric ozone vertical profiles. Forty-four flights with ozone profiles were conducted between February 2nd, 2011 and August 9th, 2012, and approximately ten more flights are expected in the remainder of 2012. Twenty marine air profiles have been collected at sites including Trinidad Head and two locations tens of kilometers offshore at 37° N latitude. Good agreement is seen with ozonesondes launched from Trinidad Head. Additional profiles over Merced, California were obtained on many of these flight days. These in-situ measurements were conducted during spiral descents of H211's Alpha Jet at mid-day local times using a 2B Technologies Dual Beam Ozone Monitor. Hourly surface ambient ozone data were obtained from the California Air Resources Board's SJV monitoring sites. For each site, the Pearson linear correlation coefficient was calculated between ozone in a 300m vertical layer of an offshore profile and the surface site at varying time offsets from the time of the profile. Each site's local and regional ozone production component was estimated and removed. The resulting correlations suggest instances of Pacific ozone transport following some of the offshore observations. Real-Time Air Quality Modeling System (RAQMS) products constrained by assimilated satellite data model the transport of ozone enhancements and guide flight planning. RAQMS hindcasts also suggest that ozone transport to the surface of the SJV basin occurred following some of these offshore profiles

  7. Public Assistance Worksheets for Damage from 2010 Floods to the East Valley Water District

    Science.gov (United States)

    East Valley Water District (EVWD) in San Bernardino, California had significant damage due to flooding in December 2010. There was a presidentially-declared disaster. EVWD applied to FEMA under the Public Assistance Grant Program.

  8. Organic matter in central California radiation fogs.

    Science.gov (United States)

    Herckes, Pierre; Lee, Taehyoung; Trenary, Laurie; Kang, Gongunn; Chang, Hui; Collett, Jeffrey L

    2002-11-15

    Organic matter was studied in radiation fogs in the San Joaquin Valley of California during the California Regional Particulate Air Quality Study (CRPAQS). Total organic carbon (TOC) concentrations ranged from 2 to 40 ppm of C. While most organic carbon was found in solution as dissolved organic carbon (DOC), 23% on average was not dissolved inside the fog drops. We observe a clear variation of organic matter concentration with droplet size. TOC concentrations in small fog drops (fogwater, consistent with the enrichment of the organic matter in smaller fog drops with lower terminal settling velocities.

  9. Monogenetic origin of Ubehebe Crater maar volcano, Death Valley, California: Paleomagnetic and stratigraphic evidence

    Science.gov (United States)

    Champion, Duane E.; Cyr, Andy; Fierstein, Judy; Hildreth, Wes

    2018-04-01

    Paleomagnetic data for samples collected from outcrops of basaltic spatter at the Ubehebe Crater cluster, Death Valley National Park, California, record a single direction of remanent magnetization indicating that these materials were emplaced during a short duration, monogenetic eruption sequence 2100 years ago. This conclusion is supported by geochemical data encompassing a narrow range of oxide variation, by detailed stratigraphic studies of conformable phreatomagmatic tephra deposits showing no evidence of erosion between layers, by draping of sharp rimmed craters by later tephra falls, and by oxidation of later tephra layers by the remaining heat of earlier spatter. This model is also supported through a reinterpretation and recalculation of the published 10Be age results (Sasnett et al., 2012) from an innovative and bold exposure-age study on very young materials. Their conclusion of multiple and protracted eruptions at Ubehebe Crater cluster is here modified through the understanding that some of their quartz-bearing clasts inherited 10Be from previous exposure on the fan surface (too old), and that other clasts were only exposed at the surface by wind and/or water erosion centuries after their eruption (too young). Ubehebe Crater cluster is a well preserved example of young monogenetic maar type volcanism protected within a National Park, and it represents neither a protracted eruption sequence as previously thought, nor a continuing volcanic hazard near its location.

  10. Quantifying anthropogenic contributions to century-scale groundwater salinity changes, San Joaquin Valley, California, USA

    Science.gov (United States)

    Hansen, Jeffrey; Jurgens, Bryant; Fram, Miranda S.

    2018-01-01

    Total dissolved solids (TDS) concentrations in groundwater tapped for beneficial uses (drinking water, irrigation, freshwater industrial) have increased on average by about 100 mg/L over the last 100 years in the San Joaquin Valley, California (SJV). During this period land use in the SJV changed from natural vegetation and dryland agriculture to dominantly irrigated agriculture with growing urban areas. Century-scale salinity trends were evaluated by comparing TDS concentrations and major ion compositions of groundwater from wells sampled in 1910 (Historic) to data from wells sampled in 1993-2015 (Modern). TDS concentrations in subregions of the SJV, the southern (SSJV), western (WSJV), northeastern (NESJV), and southeastern (SESJV) were calculated using a cell-declustering method. TDS concentrations increased in all regions, with the greatest increases found in the SSJV and SESJV. Evaluation of the Modern data from the NESJV and SESJV found higher TDS concentrations in recently recharged (post-1950) groundwater from shallow (soil amendments combined. Bicarbonate showed the greatest increase among major ions, resulting from enhanced silicate weathering due to recharge of irrigation water enriched in CO2 during the growing season. The results of this study demonstrate that large anthropogenic changes to the hydrologic regime, like massive development of irrigated agriculture in semi-arid areas like the SJV, can cause large changes in groundwater quality on a regional scale.

  11. Functional description of the West Valley Demonstration Project Vitrification Facility

    International Nuclear Information System (INIS)

    Borisch, R.R.; McMahon, C.L.

    1990-07-01

    The primary objective of the West Valley Demonstration Project (WVDP) is the solidification of approximately 2.1 million liters (560,000 gallons) of high-level radioactive waste (HLW) which resulted from the operation of a nuclear fuel reprocessing plant. Since the original plant was not built to accommodate the processing of waste beyond storage in underground tanks, HLW solidification by vitrification presented numerous engineering challenges. Existing facilities required redesign and conversion to meet their new purpose. Vitrification technology and systems needed to be created and then tested. Equipment modifications, identified from cold test results, were incorporated into the final equipment configuration to be used for radioactive (hot) operations. Cold operations have defined the correct sequence and optimal functioning of the equipment to be used for vitrification and have verified the process by which waste will be solidified into borosilicate glass

  12. Mid-size urbanism

    NARCIS (Netherlands)

    Zwart, de B.A.M.

    2013-01-01

    To speak of the project for the mid-size city is to speculate about the possibility of mid-size urbanity as a design category. An urbanism not necessarily defined by the scale of the intervention or the size of the city undergoing transformation, but by the framing of the issues at hand and the

  13. Aircraft Observations of Nitrous Oxide (N2O) in the San Joaquin Valley of California

    Science.gov (United States)

    Muto, S.; Herrera, S.; Pusede, S.

    2017-12-01

    Agriculture is the largest source of anthropogenic nitrous oxide (N2O) in the U.S. While it is generally known which processes produce N2O, there is considerable uncertainty in controls over N2O emissions. Factors that determine N2O fluxes, such as soil properties and manure management, are highly variable in space and time, and, as a result, it has proven difficult to upscale chamber-derived soil flux measurements to regional spatial scales. Aircraft observations provide a regional picture of the N2O spatial distribution, but, because N2O is very long-lived, it is challenging to attribute measured concentrations of N2O to distinct local sources, especially over areas with complex and integrated land use. This study takes advantage of a novel aircraft N2O dataset collected onboard the low-flying, slow-moving NASA C-23 Sherpa in the San Joaquin Valley (SJV) of California, a region with a variety of N2O sources, including dairies, feedlots, fertilized cropland, and industrial facilities. With these measurements, we link observed N2O enhancements to specific sources at sub-inventory spatial scales. We compare our results with area-weighted emission profiles obtained by integrating detailed emission inventory data, agricultural statistics, and GIS source mapping.

