WorldWideScience

Sample records for project biophysical biochemical

  1. Biophysical constraints on the computational capacity of biochemical signaling networks

    Science.gov (United States)

    Wang, Ching-Hao; Mehta, Pankaj

    Biophysics fundamentally constrains the computations that cells can carry out. Here, we derive fundamental bounds on the computational capacity of biochemical signaling networks that utilize post-translational modifications (e.g. phosphorylation). To do so, we combine ideas from the statistical physics of disordered systems and the observation by Tony Pawson and others that the biochemistry underlying protein-protein interaction networks is combinatorial and modular. Our results indicate that the computational capacity of signaling networks is severely limited by the energetics of binding and the need to achieve specificity. We relate our results to one of the theoretical pillars of statistical learning theory, Cover's theorem, which places bounds on the computational capacity of perceptrons. PM and CHW were supported by a Simons Investigator in the Mathematical Modeling of Living Systems Grant, and NIH Grant No. 1R35GM119461 (both to PM).

  2. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment.

    Science.gov (United States)

    Xiao, Yun; Ahadian, Samad; Radisic, Milica

    2017-02-01

    Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell-matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them.

  3. Biophysical and biochemical studies of modification of damage to DNA

    International Nuclear Information System (INIS)

    Myers, L.S. Jr.; Warnick, A.

    1976-01-01

    Progress is reported on the following research projects: tests of a proposed chemical mechanism by which incorporated 5-bromouracil may sensitize DNA to ionizing radiation; a serologic determination of uridine in irradiatd BU-substituted DNA; and reactivity of aminothiol radioprotectants with hydrated electrons and hydroxyl radicals

  4. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment

    OpenAIRE

    Xiao, Yun; Ahadian, Samad; Radisic, Milica

    2017-01-01

    Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different bi...

  5. Biophysics

    CERN Document Server

    Glaser, Roland

    1999-01-01

    The message of this book is that biophysics is the science of physical principles underlying the "phenomenon life" on all levels of organization. Rather than teaching "physics for biologists" or "physical methods applied to biology", it regards its subject as a defined discipline with its own network of ideas and approaches. The book starts by explaining molecular structures of biological systems, various kinds of atomic, molecular and ionic interactions, movements, energy transfer, self organization of supramolecular structures and dynamic properties of biological membranes. It then goes on to introduce the biological organism as a non-equilibrium system, before treating thermodynamic concepts of osmotic and electrolyte equilibria as well as currents and potential profiles. It continues with topics of environmental biophysics and such medical aspects as the influence of electromagnetic fields or radiation on living systems and the biophysics of hearing and noice protection. The book concludes with a discussi...

  6. Biophysical and biochemical constraints imposed by salt stress:Learning from halophyte

    Directory of Open Access Journals (Sweden)

    Bernardo eDuarte

    2014-12-01

    Full Text Available Soil salinization is one of the most important factors impacting plant productivity. About 3.6 billion of the world’s 5.2 billion ha of agricultural dryland have already suffered erosion, degradation and salinization. Halophytes typically are considered as plants able to complete their life cycle in environments where the salt concentration is 200 mM NaCl or higher. Different strategies are known to overcome salt stress, as adaptation mechanisms from this type of plants. Salinity adjustment is a complex phenomenon characterized by both biochemical and biophysical adaptations. As photosynthesis is a prerequisite for biomass production, halophytes adapted their electronic transduction pathways and the entire energetic metabolism to overcome the salt excess. The maintenance of ionic homeostasis is in the basis of all cellular stress in particular in terms of redox potential and energy transduction. In the present work the biophysical mechanisms underlying energy capture and transduction in halophytes are discussed alongside with their relation to biochemical mechanisms, integrating data from photosystem light harvesting complexes, electronic transport chains to the quinone pools, carbon harvesting and energy dissipation metabolism.

  7. Biophysics

    International Nuclear Information System (INIS)

    Danyluk, S.S.

    1975-01-01

    Research is reported on magnetic resonance spectroscopy of biological molecules, development of clinical applications of stable isotopes, circadian cybernetics, and X-ray crystallography of immunoglobulins. Biological processes occur in fluid media, and ultimately our knowledge of their mechanisms requires detailed information for chemical and molecular structural properties in biological fluids. Magnetic resonance spectroscopy has unique advantages over other approaches in this area that are being exploited in studies currently underway in the group. The program continues to develop along three interrelated lines, measurement and analysis of high resolution spectra for biological molecules (especially nucleic acid constituents and drugs), synthesis of selectively labeled nucleic acid fragments essential for complete spectral assignments, and computation of conformational properties from NMR parameters. This coordinated approach enabled the first complete conformation analysis for a dinucleoside monophosphate, ApA, in aqueous solution. It was found that the conformation is actually a time-average of right helical, loop, and extended conformations, the interchange being extremely rapid on an NMR time scale. Spectral analyses were also completed for all possible ribonucleotide dimers, the assignments again relying heavily on synthesis of appropriate deuterated counterparts. Studies of conformational flexibility in nucleic acid fragments showed that changes in hydrogen ion concentration and temperature produce correlated conformational changes specific for each nucleotidyl unit. Studies were also initiated in three new projects dealing with the effect of hapten binding on antibody structure, counter ion influence on nucleic acid free radicals, and membrane differences between normal and sickled erythrocytes

  8. [Correlation analysis between biochemical and biophysical markers of endothelium damage in children with diabetes type 1].

    Science.gov (United States)

    Głowińska-Olszewska, Barbara; Urban, Mirosława; Tołwińska, Joanna; Peczyńska, Jadwiga; Florys, Bozena

    2005-01-01

    Endothelial damage is one of the earliest stages in the atherosclerosis process. Adhesion molecules, secreted from dysfunctional endothelial cells are considered as early markers of atherosclerotic disease. Ultrasonographic evaluation of brachial arteries serves to detect biophysical changes in endothelial function, and evaluation of carotid arteries intima-media thickness allows to evaluate the earliest structural changes in the vessels. The aim of the study was to the evaluate levels of selected adhesion molecules (sICAM-1, sVCAM-1, sE-selectin, sP-selectin) and endothelial function with use of brachial artery dilatation study (flow mediated dilation--FMD, nitroglycerine mediated dilation--NTGMD) and IMT in carotid arteries in children and adolescents with diabetes type 1, as well as the correlation analysis between biochemical and biophysical markers of endothelial dysfunction. We studied 76 children and adolescents, with mean age--15.6+/-2.5 years, suffering from diabetes mean 7.8+/-2.8 years, mean HbA1c--8.4+/-1.5%. Control group consisted of 33 healthy children age and gender matched. Adhesion molecules levels were estimated with the use of immunoenzymatic methods (R&D Systems). Endothelial function was evaluated by study of brachial arteries dilation--FMD, NTGMD, with ultrasonographic evaluation (Hewlett Packard Sonos 4500) after Celermajer method, and IMT after Pignoli method. In the study group we found elevated levels of sICAM-1: 309.54+/-64 vs. 277.85+/-52 ng/ml in the control group (p<00.05) and elevated level of sE-selectin: 87.81+/-35 vs. 66.21+/-22 ng/ml (p<00.05). We found significantly impaired FMD in brachial arteries in the study group--7.51+/-4.52 vs. 12.61+/-4.65% (p<00.05) and significantly higher IMT value: 0.51+/-0.07 vs. 0.42+/-0.05 mm (p<00.001). Correlation analysis revealed a significant negative correlation between sE-selectin and FMD - r=-0.33 (p=0.004), and a positive correlation between E-selectin and IMT: r=0.32 (p=0.005). 1. In

  9. Biochemical and biophysical investigations of the interaction between human glucokinase and pro-apoptotic BAD.

    Science.gov (United States)

    Rexford, Alix; Zorio, Diego A R; Miller, Brian G

    2017-01-01

    The glycolytic enzyme glucokinase (GCK) and the pro-apoptotic protein BAD reportedly reside within a five-membered complex that localizes to the mitochondria of mammalian hepatocytes and pancreatic β-cells. Photochemical crosslinking studies using a synthetic analog of BAD's BH3 domain and in vitro transcription/translation experiments support a direct interaction between BAD and GCK. To investigate the biochemical and biophysical consequences of the BAD:GCK interaction, we developed a method for the production of recombinant human BAD. Consistent with published reports, recombinant BAD displays high affinity for Bcl-xL (KD = 7 nM), and phosphorylation of BAD at S118, within the BH3 domain, abolishes this interaction. Unexpectedly, we do not detect association of recombinant, full-length BAD with recombinant human pancreatic GCK over a range of protein concentrations using various biochemical methods including size-exclusion chromatography, chemical cross-linking, analytical ultracentrifugation, and isothermal titration calorimetry. Furthermore, fluorescence polarization assays and isothermal titration calorimetry detect no direct interaction between GCK and BAD BH3 peptides. Kinetic characterization of GCK in the presence of high concentrations of recombinant BAD show modest (BAD BH3 peptides. These results raise questions as to the mechanism of action of stapled peptide analogs modeled after the BAD BH3 domain, which reportedly enhance the Vmax value of GCK and stimulate insulin release in BAD-deficient islets. Based on our results, we postulate that the BAD:GCK interaction, and any resultant regulatory effect(s) upon GCK activity, requires the participation of additional members of the mitochondrial complex.

  10. Biochemical and biophysical characterization of the transmissible gastroenteritis coronavirus fusion core

    International Nuclear Information System (INIS)

    Ma Guangpeng; Feng Youjun; Gao Feng; Wang Jinzi; Liu Cheng; Li Yijing

    2005-01-01

    Transmissible gastroenteritis coronavirus (TGEV) is one of the most destructive agents, responsible for the enteric infections that are lethal for suckling piglets, causing enormous economic loss to the porcine fostering industry every year. Although it has been known that TGEV spiker protein is essential for the viral entry for many years, the detail knowledge of the TGEV fusion protein core is still very limited. Here, we report that TGEV fusion core (HR1-SGGRGG-HR2), in vitro expressed in GST prokaryotic expression system, shares the typical properties of the trimer of coiled-coil heterodimer (six α-helix bundle), which has been confirmed by a combined series of biochemical and biophysical evidences including size exclusion chromatography (gel-filtration), chemical crossing, and circular diagram. The 3D homologous structure model presents its most likely structure, extremely similar to those of the coronaviruses documented. Taken together, TGEV spiker protein belongs to the class I fusion protein, characterized by the existence of two heptad-repeat (HR) regions, HR1 and HR2, and the present knowledge about the truncated TGEV fusion protein core may facilitate in the design of the small molecule or polypeptide drugs targeting the membrane fusion between TGEV and its host

  11. Effects of nanomolar cadmium concentrations on water plants - comparison of biochemical and biophysical mechanisms of toxicity under environmentally relevant conditions

    OpenAIRE

    Andresen, Elisa

    2014-01-01

    In this thesis, the effects of the highly toxic heavy metal cadmium (Cd) on the rootless aquatic model plant Ceratophyllum demersum are investigated on the biochemical and biophysical level. The experiments were carried out using environmentally relevant conditions, i.e. light and temperature followed a sinusoidal cycle, a low biomass to water ratio resembled the situation in oligotrophic lakes and a continuous exchange of the defined nutrient solution ensured that metal uptake into the plant...

  12. Exploring the effect of Vitamin E in Cancer Chemotherapy- A Biochemical and Biophysical Insight.

    Science.gov (United States)

    Bhori, Mustansir; Singh, Kanchanlata; Marar, Thankamani; MuraliKrishna, C

    2018-05-16

    Many oncologists contend that patient undergoing chemotherapy must avoid antioxidant supplementation as it may interfere with the activity of the drug. In the present investigation, we have explored the influence of vitamin E, a well known antioxidant on Camptothecin (CPT), a potent anti-cancer drug induced cell apoptosis and death of cervical cancer cells. HeLa cells were treated with different concentrations of CPT in presence and absence of 100μm vitamin E. Treated cells were subjected to cytotoxicity studies, catalase assay, DNA fragmentation assay, clonogenic assay and flow cytometry based apoptosis detection. Also, Raman spectroscopy a label free technique which provides global information in conjunction with multivariate tools like PCA, PCLDA and FDA, was investigated to explore vitamin E supplementation induced alterations. Our data based on biochemical and biophysical experimental analysis reveals that CPT causes DNA damage along with protein and lipid alteration culminating in cell death. Importantly, Raman spectroscopic analysis could uniquely differentiate the cluster of control and vitamin E control from CPT and CPT+Vit E treated cells. We conclusively prove that presence of vitamin E at 100μM concentration shows promising antioxidant activity and displays no modulatory role on CPT induced effect, thereby causing no possible hindrance with the efficacy of the drug. Vitamin E may prove beneficial to alleviate chemotherapy associated side effects in patients during clinical settings which may open the doors further for subsequent exploration in in vivo pre clinical studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Biochemical and Biophysical Methods for Analysis of Poly(ADP-Ribose) Polymerase 1 and Its Interactions with Chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Chassé, Maggie H.; Muthurajan, Uma M.; Clark, Nicholas J.; Kramer, Michael A.; Chakravarthy, Srinivas; Irving, Thomas; Luger, Karolin [Children; (IIT); (Colorado); (Amgen)

    2018-01-18

    Poly (ADP-Ribose) Polymerase I (PARP-1) is a first responder to DNA damage and participates in the regulation of gene expression. The interaction of PARP-1 with chromatin and DNA is complex and involves at least two different modes of interaction. In its enzymatically inactive state, PARP-1 binds native chromatin with similar affinity as it binds free DNA ends. Automodification of PARP-1 affects interaction with chromatin and DNA to different extents. Here we describe a series of biochemical and biophysical techniques to quantify and dissect the different binding modes of PARP-1 with its various substrates. The techniques listed here allow for high throughput and quantitative measurements of the interaction of different PARP-1 constructs (inactive and automodified) with chromatin and DNA damage models.

  14. BIOCHEMICAL AND BIOPHYSICAL CHARACTERIZATION OF RECOMBINANT YEAST PROTEASOME MATURATION FACTOR UMP1

    Directory of Open Access Journals (Sweden)

    Bebiana Sá-Moura

    2013-04-01

    We show that recombinant Ump1 is purified as a mixture of different oligomeric species and thatoligomerization is mediated by intermolecular disulfide bond formation involving the only cysteine residue present in the protein.Furthermore, a combination of bioinformatic, biochemical and structural analysis revealed that Ump1 shows characteristics of anintrinsically disordered protein, which might become structured only upon interaction with the proteasomesubunits.

  15. Summaries of fiscal year 1994 projects in medical applications and biophysical research

    International Nuclear Information System (INIS)

    1995-04-01

    This report provides information on the research supported in Fiscal Year 1994 by the Medical Applications and Biophysical Research Division of the Office of Health and Environmental Research. A brief statement of the scope of the following areas is presented: dosimetry; measurement science; radiological and chemical physics; structural biology; human genome; and medical applications. Summaries of the research projects in these categories are presented

  16. What is all this fuss about Tus? Comparison of recent findings from biophysical and biochemical experiments

    KAUST Repository

    Berghuis, Bojk A.

    2017-11-07

    Synchronizing the convergence of the two-oppositely moving DNA replication machineries at specific termination sites is a tightly coordinated process in bacteria. In Escherichia coli, a “replication fork trap” – found within a chromosomal region where forks are allowed to enter but not leave – is set by the protein–DNA roadblock Tus–Ter. The exact sequence of events by which Tus–Ter blocks replisomes approaching from one direction but not the other has been the subject of controversy for many decades. Specific protein–protein interactions between the nonpermissive face of Tus and the approaching helicase were challenged by biochemical and structural studies. These studies show that it is the helicase-induced strand separation that triggers the formation of new Tus–Ter interactions at the nonpermissive face – interactions that result in a highly stable “locked” complex. This controversy recently gained renewed attention as three single-molecule-based studies scrutinized this elusive Tus–Ter mechanism – leading to new findings and refinement of existing models, but also generating new questions. Here, we discuss and compare the findings of each of the single-molecule studies to find their common ground, pinpoint the crucial differences that remain, and push the understanding of this bipartite DNA–protein system further.

  17. Novel high-performance purification protocol of recombinant CNBP suitable for biochemical and biophysical characterization.

    Science.gov (United States)

    Challier, Emilse; Lisa, María-Natalia; Nerli, Bibiana B; Calcaterra, Nora B; Armas, Pablo

    2014-01-01

    Cellular nucleic acid binding protein (CNBP) is a highly conserved multi-zinc knuckle protein that enhances c-MYC expression, is related to certain human muscular diseases and is required for proper rostral head development. CNBP binds to single-stranded DNA (ssDNA) and RNA and acts as nucleic acid chaperone. Despite the advances made concerning CNBP biological roles, a full knowledge about the structure-function relationship has not yet been achieved, likely due to difficulty in obtaining pure and tag-free CNBP. Here, we report a fast, simple, reproducible, and high-performance expression and purification protocol that provides recombinant tag-free CNBP from Escherichia coli cultures. We determined that tag-free CNBP binds its molecular targets with higher affinity than tagged-CNBP. Furthermore, fluorescence spectroscopy revealed the presence of a unique and conserved tryptophan, which is exposed to the solvent and involved, directly or indirectly, in nucleic acid binding. Size-exclusion HPLC revealed that CNBP forms homodimers independently of nucleic acid binding and coexist with monomers as non-interconvertible forms or in slow equilibrium. Circular dichroism spectroscopy showed that CNBP has a secondary structure dominated by random-coil and β-sheet coincident with the sequence-predicted repetitive zinc knuckles motifs, which folding is required for CNBP structural stability and biochemical activity. CNBP structural stability increased in the presence of single-stranded nucleic acid targets similar to other unstructured nucleic acid chaperones. Altogether, data suggest that CNBP is a flexible protein with interspersed structured zinc knuckles, and acquires a more rigid structure upon nucleic acid binding. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. A Review on the Role of Vibrational Spectroscopy as An Analytical Method to Measure Starch Biochemical and Biophysical Properties in Cereals and Starchy Foods

    Directory of Open Access Journals (Sweden)

    D. Cozzolino

    2014-12-01

    Full Text Available Starch is the major component of cereal grains and starchy foods, and changes in its biophysical and biochemical properties (e.g., amylose, amylopectin, pasting, gelatinization, viscosity will have a direct effect on its end use properties (e.g., bread, malt, polymers. The use of rapid and non-destructive methods to study and monitor starch properties, such as gelatinization, retrogradation, water absorption in cereals and starchy foods, is of great interest in order to improve and assess their quality. In recent years, near infrared reflectance (NIR and mid infrared (MIR spectroscopy have been explored to predict several quality parameters, such as those generated by instrumental methods commonly used in routine analysis like the rapid visco analyser (RVA or viscometers. In this review, applications of both NIR and MIR spectroscopy to measure and monitor starch biochemical (amylose, amylopectin, starch and biophysical properties (e.g., pasting properties will be presented and discussed.

  19. Emergy analysis of a farm biogas project in China: A biophysical perspective of agricultural ecological engineering

    Science.gov (United States)

    Zhou, S. Y.; Zhang, B.; Cai, Z. F.

    2010-05-01

    This paper aims to present a biophysical understanding of the agricultural ecological engineering by emergy analysis for a farm biogas project in China as a representative case. Accounting for the resource inputs into and accumulation within the project, as well as the outputs to the social system, emergy analysis provides an empirical study in the biophysical dimension of the agricultural ecological engineering. Economic benefits and ecological economic benefits of the farm biogas project indicated by market value and emergy monetary value are discussed, respectively. Relative emergy-based indices such as renewability (R%), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are calculated to evaluate the environmental load and local sustainability of the concerned biogas project. The results show that the farm biogas project has more reliance on the local renewable resources input, less environmental pressure and higher sustainability compared with other typical agricultural systems. In addition, holistic evaluation and its policy implications for better operation and management of the biogas project are presented.

  20. Egg Yolk Lecithin: A Biochemical Laboratory Project

    Science.gov (United States)

    White, Bernard J.; And Others

    1974-01-01

    Describes an undergraduate laboratory project involving lecithin which integrates two general aspects of lipid methodology: chromatographic techniques and use of enzymes specificity to obtain structural information. (Author/SLH)

  1. Biochemical enrichment and biophysical characterization of a taste receptor for L-arginine from the catfish, Ictalurus puntatus

    Directory of Open Access Journals (Sweden)

    Spielman Andrew I

    2004-07-01

    Full Text Available Abstract Background The channel catfish, Ictalurus punctatus, is invested with a high density of cutaneous taste receptors, particularly on the barbel appendages. Many of these receptors are sensitive to selected amino acids, one of these being a receptor for L-arginine (L-Arg. Previous neurophysiological and biophysical studies suggested that this taste receptor is coupled directly to a cation channel and behaves as a ligand-gated ion channel receptor (LGICR. Earlier studies demonstrated that two lectins, Ricinus communis agglutinin I (RCA-I and Phaseolus vulgaris Erythroagglutinin (PHA-E, inhibited the binding of L-Arg to its presumed receptor sites, and that PHA-E inhibited the L-Arg-stimulated ion conductance of barbel membranes reconstituted into lipid bilayers. Results Both PHA-E and RCA-I almost exclusively labeled an 82–84 kDa protein band of an SDS-PAGE of solubilized barbel taste epithelial membranes. Further, both rhodamine-conjugated RCA-I and polyclonal antibodies raised to the 82–84 kDa electroeluted peptides labeled the apical region of catfish taste buds. Because of the specificity shown by RCA-I, lectin affinity was chosen as the first of a three-step procedure designed to enrich the presumed LGICR for L-Arg. Purified and CHAPS-solubilized taste epithelial membrane proteins were subjected successively to (1, lectin (RCA-I affinity; (2, gel filtration (Sephacryl S-300HR; and (3, ion exchange chromatography. All fractions from each chromatography step were evaluated for L-Arg-induced ion channel activity by reconstituting each fraction into a lipid bilayer. Active fractions demonstrated L-Arg-induced channel activity that was inhibited by D-arginine (D-Arg with kinetics nearly identical to those reported earlier for L-Arg-stimulated ion channels of native barbel membranes reconstituted into lipid bilayers. After the final enrichment step, SDS-PAGE of the active ion channel protein fraction revealed a single band at 82–84 k

  2. Beyond leaf color: Comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest

    Science.gov (United States)

    Yang, Xi; Tang, Jianwu; Mustard, John F.

    2014-03-01

    Plant phenology, a sensitive indicator of climate change, influences vegetation-atmosphere interactions by changing the carbon and water cycles from local to global scales. Camera-based phenological observations of the color changes of the vegetation canopy throughout the growing season have become popular in recent years. However, the linkages between camera phenological metrics and leaf biochemical, biophysical, and spectral properties are elusive. We measured key leaf properties including chlorophyll concentration and leaf reflectance on a weekly basis from June to November 2011 in a white oak forest on the island of Martha's Vineyard, Massachusetts, USA. Concurrently, we used a digital camera to automatically acquire daily pictures of the tree canopies. We found that there was a mismatch between the camera-based phenological metric for the canopy greenness (green chromatic coordinate, gcc) and the total chlorophyll and carotenoids concentration and leaf mass per area during late spring/early summer. The seasonal peak of gcc is approximately 20 days earlier than the peak of the total chlorophyll concentration. During the fall, both canopy and leaf redness were significantly correlated with the vegetation index for anthocyanin concentration, opening a new window to quantify vegetation senescence remotely. Satellite- and camera-based vegetation indices agreed well, suggesting that camera-based observations can be used as the ground validation for satellites. Using the high-temporal resolution dataset of leaf biochemical, biophysical, and spectral properties, our results show the strengths and potential uncertainties to use canopy color as the proxy of ecosystem functioning.

  3. Summaries of research projects for fiscal years 1996 and 1997, medical applications and biophysical research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Medical Applications and Biophysical Research Division of the Office of Biological and Environmental Research supports and manages research in several distinct areas of science and technology. The projects described in this book are grouped by the main budgetary areas: General Life Sciences (structural molecular biology), Medical Applications (primarily nuclear medicine) and Measurement Science (analytical chemistry instrumentation), Environmental Management Science Program, and the Small Business Innovation Research Program. The research funded by this division complements that of the other two divisions in the Office of Biological and Environmental Research (OBER): Health Effects and Life Sciences Research, and Environmental Sciences. Most of the OBER programs are planned and administered jointly by the staff of two or all three of the divisions. This summary book provides information on research supported in these program areas during Fiscal Years 1996 and 1997.

  4. Integrating Economic Models with Biophysical Models in the Willamette Water 2100 Project

    Science.gov (United States)

    Jaeger, W. K.; Plantinga, A.

    2013-12-01

    This paper highlights the human system modeling components for Willamette Water 2100, a comprehensive, highly integrated study of hydrological, ecological, and human factors affecting water scarcity in the Willamette River Basin (WRB). The project is developing a spatiotemporal simulation model to predict future trajectories of water scarcity, and to evaluate mitigation policies. Economic models of land use and water use are the main human system models in WW2100. Water scarcity depends on both supply and demand for water, and varies greatly across time and space (Jaeger et al., 2013). Thus, the locations of human water use can have enormous influence on where and when water is used, and hence where water scarcity may arise. Modeling the locations of human uses of water (e.g., urban versus agricultural) as well as human values and choices, are the principal quantitative ways that social science can contribute to research of this kind. Our models are empirically-based models of human resource allocation. Each model reflects private behavior (choices by households, farms, firms), institutions (property rights, laws, markets, regulations), public infrastructure (dams, canals, highways), and also 'external drivers' that influence the local economy (migration, population growth, national markets and policies). This paper describes the main model components, emphasizing similarities between human and biophysical components of the overall project, and the model's linkages and feedbacks relevant to our predictions of changes in water scarcity between now and 2100. Results presented include new insights from individual model components as well as available results from the integrated system model. Issues include water scarcity and water quality (temperature) for out-of-stream and instream uses, the impact of urban expansion on water use and potential flood damage. Changes in timing and variability of spring discharge with climate change, as well as changes in human uses of

  5. Toxoplasma gondii: Biochemical and biophysical characterization of recombinant soluble dense granule proteins GRA2 and GRA6

    International Nuclear Information System (INIS)

    Bittame, Amina; Effantin, Grégory; Pètre, Graciane; Ruffiot, Pauline; Travier, Laetitia; Schoehn, Guy; Weissenhorn, Winfried; Cesbron-Delauw, Marie-France; Gagnon, Jean; Mercier, Corinne

    2015-01-01

    The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressed in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6–8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8–15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. - Highlights: • Toxoplasma gondii: soluble GRA2 forms 2 populations of particles. • T. gondii: the dense granule protein GRA2 folds intrinsically as an alpha-helix. • T. gondii: monomeric soluble GRA6 forms particles of 6–8 nm in diameter. • T. gondii: monomeric soluble GRA6 is random coiled. • Unusual biophysical properties of the dense granule protein GRA2 from T. gondii

  6. Toxoplasma gondii: Biochemical and biophysical characterization of recombinant soluble dense granule proteins GRA2 and GRA6

    Energy Technology Data Exchange (ETDEWEB)

    Bittame, Amina [CNRS, UMR 5163, 38042 Grenoble (France); Université Grenoble Alpes, 38042 Grenoble (France); Effantin, Grégory [Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Unit for Virus Host-Cell Interactions (UVHCI), UMI 3265 (UJF-EMBL-CNRS), 38027 Grenoble (France); Pètre, Graciane; Ruffiot, Pauline; Travier, Laetitia [CNRS, UMR 5163, 38042 Grenoble (France); Université Grenoble Alpes, 38042 Grenoble (France); Schoehn, Guy; Weissenhorn, Winfried [Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Unit for Virus Host-Cell Interactions (UVHCI), UMI 3265 (UJF-EMBL-CNRS), 38027 Grenoble (France); Cesbron-Delauw, Marie-France; Gagnon, Jean [CNRS, UMR 5163, 38042 Grenoble (France); Université Grenoble Alpes, 38042 Grenoble (France); Mercier, Corinne, E-mail: corinne.mercier@ujf-grenoble.fr [CNRS, UMR 5163, 38042 Grenoble (France); Université Grenoble Alpes, 38042 Grenoble (France)

    2015-03-27

    The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressed in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6–8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8–15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. - Highlights: • Toxoplasma gondii: soluble GRA2 forms 2 populations of particles. • T. gondii: the dense granule protein GRA2 folds intrinsically as an alpha-helix. • T. gondii: monomeric soluble GRA6 forms particles of 6–8 nm in diameter. • T. gondii: monomeric soluble GRA6 is random coiled. • Unusual biophysical properties of the dense granule protein GRA2 from T. gondii.

  7. Structural biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Summaries of research projects conducted during 1978 and 1979 are presented. The structural biophysics group explores the high-resolution structure of biological macromolecules and cell organelles. Specific subject areas include: the basic characteristics of photosynthesis in plants; the chemical composition of individual fly ash particles at the site of their damaging action in tissues; direct analysis of frozen-hydrated biological samples by scanning electron microscopy; yeast genetics; the optical activity of DNA aggregates; measurement and characterization of lipoproteins; function of lipoproteins; and the effect of radiation and pollutants on mammalian cells

  8. Computational Biophysical, Biochemical, and Evolutionary Signature of Human R-Spondin Family Proteins, the Member of Canonical Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ashish Ranjan Sharma

    2014-01-01

    Full Text Available In human, Wnt/β-catenin signaling pathway plays a significant role in cell growth, cell development, and disease pathogenesis. Four human (Rspos are known to activate canonical Wnt/β-catenin signaling pathway. Presently, (Rspos serve as therapeutic target for several human diseases. Henceforth, basic understanding about the molecular properties of (Rspos is essential. We approached this issue by interpreting the biochemical and biophysical properties along with molecular evolution of (Rspos thorough computational algorithm methods. Our analysis shows that signal peptide length is roughly similar in (Rspos family along with similarity in aa distribution pattern. In Rspo3, four N-glycosylation sites were noted. All members are hydrophilic in nature and showed alike GRAVY values, approximately. Conversely, Rspo3 contains the maximum positively charged residues while Rspo4 includes the lowest. Four highly aligned blocks were recorded through Gblocks. Phylogenetic analysis shows Rspo4 is being rooted with Rspo2 and similarly Rspo3 and Rspo1 have the common point of origin. Through phylogenomics study, we developed a phylogenetic tree of sixty proteins (n=60 with the orthologs and paralogs seed sequences. Protein-protein network was also illustrated. Results demonstrated in our study may help the future researchers to unfold significant physiological and therapeutic properties of (Rspos in various disease models.

  9. Biophysical and biochemical strategies to understand membrane binding and pore formation by sticholysins, pore-forming proteins from a sea anemone.

    Science.gov (United States)

    Alvarez, Carlos; Ros, Uris; Valle, Aisel; Pedrera, Lohans; Soto, Carmen; Hervis, Yadira P; Cabezas, Sheila; Valiente, Pedro A; Pazos, Fabiola; Lanio, Maria E

    2017-10-01

    Actinoporins constitute a unique class of pore-forming toxins found in sea anemones that are able to bind and oligomerize in membranes, leading to cell swelling, impairment of ionic gradients and, eventually, to cell death. In this review we summarize the knowledge generated from the combination of biochemical and biophysical approaches to the study of sticholysins I and II (Sts, StI/II), two actinoporins largely characterized by the Center of Protein Studies at the University of Havana during the last 20 years. These approaches include strategies for understanding the toxin structure-function relationship, the protein-membrane association process leading to pore formation and the interaction of toxin with cells. The rational combination of experimental and theoretical tools have allowed unraveling, at least partially, of the complex mechanisms involved in toxin-membrane interaction and of the molecular pathways triggered upon this interaction. The study of actinoporins is important not only to gain an understanding of their biological roles in anemone venom but also to investigate basic molecular mechanisms of protein insertion into membranes, protein-lipid interactions and the modulation of protein conformation by lipid binding. A deeper knowledge of the basic molecular mechanisms involved in Sts-cell interaction, as described in this review, will support the current investigations conducted by our group which focus on the design of immunotoxins against tumor cells and antigen-releasing systems to cell cytosol as Sts-based vaccine platforms.

  10. A Combined Genetic, Biochemical, and Biophysical Analysis of the A1 Phylloquinone Binding Site of Photosystem I from Green Algae

    Energy Technology Data Exchange (ETDEWEB)

    Kevin E. Redding

    2008-05-31

    This project has resulted in the increase in our understanding of how proteins interact with and influence the properties of bound cofactors. This information is important for several reasons, including providing essential information for the re-engineering of biological molecules, such as proteins, for either improved function or entirely new ones. In particular, we have found that a molecule, such as the phylloquinone used in Photosystem I (PS1), can be made a stronger electron donor by placing it in a hydrophobic (greasy) environment surrounded by negative charges. In addition, the protein is constrained in its interactions with the phylloqinone, in that it must bind the cofactor tightly, but not in such a way that would stabilize the reduced (natively-charged) version of the molecule. We have used a combination of molecular genetics, in order to make specific mutations in the region of the phylloquinone, and an advanced form of spectroscopy capable of monitoring the transfer of electrons within PS1 using living cells as the material. This approach turned out to produce a significant savings in time and supplies, as it allowed us to focus quickly on the mutants that produced interesting effects, without having to go through laborious purification of the affected proteins. We followed up selected mutants using other spectroscopic techniques in order to gain more specialized information.

  11. Radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Summaries of research projects conducted during 1978 and 1979 are presented. The overall thrust of the research is aimed at understanding the effects of radiation on organisms. Specific subject areas include: the effects of heavy-particle beam nuclear interactions in tissue on dosimetry; tracer studies with radioactive fragments of heavy-ion beams; the effects of heavy/ions on human kidney cells and Chinese hamster cells; the response of a rhabdomyosarcoma tumor system in rats to heavy-ion beams; the use of heavy charged particles in radiotherapy of human cancer; heavy-ion radiography; the biological effects of high magnetic fields; central nervous system neurotoxicity; and biophysical studies on cell membranes

  12. Research Institute for Medical Biophysics

    International Nuclear Information System (INIS)

    Wynchank, S.

    1989-01-01

    The effects of ionising and non-ionising radiation on rodent tumours and normal tissue were studied in terms of cellular repair and the relevant biochemical and biophysical changes following radiation. Rodent tumours investigated in vivo were the CaNT adenocarcinoma and a chemically induced transplantable rhabdomyosarcoma. Radiations used were 100KVp of X-Rays, neutron beams, various magnetic fields, and microwave radiation of 2450MHz. The biochemical parameters measured were, inter alia, levels of adenosine-5'-triphoshate (ATP) and the specific activity of hexokinase (HK). Metabolic changes in ATP levels and the activity of HK were observed in tumour and normal tissues following ionising and non-ionising radiation in normoxia and hypoxia. The observation that the effect of radiation and chemotherapeutic treatment of some tumours may be size dependent can possibly now be explained by the variation of ATP content with tumour size. The enhanced tumour HK specific activity implies increased metabolism, possibly a consequence of cellular requirements to maintain homeostasis during repair processes. Other research projects of the Research Institute for Medical Biophysics involved, inter alia, gastroesophageal scintigraphies to evaluate the results of new forms of therapy. 1 ill

  13. CDIO Projects in DTU’s Chemical and Biochemical B.Eng. Study Program

    DEFF Research Database (Denmark)

    Clement, Karsten; Harris, Pernille; Agersø, Yvonne

    2011-01-01

    The aim of this paper is to describe how the CDIO standards [1] have influenced the cross-disciplinary projects that are part of the study plan for the Chemical and Biochemical B.Eng. program. Four projects are described: The 1st semester design-build project on cleaning of waste water from a power...... plant, the 2nd semester laboratory project concerning antimicrobial resistant E. coli bacteria in retail meats, the 3rd semester project on unit operations in enzyme production, the 4th semester project on the fermentation and purification part of enzyme production....

  14. Biophysical pathology in cancer transformation

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří; Pokorný, Jan

    S1, Nov (2013), s. 1-9 ISSN 2324-9110 R&D Projects: GA ČR(CZ) GAP102/11/0649 Institutional support: RVO:68378271 ; RVO:67985882 Keywords : cancer biophysics * Warburg effect * reverse Warburg effect * biological electrodynamics * coherent states Subject RIV: BO - Biophysics

  15. National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010

    Energy Technology Data Exchange (ETDEWEB)

    Schell, D.

    2011-02-01

    Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

  16. Mathematical biophysics

    CERN Document Server

    Rubin, Andrew

    2014-01-01

    This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience. Provides succinct but authoritative coverage of a broad array of biophysical topics and models Wr...

  17. The biophysics of neuronal growth

    International Nuclear Information System (INIS)

    Franze, Kristian; Guck, Jochen

    2010-01-01

    For a long time, neuroscience has focused on biochemical, molecular biological and electrophysiological aspects of neuronal physiology and pathology. However, there is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. In this review we briefly summarize the historical background of neurobiophysics and give an overview over the current understanding of neuronal growth from a physics perspective. We show how biophysics has so far contributed to a better understanding of neuronal growth and discuss current inconsistencies. Finally, we speculate how biophysics may contribute to the successful treatment of lesions to the central nervous system, which have been considered incurable until very recently.

  18. Biochemical and biophysical characterization of cell-free synthesized Rift Valley fever virus nucleoprotein capsids enables in vitro screening to identify novel antivirals.

    Science.gov (United States)

    Broce, Sean; Hensley, Lisa; Sato, Tomoharu; Lehrer-Graiwer, Joshua; Essrich, Christian; Edwards, Katie J; Pajda, Jacqueline; Davis, Christopher J; Bhadresh, Rami; Hurt, Clarence R; Freeman, Beverly; Lingappa, Vishwanath R; Kelleher, Colm A; Karpuj, Marcela V

    2016-05-14

    Viral capsid assembly involves the oligomerization of the capsid nucleoprotein (NP), which is an essential step in viral replication and may represent a potential antiviral target. An in vitro transcription-translation reaction using a wheat germ (WG) extract in combination with a sandwich ELISA assay has recently been used to identify small molecules with antiviral activity against the rabies virus. Here, we examined the application of this system to viruses with capsids with a different structure, such as the Rift Valley fever virus (RVFV), the etiological agent of a severe emerging infectious disease. The biochemical and immunological characterization of the in vitro-generated RVFV NP assembly products enabled the distinction between intermediately and highly ordered capsid structures. This distinction was used to establish a screening method for the identification of potential antiviral drugs for RVFV countermeasures. These results indicated that this unique analytical system, which combines nucleoprotein oligomerization with the specific immune recognition of a highly ordered capsid structure, can be extended to various viral families and used both to study the early stages of NP assembly and to assist in the identification of potential antiviral drugs in a cost-efficient manner. Reviewed by Jeffry Skolnick and Noah Isakov. For the full reviews please go to the Reviewers' comments section.

  19. Characterization of Three Druggable Hot-Spots in the Aurora-A/TPX2 Interaction Using Biochemical, Biophysical, and Fragment-Based Approaches

    Czech Academy of Sciences Publication Activity Database

    McIntyre, P. J.; Collins, P. M.; Vrzal, Lukáš; Birchall, K.; Arnold, L. H.; Mpamhanga, C.; Coombs, P. J.; Burgess, S. G.; Richards, M. W.; Winter, A.; Veverka, Václav; von Delft, F.; Merritt, A.; Bayliss, R.

    2017-01-01

    Roč. 12, č. 11 (2017), s. 2906-2914 ISSN 1554-8929 R&D Projects: GA MŠk(CZ) LK11205; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : fragment-based drug discovery * structural biology * inhibition Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.995, year: 2016

  20. Identifying bio-physical, social and political challenges to catchment governance for sustainable freshwater fisheries in West Africa: Systems overview through scenario development in the SUSFISH project.

    Science.gov (United States)

    Sendzimir, Jan; Slezak, Gabriele; Melcher, Andreas

    2015-04-01

    Chronic and episodic water scarcity prompted construction of 1400 reservoirs in Burkina Faso since 1950, greatly expanding fisheries production. These fisheries provided an increasingly important protein source for a population that has risen 600% since 1920, but production has plateaued, and dramatic declines in adult fish size suggest these fisheries are not sustainable. The SUSFISH project joined Austrian and Burkinabe scientists to increase local capacities to manage fisheries sustainably. SUSFISH has successfully increased capacity to monitor fish populations, identify endangered species, and use specific fish and macroinvertebrate species as bio-indicators of water and habitat quality as well as anthropogenic pressures. But projects to support sustainable development in Africa have a long history of failure if only based on transfer of technology and theory based on bio-physical sciences. This paper describes the processes and products of knowledge elicitation, scenario development and systems analysis to identify barriers and bridges to long-term sustainable fisheries development that arise from bio-physical, social, political and cultural causes, and, especially, interactions between them. Lessons learned and important on-going research questions are identified for both the natural and social sciences as they apply to managing catchments at multiple scales of governance, from local to national.

  1. Biophysical radiosensitization

    International Nuclear Information System (INIS)

    Vladescu, C.; Apetroae, M.

    1983-01-01

    Experimental studies on normal and tumor-bearing rats revealed that chronic treatment with hydroquinone (5 mg/kg/day) inhibited catalase activity in liver, spleen, blood, and H 18R tumor. 3 H-hydroquinone (1.5 μCi/g body weight) showed tumor specificity, with maximum radioactivity in the tumor at 1 h after administration. The biological half-time of 3 H-hydroquinone in the tumor was 2 h, but there seems to exist a longer component, since 24 h after administration, some 30% of the maximum radioactivity could be detected in the tumor. Hydroquinone treatment produces a specific inhibition of catalase in the tumor and a higher degree of oxygenation at this level. These findings support the assumption that the mechanism of action of hydroquinone as an anticancer agent is achieved mainly via peroxide production. The oxygenation of the hypoxic tumoral tissue is done at non-toxic levels of hydroquinone, through a natural and specific biophysical pathway, recommanding hydroquinone for combined anticancer treatment (radiotherapy and chemotherapy). (orig.)

  2. Application for approval of the Cold Lake Expansion Project: volume 2: environmental impact assessment: Part 1: biophysical and resource use assessment. Part 2: impact model descriptions

    International Nuclear Information System (INIS)

    Green, J.; Eccles, R.; Hegmann, G.; Morrison, L.; Salter, R.; van Egmond, T.; Vonk, P.; Ash, G.; Crowther, R.; Dance, T.; Edwards, W.; Veldman, W.