  14. Hydrogeologic data and water-quality data from a thick unsaturated zone at a proposed wastewater-treatment facility site, Yucca Valley, San Bernardino County, California, 2008-11

    Science.gov (United States)

    O'Leary, David; Clark, Dennis A.; Izbicki, John A.

    2015-01-01

    The Hi-Desert Water District, in the community of Yucca Valley, California, is considering constructing a wastewater-treatment facility and using the reclaimed water to recharge the aquifer system through surface spreading. The Hi-Desert Water District is concerned with possible effects of this recharge on water quality in the underlying groundwater system; therefore, an unsaturated-zone monitoring site was constructed by the U.S. Geological Survey (USGS) to characterize the unsaturated zone, monitor a pilot-scale recharge test, and, ultimately, to monitor the flow of reclaimed water to the water table once the treatment facility is constructed.

  15. Finite source modelling of magmatic unrest in Socorro, New Mexico, and Long Valley, California

    Science.gov (United States)

    Fialko, Yuri; Simons, Mark; Khazan, Yakov

    2001-07-01

    We investigate surface deformation associated with currently active crustal magma bodies in Socorro, New Mexico, and Long Valley, California, USA. We invert available geodetic data from these locations to constrain the overall geometry and dynamics of the inferred deformation sources at depth. Our best-fitting model for the Socorro magma body is a sill with a depth of 19km, an effective diameter of 70km and a rate of increase in the excess magma pressure of 0.6kPayr-1. We show that the corresponding volumetric inflation rate is ~6×10-3km3yr-1, which is considerably less than previously suggested. The measured inflation rate of the Socorro magma body may result from a steady influx of magma from a deep source, or a volume increase associated with melting of the magma chamber roof (i.e. crustal anatexis). In the latter case, the most recent major injection of mantle-derived melts into the middle crust beneath Socorro may have occurred within the last several tens to several hundreds of years. The Synthetic Interferometric Aperture Radar (InSAR) data collected in the area of the Long Valley caldera, CA, between June 1996 and July 1998 reveal an intracaldera uplift with a maximum amplitude of ~11cm and a volume of 3.5×10-2km3. Modelling of the InSAR data suggests that the observed deformation might be due to either a sill-like magma body at a depth of ~12km or a pluton-like magma body at a depth of ~8km beneath the resurgent dome. Assuming that the caldera fill deforms as an isotropic linear elastic solid, a joint inversion of the InSAR data and two-colour laser geodimeter data (which provide independent constraints on horizontal displacements at the surface) suggests that the inferred magma chamber is a steeply dipping prolate spheroid with a depth of 7-9km and an aspect ratio in excess of 2:1. Our results highlight the need for large radar look angles and multiple look directions in future InSAR missions.

  16. A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA

    Science.gov (United States)

    Nolan, Bernard T.; Fienen, Michael N.; Lorenz, David L.

    2015-01-01

    We used a statistical learning framework to evaluate the ability of three machine-learning methods to predict nitrate concentration in shallow groundwater of the Central Valley, California: boosted regression trees (BRT), artificial neural networks (ANN), and Bayesian networks (BN). Machine learning methods can learn complex patterns in the data but because of overfitting may not generalize well to new data. The statistical learning framework involves cross-validation (CV) training and testing data and a separate hold-out data set for model evaluation, with the goal of optimizing predictive performance by controlling for model overfit. The order of prediction performance according to both CV testing R2 and that for the hold-out data set was BRT > BN > ANN. For each method we identified two models based on CV testing results: that with maximum testing R2 and a version with R2 within one standard error of the maximum (the 1SE model). The former yielded CV training R2 values of 0.94–1.0. Cross-validation testing R2 values indicate predictive performance, and these were 0.22–0.39 for the maximum R2 models and 0.19–0.36 for the 1SE models. Evaluation with hold-out data suggested that the 1SE BRT and ANN models predicted better for an independent data set compared with the maximum R2 versions, which is relevant to extrapolation by mapping. Scatterplots of predicted vs. observed hold-out data obtained for final models helped identify prediction bias, which was fairly pronounced for ANN and BN. Lastly, the models were compared with multiple linear regression (MLR) and a previous random forest regression (RFR) model. Whereas BRT results were comparable to RFR, MLR had low hold-out R2 (0.07) and explained less than half the variation in the training data. Spatial patterns of predictions by the final, 1SE BRT model agreed reasonably well with previously observed patterns of nitrate occurrence in groundwater of the Central Valley.

  17. Integrated hydrologic model of Pajaro Valley, Santa Cruz and Monterey Counties, California

    Science.gov (United States)

    Hanson, Randall T.; Schmid, Wolfgang; Faunt, Claudia C.; Lear, Jonathan; Lockwood, Brian

    2014-01-01

    Increasing population, agricultural development (including shifts to more water-intensive crops), and climate variability are placing increasingly larger demands on available groundwater resources in the Pajaro Valley, one of the most productive agricultural regions in the world. This study provided a refined conceptual model, geohydrologic framework, and integrated hydrologic model of the Pajaro Valley. The goal of this study was to produce a model capable of being accurate at scales relevant to water management decisions that are being considered in the revision and updates to the Basin Management Plan (BMP). The Pajaro Valley Hydrologic Model (PVHM) was designed to reproduce the most important natural and human components of the hydrologic system and related climatic factors, permitting an accurate assessment of groundwater conditions and processes that can inform the new BMP and help to improve planning for long-term sustainability of water resources. Model development included a revision of the conceptual model of the flow system, reevaluation of the previous model transformed into MODFLOW, implementation of the new geohydrologic model and conceptual model, and calibration of the transient hydrologic model.

  18. Ground-Water Quality Data in the Monterey Bay and Salinas Valley Basins, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,000-square-mile Monterey Bay and Salinas Valley study unit was investigated from July through October 2005 as part of the California Ground-Water Ambient Monitoring and Assessment (GAMA) program. The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 94 public-supply wells and 3 monitoring wells in Monterey, Santa Cruz, and San Luis Obispo Counties. Ninety-one of the public-supply wells sampled were selected to provide a spatially distributed, randomized monitoring network for statistical representation of the study area. Six wells were sampled to evaluate changes in water chemistry: three wells along a ground-water flow path were sampled to evaluate lateral changes, and three wells at discrete depths from land surface were sampled to evaluate changes in water chemistry with depth from land surface. The ground-water samples were analyzed for volatile organic compounds (VOCs), pesticides, pesticide degradates, nutrients, major and minor ions, trace elements, radioactivity, microbial indicators, and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory). Naturally occurring isotopes (tritium, carbon-14, helium-4, and the isotopic composition of oxygen and hydrogen) also were measured to help identify the source and age of the sampled ground water. In total, 270 constituents and water-quality indicators were investigated for this study. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain water quality. In addition, regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. In this study, only six constituents, alpha radioactivity, N

  19. Social disparities in nitrate-contaminated drinking water in California's San Joaquin Valley.

    Science.gov (United States)