    1997-02-01

    An environmental assessment of the Cold Lake Expansion Project has been conducted to identify major issues of concern by public and government agencies, to determine means to eliminate or reduce those impacts, and to recommend any further efforts required to obtain missing information or monitor impacts. Volume 2 of the environmental impact assessment is divided into two parts. Part 1 (biophysical and resource use assessment) constitutes the primary environmental impact assessment document for the Cold Lake expansion project. It includes technical support documentation in regard to: (1) an assessment of noise impacts, (2) an assessment of greenhouse gas emissions, (3) a conceptual conservation and reclamation plan, (4) a historical resource impact assessment, and (5) a description of effects of oil spills on fish. Part 2 (impact model description) serves a reference document for part 1. It describes the approach taken in developing and assessing the impact models, discusses proposed methods for mitigation and management of residual impacts, and the recommended monitoring requirements for each of the major resource disciplines. The impact models describe the specific pathways through which impacts will occur as a result of interactions between project-related activities and important environmental components. 476 refs., 58 tabs., 23 figs

  3. 2. biophysical work meeting

    International Nuclear Information System (INIS)

    1992-11-01

    The report comprises 18 papers held at the 2nd Biophysical Work Meeting, 11 - 13 September 1991 in Schlema, Germany. The history of biophysics in Germany particularly of radiation biophysics and radon research, measurements of the radiation effects of radon and the derivation of limits, radon balneotherapy and consequences of uranium ore mining are dealt with. (orig.) [de

  4. Biophysics conference 1978

    International Nuclear Information System (INIS)

    1978-01-01

    The main subject on the biophysics meeting was the biophysics of membranes with practical subjects from photosynthesis and the transfer processes on membranes. In radiation biophysics, problems of radiation sensitisation, immunological problems after radiation exposure, the oxygen effect and inhibitory processes in RNS synthesis after radiation exposure were discussed with a view to tumour therapy. (AJ) [de

  5. Methods in Modern Biophysics

    CERN Document Server

    Nölting, Bengt

    2006-01-01

    Incorporating recent dramatic advances, this textbook presents a fresh and timely introduction to modern biophysical methods. An array of new, faster and higher-power biophysical methods now enables scientists to examine the mysteries of life at a molecular level. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, proteomics, and protein folding and structure. Incorporating much information previously unavailable in tutorial form, Nölting employs worked examples and 267 illustrations to fully detail the techniques and their underlying mechanisms. Methods in Modern Biophysics is written for advanced undergraduate and graduate students, postdocs, researchers, lecturers and professors in biophysics, biochemistry and related fields. Special features in the 2nd edition: • Illustrates the high-resolution methods for ultrashort-living protei...

  6. Methods in Modern Biophysics

    CERN Document Server

    Nölting, Bengt

    2010-01-01

    Incorporating recent dramatic advances, this textbook presents a fresh and timely introduction to modern biophysical methods. An array of new, faster and higher-power biophysical methods now enables scientists to examine the mysteries of life at a molecular level. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, proteomics, and protein folding and structure. Incorporating much information previously unavailable in tutorial form, Nölting employs worked examples and about 270 illustrations to fully detail the techniques and their underlying mechanisms. Methods in Modern Biophysics is written for advanced undergraduate and graduate students, postdocs, researchers, lecturers, and professors in biophysics, biochemistry and related fields. Special features in the 3rd edition: Introduces rapid partial protein ladder sequencing - an important...

  7. New horizons in Biophysics

    Science.gov (United States)

    2011-01-01

    This editorial celebrates the re-launch of PMC Biophysics previously published by PhysMath Central, in its new format as BMC Biophysics published by BioMed Central with an expanded scope and Editorial Board. BMC Biophysics will fill its own niche in the BMC series alongside complementary companion journals including BMC Bioinformatics, BMC Medical Physics, BMC Structural Biology and BMC Systems Biology. PMID:21595996

  8. Biophysics An Introduction

    CERN Document Server

    Glaser, Roland

    2012-01-01

    Biophysics is the science of physical principles underlying all processes of life, including the dynamics and kinetics of biological systems. This fully revised 2nd English edition is an introductory text that spans all steps of biological organization, from the molecular, to the organism level, as well as influences of environmental factors. In response to the enormous progress recently made, especially in theoretical and molecular biophysics, the author has updated the text, integrating new results and developments concerning protein folding and dynamics, molecular aspects of membrane assembly and transport, noise-enhanced processes, and photo-biophysics. The advances made in theoretical biology in the last decade call for a fully new conception of the corresponding sections. Thus, the book provides the background needed for fundamental training in biophysics and, in addition, offers a great deal of advanced biophysical knowledge.

  9. Advanced Techniques in Biophysics

    CERN Document Server

    Arrondo, José Luis R

    2006-01-01

    Technical advancements are basic elements in our life. In biophysical studies, new applications and improvements in well-established techniques are being implemented every day. This book deals with advancements produced not only from a technical point of view, but also from new approaches that are being taken in the study of biophysical samples, such as nanotechniques or single-cell measurements. This book constitutes a privileged observatory for reviewing novel applications of biophysical techniques that can help the reader enter an area where the technology is progressing quickly and where a comprehensive explanation is not always to be found.

  10. Nanoscale biophysics of the cell

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2018-01-01

    Macroscopic cellular structures and functions are generally investigated using biological and biochemical approaches. But these methods are no longer adequate when one needs to penetrate deep into the small-scale structures and understand their functions. The cell is found to hold various physical structures, molecular machines, and processes that require physical and mathematical approaches to understand and indeed manipulate them. Disorders in general cellular compartments, perturbations in single molecular structures, drug distribution therein, and target specific drug-binding, etc. are mostly physical phenomena. This book will show how biophysics has revolutionized our way of addressing the science and technology of nanoscale structures of cells, and also describes the potential for manipulating the events that occur in them.

  11. Encyclopedia of biophysics

    CERN Document Server

    2013-01-01

    The Encyclopedia of Biophysics is envisioned both as an easily accessible source of information and as an introductory guide to the scientific literature. It includes entries describing both Techniques and Systems.  In the Techniques entries, each of the wide range of methods which fall under the heading of Biophysics are explained in detail, together with the value and the limitations of the information each provides. Techniques covered range from diffraction (X-ray, electron and neutron) through a wide range of spectroscopic methods (X-ray, optical, EPR, NMR) to imaging (from electron microscopy to live cell imaging and MRI), as well as computational and simulation approaches. In the Systems entries, biophysical approaches to specific biological systems or problems – from protein and nucleic acid structure to membranes, ion channels and receptors – are described. These sections, which place emphasis on the integration of the different techniques, therefore provide an inroad into Biophysics from a biolo...

  12. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995.

  13. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    International Nuclear Information System (INIS)

    1996-01-01

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995

  14. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995.

  15. Rapid biochemical functionalization of technical surfaces by means of a photobleaching-based maskless projection lithography process

    Science.gov (United States)

    Waldbaur, Ansgar; Waterkotte, Björn; Leuthold, Juerg; Schmitz, Katja; Rapp, Bastian E.

    2013-03-01

    MEMS/MOEMS based systems are increasingly applied in the biological and biomedical context, e.g. in form of biosensors or substrates for monitoring biological responses such as cell migration. For such applications, technical surfaces have to be provided with suitable biochemical functionalization. Typical functionalization procedures include wet-chemical techniques based on self-assembled monolayers of thiols on gold or silanes on glass. These processes create binary patterns and are often of limited use if spatially constrained non-binary patterns like surface bound biochemical gradients have to be provided. In order to create gradients or patterns, methods such as direct spotting or dip pen nanolithography can be used. Here, gradients can be emulated by varying the spot density or the concentration of the solutions employed. However, these methods are serial in nature and are thus of limited use if large surface areas have to be patterned. We present a technique to generate gradients of biochemical function by a photobleaching-based process allowing fast large-scale patterning. The process is based on photobleaching resulting in light-induced coupling of a fluorescently tagged biomolecule to a technical surface by concerted bleaching of the fluorophore. We custom designed a maskless projection lithography system based on a digital mirror device that allows the rapid creation of 8-bit grayscale protein patterns on any technical surface from digital data (e.g. bitmap files). We demonstrate how this process can be used to obtain patterns of several cm2 lateral size at micrometer resolution within minutes.

  16. Recent progress in Biophysics

    International Nuclear Information System (INIS)

    Bemski, G.

    1980-03-01

    Recent progress in biophysics is reviewed, and three examples of the use of physical techniques and ideas in biological research are given. The first one deals with the oxygen transporting protein-hemoglobin, the second one with photosynthesis, and the third one with image formation, using nuclear magnetic resonance. (Author) [pt

  17. Biophysics of molecular gastronomy.

    Science.gov (United States)

    Brenner, Michael P; Sörensen, Pia M

    2015-03-26

    Chefs and scientists exploring biophysical processes have given rise to molecular gastronomy. In this Commentary, we describe how a scientific understanding of recipes and techniques facilitates the development of new textures and expands the flavor palette. The new dishes that result engage our senses in unexpected ways. PAPERCLIP. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Biophysical Cancer Transformation Pathway

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří

    2009-01-01

    Roč. 28, č. 2 (2009), s. 105-123 ISSN 1536-8378 Institutional research plan: CEZ:AV0Z20670512 Keywords : Biophysics * Cancer * Electromagnetic fields Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.729, year: 2009

  19. Theoretical Molecular Biophysics

    CERN Document Server

    Scherer, Philipp

    2010-01-01

    "Theoretical Molecular Biophysics" is an advanced study book for students, shortly before or after completing undergraduate studies, in physics, chemistry or biology. It provides the tools for an understanding of elementary processes in biology, such as photosynthesis on a molecular level. A basic knowledge in mechanics, electrostatics, quantum theory and statistical physics is desirable. The reader will be exposed to basic concepts in modern biophysics such as entropic forces, phase separation, potentials of mean force, proton and electron transfer, heterogeneous reactions coherent and incoherent energy transfer as well as molecular motors. Basic concepts such as phase transitions of biopolymers, electrostatics, protonation equilibria, ion transport, radiationless transitions as well as energy- and electron transfer are discussed within the frame of simple models.

  20. Structure and biophysics

    CERN Document Server

    Puglisi, Joseph D

    2007-01-01

    This volume is a collection of articles from the proceedings of the ISSBMR 7th Course: Structure and Biophysics - New Technologies for Current Challenges in Biology and Beyond. This NATO Advanced Institute (ASI) was held in Erice at the Ettore Majorana Foundation and Centre for Scientific Culture on 22 June through 3 July 2005. The ASI brought together a diverse group of experts in the fields of Structural Biology, Biophysics and Physics. Prominent lecturers, from seven different countries, and students from around the world participated in the NATO ASI organized by Professors Joseph Puglisi (Stanford University, USA) and Alexander Arseniev (Moscow, RU). Advances in nuclear magnetic resonance spectroscopy (NMR) and x-ray crystallography have allowed the three-dimensional structures of many biological macromolecules and their complexes, including the ribosome and RNA polymerase to be solved. Fundamental principles of NMR spectroscopy and dynamics, x-ray crystallography, computation and experimental dynamics we...

  1. Biophysics an introduction

    CERN Document Server

    Cotteril, Rodney

    2002-01-01

    Biophysics: An Introduction, is a concise balanced introduction to this subject. Written in an accessible and readable style, the book takes a fresh, modern approach with the author successfully combining key concepts and theory with relevant applications and examples drawn from the field as a whole. Beginning with a brief introduction to the origins of biophysics, the book takes the reader through successive levels of complexity, from atoms to molecules, structures, systems and ultimately to the behaviour of organisms. The book also includes extensive coverage of biopolymers, biomembranes, biological energy, and nervous systems. The text not only explores basic ideas, but also discusses recent developments, such as protein folding, DNA/RNA conformations, molecular motors, optical tweezers and the biological origins of consciousness and intelligence.

  2. Biophysics and systems biology.

    Science.gov (United States)

    Noble, Denis

    2010-03-13

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights.

  3. Radiation biophysics in space

    International Nuclear Information System (INIS)

    Buecker, H.; Horneck, G.

    1983-01-01

    In a demonstration experiment bacterium sporules have been exposed to the space vacuum and to the solar radiation field at 254 nm, with the following results: 1) a short vacuum exposition of 1.3 h does not affect the vitality of the sporules, 2) the survival rate of humid sporules after UV-irradiation is consistent with terrestrial control samples, 3) after a simultaneous exposition to vacuum and solar UV-radiation the effect on the sporules is enhanced by a factor of ten as compared to the situation without vaccum exposition. Additional studies in biophysical simulation systems revealed, that the enhanced UV sensitivity is caused by the dehydration of the sporules. By this process the structure of the essential macromolecules in cell, such as DNA and proteins, is modified such that new photo-products can be formed. For these products the cells have no effective repair systems. (AJ) [de

  4. Biophysics of DNA

    CERN Document Server

    Vologodskii, Alexander

    2015-01-01

    Surveying the last sixty years of research, this book describes the physical properties of DNA in the context of its biological functioning. It is designed to enable both students and researchers of molecular biology, biochemistry and physics to better understand the biophysics of DNA, addressing key questions and facilitating further research. The chapters integrate theoretical and experimental approaches, emphasising throughout the importance of a quantitative knowledge of physical properties in building and analysing models of DNA functioning. For example, the book shows how the relationship between DNA mechanical properties and the sequence specificity of DNA-protein binding can be analyzed quantitatively by using our current knowledge of the physical and structural properties of DNA. Theoretical models and experimental methods in the field are critically considered to enable the reader to engage effectively with the current scientific literature on the physical properties of DNA.

  5. Biophysics of radiation action

    International Nuclear Information System (INIS)

    Dertinger, H.

    1984-01-01

    Understanding the cellular response to ionizing radiation is not only necessary to meet the requirements of radioprotection, but also for medical application of radiation in cancer treatment. In terms of radiobiology, cancer therapy means the selective inactivation of malignant cells without affecting the normal healthy tissue. However, for several physical and biological reasons, this ideal situation is normally not attained. The elaboration of biophysical parameters that could be used to improve the selective sterilization of tumor cells has become one of the main activities of cellular radiobiology during the last two decades. Progress in this field has been facilitated by the development of tissue culture techniques allowing to grow and analyze cells in a synthetic nutrient medium. This chapter describes the physical and biological factors which determine cellular radiosensitivity and which are important to know for better understanding the cellular radiation action, in particular with reference to cancer treatment

  6. Theoretical molecular biophysics

    CERN Document Server

    Scherer, Philipp O J

    2017-01-01

    This book gives an introduction to molecular biophysics. It starts from material properties at equilibrium related to polymers, dielectrics and membranes. Electronic spectra are developed for the understanding of elementary dynamic processes in photosynthesis including proton transfer and dynamics of molecular motors. Since the molecular structures of functional groups of bio-systems were resolved, it has become feasible to develop a theory based on the quantum theory and statistical physics with emphasis on the specifics of the high complexity of bio-systems. This introduction to molecular aspects of the field focuses on solvable models. Elementary biological processes provide as special challenge the presence of partial disorder in the structure which does not destroy the basic reproducibility of the processes. Apparently the elementary molecular processes are organized in a way to optimize the efficiency. Learning from nature by means exploring the relation between structure and function may even help to b...

  7. Biophysics and cancer

    CERN Document Server

    Nicolini, Claudio

    1986-01-01

    Since the early times of the Greek philosophers Leucippus and Democritus, and later of the Roman philosopher Lucretius, a simple, fundamental idea emerged that brought the life sciences into the realm of the physical sciences. Atoms, after various interactions, were assumed to acquire stable configurations that corresponded either to the living or to the inanimate world. This simple and unitary theory, which has evolved in successive steps to our present time, remarkably maintained its validity despite several centuries of alternative vicissitudes, and is the foundation of modern biophysics. Some of the recent developments of this ancient idea are the discovery of the direct relationship between spatial structures and chemical activity of such molecules as methane and benzene, and the later discovery of the three-dimensional structure of double-helical DNA, and of its relationship with biological activity. The relationship between the structure of various macromolecules and the function of living cells was on...

  8. The Biophysics Microgravity Initiative

    Science.gov (United States)

    Gorti, S.

    2016-01-01

    Biophysical microgravity research on the International Space Station using biological materials has been ongoing for several decades. The well-documented substantive effects of long duration microgravity include the facilitation of the assembly of biological macromolecules into large structures, e.g., formation of large protein crystals under micro-gravity. NASA is invested not only in understanding the possible physical mechanisms of crystal growth, but also promoting two flight investigations to determine the influence of µ-gravity on protein crystal quality. In addition to crystal growth, flight investigations to determine the effects of shear on nucleation and subsequent formation of complex structures (e.g., crystals, fibrils, etc.) are also supported. It is now considered that long duration microgravity research aboard the ISS could also make possible the formation of large complex biological and biomimetic materials. Investigations of various materials undergoing complex structure formation in microgravity will not only strengthen NASA science programs, but may also provide invaluable insight towards the construction of large complex tissues, organs, or biomimetic materials on Earth.

  9. Biophysics of protein evolution and evolutionary protein biophysics

    Science.gov (United States)

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  10. Biochemical and biophysical implications of the methods of ...

    African Journals Online (AJOL)

    Garri samples, collected from three major-producing areas (Ihiagwu in Imo State, Aba in Abia State and Okija in Anambra State) of South- Eastern Nigeria, were packaged in three types of packages, namely, metal can (tin), plastic can can and thick gauge polyethylene bag and evaluated for long term storage effects.

  11. Biophysical and Biochemical Mechanisms in Synaptic Transmitter Release.

    Science.gov (United States)

    1992-01-31

    vesicle is normally released per active zone Sci USA 83. 3032 (1986) pared (15, 19, 20). In fact, in squid, the quantum 8 0 Shimomura 8 Musicki. V Kisni...8217, AND R. LLINAS• *Instituto de Biologia Celular Facultad de Medicina. Universidad de Buenos Aires. Paraguay 2155. Buenos Aires 1121. Argentina: and

  12. Biophysical mechanisms complementing "classical" cell biology.

    Science.gov (United States)

    Funk, Richard H W

    2018-01-01

    This overview addresses phenomena in cell- and molecular biology which are puzzling by their fast and highly coordinated way of organization. Generally, it appears that informative processes probably involved are more on the biophysical than on the classical biochemical side. The coordination problem is explained within the first part of the review by the topic of endogenous electrical phenomena. These are found e.g. in fast tissue organization and reorganization processes like development, wound healing and regeneration. Here, coupling into classical biochemical signaling and reactions can be shown by modern microscopy, electronics and bioinformatics. Further, one can follow the triggered reactions seamlessly via molecular biology till into genetics. Direct observation of intracellular electric processes is very difficult because of e.g. shielding through the cell membrane and damping by other structures. Therefore, we have to rely on photonic and photon - phonon coupling phenomena like molecular vibrations, which are addressed within the second part. Molecules normally possess different charge moieties and thus small electromagnetic (EMF) patterns arise during molecular vibration. These patterns can now be measured best within the optical part of the spectrum - much less in the lower terahertz till kHz and lower Hz part (third part of this review). Finally, EMFs facilitate quantum informative processes in coherent domains of molecular, charge and electron spin motion. This helps to coordinate such manifold and intertwined processes going on within cells, tissues and organs (part 4). Because the phenomena described in part 3 and 4 of the review still await really hard proofs we need concerted efforts and a combination of biophysics, molecular biology and informatics to unravel the described mysteries in "physics of life".

  13. Integrated Molecular and Cellular Biophysics

    CERN Document Server

    Raicu, Valerica

    2008-01-01

    This book integrates concepts and methods from physics, biology, biochemistry and physical chemistry into a standalone, unitary text of biophysics that aims to provide a quantitative description of structures and processes occurring in living matter. The book introduces graduate physics students and physicists interested in biophysics research to 'classical' as well as emerging areas of biophysics. The advanced undergraduate physics students and the life scientists are also invited to join in, by building on their knowledge of basic physics. Essential notions of biochemistry and biology are introduced, as necessary, throughout the book, while the reader's familiarity with basic knowledge of physics is assumed. Topics covered include interactions between biological molecules, physical chemistry of phospholipids association into bilayer membranes, DNA and protein structure and folding, passive and active electrical properties of the cell membrane, classical as well as fractal aspects of reaction kinetics and di...

  14. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with the design and measurement of physical parameters used in theory or to support biological experiments. The radiation biophysics program tests and uses the theoretical developments for experimental design, and provides information for further theoretical development through experiments on cellular systems

  15. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with design and measurement of those physical parameters used in the theory or to support biological experiments. The radiation biophysics program tests and makes use of the theoretical developments for experimental design. Also, this program provides information for further theoretical development through experiments on cellular systems

  16. VT Biodiversity Project - Biophysical Regions boundary lines

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This dataset divides Vermont into eight sub-regions on the basis of bedrock geology, gross physiography, climate, and broad-scale patterns of...

  17. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies.

    Science.gov (United States)

    Zhang, Hao; Cui, Weidong; Gross, Michael L

    2014-01-21

    Monoclonal antibodies (mAbs) are powerful therapeutics, and their characterization has drawn considerable attention and urgency. Unlike small-molecule drugs (150-600 Da) that have rigid structures, mAbs (∼150 kDa) are engineered proteins that undergo complicated folding and can exist in a number of low-energy structures, posing a challenge for traditional methods in structural biology. Mass spectrometry (MS)-based biophysical characterization approaches can provide structural information, bringing high sensitivity, fast turnaround, and small sample consumption. This review outlines various MS-based strategies for protein biophysical characterization and then reviews how these strategies provide structural information of mAbs at the protein level (intact or top-down approaches), peptide, and residue level (bottom-up approaches), affording information on higher order structure, aggregation, and the nature of antibody complexes. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Biophysics of NASA radiation quality factors

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.

    2015-01-01

    NASA has implemented new radiation quality factors (QFs) for projecting cancer risks from space radiation exposures to astronauts. The NASA QFs are based on particle track structure concepts with parameters derived from available radiobiology data, and NASA introduces distinct QFs for solid cancer and leukaemia risk estimates. The NASA model was reviewed by the US National Research Council and approved for use by NASA for risk assessment for International Space Station missions and trade studies of future exploration missions to Mars and other destinations. A key feature of the NASA QFs is to represent the uncertainty in the QF assessments and evaluate the importance of the QF uncertainty to overall uncertainties in cancer risk projections. In this article, the biophysical basis for the probability distribution functions representing QF uncertainties was reviewed, and approaches needed to reduce uncertainties were discussed. (author)

  19. Biophysics of NASA radiation quality factors.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-09-01

    NASA has implemented new radiation quality factors (QFs) for projecting cancer risks from space radiation exposures to astronauts. The NASA QFs are based on particle track structure concepts with parameters derived from available radiobiology data, and NASA introduces distinct QFs for solid cancer and leukaemia risk estimates. The NASA model was reviewed by the US National Research Council and approved for use by NASA for risk assessment for International Space Station missions and trade studies of future exploration missions to Mars and other destinations. A key feature of the NASA QFs is to represent the uncertainty in the QF assessments and evaluate the importance of the QF uncertainty to overall uncertainties in cancer risk projections. In this article, the biophysical basis for the probability distribution functions representing QF uncertainties was reviewed, and approaches needed to reduce uncertainties were discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Fundamental Concepts in Biophysics Volume 1

    CERN Document Server

    Jue, Thomas

    2009-01-01

    HANDBOOK OF MODERN BIOPHYSICS Series Editor Thomas Jue, PhD Handbook of Modern Biophysics brings current biophysics topics into focus, so that biology, medical, engineering, mathematics, and physical-science students or researchers can learn fundamental concepts and the application of new techniques in addressing biomedical challenges. Chapters explicate the conceptual framework of the physics formalism and illustrate the biomedical applications. With the addition of problem sets, guides to further study, and references, the interested reader can continue to explore independently the ideas presented. Volume I: Fundamental Concepts in Biophysics Editor Thomas Jue, PhD In Fundamental Concepts in Biophysics, prominent professors have established a foundation for the study of biophysics related to the following topics: Mathematical Methods in Biophysics Quantum Mechanics Basic to Biophysical Methods Computational Modeling of Receptor–Ligand Binding and Cellular Signaling Processes Fluorescence Spectroscopy Elec...

  1. Biophysical applications of satellite remote sensing

    CERN Document Server

    Hanes, Jonathan

    2014-01-01

    Including an introduction and historical overview of the field, this comprehensive synthesis of the major biophysical applications of satellite remote sensing includes in-depth discussion of satellite-sourced biophysical metrics such as leaf area index.

  2. A quantitative overview of biophysical forces impinging on neural function

    International Nuclear Information System (INIS)

    Mueller, Jerel K; Tyler, William J

    2014-01-01

    The fundamentals of neuronal membrane excitability are globally described using the Hodgkin-Huxley (HH) model. The HH model, however, does not account for a number of biophysical phenomena associated with action potentials or propagating nerve impulses. Physical mechanisms underlying these processes, such as reversible heat transfer and axonal swelling, have been compartmentalized and separately investigated to reveal neuronal activity is not solely influenced by electrical or biochemical factors. Instead, mechanical forces and thermodynamics also govern neuronal excitability and signaling. To advance our understanding of neuronal function and dysfunction, compartmentalized analyses of electrical, chemical, and mechanical processes need to be revaluated and integrated into more comprehensive theories. The present perspective is intended to provide a broad overview of biophysical forces that can influence neural function, but which have been traditionally underappreciated in neuroscience. Further, several examples where mechanical forces have been shown to exert their actions on nervous system development, signaling, and plasticity are highlighted to underscore their importance in sculpting neural function. By considering the collective actions of biophysical forces influencing neuronal activity, our working models can be expanded and new paradigms can be applied to the investigation and characterization of brain function and dysfunction. (topical review)

  3. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena

    2010-01-01

    factories for sustainable production of important molecules. For developing fungi into efficient cell factories, the project includes identification of important factors that control the flux through the pathways using metabolic flux analysis and metabolic engineering of biochemical pathways....

  4. Biophysical models of radiobiological effects

    International Nuclear Information System (INIS)

    Obaturov, G.M.

    1987-01-01

    Radiobiological effect models at different organization levels, developed by the author, are presented. Classification and analysis of concepts and biophysical models at molecular, genetic and cellular levels, developed by Soviet and foreign authors in comparison to inherent models, are conducted from the viewpoint of system approach to radiobiological processes and of modelling principles. Models are compared with each other, limits of their applicability and drawbacks are determined. Evaluation of the model truthfulness is conducted according to a number of criteria, ways of further investigations and experimental examination of some models are proposed

  5. Biophysical aspects of photodynamic therapy.

    Science.gov (United States)

    Juzeniene, Asta; Nielsen, Kristian Pagh; Moan, Johan

    2006-01-01

    Over the last three decades photodynamic therapy (PDT) has been developed to a useful clinical tool, a viable alternative in the treatment of cancer and other diseases. Several disciplines have contributed to this development: chemistry in the development of new photosensitizing agents, biology in the elucidation of cellular processes involved in PDT, pharmacology and physiology in identifying the mechanisms of distribution of photosensitizers in an organism, and, last but not least, physics in the development of better light sources, dosimetric concepts and construction of imaging devices, optical sensors and spectroscopic methods for determining sensitizer concentrations in different tissues. Physics and biophysics have also helped to focus on the role of pH for sensitizer accumulation, dose rate effects, oxygen depletion, temperature, and optical penetration of light of different wavelengths into various types of tissue. These are all important parameters for optimally effective PDT. The present review will give a brief, physically based, overview of PDT and then discuss some of the main biophysical aspects of this therapeutic modality.

  6. Biophysical and electrochemical studies of protein-nucleic acid interactions

    Czech Academy of Sciences Publication Activity Database

    Bowater, R. P.; Cobb, A:M.; Pivoňková, Hana; Havran, Luděk; Fojta, Miroslav

    2015-01-01

    Roč. 146, č. 5 (2015), s. 723-739 ISSN 0026-9247 R&D Projects: GA ČR(CZ) GBP206/12/G151; GA ČR(CZ) GAP301/11/2076 Institutional support: RVO:68081707 Keywords : ISOTHERMAL TITRATION CALORIMETRY * OSMIUM-TETROXIDE COMPLEXES * SURFACE-PLASMON RESONANCE Subject RIV: BO - Biophysics Impact factor: 1.131, year: 2015

  7. Quantum Nanobiology and Biophysical Chemistry

    DEFF Research Database (Denmark)

    2013-01-01

    An introduction was provided in the first issue by way of an Editorial to this special two issue volume of Current Physical Chemistry – “Quantum Nanobiology and Biophysical Chemistry” [1]. The Guest Editors would like to thank all the authors and referees who have contributed to this second issue....... Wu et al. use density functional theory to explore the use of Ni/Fe bimetallic nanotechnology in the bioremediation of decabromo-diphenyl esters. Araújo-Chaves et al. explore the binding and reactivity of Mn(III) porphyrins in the membrane mimetic setting of model liposomal systems. Claussen et al....... demonstrate extremely low detection performance of acyl-homoserine lactone in a biologically relevant system using surface enhanced Raman spectroscopy. Sugihara and Bondar evaluate the influence of methyl-groups and the protein environment on retinal geometries in rhodopsin and bacteriorhodopsin, two...

  8. Historical and Critical Review on Biophysical Economics

    Science.gov (United States)

    Adigüzel, Yekbun

    2016-07-01

    Biophysical economics is initiated with the long history of the relation of economics with ecological basis and biophysical perspectives of the physiocrats. It inherently has social, economic, biological, environmental, natural, physical, and scientific grounds. Biological entities in economy like the resources, consumers, populations, and parts of production systems, etc. could all be dealt by biophysical economics. Considering this wide scope, current work is a “biophysical economics at a glance” rather than a comprehensive review of the full range of topics that may just be adequately covered in a book-length work. However, the sense of its wide range of applications is aimed to be provided to the reader in this work. Here, modern approaches and biophysical growth theory are presented after the long history and an overview of the concepts in biophysical economics. Examples of the recent studies are provided at the end with discussions. This review is also related to the work by Cleveland, “Biophysical Economics: From Physiocracy to Ecological Economics and Industrial Ecology” [C. J. Cleveland, in Advances in Bioeconomics and Sustainability: Essay in Honor of Nicholas Gerogescu-Roegen, eds. J. Gowdy and K. Mayumi (Edward Elgar Publishing, Cheltenham, England, 1999), pp. 125-154.]. Relevant parts include critics and comments on the presented concepts in a parallelized fashion with the Cleveland’s work.

  9. Contribution to researches in biophysics and biology

    International Nuclear Information System (INIS)

    Luccioni, Catherine

    2000-01-01

    In this accreditation to supervise research, the author indicates its curriculum and scientific works which mainly dealt with the different agents used in chemotherapy. Scientific works addressed anti-carcinogenic pharmacology, applied biophysics, and researches in oncology and radiobiology. Current research projects deal with mechanisms of cellular transformation and the implication of the anti-oxidising metabolism and of nucleotide metabolism in cell radio-sensitivity. Teaching and research supervising activities are also indicated. Several articles are proposed in appendix: Average quality factor and dose equivalent meter based on microdosimetry techniques; Activity of thymidylate synthetase, thymidine kinase and galactokinase in primary and xenografted human colorectal cancers in relation to their chromosomal patterns; Nucleotide metabolism in human gliomas, relation to the chromosomal profile; Pyrimidine nucleotide metabolism in human colon carcinomas: comparison of normal tissues, primary tumors and xenografts; Modifications of the antioxidant metabolism during proliferation and differentiation of colon tumours cell lines; Modulation of the antioxidant enzymes, p21 and p53 expression during proliferation and differentiation of human melanoma cell lines; Purine metabolism in 2 human melanoma cell lines, relation with proliferation and differentiation; Radiation-induced changes in nucleotide metabolism of 2 colon cancer cell lines with different radio-sensitivities

  10. An introduction to environmental biophysics

    CERN Document Server

    Campbell, Gaylon S

    1977-01-01

    The study of environmental biophysics probably began earlier in man's history than that of any other science. The study of organism-environment interaction provided a key to survival and progress. Systematic study of the science and recording of experimental results goes back many hundreds of years. Ben­ jamin Franklin, the early American statesman, inventor, printer, and scientist studied conduction, evaporation, and radiation. One of his observations is as follows: My desk on which I now write, and the lock of my desk, are both exposed to the same temperature of the air, and have therefore the same degree of heat or cold; yet if I lay my hand successively on the wood and on the metal, the latter feels much the coldest, not that it is really so, but being a better conductor, it more readily than the wood takes away and draws into itself the fire that was in my skin. 1 Franklin probably was not the first to discover this principle, and certainly was not the last. Modem researchers rediscover this principle f...

  11. Biophysical aspects of using liposomes as delivery vehicles.

    Science.gov (United States)

    Ulrich, Anne S

    2002-04-01

    Liposomes are used as biocompatible carriers of drugs, peptides, proteins, plasmic DNA, antisense oligonucleotides or ribozymes, for pharmaceutical, cosmetic, and biochemical purposes. The enormous versatility in particle size and in the physical parameters of the lipids affords an attractive potential for constructing tailor-made vehicles for a wide range of applications. Some of the recent literature will be reviewed here and presented from a biophysical point of view, thus providing a background for the more specialized articles in this special issue on liposome technology. Different properties (size, colloidal behavior, phase transitions, and polymorphism) of diverse lipid formulations (liposomes, lipoplexes, cubic phases, emulsions, and solid lipid nanoparticles) for distinct applications (parenteral, transdermal, pulmonary, and oral administration) will be rationalized in terms of common structural, thermodynamic and kinetic parameters of the lipids. This general biophysical basis helps to understand pharmaceutically relevant aspects such as liposome stability during storage and towards serum, the biodistribution and specific targeting of cargo, and how to trigger drug release and membrane fusion. Methods for the preparation and characterization of liposomal formulations in vitro will be outlined, too.

  12. Applications of synchrotron radiation in Biophysics

    International Nuclear Information System (INIS)

    Bemski, G.

    1983-01-01

    A short introduction to the generation of the synchrotron radiation is made. Following, the applications of such a radiation in biophysics with emphasis to the study of the hemoglobin molecule are presented. (L.C.) [pt

  13. Biophysics at the Boundaries: The Next Problem Sets

    Science.gov (United States)

    Skolnick, Malcolm

    2009-03-01

    The interface between physics and biology is one of the fastest growing subfields of physics. As knowledge of such topics as cellular processes and complex ecological systems advances, researchers have found that progress in understanding these and other systems requires application of more quantitative approaches. Today, there is a growing demand for quantitative and computational skills in biological research and the commercialization of that research. The fragmented teaching of science in our universities still leaves biology outside the quantitative and mathematical culture that is the foundation of physics. This is particularly inopportune at a time when the needs for quantitative thinking about biological systems are exploding. More physicists should be encouraged to become active in research and development in the growing application fields of biophysics including molecular genetics, biomedical imaging, tissue generation and regeneration, drug development, prosthetics, neural and brain function, kinetics of nonequilibrium open biological systems, metabolic networks, biological transport processes, large-scale biochemical networks and stochastic processes in biochemical systems to name a few. In addition to moving into basic research in these areas, there is increasing opportunity for physicists in industry beginning with entrepreneurial roles in taking research results out of the laboratory and in the industries who perfect and market the inventions and developments that physicists produce. In this talk we will identify and discuss emerging opportunities for physicists in biophysical and biotechnological pursuits ranging from basic research through development of applications and commercialization of results. This will include discussion of the roles of physicists in non-traditional areas apart from academia such as patent law, financial analysis and regulatory science and the problem sets assigned in education and training that will enable future

  14. Biophysical Aspects of Transmembrane Signaling

    CERN Document Server

    Damjanovich, Sandor

    2005-01-01

    Transmembrane signaling is one of the most significant cell biological events in the life and death of cells in general and lymphocytes in particular. Until recently biochemists and biophysicists were not accustomed to thinking of these processes from the side of a high number of complex biochemical events and an equally high number of physical changes at molecular and cellular levels at the same time. Both types of researchers were convinced that their findings are the most decisive, having higher importance than the findings of the other scientist population. Both casts were wrong. Life, even at cellular level, has a number of interacting physical and biochemical mechanisms, which finally build up the creation of an "excited" cell that will respond to particular signals from the outer or inner world. This book handles both aspects of the signalling events, and in some cases tries to unify our concepts and help understand the signals that govern the life and death of our cells. Not only the understanding, bu...

  15. Double quick, double click reversible peptide “stapling”† †Electronic supplementary information (ESI) available: Synthesis and characterization, additional biophysical and biochemical analyses. See DOI: 10.1039/c7sc01342f Click here for additional data file. Click here for additional data file. Click here for additional data file.

    Science.gov (United States)

    Grison, Claire M.; Burslem, George M.; Miles, Jennifer A.; Pilsl, Ludwig K. A.; Yeo, David J.; Imani, Zeynab; Warriner, Stuart L.; Webb, Michael E.

    2017-01-01

    The development of constrained peptides for inhibition of protein–protein interactions is an emerging strategy in chemical biology and drug discovery. This manuscript introduces a versatile, rapid and reversible approach to constrain peptides in a bioactive helical conformation using BID and RNase S peptides as models. Dibromomaleimide is used to constrain BID and RNase S peptide sequence variants bearing cysteine (Cys) or homocysteine (hCys) amino acids spaced at i and i + 4 positions by double substitution. The constraint can be readily removed by displacement of the maleimide using excess thiol. This new constraining methodology results in enhanced α-helical conformation (BID and RNase S peptide) as demonstrated by circular dichroism and molecular dynamics simulations, resistance to proteolysis (BID) as demonstrated by trypsin proteolysis experiments and retained or enhanced potency of inhibition for Bcl-2 family protein–protein interactions (BID), or greater capability to restore the hydrolytic activity of the RNAse S protein (RNase S peptide). Finally, use of a dibromomaleimide functionalized with an alkyne permits further divergent functionalization through alkyne–azide cycloaddition chemistry on the constrained peptide with fluorescein, oligoethylene glycol or biotin groups to facilitate biophysical and cellular analyses. Hence this methodology may extend the scope and accessibility of peptide stapling. PMID:28970902

  16. The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems

    International Nuclear Information System (INIS)

    Bagley, Justin E.; Davis, Sarah C.; Georgescu, Matei; Hussain, Mir Zaman; Miller, Jesse; Nesbitt, Stephen W.; VanLoocke, Andy; Bernacchi, Carl J.

    2014-01-01

    Land use change for bioenergy feedstocks is likely to intensify as energy demand rises simultaneously with increased pressure to minimize greenhouse gas emissions. Initial assessments of the impact of adopting bioenergy crops as a significant energy source have largely focused on the potential for bioenergy agroecosystems to provide global-scale climate regulating ecosystem services via biogeochemical processes. Such as those processes associated with carbon uptake, conversion, and storage that have the potential to reduce global greenhouse gas emissions (GHG). However, the expansion of bioenergy crops can also lead to direct biophysical impacts on climate through water regulating services. Perturbations of processes influencing terrestrial energy fluxes can result in impacts on climate and water across a spectrum of spatial and temporal scales. Here, we review the current state of knowledge about biophysical feedbacks between vegetation, water, and climate that would be affected by bioenergy-related land use change. The physical mechanisms involved in biophysical feedbacks are detailed, and interactions at leaf, field, regional, and global spatial scales are described. Locally, impacts on climate of biophysical changes associated with land use change for bioenergy crops can meet or exceed the biogeochemical changes in climate associated with rising GHG's, but these impacts have received far less attention. Realization of the importance of ecosystems in providing services that extend beyond biogeochemical GHG regulation and harvestable yields has led to significant debate regarding the viability of various feedstocks in many locations. The lack of data, and in some cases gaps in knowledge associated with biophysical and biochemical influences on land–atmosphere interactions, can lead to premature policy decisions. - Highlights: • The physical basis for biophysical impacts of expanding bioenergy agroecosystems on climate and water is described. • We

  17. Biophysical Regulation of Vascular Differentiation and Assembly

    CERN Document Server

    Gerecht, Sharon

    2011-01-01

    The ability to grow stem cells in the laboratory and to guide their maturation to functional cells allows us to study the underlying mechanisms that govern vasculature differentiation and assembly in health and disease. Accumulating evidence suggests that early stages of vascular growth are exquisitely tuned by biophysical cues from the microenvironment, yet the scientific understanding of such cellular environments is still in its infancy. Comprehending these processes sufficiently to manipulate them would pave the way to controlling blood vessel growth in therapeutic applications. This book assembles the works and views of experts from various disciplines to provide a unique perspective on how different aspects of its microenvironment regulate the differentiation and assembly of the vasculature. In particular, it describes recent efforts to exploit modern engineering techniques to study and manipulate various biophysical cues. Biophysical Regulation of Vascular Differentiation and Assembly provides an inter...

  18. Biophysical regulation of stem cell differentiation.

    Science.gov (United States)

    Govey, Peter M; Loiselle, Alayna E; Donahue, Henry J

    2013-06-01

    Bone adaptation to its mechanical environment, from embryonic through adult life, is thought to be the product of increased osteoblastic differentiation from mesenchymal stem cells. In parallel with tissue-scale loading, these heterogeneous populations of multipotent stem cells are subject to a variety of biophysical cues within their native microenvironments. Bone marrow-derived mesenchymal stem cells-the most broadly studied source of osteoblastic progenitors-undergo osteoblastic differentiation in vitro in response to biophysical signals, including hydrostatic pressure, fluid flow and accompanying shear stress, substrate strain and stiffness, substrate topography, and electromagnetic fields. Furthermore, stem cells may be subject to indirect regulation by mechano-sensing osteocytes positioned to more readily detect these same loading-induced signals within the bone matrix. Such paracrine and juxtacrine regulation of differentiation by osteocytes occurs in vitro. Further studies are needed to confirm both direct and indirect mechanisms of biophysical regulation within the in vivo stem cell niche.

  19. Biophysical shunt theory for neuropsychopathology: Part I.

    Science.gov (United States)

    Naisberg, Y; Avnon, M; Weizman, A

    1995-11-01

    We present a new model of the origin of schizophrenia based on biophysical ionic shunts in neuronal (electrical) pathways. Microstructural and molecular evidence is presented for the way in which changes in the neuronal membrane ionic channels may facilitate membrane property rearrangement, leading to a change in the density and composition of the ion channel charge which in turn causes a change in ionic flow orientation and distribution. We suggest that, under abnormal conditions, ionic flow shunts are created which redirect the biophysical collateral neuronal (electrical) pathways, resulting in psychiatric signs and symptoms. This model is complementary to the biological basis of schizophrenia.

  20. Global energy modeling - A biophysical approach

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  1. Biophysical Evaluation of SonoSteam®:

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan R.

    and safety evaluations. Our results show that there are no contradictions between data obtained by either approach. However, the biophysical methods draw a much more nuanced picture of the effects and efficiency of the investigated decontamination method, revealing e.g. an exponential dose/response...... relationship between SonoSteam treatment time and changes in collagen I, and a depth dependency in bacterial reduction, which points toward CFU counts overestimating total bacterial reduction. In conclusion the biophysical methods provide a less biased, reproducible and highly detailed system description...

  2. Developing a physics expert identity in a biophysics research group

    Science.gov (United States)

    Rodriguez, Idaykis; Goertzen, Renee Michelle; Brewe, Eric; Kramer, Laird H.

    2015-06-01

    We investigate the development of expert identities through the use of the sociocultural perspective of learning as participating in a community of practice. An ethnographic case study of biophysics graduate students focuses on the experiences the students have in their research group meetings. The analysis illustrates how the communities of practice-based identity constructs of competencies characterize student expert membership. A microanalysis of speech, sound, tones, and gestures in video data characterize students' social competencies in the physics community of practice. Results provide evidence that students at different stages of their individual projects have opportunities to develop social competencies such as mutual engagement, negotiability of the repertoire, and accountability to the enterprises as they interact with group members. The biophysics research group purposefully designed a learning trajectory including conducting research and writing it for publication in the larger community of practice as a pathway to expertise. The students of the research group learn to become socially competent as specific experts of their project topic and methodology, ensuring acceptance, agency, and membership in their community of practice. This work expands research on physics expertise beyond the cognitive realm and has implications for how to design graduate learning experiences to promote expert identity development.

  3. Simulated Local and Remote Biophysical Effects of Afforestation over the Southeast United States in Boreal Summer

    Science.gov (United States)

    Guang-Shan Chen; Michael Notaro; Zhengyu Liu; Yongqiang Liu

    2012-01-01

    Afforestation has been proposed as a climate change mitigation strategy by sequestrating atmospheric carbon dioxide. With the goal of increasing carbon sequestration, a Congressional project has been planned to afforest about 18 million acres by 2020 in the Southeast United States (SEUS), the Great Lake states, and the Corn Belt states. However, biophysical feedbacks...

  4. A Program on Biochemical and Biomedical Engineering.

    Science.gov (United States)

    San, Ka-Yiu; McIntire, Larry V.

    1989-01-01

    Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)

  5. Biophysical aspects of cancer - Electromagnetic mechanism

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří; Hašek, Jiří; Vaniš, Jan; Jelínek, František

    2008-01-01

    Roč. 46, č. 5 (2008), s. 310-321 ISSN 0019-5189 Institutional research plan: CEZ:AV0Z20670512; CEZ:AV0Z50200510 Keywords : Electromagnetic Fields * Biophysics * Cancer Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.599, year: 2008

  6. Biophysics of Hair Cell Sensory Systems

    NARCIS (Netherlands)

    Duifhuis, Hendrikus; Horst, Johannes; van Dijk, Pim; van Netten, Sietse

    1993-01-01

    The last decade revealed to auditory researchers that hair cells can not only detect and process mechanical energy, but are also able to produce it. Thanks to the active hair cell, ears can produce otoacoustic emissions. This book gives the newest insights into the biophysics and physiology of

  7. Probabilistic sensitivity analysis of biochemical reaction systems.

    Science.gov (United States)

    Zhang, Hong-Xuan; Dempsey, William P; Goutsias, John

    2009-09-07

    Sensitivity analysis is an indispensable tool for studying the robustness and fragility properties of biochemical reaction systems as well as for designing optimal approaches for selective perturbation and intervention. Deterministic sensitivity analysis techniques, using derivatives of the system response, have been extensively used in the literature. However, these techniques suffer from several drawbacks, which must be carefully considered before using them in problems of systems biology. We develop here a probabilistic approach to sensitivity analysis of biochemical reaction systems. The proposed technique employs a biophysically derived model for parameter fluctuations and, by using a recently suggested variance-based approach to sensitivity analysis [Saltelli et al., Chem. Rev. (Washington, D.C.) 105, 2811 (2005)], it leads to a powerful sensitivity analysis methodology for biochemical reaction systems. The approach presented in this paper addresses many problems associated with derivative-based sensitivity analysis techniques. Most importantly, it produces thermodynamically consistent sensitivity analysis results, can easily accommodate appreciable parameter variations, and allows for systematic investigation of high-order interaction effects. By employing a computational model of the mitogen-activated protein kinase signaling cascade, we demonstrate that our approach is well suited for sensitivity analysis of biochemical reaction systems and can produce a wealth of information about the sensitivity properties of such systems. The price to be paid, however, is a substantial increase in computational complexity over derivative-based techniques, which must be effectively addressed in order to make the proposed approach to sensitivity analysis more practical.

  8. BISEN: Biochemical simulation environment

    NARCIS (Netherlands)

    Vanlier, J.; Wu, F.; Qi, F.; Vinnakota, K.C.; Han, Y.; Dash, R.K.; Yang, F.; Beard, D.A.

    2009-01-01

    The Biochemical Simulation Environment (BISEN) is a suite of tools for generating equations and associated computer programs for simulating biochemical systems in the MATLAB® computing environment. This is the first package that can generate appropriate systems of differential equations for

  9. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part I: cellular response.

    Science.gov (United States)

    Brady, Mariea A; Waldman, Stephen D; Ethier, C Ross

    2015-02-01

    Osteoarthritis (OA) is a complex disease of the joint for which current treatments are unsatisfactory, thus motivating development of tissue engineering (TE)-based therapies. To date, TE strategies have had some success, developing replacement tissue constructs with biochemical properties approaching that of native cartilage. However, poor biomechanical properties and limited postimplantation integration with surrounding tissue are major shortcomings that need to be addressed. Functional tissue engineering strategies that apply physiologically relevant biophysical cues provide a platform to improve TE constructs before implantation. In the previous decade, new experimental and theoretical findings in cartilage biomechanics and electromechanics have emerged, resulting in an increased understanding of the complex interplay of multiple biophysical cues in the extracellular matrix of the tissue. The effect of biophysical stimulation on cartilage, and the resulting chondrocyte-mediated biosynthesis, remodeling, degradation, and repair, has, therefore, been extensively explored by the TE community. This article compares and contrasts the cellular response of chondrocytes to multiple biophysical stimuli, and may be read in conjunction with its companion paper that compares and contrasts the subsequent intracellular signal transduction cascades. Mechanical, magnetic, and electrical stimuli promote proliferation, differentiation, and maturation of chondrocytes within established dose parameters or "biological windows." This knowledge will provide a framework for ongoing studies incorporating multiple biophysical cues in TE functional neocartilage for treatment of OA.

  10. Handbook of Single-Molecule Biophysics

    CERN Document Server

    Hinterdorfer, Peter

    2009-01-01

    The last decade has seen the development of a number of novel biophysical methods that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at this fundamental level of sensitivity has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them. Coverage includes: Experimental techniques to monitor and manipulate individual biomolecules The use of single-molecule techniques in super-resolution and functional imaging Single-molec...

  11. Biophysical behavior of Scomberoides commersonianus skin collagen.

    Science.gov (United States)

    Kolli, Nagamalleswari; Joseph, K Thomas; Ramasami, T

    2002-06-01

    Some biophysical characteristics of the skin collagen from Scomberoides commersonianus were measured and compared to those of rat tail tendon. Stress-strain data indicate that the strain at break as well as the tensile strength of the fish skin without scales increased significantly. The maximum tension in case of rat skin is at least a factor of two higher than that observed in fish skin. The much lower hydrothermal isometric tension measurements observed in fish skin are attributable to a lesser number of heat stable crosslinks. Stress relaxation measurements in the fish skin indicate that more than one relaxation process may be involved in the stabilization of collagenous matrix. The observed differences in the biophysical behavior of fish skin may well arise from combination of changes in extent of hydroxylation of proline in collagen synthesis, hydrogen bond network and fibril orientation as compared to rat tail tendon.

  12. Biophysics and the Challenges of Emerging Threats

    CERN Document Server

    Puglisi, Joseph D

    2009-01-01

    This volume is a collection of articles from the proceedings of the International School of Structural Biology and Magnetic Resonance 8th Course: Biophysics and the Challenges of Emerging Threats. This NATO Advance Study Institute (ASI) was held in Erice at the Ettore Majorana Foundation and Centre for Scientific Culture on 19 through 30 June 2007. The ASI brought together a diverse group of experts who bridged the fields of virology and biology, biophysics, chemistry and physics. Prominent lecturers and students from around the world representant a total of 24 countries participated in the NATO ASI organized by Professors Joseph Puglisi (Stanford University, USA) and Alexander Arseniev (Moscow, RU). The central hypothesis underlying this ASI was that interdisciplinary research, merging principles of physics, chemistry and biology, can drive new discovery in detecting and fighting bioterrorism agents, lead to cleaner environments, and help propel development in NATO partner countries. The ASI merged the relat...

  13. Universal buffers for use in biochemistry and biophysical experiments

    Directory of Open Access Journals (Sweden)

    Dewey Brooke

    2015-08-01

    Full Text Available The use of buffers that mimic biological solutions is a foundation of biochemical and biophysical studies. However, buffering agents have both specific and nonspecific interactions with proteins. Buffer molecules can induce changes in conformational equilibria, dynamic behavior, and catalytic properties merely by their presence in solution. This effect is of concern because many of the standard experiments used to investigate protein structure and function involve changing solution conditions such as pH and/or temperature. In experiments in which pH is varied, it is common practice to switch buffering agents so that the pH is within the working range of the weak acid and conjugate base. If multiple buffers are used, it is not always possible to decouple buffer induced change from pH or temperature induced change. We have developed a series of mixed biological buffers for protein analysis that can be used across a broad pH range, are compatible with biologically relevant metal ions, and avoid complications that may arise from changing the small molecule composition of buffers when pH is used as an experimental variable.

  14. On The Development of Biophysical Models for Space Radiation Risk Assessment

    Science.gov (United States)

    Cucinotta, F. A.; Dicello, J. F.

    1999-01-01

    Experimental techniques in molecular biology are being applied to study biological risks from space radiation. The use of molecular assays presents a challenge to biophysical models which in the past have relied on descriptions of energy deposition and phenomenological treatments of repair. We describe a biochemical kinetics model of cell cycle control and DNA damage response proteins in order to model cellular responses to radiation exposures. Using models of cyclin-cdk, pRB, E2F's, p53, and GI inhibitors we show that simulations of cell cycle populations and GI arrest can be described by our biochemical approach. We consider radiation damaged DNA as a substrate for signal transduction processes and consider a dose and dose-rate reduction effectiveness factor (DDREF) for protein expression.

  15. A Method Sustaining the Bioelectric, Biophysical, and Bioenergetic Function of Cultured Rabbit Atrial Cells

    Directory of Open Access Journals (Sweden)

    Noa Kirschner Peretz

    2017-08-01

    Full Text Available Culturing atrial cells leads to a loss in their ability to be externally paced at physiological rates and to maintain their shape. We aim to develop a culture method that sustains the shape of atrial cells along with their biophysical and bioenergetic properties in response to physiological pacing. We hypothesize that adding 2,3-Butanedione 2-monoxime (BDM, which inhibits contraction during the culture period, will preserve these biophysical and bioenergetic properties. Rabbit atrial cells were maintained in culture for 24 h in a medium enriched with a myofilament contraction inhibitor, BDM. The morphology and volume of the cells, including their ability to contract in response to 1–3 Hz electrical pacing, was maintained at the same level as fresh cells. Importantly, the cells could be successfully infected with a GFP adenovirus. Action potentials, Ca2+ transients, and local Ca2+ spark parameters were similar in the cultured and in fresh cells. Finally, these cultured cells' flavoprotein autofluorescence was maintained at a constant level in response to electrical pacing, a response similar to that of fresh cells. Thus, eliminating contraction during the culture period preserves the bioelectric, biophysical and bioenergetic properties of rabbit atrial myocytes. This method therefore has the potential to further improve our understanding of energetic and biochemical regulation in the atria.

  16. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Science.gov (United States)

    Verrelst, Jochem; Malenovský, Zbyněk; Van der Tol, Christiaan; Camps-Valls, Gustau; Gastellu-Etchegorry, Jean-Philippe; Lewis, Philip; North, Peter; Moreno, Jose

    2018-06-01

    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given.

  17. Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications.

    Science.gov (United States)

    Ireland, Ronald G; Simmons, Craig A

    2015-11-01

    A stem cell in its microenvironment is subjected to a myriad of soluble chemical cues and mechanical forces that act in concert to orchestrate cell fate. Intuitively, many of these soluble and biophysical factors have been the focus of intense study to successfully influence and direct cell differentiation in vitro. Human pluripotent stem cells (hPSCs) have been of considerable interest in these studies due to their great promise for regenerative medicine. Culturing and directing differentiation of hPSCs, however, is currently extremely labor-intensive and lacks the efficiency required to generate large populations of clinical-grade cells. Improved efficiency may come from efforts to understand how the cell biophysical signals can complement biochemical signals to regulate cell pluripotency and direct differentiation. In this concise review, we explore hPSC mechanobiology and how the hPSC biophysical microenvironment can be manipulated to maintain and differentiate hPSCs into functional cell types for regenerative medicine and tissue engineering applications. © 2015 AlphaMed Press.

  18. Biophysical Aspects of Radiation Quality. Second Panel Report

    International Nuclear Information System (INIS)

    1968-01-01

    If a living system is exposed to ionizing radiation a sequence of events follows. It starts with the absorption and dissipation of radiation energy, and continues through various physico-chemical and biochemical reactions up to the final biological end point observed. One of the aims of research in quantitative radiation biology is to understand the mechanism of this sequence of actions and to explore the differences in quality of different kinds of radiations. Because of its complexity, progress in this work requires the combined efforts of physicists, biochemists, biologists and physicians. It should, however, be done in very close collaboration rather than in following isolated lines in any one direction. For this reason, and because of the growing importance of the field for almost all applications of ionizing radiations, it was felt desirable to bring together a group of scientists engaged in research on radiation quality who represented a wide range of interests. The first panel on Biophysical Aspects of Radiation Quality, convened by the International Atomic Energy Agency in Vienna and held from 29 March to 2 April 1965, proved to be a successful beginning, stimulating a useful exchange of ideas and information. By this meeting, and the resulting collection of papers, published in 1966 as No. 58 of the Agency's Technical Reports Series, the importance of research on radiation quality was highlighted and the field itself became more clearly defined. The Agency held a second Panel on the same subject in Vienna from 14 to 18 April 1967. This meeting was attended by 18 experts from 10 countries, and representatives from Euratom and WHO. The Czechoslovak Socialist Republic, France, India and Poland were represented for the first time. Fourteen papers were presented and discussed in some detail. It became evident that much progress had been made since the previous meeting in certain areas such as microdosimetry, the dependence of the oxygen effect on radiation

  19. Biophysical EPR Studies Applied to Membrane Proteins

    Science.gov (United States)

    Sahu, Indra D; Lorigan, Gary A

    2015-01-01

    Membrane proteins are very important in controlling bioenergetics, functional activity, and initializing signal pathways in a wide variety of complicated biological systems. They also represent approximately 50% of the potential drug targets. EPR spectroscopy is a very popular and powerful biophysical tool that is used to study the structural and dynamic properties of membrane proteins. In this article, a basic overview of the most commonly used EPR techniques and examples of recent applications to answer pertinent structural and dynamic related questions on membrane protein systems will be presented. PMID:26855825

  20. Synchrotron radiation applications in biophysics and medicine

    International Nuclear Information System (INIS)

    Burattini, E.

    1985-01-01

    The peculiar properties of synchrotron radiation are briefly summarized. A short review on the possible applications of synchrotron radiation in two important fields like Biophysics and Medicine is presented. Details are given on experiments both in progress and carried out in many synchrotron radiation facilities, all over the world, using different techniques like X-ray absorption and fluorescence spectroscopy, X-ray fluorescence microanalysis, X-ray microscopy and digital subtraction angiography. Some news about the photon-activation therapy are briefly reported too

  1. Biophysical processes in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mc; Murtugudde, R.; Vialard, J.; Vinayachandran, P.N.; Wiggert, J.D.; Hood, R.R.; Shankar, D.; Shetye, S.R.

    Ocean Biogeochemical Processes and Ecological Variability Geophysical Monograph Series 185 Copyright 200� by the American Geophysical Union. 10.102�/2008GM000768 Biophysical Processes in the Indian Ocean J. P. McCreary, 1 R. Murtugudde, 2 J. Vialard, 3...) also plots the upper-layer thickness, h 1 , from the model of McCreary et al. [1��3] (hereinafter referred to as MKM); h 1 simulates the structure of the top of the actual thermocline reasonably well, except that it is somewhat too thin from 5...

  2. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations.

    Science.gov (United States)

    Kapus, András; Janmey, Paul

    2013-07-01

    From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions. © 2013 American Physiological Society.

  3. Biophysical and lipofection studies of DOTAP analogs.

    Science.gov (United States)

    Regelin, A E; Fankhaenel, S; Gürtesch, L; Prinz, C; von Kiedrowski, G; Massing, U

    2000-03-15

    In order to investigate the relationship between lipid structure and liposome-mediated gene transfer, we have studied biophysical parameters and transfection properties of monocationic DOTAP analogs, systematically modified in their non-polar hydrocarbon chains. Stability, size and (by means of anisotropy profiles) membrane fluidity of liposomes and lipoplexes were determined, and lipofection efficiency was tested in a luciferase reporter gene assay. DOTAP analogs were used as single components or combined with a helper lipid, either DOPE or cholesterol. Stability of liposomes was a precondition for formation of temporarily stable lipoplexes. Addition of DOPE or cholesterol improved liposome and lipoplex stability. Transfection efficiencies of lipoplexes based on pure DOTAP analogs could be correlated with stability data and membrane fluidity at transfection temperature. Inclusion of DOPE led to rather uniform transfection and anisotropy profiles, corresponding to lipoplex stability. Cholesterol-containing lipoplexes were generally stable, showing high transfection efficiency at low relative fluidity. Our results demonstrate that the efficiency of gene transfer mediated by monocationic lipids is greatly influenced by lipoplex biophysics due to lipid composition. The measurement of fluorescence anisotropy is an appropriate method to characterize membrane fluidity within a defined system of liposomes or lipoplexes and may be helpful to elucidate structure-activity relationships.

  4. Radiobiology, biochemistry and radiation biophysics at CYLAB

    International Nuclear Information System (INIS)

    Ftacnikova, S.

    1998-01-01

    The Cyclotron Laboratory (CYLAB) should fill the gap in the field of nuclear medicine, radiotherapy, basic research, metrology of ionizing radiation, education and implications of accelerator technology existing today in Slovak Republic. The main planned activities of this facility are in the fields of nuclear medicine (production of radioisotopes for Positron Emission Tomography - PET and for oncology) and radiotherapy (neutron capture therapy, fast neutron therapy and proton therapy). The radiobiological and biophysical research will be closely connected with medical applications, particularly with radiotherapy. Problems to be addressed include the determination of the values of Relative Biological Effectiveness (RBE) for different types of ionizing radiation involved in the therapy, microdosimetric measurements and calculations, which are indispensable in the calculation of the absorbed dose (lineal and specific energy spectra) at the cellular and macromolecular level. Radiation biophysics and medical physics help in creating therapeutic plans for radiotherapy (NCT and fast neutron therapy). In nuclear medicine, in diagnostic and therapeutical procedures it is necessary to assess the biodistribution of radiopharmaceuticals and to calculate doses in target and critical organs and to determine whole body burden - effective equivalent dose for newly developed radiopharmaceuticals

  5. A mathematical approach to protein biophysics

    CERN Document Server

    Scott, L Ridgway

    2017-01-01

    This book explores quantitative aspects of protein biophysics and attempts to delineate certain rules of molecular behavior that make atomic scale objects behave in a digital way.  This book will help readers to understand how certain biological systems involving proteins function as digital information systems despite the fact that underlying processes are analog in nature. The in-depth explanation of proteins from a quantitative point of view and the variety of level of exercises (including physical experiments) at the end of each chapter will appeal to graduate and senior undergraduate students in mathematics, computer science, mechanical engineering, and physics, wanting to learn about the biophysics of proteins.  L. Ridgway Scott has been Professor of Computer Science and of Mathematics at the University of Chicago since 1998, and the Louis Block Professor since 2001.  He obtained a B.S. degree (Magna Cum Laude) from Tulane University in 1969 and a PhD degree in Mathematics from the Massachusetts Ins...

  6. Glycation, oxidation and glycoxidation of IgG: a biophysical, biochemical, immunological and hematological study.

    Science.gov (United States)

    Islam, Sidra; Moinuddin; Mir, Abdul Rouf; Raghav, Alok; Habib, Safia; Alam, Khursheed; Ali, Asif

    2017-09-12

    Glycation and oxidation induce structural alterations in the proteins in an interdependent manner with consequent pathological implications. The published literature presents wide range of modifications in conformational characteristics of proteins by glycation and oxidation; however, there is little data that could elaborate the cumulative effect of both the processes. This study has analysed the modifications in IgG by methylglyoxal (MG) (glycative stress), hydroxyl radical ([Formula: see text]) (oxidative stress) and by their combined action i.e. [Formula: see text] treatment of MG glycated IgG (glycoxidation). It further addresses the implications of the altered structural integrity of IgG on its immunological characteristics and impact on haematological parameters in rabbits. Using circular dichroism, FTIR, SDS-PAGE analysis, thioflavin-T fluorescence assay, congo red absorbance analysis, dynamic light scattering, transmission electron microscopy, ELISA, blood cell counts and rectal temperature studies, we report that the glycoxidative modification caused maximum alteration in the IgG as compared to the glycatively and oxidatively modified protein. Far-UV CD results confirmed the highest decline in the beta-pleated sheet content of the protein by glycoxidation. The damage led to the reduced flexibility and enhanced electronic interactions in IgG as observed by near-UV CD. Modifications caused cross-linking and adduct formation in the serum protein. The electron micrograph confirmed amorphous aggregation in modified IgG. The modifications increased the hydrodynamic radius of IgG by allowing the attachment of [Formula: see text] and MG residues. The glycoxidatively modified IgG induced the maximum antibody titres that showed high specificity towards the altered IgG. The glycoxidation of IgG leads to activation of inflammatory pathways.

  7. Significant biochemical, biophysical and metabolic diversity in circulating human cord blood reticulocytes.

    Directory of Open Access Journals (Sweden)

    Benoît Malleret

    Full Text Available The transition from enucleated reticulocytes to mature normocytes is marked by substantial remodeling of the erythrocytic cytoplasm and membrane. Despite conspicuous changes, most studies describe the maturing reticulocyte as a homogenous erythropoietic cell type. While reticulocyte staging based on fluorescent RNA stains such as thiazole orange have been useful in a clinical setting; these 'sub-vital' stains may confound delicate studies on reticulocyte biology and may preclude their use in heamoparasite invasion studies.Here we use highly purified populations of reticulocytes isolated from cord blood, sorted by flow cytometry into four sequential subpopulations based on transferrin receptor (CD71 expression: CD71high, CD71medium, CD71low and CD71negative. Each of these subgroups was phenotyped in terms of their, morphology, membrane antigens, biomechanical properties and metabolomic profile.Superficially CD71high and CD71medium reticulocytes share a similar gross morphology (large and multilobular when compared to the smaller, smooth and increasingly concave reticulocytes as seen in the in the CD71low and CD71negativesamples. However, between each of the four sample sets we observe significant decreases in shear modulus, cytoadhesive capacity, erythroid receptor expression (CD44, CD55, CD147, CD235R, and CD242 and metabolite concentrations. Interestingly increasing amounts of boric acid was found in the mature reticulocytes.Reticulocyte maturation is a dynamic and continuous process, confounding efforts to rigidly classify them. Certainly this study does not offer an alternative classification strategy; instead we used a nondestructive sampling method to examine key phenotypic changes of in reticulocytes. Our study emphasizes a need to focus greater attention on reticulocyte biology.

  8. Biochemical and biophysical aspects of iation effects in bone tissues at different stages of ontogenesis

    International Nuclear Information System (INIS)

    Frenkel', L.A.

    1986-01-01

    In experiments on rats it has been ascertained that under the effect of X radiation in the dose 8Gy already at early stages of organism affection in the mineral spectrum of bone tissue considerable disturbances take place, the character and degree of which depend on the animal age. Microelement composition of bone tissue under conditions of acute radiation effect undergo significant changes. The degree and character of the changes depend on radiation affection dynamics and age of the experimental animals

  9. Na(+),K(+)-ATPase of human placenta during gestational hypertension: a biochemical-biophysical study

    Czech Academy of Sciences Publication Activity Database

    Rabini, R. A.; Zolese, G.; Staffolani, R.; Lucarelli, G.; Amler, Evžen; Cester, N.; Mazzanti, L.

    1996-01-01

    Roč. 91, č. 6 (1996), s. 719-723 ISSN 0143-5221 Institutional research plan: CEZ:AV0Z5011922 Keywords : activation energy * fluidity * gestational hypertension Subject RIV: CE - Biochemistry Impact factor: 2.154, year: 1996

  10. What is all this fuss about Tus? Comparison of recent findings from biophysical and biochemical experiments

    KAUST Repository

    Berghuis, Bojk A.; Raducanu, Vlad-Stefan; Elshenawy, Mohamed; Jergic, Slobodan; Depken, Martin; Dixon, Nicholas E.; Hamdan, Samir; Dekker, Nynke H.

    2017-01-01

    the formation of new Tus–Ter interactions at the nonpermissive face – interactions that result in a highly stable “locked” complex. This controversy recently gained renewed attention as three single-molecule-based studies scrutinized this elusive Tus

  11. Biophysics of malarial parasite exit from infected erythrocytes.

    Science.gov (United States)

    Chandramohanadas, Rajesh; Park, YongKeun; Lui, Lena; Li, Ang; Quinn, David; Liew, Kingsley; Diez-Silva, Monica; Sung, Yongjin; Dao, Ming; Lim, Chwee Teck; Preiser, Peter Rainer; Suresh, Subra

    2011-01-01

    Upon infection and development within human erythrocytes, P. falciparum induces alterations to the infected RBC morphology and bio-mechanical properties to eventually rupture the host cells through parasitic and host derived proteases of cysteine and serine families. We used previously reported broad-spectrum inhibitors (E64d, EGTA-AM and chymostatin) to inhibit these proteases and impede rupture to analyze mechanical signatures associated with parasite escape. Treatment of late-stage iRBCs with E64d and EGTA-AM prevented rupture, resulted in no major RBC cytoskeletal reconfiguration but altered schizont morphology followed by dramatic re-distribution of three-dimensional refractive index (3D-RI) within the iRBC. These phenotypes demonstrated several-fold increased iRBC membrane flickering. In contrast, chymostatin treatment showed no 3D-RI changes and caused elevated fluctuations solely within the parasitophorous vacuole. We show that E64d and EGTA-AM supported PV breakdown and the resulting elevated fluctuations followed non-Gaussian pattern that resulted from direct merozoite impingement against the iRBC membrane. Optical trapping experiments highlighted reduced deformability of the iRBC membranes upon rupture-arrest, more specifically in the treatments that facilitated PV breakdown. Taken together, our experiments provide novel mechanistic interpretations on the role of parasitophorous vacuole in maintaining the spherical schizont morphology, the impact of PV breakdown on iRBC membrane fluctuations leading to eventual parasite escape and the evolution of membrane stiffness properties of host cells in which merozoites were irreversibly trapped, recourse to protease inhibitors. These findings provide a comprehensive, previously unavailable, body of information on the combined effects of biochemical and biophysical factors on parasite egress from iRBCs.

  12. Biophysical Insights into Cancer Transformation and Treatment

    OpenAIRE

    Pokorn?, Ji??; Foletti, Alberto; Kobilkov?, Jitka; Jandov?, Anna; Vrba, Jan; Vrba, Jan; Nedbalov?, Martina; ?o?ek, Ale?; Danani, Andrea; Tuszy?ski, Jack A.

    2013-01-01

    Biological systems are hierarchically self-organized complex structures characterized by nonlinear interactions. Biochemical energy is transformed into work of physical forces required for various biological functions. We postulate that energy transduction depends on endogenous electrodynamic fields generated by microtubules. Microtubules and mitochondria colocalize in cells with microtubules providing tracks for mitochondrial movement. Besides energy transformation, mitochondria form a spati...

  13. Biophysical models of larval dispersal in the Benguela Current ...

    African Journals Online (AJOL)

    We synthesise and update results from the suite of biophysical, larval-dispersal models developed in the Benguela Current ecosystem. Biophysical models of larval dispersal use outputs of physical hydrodynamic models as inputs to individual-based models in which biological processes acting during the larval life are ...

  14. Biophysics: for HTS hit validation, chemical lead optimization, and beyond.

    Science.gov (United States)

    Genick, Christine C; Wright, S Kirk

    2017-09-01

    There are many challenges to the drug discovery process, including the complexity of the target, its interactions, and how these factors play a role in causing the disease. Traditionally, biophysics has been used for hit validation and chemical lead optimization. With its increased throughput and sensitivity, biophysics is now being applied earlier in this process to empower target characterization and hit finding. Areas covered: In this article, the authors provide an overview of how biophysics can be utilized to assess the quality of the reagents used in screening assays, to validate potential tool compounds, to test the integrity of screening assays, and to create follow-up strategies for compound characterization. They also briefly discuss the utilization of different biophysical methods in hit validation to help avoid the resource consuming pitfalls caused by the lack of hit overlap between biophysical methods. Expert opinion: The use of biophysics early on in the drug discovery process has proven crucial to identifying and characterizing targets of complex nature. It also has enabled the identification and classification of small molecules which interact in an allosteric or covalent manner with the target. By applying biophysics in this manner and at the early stages of this process, the chances of finding chemical leads with novel mechanisms of action are increased. In the future, focused screens with biophysics as a primary readout will become increasingly common.

  15. Low temperature experiments in radiation biophysics

    International Nuclear Information System (INIS)

    Moan, J.

    1977-01-01

    The reasons for performing experiments in radiation biophysics at low temperatures, whereby electron spectra may be studied, are explained. The phenomenon of phosphorescence spectra observed in frozen aqueous solutions of tryptophan and adenosine is also described. Free radicals play an important part in biological radiation effects and may be studied by ESR spectroscopy. An ESR spectrum of T 1 bacteriophages irradiated dry at 130K is illustrated and discussed. Hydrogen atoms, which give lines on the spectrum, are believed to be those radiation products causing most biological damage in a dry system. Low temperature experiments are of great help in explaining the significance of direct and indirect effects. This is illustrated for the case of trypsin. (JIW)

  16. Microwave Tissue Ablation: Biophysics, Technology and Applications

    Science.gov (United States)

    2010-01-01

    Microwave ablation is an emerging treatment option for many cancers, cardiac arrhythmias and other medical conditions. During treatment, microwaves are applied directly to tissues to produce rapid temperature elevations sufficient to produce immediate coagulative necrosis. The engineering design criteria for each application differ, with individual consideration for factors such as desired ablation zone size, treatment duration, and procedural invasiveness. Recent technological developments in applicator cooling, power control and system optimization for specific applications promise to increase the utilization of microwave ablation in the future. This article will review the basic biophysics of microwave tissue heating, provide an overview of the design and operation of current equipment, and outline areas for future research for microwave ablation. PMID:21175404

  17. Incorporating Modeling and Simulations in Undergraduate Biophysical Chemistry Course to Promote Understanding of Structure-Dynamics-Function Relationships in Proteins

    Science.gov (United States)

    Hati, Sanchita; Bhattacharyya, Sudeep

    2016-01-01

    A project-based biophysical chemistry laboratory course, which is offered to the biochemistry and molecular biology majors in their senior year, is described. In this course, the classroom study of the structure-function of biomolecules is integrated with the discovery-guided laboratory study of these molecules using computer modeling and…

  18. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level.

    Science.gov (United States)

    Ren, Li; Yang, Pengfei; Wang, Zhe; Zhang, Jian; Ding, Chong; Shang, Peng

    2015-10-01

    Bones with complicated hierarchical configuration and microstructures constitute the load-bearing system. Mechanical loading plays an essential role in maintaining bone health and regulating bone mechanical adaptation (modeling and remodeling). The whole-bone or sub-region (macroscopic) mechanical signals, including locomotion-induced loading and external actuator-generated vibration, ultrasound, oscillatory skeletal muscle stimulation, etc., give rise to sophisticated and distinct biomechanical and biophysical environments at the pericellular (microscopic) and collagen/mineral molecular (nanoscopic) levels, which are the direct stimulations that positively influence bone adaptation. While under microgravity, the stimulations decrease or even disappear, which exerts a negative influence on bone adaptation. A full understanding of the biomechanical and biophysical environment at different levels is necessary for exploring bone biomechanical properties and mechanical adaptation. In this review, the mechanical transferring theories from the macroscopic to the microscopic and nanoscopic levels are elucidated. First, detailed information of the hierarchical structures and biochemical composition of bone, which are the foundations for mechanical signal propagation, are presented. Second, the deformation feature of load-bearing bone during locomotion is clarified as a combination of bending and torsion rather than simplex bending. The bone matrix strains at microscopic and nanoscopic levels directly induced by bone deformation are critically discussed, and the strain concentration mechanism due to the complicated microstructures is highlighted. Third, the biomechanical and biophysical environments at microscopic and nanoscopic levels positively generated during bone matrix deformation or by dynamic mechanical loadings induced by external actuators, as well as those negatively affected under microgravity, are systematically discussed, including the interstitial fluid flow

  19. Biochemical Removal of HAP Precursors From Coal

    International Nuclear Information System (INIS)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE's interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals

  20. Biochemical Removal of HAP Precursors From Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  1. Biophysically realistic minimal model of dopamine neuron

    Science.gov (United States)

    Oprisan, Sorinel

    2008-03-01

    We proposed and studied a new biophysically relevant computational model of dopaminergic neurons. Midbrain dopamine neurons are involved in motivation and the control of movement, and have been implicated in various pathologies such as Parkinson's disease, schizophrenia, and drug abuse. The model we developed is a single-compartment Hodgkin-Huxley (HH)-type parallel conductance membrane model. The model captures the essential mechanisms underlying the slow oscillatory potentials and plateau potential oscillations. The main currents involved are: 1) a voltage-dependent fast calcium current, 2) a small conductance potassium current that is modulated by the cytosolic concentration of calcium, and 3) a slow voltage-activated potassium current. We developed multidimensional bifurcation diagrams and extracted the effective domains of sustained oscillations. The model includes a calcium balance due to the fundamental importance of calcium influx as proved by simultaneous electrophysiological and calcium imaging procedure. Although there are significant evidences to suggest a partially electrogenic calcium pump, all previous models considered only elecrtogenic pumps. We investigated the effect of the electrogenic calcium pump on the bifurcation diagram of the model and compared our findings against the experimental results.

  2. Biophysical and biomathematical adventures in radiobiology

    International Nuclear Information System (INIS)

    Scott, B.R.

    1991-01-01

    Highlights of my biophysical and biomathematical adventures in radiobiology is presented. Early adventures involved developing ''state-vector models'' for specific harmful effects (cell killing, life shortening) of exposure to radiation. More recent adventures led to developing ''hazard-function models'' for predicting biological effects (e.g., cell killing, mutations, tumor induction) of combined exposure to different toxicants. Hazard-function models were also developed for predicting harm to man from exposure to large radiation doses. Major conclusions derived from the modeling adventures are as follows: (1) synergistic effects of different genotoxic agents should not occur at low doses; (2) for exposure of the lung or bone marrow to large doses of photon radiation, low rates of exposure should be better tolerated than high rates; and (3) for some types of radiation (e.g., alpha particles and fission neutrons), moderate doses delivered at a low rate may be more harmful than the same dose given at a high rate. 53 refs., 7 figs

  3. Review of FEWS NET Biophysical Monitoring Requirements

    Science.gov (United States)

    Ross, K. W.; Brown, Molly E.; Verdin, J.; Underwood, L. W.

    2009-01-01

    The Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to famine and food insecurity. FEWS NET transforms satellite remote sensing data into rainfall and vegetation information that can be used by these decision makers. The National Aeronautics and Space Administration has recently funded activities to enhance remote sensing inputs to FEWS NET. To elicit Earth observation requirements, a professional review questionnaire was disseminated to FEWS NET expert end-users: it focused upon operational requirements to determine additional useful remote sensing data and; subsequently, beneficial FEWS NET biophysical supplementary inputs. The review was completed by over 40 experts from around the world, enabling a robust set of professional perspectives to be gathered and analyzed rapidly. Reviewers were asked to evaluate the relative importance of environmental variables and spatio-temporal requirements for Earth science data products, in particular for rainfall and vegetation products. The results showed that spatio-temporal resolution requirements are complex and need to vary according to place, time, and hazard: that high resolution remote sensing products continue to be in demand, and that rainfall and vegetation products were valued as data that provide actionable food security information.

  4. Projectables

    DEFF Research Database (Denmark)

    Rasmussen, Troels A.; Merritt, Timothy R.

    2017-01-01

    CNC cutting machines have become essential tools for designers and architects enabling rapid prototyping, model-building and production of high quality components. Designers often cut from new materials, discarding the irregularly shaped remains. We introduce ProjecTables, a visual augmented...... reality system for interactive packing of model parts onto sheet materials. ProjecTables enables designers to (re)use scrap materials for CNC cutting that would have been previously thrown away, at the same time supporting aesthetic choices related to wood grain, avoiding surface blemishes, and other...... relevant material properties. We conducted evaluations of ProjecTables with design students from Aarhus School of Architecture, demonstrating that participants could quickly and easily place and orient model parts reducing material waste. Contextual interviews and ideation sessions led to a deeper...

  5. An ultra-sensitive biophysical risk assessment of light effect on skin cells.

    Science.gov (United States)

    Bennet, Devasier; Viswanath, Buddolla; Kim, Sanghyo; An, Jeong Ho

    2017-07-18

    The aim of this study was to analyze photo-dynamic and photo-pathology changes of different color light radiations on human adult skin cells. We used a real-time biophysical and biomechanics monitoring system for light-induced cellular changes in an in vitro model to find mechanisms of the initial and continuous degenerative process. Cells were exposed to intermittent, mild and intense (1-180 min) light with On/Off cycles, using blue, green, red and white light. Cellular ultra-structural changes, damages, and ECM impair function were evaluated by up/down-regulation of biophysical, biomechanical and biochemical properties. All cells exposed to different color light radiation showed significant changes in a time-dependent manner. Particularly, cell growth, stiffness, roughness, cytoskeletal integrity and ECM proteins of the human dermal fibroblasts-adult (HDF-a) cells showed highest alteration, followed by human epidermal keratinocytes-adult (HEK-a) cells and human epidermal melanocytes-adult (HEM-a) cells. Such changes might impede the normal cellular functions. Overall, the obtained results identify a new insight that may contribute to premature aging, and causes it to look aged in younger people. Moreover, these results advance our understanding of the different color light-induced degenerative process and help the development of new therapeutic strategies.

  6. Maximum likelihood estimation of biophysical parameters of synaptic receptors from macroscopic currents

    Directory of Open Access Journals (Sweden)

    Andrey eStepanyuk

    2014-10-01

    Full Text Available Dendritic integration and neuronal firing patterns strongly depend on biophysical properties of synaptic ligand-gated channels. However, precise estimation of biophysical parameters of these channels in their intrinsic environment is complicated and still unresolved problem. Here we describe a novel method based on a maximum likelihood approach that allows to estimate not only the unitary current of synaptic receptor channels but also their multiple conductance levels, kinetic constants, the number of receptors bound with a neurotransmitter and the peak open probability from experimentally feasible number of postsynaptic currents. The new method also improves the accuracy of evaluation of unitary current as compared to the peak-scaled non-stationary fluctuation analysis, leading to a possibility to precisely estimate this important parameter from a few postsynaptic currents recorded in steady-state conditions. Estimation of unitary current with this method is robust even if postsynaptic currents are generated by receptors having different kinetic parameters, the case when peak-scaled non-stationary fluctuation analysis is not applicable. Thus, with the new method, routinely recorded postsynaptic currents could be used to study the properties of synaptic receptors in their native biochemical environment.

  7. Developing spatial biophysical accounting for multiple ecosystem services

    NARCIS (Netherlands)

    Remme, R.P.; Schroter, M.; Hein, L.G.

    2014-01-01

    Ecosystem accounting is receiving increasing interest as a way to systematically monitor the conditions of ecosystems and the ecosystem services they provide. A critical element of ecosystem accounting is understanding spatially explicit flows of ecosystem services. We developed spatial biophysical

  8. Developing a protocol for managing the biophysical condition of a ...

    African Journals Online (AJOL)

    Their function will focus on the overall management of water resources on a ... for the integrated management of the biophysical component of a catchment, with ... and implement a protocol which will combine and integrate the knowledge of ...

  9. Biophysical approach to low back pain: a pilot report

    Czech Academy of Sciences Publication Activity Database

    Foletti, A.; Pokorný, Jiří

    2015-01-01

    Roč. 34, č. 2 (2015), s. 156-159 ISSN 1536-8378 Institutional support: RVO:67985882 Keywords : Bioelectromagnetic medicine * Biophysical therapy * Coherence domains Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.208, year: 2015

  10. Biophysical Influence of Airborne Carbon Nanomaterials on Natural Pulmonary Surfactant

    OpenAIRE

    Valle, Russell P.; Wu, Tony; Zuo, Yi Y.

    2015-01-01

    Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air–water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handl...