    Balazs, Carolina; Morello-Frosch, Rachel; Hubbard, Alan; Ray, Isha

    2011-09-01

    Research on drinking water in the United States has rarely examined disproportionate exposures to contaminants faced by low-income and minority communities. This study analyzes the relationship between nitrate concentrations in community water systems (CWSs) and the racial/ethnic and socioeconomic characteristics of customers. We hypothesized that CWSs in California's San Joaquin Valley that serve a higher proportion of minority or residents of lower socioeconomic status have higher nitrate levels and that these disparities are greater among smaller drinking water systems. We used water quality monitoring data sets (1999-2001) to estimate nitrate levels in CWSs, and source location and census block group data to estimate customer demographics. Our linear regression model included 327 CWSs and reported robust standard errors clustered at the CWS level. Our adjusted model controlled for demographics and water system characteristics and stratified by CWS size. Percent Latino was associated with a 0.04-mg nitrate-ion (NO3)/L increase in a CWS's estimated NO3 concentration [95% confidence interval (CI), -0.08 to 0.16], and rate of home ownership was associated with a 0.16-mg NO3/L decrease (95% CI, -0.32 to 0.002). Among smaller systems, the percentage of Latinos and of homeownership was associated with an estimated increase of 0.44 mg NO3/L (95% CI, 0.03-0.84) and a decrease of 0.15 mg NO3/L (95% CI, -0.64 to 0.33), respectively. Our findings suggest that in smaller water systems, CWSs serving larger percentages of Latinos and renters receive drinking water with higher nitrate levels. This suggests an environmental inequity in drinking water quality.

  20. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA USEPA DEMONSTRATION PROJECT AT VALLEY VISTA, AZ SIX-MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the first six months of the EPA arsenic removal technology demonstration project at the Arizona Water Company (AWC) facility in Sedona, AZ, commonly referred to as Valley Vista. The main objective of the...

  1. Weathering and transport of chromium and nickel from serpentinite in the Coast Range ophiolite to the Sacramento Valley, California, USA

    Science.gov (United States)

    Morrison, Jean M.; Goldhaber, Martin B.; Mills, Christopher T.; Breit, George N.; Hooper, Robert L.; Holloway, JoAnn M.; Diehl, Sharon F.; Ranville, James F.

    2015-01-01

    A soil geochemical study in northern California was done to investigate the role that weathering and transport play in the regional distribution and mobility of geogenic Cr and Ni, which are both potentially toxic and carcinogenic. These elements are enriched in ultramafic rocks (primarily serpentinite) and the soils derived from them (1700–10,000 mg Cr per kg soil and 1300–3900 mg Ni per kg soil) in the Coast Range ophiolite. Chromium and Ni have been transported eastward from the Coast Range into the western Sacramento Valley and as a result, valley soil is enriched in Cr (80–1420 mg kg−1) and Ni (65–224 mg kg−1) compared to median values of U.S. soils of 50 and 15 mg kg−1, respectively. Nickel in ultramafic source rocks and soils is present in serpentine minerals (lizardite, antigorite, and chrysotile) and is more easily weathered compared to Cr, which primarily resides in highly refractory chromite ([Mg,Fe2+][Cr3+,Al,Fe3+]2O4). Although the majority of Cr and Ni in soils are in refractory chromite and serpentine minerals, the etching and dissolution of these minerals, presence of Cr- and Ni-enriched clay minerals and development of nanocrystalline Fe (hydr)oxides is evidence that a significant fractions of these elements have been transferred to potentially more labile phases.

  2. TARZAN: A REMOTE TOOL DEPLOYMENT SYSTEM FOR THE WEST VALLEY DEVELOPMENT PROJECT

    International Nuclear Information System (INIS)

    Thompson, Bruce R.; Veri, James

    1999-01-01

    RedZone Robotics, Inc. undertook a development project to build Tarzan, a Remote Tool Delivery system to work inside nuclear waste storage tanks 8D-1 and 8D-2 at the West Valley Demonstration Project (WVDP). The removal of waste deposits from large storage tanks poses significant challenges during tank operations and closure. Limited access, the presence of chemical, radiological, and /or explosive hazards, and the need to deliver retrieval equipment to all regions of the tank exceed the capabilities of most conventional methods and equipment. Remotely operated devices for mobilizing and retrieving waste materials are needed. Some recent developments have been made in this area. However, none of these developments completely and cost-effectively address tanks that are congested with internal structures (e.g., support columns, cooling coils, fixed piping, etc.). The Tarzan system consists of the following parts: Locomotor which is deployed in the tank for inspection and cleanup; Hydraulic power unit providing system power for the locomotor and deployment unit; and Control system providing the man machine interface to control, coordinate and monitor the system. This document presents the final report on the Tarzan project

  3. Geomorphic investigation of the Late-Quaternary landforms in the southern Zanskar Valley, NW Himalaya

    Science.gov (United States)

    Sharma, Shubhra; Hussain, Aadil; Mishra, Amit K.; Lone, Aasif; Solanki, Tarun; Khan, Mohammad Khatib

    2018-02-01

    The Suru, Doda and Zanskar river valleys in the semi-arid region of Southern Zanskar Ranges (SZR) preserve a rich repository of the glacial and fluvial landforms, alluvial fans, and lacustrine deposits. Based on detailed field observations, geomorphic mapping and limited optical ages, we suggest four glaciations of decreasing magnitude in the SZR. The oldest Southern Zanskar Glaciation Stage (SZS-4) is inferred from glacially polished bedrock and tillite pinnacles. The SZS-4 is ascribed to the Marine Isotopic Stage (MIS)-4/3. The subsequent SZS-3 is represented by obliterated and dissected moraines, and is assigned to MIS-2/Last Glacial Maximum. The multiple recessional moraines of SZS-2 glaciation are assigned the early to mid Holocene age whereas, the youngest SZS-1 moraines were deposited during the Little Ice Age. We suggest that during the SZS-2 glaciation, the Drang-Drung glacier shifted its course from Suru Valley (west) to the Doda Valley (east). The study area has preserved three generations of outwash gravel terraces, which broadly correlate with the phases of deglaciation associated with SZS-3, 2, and 1. The alluvial fan aggradation, lacustrine sedimentation, and loess deposition occurred during the mid-to-late Holocene. We suggest that glaciation was driven by a combination of the mid-latitude westerlies and the Indian Summer Monsoon during periods of cooler temperature, while phases of deglaciation occurred during enhanced temperature.

  4. Superfund Record of Decision (EPA Region 9): North Hollywood/Burbank Well Field Area 1, San Fernando Valley Site, California (first remedial action), September 1987. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-24

    The North Hollywood - Burbank Well Field (NHBWF) is located within the San Fernando Valley Ground Water basin, which can provide drinking water for approximately 500,000 people residing in the San Fernando Valley and Los Angeles. In 1980 TCE and PCE were discovered in 25% of DWP's wells. In July 1981, DWP and the Southern California Association of Governments began a two-year study funded by EPA. The study revealed the occurrence of ground-water contamination plume patterns that are spreading toward the southeast. The primary contaminant of concern to the ground-water is TCE with PCE and other VOCs present. The selected remedial action for the site is ground-water pump and treatment using aeration and granular-activated-carbon - air-filtering units, with discharge to the DWP Pumping Station for chlorination and distribution. Spent carbon will be removed and replaced with fresh carbon, with the spent carbon scheduled either for disposal or regeneration. The estimated capital cost for this remedial action is $2,192,895 with present worth OandM of $2,284,105.

  5. 75 FR 22775 - Copper Valley Electric Association; Notice of Scoping Meeting and Soliciting Scoping Comments for...

    Science.gov (United States)

    2010-04-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-000] Copper Valley....: 13124-000. c. Applicant: Copper Valley Electric Association. d. Name of Project: Allison Lake Project. e.... 791(a)-825(r). g. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association, P.O...