  11. The relationship between fetal biophysical profile and cord blood PH

    Directory of Open Access Journals (Sweden)

    Valadan M

    2009-02-01

    Full Text Available "nBackground: The Biophysical Profile (BPP is a noninvasive test that predicts the presence or absence of fetal asphyxia and, ultimately, the risk of fetal death in the antenatal period. Intervention on the basis of an abnormal biophysical profile result has been reported to yield a significant reduction in prenatal mortality, and an association exists between biophysical profile scoring and a decreased cerebral palsy rate in a given population. The BPP evaluates five characteristics: fetal movement, tone, breathing, heart reactivity, and amniotic fluid (AF volume estimation. The purpose of study was to determine whether there are different degree of acidosis at which the biophysical activity (acute marker are affected. "nMethods: In a prospective study of 140 patients undergoing cesarean section before onset of labor, the fetal biophysical profile was performed 24h before the time of cesarean and was matched with cord arterial PH that was obtained from a cord segment (10-20cm that was double clamped after delivery of newborn. (using cord arterial PH less than 7.20 for the diagnosis of acidosis. "nResults: The fetal biophysical profile was found to have a significant relationship with umbilical blood PH. The sensitivity, specificity, positive predictive value, negative predictive value of fetal biophysical profile score were: 88.9%, 88.6%, 50%, 98.1%. "nConclusion: The first manifestations of fetal acidosis are nonreactive nonstress testing and fetal breathing loss; in advanced acidemia fetal movements and fetal tone are compromised. A protocol of antepartum fetal evaluation is suggested based upon the individual biophysical components rather than the score alone.

  12. Biophysics of Human Hair Structural, Nanomechanical, and Nanotribological Studies

    CERN Document Server

    Bhushan, Bharat

    2010-01-01

    This book presents the biophysics of hair. It deals with the structure of hair, its mechanical properties, the nanomechanical characterization, tensile deformation, tribological characterization, the thickness distribution and binding interactions on hair surface. Another important topic of the book is the health of hair, human hair and skin, hair care, cleaning and conditioning treatments and damaging processes. It is the first book on the biophysical properties of hair.

  13. Measures of Biochemical Sociology

    Science.gov (United States)

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  14. [Biophysical principles of collagen cross-linking].

    Science.gov (United States)

    Spörl, E; Raiskup-Wolf, F; Pillunat, L E

    2008-02-01

    The reduced mechanical stability of the cornea in keratoconus or in keratectasia after Lasik may be increased by photooxidative cross-linking of corneal collagen. The biophysical principles are compiled for the safe and effective application of this new treatment method. The setting of the therapy parameters should be elucidated from the absorption behaviour of the cornea. The safety of the method for the endothelium cells and the lens will be discussed. The induced cross-links are shown to be the result of changes in the physico-chemical properties of the cornea. To reach a high absorption of the irradiation energy in the cornea, riboflavin of a concentration of 0.1% and UV light of a wavelength of 370 nm, corresponding to the relative maximum of absorption of riboflavin, were used. An irradiance of 3 mW/cm(2) and an irradiation time of 30 min lead to an increase of the mechanical stiffness. The endothelium cells will be protected due to the high absorption within the cornea, that means the damaging threshold of the endothelium cells will not be reached in a 400 microm thick stroma. As evidence for cross-links we can consider the increase of the biomechanical stiffness, the increased resistance against enzymatic degradation, a higher shrinkage temperature, a lower swelling rate and an increased diameter of collagen fibres. The therapy parameters were tested experimentally and have been proven clinically in the corneal collagen cross-linking. These parameters should be respected to reach a safe cross-linking effect without damage of the adjacent tissues.

  15. Smoothing of, and parameter estimation from, noisy biophysical recordings.

    Directory of Open Access Journals (Sweden)

    Quentin J M Huys

    2009-05-01

    Full Text Available Biophysically detailed models of single cells are difficult to fit to real data. Recent advances in imaging techniques allow simultaneous access to various intracellular variables, and these data can be used to significantly facilitate the modelling task. These data, however, are noisy, and current approaches to building biophysically detailed models are not designed to deal with this. We extend previous techniques to take the noisy nature of the measurements into account. Sequential Monte Carlo ("particle filtering" methods, in combination with a detailed biophysical description of a cell, are used for principled, model-based smoothing of noisy recording data. We also provide an alternative formulation of smoothing where the neural nonlinearities are estimated in a non-parametric manner. Biophysically important parameters of detailed models (such as channel densities, intercompartmental conductances, input resistances, and observation noise are inferred automatically from noisy data via expectation-maximization. Overall, we find that model-based smoothing is a powerful, robust technique for smoothing of noisy biophysical data and for inference of biophysical parameters in the face of recording noise.

  16. Estimation efficiency of usage satellite derived and modelled biophysical products for yield forecasting

    Science.gov (United States)

    Kolotii, Andrii; Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii; Ostapenko, Vadim; Oliinyk, Tamara

    2015-04-01

    Efficient and timely crop monitoring and yield forecasting are important tasks for ensuring of stability and sustainable economic development [1]. As winter crops pay prominent role in agriculture of Ukraine - the main focus of this study is concentrated on winter wheat. In our previous research [2, 3] it was shown that usage of biophysical parameters of crops such as FAPAR (derived from Geoland-2 portal as for SPOT Vegetation data) is far more efficient for crop yield forecasting to NDVI derived from MODIS data - for available data. In our current work efficiency of usage such biophysical parameters as LAI, FAPAR, FCOVER (derived from SPOT Vegetation and PROBA-V data at resolution of 1 km and simulated within WOFOST model) and NDVI product (derived from MODIS) for winter wheat monitoring and yield forecasting is estimated. As the part of crop monitoring workflow (vegetation anomaly detection, vegetation indexes and products analysis) and yield forecasting SPIRITS tool developed by JRC is used. Statistics extraction is done for landcover maps created in SRI within FP-7 SIGMA project. Efficiency of usage satellite based and modelled with WOFOST model biophysical products is estimated. [1] N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "Sensor Web approach to Flood Monitoring and Risk Assessment", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 815-818. [2] F. Kogan, N. Kussul, T. Adamenko, S. Skakun, O. Kravchenko, O. Kryvobok, A. Shelestov, A. Kolotii, O. Kussul, and A. Lavrenyuk, "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models," International Journal of Applied Earth Observation and Geoinformation, vol. 23, pp. 192-203, 2013. [3] Kussul O., Kussul N., Skakun S., Kravchenko O., Shelestov A., Kolotii A, "Assessment of relative efficiency of using MODIS data to winter wheat yield forecasting in Ukraine", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 3235 - 3238.

  17. Biophysical landscape interactions: Bridging disciplines and scale with connectivity

    Science.gov (United States)

    van der Ploeg, Martine; Baartman, Jantiene; Robinson, David

    2017-04-01

    The combination of climate change, population growth and soil threats, such as carbon loss, biodiversity decline or erosion amongst others , increasingly confront the global community [1]. One of the major challenges in studying processes involved in soil threats, landscape resilience, ecosystem stability, sustainable land management and the economic consequences, is that it is an interdisciplinary field [2], that needs less stringent scientific disciplinary boundaries [3]. As a result of disciplinary focus, ambiguity may arise on the understanding of landscape interactions, and this is especially true in the interaction between a landscape's physical and biological processes [4]. Another important aspect in biophysical landscape interactions are the differences in scale related to the various processes that play a role in these systems. While scaling of environmental processes is possible, as long as the phenomena at hand can be described by the same set of differential equations [5], biophysical landscape interactions pose problems for scaling approaches. Landscape position and land use impact the coupled processes in soil and vegetation. Differences in micro-behavior, driven by the interplay of heterogeneous soil and vegetation dynamics, impact emergent characteristics across a landscape. A complicating factor is the response of vegetation to changing environmental conditions, including a possible and often unknown time-lag. By altering soil conditions, plants may leave an imprint in the landscape that remains even after vegetation has disappeared due to e.g. drought, wildfire or overgrazing. Plants also respond biochemically to their environment, while the models used for hydrology are often based on physical interactions. Gene-expression and genotype adaptation may further complicate our modelling efforts in for example climate change impacts. What are we missing by not having more connectivity in our thinking, and what we can solve? We think that integrated

  18. MODELLING BIOPHYSICAL PARAMETERS OF MAIZE USING LANDSAT 8 TIME SERIES

    Directory of Open Access Journals (Sweden)

    T. Dahms

    2016-06-01

    Full Text Available Open and free access to multi-frequent high-resolution data (e.g. Sentinel – 2 will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR, the leaf area index (LAI and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD: R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing

  19. Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series

    Science.gov (United States)

    Dahms, Thorsten; Seissiger, Sylvia; Conrad, Christopher; Borg, Erik

    2016-06-01

    Open and free access to multi-frequent high-resolution data (e.g. Sentinel - 2) will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD): R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing datasets to model

  20. The physical basis of biochemistry the foundations of molecular biophysics

    CERN Document Server

    Bergethon, Peter R

    1998-01-01

    The objective of this book is to provide a unifying approach to the study of biophysical chemistry for the advanced undergraduate who has had a year of physics, organic chem­ istry, calculus, and biology. This book began as a revised edition of Biophysical Chemistry: Molecules to Membranes, which Elizabeth Simons and I coauthored. That short volume was written in an attempt to provide a concise text for a one-semester course in biophysical chemistry at the graduate level. The experience of teaching biophysical chemistry to bi­ ologically oriented students over the last decade has made it clear that the subject requires a more fundamental text that unifies the many threads of modem science: physics, chem­ istry, biology, mathematics, and statistics. This book represents that effort. This volume is not a treatment of modem biophysical chemistry with its rich history and many contro­ versies, although a book on that topic is also needed. The Physical Basis of Biochemistry is an introduction to the philosophy...

  1. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Executive summary

    International Nuclear Information System (INIS)

    Jacob, P.; Paretzke, H.G.; Roth, P.

    2000-01-01

    The Association Contract covers a range of research domains that are important to the Radiation Protection Research Action, especially in the areas 'Evaluation of Radiation Risks' and 'Understanding Radiation Mechanisms and Epidemiology'. Three research projects concentrate on radiation dosimetry research and two projects on the modelling of radiation carcinogenesis. The following list gives an overview on the topics and responsible scientific project leaders of the Association Contract: Study of radiation fields and dosimetry at aviation altitudes. Biokinetics and dosimetry of incorporated radionuclides. Dose reconstruction. Biophysical models for the induction of cancer by radiation. Experimental data for the induction of cancer by radiation of different qualities. (orig.)

  2. Biophysical insights into cancer transformation and treatment

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří; Foletti, A.; Kobilková, J.; Jandová, Anna; Vrba, J.; Vrba, J. jr.; Nedbalová, M.; Čoček, A.; Danani, A.; Tuszynski, J. A.

    2013-01-01

    Roč. 2013, č. 195028 (2013) ISSN 1537-744X R&D Projects: GA ČR(CZ) GAP102/11/0649 Institutional support: RVO:67985882 Keywords : fatty acid * mitochondrial membrane * cancer cell Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.219, year: 2013

  3. 2. biophysical work meeting. Papers; 2. Biophysikalische Arbeitstagung; Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The report comprises 18 papers held at the 2nd Biophysical Work Meeting, 11 - 13 September 1991 in Schlema, Germany. The history of biophysics in Germany particularly of radiation biophysics and radon research, measurements of the radiation effects of radon and the derivation of limits, radon balneotherapy and consequences of uranium ore mining are dealt with. (orig.) [Deutsch] Der Report enthaelt 18 Vortraege, die auf der 2. Biophysikalischen Arbeitstagung in Schlema vom 11. bis 13. September 1991 gehalten wurden. Es werden die Geschichte der Biophysik in Deutschland, speziell der Strahlenbiophysik und Radonforschung, Messungen von Radon und seinen Folgeprodukten, Epidemiologie und Strahlenbiologie zur Bestimmung der Strahlenwirkung des Radons und die Ableitung entsprechender Grenzwerte, Radon-Balneotherapie und Folgen des Uranerzbergbaus behandelt. (orig.)

  4. Role of Membrane Biophysics in Alzheimer's - related cell pathways

    Directory of Open Access Journals (Sweden)

    Donghui eZhu

    2015-05-01

    Full Text Available Cellular membrane alterations are commonly observed in many diseases, including Alzheimer’s disease (AD. Membrane biophysical properties, such as membrane molecular order, membrane fluidity, organization of lipid rafts, and adhesion between membrane and cytoskeleton, play an important role in various cellular activities and functions. While membrane biophysics impacts a broad range of cellular pathways, this review addresses the role of membrane biophysics in amyloid-β peptide aggregation, Aβ-induced oxidative pathways, amyloid precursor protein processing, and cerebral endothelial functions in AD. Understanding the mechanism(s underlying the effects of cell membrane properties on cellular processes should shed light on the development of new preventive and therapeutic strategies for this devastating disease.

  5. Large-scale biophysical evaluation of protein PEGylation effects

    DEFF Research Database (Denmark)

    Vernet, Erik; Popa, Gina; Pozdnyakova, Irina

    2016-01-01

    PEGylation is the most widely used method to chemically modify protein biopharmaceuticals, but surprisingly limited public data is available on the biophysical effects of protein PEGylation. Here we report the first large-scale study, with site-specific mono-PEGylation of 15 different proteins...... of PEGylation on the thermal stability of a protein based on data generated by circular dichroism (CD), differential scanning calorimetry (DSC), or differential scanning fluorimetry (DSF). In addition, DSF was validated as a fast and inexpensive screening method for thermal unfolding studies of PEGylated...... proteins. Multivariate data analysis revealed clear trends in biophysical properties upon PEGylation for a subset of proteins, although no universal trends were found. Taken together, these findings are important in the consideration of biophysical methods and evaluation of second...

  6. Preface: Special Topic on Single-Molecule Biophysics.

    Science.gov (United States)

    Makarov, Dmitrii E; Schuler, Benjamin

    2018-03-28

    Single-molecule measurements are now almost routinely used to study biological systems and processes. The scope of this special topic emphasizes the physics side of single-molecule observations, with the goal of highlighting new developments in physical techniques as well as conceptual insights that single-molecule measurements bring to biophysics. This issue also comprises recent advances in theoretical physical models of single-molecule phenomena, interpretation of single-molecule signals, and fundamental areas of statistical mechanics that are related to single-molecule observations. A particular goal is to illustrate the increasing synergy between theory, simulation, and experiment in single-molecule biophysics.

  7. Institute of Biochemistry and Biophysics. Research Report 1996-1997

    International Nuclear Information System (INIS)

    1998-01-01

    Scientific interests of the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences have evolved from classical biochemistry, biophysics and physiological chemistry to up-to-date molecular biology. Research interests are focussed on replication, mutagenesis and repair of DNA; regulation of gene expression at various levels; biosynthesis and post-translational modifications of proteins; gene sequencing and functional analysis of open reading frames; structure, function and regulation of enzymes; conformation of proteins and peptides; modelling of structures and prediction of functions of proteins; mechanisms of electron transfer in polypeptides

  8. [Biophysical methods in assessment of the skin microcirculation system].

    Science.gov (United States)

    Dynnik, O B; Mostovoĭ, S E; Berezovskiĭ, V A

    2008-01-01

    In this work has been analyzed the potential of biophysics methods in estimations of the microcirculatory system. Capillaroresistometry, Computer capillaroscopy and Laser Doppler Flowmetry can to detect of the endothelial dysfunction in the patients with chronic hepatic diseases. This instrumentals biophysics methods may be used in clinical investigations for screening early pathological conditions with dysfunction of the microcirculatory system. The methods Laser Doppler Flowmetry is important for investigations the patients with others diseases and for dynamical monitoring by quality of the treatment. The purpose of these methods an objective estimation of disorders in the microcirculatory system.

  9. Cell biology, biophysics, and mechanobiology: From the basics to Clinics.

    Science.gov (United States)

    Zeng, Y

    2017-04-29

    Cell biology, biomechanics and biophysics are the key subjects that guide our understanding in diverse areas of tissue growth, development, remodeling and homeostasis. Novel discoveries such as molecular mechanism, and mechanobiological mechanism in cell biology, biomechanics and biophysics play essential roles in our understanding of the pathogenesis of various human diseases, as well as in designing the treatment of these diseases. In addition, studies in these areas will also facilitate early diagnostics of human diseases, such as cardiovascular diseases and cancer. In this special issue, we collected 10 original research articles and 1 review...

  10. Institute of Biochemistry and Biophysics. Research Report 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    Scientific interests of the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences have evolved from classical biochemistry, biophysics and physiological chemistry to up-to-date molecular biology. Research interests are focussed on replication, mutagenesis and repair of DNA; regulation of gene expression at various levels; biosynthesis and post-translational modifications of proteins; gene sequencing and functional analysis of open reading frames; structure, function and regulation of enzymes; conformation of proteins and peptides; modelling of structures and prediction of functions of proteins; mechanisms of electron transfer in polypeptides.

  11. Biophysical characterization of recombinant human ameloblastin

    Czech Academy of Sciences Publication Activity Database

    Wald, Tomáš; Bednárová, Lucie; Osička, Radim; Pachl, Petr; Šulc, Miroslav; Lyngstadaas, S. P.; Slabý, Ivan; Vondrášek, Jiří

    2011-01-01

    Roč. 119, č. 1 (2011), s. 261-269 ISSN 0909-8836 R&D Projects: GA ČR GAP302/10/0427; GA MŠk LC512 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40550506; CEZ:AV0Z50520701 Keywords : circular dichroism spectroscopy * dynamic light scattering * enamel matrix protein Subject RIV: EE - Microbiology, Virology Impact factor: 1.878, year: 2011

  12. Biochemical Hypermedia: Galactose Metabolism.

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2013-05-01

    Full Text Available Introduction: Animations of biochemical processes and virtual laboratory environments lead to true molecular simulations. The use of interactive software’s in education can improve cognitive capacity, better learning and, mainly, it makes information acquisition easier. Material and Methods: This work presents the development of a biochemical hypermedia to understanding of the galactose metabolism. It was developed with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program. Results and Discussion: A step by step animation process shows the enzymatic reactions of galactose conversion to glucose-1-phosphate (to glycogen synthesis, glucose-6-phosphate (glycolysis intermediary, UDP-galactose (substrate to mucopolysaccharides synthesis and collagen’s glycosylation. There are navigation guide that allow scrolling the mouse over the names of the components of enzymatic reactions of via the metabolism of galactose. Thus, explanatory text box, chemical structures and animation of the actions of enzymes appear to navigator. Upon completion of the module, the user’s response to the proposed exercise can be checked immediately through text box with interactive content of the answer. Conclusion: This hypermedia was presented for undergraduate students (UFSC who revealed that it was extremely effective in promoting the understanding of the theme.

  13. Quantify the Biophysical and Socioeconomic Drivers of Changes in Forest and Agricultural Land in South and Southeast Asia

    Science.gov (United States)

    Xu, X.; Jain, A. K.; Calvin, K. V.

    2017-12-01

    Due to the rapid socioeconomic development and biophysical factors, South and Southeast Asia (SSEA) has become a hotspot region of land use and land cover changes (LULCCs) in past few decades. Uncovering the drivers of LULCC is crucial for improving the understanding of LULCC processes. Due to the differences from spatiotemporal scales, methods and data sources in previous studies, the quantitative relationships between the LULCC activities and biophysical and socioeconomic drivers at the regional scale of SSEA have not been established. Here we present a comprehensive estimation of the biophysical and socioeconomic drivers of the major LULCC activities in SSEA: changes in forest and agricultural land. We used the Climate Change Initiative land cover data developed by European Space Agency to reveal the dynamics of forest and agricultural land from 1992 to 2015. Then we synthesized 200 publications about LULCC drivers at different spatial scales in SSEA to identify the major drivers of these LULCC activities. Corresponding representative variables of the major drivers were collected. The geographically weighted regression was employed to assess the spatiotemporally heterogeneous drivers of LULCC. Moreover, we validated our results with some national level case studies in SSEA. The results showed that both biophysical conditions such as terrain, soil, and climate, and socioeconomic factors such as migration, poverty, and economy played important roles in driving the changes of forest and agricultural land. The major drivers varied in different locations and periods. Our study integrated the bottom-up knowledge from local scale case studies with the top-down estimation of LULCC drivers, therefore generated more accurate and credible results. The identified biophysical and socioeconomic components could be used to improve the LULCC modelling and projection.

  14. Biophysical properties and cellular toxicity of covalent crosslinked oligomers of α-synuclein formed by photoinduced side-chain tyrosyl radicals

    Czech Academy of Sciences Publication Activity Database

    Borsarelli, C.D.; Falomir-Lockhart, L.J.; Ostatná, Veronika; Fauerbach, J.A.; Hsiao, H.-H.; Urlaub, H.; Paleček, Emil; Jares-Erijman, E.A.; Jovin, T.M.

    2012-01-01

    Roč. 53, č. 4 (2012), s. 1004-1015 ISSN 0891-5849 R&D Projects: GA AV ČR(CZ) KJB100040901 Institutional research plan: CEZ:AV0Z50040702 Keywords : Parkinson's disease * neurodegeneration * oxidative stress Subject RIV: BO - Biophysics Impact factor: 5.271, year: 2012

  15. Biophysical constraints on leaf expansion in a tall conifer.

    Science.gov (United States)

    Fredrick C. Meinzer; Barbara J. Bond; Jennifer A. Karanian

    2008-01-01

    The physiological mechanisms responsible for reduced extension growth as trees increase in height remain elusive. We evaluated biophysical constraints on leaf expansion in old-growth Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) trees. Needle elongation rates, plastic and elastic extensibility, bulk leaf water, (L...

  16. Seminal Fluid Analysis And Biophysical Profile: Findings And ...

    African Journals Online (AJOL)

    Seminal Fluid Analysis And Biophysical Profile: Findings And Relevance In Infertile Males In Ilorin, Nigeria. EK Oghagbon, AAG Jimoh, SA Adebisi. Abstract. To determine if there was a bearing of body mass index (BMI) on male infertility, a cross-sectional study of males of infertile couples, attending our infertility clinic was ...

  17. Delineating Biophysical Environments of the Sunda Banda Seascape, Indonesia

    Directory of Open Access Journals (Sweden)

    Mingshu Wang

    2015-01-01

    Full Text Available The Sunda Banda Seascape (SBS, located in the center of the Coral Triangle, is a global center of marine biodiversity and a conservation priority. We proposed the first biophysical environmental delineation of the SBS using globally available satellite remote sensing and model-assimilated data to categorize this area into unique and meaningful biophysical classes. Specifically, the SBS was partitioned into eight biophysical classes characterized by similar sea surface temperature, chlorophyll a concentration, currents, and salinity patterns. Areas within each class were expected to have similar habitat types and ecosystem functions. Our work supplemented prevailing global marine management schemes by focusing in on a regional scale with finer spatial resolution. It also provided a baseline for academic research, ecological assessments and will facilitate marine spatial planning and conservation activities in the area. In addition, the framework and methods of delineating biophysical environments we presented can be expanded throughout the whole Coral Triangle to support research and conservation activities in this important region.

  18. Perspectives and Plans for Graduate Studies. 16. Biophysics 1974.

    Science.gov (United States)

    Ontario Council on Graduate Studies, Toronto. Advisory Committee on Academic Planning.

    In March, 1973, after a review of the Ontario universities' three-year plans, a provisional embargo was placed on doctoral work in biophysics. A full-scale assessment with outside consultants was not necessary in the case of a provisional embargo. Instead, the method used to remove the embargo was self-study by the discipline group leading to a…

  19. Southwest Ecological Restoration Institutes (SWERI) Biophysical Monitoring Workshop Report

    Science.gov (United States)

    Joseph Seidenberg; Judy Springer; Tessa Nicolet; Mike Battaglia; Christina Vothja

    2009-01-01

    On October 15-16, 2009, the Southwest Ecological Restoration Institutes (SWERI) hosted a workshop in which the participants would 1) build a common understanding of the types of monitoring that are occurring in forested ecosystems of the Southwest; 2) analyze and agree on an efficient, yet robust set of biophysical variables that can be used by land mangers and...

  20. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    Hall, E.J.; Zaider, M.; Delegianis, M.J.

    1989-07-01

    An important event of the year was the designation of our Laboratory as a Center for Radiological Research by the Dean of the Faculty of Medicine and Vice-President for Health Sciences. Center status acknowledges the size and importance of the research efforts in this area, and allows a greater measure of independence in administrative matters. While the name has changed from a Laboratory to a Center within the Medical School, the mission and charge remain the same. The efforts of the Center are a multidisciplinary mix of physics, chemistry, and biology, mostly at a basic level, with the admixture of a small proportion of pragmatic or applied research in support of radiation protection or radiation therapy. About a quarter of our funding, mostly individual research awards, could be regarded as in direct support of radiotherapy, with the remainder (an NCI program project grant and DOE grants) being in support of research addressing more basic issues. An important effort currently underway concerns ab-initio calculations of the dielectric response function of condensed water. This investigation has received the coveted designation, ''Grand Challenge Project,'' awarded by DOE to research work which represents ''distinct advance on a major scientific or engineering problem that is broadly recognized as important within the mission of the Department.''

  1. Biophysical Aspects of Alzheimer's Disease: Implications for Pharmaceutical Sciences : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla.

    Science.gov (United States)

    Arosio, Paolo

    2017-12-01

    An increasing amount of findings suggests that the aggregation of soluble peptides and proteins into amyloid fibrils is a relevant upstream process in the complex cascade of events leading to the pathology of Alzheimer's disease and several other neurodegenerative disorders. Nevertheless, several aspects of the correlation between the aggregation process and the onset and development of the pathology remain largely elusive. In this context, biophysical and biochemical studies in test tubes have proven extremely powerful in providing quantitative information about the structure and the reactivity of amyloids at the molecular level. In this review we use selected recent examples to illustrate the importance of such biophysical research to complement phenomenological studies based on cellular and molecular biology, and we discuss the implications for pharmaceutical applications associated with Alzheimer's disease and other neurodegenerative disorders in both academic and industrial contexts.

  2. Implantable biochemical fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Richter, G; Rao, J R

    1978-01-05

    Implantable biochemical fuel cells for the operation of heart pacemakers or artificial hearts convert oxidisable body substances such as glucose on the anode side and reduce the oxygen contained in body fluids at the cathode. The anode and cathode are separated by membranes which are impermeable to albumen and blood corpuscles in body fluids. A chemical shortcircuit cannot occur in practice if, according to the invention, one or more selective oxygen electrodes with carbon as catalyst are arranged so that the mixture which diffuses into the cell from body fluids during operation reaches the fuel cell electrode through the porous oxygen electrode. The membranes used must be permeable to water. Cellulose, polymerised polyvinyl alcohol or an ion exchanger with a buffering capacity between pH5 and 8 act as permeable materials.

  3. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine

    DEFF Research Database (Denmark)

    Kneipp, J.; Wittig, B.; Bohr, Henrik

    2010-01-01

    Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical and ...

  4. Guidance for Large-scale Implementation of Alternate Wetting and Drying: A Biophysical Suitability Assessment

    Science.gov (United States)

    Sander, B. O.; Wassmann, R.; Nelson, A.; Palao, L.; Wollenberg, E.; Ishitani, M.

    2014-12-01

    The alternate wetting and drying (AWD) technology for rice production does not only save 15-30% of irrigation water, it also reduces methane emissions by up to 70%. AWD is defined by periodic drying and re-flooding of a rice field. Due to its high mitigation potential and its simplicity to execute this practice AWD has gained a lot of attention in recent years. The Climate and Clean Air Coalition (CCAC) has put AWD high on its agenda and funds a project to guide implementation of this technology in Vietnam, Bangladesh and Colombia. One crucial activity is a biophysical suitability assessment for AWD in the three countries. For this, we analyzed rainfall and soil data as well as potential evapotranspiration to assess if the water balance allows practicing AWD or if precipitation is too high for rice fields to fall dry. In my talk I will outline key factors for a successful large-scale implementation of AWD with a focus on the biophysical suitability assessment. The seasonal suitability maps that we generated highlight priority areas for AWD implementation and guide policy makers to informed decisions about meaningful investments in infrastructure and extension work.

  5. The environmental cost in the mining projects

    International Nuclear Information System (INIS)

    Gaviria Rivera Antonio

    1992-01-01

    To evaluate and calculate the mining project, Environmental costs, besides the proper variables concerning the project. It is necessary to incorporate the distinct interrelations among the mining operation with the local and regional biophysics and. socio-economic environments existing in the project's area of influence

  6. Thermodynamically consistent Bayesian analysis of closed biochemical reaction systems

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2010-11-01

    Full Text Available Abstract Background Estimating the rate constants of a biochemical reaction system with known stoichiometry from noisy time series measurements of molecular concentrations is an important step for building predictive models of cellular function. Inference techniques currently available in the literature may produce rate constant values that defy necessary constraints imposed by the fundamental laws of thermodynamics. As a result, these techniques may lead to biochemical reaction systems whose concentration dynamics could not possibly occur in nature. Therefore, development of a thermodynamically consistent approach for estimating the rate constants of a biochemical reaction system is highly desirable. Results We introduce a Bayesian analysis approach for computing thermodynamically consistent estimates of the rate constants of a closed biochemical reaction system with known stoichiometry given experimental data. Our method employs an appropriately designed prior probability density function that effectively integrates fundamental biophysical and thermodynamic knowledge into the inference problem. Moreover, it takes into account experimental strategies for collecting informative observations of molecular concentrations through perturbations. The proposed method employs a maximization-expectation-maximization algorithm that provides thermodynamically feasible estimates of the rate constant values and computes appropriate measures of estimation accuracy. We demonstrate various aspects of the proposed method on synthetic data obtained by simulating a subset of a well-known model of the EGF/ERK signaling pathway, and examine its robustness under conditions that violate key assumptions. Software, coded in MATLAB®, which implements all Bayesian analysis techniques discussed in this paper, is available free of charge at http://www.cis.jhu.edu/~goutsias/CSS%20lab/software.html. Conclusions Our approach provides an attractive statistical methodology for

  7. Tracking biochemical changes correlated with ultra-weak photon emission using metabolomics

    Czech Academy of Sciences Publication Activity Database

    Burgos, R.C.R.; Červinková, Kateřina; van der Laan, T.; Ramautar, R.; van Wijk, E.P.A.; Cifra, Michal; Koval, S.; Berger, R.; Hankemeier, T.; van der Greef, J.

    -, č. 163 (2016), s. 237-245 ISSN 1011-1344 R&D Projects: GA ČR GA13-29294S Institutional support: RVO:67985882 Keywords : Ultra-weak photon emission * Capillary electrophoresis-mass spectrometry * HL-60 cells Subject RIV: BO - Biophysics Impact factor: 2.673, year: 2016

  8. Chief, Structural Biophysics Laboratory | Center for Cancer Research

    Science.gov (United States)

    The SBL Chief is expected to establish a strong research program in structural biology/biophysics in addition to providing leadership of the SBL and the structural biology community in the NCI Intramural Program.  Applicants should hold a Ph.D., M.D./Ph.D., or equivalent doctoral degree in a relevant discipline, and should possess outstanding communication skills and documented leadership experience.  Tenured faculty or industrial scientists of equivalent rank with a demonstrated commitment to structural biophysics should apply.  Salary will be commensurate with experience and accomplishments.  This position is not restricted to U.S. citizens. A full civil service package of benefits (including health insurance, life insurance, and retirement) is available. This position is subject to a background investigation.  The NIH is dedicated to building a diverse community in its training and employment programs.

  9. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    Science.gov (United States)

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. From hadron therapy to cosmic rays: a life in biophysics

    CERN Multimedia

    Christine Sutton

    2014-01-01

    In 1954 – the year CERN was founded – another scientific journey began at what is now the Lawrence Berkeley National Laboratory. Beams of protons from a particle accelerator were used for the first time by John Lawrence – a doctor and the brother of Ernest Lawrence, the physicist after whom the Berkeley lab is named – to treat patients with cancer. For many years, Eleanor Blakely has been one of the leaders of that journey. She visited CERN last week and spoke with the Bulletin about her life in biophysics.   Use of the cylcotron beam to mimic "shooting stars" seen by astronauts. Black hood on subject Cornelius Tobias keeps out light during neutron irradiation experiment at the 184-inch accelerator. Helping to position Tobias in the beam line are (left to right) John Lyman of Biomedical Division, and Ralph Thomas of Health Physics. (Photo courtesy of Lawrence Berkeley National Laboratory.) Interested in biophysics, which was still a new...

  11. Achievements and challenges in structural bioinformatics and computational biophysics.

    Science.gov (United States)

    Samish, Ilan; Bourne, Philip E; Najmanovich, Rafael J

    2015-01-01

    The field of structural bioinformatics and computational biophysics has undergone a revolution in the last 10 years. Developments that are captured annually through the 3DSIG meeting, upon which this article reflects. An increase in the accessible data, computational resources and methodology has resulted in an increase in the size and resolution of studied systems and the complexity of the questions amenable to research. Concomitantly, the parameterization and efficiency of the methods have markedly improved along with their cross-validation with other computational and experimental results. The field exhibits an ever-increasing integration with biochemistry, biophysics and other disciplines. In this article, we discuss recent achievements along with current challenges within the field. © The Author 2014. Published by Oxford University Press.

  12. Evolution and Biophysics of the Escherichia coli lac Operon

    Science.gov (United States)

    Ray, J. Christian; Igoshin, Oleg; Quan, Selwyn; Monds, Russell; Cooper, Tim; Balázsi, Gábor

    2011-03-01

    To understand, predict, and control the evolution of living organisms, we consider biophysical effects and molecular network architectures. The lactose utilization system of E. coli is among the most well-studied molecular networks in biology, making it an ideal candidate for such studies. Simulations show how the genetic architecture of the wild-type operon attenuates large metabolic intermediate fluctuations that are predicted to occur in an equivalent system with the component genes on separate operons. Quantification of gene expression in the lac operon evolved in growth conditions containing constant lactose, alternating with glucose, or constant glucose, shows characteristic gene expression patterns depending on conditions. We are simulating these conditions to show context-dependent biophysical sources and costs of different lac operon architectures.

  13. Biophysical dosimetry using electron paramagnetic resonance in human tooth

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Boreham, D.R.; Rink, W.J.

    2002-01-01

    Accidental dosimetry utilizing radiation induced paramagnetic species in biophysical tissues like teeth is a technique; that can measure the amount of radiation exposure to an individual. The major problem in implementing this technique at low doses is the presence of native organic signal, and various other artifacts produced as a result of sample processing. After a series of experimental trials, we developed an optimum set of rules, which uses high temperature ultrasonic treatment of enamel in KOH, multiple sample rotation during in-cavity measurement of natural and calibrated added irradiations, and dose construction using a backward extrapolation method. By using this we report the successful dose reconstruction in a few of our laboratory samples in 100 mGy range (76.29 ± 30.14) mGy with reasonably low uncertainty. Keywords: biophysical dosimetry, human tooth enamel, low dose measurements, accidental dosimetry (author)

  14. Biophysical approach to low back pain: a pilot report.

    Science.gov (United States)

    Foletti, Alberto; Pokorný, Jiry

    2015-01-01

    Since biophysical treatment has been reported to be effective in the general management of pain, we decided to assess the specific effect and treatment duration of this therapeutic strategy in low back pain. We were interested in verifying the possibility that a single clinical procedure could reduce pain and improve patients' quality of life within a period of three months. An Electromagnetic Information Transfer Through Aqueous System was employed to record endogenous therapeutic signals from each individual using an electromagnetic recording device (Med Select 729). A highly significant reduction in the Roland Morris low back pain and disability questionnaire score was observed after 3 months following a single biophysical intervention (11.83 ± 6 at baseline versus 2.3 ± 3.25 at 3 months, p < 0.0001). This preliminary report provides further evidence of the theoretical implications and clinical applications of Quantum Electro Dynamic concepts in biology and medicine.

  15. The biophysics of renal sympathetic denervation using radiofrequency energy.

    Science.gov (United States)

    Patel, Hitesh C; Dhillon, Paramdeep S; Mahfoud, Felix; Lindsay, Alistair C; Hayward, Carl; Ernst, Sabine; Lyon, Alexander R; Rosen, Stuart D; di Mario, Carlo

    2014-05-01

    Renal sympathetic denervation is currently performed in the treatment of resistant hypertension by interventionists who otherwise do not typically use radiofrequency (RF) energy ablation in their clinical practice. Adequate RF lesion formation is dependent upon good electrode-tissue contact, power delivery, electrode-tissue interface temperature, target-tissue impedance and the size of the catheter's active electrode. There is significant interplay between these variables and hence an appreciation of the biophysical determinants of RF lesion formation is required to provide effective and safe clinical care to our patients. In this review article, we summarize the biophysics of RF ablation and explain why and how complications of renal sympathetic denervation may occur and discuss methods to minimise them.

  16. Biophysical Evaluation of Food Decontamination Effects on Tissue and Bacteria

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan

    2011-01-01

    Traditionally, the effects and efficiency of food surface decontamination processes, such as chlorine washing, radiation, or heating, have been evaluated by sensoric analysis and colony-forming unit (CFU) counts of surface swabs or carcass rinses. These methods suffice when determining probable...... consumer responses or meeting legislative contamination limits. However, in the often very costly, optimization process of a new method, more quantitative and unbiased results are invaluable. In this study, we employed a biophysical approach for the investigation of qualitative and quantitative changes...... that there are no contradictions between data obtained by either approach. However, the biophysical methods draw a much more nuanced picture of the effects and efficiency of the investigated decontamination method, revealing, e.g., an exponential dose/response relationship between SonoSteam® treatment time and changes in collagen...

  17. Raman spectroscopy reveals biophysical markers in skin cancer surgical margins

    Science.gov (United States)

    Feng, Xu; Moy, Austin J.; Nguyen, Hieu T. M.; Zhang, Yao; Fox, Matthew C.; Sebastian, Katherine R.; Reichenberg, Jason S.; Markey, Mia K.; Tunnell, James W.

    2018-02-01

    The recurrence rate of nonmelanoma skin cancer is highly related to the residual tumor after surgery. Although tissueconserving surgery, such as Mohs surgery, is a standard method for the treatment of nonmelanoma skin cancer, they are limited by lengthy and costly frozen-section histopathology. Raman spectroscopy (RS) is proving to be an objective, sensitive, and non-destructive tool for detecting skin cancer. Previous studies demonstrated the high sensitivity of RS in detecting tumor margins of basal cell carcinoma (BCC). However, those studies rely on statistical classification models and do not elucidate the skin biophysical composition. As a result, we aim to discover the biophysical differences between BCC and primary normal skin structures (including epidermis, dermis, hair follicle, sebaceous gland and fat). We obtained freshly resected ex vivo skin samples from fresh resection specimens from 14 patients undergoing Mohs surgery. Raman images were acquired from regions containing one or more structures using a custom built 830nm confocal Raman microscope. The spectra were grouped using K-means clustering analysis and annotated as either BCC or each of the five normal structures by comparing with the histopathology image of the serial section. The spectral data were then fit by a previously established biophysical model with eight primary skin constituents. Our results show that BCC has significant differences in the fit coefficients of nucleus, collagen, triolein, keratin and elastin compared with normal structures. Our study reveals RS has the potential to detect biophysical changes in resection margins, and supports the development of diagnostic algorithms for future intraoperative implementation of RS during Mohs surgery.

  18. Modelling benthic biophysical drivers of ecosystem structure and biogeochemical response

    Science.gov (United States)

    Stephens, Nicholas; Bruggeman, Jorn; Lessin, Gennadi; Allen, Icarus

    2016-04-01

    The fate of carbon deposited at the sea floor is ultimately decided by biophysical drivers that control the efficiency of remineralisation and timescale of carbon burial in sediments. Specifically, these drivers include bioturbation through ingestion and movement, burrow-flushing and sediment reworking, which enhance vertical particulate transport and solute diffusion. Unfortunately, these processes are rarely satisfactorily resolved in models. To address this, a benthic model that explicitly describes the vertical position of biology (e.g., habitats) and biogeochemical processes is presented that includes biological functionality and biogeochemical response capturing changes in ecosystem structure, benthic-pelagic fluxes and biodiversity on inter-annual timescales. This is demonstrated by the model's ability to reproduce temporal variability in benthic infauna, vertical pore water nutrients and pelagic-benthic solute fluxes compared to in-situ data. A key advance is the replacement of bulk parameterisation of bioturbation by explicit description of the bio-physical processes responsible. This permits direct comparison with observations and determination of key parameters in experiments. Crucially, the model resolves the two-way interaction between sediment biogeochemistry and ecology, allowing exploration of the benthic response to changing environmental conditions, the importance of infaunal functional traits in shaping benthic ecological structure and the feedback the resulting bio-physical processes exert on pore water nutrient profiles. The model is actively being used to understand shelf sea carbon cycling, the response of the benthos to climatic change, food provision and other societal benefits.

  19. Biophysically inspired rational design of structured chimeric substrates for DNAzyme cascade engineering.

    Directory of Open Access Journals (Sweden)

    Matthew R Lakin

    Full Text Available The development of large-scale molecular computational networks is a promising approach to implementing logical decision making at the nanoscale, analogous to cellular signaling and regulatory cascades. DNA strands with catalytic activity (DNAzymes are one means of systematically constructing molecular computation networks with inherent signal amplification. Linking multiple DNAzymes into a computational circuit requires the design of substrate molecules that allow a signal to be passed from one DNAzyme to another through programmed biochemical interactions. In this paper, we chronicle an iterative design process guided by biophysical and kinetic constraints on the desired reaction pathways and use the resulting substrate design to implement heterogeneous DNAzyme signaling cascades. A key aspect of our design process is the use of secondary structure in the substrate molecule to sequester a downstream effector sequence prior to cleavage by an upstream DNAzyme. Our goal was to develop a concrete substrate molecule design to achieve efficient signal propagation with maximal activation and minimal leakage. We have previously employed the resulting design to develop high-performance DNAzyme-based signaling systems with applications in pathogen detection and autonomous theranostics.

  20. Ouroboros - Playing A Biochemical

    Directory of Open Access Journals (Sweden)

    D. T. Rodrigues

    2014-08-01

    Full Text Available Ouroboros: Playing A Biochemical RODRIGUES,D.T.1,2;GAYER, M.C.1,2; ESCOTO, D.F.1; DENARDIN, E.L.G.2, ROEHRS, R.1,2 1Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil 2Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, Brazil Introduction: Currently, teachers seek different alternatives to enhance the teaching-learning process. Innovative teaching methodologies are increasingly common tools in educational routine. The use of games, electronic or conventional, is an effective tool to assist in learning and also to raise the social interaction between students. Objective: In this sense our work aims to evaluate the card game and "Ouroboros" board as a teaching and learning tool in biochemistry for a graduating class in Natural Sciences. Materials and methods: The class gathered 22 students of BSc in Natural Sciences. Each letter contained a question across the board that was drawn to a group to answer within the allotted time. The questions related concepts of metabolism, organic and inorganic chemical reactions, bioenergetics, etc.. Before the game application, students underwent a pre-test with four issues involving the content that was being developed. Soon after, the game was applied. Then again questions were asked. Data analysis was performed from the ratio of the number of correct pre-test and post-test answers. Results and discussion: In the pre-test 18.1% of the students knew all issues, 18.1% got 3 correct answers, 40.9% answered only 2 questions correctly and 22.7% did not hit any. In post-test 45.4% answered all the questions right, 31.8% got 3 questions and 22.7% got 2 correct answers. The results show a significant improvement of the students about the field of content taught through the game. Conclusion: Generally, traditional approaches of chemistry and biochemistry are abstract and complex. Thus, through games

  1. Effect of excimer laser (Arf, 193 nm) on aqueous humor during photorefractive keratectomy biophysical and biochemical study

    International Nuclear Information System (INIS)

    Mahmoud, S.S.; Mahmoud, A.A.

    2004-01-01

    Ultraviolet light (193 nm) produced by an excimer laser has been used to produce precise tissue ablation with minimal thermal damage to adjacent tissue. The present study was designed to investigate the effect of excimer laser during photo refractive keratectomy (PRK) on aqueous humor constituents and also the effect of antioxidant enzyme superoxide dismutase (SOD)- applied topically- on these changes if exist. Five groups of schenchilla rabbits were involved in this study, where four groups underwent corneal stromal ablation using argon fluoride excimer laser (Ar F, 193 nm). Two of these four groups were treated with superoxide dismutase intra operatively. The fifth group was used as control one. The obtained results revealed depletion of aqueous humor ascorbate and glutathione contents. Aqueous humor refractive index, cholesterol, phospholipids, malondialdehyde (MDA) and total protein were measured. In conclusion, the excimer laser can induce changes in aqueous humor constituents during PRK. These changes lasted at least for 24 hours and as the time increased to 4 weeks, these changes became limited. The use of exogenous SOD seems to exert beneficial effect on aqueous humor refractive index and total protein

  2. Toxoplasma gondii: biochemical and biophysical characterization of recombinant soluble dense granule proteins GRA2 and GRA6.

    Science.gov (United States)

    Bittame, Amina; Effantin, Grégory; Pètre, Graciane; Ruffiot, Pauline; Travier, Laetitia; Schoehn, Guy; Weissenhorn, Winfried; Cesbron-Delauw, Marie-France; Gagnon, Jean; Mercier, Corinne

    2015-03-27

    The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressed in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6-8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8-15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Transdermal delivery of carvedilol containing glycyrrhizin and chitosan as permeation enhancers: biochemical, biophysical, microscopic and pharmacodynamic evaluation.

    Science.gov (United States)

    Sapra, Bharti; Jain, Subheet; Tiwary, A K

    2008-09-01

    The present study was aimed at unveiling the influence of glycyrrhizin and chitosan on rat epidermis and to correlate these effects with percutaneous permeation characteristics of carvedilol. The permeation of carvedilol across excised rat epidermis was significantly higher (p vehicle as compared to propylene glycol:ethanol (7:3) mixture. Epidermis obtained after 12 hr treatment of viable rat skin with a glycyrrhizin-chitosan mixture showed significantly higher (p space, disordered lipid structure and corneocyte detachment as observed in SEM and TEM suggests great potential of glycyrrhizin for use as a percutaneous permeation enhancer.

  4. Biophysical approach to chronic kidney disease management in older patients

    Directory of Open Access Journals (Sweden)

    Alberto Foletti

    2016-06-01

    Full Text Available Chronic kidney disease (CKD and its clinical progression are a critical issue in an aging population. Therefore, strategies aimed at preventing and managing the decline of renal function are warranted. Recent evidence has provided encouraging results for the improvement of renal function achieved through an integrated biophysical approach, but prospective studies on the clinical efficacy of this strategy are still lacking. This was an open-label prospective pilot study to investigate the effect of electromagnetic information transfer through the aqueous system on kidney function of older patients affected by stage 1 or 2 CKD. Patients received biophysical therapy every 3 months over a 1-year period. Estimated glomerular filtration rate (eGFR values were calculated using the CKD–Epidemiology Collaboration formula, and were recorded at baseline and at the end of treatment. Overall, 58 patients (mean age 74.8 ± 3.7 years were included in the study. At baseline, mean eGFR was 64.6 ± 15.5 mL/min, and it significantly increased to 69.9 ± 15.8 mL/min after 1 year (+5.2 ± 10 mL/min, p<0.0002. The same trend was observed among men (+5.7 ± 10.2 mL/min, p<0.0064 and women (+4.7 ± 9.9 mL/min, p<0.014. When results were analyzed by sex, no difference was found between the 2 groups. Although further and larger prospective studies are needed, our findings suggest that an integrated biophysical approach may be feasible in the management of older patients with early-stage CKD, to reduce and prevent the decline of renal function due to aging or comorbidities.

  5. Biophysical characteristics reveal neural stem cell differentiation potential.

    Directory of Open Access Journals (Sweden)

    Fatima H Labeed

    Full Text Available Distinguishing human neural stem/progenitor cell (huNSPC populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers.We used dielectrophoresis (DEP to analyze the biophysical, specifically electrophysiological, properties of cortical human and mouse NSPCs that vary in differentiation potential. Our data demonstrate that the electrophysiological property membrane capacitance inversely correlates with the neurogenic potential of NSPCs. Furthermore, as huNSPCs are continually passaged they decrease neuron generation and increase membrane capacitance, confirming that this parameter dynamically predicts and negatively correlates with neurogenic potential. In contrast, differences in membrane conductance between NSPCs do not consistently correlate with the ability of the cells to generate neurons. DEP crossover frequency, which is a quantitative measure of cell behavior in DEP, directly correlates with neuron generation of NSPCs, indicating a potential mechanism to separate stem cells biased to particular differentiated cell fates.We show here that whole cell membrane capacitance, but not membrane conductance, reflects and predicts the neurogenic potential of human and mouse NSPCs. Stem cell biophysical characteristics therefore provide a completely novel and quantitative measure of stem cell fate potential and a label-free means to identify neuron- or glial-biased progenitors.

  6. Surface enhanced raman spectroscopy analytical, biophysical and life science applications

    CERN Document Server

    Schlücker, Sebastian

    2013-01-01

    Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.

  7. Biophysical studies of irradiated thymocytes. 1. Surface changes

    Energy Technology Data Exchange (ETDEWEB)

    Sungurov, A Yu; Tokalov, S V; Petrov, Yu P; Sharlaeva, T M

    1985-08-15

    In order to study postirradiation changes in thymus lymphocyte surface, a number of biophysical analytical methods was used: the cell two-partition method, the physical adhesion method, fluorescence intensity and binding parameters of negatively charged ANS probe. Reduction of cell distribution factor in two-phase system and adhesion of thymocytes to cotton 1 hour after irradiation, as well as abrupt change in parameters of binding the probe in the interval of 3-4 hours after X-ray irradiation at the dose of 4 Gy are demonstrated.

  8. Short-Term Memory and Its Biophysical Model

    Science.gov (United States)

    Wang, Wei; Zhang, Kai; Tang, Xiao-wei

    1996-12-01

    The capacity of short-term memory has been studied using an integrate-and-fire neuronal network model. It is found that the storage of events depend on the manner of the correlation between the events, and the capacity is dominated by the value of after-depolarization potential. There is a monotonic increasing relationship between the value of after-depolarization potential and the memory numbers. The biophysics relevance of the network model is discussed and different kinds of the information processes are studied too.

  9. Hydrophobic ampersand hydrophilic: Theoretical models of solvation for molecular biophysics

    International Nuclear Information System (INIS)

    Pratt, L.R.; Tawa, G.J.; Hummer, G.; Garcia, A.E.; Corcelli, S.A.

    1996-01-01

    Molecular statistical thermodynamic models of hydration for chemistry and biophysics have advanced abruptly in recent years. With liquid water as solvent, salvation phenomena are classified as either hydrophobic or hydrophilic effects. Recent progress in treatment of hydrophilic effects have been motivated by continuum dielectric models interpreted as a modelistic implementation of second order perturbation theory. New results testing that perturbation theory of hydrophilic effects are presented and discussed. Recent progress in treatment of hydrophobic effects has been achieved by applying information theory to discover models of packing effects in dense liquids. The simplest models to which those ideas lead are presented and discussed

  10. Remote sensing of the Canadian Arctic: Modelling biophysical variables

    Science.gov (United States)

    Liu, Nanfeng

    It is anticipated that Arctic vegetation will respond in a variety of ways to altered temperature and precipitation patterns expected with climate change, including changes in phenology, productivity, biomass, cover and net ecosystem exchange. Remote sensing provides data and data processing methodologies for monitoring and assessing Arctic vegetation over large areas. The goal of this research was to explore the potential of hyperspectral and high spatial resolution multispectral remote sensing data for modelling two important Arctic biophysical variables: Percent Vegetation Cover (PVC) and the fraction of Absorbed Photosynthetically Active Radiation (fAPAR). A series of field experiments were conducted to collect PVC and fAPAR at three Canadian Arctic sites: (1) Sabine Peninsula, Melville Island, NU; (2) Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU; and (3) Apex River Watershed (ARW), Baffin Island, NU. Linear relationships between biophysical variables and Vegetation Indices (VIs) were examined at different spatial scales using field spectra (for the Sabine Peninsula site) and high spatial resolution satellite data (for the CBAWO and ARW sites). At the Sabine Peninsula site, hyperspectral VIs exhibited a better performance for modelling PVC than multispectral VIs due to their capacity for sampling fine spectral features. The optimal hyperspectral bands were located at important spectral features observed in Arctic vegetation spectra, including leaf pigment absorption in the red wavelengths and at the red-edge, leaf water absorption in the near infrared, and leaf cellulose and lignin absorption in the shortwave infrared. At the CBAWO and ARW sites, field PVC and fAPAR exhibited strong correlations (R2 > 0.70) with the NDVI (Normalized Difference Vegetation Index) derived from high-resolution WorldView-2 data. Similarly, high spatial resolution satellite-derived fAPAR was correlated to MODIS fAPAR (R2 = 0.68), with a systematic

  11. Structural, mutational and biophysical studies reveal a canonical mode of molecular recognition between immune receptor TIGIT and nectin-2

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Dibyendu; Guo, Haisu; Rubinstein, Rotem; Ramagopal, Udupi A.; Almo, Steven C.

    2017-01-01

    In addition to antigen-specific stimulation of T cell receptor (TCR) by a peptide-MHC complex, the functional outcome of TCR engagement is regulated by antigen-independent costimulatory signals. Costimulatory signals are provided by an array of interactions involving activating and inhibitory receptors expressed on T cells and their cognate ligands on antigen presenting cells. T cell immunoglobulin and ITIM domain (TIGIT), a recently identified immune receptor expressed on T and NK cells, upon interaction with either of its two ligands, nectin-2 or poliovirus receptor (PVR), inhibits activation of T and NK cells. Here we report the crystal structure of the human TIGIT ectodomain, which exhibits the classic two-layer β-sandwich topology observed in other immunoglobulin super family (IgSF) members. Biophysical studies indicate that TIGIT is monomeric in solution but can form a dimer at high concentrations, consistent with the observation of a canonical immunoglobulin-like dimer interface in the crystalline state. Based on existing structural data, we present a model of the TIGIT:nectin-2 complex and utilized complementary biochemical studies to map the nectin-binding interface on TIGIT. Our data provide important structural and biochemical determinants responsible for the recognition of nectin-2 by TIGIT. Defining the TIGIT:nectin-2 binding interface provides the basis for rational manipulation of this molecular interaction for the development of immunotherapeutic reagents in autoimmunity and cancer.

  12. Developing A Transdisciplinary Process and Community Partnerships to Anticipate Climate Change at the Local Level: The Role of Biophysical and Sociocultural Calendars

    Science.gov (United States)

    Kassam, K. A.; Samimi, C.; Trabucco, A.

    2017-12-01

    Difference is essential to solving the most complex problems faced by humanity. Anthropogenic climate change is one such "wicked problem" that demands cognitive diversity. Biophysical and social scientists must collaborate with scholars from the humanities to address practical issues of concern to local communities, which are at the forefront of impacts of climatic variation. As such, communities of inquirers (e.g. biophysical and social sciences, humanities) must work in tandem with communities of practice (e.g. farmers, fishers, gatherers, herders, hunters). This leads to co-generated knowledge where an adaptation strategy to climatic variation is locally grounded in the biophysical and sociocultural context of the communities where the impacts of climatic variation are most felt. We will present an innovative and `real time' example participatory and transdisciplinary research from an international project where we are developing integrated biophysical and sociocultural calendars, in short, ecological calendars, which are ecologically and culturally grounded in the local context to develop anticipatory capacity to anthropogenic climate change.

  13. Mass spectrometry in structural biology and biophysics architecture, dynamics, and interaction of biomolecules

    CERN Document Server

    Kaltashov, Igor A; Desiderio, Dominic M; Nibbering, Nico M

    2012-01-01

    The definitive guide to mass spectrometry techniques in biology and biophysics The use of mass spectrometry (MS) to study the architecture and dynamics of proteins is increasingly common within the biophysical community, and Mass Spectrometry in Structural Biology and Biophysics: Architecture, Dynamics, and Interaction of Biomolecules, Second Edition provides readers with detailed, systematic coverage of the current state of the art. Offering an unrivalled overview of modern MS-based armamentarium that can be used to solve the most challenging problems in biophysics, structural biol

  14. Across Space and Time: Social Responses to Large-Scale Biophysical Systems

    Science.gov (United States)

    Macmynowski, Dena P.

    2007-06-01

    The conceptual rubric of ecosystem management has been widely discussed and deliberated in conservation biology, environmental policy, and land/resource management. In this paper, I argue that two critical aspects of the ecosystem management concept require greater attention in policy and practice. First, although emphasis has been placed on the “space” of systems, the “time”—or rates of change—associated with biophysical and social systems has received much less consideration. Second, discussions of ecosystem management have often neglected the temporal disconnects between changes in biophysical systems and the response of social systems to management issues and challenges. The empirical basis of these points is a case study of the “Crown of the Continent Ecosystem,” an international transboundary area of the Rocky Mountains that surrounds Glacier National Park (USA) and Waterton Lakes National Park (Canada). This project assessed the experiences and perspectives of 1) middle- and upper-level government managers responsible for interjurisdictional cooperation, and 2) environmental nongovernment organizations with an international focus. I identify and describe 10 key challenges to increasing the extent and intensity of transboundary cooperation in land/resource management policy and practice. These issues are discussed in terms of their political, institutional, cultural, information-based, and perceptual elements. Analytic techniques include a combination of environmental history, semistructured interviews with 48 actors, and text analysis in a systematic qualitative framework. The central conclusion of this work is that the rates of response of human social systems must be better integrated with the rates of ecological change. This challenge is equal to or greater than the well-recognized need to adapt the spatial scale of human institutions to large-scale ecosystem processes and transboundary wildlife.

  15. Indoor Fast Neutron Generator for Biophysical and Electronic Applications

    Science.gov (United States)

    Cannuli, A.; Caccamo, M. T.; Marchese, N.; Tomarchio, E. A.; Pace, C.; Magazù, S.

    2018-05-01

    This study focuses the attention on an indoor fast neutron generator for biophysical and electronic applications. More specifically, the findings obtained by several simulations with the MCNP Monte Carlo code, necessary for the realization of a shield for indoor measurements, are presented. Furthermore, an evaluation of the neutron spectrum modification caused by the shielding is reported. Fast neutron generators are a valid and interesting available source of neutrons, increasingly employed in a wide range of research fields, such as science and engineering. The employed portable pulsed neutron source is a MP320 Thermo Scientific neutron generator, able to generate 2.5 MeV neutrons with a neutron yield of 2.0 x 106 n/s, a pulse rate of 250 Hz to 20 KHz and a duty factor varying from 5% to 100%. The neutron generator, based on Deuterium-Deuterium nuclear fusion reactions, is employed in conjunction with a solid-state photon detector, made of n-type high-purity germanium (PINS-GMX by ORTEC) and it is mainly addressed to biophysical and electronic studies. The present study showed a proposal for the realization of a shield necessary for indoor applications for MP320 neutron generator, with a particular analysis of the transport of neutrons simulated with Monte Carlo code and described the two main lines of research in which the source will be used.

  16. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.

    Science.gov (United States)

    Valle, Russell P; Wu, Tony; Zuo, Yi Y

    2015-05-26

    Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air-water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handle NP-PS interactions in the liquid phase. This technical limitation, inherent in current in vitro methodologies, makes it impossible to simulate how airborne NP deposit at the PS film and interact with it. Existing in vitro NP-PS studies using liquid-suspended particles have been shown to artificially inflate the no-observed adverse effect level of NP exposure when compared to in vivo inhalation studies and international occupational exposure limits (OELs). Here, we developed an in vitro methodology called the constrained drop surfactometer (CDS) to quantitatively study PS inhibition by airborne CNM. We show that airborne multiwalled carbon nanotubes and graphene nanoplatelets induce a concentration-dependent PS inhibition under physiologically relevant conditions. The CNM aerosol concentrations controlled in the CDS are comparable to those defined in international OELs. Development of the CDS has the potential to advance our understanding of how submicron airborne nanomaterials affect the PS lining of the lung.

  17. Single Nucleobase Identification Using Biophysical Signatures from Nanoelectronic Quantum Tunneling.

    Science.gov (United States)

    Korshoj, Lee E; Afsari, Sepideh; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-03-01

    Nanoelectronic DNA sequencing can provide an important alternative to sequencing-by-synthesis by reducing sample preparation time, cost, and complexity as a high-throughput next-generation technique with accurate single-molecule identification. However, sample noise and signature overlap continue to prevent high-resolution and accurate sequencing results. Probing the molecular orbitals of chemically distinct DNA nucleobases offers a path for facile sequence identification, but molecular entropy (from nucleotide conformations) makes such identification difficult when relying only on the energies of lowest-unoccupied and highest-occupied molecular orbitals (LUMO and HOMO). Here, nine biophysical parameters are developed to better characterize molecular orbitals of individual nucleobases, intended for single-molecule DNA sequencing using quantum tunneling of charges. For this analysis, theoretical models for quantum tunneling are combined with transition voltage spectroscopy to obtain measurable parameters unique to the molecule within an electronic junction. Scanning tunneling spectroscopy is then used to measure these nine biophysical parameters for DNA nucleotides, and a modified machine learning algorithm identified nucleobases. The new parameters significantly improve base calling over merely using LUMO and HOMO frontier orbital energies. Furthermore, high accuracies for identifying DNA nucleobases were observed at different pH conditions. These results have significant implications for developing a robust and accurate high-throughput nanoelectronic DNA sequencing technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Assimilation of Biophysical Neuronal Dynamics in Neuromorphic VLSI.

    Science.gov (United States)

    Wang, Jun; Breen, Daniel; Akinin, Abraham; Broccard, Frederic; Abarbanel, Henry D I; Cauwenberghs, Gert

    2017-12-01

    Representing the biophysics of neuronal dynamics and behavior offers a principled analysis-by-synthesis approach toward understanding mechanisms of nervous system functions. We report on a set of procedures assimilating and emulating neurobiological data on a neuromorphic very large scale integrated (VLSI) circuit. The analog VLSI chip, NeuroDyn, features 384 digitally programmable parameters specifying for 4 generalized Hodgkin-Huxley neurons coupled through 12 conductance-based chemical synapses. The parameters also describe reversal potentials, maximal conductances, and spline regressed kinetic functions for ion channel gating variables. In one set of experiments, we assimilated membrane potential recorded from one of the neurons on the chip to the model structure upon which NeuroDyn was designed using the known current input sequence. We arrived at the programmed parameters except for model errors due to analog imperfections in the chip fabrication. In a related set of experiments, we replicated songbird individual neuron dynamics on NeuroDyn by estimating and configuring parameters extracted using data assimilation from intracellular neural recordings. Faithful emulation of detailed biophysical neural dynamics will enable the use of NeuroDyn as a tool to probe electrical and molecular properties of functional neural circuits. Neuroscience applications include studying the relationship between molecular properties of neurons and the emergence of different spike patterns or different brain behaviors. Clinical applications include studying and predicting effects of neuromodulators or neurodegenerative diseases on ion channel kinetics.

  19. Quantum-Sequencing: Biophysics of quantum tunneling through nucleic acids

    Science.gov (United States)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    Tunneling microscopy and spectroscopy has extensively been used in physical surface sciences to study quantum tunneling to measure electronic local density of states of nanomaterials and to characterize adsorbed species. Quantum-Sequencing (Q-Seq) is a new method based on tunneling microscopy for electronic sequencing of single molecule of nucleic acids. A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free single-molecule sequencing method. Here, we present the unique ``electronic fingerprints'' for all nucleotides on DNA and RNA using Q-Seq along their intrinsic biophysical parameters. We have analyzed tunneling spectra for the nucleotides at different pH conditions and analyzed the HOMO, LUMO and energy gap for all of them. In addition we show a number of biophysical parameters to further characterize all nucleobases (electron and hole transition voltage and energy barriers). These results highlight the robustness of Q-Seq as a technique for next-generation sequencing.

  20. Mechanoresponsive stem cells to target cancer metastases through biophysical cues.

    Science.gov (United States)

    Liu, Linan; Zhang, Shirley X; Liao, Wenbin; Farhoodi, Henry P; Wong, Chi W; Chen, Claire C; Ségaliny, Aude I; Chacko, Jenu V; Nguyen, Lily P; Lu, Mengrou; Polovin, George; Pone, Egest J; Downing, Timothy L; Lawson, Devon A; Digman, Michelle A; Zhao, Weian

    2017-07-26

    Despite decades of effort, little progress has been made to improve the treatment of cancer metastases. To leverage the central role of the mechanoenvironment in cancer metastasis, we present a mechanoresponsive cell system (MRCS) to selectively identify and treat cancer metastases by targeting the specific biophysical cues in the tumor niche in vivo. Our MRCS uses mechanosensitive promoter-driven mesenchymal stem cell (MSC)-based vectors, which selectively home to and target cancer metastases in response to specific mechanical cues to deliver therapeutics to effectively kill cancer cells, as demonstrated in a metastatic breast cancer mouse model. Our data suggest a strong correlation between collagen cross-linking and increased tissue stiffness at the metastatic sites, where our MRCS is specifically activated by the specific cancer-associated mechano-cues. MRCS has markedly reduced deleterious effects compared to MSCs constitutively expressing therapeutics. MRCS indicates that biophysical cues, specifically matrix stiffness, are appealing targets for cancer treatment due to their long persistence in the body (measured in years), making them refractory to the development of resistance to treatment. Our MRCS can serve as a platform for future diagnostics and therapies targeting aberrant tissue stiffness in conditions such as cancer and fibrotic diseases, and it should help to elucidate mechanobiology and reveal what cells "feel" in the microenvironment in vivo. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Biophysical basis for the geometry of conical stromatolites.

    Science.gov (United States)

    Petroff, Alexander P; Sim, Min Sub; Maslov, Andrey; Krupenin, Mikhail; Rothman, Daniel H; Bosak, Tanja

    2010-06-01

    Stromatolites may be Earth's oldest macroscopic fossils; however, it remains controversial what, if any, biological processes are recorded in their morphology. Although the biological interpretation of many stromatolite morphologies is confounded by the influence of sedimentation, conical stromatolites form in the absence of sedimentation and are, therefore, considered to be the most robust records of biophysical processes. A qualitative similarity between conical stromatolites and some modern microbial mats suggests a photosynthetic origin for ancient stromatolites. To better understand and interpret ancient fossils, we seek a quantitative relationship between the geometry of conical stromatolites and the biophysical processes that control their growth. We note that all modern conical stromatolites and many that formed in the last 2.8 billion years display a characteristic centimeter-scale spacing between neighboring structures. To understand this prominent-but hitherto uninterpreted-organization, we consider the role of diffusion in mediating competition between stromatolites. Having confirmed this model through laboratory experiments and field observation, we find that organization of a field of stromatolites is set by a diffusive time scale over which individual structures compete for nutrients, thus linking form to physiology. The centimeter-scale spacing between modern and ancient stromatolites corresponds to a rhythmically fluctuating metabolism with a period of approximately 20 hr. The correspondence between the observed spacing and the day length provides quantitative support for the photosynthetic origin of conical stromatolites throughout geologic time.

  2. Biophysics of filament length regulation by molecular motors

    International Nuclear Information System (INIS)

    Kuan, Hui-Shun; Betterton, M D

    2013-01-01

    Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells. (paper)

  3. Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks

    Science.gov (United States)

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  4. Biochemical reactions of the organism

    International Nuclear Information System (INIS)

    Fedorova, A.V.

    1984-01-01

    Effects of mercury, strontium chloride, GMDA, trichlorfon as well as some radionuclides ( 89 Sr, 137 Cs, 203 Hg) were studied on rats. Changes in biochemical parameters (histamine content, activity of cholinesterase and histaminase) are noted. Most noticeable changes were observed in enzymatic activity. Distortion of enzymatic systems and accumulation of intermediate exchange and decay products of tissues in excess quantities affecting other systems can be the reason for changes in the organism. The observed changes in biochemical parameters should be necessarily taken into account at hygienic regulations of harmful effects of enviroment

  5. Social and Biophysical Predictors of Public Perceptions of Extreme Fires

    Science.gov (United States)

    Hall, T. E.; Kooistra, C. M.; Paveglio, T.; Gress, S.; Smith, A. M.

    2013-12-01

    To date, what constitutes an 'extreme' fire has been approached separately by biophysical and social scientists. Research on the biophysical characteristics of fires has identified potential dimensions of extremity, including fire size and vegetation mortality. On the social side, factors such as the degree of immediate impact to one's life and property or the extent of social disruption in the community contribute to a perception of extremity. However, some biophysical characteristics may also contribute to perceptions of extremity, including number of simultaneous ignitions, rapidity of fire spread, atypical fire behavior, and intensity of smoke. Perceptions of these impacts can vary within and across communities, but no studies to date have investigated such perceptions in a comprehensive way. In this study, we address the question, to what extent is the magnitude of impact of fires on WUI residents' well-being explained by measurable biophysical characteristics of the fire and subjective evaluations of the personal and community-level impacts of the fire? We bring together diverse strands of psychological theory, including landscape perception, mental models, risk perception, and community studies. The majority of social science research on fires has been in the form of qualitative case studies, and our study is methodologically unique by using a nested design (hierarchical modeling) to enable generalizable conclusions across a wide range of fires and human communities. We identified fires that burned in 2011 or 2012 in the northern Rocky Mountain region that were at least 1,000 acres and that intersected (within 15 km) urban clusters or identified Census places. For fires where an adequately large number of households was located in proximity to the fire, we drew random samples of approximately 150 individuals for each fire. We used a hybrid internet (Qualtrics) and mail survey, following the Dillman method, to measure individual perceptions. We developed two

  6. Biophysical analysis of natural, double-helical DNA modified by anticancer heterocyclic complexes of ruthenium(III) in cell-free media

    Czech Academy of Sciences Publication Activity Database

    Malina, Jaroslav; Nováková, Olga; Keppler, B. K.; Alessio, E.; Brabec, Viktor

    2001-01-01

    Roč. 6, č. 4 (2001), s. 435-445 ISSN 0949-8257 R&D Projects: GA ČR GA305/99/0695; GA ČR GA204/97/P028; GA MZd NL6058; GA MZd NL6069; GA MŠk OC D8.50 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA * ruthenium * cisplatin Subject RIV: BO - Biophysics Impact factor: 3.392, year: 2001

  7. Biochemical Conversion: Using Enzymes, Microbes, and Catalysis to Make Fuels and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-26

    This fact sheet describes the Bioenergy Technologies Office's biochemical conversion work and processes. BETO conducts collaborative research, development, and demonstration projects to improve several processing routes for the conversion of cellulosic biomass.

  8. Circadian Clocks: Unexpected Biochemical Cogs.

    Science.gov (United States)

    Mori, Tetsuya; Mchaourab, Hassane; Johnson, Carl Hirschie

    2015-10-05

    A circadian oscillation can be reconstituted in vitro from three proteins that cycles with a period of ∼ 24 h. Two recent studies provide surprising biochemical answers to why this remarkable oscillator has such a long time constant and how it can switch effortlessly between alternating enzymatic modes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Circadian Clocks: Unexpected Biochemical Cogs

    OpenAIRE

    Mori, Tetsuya; Mchaourab, Hassane; Johnson, Carl Hirschie

    2015-01-01

    A circadian oscillation can be reconstituted in vitro from three proteins that cycles with a period of ~24 h. Two recent studies provide surprising biochemical answers to why this remarkable oscillator has such a long time constant and how it can switch effortlessly between alternating enzymatic modes.

  10. A synthesized biophysical and social vulnerability assessment for Taiwan

    Science.gov (United States)

    Lee, Yung-Jaan

    2017-11-01

    Taiwan, located in the Western Pacific, is a country that is one of the most vulnerable to disasters that are associated with the changing climate; it is located within the Ring of Fire, which is the most geologically active region in the world. The environmental and geological conditions in Taiwan are sensitive and vulnerable to such disasters. Owing to increasing urbanization in Taiwan, floods and climate-related disasters have taken an increasing toll on human lives. As global warming accelerates the rising of sea levels and increasing of the frequency of extreme weather events, disasters will continue to affect socioeconomic development and human conditions. Under such circumstances, researchers and policymakers alike must recognize the importance of providing useful knowledge concerning vulnerability, disaster recovery and resilience. Strategies for reducing vulnerability and climate-related disaster risks and for increasing resilience involve preparedness, mitigation and adaptation. In the last two decades, extreme climate events have caused severe flash floods, debris flows, landslides, and other disasters and have had negative effects of many sectors, including agriculture, infrastructure and health. Since climate change is expected to have a continued impact on socio-economic development, this work develops a vulnerability assessment framework that integrates both biophysical and social vulnerability and supports synthesized vulnerability analyses to identify vulnerable areas in Taiwan. Owing to its geographical, geological and climatic features, Taiwan is susceptible to earthquakes, typhoons, droughts and various induced disasters. Therefore, Taiwan has the urgent task of establishing a framework for assessing vulnerability as a planning and policy tool that can be used to identify not only the regions that require special attention but also hotspots in which efforts should be made to reduce vulnerability and the risk of climate-related disaster. To

  11. Biophysics of cancer progression and high-throughput mechanical characterization of biomaterials

    Science.gov (United States)

    Osborne, Lukas Dylan

    Cancer metastasis involves a series of events known as the metastatic cascade. In this complex progression, cancer cells detach from the primary tumor, invade the surrounding stromal space, transmigrate the vascular system, and establish secondary tumors at distal sites. Specific mechanical phenotypes are likely adopted to enable cells to successfully navigate the mechanical environments encountered during metastasis. To examine the role of cell mechanics in cancer progression, I employed force-consistent biophysical and biochemical assays to characterize the mechanistic links between stiffness, stiffness response and cell invasion during the epithelial to mesenchymal transition (EMT). EMT is an essential physiological process, whose abnormal reactivation has been implicated in the detachment of cancer cells from epithelial tissue and their subsequent invasion into stromal tissue. I demonstrate that epithelial-state cells respond to force by evoking a stiffening response, and that after EMT, mesenchymal-state cells have reduced stiffness but also lose the ability to increase their stiffness in response to force. Using loss and gain of function studies, two proteins are established as functional connections between attenuated stiffness and stiffness response and the increased invasion capacity acquired after EMT. To enable larger scale assays to more fully explore the connection between biomechanics and cancer, I discuss the development of an automated array high throughput (AHT) microscope. The AHT system is shown to implement passive microbead rheology to accurately characterize the mechanical properties of biomaterials. Compared to manually performed mechanical characterizations, the AHT system executes experiments in two orders of magnitude less time. Finally, I use the AHT microscope to study the effect of gain of function oncogenic molecules on cell stiffness. I find evidence that our assay can identify alterations in cell stiffness due to constitutive

  12. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    Science.gov (United States)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  13. The case for biophysics super-groups in physics departments.

    Science.gov (United States)

    Hoogenboom, Bart W; Leake, Mark

    2018-06-04

    Increasing numbers of physicists engage in research activities that address biological questions from physics perspectives or strive to develop physics insights from active biological processes. The on-going development and success of such activities morph our ways of thinking about what it is to 'do biophysics' and add to our understanding of the physics of life. Many scientists in this research and teaching landscape are homed in physics departments. A challenge for a hosting department is how to group, name and structure such biophysicists to best add value to their emerging research and teaching but also to the portfolio of the whole department. Here we discuss these issues and speculate on strategies. Creative Commons Attribution license.

  14. Fragility of complexity biophysical systems by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Magazu, Salvatore [Dipartimento di Fisica, Universita di Messina, P.O. Box 55, I-98166 Messina (Italy)]. E-mail: smagazu@unime.it; Migliardo, Federica [Dipartimento di Fisica, Universita di Messina, P.O. Box 55, I-98166 Messina (Italy); Bellocco, Ersilia [Dipartimento di Chimica Organica e Biologica, Universita di Messina, I-98166 Messina (Italy); Lagana, Giuseppina [Dipartimento di Chimica Organica e Biologica, Universita di Messina, I-98166 Messina (Italy); Mondelli, Claudia [CNR-INFM OGG and CRS-SOFT, c/o ILL, 6 Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France)

    2006-11-15

    Neutron scattering is an exceptional tool to investigate structural and dynamical properties of systems of biophysical interest, such as proteins, enzymes, lipids and sugars. Moreover, elastic neutron scattering enhances the investigation of atomic motions in hydrated proteins in a wide temperature range and on the picosecond timescale. Homologous disaccharides, such as trehalose, maltose and sucrose, are cryptobiotic substances, since they allow to many organisms to undergo in a 'suspended life' state, known as cryptobiosis in extreme environmental conditions. The present paper is aimed to discuss the fragility degree of disaccharides, as evaluated of the temperature dependence of the mean square displacement by elastic neutron scattering, in order to link this feature with their bioprotective functions.

  15. The physics, biophysics and technology of photodynamic therapy

    International Nuclear Information System (INIS)

    Wilson, Brian C; Patterson, Michael S

    2008-01-01

    Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components-light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT. (topical review)

  16. EFFECTS OF ACOUSTIC STIMULATION ON BIOPHYSICAL PROFILE TESTING TIME

    Directory of Open Access Journals (Sweden)

    M. Pourissa

    2008-04-01

    Full Text Available Biophysical profile (BPP test is the most commonly used antenatal test of fetal well-being. Purpose of this study is determining the influence of acoustic stimulation (AS on BPP testing time. About 55 pregnant women at 35 to 42 weeks who referred to department of Obstetric & Gynecology at university of medical sciences, Tabriz, Iran, were selected randomly. We used abdominal ultrasound guidance to place buzzer like device with power of 110 dB at the skin surface of the maternal abdomen, close to the fetal head. BPP test performed and BPP mean testing time calculated before and after AS. Data compared and analyzed by paired t-test. The results showed that fetal AS reduces the overall mean testing time from 24 minutes to 5 minutes. This clinical application can be helpful in busy clinics when rapid assessment of fetal health is required.

  17. Biophysical information in asymmetric and symmetric diurnal bidirectional canopy reflectance

    Science.gov (United States)

    Vanderbilt, Vern C.; Caldwell, William F.; Pettigrew, Rita E.; Ustin, Susan L.; Martens, Scott N.; Rousseau, Robert A.; Berger, Kevin M.; Ganapol, B. D.; Kasischke, Eric S.; Clark, Jenny A.

    1991-01-01

    The authors present a theory for partitioning the information content in diurnal bidirectional reflectance measurements in order to detect differences potentially related to biophysical variables. The theory, which divides the canopy reflectance into asymmetric and symmetric functions of solar azimuth angle, attributes asymmetric variation to diurnal changes in the canopy biphysical properties. The symmetric function is attributed to the effects of sunlight interacting with a hypothetical average canopy which would display the average diurnal properties of the actual canopy. The authors analyzed radiometer data collected diurnally in the Thematic Mapper wavelength bands from two walnut canopies that received differing irrigation treatments. The reflectance of the canopies varied with sun and view angles and across seven bands in the visible, near-infrared, and middle infrared wavelength regions. Although one of the canopies was permanently water stressed and the other was stressed in mid-afternoon each day, no water stress signature was unambiguously evident in the reflectance data.

  18. The physics, biophysics and technology of photodynamic therapy.

    Science.gov (United States)

    Wilson, Brian C; Patterson, Michael S

    2008-05-07

    Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components -- light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT.

  19. Biophysical characterisation of GlycoPEGylated recombinant human factor VIIa

    DEFF Research Database (Denmark)

    Plesner, Bitten; Westh, Peter; Nielsen, Anders D.

    2011-01-01

    The effects of GlycoPEGylation on the structural, kinetic and thermal stability of recombinant human FVIIa were investigated using rFVIIa and linear 10 kDa and branched 40 kDa GlycoPEGylated® recombinant human FVIIa derivatives. The secondary and tertiary structure of rFVIIa measured by circular...... dichroism (CD) was maintained upon PEGylation. In contrast, the thermal and kinetic stability of rFVIIa was affected by GlycoPEGylation, as the apparent unfolding temperature Tm measured by differential scanning calorimetry (DSC) and the temperature of aggregation, Tagg, measured by light scattering (LS......) both increased with GlycoPEGylation. Both Tm and Tagg were independent of the molecular weight and the shape of the PEG chain. From the present biophysical characterisation it is concluded that after GlycoPEGylation, rFVIIa appears to be unaffected structurally (secondary and tertiary structure...

  20. 19th International School of Biophysics "Ettore Majorana"

    CERN Document Server

    Blank, M; Bioelectrochemistry III : Charge Separation across Biomembranes

    1988-01-01

    This book contains aseries of review papers related to the lectures given at the Third Course on Bioelectrochemistry held at Erice in November 1988, in the framework of the International School of Biophysics. The topics covered by this course, "Charge Separation Across Biomembranes, " deal with the electrochemical aspects of some basic phenomena in biological systems, such as transport of ions, ATP synthesis, formation and maintenance of ionic and protonic gradients. In the first part of the course some preliminary lectures introduce the students to the most basic phenomena and technical aspects of membrane bioelectrochemistry. The remaining part of the course is devoted to the description of a selected group of membrane-enzyme systems, capable of promoting, or exploiting, the processes of separation of electrically charged entities (electrons or ions) across the membrane barrier. These systems are systematically discussed both from a structural and functional point of view. The effort of the many dis...

  1. The physics, biophysics and technology of photodynamic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Brian C [Division of Biophysics and Bioimaging, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9 (Canada); Patterson, Michael S [Department of Medical Physics, Juravinski Cancer Centre and Department of Medical Physics and Applied Radiation Sciences, McMaster University, 699 Concession Street, Hamilton, ON L8V 5C2 (Canada)], E-mail: wilson@uhnres.utoronto.ca, E-mail: mike.patterson@jcc.hhsc.ca

    2008-05-07

    Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components-light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT. (topical review)

  2. Apocynin: Chemical and Biophysical Properties of a NADPH Oxidase Inhibitor

    Directory of Open Access Journals (Sweden)

    Valdecir F. Ximenes

    2013-03-01

    Full Text Available Apocynin is the most employed inhibitor of NADPH oxidase (NOX, a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V, the hydrophobicity index was calculated (logP = 0.83 and the molar absorption coefficient was determined (e275nm = 1.1 × 104 M−1 cm−1. Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA with a binding affinity of 2.19 × 104 M−1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin.

  3. Drought propagation and its relation with catchment biophysical characteristics

    Science.gov (United States)

    Alvarez-Garreton, C. D.; Lara, A.; Garreaud, R. D.

    2016-12-01

    Droughts propagate in the hydrological cycle from meteorological to soil moisture to hydrological droughts. To understand the drivers of this process is of paramount importance since the economic and societal impacts in water resources are directly related with hydrological droughts (and not with meteorological droughts, which have been most studied). This research analyses drought characteristics over a large region and identify its main exogenous (climate forcing) and endogenous (biophysical characteristics such as land cover type and topography) explanatory factors. The study region is Chile, which covers seven major climatic subtypes according to Köppen system, it has unique geographic characteristics, very sharp topography and a wide range of landscapes and vegetation conditions. Meteorological and hydrological droughts (deficit in precipitation and streamflow, respectively) are characterized by their durations and standardized deficit volumes using a variable threshold method, over 300 representative catchments (located between 27°S and 50°S). To quantify the propagation from meteorological to hydrological drought, we propose a novel drought attenuation index (DAI), calculated as the ratio between the meteorological drought severity slope and the hydrological drought severity slope. DAI varies from zero (catchment that attenuates completely a meteorological drought) to one (the meteorological drought is fully propagated through the hydrological cycle). This novel index provides key (and comparable) information about drought propagation over a wide range of different catchments, which has been highlighted as a major research gap. Similar drought indicators across the wide range of catchments are then linked with catchment biophysical characteristics. A thorough compilation of land cover information (including the percentage of native forests, grass land, urban and industrial areas, glaciers, water bodies and no vegetated areas), catchment physical

  4. Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides.