  6. Hydrothermal circulation, serpentinization, and degassing at a rift valley-fracture zone intersection: Mid-Atlantic Ridge near 15[degree]N, 45[degree]W

    Energy Technology Data Exchange (ETDEWEB)

    Rona, P.A.; Nelson, T.A. (National Oceanic and Atmospheric Administration, Miami, FL (United States)); Bougault, H.; Charlou, J.L.; Needham, H.D. (Inst. Francais de Recherche pour I' Exploitation de la Mer, Centre de Brest (France)); Appriou, P. (Univ. of Western Brittany, Brest (France)); Trefry, J.H. (Florida Inst. of Technology, Melbourne (United States)); Eberhart, G.L.; Barone, A. (Lamont-Doherty Geological Observatory, Palisades, NY (United States))

    1992-09-01

    A hydrothermal system characterized by high ratios of methane to both manganese and suspended particulate matter was detected in seawater sampled at the eastern intersection of the rift valley of the Mid-Atlantic Ridge with the Fifteen-Twenty Fracture Zone. This finding contrasts with low ratios in black smoker-type hydrothermal systems that occur within spreading segments. Near-bottom water sampling coordinated with SeaBeam bathymetry and camera-temperature tows detected the highest concentrations of methane at fault zones in rocks with the appearance of altered ultramafic units in a large dome that forms part of the inside corner high at the intersection. The distinct chemical signatures of the two types of hydrothermal systems are inferred to be controlled by different circulation pathways related to reaction of seawater primarily with ultramafic rocks at intersections of spreading segments with fracture zones but with mafic rocks within spreading segments.

  7. Ground-Water Quality Data in the Santa Clara River Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Montrella, Joseph; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 460-square-mile Santa Clara River Valley study unit (SCRV) was investigated from April to June 2007 as part of the statewide Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for public water supplies within SCRV, and to facilitate a statistically consistent basis for comparing water quality throughout California. Fifty-seven ground-water samples were collected from 53 wells in Ventura and Los Angeles Counties. Forty-two wells were selected using a randomized grid-based method to provide statistical representation of the study area (grid wells). Eleven wells (understanding wells) were selected to further evaluate water chemistry in particular parts of the study area, and four depth-dependent ground-water samples were collected from one of the eleven understanding wells to help understand the relation between water chemistry and depth. The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, potential wastewater-indicator compounds, and pharmaceutical compounds), a constituent of special interest (perchlorate), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, carbon-13, carbon-14 [abundance], stable isotopes of hydrogen and oxygen in water, stable isotopes of nitrogen and oxygen in nitrate, chlorine-37, and bromine-81), and dissolved noble gases also were measured to help identify the source

  8. Plant Water Use in Owens Valley, CA: Understanding the Influence of Climate and Depth to Groundwater

    OpenAIRE

    Pataki, Diane E

    2008-01-01

    There is a long-standing controversy in Owens Valley, California about the potential impacts of water exports on the local ecosystem. It is currently extremely difficult to attribute changes in plant cover and community composition to hydrologic change, as the interactions between ecological and hydrologic processes are relatively poorly understood. Underlying predictions about losses of grasslands and expansion of shrublands in response to declining water tables in Owens Valley are assumptio...

  9. Imperial Contradictions: Is the Valley a Watershed, Region, or Cyborg?

    Science.gov (United States)

    Rudy, Alan P.

    2005-01-01

    Is California's Imperial Valley a watershed? If so, at what level and by what topographic logic? Is it a region? If so, at what level and by what geographic logic? Are its boundaries natural, political, or multivalent on different scales? In short, this essay looks at the special (re)production of environmental conditions within a cyborg world.…

  10. West Valley Demonstration Project community relations plan FY 1990/91

    International Nuclear Information System (INIS)

    Damerow, M.W.

    1989-09-01

    The purpose of the Community Relations Plan is to fully inform the community about the West Valley Demonstration Project (WVDP) and provide opportunities for public input. A sound approach to community relations is essential to the creation and maintenance of public awareness and community support. The WVDP is a matter of considerable public interest because it deals with nuclear waste. The mission of the WVDP is to solve an existing environmental concern by solidifying high-level radioactive waste and transporting the solidified waste to a federal repository for permanent disposal. The public requires evidence of the continued commitment and demonstrated progress of the industry and government in carrying out the mission in order to sustain confidence that the WVDP is being managed well and will be discussed successfully completed. For this reason, a comprehensive communication plan is essential for the successful completion of the WVDP

  11. Interference-free mid-IR laser absorption detection of methane

    International Nuclear Information System (INIS)

    Pyun, Sung Hyun; Cho, Jungwan; Davidson, David F; Hanson, Ronald K

    2011-01-01

    A novel, mid-IR scanned-wavelength laser absorption diagnostic was developed for time-resolved, interference-free, absorption measurement of methane concentration. A differential absorption (peak minus valley) scheme was used that takes advantage of the structural differences of the absorption spectrum of methane and other hydrocarbons. A peak and valley wavelength pair was selected to maximize the differential cross-section (σ peak minus valley ) of methane for the maximum signal-to-noise ratio, and to minimize that of the interfering absorbers. Methane cross-sections at the peak and valley wavelengths were measured over a range of temperatures, 1000 to 2000 K, and pressures 1.3 to 5.4 atm. The cross-sections of the interfering absorbers were assumed constant over the small wavelength interval between the methane peak and valley features. Using this diagnostic, methane concentration time histories during n-heptane pyrolysis were measured behind reflected shock waves in a shock tube. The differential absorption scheme efficiently rejected the absorption interference and successfully recovered the vapor-phase methane concentration. These measurements allowed the comparison with methane concentration time-history simulations derived from a current n-heptane reaction mechanism (Sirjean et al 2009 A high-temperature chemical kinetic model of n-alkane oxidation JetSurF version 1.0)

  12. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China); Zhang Xuyang [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Liu Xingmei [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Soil, Water and Environmental Science, Zhejiang University, Hangzhou 310029 (China); Ficklin, Darren [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Zhang Minghua [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China)], E-mail: mhzhang@ucdavis.edu

    2008-12-15

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area. - Major factors governing the instream loads of organophosphate pesticides are magnitude and timing of surface runoff and pesticide application.

  13. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    International Nuclear Information System (INIS)

    Luo Yuzhou; Zhang Xuyang; Liu Xingmei; Ficklin, Darren; Zhang Minghua

    2008-01-01

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area. - Major factors governing the instream loads of organophosphate pesticides are magnitude and timing of surface runoff and pesticide application

  14. Mid-21st century projections of hydroclimate in Western Himalayas and Satluj River basin

    Science.gov (United States)

    Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.

    2018-02-01

    The Himalayan climate system is sensitive to global warming and climate change. Regional hydrology and the downstream water flow in the rivers of Himalayan origin may change due to variations in snow and glacier melt in the region. This study examines the mid-21st century climate projections over western Himalayas from the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models under Representative Concentration Pathways (RCP) scenarios (RCP4.5 and RCP8.5). All the global climate models used in the present analysis indicate that the study region would be warmer by mid-century. The temperature trends from all the models studied here are statistically significant at 95% confidence interval. Multi-model ensemble spreads show that there are large differences among the models in their projections of future climate with spread in temperature ranging from about 1.5 °C to 5 °C over various areas of western Himalayas in all the seasons. Spread in precipitation projections lies between 0.3 and 1 mm/day in all the seasons. Major shift in the timing of evaporation maxima and minima is noticed. The GFDL_ESM2G model products have been downscaled to Satluj River basin using the weather research and forecast (WRF) model and impact of climate change on streamflow has been studied. The reduction of precipitation during JJAS is expected to be > 3-6 mm/day in RCP8.5 as compared to present climate. It is expected that precipitation amount shall increase over Satluj basin in future (mid-21st century) The soil and water assessment tool (SWAT) model has been used to simulate the Satluj streamflow for the present and future climate using GFDL_ESM2G precipitation and temperature data as well as the WRF model downscaled data. The computations using the global model data show that total annual discharge from Satluj will be less in future than that in present climate, especially in peak discharge season (JJAS). The SWAT model with downscaled output indicates that during

  15. Triggered surface slips in the Coachella Valley area associated with the 1992 Joshua Tree and Landers, California, Earthquakes

    Science.gov (United States)

    Rymer, M.J.