    Science.gov (United States)

    Kaconis, Yani; Kowalski, Ina; Howe, Jörg; Brauser, Annemarie; Richter, Walter; Razquin-Olazarán, Iosu; Iñigo-Pestaña, Melania; Garidel, Patrick; Rössle, Manfred; Martinez de Tejada, Guillermo; Gutsmann, Thomas; Brandenburg, Klaus

    2011-06-08

    Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Biophysical and structural considerations for protein sequence evolution

    Directory of Open Access Journals (Sweden)

    Grahnen Johan A

    2011-12-01

    Full Text Available Abstract Background Protein sequence evolution is constrained by the biophysics of folding and function, causing interdependence between interacting sites in the sequence. However, current site-independent models of sequence evolutions do not take this into account. Recent attempts to integrate the influence of structure and biophysics into phylogenetic models via statistical/informational approaches have not resulted in expected improvements in model performance. This suggests that further innovations are needed for progress in this field. Results Here we develop a coarse-grained physics-based model of protein folding and binding function, and compare it to a popular informational model. We find that both models violate the assumption of the native sequence being close to a thermodynamic optimum, causing directional selection away from the native state. Sampling and simulation show that the physics-based model is more specific for fold-defining interactions that vary less among residue type. The informational model diffuses further in sequence space with fewer barriers and tends to provide less support for an invariant sites model, although amino acid substitutions are generally conservative. Both approaches produce sequences with natural features like dN/dS Conclusions Simple coarse-grained models of protein folding can describe some natural features of evolving proteins but are currently not accurate enough to use in evolutionary inference. This is partly due to improper packing of the hydrophobic core. We suggest possible improvements on the representation of structure, folding energy, and binding function, as regards both native and non-native conformations, and describe a large number of possible applications for such a model.

  6. BALL - biochemical algorithms library 1.3

    Directory of Open Access Journals (Sweden)

    Stöckel Daniel

    2010-10-01

    Full Text Available Abstract Background The Biochemical Algorithms Library (BALL is a comprehensive rapid application development framework for structural bioinformatics. It provides an extensive C++ class library of data structures and algorithms for molecular modeling and structural bioinformatics. Using BALL as a programming toolbox does not only allow to greatly reduce application development times but also helps in ensuring stability and correctness by avoiding the error-prone reimplementation of complex algorithms and replacing them with calls into the library that has been well-tested by a large number of developers. In the ten years since its original publication, BALL has seen a substantial increase in functionality and numerous other improvements. Results Here, we discuss BALL's current functionality and highlight the key additions and improvements: support for additional file formats, molecular edit-functionality, new molecular mechanics force fields, novel energy minimization techniques, docking algorithms, and support for cheminformatics. Conclusions BALL is available for all major operating systems, including Linux, Windows, and MacOS X. It is available free of charge under the Lesser GNU Public License (LPGL. Parts of the code are distributed under the GNU Public License (GPL. BALL is available as source code and binary packages from the project web site at http://www.ball-project.org. Recently, it has been accepted into the debian project; integration into further distributions is currently pursued.

  7. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    Science.gov (United States)

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-07

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biochemical Process Development and Integration | Bioenergy | NREL

    Science.gov (United States)

    Biochemical Process Development and Integration Biochemical Process Development and Integration Our conversion and separation processes to pilot-scale integrated process development and scale up. We also Publications Accounting for all sugar produced during integrated production of ethanol from lignocellulosic

  9. Biochemical markers of bone turnover

    International Nuclear Information System (INIS)

    Kim, Deog Yoon

    1999-01-01

    Biochemical markers of bone turnover has received increasing attention over the past few years, because of the need for sensitivity and specific tool in the clinical investigation of osteoporosis. Bone markers should be unique to bone, reflect changes of bone less, and should be correlated with radiocalcium kinetics, histomorphometry, or changes in bone mass. The markers also should be useful in monitoring treatment efficacy. Although no bone marker has been established to meet all these criteria, currently osteocalcin and pyridinium crosslinks are the most efficient markers to assess the level of bone turnover in the menopausal and senile osteoporosis. Recently, N-terminal telopeptide (NTX), C-terminal telopeptide (CTX) and bone specific alkaline phosphatase are considered as new valid markers of bone turnover. Recent data suggest that CTX and free deoxypyridinoline could predict the subsequent risk of hip fracture of elderly women. Treatment of postmenopausal women with estrogen, calcitonin and bisphosphonates demonstrated rapid decrease of the levels of bone markers that correlated with the long-term increase of bone mass. Factors such as circadian rhythms, diet, age, sex, bone mass and renal function affect the results of biochemical markers and should be appropriately adjusted whenever possible. Each biochemical markers of bone turnover may have its own specific advantages and limitations. Recent advances in research will provide more sensitive and specific assays

  10. Biochemical toxicology of environmental agents

    International Nuclear Information System (INIS)

    Bruin, A. de

    1976-01-01

    A thorough and up-to-date account of the molecular-biological aspects of harmful agents - both chemical and physical - is given. This current treatise is principally intended to serve as an informative reference work for researchers in various areas of the field. In the pursuit of this aim, a devision of the entire field into 42 chapters has been made. Each chapter starts with a short introductory account dealing with the biochemical essentials of the particular subject. Radiation effects are discussed briefly at the end of each treatise. In order to make the treatise useful as a source book, a substantial collection of pertinent literature references is provided which are numbered in order of citation in the text. Initial chapters are devoted to the metabolic fate of the major classes of xenobiotic compounds. Peripheral topics, closely related to metabolism and dealing with modification of xenobiotic-metabolizing ability, as well as interaction phenomena follow (chs. 5-8). Subjects that draw heavily on the practical field of occupational hygiene are dealt with in chapters 9 and 10. The systematic treatment of how chemical and physical agents interact with the various biochemical and enzymatic systems they encounter during their passage through the organism occupies quantitatively the main part of the book (chs. 11-36). Finally, radiation biochemistry is discussed from the viewpoint of its high degree of scientific advancement, and secondly because the type of biochemical changes produced in vivo by X-rays closely parallel those evoked by chemical agents

  11. Soil functional types: surveying the biophysical dimensions of soil security

    Science.gov (United States)

    Cécillon, Lauric; Barré, Pierre

    2015-04-01

    Soil is a natural capital that can deliver key ecosystem services (ES) to humans through the realization of a series of soil processes controlling ecosystem functioning. Soil is also a diverse and endangered natural resource. A huge pedodiversity has been described at all scales, which is strongly altered by global change. The multidimensional concept soil security, encompassing biophysical, economic, social, policy and legal frameworks of soils has recently been proposed, recognizing the role of soils in global environmental sustainability challenges. The biophysical dimensions of soil security focus on the functionality of a given soil that can be viewed as the combination of its capability and its condition [1]. Indeed, all soils are not equal in term of functionality. They show different processes, provide different ES to humans and respond specifically to global change. Knowledge of soil functionality in space and time is thus a crucial step towards the achievement soil security. All soil classification systems incorporate some functional information, but soil taxonomy alone cannot fully describe the functioning, limitations, resistance and resilience of soils. Droogers and Bouma [2] introduced functional variants (phenoforms) for each soil type (genoform) so as to fit more closely to soil functionality. However, different genoforms can have the same functionality. As stated by McBratney and colleagues [1], there is a great need of an agreed methodology for defining the reference state of soil functionality. Here, we propose soil functional types (SFT) as a relevant classification system for the biophysical dimensions of soil security. Following the definition of plant functional types widely used in ecology, we define a soil functional type as "a set of soil taxons or phenoforms sharing similar processes (e.g. soil respiration), similar effects on ecosystem functioning (e.g. primary productivity) and similar responses to global change (land-use, management or

  12. Building biophysics in mid-century China: the University of Science and Technology of China.

    Science.gov (United States)

    Luk, Yi Lai Christine

    2015-01-01

    Biophysics has been either an independent discipline or an element of another discipline in the United States, but it has always been recognized as a stand-alone discipline in the People's Republic of China (PRC) since 1949. To inquire into this apparent divergence, this paper investigates the formational history of biophysics in China by examining the early institutional history of one of the best-known and prestigious science and technology universities in the PRC, the University of Science and Technology of China (USTC). By showing how the university and its biophysics program co-evolved with national priorities from the school's founding in 1958 to the eve of the Cultural Revolution in 1966, the purpose of this paper is to assess the development of a scientific discipline in the context of national demands and institutional politics. Specific materials for analysis include the school's admission policies, curricula, students' dissertations, and research program. To further contextualize the institutional setting of Chinese biophysics, this paper begins with a general history of proto-biophysical institutions in China during the Nationalist-Communist transitional years. This paper could be of interest to historians wanting to know more about the origin of the biophysics profession in China, and in particular how research areas that constitute biophysics changed in tandem with socio-political contingencies.

  13. CREB Overexpression Ameliorates Age-related Behavioral and Biophysical Deficits

    Science.gov (United States)

    Yu, Xiao-Wen

    Age-related cognitive deficits are observed in both humans and animals. Yet, the molecular mechanisms underlying these deficits are not yet fully elucidated. In aged animals, a decrease in intrinsic excitability of pyramidal neurons from the CA1 sub-region of hippocampus is believed to contribute to age-related cognitive impairments, but the molecular mechanism(s) that modulate both these factors has yet to be identified. Increasing activity of the transcription factor cAMP response element-binding protein (CREB) in young adult rodents has been shown to facilitate cognition, and increase intrinsic excitability of their neurons. However, how CREB changes with age, and how that impacts cognition in aged animals, is not clear. Therefore, we first systematically characterized age- and training-related changes in CREB levels in dorsal hippocampus. At a remote time point after undergoing behavioral training, levels of total CREB and activated CREB (phosphorylated at S133, pCREB) were measured in both young and aged rats. We found that pCREB, but not total CREB was significantly reduced in dorsal CA1 of aged rats. Importantly, levels of pCREB were found to be positively correlated with short-term spatial memory in both young and aged rats i.e. higher pCREB in dorsal CA1 was associated with better spatial memory. These findings indicate that an age-related deficit in CREB activity may contribute to the development of age-related cognitive deficits. However, it was still unclear if increasing CREB activity would be sufficient to ameliorate age-related cognitive, and biophysical deficits. To address this question, we virally overexpressed CREB in CA1, where we found the age-related deficit. Young and aged rats received control or CREB virus, and underwent water maze training. While control aged animals exhibited deficits in long-term spatial memory, aged animals with CREB overexpression performed at levels comparable to young animals. Concurrently, aged neurons

  14. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Fairhall, Adrienne L; Denéve, Sophie; Shea-Brown, Eric T

    2015-07-15

    While spike timing has been shown to carry detailed stimulus information at the sensory periphery, its possible role in network computation is less clear. Most models of computation by neural networks are based on population firing rates. In equivalent spiking implementations, firing is assumed to be random such that averaging across populations of neurons recovers the rate-based approach. Recently, however, Denéve and colleagues have suggested that the spiking behavior of neurons may be fundamental to how neuronal networks compute, with precise spike timing determined by each neuron's contribution to producing the desired output (Boerlin and Denéve, 2011; Boerlin et al., 2013). By postulating that each neuron fires to reduce the error in the network's output, it was demonstrated that linear computations can be performed by networks of integrate-and-fire neurons that communicate through instantaneous synapses. This left open, however, the possibility that realistic networks, with conductance-based neurons with subthreshold nonlinearity and the slower timescales of biophysical synapses, may not fit into this framework. Here, we show how the spike-based approach can be extended to biophysically plausible networks. We then show that our network reproduces a number of key features of cortical networks including irregular and Poisson-like spike times and a tight balance between excitation and inhibition. Lastly, we discuss how the behavior of our model scales with network size or with the number of neurons "recorded" from a larger computing network. These results significantly increase the biological plausibility of the spike-based approach to network computation. We derive a network of neurons with standard spike-generating currents and synapses with realistic timescales that computes based upon the principle that the precise timing of each spike is important for the computation. We then show that our network reproduces a number of key features of cortical networks

  15. Indigenous community health and climate change: integrating biophysical and social science indicators

    Science.gov (United States)

    Donatuto, Jamie; Grossman, Eric E.; Konovsky, John; Grossman, Sarah; Campbell, Larry W.

    2014-01-01

    This article describes a pilot study evaluating the sensitivity of Indigenous community health to climate change impacts on Salish Sea shorelines (Washington State, United States and British Columbia, Canada). Current climate change assessments omit key community health concerns, which are vital to successful adaptation plans, particularly for Indigenous communities. Descriptive scaling techniques, employed in facilitated workshops with two Indigenous communities, tested the efficacy of ranking six key indicators of community health in relation to projected impacts to shellfish habitat and shoreline archaeological sites stemming from changes in the biophysical environment. Findings demonstrate that: when shellfish habitat and archaeological resources are impacted, so is Indigenous community health; not all community health indicators are equally impacted; and, the community health indicators of highest concern are not necessarily the same indicators most likely to be impacted. Based on the findings and feedback from community participants, exploratory trials were successful; Indigenous-specific health indicators may be useful to Indigenous communities who are assessing climate change sensitivities and creating adaptation plans.

  16. Biochemical Abnormalities in Batten's Syndrome

    DEFF Research Database (Denmark)

    Clausen, Jytte Lene; Nielsen, Gunnar Gissel; Jensen, Gunde Egeskov

    1978-01-01

    The present data indicate that a group of ten patients with Batten's syndrome showed reduced activity of erythrocyte glutathione (GSH) peroxidase (Px) (glutathione: H2O2 oxidoreductase, EC 1.1.1.9.) using H2O2 as peroxide donor. Assay of erythrocyte GSHPx using H2O2, cumene hydroperoxide and t......-butyl hydroperoxide as donors also makes it possible biochemically to divide Batten's syndrome into two types: (1) one type with decreased values when H2O2 and cumene hydroperoxide are used, and (2) one type with increased values when t-butyl hydroperoxide is used. Furthermore an increased content of palmitic, oleic...

  17. Slot-waveguide biochemical sensor.

    Science.gov (United States)

    Barrios, Carlos A; Gylfason, Kristinn B; Sánchez, Benito; Griol, Amadeu; Sohlström, H; Holgado, M; Casquel, R

    2007-11-01

    We report an experimental demonstration of an integrated biochemical sensor based on a slot-waveguide microring resonator. The microresonator is fabricated on a Si3N4-SiO2 platform and operates at a wavelength of 1.3 microm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.33 to 1.42. A linear shift of the resonant wavelength with increasing ambient refractive index of 212 nm/refractive index units (RIU) is observed. The sensor detects a minimal refractive index variation of 2x10(-4) RIU.

  18. Thermodynamic analysis of biochemical systems

    International Nuclear Information System (INIS)

    Yuan, Y.; Fan, L.T.; Shieh, J.H.

    1989-01-01

    Introduction of the concepts of the availability (or exergy), datum level materials, and the dead state has been regarded as some of the most significant recent developments in classical thermodynamics. Not only the available energy balance but also the material and energy balances of a biological system may be established in reference to the datum level materials in the dead state or environment. In this paper these concepts are illustrated with two examples of fermentation and are shown to be useful in identifying sources of thermodynamic inefficiency, thereby leading naturally to the rational definition of thermodynamic efficiency of a biochemical process

  19. Ecosystem biophysical memory in the southwestern North America climate system

    International Nuclear Information System (INIS)

    Forzieri, G; Feyen, L; Vivoni, E R

    2013-01-01

    To elucidate the potential role of vegetation to act as a memory source in the southwestern North America climate system, we explore correlation structures of remotely sensed vegetation dynamics with precipitation, temperature and teleconnection indices over 1982–2006 for six ecoregions. We found that lagged correlations between vegetation dynamics and climate variables are modulated by the dominance of monsoonal or Mediterranean regimes and ecosystem-specific physiological processes. Subtropical and tropical ecosystems exhibit a one month lag positive correlation with precipitation, a zero- to one-month lag negative correlation with temperature, and modest negative effects of sea surface temperature (SST). Mountain forests have a zero month lag negative correlation with precipitation, a zero–one month lag negative correlation with temperature, and no significant correlation with SSTs. Deserts show a strong one–four month lag positive correlation with precipitation, a low zero–two month lag negative correlation with temperature, and a high four–eight month lag positive correlation with SSTs. The ecoregion-specific biophysical memories identified offer an opportunity to improve the predictability of land–atmosphere interactions and vegetation feedbacks onto climate. (letter)

  20. Biophysical and biological meanings of healthspan from C. elegans cohort

    International Nuclear Information System (INIS)

    Suda, Hitoshi

    2014-01-01

    Highlights: • We focus on a third factor, noise, as well as on genetic and environmental factors. • C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. • An amplification of ATP noise was clearly evident from around the onset of biodemographic aging. • The extension of timing of noise amplification may contribute to effectively extending the healthspan. • The same mechanism of the mean lifespan extension in C. elegans may be realized in humans. - Abstract: Lifespan among individuals ranges widely in organisms from yeast to mammals, even in an isogenic cohort born in a nearly uniform environment. Needless to say, genetic and environmental factors are essential for aging and lifespan, but in addition, a third factor or the existence of a stochastic element must be reflected in aging and lifespan. An essential point is that lifespan or aging is an unpredictable phenomenon. The present study focuses on elucidating the biophysical and biological meanings of healthspan that latently indwells a stochastic nature. To perform this purpose, the nematode Caenorhabditis elegans served as a model animal. C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. Then, utilizing this phenomenon, we clarified a mechanism of healthspan extension by measuring the single-worm ATP and estimating the ATP noise (or the variability of the ATP content) among individual worms and by quantitatively analyzing biodemographic data with the lifespan equation that was derived from a fluctuation theory

  1. A Biophysical Neural Model To Describe Spatial Visual Attention

    International Nuclear Information System (INIS)

    Hugues, Etienne; Jose, Jorge V.

    2008-01-01

    Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We first constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations

  2. Unofficial Road Building in the Amazon: Socioeconomic and Biophysical Explanations

    Science.gov (United States)

    Perz, Stephen G.; Caldas, Marcellus M.; Arima, Eugenio; Walker, Robert J.

    2007-01-01

    Roads have manifold social and environmental impacts, including regional development, social conflicts and habitat fragmentation. 'Road ecology' has emerged as an approach to evaluate the various ecological and hydrological impacts of roads. This article aims to complement road ecology by examining the socio-spatial processes of road building itself. Focusing on the Brazilian Amazon, a heavily-studied context due to forest fragmentation by roads, the authors consider non-state social actors who build 'unofficial roads' for the purpose of gaining access to natural resources to support livelihoods and community development. They examine four case studies of roads with distinct histories in order to explain the socio-spatial processes behind road building in terms of profit maximization, land tenure claims, co-operative and conflictive political ecologies, and constraints as well as opportunities afforded by the biophysical environment. The study cases illustrate the need for a multi-pronged theoretical approach to understanding road building, and call for more attention to the role of non-state actors in unofficial road construction.

  3. Biophysical Characterization of α-Synuclein and Rotenone Interaction

    Directory of Open Access Journals (Sweden)

    Anthony L. Fink

    2013-09-01

    Full Text Available Previous studies revealed that pesticides interact with α-synuclein and accelerate the rate of fibrillation. These results are consistent with the prevailing hypothesis that the direct interaction of α-synuclein with pesticides is one of many suspected factors leading to α-synuclein fibrillation and ultimately to Parkinson’s disease. In this study, the biophysical properties and fibrillation kinetics of α-synuclein in the presence of rotenone were investigated and, more specifically, the effects of rotenone on the early-stage misfolded forms of α-synuclein were considered. The thioflavine T (ThT fluorescence assay studies provide evidence that early-phase misfolded α-synuclein forms are affected by rotenone and that the fibrillation process is accelerated. Further characterization by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR shows that rotenone increases the amount of ordered secondary structure in this intrinsically disordered protein. Morphological characterization by transmission electron microscopy (TEM and atomic force microscopy (AFM provide visualization of the differences in the aggregated α-synuclein species developing during the early kinetics of the fibrillation process in the absence and presence of rotenone. We believe that these data provide useful information for a better understanding of the molecular basis of rotenone-induced misfolding and aggregation of α-synuclein.

  4. Editorial: The Sackler International Prize in Biophysical Sciences

    Science.gov (United States)

    Frydman, Lucio

    2018-02-01

    The Raymond and Beverly Sackler International Prize is awarded alternatively in the fields of Biophysics, Chemistry and Physics on a yearly basis, by Tel Aviv University. The price is intended to encourage dedication to science, originality and excellence, by rewarding outstanding scientists under 45 years of age, with a total purse of 100,000. The 2016 Raymond and Beverly Sackler Prize was awarded in the field of Magnetic Resonance last February in a festive symposium, to three excellent researchers: Professor John Morton (University College London), Professor Guido Pintacuda (Ecole Normale Supérieure de Lyon and CNRS), and Professor Charalampos Kalodimos (at the time at the University of Minnesota). John was recognized for his novel contributions to quantum information processing, by means of a range of highly elegant physical phenomena involving both NMR and EPR. Guido was recognized for his methodological advances in solid state NMR spectroscopy, including advances in proton detection under ultrafast MAS at ultrahigh magnetic field, and for his insightful applications to challenging biological systems. While Charalampos (Babis) was recognized for beautifully detailed characterizations of structure, function, and dynamics in challenging and important biological systems through solution NMR spectroscopy.

  5. Estimating the biophysical properties of neurons with intracellular calcium dynamics.

    Science.gov (United States)

    Ye, Jingxin; Rozdeba, Paul J; Morone, Uriel I; Daou, Arij; Abarbanel, Henry D I

    2014-06-01

    We investigate the dynamics of a conductance-based neuron model coupled to a model of intracellular calcium uptake and release by the endoplasmic reticulum. The intracellular calcium dynamics occur on a time scale that is orders of magnitude slower than voltage spiking behavior. Coupling these mechanisms sets the stage for the appearance of chaotic dynamics, which we observe within certain ranges of model parameter values. We then explore the question of whether one can, using observed voltage data alone, estimate the states and parameters of the voltage plus calcium (V+Ca) dynamics model. We find the answer is negative. Indeed, we show that voltage plus another observed quantity must be known to allow the estimation to be accurate. We show that observing both the voltage time course V(t) and the intracellular Ca time course will permit accurate estimation, and from the estimated model state, accurate prediction after observations are completed. This sets the stage for how one will be able to use a more detailed model of V+Ca dynamics in neuron activity in the analysis of experimental data on individual neurons as well as functional networks in which the nodes (neurons) have these biophysical properties.

  6. IS THERE ANY ASSOCIATION BETWEEN MATERNAL DEPRESSION AND BIOPHYSICAL PROFILE?

    Directory of Open Access Journals (Sweden)

    M Z Pezeshki

    2008-11-01

    Full Text Available "nMother's mental health status during pregnancy has important effects on fetal growth and development. However, there are few studies concerning association of maternal depression and biophysical profile (BPP of the fetus. We performed this research to know if maternal depression has any association with fetal BPP score. For measuring depression, Farsi version of Patient Health Questionnaire-9 (PHQ-9 was completed. A total of 100 pregnant women in their third trimester (>24 weeks who had not hyperthyroidism, hypothyroidism, eclampsia and preeclampsia, fever, infection, diabetes or a fetus with intrauterine growth retardation (IUGR and were not using any medication entered the study. Spearman correlation coefficient between the score of PHQ-9 questionnaire and BPP score was -0.08 (P = 0.43. Based on Kruskal Wallis test, there was no difference in BPP score of depressed and nondepressed women (P = 0.65. We found no relationship between maternal depression and BPP score in third trimester of pregnancy. Further studies for elucidating neuro-hormonal mechanisms related to the result of our study are suggested

  7. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    Science.gov (United States)

    Foutz, Thomas J; Ackermann, D Michael; Kilgore, Kevin L; McIntyre, Cameron C

    2012-01-01

    The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  8. Biophysical insight into the anti-amyloidogenic behavior of taurine.

    Science.gov (United States)

    Chaturvedi, Sumit Kumar; Alam, Parvez; Khan, Javed Masood; Siddiqui, Mohd Khursheed; Kalaiarasan, Ponnusamy; Subbarao, Naidu; Ahmad, Zeeshan; Khan, Rizwan Hasan

    2015-09-01

    In this work, we investigated the inhibitory ability of taurine on the aggregation of Human serum albumin (HSA) and also examined how it controls the kinetic parameters of the aggregation process. We demonstrated the structural alterations in the HSA after binding to the taurine at 65 °C by exploiting various biophysical techniques. UV-vis spectroscopy was used to check the turbidometric changes in the protein. Thioflavin T fluorescence kinetics was subjected to explore kinetic parameters comparing the amyloid formation in the presence of varying concentration of taurine. Further, Congo red binding and ANS binding assays were performed to determine the inhibitory effect of taurine on HSA fibrillation process and surface hydrophobicity modifications occurring before and after the addition of taurine with protein, respectively. Far UV CD and Dynamic Light Scattering (DLS) confirmed that taurine stabilized the protein α-helical structure and formed complex with HSA which is further supported by differential scanning calorimetry (DSC). Moreover, microscopic imaging techniques were also done to analyze the morphology of aggregation formed. Taurine is also capable of altering the cytotoxicity of the proteinaceous aggregates. Molecular docking study also deciphered the possible residues involved in protein and drug interaction. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Biophysical studies related to energy generation: Progress report

    International Nuclear Information System (INIS)

    Green, A.E.S.

    1988-01-01

    This report covers work subsequent to our previous report of December 24, 1986. At that time we were groping to find relationships between vibrational and rotational electron impact cross sections in the vapor and liquid phases of water. Having reached an impass within the radiological literature, we drew upon the atmospheric, oceanographic and flame radiation literatures. Here a much broader body of excitation energy and intensity data related to the vibrational and rotational excitation of water in the vapor phases and liquid phases enabled us to identify certain ''big bands'' of H 2 O. These bands account for the major infrared absorption features observed in atmospheric transmission studies as well as important spectral radiation features observed in hydrocarbon combustion. Related liquid phase-gas phase involvement also entered our work on co-combustion of biomass and waste, and natural gas in studies directed toward contributing to the solution of national energy-environmental and economic problems. Attachments to this report include our published works, submitted works, and in complete studies related to radiological, atmospheric, and combustion studies which encompass biophysical studies related to energy generation and which have a common thread involving water in liquid and vapor form. These works are tied together in this brief report, along with some comments on trends in science and technology which they might illustrate

  10. Biophysical model of prokaryotic diversity in geothermal hot springs.

    Science.gov (United States)

    Klales, Anna; Duncan, James; Nett, Elizabeth Janus; Kane, Suzanne Amador

    2012-02-01

    Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms. © 2012 American Physical Society

  11. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    Directory of Open Access Journals (Sweden)

    Thomas J Foutz

    Full Text Available The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  12. Biophysical and biological meanings of healthspan from C. elegans cohort

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Hitoshi, E-mail: suda@tsc.u-tokai.ac.jp

    2014-09-12

    Highlights: • We focus on a third factor, noise, as well as on genetic and environmental factors. • C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. • An amplification of ATP noise was clearly evident from around the onset of biodemographic aging. • The extension of timing of noise amplification may contribute to effectively extending the healthspan. • The same mechanism of the mean lifespan extension in C. elegans may be realized in humans. - Abstract: Lifespan among individuals ranges widely in organisms from yeast to mammals, even in an isogenic cohort born in a nearly uniform environment. Needless to say, genetic and environmental factors are essential for aging and lifespan, but in addition, a third factor or the existence of a stochastic element must be reflected in aging and lifespan. An essential point is that lifespan or aging is an unpredictable phenomenon. The present study focuses on elucidating the biophysical and biological meanings of healthspan that latently indwells a stochastic nature. To perform this purpose, the nematode Caenorhabditis elegans served as a model animal. C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. Then, utilizing this phenomenon, we clarified a mechanism of healthspan extension by measuring the single-worm ATP and estimating the ATP noise (or the variability of the ATP content) among individual worms and by quantitatively analyzing biodemographic data with the lifespan equation that was derived from a fluctuation theory.

  13. Biophysical induction of vascular smooth muscle cell podosomes.

    Directory of Open Access Journals (Sweden)

    Na Young Kim

    Full Text Available Vascular smooth muscle cell (VSMC migration and matrix degradation occurs with intimal hyperplasia associated with atherosclerosis, vascular injury, and restenosis. One proposed mechanism by which VSMCs degrade matrix is through the use of podosomes, transient actin-based structures that are thought to play a role in extracellular matrix degradation by creating localized sites of matrix metalloproteinase (MMP secretion. To date, podosomes in VSMCs have largely been studied by stimulating cells with phorbol esters, such as phorbol 12,13-dibutyrate (PDBu, however little is known about the physiological cues that drive podosome formation. We present the first evidence that physiological, physical stimuli mimicking cues present within the microenvironment of diseased arteries can induce podosome formation in VSMCs. Both microtopographical cues and imposed pressure mimicking stage II hypertension induce podosome formation in A7R5 rat aortic smooth muscle cells. Moreover, wounding using a scratch assay induces podosomes at the leading edge of VSMCs. Notably the effect of each of these biophysical stimuli on podosome stimulation can be inhibited using a Src inhibitor. Together, these data indicate that physical cues can induce podosome formation in VSMCs.

  14. The interface of protein structure, protein biophysics, and molecular evolution

    Science.gov (United States)

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  15. Symposium on Biophysics and Physiology of Biological Transport

    CERN Document Server

    Capraro, V; Porter, K; Robertson, J

    1967-01-01

    The study of cell membranes began to attract increasing interest before the turn of the present century with the observations of 0 verton. Since that time many investigators have become interested in the broad problem of structure and function of the membrane and today we find ourselVes at a stage in which several branches of research, particularly physical chemistry, biochemistry, biophysics, physiology and pharmacology have come together, leading to the possibility of obtaining a better perspective of the overall problems. The purpose of this Symposium was to assemble in an orderly sequence representations of the knowledge of membranes achieved to date in the areas of the various disciplines. It was thought that to bring together many points of view on a problem should allow the conferees to see better what had been accomplished, what has been overlooked and what needs further development. It is to be hoped that efforts of this type have and will fulfill the desired purpose. This volume contains the majorit...

  16. Statistical and Biophysical Models for Predicting Total and Outdoor Water Use in Los Angeles

    Science.gov (United States)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2012-04-01

    Modeling water demand is a complex exercise in the choice of the functional form, techniques and variables to integrate in the model. The goal of the current research is to identify the determinants that control total and outdoor residential water use in semi-arid cities and to utilize that information in the development of statistical and biophysical models that can forecast spatial and temporal urban water use. The City of Los Angeles is unique in its highly diverse socio-demographic, economic and cultural characteristics across neighborhoods, which introduces significant challenges in modeling water use. Increasing climate variability also contributes to uncertainties in water use predictions in urban areas. Monthly individual water use records were acquired from the Los Angeles Department of Water and Power (LADWP) for the 2000 to 2010 period. Study predictors of residential water use include socio-demographic, economic, climate and landscaping variables at the zip code level collected from US Census database. Climate variables are estimated from ground-based observations and calculated at the centroid of each zip code by inverse-distance weighting method. Remotely-sensed products of vegetation biomass and landscape land cover are also utilized. Two linear regression models were developed based on the panel data and variables described: a pooled-OLS regression model and a linear mixed effects model. Both models show income per capita and the percentage of landscape areas in each zip code as being statistically significant predictors. The pooled-OLS model tends to over-estimate higher water use zip codes and both models provide similar RMSE values.Outdoor water use was estimated at the census tract level as the residual between total water use and indoor use. This residual is being compared with the output from a biophysical model including tree and grass cover areas, climate variables and estimates of evapotranspiration at very high spatial resolution. A

  17. Effect of low level Doses of fast neutrons on the toxicity of snake venom through measuring some biophysical properties of blood serum of rats

    International Nuclear Information System (INIS)

    Hanafy, M.S.; Metwali, R.

    2001-01-01

    This study was conducted to investigate the effect of low level doses of fission neutrons from Cf 252 source on sublethal doses (low medium) of snake venom cerastes cerastes by injecting albino eats with unirradiated or irradiated venom and measuring the biophysical alterations in the blood serum of the rats. The biophysical properties of the total serum proteins were studied through measuring their dielectric relaxation and the electric conductivity in the frequency range 0.1→5 MHz at 4 degree C. The absorption spectra of the extracted total serum protein were also measured. The results indicated that there are pronounced changes in the molecular constructions of the total serum protein such as the molecular radii, shape, the relaxation time and dielectric increment for the rats injected with unirradiated venom but for the rats injected with irradiated venom (3x10 8 n/cm 2 ) corresponding values approach the control value. These changes in the molecular constructions of the total serum protein indicate changes in its biochemical properties. This fact was revealed in a previous work, where the irradiation with the fast neutrons were found to decrease the toxicity of the venom

  18. Study on color difference estimation method of medicine biochemical analysis

    Science.gov (United States)

    Wang, Chunhong; Zhou, Yue; Zhao, Hongxia; Sun, Jiashi; Zhou, Fengkun

    2006-01-01

    The biochemical analysis in medicine is an important inspection and diagnosis method in hospital clinic. The biochemical analysis of urine is one important item. The Urine test paper shows corresponding color with different detection project or different illness degree. The color difference between the standard threshold and the test paper color of urine can be used to judge the illness degree, so that further analysis and diagnosis to urine is gotten. The color is a three-dimensional physical variable concerning psychology, while reflectance is one-dimensional variable; therefore, the estimation method of color difference in urine test can have better precision and facility than the conventional test method with one-dimensional reflectance, it can make an accurate diagnose. The digital camera is easy to take an image of urine test paper and is used to carry out the urine biochemical analysis conveniently. On the experiment, the color image of urine test paper is taken by popular color digital camera and saved in the computer which installs a simple color space conversion (RGB -> XYZ -> L *a *b *)and the calculation software. Test sample is graded according to intelligent detection of quantitative color. The images taken every time were saved in computer, and the whole illness process will be monitored. This method can also use in other medicine biochemical analyses that have relation with color. Experiment result shows that this test method is quick and accurate; it can be used in hospital, calibrating organization and family, so its application prospect is extensive.

  19. Biophysical risks to carbon sequestration and storage in Australian drylands.

    Science.gov (United States)

    Nolan, Rachael H; Sinclair, Jennifer; Eldridge, David J; Ramp, Daniel

    2018-02-15

    Carbon abatement schemes that reduce land clearing and promote revegetation are now an important component of climate change policy globally. There is considerable potential for these schemes to operate in drylands which are spatially extensive. However, projects in these environments risk failure through unplanned release of stored carbon to the atmosphere. In this review, we identify factors that may adversely affect the success of vegetation-based carbon abatement projects in dryland ecosystems, evaluate their likelihood of occurrence, and estimate the potential consequences for carbon storage and sequestration. We also evaluate management strategies to reduce risks posed to these carbon abatement projects. Identified risks were primarily disturbances, including unplanned fire, drought, and grazing. Revegetation projects also risk recruitment failure, thereby failing to reach projected rates of sequestration. Many of these risks are dependent on rainfall, which is highly variable in drylands and susceptible to further variation under climate change. Resprouting vegetation is likely to be less vulnerable to disturbance and have faster recovery rates upon release from disturbance. We conclude that there is a strong impetus for identifying management strategies and risk reduction mechanisms for carbon abatement projects. Risk mitigation would be enhanced by effective co-ordination of mitigation strategies at scales larger than individual abatement project boundaries, and by implementing risk assessment throughout project planning and implementation stages. Reduction of risk is vital for maximising carbon sequestration of individual projects and for reducing barriers to the establishment of new projects entering the market. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Novel biophysical determination of miRNAs related to prostate and head and neck cancers

    Czech Academy of Sciences Publication Activity Database

    Hudcová, K.; Trnková, L.; Kejnovská, Iva; Vorlíčková, Michaela; Gumulec, J.; Kizek, R.; Masarik, M.

    2015-01-01

    Roč. 44, č. 3 (2015), s. 131-138 ISSN 0175-7571 Institutional support: RVO:68081707 Keywords : SQUAMOUS-CELL CARCINOMA * ELIMINATION VOLTAMMETRY * CYTOSINE SIGNALS Subject RIV: BO - Biophysics Impact factor: 1.444, year: 2015

  1. LBA-ECO ND-01 Reflectance and Biophysical Measures, Grass Pastures: Rondonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides the results of spectral reflectance (350 to 2,500 nm at 1-nm increments) and biophysical measurements on grass pastures in eight...

  2. Biophysical properties of membrane lipids of anammox bacteria : I. Ladderane phospholipids form highly organized fluid membranes

    NARCIS (Netherlands)

    Boumann, Henry A.; Longo, Marjorie L.; Stroeve, Pieter; Poolman, Bert; Hopmans, Ellen C.; Stuart, Marc C. A.; Damste, Jaap S. Sinninghe; Schouten, Stefan

    Anammox bacteria that are capable of anaerobically oxidizing ammonium (anammox) with nitrite to nitrogen gas produce unique membrane phospholipids that comprise hydrocarbon chains with three or five linearly condensed cyclobutane rings. To gain insight into the biophysical properties of these

  3. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    NARCIS (Netherlands)

    Denning, Denise; Roos, Wouter H

    2016-01-01

    The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a

  4. A Biophysical Model of CRISPR/Cas9 Activity for Rational Design of Genome Editing and Gene Regulation

    Science.gov (United States)

    Farasat, Iman; Salis, Howard M.

    2016-01-01

    The ability to precisely modify genomes and regulate specific genes will greatly accelerate several medical and engineering applications. The CRISPR/Cas9 (Type II) system binds and cuts DNA using guide RNAs, though the variables that control its on-target and off-target activity remain poorly characterized. Here, we develop and parameterize a system-wide biophysical model of Cas9-based genome editing and gene regulation to predict how changing guide RNA sequences, DNA superhelical densities, Cas9 and crRNA expression levels, organisms and growth conditions, and experimental conditions collectively control the dynamics of dCas9-based binding and Cas9-based cleavage at all DNA sites with both canonical and non-canonical PAMs. We combine statistical thermodynamics and kinetics to model Cas9:crRNA complex formation, diffusion, site selection, reversible R-loop formation, and cleavage, using large amounts of structural, biochemical, expression, and next-generation sequencing data to determine kinetic parameters and develop free energy models. Our results identify DNA supercoiling as a novel mechanism controlling Cas9 binding. Using the model, we predict Cas9 off-target binding frequencies across the lambdaphage and human genomes, and explain why Cas9’s off-target activity can be so high. With this improved understanding, we propose several rules for designing experiments for minimizing off-target activity. We also discuss the implications for engineering dCas9-based genetic circuits. PMID:26824432

  5. “Exosomics”—A Review of Biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk

    Directory of Open Access Journals (Sweden)

    Carolina de la Torre Gomez

    2018-03-01

    Full Text Available Exosomes are biomolecular nanostructures released from cells. They carry specific biomolecular information and are mainly researched for their exquisite properties as a biomarker source and delivery system. We introduce exosomes in the context of other extracellular vesicles, describe their biophysical isolation and characterisation and discuss their biochemical profiling. Motivated by our interest in early-life nutrition and health, and corresponding studies enrolling lactating mothers and their infants, we zoom into exosomes derived from human breast milk. We argue that these should be more extensively studied at proteomic and micronutrient profiling level, because breast milk exosomes provide a more specific window into breast milk quality from an immunological (proteomics and nutritional (micronutrient perspective. Such enhanced breast milk exosome profiling would thereby complement and enrich the more classical whole breast milk analysis and is expected to deliver more functional insights than the rather descriptive analysis of human milk, or larger fractions thereof, such as milk fat globule membrane. We substantiate our arguments by a bioinformatic analysis of two published proteomic data sets of human breast milk exosomes.

  6. High-field 1H NMR microscopy for fundamental biophysical research

    International Nuclear Information System (INIS)

    Haddad, D.

    2003-01-01

    This work has a biophysical background and uses different examples to demonstrate the practical applicability of NMR-Microscopy in the medical and biological sector. Therefore, the different projects are feasibility studies which are used to compare the possibilities and advantages of NMR-Microscopy with other, established examination techniques. In detail, using MR-Microscopy, different living and fixed biological samples have been visualized non-invasively with high spatial resolution. The specific purpose of the studies ranged from the visualization of the invasion of tumor-spheroids into cell aggregates using T2 parameter maps (time constant of the spin-spin relaxation) to the three-dimensional display of the honey bee brain in the intact head capsule and the non-invasive visualization of the anatomy of prenatal dolphins. For all these projects, the non-invasive character of MR-experiments was of utmost importance. The tumor invasion was not to be disturbed by the measurements, the bee brain should be visualized as close to its true natural shape as possible and the examined dolphins represent rare museum specimens which should not be destroyed. The different samples were all imaged with the best possible spatial resolution which was either limited by the necessary signal-to-noise ratio (SNR) or the available scan time. In order to resolve single details and fine structures in the images, it was necessary to optimize the SNR as well as the contrast-to-noise ratio. To guarantee the necessary SNR, the measurements were performed on high field MR-spectrometers with resonance frequencies of 500 and 750 MHz

  7. A Method Sustaining the Bioelectric, Biophysical, and Bioenergetic Function of Cultured Rabbit Atrial Cells

    OpenAIRE

    Noa Kirschner Peretz; Sofia Segal; Limor Arbel-Ganon; Ronen Ben Jehuda; Ronen Ben Jehuda; Yuval Shemer; Yuval Shemer; Binyamin Eisen; Binyamin Eisen; Moran Davoodi; Ofer Binah; Ofer Binah; Yael Yaniv

    2017-01-01

    Culturing atrial cells leads to a loss in their ability to be externally paced at physiological rates and to maintain their shape. We aim to develop a culture method that sustains the shape of atrial cells along with their biophysical and bioenergetic properties in response to physiological pacing. We hypothesize that adding 2,3-Butanedione 2-monoxime (BDM), which inhibits contraction during the culture period, will preserve these biophysical and bioenergetic properties. Rabbit atrial cells w...

  8. Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease

    OpenAIRE

    Hosseini, Poorya; Abidi, Sabia Z.; Du, E; Papageorgiou, Dimitrios P.; Choi, Youngwoon; Park, YongKeun; Higgins, John M.; Kato, Gregory J.; Suresh, Subra; Dao, Ming; Yaqoob, Zahid; So, Peter T. C.

    2016-01-01

    There exists a critical need for developing biomarkers reflecting clinical outcomes and for evaluating the effectiveness of treatments for sickle cell disease patients. Prior attempts to find such patient-specific markers have mostly relied upon chemical biomarkers or biophysical properties at hypoxia with limited success. We introduce unique biomarkers based on characterization of cellular biophysical properties at normoxia and show that these markers correlate sensitively with treatment usi...