    2000-01-01

    The Coachella Valley area was strongly shaken by the 1992 Joshua Tree (23 April) and Landers (28 June) earthquakes, and both events caused triggered slip on active faults within the area. Triggered slip associated with the Joshua Tree earthquake was on a newly recognized fault, the East Wide Canyon fault, near the southwestern edge of the Little San Bernardino Mountains. Slip associated with the Landers earthquake formed along the San Andreas fault in the southeastern Coachella Valley. Surface fractures formed along the East Wide Canyon fault in association with the Joshua Tree earthquake. The fractures extended discontinuously over a 1.5-km stretch of the fault, near its southern end. Sense of slip was consistently right-oblique, west side down, similar to the long-term style of faulting. Measured offset values were small, with right-lateral and vertical components of slip ranging from 1 to 6 mm and 1 to 4 mm, respectively. This is the first documented historic slip on the East Wide Canyon fault, which was first mapped only months before the Joshua Tree earthquake. Surface slip associated with the Joshua Tree earthquake most likely developed as triggered slip given its 5 km distance from the Joshua Tree epicenter and aftershocks. As revealed in a trench investigation, slip formed in an area with only a thin (Salton Trough. A paleoseismic trench study in an area of 1992 surface slip revealed evidence of two and possibly three surface faulting events on the East Wide Canyon fault during the late Quaternary, probably latest Pleistocene (first event) and mid- to late Holocene (second two events). About two months after the Joshua Tree earthquake, the Landers earthquake then triggered slip on many faults, including the San Andreas fault in the southeastern Coachella Valley. Surface fractures associated with this event formed discontinuous breaks over a 54-km-long stretch of the fault, from the Indio Hills southeastward to Durmid Hill. Sense of slip was right

  16. Teale California shoreline

    Data.gov (United States)

    California Natural Resource Agency — California Spatial Information System (CaSIL) is a project designed to improve access to geo-spatial and geo-spatial related data information throughout the state of...

  17. Projected Changes in Seasonal Mean Temperature and Rainfall (2011-2040) in Cagayan Valley, Philippines

    Science.gov (United States)

    Basconcillo, J. Q.; Lucero, A. J. R.; Solis, A. S.; Kanamaru, H.; Sandoval, R. S.; Bautista, E. U.

    2014-12-01

    Among Filipinos, a meal is most often considered incomplete without rice. There is a high regard for rice in the entire archipelago that in 2012, the country's rice production was accounted to more than 18 million tons with an equivalent harvested area of 4.7 million hectares. This means that from the 5.4 million hectares of arable land in the Philippines, 11 percent are found and being utilized for rice production in Cagayan Valley (CV). In the same year, more than 13 percent of the country's total annual rice production was produced in CV. Rice production also provides employment to 844,000 persons (out of 1.4 million persons) which suggest that occupation and livelihood in Cagayan Valley are strongly anchored in rice production. These figures outline the imaginable vulnerability of rice production in CV amidst varying issues such as land conversion, urbanization, increase in population, retention of farming households, and climate change. While all these issues are of equal importance, this paper is directed towards the understanding the projected changes in seasonal rainfall and mean temperature (2011-2040). It is envisioned by this study that a successful climate change adaptation starts with the provision of climate projections hence this paper's objective to investigate on the changes in climate patterns and extreme events. Projected changes are zonally limited to the Provinces of Cagayan, Isabela, Nueva Vizcaya, and Quirino based on the statistical downscaling of three global climate models (BCM2, CNCM3, and MPEH5) and two emission scenarios (A1B and A2). With the idea that rainfall and temperature varies with topography, the AURELHY technique was utilized in interpolating climate projections. Results obtained from the statistical downscaling showed that there will be significant climate changes from 2011-2040 in terms of rainfall and mean temperature. There are also indications of increasing frequency of extreme 24-hour rainfall and number of dry days

  18. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; Dale, Larry; Larsen, Peter; Fitts, Gary; Koy, Kevin; Lewis, Sarah; Lucena, Andre

    2011-06-22

    This report outlines the results of a study of the impact of climate change on the energy infrastructure of California and the San Francisco Bay region, including impacts on power plant generation; transmission line and substation capacity during heat spells; wildfires near transmission lines; sea level encroachment upon power plants, substations, and natural gas facilities; and peak electrical demand. Some end-of-century impacts were projected:Expected warming will decrease gas-fired generator efficiency. The maximum statewide coincident loss is projected at 10.3 gigawatts (with current power plant infrastructure and population), an increase of 6.2 percent over current temperature-induced losses. By the end of the century, electricity demand for almost all summer days is expected to exceed the current ninetieth percentile per-capita peak load. As much as 21 percent growth is expected in ninetieth percentile peak demand (per-capita, exclusive of population growth). When generator losses are included in the demand, the ninetieth percentile peaks may increase up to 25 percent. As the climate warms, California's peak supply capacity will need to grow faster than the population.Substation capacity is projected to decrease an average of 2.7 percent. A 5C (9F) air temperature increase (the average increase predicted for hot days in August) will diminish the capacity of a fully-loaded transmission line by an average of 7.5 percent.The potential exposure of transmission lines to wildfire is expected to increase with time. We have identified some lines whose probability of exposure to fire are expected to increase by as much as 40 percent. Up to 25 coastal power plants and 86 substations are at risk of flooding (or partial flooding) due to sea level rise.

  19. Environmental problem analysis of the proposed Sage Creek Coal Project in the Flathead Valley of British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The proposed Sage Creek Coal Project is analysed with respect to environmental impacts, international concerns and public concerns. Although information available to date is insufficient to pursue an analysis enabling a determination of the full social and environmental cost of the project, basic concerns and issues have been elucidated. Emphasis is given to the potential adverse effects on existing fish species and on wildlife species, particularly grizzly bear, moose and mountain goat. Because the area affected by the project includes both Canadian and U.S. territory, environmental objectives of the U.S. government for the Upper Flathead Valley ecosystem must also be considered in any future B.C. government decisions. Public opposition to the project from an environmental standpoint is documented. The report concludes the preferred option for a Ministry of Environment position is to recommend the project not proceed.

  20. Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA

    Science.gov (United States)

    Manning, Andrew H.; Mills, Christopher T.; Morrison, Jean M.; Ball, Lyndsay B.

    2015-01-01

    Environmental tracers are useful for determining groundwater age and recharge source, yet their application in studies of geogenic Cr(VI) in groundwater has been limited. Environmental tracer data from 166 wells located in the Sacramento Valley, northern California, were interpreted and compared to Cr concentrations to determine the origin and age of groundwater with elevated Cr(VI), and better understand where Cr(VI) becomes mobilized and how it evolves along flowpaths. In addition to major ion and trace element concentrations, the dataset includes δ18O, δ2H, 3H concentration, 14C activity (of dissolved inorganic C), δ13C, 3He/4He ratio, and noble gas concentrations (He, Ne, Ar, Kr, Xe). Noble gas recharge temperatures (NGTs) were computed, and age-related tracers were interpreted in combination to constrain the age distribution in samples and sort them into six different age categories spanning from 10,000 yr old. Nearly all measured Cr is in the form of Cr(IV). Concentrations range from 3 mg L−1), and commonly have δ18O values enriched relative to local precipitation. These samples likely contain irrigation water and are elevated due to accelerated mobilization of Cr(VI) in the unsaturated zone (UZ) in irrigated areas. Group 2 samples are from throughout the valley and typically contain water 1000–10,000 yr old, have δ18O values consistent with local precipitation, and have unexpectedly warm NGTs. Chromium(VI) concentrations in Group 2 samples may be elevated for multiple reasons, but the hypothesis most consistent with all available data (notably, the warm NGTs) is a relatively long UZ residence time due to recharge through a deep UZ near the margin of the basin. A possible explanation for why Cr(VI) may be primarily mobilized in the UZ rather than farther along flowpaths in the oxic portion of the saturated zone is more dynamic cycling of Mn in the UZ due to transient moisture and redox conditions.

  1. California Workforce: California Faces a Skills Gap

    Science.gov (United States)

    Public Policy Institute of California, 2011

    2011-01-01

    California's education system is not keeping up with the changing demands of the state's economy--soon, California will face a shortage of skilled workers. Projections to 2025 suggest that the economy will continue to need more and more highly educated workers, but that the state will not be able to meet that demand. If current trends persist,…

  2. Large-scale gravity sliding in the Miocene Shadow Valley Supradetachment Basin, Eastern Mojave Desert, California

    Science.gov (United States)

    Davis, G. A.; Friedmann, S. J.

    2005-12-01

    The Miocene Shadow Valley basin in the eastern Mojave Desert of California developed above the active west-dipping Kingston Range-Halloran Hills extensional detachment fault system between 13.5 and ca. 7 mybp. Although mass-wasting processes are common phenomena in supradetachment basins, the Shadow Valley basin is an exceptional locale for the study of such processes, especially rock-avalanches and gravity sliding. A score of megabreccias, interpreted as rock-avalanche deposits, and half that number of very large (> 1 km 2, up to 200 m thick), internally intact gravity-driven slide sheets are interbedded with various sedimentary facies. The slide sheets, variably composed of Proterozoic crystalline rocks and Proterozoic, Paleozoic, and Tertiary sedimentary strata, moved across both depositional and erosional surfaces in the basin. Although the majority consist of Paleozoic carbonate rocks, the largest slide sheet, the Eastern Star crystalline allochthon, contains Proterozoic gneisses and their sedimentary cover and is now preserved as klippen atop Miocene lacustrine and alluvial fan deposits over an area > 40 km 2. Estimates of slide sheet runouts into the basin from higher eastern and northern source terranes range from approximately a few km to > 10 km; in most cases the exact provenances of the slide blocks are not known. The basal contacts of Shadow Valley slide sheets are characteristically knife sharp, show few signs of lithologic mixing of upper- and lower-plate rocks, and locally exhibit slickensided and striated, planar fault-like bases. Pronounced folding of overridden Miocene lacustrine and fan deposits beneath the Eastern Star allochthon extends to depths up to 40 m at widely scattered localities. We conclude that this slow moving slide sheet encountered isolated topographic asperities (hills) and that stress transfer across the basal slide surface produced folding of footwall strata. Synkinematic gypsum veins in footwall playa sediments, with fibers

  3. Observations of coastal sediment dynamics of the Tijuana Estuary Fine Sediment Fate and Transport Demonstration Project, Imperial Beach, California

    Science.gov (United States)

    Warrick, Jonathan A.; Rosenberger, Kurt J.; Lam, Angela; Ferreiera, Joanne; Miller, Ian M.; Rippy, Meg; Svejkovsky, Jan; Mustain, Neomi

    2012-01-01

    Coastal restoration and management must address the presence, use, and transportation of fine sediment, yet little information exists on the patterns and/or processes of fine-sediment transport and deposition for these systems. To fill this information gap, a number of State of California, Federal, and private industry partners developed the Tijuana Estuary Fine Sediment Fate and Transport Demonstration Project ("Demonstration Project") with the purpose of monitoring the transport, fate, and impacts of fine sediment from beach-sediment nourishments in 2008 and 2009 near the Tijuana River estuary, Imperial Beach, California. The primary purpose of the Demonstration Project was to collect and provide information about the directions, rates, and processes of fine-sediment transport along and across a California beach and nearshore setting. To achieve these goals, the U.S. Geological Survey monitored water, beach, and seafloor properties during the 2008–2009 Demonstration Project. The project utilized sediment with ~40 percent fine sediment by mass so that the dispersal and transport of fine sediment would be easily recognizable. The purpose of this report is to present and disseminate the data collected during the physical monitoring of the Demonstration Project. These data are available online at the links noted in the "Additional Digital Information" section. Synthesis of these data and results will be provided in subsequent publications.

  4. Valley-polarized quantum transport generated by gauge fields in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Garcia, Jose H; Roche, Stephan

    2017-01-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by t...... Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder....

  5. Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin, California

    Science.gov (United States)

    Sickman, James O.; DiGiorgio, Carol L.; Davisson, M. Lee; Lucero, Delores M.; Bergamaschi, Brian A.

    2010-01-01

    We used radiocarbon measurements of dissolved organic carbon (DOC) to resolve sources of riverine carbon within agriculturally dominated landscapes in California. During 2003 and 2004, average Δ14C for DOC was −254‰ in agricultural drains in the Sacramento–San Joaquin Delta, −218‰ in the San Joaquin River, −175‰ in the California State Water Project and −152‰ in the Sacramento River. The age of bulk DOC transiting the rivers of California’s Central Valley is the oldest reported for large rivers and suggests wide-spread loss of soil organic matter caused by agriculture and urbanization. Using DAX 8 adsorbent, we isolated and measured 14C concentrations in hydrophobic acid fractions (HPOA); river samples showed evidence of bomb-pulse carbon with average Δ14C of 91 and 76‰ for the San Joaquin and Sacramento Rivers, respectively, with older HPOA, −204‰, observed in agricultural drains. An operationally defined non-HPOA fraction of DOC was observed in the San Joaquin River with seasonally computed Δ14C values of between −275 and −687‰; the source of this aged material was hypothesized to be physically protected organic-matter in high clay-content soils and agrochemicals (i.e., radiocarbon-dead material) applied to farmlands. Mixing models suggest that the Sacramento River contributes about 50% of the DOC load in the California State Water Project, and agricultural drains contribute approximately one-third of the load. In contrast to studies showing stabilization of soil carbon pools within one or two decades following land conversion, sustained loss of soil organic matter, occurring many decades after the initial agricultural-land conversion, was observed in California’s Central Valley.

  6. Ecoregions of California

    Science.gov (United States)

    Griffith, Glenn E.; Omernik, James M.; Smith, David W.; Cook, Terry D.; Tallyn, Ed; Moseley, Kendra; Johnson, Colleen B.