  9. Sonographic biophysical profile in detection of foetal hypoxia in 100 cases of suspected high risk pregnancy

    International Nuclear Information System (INIS)

    Ullah, N.; Khan, A.R.; Usman, M.

    2010-01-01

    Background: The foetus has become increasingly accessible and visible as a patient over the last two decades. Ultrasound imaging has broadened the scope of foetal assessment. Dynamic real time B-Mode ultrasound is used to monitor cluster of biophysical variables, both dynamic and static collectively termed as biophysical profile. The purpose of this study was to determine the effect of sonographic biophysical profile score on perinatal outcome in terms of mortality and morbidity. Methods: This descriptive study was carried on 100 randomly select ed high risk pregnant patients in Radiology Department PGMI, Government Lady Reading Hospital, Peshawar from December 2007 to June 2008. Manning biophysical profile including non-stress was employed for foetal screening, using Toshiba ultrasound machine model Nemio SSA-550A and 7.5 MHZ probe. Results: Out of 100 cases 79 (79%) had a normal biophysical profile in the last scan of 10/10 and had a normal perinatal outcome with 5 minutes Apgar score >7/10. In 13 (13%) cases Apgar score at 5 minute was < 7/10 and babies were shifted to nursery. There were 2 (2%) false positive cases that showed abnormal biophysical profile scores of 6/10 but babies were born with an Apgar score of 8/10 at 5 minutes. There were 2 (2%) neonatal deaths in this study group. The sensitivity of biophysical profile was 79.1%, specificity 92.9%. Predictive value for a positive test was 98.55%; predictive value for a negative test was 41.93%. Conclusion: Biophysical profile is highly accurate and reliable test of diagnosing foetal hypoxia. (author)

  10. Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria.

    Science.gov (United States)

    Boda, Sunil Kumar; Basu, Bikramjit

    2017-10-01

    A plethora of antimicrobial strategies are being developed to address prosthetic infection. The currently available methods for implant infection treatment include the use of antibiotics and revision surgery. Among the bacterial strains, Staphylococcus species pose significant challenges particularly, with regard to hospital acquired infections. In order to combat such life threatening infectious diseases, researchers have developed implantable biomaterials incorporating nanoparticles, antimicrobial reinforcements, surface coatings, slippery/non-adhesive and contact killing surfaces. This review discusses a few of the biomaterial and biophysical antimicrobial strategies, which are in the developmental stage and actively being pursued by several research groups. The clinical efficacy of biophysical stimulation methods such as ultrasound, electric and magnetic field treatments against prosthetic infection depends critically on the stimulation protocol and parameters of the treatment modality. A common thread among the three biophysical stimulation methods is the mechanism of bactericidal action, which is centered on biophysical rupture of bacterial membranes, the generation of reactive oxygen species (ROS) and bacterial membrane depolarization evoked by the interference of essential ion-transport. Although the extent of antimicrobial effect, normally achieved through biophysical stimulation protocol is insufficient to warrant therapeutic application, a combination of antibiotic/ROS inducing agents and biophysical stimulation methods can elicit a clinically relevant reduction in viable bacterial numbers. In this review, we present a detailed account of both the biomaterial and biophysical approaches for achieving maximum bacterial inactivation. Summarizing, the biophysical stimulation methods in a combinatorial manner with material based strategies can be a more potent solution to control bacterial infections. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B

  11. Time-resolved biophysical approaches to nucleocytoplasmic transport

    Directory of Open Access Journals (Sweden)

    Francesco Cardarelli

    Full Text Available Molecules are continuously shuttling across the nuclear envelope barrier that separates the nucleus from the cytoplasm. Instead of being just a barrier to diffusion, the nuclear envelope is rather a complex filter that provides eukaryotes with an elaborate spatiotemporal regulation of fundamental molecular processes, such as gene expression and protein translation. Given the highly dynamic nature of nucleocytoplasmic transport, during the past few decades large efforts were devoted to the development and application of time resolved, fluorescence-based, biophysical methods to capture the details of molecular motion across the nuclear envelope. These methods are here divided into three major classes, according to the differences in the way they report on the molecular process of nucleocytoplasmic transport. In detail, the first class encompasses those methods based on the perturbation of the fluorescence signal, also known as ensemble-averaging methods, which average the behavior of many molecules (across many pores. The second class comprises those methods based on the localization of single fluorescently-labelled molecules and tracking of their position in space and time, potentially across single pores. Finally, the third class encompasses methods based on the statistical analysis of spontaneous fluorescence fluctuations out of the equilibrium or stationary state of the system. In this case, the behavior of single molecules is probed in presence of many similarly-labelled molecules, without dwelling on any of them. Here these three classes, with their respective pros and cons as well as their main applications to nucleocytoplasmic shuttling will be briefly reviewed and discussed. Keywords: Fluorescence recovery after photobleaching, Single particle tracking, Fluorescence correlation spectroscopy, Diffusion, Transport, GFP, Nuclear pore complex, Live cell, Confocal microscopy

  12. The Colorado Plateau II: biophysical, socioeconomic, and cultural research

    Science.gov (United States)

    Mattson, David J.; van Riper, Charles

    2005-01-01

    The publication of The Colorado Plateau: Cultural, Biological, and Physical Research in 2004 marked a timely summation of current research in the Four Corners states. This new volume, derived from the seventh Biennial Conference on the Colorado Plateau in 2003, complements the previous book by focusing on the integration of science into resource management issues. The 32 chapters range in content from measuring human impacts on cultural resources, through grazing and the wildland-urban interface issues, to parameters of climate change on the Plateau. The book also introduces economic perspectives by considering shifting patterns and regional disparities in the Colorado Plateau economy. A series of chapters on mountain lions explores the human-wildland interface. These chapters deal with the entire spectrum of challenges associated with managing this large mammal species in Arizona and on the Colorado Plateau, conveying a wealth of timely information of interest to wildlife managers and enthusiasts. Another provocative set of chapters on biophysical resources explores the management of forest restoration, from the micro scale all the way up to large-scale GIS analyses of ponderosa pine ecosystems on the Colorado Plateau. Given recent concerns for forest health in the wake of fires, severe drought, and bark-beetle infestation, these chapters will prove enlightening for forest service, park service, and land management professionals at both the federal and state level, as well as general readers interested in how forest management practices will ultimately affect their recreation activities. With broad coverage that touches on topics as diverse as movement patterns of rattlesnakes, calculating watersheds, and rescuing looted rockshelters, this volume stands as a compendium of cutting-edge research on the Colorado Plateau that offers a wealth of insights for many scholars.

  13. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities.

    Science.gov (United States)

    Bardhan, Jaydeep P

    2013-12-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

  14. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities

    Science.gov (United States)

    Bardhan, Jaydeep P.

    2014-01-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics. PMID:25505358

  15. Gradient models in molecular biophysics: progress, challenges, opportunities

    Science.gov (United States)

    Bardhan, Jaydeep P.

    2013-12-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g., molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding nonlocal dielectric response. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain, and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost 40 years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The review concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

  16. Electron paramagnetic resonance biophysical radiation dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Khan, Rao F.H.

    2003-01-01

    This thesis deals with the advancements made in the field of Electron Paramagnetic Resonance (EPR) for biophysical dosimetry with tooth enamel for accident, emergency, and retrospective radiation dose reconstruction. A methodology has been developed to measure retrospective radiation exposures in human tooth enamel. This entails novel sample preparation procedures with minimum mechanical treatment to reduce the preparation induced uncertainties, establish optimum measurement conditions inside the EPR cavity, post-process the measured spectrum with functional simulation of dosimetric and other interfering signals, and reconstruct dose. By using this technique, retrospective gamma exposures as low as 80±30 mGy have been successfully deciphered. The notion of dose modifier was introduced in EPR biodosimetry for low dose measurements. It has been demonstrated that by using the modified zero added dose (MZAD) technique for low radiation exposures, doses in 100 mGy ranges can be easily reconstructed in teeth that were previously thought useless for EPR dosimetry. Also, the use of a dose modifier makes robust dose reconstruction possible for higher radiation exposures. The EPR dosimetry technique was also developed for tooth samples extracted from rodents, which represent small tooth sizing. EPR doses in the molars, extracted from the mice irradiated with whole body exposures, were reassessed and shown to be correct within the experimental uncertainty. The sensitivity of human tooth enamel for neutron irradiation, obtained from the 3 MV McMaster K.N. Van de Graaff accelerator, was also studied. For the first time this work has shown that the neutron sensitivity of the tooth enamel is approximately 1/10th of the equivalent gamma sensitivity. Parametric studies for neutron dose rate and neutron energy within the available range of the accelerator, showed no impact on the sensitivity of the tooth enamel. Therefore, tooth enamel can be used as a dosimeter for both neutrons

  17. Derivation of global vegetation biophysical parameters from EUMETSAT Polar System

    Science.gov (United States)

    García-Haro, Francisco Javier; Campos-Taberner, Manuel; Muñoz-Marí, Jordi; Laparra, Valero; Camacho, Fernando; Sánchez-Zapero, Jorge; Camps-Valls, Gustau

    2018-05-01

    This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological-Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key parameters for a wide range of land-biosphere applications. The algorithm is based on a hybrid approach that blends the generalization capabilities offered by physical radiative transfer models with the accuracy and computational efficiency of machine learning methods. One major feature is the implementation of multi-output retrieval methods able to jointly and more consistently estimate all the biophysical parameters at the same time. We propose a multi-output Gaussian process regression (GPRmulti), which outperforms other considered methods over PROSAIL (coupling of PROSPECT and SAIL (Scattering by Arbitrary Inclined Leaves) radiative transfer models) EPS simulations. The global EPS products include uncertainty estimates taking into account the uncertainty captured by the retrieval method and input errors propagation. A sensitivity analysis is performed to assess several sources of uncertainties in retrievals and maximize the positive impact of modeling the noise in training simulations. The paper discusses initial validation studies and provides details about the characteristics and overall quality of the products, which can be of interest to assist the successful use of the data by a broad user's community. The consistent generation and distribution of the EPS vegetation products will

  18. Biophysical-and socioeconomic aspects of land degradation in the Guadalentin (SE-Spain): towards understanding and effective soil conservation

    International Nuclear Information System (INIS)

    Vente, J. de; Sole-Benet, A.; Boix-Fayos, C.; Nainggolan, D.; Romero-Diaz, A.

    2009-01-01

    Desertification and land degradation have been widely studied in the Guadalentin basin (SE Spain) through various national and international research projects. Most important identified degradation types are due to soil erosion, soil surface crusting, aridity, soil organic matter decline and salinisation. On the one hand, political and socioeconomic drivers have caused important land use and management changes, which have formed an important driver for further land degradation. On the other hand, soil conservation practice were initiated by the government and by individual land users, although there is very limited knowledge on their effectiveness. the objective of this work is to provide and overview of previous studies that addressed land degradation in the Guadalentin and to present an integrated synthesis of the main biophysical and socioeconomic factors identifies in these studies as being responsible for land degradation, with a focus on feasible soil conservation strategies. (Author) 18 refs.

  19. Biophysical-and socioeconomic aspects of land degradation in the Guadalentin (SE-Spain): towards understanding and effective soil conservation

    Energy Technology Data Exchange (ETDEWEB)

    Vente, J. de; Sole-Benet, A.; Boix-Fayos, C.; Nainggolan, D.; Romero-Diaz, A.

    2009-07-01

    Desertification and land degradation have been widely studied in the Guadalentin basin (SE Spain) through various national and international research projects. Most important identified degradation types are due to soil erosion, soil surface crusting, aridity, soil organic matter decline and salinisation. On the one hand, political and socioeconomic drivers have caused important land use and management changes, which have formed an important driver for further land degradation. On the other hand, soil conservation practice were initiated by the government and by individual land users, although there is very limited knowledge on their effectiveness. the objective of this work is to provide and overview of previous studies that addressed land degradation in the Guadalentin and to present an integrated synthesis of the main biophysical and socioeconomic factors identifies in these studies as being responsible for land degradation, with a focus on feasible soil conservation strategies. (Author) 18 refs.

  20. Temporal analysis of vegetation indices related to biophysical parameters using Sentinel 2A images to estimate maize production

    Science.gov (United States)

    Macedo, Lucas Saran; Kawakubo, Fernando Shinji

    2017-10-01

    Agricultural production is one of the most important Brazilian economic activities accounting for about 21,5% of total Gross Domestic Product. In this scenario, the use of satellite images for estimating biophysical parameters along the phenological development of agricultural crops allows the conclusion about the sanity of planting and helps the projection on design production trends. The objective of this study is to analyze the temporal patterns and variation of six vegetion indexes obtained from the bands of Sentinel 2A satellite, associated with greenness (NDVI and ClRE), senescence (mARI and PSRI) and water content (DSWI and NDWI) to estimate maize production. The temporal pattern of the indices was analyzed in function of productivity data collected in-situ. The results obtained evidenced the importance of the SWIR and Red Edge ranges with Pearson correlation values of the temporal mean for NDWI 0.88 and 0.76 for CLRE.

  1. Biophysical impacts of climate-smart agriculture in the Midwest United States.

    Science.gov (United States)

    Bagley, Justin E; Miller, Jesse; Bernacchi, Carl J

    2015-09-01

    The potential impacts of climate change in the Midwest United States present unprecedented challenges to regional agriculture. In response to these challenges, a variety of climate-smart agricultural methodologies have been proposed to retain or improve crop yields, reduce agricultural greenhouse gas emissions, retain soil quality and increase climate resilience of agricultural systems. One component that is commonly neglected when assessing the environmental impacts of climate-smart agriculture is the biophysical impacts, where changes in ecosystem fluxes and storage of moisture and energy lead to perturbations in local climate and water availability. Using a combination of observational data and an agroecosystem model, a series of climate-smart agricultural scenarios were assessed to determine the biophysical impacts these techniques have in the Midwest United States. The first scenario extended the growing season for existing crops using future temperature and CO2 concentrations. The second scenario examined the biophysical impacts of no-till agriculture and the impacts of annually retaining crop debris. Finally, the third scenario evaluated the potential impacts that the adoption of perennial cultivars had on biophysical quantities. Each of these scenarios was found to have significant biophysical impacts. However, the timing and magnitude of the biophysical impacts differed between scenarios. © 2014 John Wiley & Sons Ltd.

  2. Biochemical nature of Russell Bodies.

    Science.gov (United States)

    Mossuto, Maria Francesca; Ami, Diletta; Anelli, Tiziana; Fagioli, Claudio; Doglia, Silvia Maria; Sitia, Roberto

    2015-07-30

    Professional secretory cells produce and release abundant proteins. Particularly in case of mutations and/or insufficient chaperoning, these can aggregate and become toxic within or amongst cells. Immunoglobulins (Ig) are no exception. In the extracellular space, certain Ig-L chains form fibrils causing systemic amyloidosis. On the other hand, Ig variants lacking the first constant domain condense in dilated cisternae of the early secretory compartment, called Russell Bodies (RB), frequently observed in plasma cell dyscrasias, autoimmune diseases and chronic infections. RB biogenesis can be recapitulated in lymphoid and non-lymphoid cells by expressing mutant Ig-μ, providing powerful models to investigate the pathophysiology of endoplasmic reticulum storage disorders. Here we analyze the aggregation propensity and the biochemical features of the intra- and extra-cellular Ig deposits in human cells, revealing β-aggregated features for RB.

  3. Biochemical Markers in Neurocritical Care

    Directory of Open Access Journals (Sweden)

    Omidvar Rezae

    2016-07-01

    Full Text Available During the past two decades, a variety of serum or cerebrospinal fluid (CSF biochemical markers in daily clinical practice have been recommended to diagnose and monitor diverse diseases or pathologic situations. It will be essential to develop a panel of biomarkers, to be suitable for evaluation of treatment efficacy, representing distinct phases of injury and recovery and consider the temporal profile of those. Among the possible and different biochemical markers, S100b appeared to fulfill many of optimized criteria of an ideal marker. S100b, a cytosolic low molecular weight dimeric calciumbinding protein from chromosome 21, synthesized in glial cells throughout the CNS, an homodimeric diffusible, belongs to a family of closely related protein, predominantly expressed by astrocytes and Schwann cells and a classic immunohistochemical marker for these cells, is implicated in brain development and neurophysiology. Of the 3 isoforms of S-100, the BB subunit (S100B is present in high concentrations in central and peripheral glial and Schwann cells, Langerhans and anterior pituitary cells, fat, muscle, and bone marrow tissues. The biomarker has shown to be a sensitive marker of clinical and subclinical cerebral damage, such as stroke, traumatic brain injury, and spinal cord injury. Increasing evidence suggests that the biomarker plays a double function as an intracellular regulator and an extracellular signal of the CNS. S100b is found in the cytoplasm in a soluble form and also is associated with intracellular membranes, centrosomes, microtubules, and type III intermediate filaments. Their genomic organization now is known, and many of their target proteins have been identified, although the mechanisms of regulating S100b secretion are not completely understood and appear to be related to many factors, such as the proinflammatory cytokines, tumor necrosis factor alpha (TNF-a, interleukin (IL-1b, and metabolic stress. 

  4. Voltage-Sensitive Ion Channels Biophysics of Molecular Excitability

    CERN Document Server

    Leuchtag, H. Richard

    2008-01-01

    Voltage-sensitive ion channels are macromolecules embedded in the membranes of nerve and muscle fibers of animals. Because of their physiological functions, biochemical structures and electrical switching properties, they are at an intersection of biology, chemistry and physics. Despite decades of intensive research under the traditional approach of gated structural pores, the relation between the structure of these molecules and their function remains enigmatic. This book critically examines physically oriented approaches not covered in other ion-channel books. It looks at optical and thermal as well as electrical data, and at studies in the frequency domain as well as in the time domain. Rather than presenting the reader with only an option of mechanistic models at an inappropriate pseudo-macroscopic scale, it emphasizes concepts established in organic chemistry and condensed state physics. The book’s approach to the understanding of these unique structures breaks with the unproven view of ion channels as...

  5. The Multistream Self: Biophysical, Mental, Social, and Existential

    Directory of Open Access Journals (Sweden)

    Vinod D. Deshmukh

    2008-01-01

    Full Text Available Self is difficult to define because of its multiple, constitutive streams of functional existence. A more comprehensive and expanded definition of self is proposed. The standard bio-psycho-social model of psyche is expanded to biophysical-mental-social and existential self. The total human experience is better understood and explained by adding the existential component. Existential refers to lived human experience, which is firmly rooted in reality. Existential living is the capacity to live fully in the present, and respond freely and flexibly to new experience without fear. Four common fears of isolation, insecurity, insignificance, and death can be overcome by developing a lifestyle of whole-hearted engagement in the present reality, creative problem solving, self-actualization, and altruism. Such integrative living creates a sense of presence with self-awareness, understanding, and existential well-being. Well-being is defined as a life of happiness, contentment, low distress, and good health with positive outlook. Self is a complex, integrative process of living organisms. It organizes, coordinates, and integrates energy-information within and around itself, spontaneously, unconsciously, and consciously. Self-process is understood in terms of synergetics, coordination dynamics, and energy-information–directed self-organization. It is dynamic, composite, ever renewing, and enduring. It can be convergent or divergent, and can function as the source or target of its own behavior-mentation. The experience of self is continuously generated by spontaneous activation of neural networks in the cerebral neocortex by the brainstem-diencephalic arousal system. The multiple constitutive behavioral-mental streams develop concurrently into a unique experience of self, specific for a person at his/her developmental stage. The chronological neuro-behavioral-mental development of self is described in detail from embryonic stage to old age. Self can be

  6. Replacing natural wetlands with stormwater management facilities: Biophysical and perceived social values.

    Science.gov (United States)

    Rooney, R C; Foote, L; Krogman, N; Pattison, J K; Wilson, M J; Bayley, S E

    2015-04-15

    Urban expansion replaces wetlands of natural origin with artificial stormwater management facilities. The literature suggests that efforts to mimic natural wetlands in the design of stormwater facilities can expand the provision of ecosystem services. Policy developments seek to capitalize on these improvements, encouraging developers to build stormwater wetlands in place of stormwater ponds; however, few have compared the biophysical values and social perceptions of these created wetlands to those of the natural wetlands they are replacing. We compared four types of wetlands: natural references sites, natural wetlands impacted by agriculture, created stormwater wetlands, and created stormwater ponds. We anticipated that they would exhibit a gradient in biodiversity, ecological integrity, chemical and hydrologic stress. We further anticipated that perceived values would mirror measured biophysical values. We found higher biophysical values associated with wetlands of natural origin (both reference and agriculturally impacted). The biophysical values of stormwater wetlands and stormwater ponds were lower and indistinguishable from one another. The perceived wetland values assessed by the public differed from the observed biophysical values. This has important policy implications, as the public are not likely to perceive the loss of values associated with the replacement of natural wetlands with created stormwater management facilities. We conclude that 1) agriculturally impacted wetlands provide biophysical values equivalent to those of natural wetlands, meaning that land use alone is not a great predictor of wetland value; 2) stormwater wetlands are not a substantive improvement over stormwater ponds, relative to wetlands of natural origin; 3) stormwater wetlands are poor mimics of natural wetlands, likely due to fundamental distinctions in terms of basin morphology, temporal variation in hydrology, ground water connectivity, and landscape position; 4) these

  7. Prevalence of biochemical and immunological abnormalities in ...

    African Journals Online (AJOL)

    Tile prevalence of biochemical and immunological abnormalities was studied in a group of 256 patients with rheumatoid arthritis (104 coloureds, 100 whites and 52 blacks). The most common biochemical abnormalities detected were a reduction in the serum creatinine value (43,4%), raised globulins (39,7%), raised serum ...

  8. Towards biochemically relevant QM computations on nucleic acids: controlled electronic structure geometry optimization of nucleic acid structural motifs using penalty restraint functions

    Czech Academy of Sciences Publication Activity Database

    Kruse, H.; Šponer, Jiří

    2015-01-01

    Roč. 17, č. 2 (2015), s. 1399-1410 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GBP305/12/G034 Keywords : QUANTUM-CHEMICAL COMPUTATIONS * SUGAR -PHOSPHATE BACKBONE * B-DNA Subject RIV: BO - Biophysics Impact factor: 4.449, year: 2015

  9. Organic and biochemical synthesis group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Stable isotopes, because of their unique properties and non-radioactive nature, have great potential for many fields of science and technology. In particular, isotopes of carbon, nitrogen, oxygen, and sulfur (the basic building blocks of all biological molecules) would be widely used in biomedical and environmental research if they were economically available in sufficient quantities and in the required chemical forms. The major objective of our program continues to be stimulation of the widespread utilization of stable isotopes and commercial involvement through development and demonstration of applications which have potential requirements for large quantities of isotopes. Thus, demand will be created which is necessary for large-scale production of stable isotopes and labeled compounds and concomitant low unit costs. The program continues to produce a variety of labeled materials needed for clinical, biomedical, chemical, and environmental applications which serve as effective demonstrations of unique and advantageous utilization of stable isotopes. Future commercial involvement should benefit, and is a consideration in our research and development, from the technology transfer that can readily be made as a result of our organic and biochemical syntheses and also of various techniques involved in applications

  10. Biophysical basis of low-power-laser effects

    Science.gov (United States)

    Karu, Tiina I.

    1996-06-01

    Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These actions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low-power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Beside explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation for some clinical effects of irradiation, for example the positive

  11. Comparison of biophysical factors influencing on emphysema quantification with low-dose CT

    Science.gov (United States)

    Heo, Chang Yong; Kim, Jong Hyo

    2014-03-01

    Emphysema Index(EI) measurements in MDCT is known to be influenced by various biophysical factors such as total lung volume, and body size. We investigated the association of the four biophysical factors with emphysema index in low-dose MDCT. In particular, we attempted to identify a potentially stronger biophysical factor than total lung volume. A total of 400 low-dose MDCT volumes taken at 120kVp, 40mAs, 1mm thickness, and B30f reconstruction kernel were used. The lungs, airways, and pulmonary vessels were automatically segmented, and two Emphysema Indices, relative area below -950HU(RA950) and 15th percentile(Perc15), were extracted from the segmented lungs. The biophysical factors such as total lung volume(TLV), mode of lung attenuation(ModLA), effective body diameter(EBD), and the water equivalent body diameter(WBD) were estimated from the segmented lung and body area. The association of biophysical factors with emphysema indices were evaluated by correlation coefficients. The mean emphysema indices were 8.3±5.5(%) in RA950, and -930±18(HU) in Perc15. The estimates of biophysical factors were 4.7±1.0(L) in TLV, -901±21(HU) in ModLA, 26.9±2.2(cm) in EBD, and 25.9±2.6(cm) in WBD. The correlation coefficients of biophysical factors with RA950 were 0.73 in TLV, 0.94 in ModLA, 0.31 in EBD, and 0.18 WBD, the ones with Perc15 were 0.74 in TLV, 0.98 in ModLA, 0.29 in EBD, and 0.15 WBD. Study results revealed that two biophysical factors, TLV and ModLA, mostly affects the emphysema indices. In particular, the ModLA exhibited strongest correlation of 0.98 with Perc15, which indicating the ModLA is the most significant confounding biophysical factor in emphysema indices measurement.

  12. Biotic games and cloud experimentation as novel media for biophysics education

    Science.gov (United States)

    Riedel-Kruse, Ingmar; Blikstein, Paulo

    2014-03-01

    First-hand, open-ended experimentation is key for effective formal and informal biophysics education. We developed, tested and assessed multiple new platforms that enable students and children to directly interact with and learn about microscopic biophysical processes: (1) Biotic games that enable local and online play using galvano- and photo-tactic stimulation of micro-swimmers, illustrating concepts such as biased random walks, Low Reynolds number hydrodynamics, and Brownian motion; (2) an undergraduate course where students learn optics, electronics, micro-fluidics, real time image analysis, and instrument control by building biotic games; and (3) a graduate class on the biophysics of multi-cellular systems that contains a cloud experimentation lab enabling students to execute open-ended chemotaxis experiments on slimemolds online, analyze their data, and build biophysical models. Our work aims to generate the equivalent excitement and educational impact for biophysics as robotics and video games have had for mechatronics and computer science, respectively. We also discuss how scaled-up cloud experimentation systems can support MOOCs with true lab components and life-science research in general.

  13. Biochemical markers of lymphocyte maturation

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Kovářů, F.; Kovářů, H.; Fišerová, Anna; Zelníčková, P.; Landa, L.

    2002-01-01

    Roč. 71, č. 4 (2002), s. 283-286 ISSN 0001-7213 R&D Projects: GA ČR GA304/01/0850; GA AV ČR KSK6005114 Keywords : pig * ontogeny * thymus Subject RIV: EE - Microbiology, Virology Impact factor: 0.370, year: 2002

  14. Effect of ambient light on the time needed to complete a fetal biophysical profile: A randomized controlled trial.

    Science.gov (United States)

    Said, Heather M; Gupta, Shweta; Vricella, Laura K; Wand, Katy; Nguyen, Thinh; Gross, Gilad

    2017-10-01

    The objective of this study is to determine whether ambient light serves as a fetal stimulus to decrease the amount of time needed to complete a biophysical profile. This is a randomized controlled trial of singleton gestations undergoing a biophysical profile. Patients were randomized to either ambient light or a darkened room. The primary outcome was the time needed to complete the biophysical profile. Secondary outcomes included total and individual component biophysical profile scores and scores less than 8. A subgroup analysis of different maternal body mass indices was also performed. 357 biophysical profile studies were analyzed. 182 studies were performed with ambient light and 175 were performed in a darkened room. There was no difference in the median time needed to complete the biophysical profile based on exposure to ambient light (6.1min in darkened room versus 6.6min with ambient light; P=0.73). No difference was found in total or individual component biophysical profile scores. Subgroup analysis by maternal body mass index did not demonstrate shorter study times with ambient light exposure in women who were normal weight, overweight or obese. Ambient light exposure did not decrease the time needed to complete the biophysical profile. There was no evidence that ambient light altered fetal behavior observed during the biophysical profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Unexplored biophysical problem of manned flight to Mars

    Science.gov (United States)

    Avakyan, Sergey; Voronin, Nikolai; Kovalenok, Vladimir; Trchounian, Armen

    The presentation discusses so far unexplored biophysical problem of manned flight to the Mars, scheduled for the next decade. In long-term manned space flights on the orbital stations "Salyut-6" Soviet cosmonaut crews under the command of one of the co-authors (cosmonaut V.V. Kovalenok) had repeatedly observed the effect of certain geophysical conditions on the psychological state of each crew. These effects were coinciding with the increased intensity of global illumination in the upper ionosphere space on flight altitudes (300-360 km). It is important that, during all these periods, the geomagnetic pulsation's were completely absent. Previously a new but very important for long interplanetary expeditions problem of psychophysical state of the crew in the absence of alternating electromagnetic fields and radiation, including the ionosphere one, was first raised for evolutionarily adapted humanity. However, up to date, this subject, particularly during the long simulation experiments such as "Mars 500", which eliminates much of their value and contribution to the Mars mission, has almost no attention. Indeed, the obtained results have clearly shown that the cosmonaut crews in orbital flight, even deep one within geomagnetic sphere, might experience severe psychological discomfort, the nature of which is fully defined. This is the appearance of such rather unusual geophysical periods of different durations (from minutes to days) those are in the form of an almost complete lack of geomagnetic pulsations on the Earth. The aim is to confirm the need of considering possible pathological effects of the complete lack of rhythm forming, inherent for terrestrial environment geomagnetic pulsation's on psychological and physical state of the cosmonaut crew. This is important for the preparation and conducting the manned flights beyond the Earth's magnetosphere, particularly to the Mars. The influence of the presence of different types of geomagnetic pulsation's recorded by

  16. Electrophysiological Data and the Biophysical Modelling of Local Cortical Circuits

    Directory of Open Access Journals (Sweden)

    Dimitris Pinotsis

    2014-03-01

    Full Text Available This paper shows how recordings of gamma oscillations – under different experimental conditions or from different subjects – can be combined with a class of population models called neural fields and dynamic causal modeling (DCM to distinguish among alternative hypotheses regarding cortical structure and function. This approach exploits inter-subject variability and trial-specific effects associated with modulations in the peak frequency of gamma oscillations. It draws on the computational power of Bayesian model inversion, when applied to neural field models of cortical dynamics. Bayesian model comparison allows one to adjudicate among different mechanistic hypotheses about cortical excitability, synaptic kinetics and the cardinal topographic features of local cortical circuits. It also provides optimal parameter estimates that quantify neuromodulation and the spatial dispersion of axonal connections or summation of receptive fields in the visual cortex. This paper provides an overview of a family of neural field models that have been recently implemented using the DCM toolbox of the academic freeware Statistical Parametric Mapping (SPM. The SPM software is a popular platform for analyzing neuroimaging data, used by several neuroscience communities worldwide. DCM allows for a formal (Bayesian statistical analysis of cortical network connectivity, based upon realistic biophysical models of brain responses. It is this particular feature of DCM – the unique combination of generative models with optimization techniques based upon (variational Bayesian principles – that furnishes a novel way to characterize functional brain architectures. In particular, it provides answers to questions about how the brain is wired and how it responds to different experimental manipulations. For a review of the general role of neural fields in SPM the reader can consult e.g. see [1]. Neural fields have a long and illustrious history in mathematical

  17. The Colorado Front Range Ecosystem Management Research Project: Accomplishments to date

    Science.gov (United States)

    Brian Kent; Wayne D. Shepperd; Deborah J. Shields

    2000-01-01

    This article briefly describes the goals and objectives for the Colorado Front Range Ecosystem Management Project (FREM). Research under this project has addressed both biophysical and human dimensions problems relating to ecosystem management in the Colorado Front Range. Results of completed work are described, and the status of the ongoing demonstration project at...

  18. The environmental cost in the mining projects; El costo ambiental en los proyectos mineros

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Gaviria Rivera

    1992-07-01

    To evaluate and calculate the mining project, Environmental costs, besides the proper variables concerning the project. It is necessary to incorporate the distinct interrelations among the mining operation with the local and regional biophysics and. socio-economic environments existing in the project's area of influence.

  19. X-Ray structure and biophysical properties of rabbit fibroblast growth factor 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jihun; Blaber, Sachiko I.; Irsigler, Andre; Aspinwall, Eric; Blaber, Michael; (FSU)

    2010-01-14

    The rabbit is an important and de facto animal model in the study of ischemic disease and angiogenic therapy. Additionally, fibroblast growth factor 1 (FGF-1) is emerging as one of the most important growth factors for novel pro-angiogenic and pro-arteriogenic therapy. However, despite its significance, the fundamental biophysical properties of rabbit FGF-1, including its X-ray structure, have never been reported. Here, the cloning, crystallization, X-ray structure and determination of the biophysical properties of rabbit FGF-1 are described. The X-ray structure shows that the amino-acid differences between human and rabbit FGF-1 are solvent-exposed and therefore potentially immunogenic, while the biophysical studies identify differences in thermostability and receptor-binding affinity that distinguish rabbit FGF-1 from human FGF-1.

  20. Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease.

    Science.gov (United States)

    Hosseini, Poorya; Abidi, Sabia Z; Du, E; Papageorgiou, Dimitrios P; Choi, Youngwoon; Park, YongKeun; Higgins, John M; Kato, Gregory J; Suresh, Subra; Dao, Ming; Yaqoob, Zahid; So, Peter T C

    2016-08-23

    Hydroxyurea (HU) has been used clinically to reduce the frequency of painful crisis and the need for blood transfusion in sickle cell disease (SCD) patients. However, the mechanisms underlying such beneficial effects of HU treatment are still not fully understood. Studies have indicated a weak correlation between clinical outcome and molecular markers, and the scientific quest to develop companion biophysical markers have mostly targeted studies of blood properties under hypoxia. Using a common-path interferometric technique, we measure biomechanical and morphological properties of individual red blood cells in SCD patients as a function of cell density, and investigate the correlation of these biophysical properties with drug intake as well as other clinically measured parameters. Our results show that patient-specific HU effects on the cellular biophysical properties are detectable at normoxia, and that these properties are strongly correlated with the clinically measured mean cellular volume rather than fetal hemoglobin level.

  1. Predictive biophysical modeling and understanding of the dynamics of mRNA translation and its evolution

    Science.gov (United States)

    Zur, Hadas; Tuller, Tamir

    2016-01-01

    mRNA translation is the fundamental process of decoding the information encoded in mRNA molecules by the ribosome for the synthesis of proteins. The centrality of this process in various biomedical disciplines such as cell biology, evolution and biotechnology, encouraged the development of dozens of mathematical and computational models of translation in recent years. These models aimed at capturing various biophysical aspects of the process. The objective of this review is to survey these models, focusing on those based and/or validated on real large-scale genomic data. We consider aspects such as the complexity of the models, the biophysical aspects they regard and the predictions they may provide. Furthermore, we survey the central systems biology discoveries reported on their basis. This review demonstrates the fundamental advantages of employing computational biophysical translation models in general, and discusses the relative advantages of the different approaches and the challenges in the field. PMID:27591251

  2. Ultrasound assessment of the fetal biophysical profile: What does an radiologist need to know?

    International Nuclear Information System (INIS)

    Guimaraes Filho, Helio Antonio; Araujo Junior, Edward; Marcondes Machado Nardozza, Luciano; Linhares Dias da Costa, Lavoisier; Fernandes Moron, Antonio; Mattar, Rosiane

    2008-01-01

    Proposed by Frank Manning about 26 years ago, fetal biophysical profile has been incorporated to the propaedeutics of non-invasive fetal well being assessment in high-risk gestations. Despite the existence of other methods for assessing fetal vitality, as Doppler flowmetry, the biophysical profile continues to be important in estimating the risk of hypoxia and perinatal morbimortality for those fetuses. In the present article, the authors review the regulatory mechanisms of fetal biophysical activities, as well as physiological and pathological factors that interfere with them. The main objective of the study is to discuss the present and important aspects of the method, and the practical applications and interpretation of its findings, in order to help radiologists improve their knowledge in this specific area of fetal ultrasonography

  3. Protection of ash (Fraxinus excelsior) trees from ozone injury by ethylenediurea (EDU): Roles of biochemical changes and decreased stomatal conductance in enhancement of growth

    International Nuclear Information System (INIS)

    Paoletti, Elena; Contran, Nicla; Manning, William J.; Castagna, Antonella; Ranieri, Annamaria; Tagliaferro, Francesco

    2008-01-01

    Treatments with ethylenediurea (EDU) protect plants from ozone foliar injury, but the processes underlying this protection are poorly understood. Adult ash trees (Fraxinus excelsior), with or without foliar ozone symptoms in previous years, were treated with EDU at 450 ppm by gravitational trunk infusion in May-September 2005 (32.5 ppm h AOT40). At 30-day intervals, shoot growth, gas exchange, chlorophyll a fluorescence, and water potential were determined. In September, several biochemical parameters were measured. The protective influence of EDU was supported by enhancement in the number of leaflets. EDU did not contribute its nitrogen to leaf tissue as a fertiliser, as determined from lack of difference in foliar N between treatments. Both biochemical (increase in ascorbate-peroxidase and ascorbic acid, and decrease in apoplastic hydrogen peroxide) and biophysical (decrease in stomatal conductance) processes regulated EDU action. As total ascorbic acid increased only in the asymptomatic trees, its role in alleviating O 3 effects on leaf growth and visible injury is controversial. - Both biochemical and biophysical processes may regulate EDU action

  4. Use of passive UAS imaging to measure biophysical parameters in a southern Rocky Mountain subalpine forest

    Science.gov (United States)

    Caldwell, M. K.; Sloan, J.; Mladinich, C. S.; Wessman, C. A.

    2013-12-01

    Unmanned Aerial Systems (UAS) can provide detailed, fine spatial resolution imagery for ecological uses not otherwise obtainable through standard methods. The use of UAS imagery for ecology is a rapidly -evolving field, where the study of forest landscape ecology can be augmented using UAS imagery to scale and validate biophysical data from field measurements to spaceborne observations. High resolution imagery provided by UAS (30 cm2 pixels) offers detailed canopy cover and forest structure data in a time efficient and inexpensive manner. Using a GoPro Hero2 (2 mm focal length) camera mounted in the nose cone of a Raven unmanned system, we collected aerial and thermal data monthly during the summer 2013, over two subalpine forests in the Southern Rocky Mountains in Colorado. These forests are dominated by lodgepole pine (Pinus ponderosae) and have experienced insect-driven (primarily mountain pine beetle; MPB, Dendroctonus ponderosae) mortality. Objectives of this study include observations of forest health variables such as canopy water content (CWC) from thermal imagery and leaf area index (LAI), biomass and forest productivity from the Normalized Difference Vegetation Index (NDVI) from UAS imagery. Observations were, validated with ground measurements. Images were processed using a combination of AgiSoft Photoscan professional software and ENVI remote imaging software. We utilized the software Leaf Area Index Calculator (LAIC) developed by Córcoles et al. (2013) for calculating LAI from digital images and modified to conform to leaf area of needle-leaf trees as in Chen and Cihlar (1996) . LAIC uses a K-means cluster analysis to decipher the RGB levels for each pixel and distinguish between green aboveground vegetation and other materials, and project leaf area per unit of ground surface area (i.e. half total needle surface area per unit area). Preliminary LAIC UAS data shows summer average LAI was 3.8 in the most dense forest stands and 2.95 in less dense

  5. A note on the roles of quantum and mechanical models in social biophysics.

    Science.gov (United States)

    Takahashi, Taiki; Kim, Song-Ju; Naruse, Makoto

    2017-11-01

    Recent advances in the applications of quantum models into various disciplines such as cognitive science, social sciences, economics, and biology witnessed enormous achievements and possible future progress. In this paper, we propose one of the most promising directions in the applications of quantum models: the combination of quantum and mechanical models in social biophysics. The possible resulting discipline may be called as experimental quantum social biophysics and could foster our understandings of the relationships between the society and individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function

    Directory of Open Access Journals (Sweden)

    Magdalena Boer

    2016-02-01

    Full Text Available The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part – stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function.

  7. Biochemical studies of the thermal effects on DNA modifications by the antitumor cisplatin and their repair

    Czech Academy of Sciences Publication Activity Database

    Halámiková, Anna; Vrána, Oldřich; Kašpárková, Jana; Brabec, Viktor

    2007-01-01

    Roč. 8, č. 16 (2007), s. 2008-2015 ISSN 1439-4227 R&D Projects: GA ČR(CZ) GA305/05/2030; GA ČR(CZ) GD204/03/H016; GA ČR(CZ) GA203/05/2032; GA MZd(CZ) NR8562; GA MŠk(CZ) LC06030; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) KAN200200651 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA * ruthenium * cancer Subject RIV: BO - Biophysics Impact factor: 3.446, year: 2007

  8. Biochemical thermodynamics: applications of Mathematica.

    Science.gov (United States)

    Alberty, Robert A

    2006-01-01

    reactants. Thus loading this package makes available 774 mathematical functions for these properties. These functions can be added and subtracted to obtain changes in these properties in biochemical reactions and apparent equilibrium constants.

  9. Morphological, physiological and biochemical studies on Pyricularia ...

    African Journals Online (AJOL)

    SARAH

    2014-02-28

    Feb 28, 2014 ... compounds seem to reflect inherent biochemical and physiological differences among P. grisea isolates .... solutions for imaging and microscopy, soft image system .... characteristics among 12 P. grisea isolates from rice were.

  10. Biochemical changes in blood caused by radioisotopes

    International Nuclear Information System (INIS)

    Zapol'skaya, N.A.; Fedorova, A.V.

    1975-01-01

    The changes were studied occurring in some biochemical indicators in blood at chronic peroral administration of strontium-90, cesium-137 and iodine-131 in amounts resulting in accumulation of commensurable doses in critical organs corresponding to each isotope

  11. Biochemical and kinetic characterization of geranylgeraniol 18 ...

    African Journals Online (AJOL)

    Suchart

    2015-07-22

    Jul 22, 2015 ... biochemical characterization of GGOH 18-hydroxylase activity in the microsomal fraction from C. .... method as previously described (Chanama et al., 2009). Briefly, 30 g of frozen ..... Catalytic properties of the plant cytochrome.