    2016-02-23

    (2000), and Omernik and Griffith (2014).California has great ecological and biological diversity. The State contains offshore islands and coastal lowlands, large alluvial valleys, forested mountain ranges, deserts, and various aquatic habitats. There are 13 level III ecoregions and 177 level IV ecoregions in California and most continue into ecologically similar parts of adjacent States of the United States or Mexico (Bryce and others, 2003; Thorson and others, 2003; Griffith and others, 2014).The California ecoregion map was compiled at a scale of 1:250,000. It revises and subdivides an earlier national ecoregion map that was originally compiled at a smaller scale (Omernik, 1987; U.S. Environmental Protection Agency, 2013). This poster is the result of a collaborative project primarily between U.S. Environmental Protection Agency (USEPA) Region IX, USEPA National Health and Environmental Effects Research Laboratory (Corvallis, Oregon), California Department of Fish and Wildlife (DFW), U.S. Department of Agriculture (USDA)–Natural Resources Conservation Service (NRCS), U.S. Department of the Interior–Geological Survey (USGS), and other State of California agencies and universities.The project is associated with interagency efforts to develop a common framework of ecological regions (McMahon and others, 2001). Reaching that objective requires recognition of the differences in the conceptual approaches and mapping methodologies applied to develop the most common ecoregion-type frameworks, including those developed by the USDA–Forest Service (Bailey and others, 1994; Miles and Goudy, 1997; Cleland and others, 2007), the USEPA (Omernik 1987, 1995), and the NRCS (U.S. Department of Agriculture–Soil Conservation Service, 1981; U.S. Department of Agriculture–Natural Resources Conservation Service, 2006). As each of these frameworks is further refined, their differences are becoming less discernible. Regional collaborative projects such as this one in California

  7. The public visits a nuclear waste site: Survey results from the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hoffman, W.D.

    1987-01-01

    This paper discusses the results of the 1986 survey taken at the West Valley Demonstration Project Open House where a major nuclear waste cleanup is in progress. Over 1400 people were polled on what they think is most effective in educating the public on nuclear waste. A demographic analysis describes the population attending the event and their major interests in the project. Responses to attitudinal questions are examined to evaluate the importance of radioactive waste cleanup as an environmental issue and a fiscal responsibility. Additionally, nuclear power is evaluated on its public perception as an energy resource. The purpose of the study is to find out who visits a nuclear waste site and why, and to measure their attitudes on nuclear issues

  8. In the San Joaquin Valley, hardly a sprinkle

    International Nuclear Information System (INIS)

    Holson, L.M.

    1993-01-01

    California has declared its six-year drought over, but in the San Joaquin Valley, center of the state's $18.5 billion agriculture industry, it lives on. The two weeks of strong rain this winter that swelled reservoirs and piled snow on the mountains is only trickling toward the region's nearly 20,000 farms. Federal water officials are under heavy pressure from the Environmental Protection Agency, which wants to improve water quality, and are worried about the plight of endangered fish in the Sacramento River. So, on March 12 they announced they will send farmers only 40% of the water allotments they got before the drought. The rest is being held against possible shortages. For the once-green valley, another year without water has brought many farmers perilously close to extinction

  9. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA

    Science.gov (United States)

    Ransom, Katherine M.; Nolan, Bernard T.; Traum, Jonathan A.; Faunt, Claudia; Bell, Andrew M.; Gronberg, Jo Ann M.; Wheeler, David C.; Zamora, Celia; Jurgens, Bryant; Schwarz, Gregory E.; Belitz, Kenneth; Eberts, Sandra; Kourakos, George; Harter, Thomas

    2017-01-01

    Intense demand for water in the Central Valley of California and related increases in groundwater nitrate concentration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we developed a hybrid, non-linear, machine learning model within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface. A database of 145 predictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The boosted regression tree (BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic and public well supplies. The novel approach included as predictor variables outputs from existing physically based models of the Central Valley. The top five most important predictor variables included two oxidation/reduction variables (probability of manganese concentration to exceed 50 ppb and probability of dissolved oxygen concentration to be below 0.5 ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time period, average difference between precipitation and evapotranspiration during the years 1971–2000, and 1992 total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed nitrate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing 1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative

  10. Population and Habitat Objectives for Avian Conservation in California's Central Valley Riparian Ecosystems

    Directory of Open Access Journals (Sweden)

    Kristen E. Dybala

    2017-03-01

    Full Text Available https://doi.org/10.15447/sfews.2017v15iss1art5Riparian ecosystems provide important ecosystem services and recreational opportunities for people, and habitat for wildlife. In California’s Central Valley, government agencies and private organizations are working together to protect and restore riparian ecosystems, and the Central Valley Joint Venture provides leadership in the formulation of goals and objectives for avian conservation in riparian ecosystems. We defined a long-term conservation goal as the establishment of riparian ecosystems that provide sufficient habitat to support genetically robust, self-sustaining, and resilient bird populations. To achieve this goal, we selected a suite of 12 breeding riparian landbird focal species as indicators of the state of riparian ecosystems in each of four major Central Valley planning regions. Using recent bird survey data, we estimated that over half of the regional focal species populations are currently small (< 10,000 and may be vulnerable to extirpation, and two species have steeply declining population trends. For each focal species in each region, we defined long-term (100-year population objectives that are intended to be conservation endpoints that we expect to meet the goal of genetically robust, self-sustaining, and resilient populations. We then estimated the long-term species density and riparian restoration objectives required to achieve the long-term population objectives. To track progress toward the long-term objectives, we propose short-term (10- year objectives, including the addition of 12,919 ha (31,923 ac of riparian vegetation in the Central Valley (by planning region: 3,390 ha in Sacramento, 2,390 ha in Yolo–Delta, 3,386 ha in San Joaquin, and 3,753 ha in Tulare. We expect that reaching these population, density, and habitat objectives through threat abatement, habitat restoration, and habitat enhancement will result in improvements to riparian ecosystem function and

  11. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona

    Science.gov (United States)

    Scanlon, Bridget R.; Reedy, Robert C.; Faunt, Claudia C.; Pool, Donald; Uhlman, Kristine

    2016-03-01

    Projected longer-term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (managed aquifer recharge, MAR). Unique multi-decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ˜44 km3 in the Central Valley and by ˜100 km3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km3 yr-1, CU) or is used to recharge groundwater (MAR, ≤1.5 km3 yr-1) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water-level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in active management areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0-1.6 km3 yr-1, 2000-2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi-year storage, complementing shorter term surface reservoir storage, and facilitating water markets.

  12. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona

    Science.gov (United States)

    Scanlon, Bridget R.; Reedy, Robert C.; Faunt, Claudia; Pool, Donald R.; Uhlman, Kristine;

    2016-01-01

    Projected longer‐term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (Managed Aquifer Recharge, MAR). Unique multi‐decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ~44 km3 in the Central Valley and by ~100 km3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km3/yr, CU) or is used to recharge groundwater (MAR, ≤1.5 km3/yr) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water‐level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in Active Management Areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0 – 1.6 km3/yr, 2000–2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi‐year storage, complementing shorter term surface reservoir storage, and facilitating water markets.

  13. Evaluation of the groundwater flow model for southern Utah and Goshen Valleys, Utah, updated to conditions through 2011, with new projections and groundwater management simulations

    Science.gov (United States)

    Brooks, Lynette E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Southern Utah Valley Municipal Water Association, updated an existing USGS model of southern Utah and Goshen Valleys for hydrologic and climatic conditions from 1991 to 2011 and used the model for projection and groundwater management simulations. All model files used in the transient model were updated to be compatible with MODFLOW-2005 and with the additional stress periods. The well and recharge files had the most extensive changes. Discharge to pumping wells in southern Utah and Goshen Valleys was estimated and simulated on an annual basis from 1991 to 2011. Recharge estimates for 1991 to 2011 were included in the updated model by using precipitation, streamflow, canal diversions, and irrigation groundwater withdrawals for each year. The model was evaluated to determine how well it simulates groundwater conditions during recent increased withdrawals and drought, and to determine if the model is adequate for use in future planning. In southern Utah Valley, the magnitude and direction of annual water-level fluctuation simulated by the updated model reasonably match measured water-level changes, but they do not simulate as much decline as was measured in some locations from 2000 to 2002. Both the rapid increase in groundwater withdrawals and the total groundwater withdrawals in southern Utah Valley during this period exceed the variations and magnitudes simulated during the 1949 to 1990 calibration period. It is possible that hydraulic properties may be locally incorrect or that changes, such as land use or irrigation diversions, occurred that are not simulated. In the northern part of Goshen Valley, simulated water-level changes reasonably match measured changes. Farther south, however, simulated declines are much less than measured declines. Land-use changes indicate that groundwater withdrawals in Goshen Valley are possibly greater than estimated and simulated. It is also possible that irrigation

  14. Valley-polarized quantum transport generated by gauge fields in graphene

    Science.gov (United States)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  15. American Fuel Cell Bus Project Evaluation. Second Report

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Post, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Administration's (FTA's) National Fuel Cell Bus Program. Through the non-profit consortia CALSTART, a team led by SunLine Transit Agency and BAE Systems developed a new fuel cell electric bus for demonstration. SunLine added two more AFCBs to its fleet in 2014 and another in 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory to evaluate the buses in revenue service. This report summarizes the performance results for the buses through June 2015.

  16. Translating Uncertain Sea Level Projections Into Infrastructure Impacts Using a Bayesian Framework

    Science.gov (United States)

    Moftakhari, Hamed; AghaKouchak, Amir; Sanders, Brett F.; Matthew, Richard A.; Mazdiyasni, Omid

    2017-12-01

    Climate change may affect ocean-driven coastal flooding regimes by both raising the mean sea level (msl) and altering ocean-atmosphere interactions. For reliable projections of coastal flood risk, information provided by different climate models must be considered in addition to associated uncertainties. In this paper, we propose a framework to project future coastal water levels and quantify the resulting flooding hazard to infrastructure. We use Bayesian Model Averaging to generate a weighted ensemble of storm surge predictions from eight climate models for two coastal counties in California. The resulting ensembles combined with msl projections, and predicted astronomical tides are then used to quantify changes in the likelihood of road flooding under representative concentration pathways 4.5 and 8.5 in the near-future (1998-2063) and mid-future (2018-2083). The results show that road flooding rates will be significantly higher in the near-future and mid-future compared to the recent past (1950-2015) if adaptation measures are not implemented.

  17. 76 FR 32113 - Revisions to the California State Implementation Plan

    Science.gov (United States)

    2011-06-03

    .... SUMMARY: EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) and Imperial County Air Pollution Control District (ICAPCD) portions of the California... Motor Vehicle Assembly Coatings, Surface Coatings of Metal Parts and Products, Plastic Parts and...

  18. Prevalence and incidence of postharvest diseases of blueberries in California

    Science.gov (United States)

    Recent establishment of low-chill southern highbush blueberry cultivars in California’s warm climate has significantly increased the acreage of blueberry production in the Central Valley of California, which is now a major southern highbush blueberry production region in the United States. The vast ...

  19. Subsurface and petroleum geology of the southwestern Santa Clara Valley ("Silicon Valley"), California

    Science.gov (United States)

    Stanley, Richard G.; Jachens, Robert C.; Lillis, Paul G.; McLaughlin, Robert J.; Kvenvolden, Keith A.; Hostettler, Frances D.; McDougall, Kristin A.; Magoon, Leslie B.

    2002-01-01

    Gravity anomalies, historical records of exploratory oil wells and oil seeps, new organic-geochemical results, and new stratigraphic and structural data indicate the presence of a concealed, oil-bearing sedimentary basin beneath a highly urbanized part of the Santa Clara Valley, Calif. A conspicuous isostatic-gravity low that extends about 35 km from Palo Alto southeastward to near Los Gatos reflects an asymmetric, northwest-trending sedimentary basin comprising low-density strata, principally of Miocene age, that rest on higher-density rocks of Mesozoic and Paleogene(?) age. Both gravity and well data show that the low-density rocks thin gradually to the northeast over a distance of about 10 km. The thickest (approx 4 km thick) accumulation of low-density material occurs along the basin's steep southwestern margin, which may be controlled by buried, northeast-dipping normal faults that were active during the Miocene. Movement along these hypothetical normal faults may been contemporaneous (approx 17–14 Ma) with sedimentation and local dacitic and basaltic volcanism, possibly in response to crustal extension related to passage of the northwestward-migrating Mendocino triple junction. During the Pliocene and Quaternary, the normal faults and Miocene strata were overridden by Mesozoic rocks, including the Franciscan Complex, along northeastward-vergent reverse and thrust faults of the Berrocal, Shannon, and Monte Vista Fault zones. Movement along these fault zones was accompanied by folding and tilting of strata as young as Quaternary and by uplift of the modern Santa Cruz Mountains; the fault zones remain seismically active. We attribute the Pliocene and Quaternary reverse and thrust faulting, folding, and uplift to compression caused by local San Andreas Fault tectonics and regional transpression along the Pacific-North American Plate boundary. Near the southwestern margin of the Santa Clara Valley, as many as 20 exploratory oil wells were drilled between 1891

  20. Subsurface geometry of the San Andreas fault in southern California: Results from the Salton Seismic Imaging Project (SSIP) and strong ground motion expectations

    Science.gov (United States)

    Fuis, Gary S.; Bauer, Klaus; Goldman, Mark R.; Ryberg, Trond; Langenheim, Victoria; Scheirer, Daniel S.; Rymer, Michael J.; Stock, Joann M.; Hole, John A.; Catchings, Rufus D.; Graves, Robert; Aagaard, Brad T.

    2017-01-01

    The San Andreas fault (SAF) is one of the most studied strike‐slip faults in the world; yet its subsurface geometry is still uncertain in most locations. The Salton Seismic Imaging Project (SSIP) was undertaken to image the structure surrounding the SAF and also its subsurface geometry. We present SSIP studies at two locations in the Coachella Valley of the northern Salton trough. On our line 4, a fault‐crossing profile just north of the Salton Sea, sedimentary basin depth reaches 4 km southwest of the SAF. On our line 6, a fault‐crossing profile at the north end of the Coachella Valley, sedimentary basin depth is ∼2–3  km">∼2–3  km and centered on the central, most active trace of the SAF. Subsurface geometry of the SAF and nearby faults along these two lines is determined using a new method of seismic‐reflection imaging, combined with potential‐field studies and earthquakes. Below a 6–9 km depth range, the SAF dips ∼50°–60°">∼50°–60° NE, and above this depth range it dips more steeply. Nearby faults are also imaged in the upper 10 km, many of which dip steeply and project to mapped surface fault traces. These secondary faults may join the SAF at depths below about 10 km to form a flower‐like structure. In Appendix D, we show that rupture on a northeast‐dipping SAF, using a single plane that approximates the two dips seen in our study, produces shaking that differs from shaking calculated for the Great California ShakeOut, for which the southern SAF was modeled as vertical in most places: shorter‐period (TT<1  s) shaking is increased locally by up to a factor of 2 on the hanging wall and is decreased locally by up to a factor of 2 on the footwall, compared to shaking calculated for a vertical fault.