  12. Short Report Biochemical derangements prior to emergency ...

    African Journals Online (AJOL)

    MMJ VOL 29 (1): March 2017. Biochemical derangements prior to emergency laparotomy at QECH 55. Malawi Medical Journal 29 (1): March 2017 ... Venepuncture was performed preoperatively for urgent cases, defined as those requiring.

  13. Raman spectroscopic biochemical mapping of tissues

    Science.gov (United States)

    Stone, Nicholas; Hart Prieto, Maria C.; Kendall, Catherine A.; Shetty, Geeta; Barr, Hugh

    2006-02-01

    Advances in technologies have brought us closer to routine spectroscopic diagnosis of early malignant disease. However, there is still a poor understanding of the carcinogenesis process. For example it is not known whether many cancers follow a logical sequence from dysplasia, to carcinoma in situ, to invasion. Biochemical tissue changes, triggered by genetic mutations, precede morphological and structural changes. These can be probed using Raman or FTIR microspectroscopy and the spectra analysed for biochemical constituents. Local microscopic distribution of various constituents can then be visualised. Raman mapping has been performed on a number of tissues including oesophagus, breast, bladder and prostate. The biochemical constituents have been calculated at each point using basis spectra and least squares analysis. The residual of the least squares fit indicates any unfit spectral components. The biochemical distribution will be compared with the defined histopathological boundaries. The distribution of nucleic acids, glycogen, actin, collagen I, III, IV, lipids and others appear to follow expected patterns.

  14. Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites

    Czech Academy of Sciences Publication Activity Database

    Valentová, Kateřina; Káňová, Kristýna; Di Meo, F.; Pelantová, Helena; Chambers, Christopher S.; Rydlová, Lenka; Petrásková, Lucie; Křenková, Alena; Cvačka, Josef; Trouillas, P.; Křen, Vladimír

    2017-01-01

    Roč. 18, č. 11 (2017), č. článku 2231. E-ISSN 1422-0067 R&D Projects: GA MŠk(CZ) LD15082; GA MŠk LTC17009; GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388971 ; RVO:61388963 Keywords : quercetin * sulfotransferase * metabolites Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.226, year: 2016

  15. [Biochemical diagnostics of fatal opium intoxication].

    Science.gov (United States)

    Papyshev, I P; Astashkina, O G; Tuchik, E S; Nikolaev, B S; Cherniaev, A L

    2013-01-01

    Biochemical diagnostics of fatal opium intoxication remains a topical problem in forensic medical science and practice. We investigated materials obtained in the course of forensic medical expertise of the cases of fatal opium intoxication. The study revealed significant differences between myoglobin levels in blood, urine, myocardium, and skeletal muscles. The proposed approach to biochemical diagnostics of fatal opium intoxication enhances the accuracy and the level of evidence of expert conclusions.

  16. Improving Marine Ecosystem Models with Biochemical Tracers

    Science.gov (United States)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  17. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  18. Biophysical properties of the normal-sized aorta in patients with Marfan syndrome: evaluation with MR flow mapping

    NARCIS (Netherlands)

    Groenink, M.; de Roos, A.; Mulder, B. J.; Verbeeten, B.; Timmermans, J.; Zwinderman, A. H.; Spaan, J. A.; van der Wall, E. E.

    2001-01-01

    PURPOSE: To investigate the feasibility of magnetic resonance (MR) flow mapping in the assessment of aortic biophysical properties in patients with Marfan syndrome and to detect differences in biophysical properties in the normal-sized aorta distal to the aortic root between these patients and

  19. Coupling Biophysical and Socioeconomic Models for Coral Reef Systems in Quintana Roo, Mexican Caribbean

    Directory of Open Access Journals (Sweden)

    Jessica Melbourne-Thomas

    2011-09-01

    Full Text Available Transdisciplinary approaches that consider both socioeconomic and biophysical processes are central to understanding and managing rapid change in coral reef systems worldwide. To date, there have been limited attempts to couple the two sets of processes in dynamic models for coral reefs, and these attempts are confined to reef systems in developed countries. We present an approach to coupling existing biophysical and socioeconomic models for coral reef systems in the Mexican state of Quintana Roo. The biophysical model is multiscale, using dynamic equations to capture local-scale ecological processes on individual reefs, with reefs connected at regional scales by the ocean transport of larval propagules. The agent-based socioeconomic model simulates changes in tourism, fisheries, and urbanization in the Quintana Roo region. Despite differences in the formulation and currencies of the two models, we were able to successfully modify and integrate them to synchronize and define information flows and feedbacks between them. A preliminary evaluation of the coupled model system indicates that the model gives reasonable predictions for fisheries and ecological variables and can be used to examine scenarios for future social-ecological change in Quintana Roo. We provide recommendations for where efforts might usefully be focused in future attempts to integrate models of biophysical and socioeconomic processes, based on the limitations of our coupled system.

  20. Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees.

    Science.gov (United States)

    F.G. Scholz; S.J. Bucci; G. Goldstein; F.C. Meinzer; A.C. Franco; F. Miralles-Wilhelm

    2007-01-01

    Biophysical characteristics of sapwood and outer parenchyma water storage compartments were studied in stems of eight dominant Brazilian Cerrado tree species to assess the impact of differences in tissue capacitance on whole-plant water relations. Both the sapwood and outer parenchyma tissues played an important role in regulation of internal water deficits of Cerrado...

  1. Coupling the biophysical and social dimensions of wildfire risk to improve wildfire mitigation planning

    Science.gov (United States)

    Alan A. Ager; Jeffrey D. Kline; A. Paige Fisher

    2015-01-01

    We describe recent advances in biophysical and social aspects of risk and their potential combined contribution to improve mitigation planning on fire-prone landscapes. The methods and tools provide an improved method for defining the spatial extent of wildfire risk to communities compared to current planning processes. They also propose an expanded role for social...

  2. A multivariate decision tree analysis of biophysical factors in tropical forest fire occurrence

    Science.gov (United States)

    Rey S. Ofren; Edward Harvey

    2000-01-01

    A multivariate decision tree model was used to quantify the relative importance of complex hierarchical relationships between biophysical variables and the occurrence of tropical forest fires. The study site is the Huai Kha Kbaeng wildlife sanctuary, a World Heritage Site in northwestern Thailand where annual fires are common and particularly destructive. Thematic...

  3. Riparian influences on the biophysical characteristics of seston in headwater streams.

    Science.gov (United States)

    Scott R. Elliott; Robert J. Naiman; Peter A. Bisson

    2004-01-01

    Suspended particles (seston) in streams are an important source of nutrition for many invertebrates, forming a strong trophic link between plant and animal production. In forested regions the management of riparian corridors may alter alloehthonous and autochthonous contributions to streams, ultimately changing the biophysical characteristics of seston. This article...

  4. Canopy-scale biophysical controls on transpiration and evaporation in the Amazon Basin

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Trebs, Ivonne; Bøgh, Eva

    2016-01-01

    to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we...

  5. 6th international conference on biophysics and synchrotron radiation. Program/Abstracts

    International Nuclear Information System (INIS)

    Pittroff, Connie; Strasser, Susan Barr

    1999-01-01

    This STI product consists of the Program/Abstracts book that was prepared for the participants in the Sixth International Conference on Biophysics and Synchrotron Radiation that was held August 4-8, 1998, at the Advanced Photon Source, Argonne National Laboratory. This book contains the full conference program and abstracts of the scientific presentations

  6. Biophysical characterization of the proton-coupled oligopeptide transporter YjdL

    DEFF Research Database (Denmark)

    Jensen, Johanne Mørch; Simonsen, Fie C.; Mastali, Amir

    2012-01-01

    significantly different from prototypical POTs such as the human hPepT1. Nonetheless YjdL contains several highly conserved POT residues, which include Glu388 that is located in the putative substrate binding cavity. Here we present biophysical characterization of WT-YjdL and Glu388Gln. Isothermal titration...

  7. Direct Scaling of Leaf-Resolving Biophysical Models from Leaves to Canopies

    Science.gov (United States)

    Bailey, B.; Mahaffee, W.; Hernandez Ochoa, M.

    2017-12-01

    Recent advances in the development of biophysical models and high-performance computing have enabled rapid increases in the level of detail that can be represented by simulations of plant systems. However, increasingly detailed models typically require increasingly detailed inputs, which can be a challenge to accurately specify. In this work, we explore the use of terrestrial LiDAR scanning data to accurately specify geometric inputs for high-resolution biophysical models that enables direct up-scaling of leaf-level biophysical processes. Terrestrial LiDAR scans generate "clouds" of millions of points that map out the geometric structure of the area of interest. However, points alone are often not particularly useful in generating geometric model inputs, as additional data processing techniques are required to provide necessary information regarding vegetation structure. A new method was developed that directly reconstructs as many leaves as possible that are in view of the LiDAR instrument, and uses a statistical backfilling technique to ensure that the overall leaf area and orientation distribution matches that of the actual vegetation being measured. This detailed structural data is used to provide inputs for leaf-resolving models of radiation, microclimate, evapotranspiration, and photosynthesis. Model complexity is afforded by utilizing graphics processing units (GPUs), which allows for simulations that resolve scales ranging from leaves to canopies. The model system was used to explore how heterogeneity in canopy architecture at various scales affects scaling of biophysical processes from leaves to canopies.

  8. 6th international conference on biophysics and synchrotron radiation. Program/Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Pittroff, Connie; Strasser, Susan Barr [lead editors

    1999-08-03

    This STI product consists of the Program/Abstracts book that was prepared for the participants in the Sixth International Conference on Biophysics and Synchrotron Radiation that was held August 4-8, 1998, at the Advanced Photon Source, Argonne National Laboratory. This book contains the full conference program and abstracts of the scientific presentations.

  9. A dataset mapping the potential biophysical effects of vegetation cover change

    Science.gov (United States)

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-02-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.

  10. Winnowing and Flocculation in Bio-physical Cohesive Substrate: A Flume Experimental and Estuarine Study

    Science.gov (United States)

    Ye, L.; Parsons, D. R.; Manning, A. J.

    2016-12-01

    Cohesive sediment, or mud, is ubiquitously found in most aqueous environments, such as coasts and estuaries. The study of cohesive sediment behaviors requires the synchronous description of mutual interactions of grains (e.g., winnowing and flocculation), their physical properties (e.g., grain size) and also the ambient water. Herein, a series of flume experiments (14 runs) with different substrate mixtures of sand-clay-EPS (Extracellular Polymeric Substrates: secreted by aquatic microorganisms) are combined with an estuarine field survey (Dee estuary, NW England) to investigate the behavior of suspensions over bio-physical cohesive substrates. The experimental results indicate that winnowing and flocculation occur pervasively in bio-physical cohesive flow systems. Importantly however, the evolution of the bed and bedform dynamics and hence turbulence production can be lower when cohesivity is high. The estuarine survey also revealed that the bio-physical cohesion provided by both the clay and microorganism fractions in the bed, that pervasively exists in many natural estuarine systems, plays a significant role in controlling the interactions between bed substrate and sediment suspension and deposition, including controlling processes such as sediment winnowing, flocculation and re-deposition. Full understanding of these processes are essential in advancing sediment transport modelling and prediction studies across natural estuarine systems and the work will report on an improved conceptual model for sediment sorting deposition in bio-physical cohesive substrates.

  11. Adjusting policy to institutional, cultural and biophysical context conditions: The case of conservation banking in California

    Science.gov (United States)

    Carsten Mann; James D. Absher

    2013-01-01

    This paper examines the political construction of a policy instrument for matching particular institutional, biophysical and cultural context conditions in a social–ecological system, using the case of conservation banking in California as an example. The guiding research question is: How is policy design negotiated between various actors on its way from early...

  12. Past and Present Biophysical Redundancy of Countries as a Buffer to Changes in Food Supply

    Science.gov (United States)

    Fader, Marianela; Rulli, Maria Cristina; Carr, Joel; Dell' Angelo, Jampel; D' Odorico, Paolo; Gephart, Jessica A.; Kummu, Matti; Magliocca, Nicholas; Porkka, Miina; Prell, Christina; hide

    2016-01-01

    Spatially diverse trends in population growth, climate change, industrialization, urbanization and economic development are expected to change future food supply and demand. These changes may affect the suitability of land for food production, implying elevated risks especially for resource constrained, food-importing countries. We present the evolution of biophysical redundancy for agricultural production at country level, from 1992 to 2012. Biophysical redundancy, defined as unused biotic and abiotic environmental resources, is represented by the potential food production of 'spare land', available water resources (i.e., not already used for human activities), as well as production increases through yield gap closure on cultivated areas and potential agricultural areas. In 2012, the biophysical redundancy of 75 (48) countries, mainly in North Africa, Western Europe, the Middle East and Asia, was insufficient to produce the caloric nutritional needs for at least 50% (25%) of their population during a year. Biophysical redundancy has decreased in the last two decades in 102 out of 155 countries, 11 of these went from high to limited redundancy, and nine of these from limited to very low redundancy. Although the variability of the drivers of change across different countries is high, improvements in yield and population growth have a clear impact on the decreases of redundancy towards the very low redundancy category. We took a more detailed look at countries classified as 'Low Income Economies (LIEs)' since they are particularly vulnerable to domestic or external food supply changes, due to their limited capacity to offset for food supply decreases with higher purchasing power on the international market. Currently, nine LIEs have limited or very low biophysical redundancy. Many of these showed a decrease in redundancy over the last two decades, which is not always linked with improvements in per capita food availability.

  13. An ethnographic study: Becoming a physics expert in a biophysics research group

    Science.gov (United States)

    Rodriguez, Idaykis

    Expertise in physics has been traditionally studied in cognitive science, where physics expertise is understood through the difference between novice and expert problem solving skills. The cognitive perspective of physics experts only create a partial model of physics expertise and does not take into account the development of physics experts in the natural context of research. This dissertation takes a social and cultural perspective of learning through apprenticeship to model the development of physics expertise of physics graduate students in a research group. I use a qualitative methodological approach of an ethnographic case study to observe and video record the common practices of graduate students in their biophysics weekly research group meetings. I recorded notes on observations and conduct interviews with all participants of the biophysics research group for a period of eight months. I apply the theoretical framework of Communities of Practice to distinguish the cultural norms of the group that cultivate physics expert practices. Results indicate that physics expertise is specific to a topic or subfield and it is established through effectively publishing research in the larger biophysics research community. The participant biophysics research group follows a learning trajectory for its students to contribute to research and learn to communicate their research in the larger biophysics community. In this learning trajectory students develop expert member competencies to learn to communicate their research and to learn the standards and trends of research in the larger research community. Findings from this dissertation expand the model of physics expertise beyond the cognitive realm and add the social and cultural nature of physics expertise development. This research also addresses ways to increase physics graduate student success towards their PhD. and decrease the 48% attrition rate of physics graduate students. Cultivating effective research

  14. Past and present biophysical redundancy of countries as a buffer to changes in food supply

    Science.gov (United States)

    Fader, Marianela; Rulli, Maria Cristina; Carr, Joel; Dell'Angelo, Jampel; D'Odorico, Paolo; Gephart, Jessica A.; Kummu, Matti; Magliocca, Nicholas; Porkka, Miina; Prell, Christina; Puma, Michael J.; Ratajczak, Zak; Seekell, David A.; Suweis, Samir; Tavoni, Alessandro

    2016-05-01

    Spatially diverse trends in population growth, climate change, industrialization, urbanization and economic development are expected to change future food supply and demand. These changes may affect the suitability of land for food production, implying elevated risks especially for resource-constrained, food-importing countries. We present the evolution of biophysical redundancy for agricultural production at country level, from 1992 to 2012. Biophysical redundancy, defined as unused biotic and abiotic environmental resources, is represented by the potential food production of ‘spare land’, available water resources (i.e., not already used for human activities), as well as production increases through yield gap closure on cultivated areas and potential agricultural areas. In 2012, the biophysical redundancy of 75 (48) countries, mainly in North Africa, Western Europe, the Middle East and Asia, was insufficient to produce the caloric nutritional needs for at least 50% (25%) of their population during a year. Biophysical redundancy has decreased in the last two decades in 102 out of 155 countries, 11 of these went from high to limited redundancy, and nine of these from limited to very low redundancy. Although the variability of the drivers of change across different countries is high, improvements in yield and population growth have a clear impact on the decreases of redundancy towards the very low redundancy category. We took a more detailed look at countries classified as ‘Low Income Economies (LIEs)’ since they are particularly vulnerable to domestic or external food supply changes, due to their limited capacity to offset for food supply decreases with higher purchasing power on the international market. Currently, nine LIEs have limited or very low biophysical redundancy. Many of these showed a decrease in redundancy over the last two decades, which is not always linked with improvements in per capita food availability.

  15. Selection of Hyperspectral Narrowbands (HNBs) and Composition of Hyperspectral Twoband Vegetation Indices (HVIs) for Biophysical Characterization and Discrimination of Crop Types Using Field Reflectance and Hyperion-EO-1 Data

    Science.gov (United States)

    Thenkabail, Prasad S.; Mariotto, Isabella; Gumma, Murali Krishna; Middleton, Elizabeth M.; Landis, David R.; Huemmrich, K. Fred

    2013-01-01

    The overarching goal of this study was to establish optimal hyperspectral vegetation indices (HVIs) and hyperspectral narrowbands (HNBs) that best characterize, classify, model, and map the world's main agricultural crops. The primary objectives were: (1) crop biophysical modeling through HNBs and HVIs, (2) accuracy assessment of crop type discrimination using Wilks' Lambda through a discriminant model, and (3) meta-analysis to select optimal HNBs and HVIs for applications related to agriculture. The study was conducted using two Earth Observing One (EO-1) Hyperion scenes and other surface hyperspectral data for the eight leading worldwide crops (wheat, corn, rice, barley, soybeans, pulses, cotton, and alfalfa) that occupy approx. 70% of all cropland areas globally. This study integrated data collected from multiple study areas in various agroecosystems of Africa, the Middle East, Central Asia, and India. Data were collected for the eight crop types in six distinct growth stages. These included (a) field spectroradiometer measurements (350-2500 nm) sampled at 1-nm discrete bandwidths, and (b) field biophysical variables (e.g., biomass, leaf area index) acquired to correspond with spectroradiometer measurements. The eight crops were described and classified using approx. 20 HNBs. The accuracy of classifying these 8 crops using HNBs was around 95%, which was approx. 25% better than the multi-spectral results possible from Landsat-7's Enhanced Thematic Mapper+ or EO-1's Advanced Land Imager. Further, based on this research and meta-analysis involving over 100 papers, the study established 33 optimal HNBs and an equal number of specific two-band normalized difference HVIs to best model and study specific biophysical and biochemical quantities of major agricultural crops of the world. Redundant bands identified in this study will help overcome the Hughes Phenomenon (or "the curse of high dimensionality") in hyperspectral data for a particular application (e

  16. Bio-Physical Coupling of Seabirds and Prey with a Dynamic River Plume

    Science.gov (United States)

    Phillips, E. M.; Horne, J. K.; Zamon, J. E.; Adams, J.

    2016-02-01

    Freshwater plumes and plume density fronts are important regions of bio-physical coupling. On the west coast of North America, discharge from the Columbia River into the northern California Current creates a large, dynamic plume and multiple plume fronts. These nutrient-rich, productive waters fuel primary and secondary production, supporting a wide variety of small pelagic prey fish, large populations of Pacific salmon, seabirds, and marine mammals. To determine the influence of the Columbia River plume on marine predators, we analyzed at-sea seabird counts, in situ environmental data, surface trawl densities of prey fish, and acoustic backscatter measurements collected from research vessels in May and June 2010-2012. Concurrent distribution patterns of satellite-tagged sooty shearwaters (Puffinus griseus) and common murres (Uria aalge) were compared with seabird counts from ship surveys. To evaluate plume use by satellite-tagged birds, daily surface salinity values from SELFE hindcast models were extracted at each tag location. Both seabird species occurred in plume waters disproportionate to the total surveyed area, concentrating in the river plume when river flow and plume volume decreased. Murres were consistently within 20 km of the geographic mean center of the river plume. In contrast, shearwaters consistently occurred 100 km to the north of the plume center, where high densities of prey fish occur. Although acoustically detected prey also occurred in greater densities within the plume when volume decreased, surface catches of prey in the plume did not vary with changing plume conditions. Geographic indices of colocation (GIC) were low between murres and prey species caught in surface trawls, whereas GICs were >0.5 between shearwaters and prey species including squid (Loligo opalescens), juvenile Chinook salmon (Oncorhynchus tshawytscha), and coho (O. kisutch) salmon. We conclude that the river plume and associated fronts are identifiable, predictable, and

  17. Relationship between land degradation, biophysical and social factors in Lekso Watershed, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Iva Dewi Lestariningsih

    2018-04-01

    Full Text Available Degraded lands are getting extensive worldwide. Even its existence has projected as a solution to fulfill agricultural land scarcity to meet the global demands of food and other agricultural goods, the rate of its extension should be inhibited. Some factors play important role.  This research was aimed to find the explanation about how degraded land, biophysical and social factors are related. Research site was located in Lekso Watershed, East Java, Indonesia. Land degradation is assessed by evaluation of the critical land status based on procedure established by Indonesia’s Ministry of Forestry in form of Regulation No. P.32/Menhut-II, 2009.A series of field survey using secondary data obtained from GIS tool performed to collect data for quantify the critical land status. Social factors in this study were limited on people perception, awareness and participation. These data collected by in-depth interview to the respondents. Site of presented respondent selected with purposive sampling, while the respondents in each site selected with stratified random sampling method. The research revealed that surface cover demonstrated high correlation and regression toward critical and very critical land (average r = -0.9822, R2= 0.9648. However, slope steepness located in high altitude showed a contrary trend in which increasing slope steepness decreased the number of total moderate, critical and very critical lands. The functional area of this location as protected forest gave a good surface cover on the steep slope and resulted on small area of degraded land. On the other side, negative perception about cultivation on forest and steep slope resulted in positive correlations with the area of very critical land (r = 0.6710 for cultivated forest, and r = 0.9113 for cultivated steep slope. Moreover, people awareness about flood, landslide and drought gave a negative correlation (r = -0.6274 with critical and very critical area. At last, people

  18. Stochastic theory of nonequilibrium steady states. Part II: Applications in chemical biophysics

    International Nuclear Information System (INIS)

    Ge Hao; Qian Min; Qian Hong

    2012-01-01

    The mathematical theory of nonequilibrium steady state (NESS) has a natural application in open biochemical systems which have sustained source(s) and sink(s) in terms of a difference in their chemical potentials. After a brief introduction in Section , in Part II of this review, we present the widely studied biochemical enzyme kinetics, the workhorse of biochemical dynamic modeling, in terms of the theory of NESS (Section ). We then show that several phenomena in enzyme kinetics, including a newly discovered activation–inhibition switching (Section ) and the well-known non-Michaelis–Menten-cooperativity (Section ) and kinetic proofreading (Section ), are all consequences of the NESS of driven biochemical systems with associated cycle fluxes. Section is focused on nonlinear and nonequilibrium systems of biochemical reactions. We use the phosphorylation–dephosphorylation cycle (PdPC), one of the most important biochemical signaling networks, as an example (Section ). It starts with a brief introduction of the Delbrück–Gillespie process approach to mesoscopic biochemical kinetics (Sections ). We shall discuss the zeroth-order ultrasensitivity of PdPC in terms of a new concept — the temporal cooperativity (Sections ), as well as PdPC with feedback which leads to biochemical nonlinear bistability (Section ). Also, both are nonequilibrium phenomena. PdPC with a nonlinear feedback is kinetically isomorphic to a self-regulating gene expression network, hence the theory of NESS discussed here could have wide applications to many other biochemical systems.

  19. Kazakhstan innovation projects in nuclear technologies field

    International Nuclear Information System (INIS)

    Shkol'nik, V.S.; Tukhvatulin, Sh.T.

    2005-01-01

    At present in the Republic of Kazakhstan in preparation and realization stage there are several innovation projects related with use of advanced nuclear technologies. Projects are as follows: 'Implementation of Kazakhstan thermonuclear reactor tokamak (KTM)'; 'Implementation at the L.N. Gumilev Eurasian National University the inter-disciplinary research complex on the heavy ions accelerator base'; 'Development of the Technological Park 'Nuclear Technologies Center in Kurchatov city'; 'Development the first in the Central-Asian region Center of Nuclear Medicine and Biophysics'. The initiator and principal operator of these projects is the National Nuclear Center of the Republic of Kazakhstan

  20. eQuilibrator--the biochemical thermodynamics calculator.

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  1. eQuilibrator—the biochemical thermodynamics calculator

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  2. Lifecycle of a Lipoprotein from a Biophysical Perspective

    Science.gov (United States)

    Rutledge, John C.; Huser, Thomas; Voss, John; Chan, James; Parikh, Atul

    The goal of our project was to understand how lipids and lipoproteins interact with cell membranes. This chapter will present the five major areas in which we have focused our attention on understanding how lipids and lipoproteins interact with cell membranes (Fig. 11.1): (1) triglycerides and vascular injury, (2) single lipoprotein analysis, (3) apolipoprotein E (apoE) conformation changes in the postprandial state, (4) triglyceride-rich lipoproteins (TGRLs) and endothelial cell inflammation, and (5) TGRL lipolysis products and monocyte activation. For over a hundred years, Western civilization has questioned how the food we eat translates into disease, and specifically atherosclerotic cardiovascular disease. Although most information indicates that this basic pathophysiological process is mediated through consumption of excess saturated fats, much remains unknown. After humans eat a meal, there is an elevation of triglycerides in the blood in the postprandial state. In normal individuals, triglycerides can rise after a meal by 50 to 100%. This has been documented many times in the past, including a paper by Hyson et al, (1998) [1]. In that study, normal healthy individuals were given a 40%-fat meal. Plasma triglycerides, which were modestly elevated initially, rose about 60% higher three to four hours after ingestion of the meal. Subsequently plasma triglycerides fell to baseline levels six hours after the meal. Even in these healthy individuals, a significant elevation of triglycerides was noted after ingestion of a moder ately high-fat meal.

  3. The 4D Nucleome Project

    Science.gov (United States)

    Dekker, Job; Belmont, Andrew S.; Guttman, Mitchell; Leshyk, Victor O.; Lis, John T.; Lomvardas, Stavros; Mirny, Leonid A.; O’Shea, Clodagh C.; Park, Peter J.; Ren, Bing; Ritland Politz, Joan C.; Shendure, Jay; Zhong, Sheng

    2017-01-01

    Preface The 4D Nucleome Network aims to develop and apply approaches to map the structure and dynamics of the human and mouse genomes in space and time with the goal of gaining deeper mechanistic understanding of how the nucleus is organized and functions. The project will develop and benchmark experimental and computational approaches for measuring genome conformation and nuclear organization, and investigate how these contribute to gene regulation and other genome functions. Validated experimental approaches will be combined with biophysical modeling to generate quantitative models of spatial genome organization in different biological states, both in cell populations and in single cells. PMID:28905911

  4. Biochemical activity of fullerenes and related derivatives

    International Nuclear Information System (INIS)

    Huczko, A.; Lange, H.; Calko, E.

    1999-01-01

    An astonishing scientific interest, embodied in over 15000 research articles so far, has been encountered since 1985 when fullerenes were discovered. From new superconductors to a rich electrochemistry and reaction chemistry, fullerene nanostructures continue to excite the scientific world, and new findings continue at record pace. This review presents many examples of the biochemical activities of fullerenes and derivatives, e. g. cytotoxic activity, selective DNA cleavage and antiviral activity against HIV. We also present some results of our testing which show that, despite its chemical and biochemical activity, fullerene matter does not present any health hazard directly related to skin irritation and allergic risks. (author)

  5. Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands: A case study

    Science.gov (United States)

    Wylie, B.K.; Meyer, D.J.; Tieszen, L.L.; Mannel, S.

    2002-01-01

    Quantification of biophysical parameters is needed by terrestrial process modeling and other applications. A study testing the role of multispectral data for monitoring biophysical parameters was conducted over a network of grassland field sites in the Great Plains of North America. Grassland biophysical parameters [leaf area index (LAI), fraction of absorbed photosynthetically active radiation (fPAR), and biomass] and their relationships with ground radiometer normalized difference vegetation index (NDVI) were established in this study (r2=.66–.85) from data collected across the central and northern Great Plains in 1995. These spectral/biophysical relationships were compared to 1996 field data from the Tallgrass Prairie Preserve in northeastern Oklahoma and showed no consistent biases, with most regression estimates falling within the respective 95% confidence intervals. Biophysical parameters were estimated for 21 “ground pixels” (grids) at the Tallgrass Prairie Preserve in 1996, representing three grazing/burning treatments. Each grid was 30×30 m in size and was systematically sampled with ground radiometer readings. The radiometric measurements were then converted to biophysical parameters and spatially interpolated using geostatistical kriging. Grid-based biophysical parameters were monitored through the growing season and regressed against Landsat Thematic Mapper (TM) NDVI (r2=.92–.94). These regression equations were used to estimate biophysical parameters for grassland TM pixels over the Tallgrass Prairie Preserve in 1996. This method maintained consistent regression development and prediction scales and attempted to minimize scaling problems associated with mixed land cover pixels. A method for scaling Landsat biophysical parameters to coarser resolution satellite data sets (1 km2) was also investigated.

  6. Changes in some biophysical and biochemical parameters of mungbean [vigna radiata (L.) wilczek] grown on chromium-contaminated soils treated with solid tea wastage

    International Nuclear Information System (INIS)

    Azmat, R.; Akhtar, H.

    2010-01-01

    The success of solid tea wastage treatment technology in remediating chromium (111) contamination in the soil has been demonstrated on growth of Vigna radiata. The present research was designed to study the effect of chromium (Cr3/sup +/) on plant growth, potassium (K), phosphorus (P), protease activity and proline profile of Vigna radiata as a bio indicator in the presence and absence of the solid tea surface as a bio sorbent to control the mobility of Cr3/sup +/ in the soil. Results showed toxic effects of Cr3/ sup +/ on plant growth and development, which include high protease activity with prominent proline and decreased potassium and phosphorus contents at elevated concentration of metal. Proline content is the only amino acid that accumulates to a greater extent in the leaves of plants under stress. An increase in proline contents in leaves, stem and root with high concentration of Cr3/s sup +/ gets reduced in a solid tea wastage amended plants. Metabolic alteration by Cr3/ sup +/exposure and their control by solid tea wastage already described in the first report, showed direct effect on enzymes or other metabolites or by its ability to generate reactive oxygen species which may cause oxidative stress. It is suggested that the plant can grow under chromium stress if some suitable adsorbent (like tea wastage) is mixed with the soil which can protect the plants from the phyto toxicity of Cr 3/sup +/ by altering various metabolic processes. (author)

  7. A Biochemical/Biophysical Assay Dyad for HTS-Compatible Triaging of Inhibitors of the HIV-1 Nef/Hck SH3 Interaction

    KAUST Repository

    Breuer, Sebastian

    2013-07-26

    The current treatment regimens for HIV include over 20 anti-retrovirals. However, adverse drug effects and the emergence of drug resistance necessitates the continued improvement of the existing drug classes as well as the development of novel drugs that target as yet therapeutically unexploited viral and cellular pathways. Here we demonstrate a strategy for the discovery of protein-protein interaction inhibitors of the viral pathogenicity factor HIV-1 Nef and its interaction with the host factor SH3. A combination of a time-resolved fluorescence resonance energy resonance energy transfer-based assay and a label-free resonant waveguide grating-based assay was optimized for high-throughput screening formats.

  8. A Biochemical/Biophysical Assay Dyad for HTS-Compatible Triaging of Inhibitors of the HIV-1 Nef/Hck SH3 Interaction

    KAUST Repository

    Breuer, Sebastian; Espinola, Sheryll; Morelli, Xavier; Torbett, Bruce E; Arold, Stefan T.; Engels, Ingo H

    2013-01-01

    The current treatment regimens for HIV include over 20 anti-retrovirals. However, adverse drug effects and the emergence of drug resistance necessitates the continued improvement of the existing drug classes as well as the development of novel drugs that target as yet therapeutically unexploited viral and cellular pathways. Here we demonstrate a strategy for the discovery of protein-protein interaction inhibitors of the viral pathogenicity factor HIV-1 Nef and its interaction with the host factor SH3. A combination of a time-resolved fluorescence resonance energy resonance energy transfer-based assay and a label-free resonant waveguide grating-based assay was optimized for high-throughput screening formats.

  9. Effects of nanomolar copper on water plants—Comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, George, E-mail: george.thomas@uni.kn [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); Stärk, Hans-Joachim, E-mail: ha-jo.staerk@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig (Germany); Wellenreuther, Gerd, E-mail: Gerd.wellenreuther@desy.de [HASYLAB at DESY, Notkestr. 85, 22603 Hamburg (Germany); Dickinson, Bryan C., E-mail: bryan.dickinson@gmail.com [Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138 (United States); Küpper, Hendrik, E-mail: hendrik.kuepper@uni-konstanz.de [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice (Czech Republic)

    2013-09-15

    Highlights: •We found different optimal Cu requirement for different physiological mechanisms. •Kinetics and concentration thresholds of damage mechanisms were established. •Cu toxicity caused internal Cu re-distribution and inhibition of Zn uptake. •Cu deficient plants released Cu, indicating lack of high-affinity Cu transporters. •Cu deficiency caused re-distribution of zinc in the plant. -- Abstract: Toxicity and deficiency of essential trace elements like Cu are major global problems. Here, environmentally relevant sub-micromolar concentrations of Cu (supplied as CuSO{sub 4}) and simulations of natural light- and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum. Growth was optimal at 10 nM Cu, while PSII activity (F{sub v}/F{sub m}) was maximal around 2 nM Cu. Damage to the PSII reaction centre was the first target of Cu toxicity, followed by disturbed regulation of heat dissipation (NPQ). Only after that, electron transport through PSII (Φ{sub PSII}) was inhibited, and finally chlorophylls decreased. Copper accumulation in the plants was stable until 10 nM Cu in solution, but strongly increased at higher concentrations. The vein was the main storage site for Cu up to physiological concentrations (10 nM). At toxic levels it was also sequestered to the epidermis and mesophyll until export from the vein became inhibited, accompanied by inhibition of Zn uptake. Copper deficiency led to a complete stop of growth at “0” nM Cu after 6 weeks. This was accompanied by high starch accumulation although electron flow through PSII (Φ{sub PSII}) decreased from 2 weeks, followed by decrease in pigments and increase of non photochemical quenching (NPQ). Release of Cu from the plants below 10 nM Cu supply in the nutrient solution indicated lack of high-affinity Cu transporters, and on the tissue level copper deficiency led to a re-distribution of zinc.

  10. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    Science.gov (United States)

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.

  11. Matching Social and Biophysical Scales in Extensive Livestock Production as a Basis for Adaptation to Global Change

    Science.gov (United States)

    Sayre, N. F.; Bestelmeyer, B.

    2015-12-01

    Global livestock production is heterogeneous, and its benefits and costs vary widely across global contexts. Extensive grazing lands (or rangelands) constitute the vast majority of the land dedicated to livestock production globally, but they are relatively minor contributors to livestock-related environmental impacts. Indeed, the greatest potential for environmental damage in these lands lies in their potential for conversion to other uses, including agriculture, mining, energy production and urban development. Managing such conversion requires improving the sustainability of livestock production in the face of fragmentation, ecological and economic marginality and climate change. We present research from Mongolia and the United States demonstrating methods of improving outcomes on rangelands by improving the fit between the scales of social and biophysical processes. Especially in arid and semi-arid settings, rangelands exhibit highly variable productivity over space and time and non-linear or threshold dynamics in vegetation; climate change is projected to exacerbate these challenges and, in some cases, diminish overall productivity. Policy and governance frameworks that enable landscape-scale management and administration enable range livestock producers to adapt to these conditions. Similarly, livestock breeds that have evolved to withstand climate and vegetation change improve producers' prospects in the face of increasing variability and declining productivity. A focus on the relationships among primary production, animal production, spatial connectivity, and scale must underpin adaptation strategies in rangelands.

  12. Selection of hyperspectral narrowbands (HNBs) and composition of hyperspectral twoband vegetation indices (HVIs) for biophysical characterization and discrimination of crop types using field reflectance and Hyperion/EO-1 data

    Science.gov (United States)

    Thenkabail, P.S.; Mariotto, I.; Gumma, M.K.; Middleton, E.M.; Landis, D.R.; Huemmrich, K.F.

    2013-01-01

    The overarching goal of this study was to establish optimal hyperspectral vegetation indices (HVIs) and hyperspectral narrowbands (HNBs) that best characterize, classify, model, and map the world's main agricultural crops. The primary objectives were: (1) crop biophysical modeling through HNBs and HVIs, (2) accuracy assessment of crop type discrimination using Wilks' Lambda through a discriminant model, and (3) meta-analysis to select optimal HNBs and HVIs for applications related to agriculture. The study was conducted using two Earth Observing One (EO-1) Hyperion scenes and other surface hyperspectral data for the eight leading worldwide crops (wheat, corn, rice, barley, soybeans, pulses, cotton, and alfalfa) that occupy ~70% of all cropland areas globally. This study integrated data collected from multiple study areas in various agroecosystems of Africa, the Middle East, Central Asia, and India. Data were collected for the eight crop types in six distinct growth stages. These included (a) field spectroradiometer measurements (350-2500 nm) sampled at 1-nm discrete bandwidths, and (b) field biophysical variables (e.g., biomass, leaf area index) acquired to correspond with spectroradiometer measurements. The eight crops were described and classified using ~20 HNBs. The accuracy of classifying these 8 crops using HNBs was around 95%, which was ~ 25% better than the multi-spectral results possible from Landsat-7's Enhanced Thematic Mapper+ or EO-1's Advanced Land Imager. Further, based on this research and meta-analysis involving over 100 papers, the study established 33 optimal HNBs and an equal number of specific two-band normalized difference HVIs to best model and study specific biophysical and biochemical quantities of major agricultural crops of the world. Redundant bands identified in this study will help overcome the Hughes Phenomenon (or “the curse of high dimensionality”) in hyperspectral data for a particular application (e.g., biophysi- al

  13. Biochemical characterization of Tunisian grapevine varieties

    Directory of Open Access Journals (Sweden)

    Ferjani Ben Abdallah

    1998-03-01

    The study of GPI, PGM, AAT and peroxydase isozyme banding patterns in combination with berry colour has led to establish a classification of the 61 autochton varieties into 37 groups including 26 varieties definitely differentiated through the results of this biochemical study.

  14. Survey of Biochemical Education in Japanese Universities.

    Science.gov (United States)

    Kagawa, Yasuo

    1995-01-01

    Reports findings of questionnaires sent to faculty in charge of biochemical education in medical schools and other programs from dentistry to agriculture. Total class hours have declined since 1984. New trends include bioethics and computer-assisted learning. Tables show trends in lecture hours, lecture content, laboratory hours, core subject…

  15. Haematological and biochemical responses of starter broiler ...

    African Journals Online (AJOL)

    A study was conducted to investigate the haematological and biochemical responses of starter broiler chickens fed copper and probiotics supplemented diets. A total of 180-day old Marshal broiler chicks were randomly allotted to six treatment groups of 30 birds each. The treatments were divided into three replicates of ten ...

  16. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  17. Some hematological and biochemical parameters in smokeless ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-04

    Jan 4, 2007 ... The effect of Jharda powder (smokeless tobacco) on some hematological and biochemical parameters in consumers was investigated. Hematological parameters including hemoglobin content and white blood cell and leukocyte counts were higher in jharda powder consumers, while monocytes and.

  18. 2009 Biochemical Conversion Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  19. Some hematological and biochemical parameters in smokeless ...

    African Journals Online (AJOL)

    The effect of Jharda powder (smokeless tobacco) on some hematological and biochemical parameters in consumers was investigated. Hematological parameters including hemoglobin content and white blood cell and leukocyte counts were higher in jharda powder consumers, while monocytes and basophiles counts were ...

  20. Haematological And Biochemical Effects Of Sulphadimidine In ...

    African Journals Online (AJOL)

    Haematological and biochemical efects of sulphadmidine were studied in Nigerian mongrel dogs. Five Nigerian mongrel dogs of either sex weighing between 7 and 12 kg were used for the study. The pretreatment blood and serum samples were collected and the weight of animals taken before the administraton of 100 ...

  1. Biochemical and secondary metabolites changes under moisture ...

    African Journals Online (AJOL)

    The study showed the importance of carbohydrate and nitrogen cycle related metabolites in mediating tolerance in cassava by affecting their phenotypic expression in the plant. Keywords: Hydrothermal stress, bio-chemicals, pigments, secondary metabolites, cassava. African Journal of Biotechnology, Vol 13(31) 3173-3186 ...

  2. Biochemical and serological characterization of Escherichia coli ...

    African Journals Online (AJOL)

    This study was designed to determine the isolation rate, serotypes and biochemical profiles of E. coli from colibacillosis and dead-in-shell embryos in Zaria, Northern-Nigeria. The isolation rate of E. coli from hatcheries studied were 4.67% and 7.50% from farms of Simtu Agricultural Company and National Animal Production ...

  3. Biochemical and Kinetic Characterization of Geranylgeraniol 18 ...

    African Journals Online (AJOL)

    This enzyme and its gene are an attractive target for development of plaunotol production and its detailed biochemical properties need to be understood. Recently, even though the gene (CYP97C27) coding for GGOH 18-hydroxylase has been identified, cloned, and expressed in Escherichia coli system, the enzyme activity ...

  4. Characterizing multistationarity regimes in biochemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Irene Otero-Muras

    Full Text Available Switch like responses appear as common strategies in the regulation of cellular systems. Here we present a method to characterize bistable regimes in biochemical reaction networks that can be of use to both direct and reverse engineering of biological switches. In the design of a synthetic biological switch, it is important to study the capability for bistability of the underlying biochemical network structure. Chemical Reaction Network Theory (CRNT may help at this level to decide whether a given network has the capacity for multiple positive equilibria, based on their structural properties. However, in order to build a working switch, we also need to ensure that the bistability property is robust, by studying the conditions leading to the existence of two different steady states. In the reverse engineering of biological switches, knowledge collected about the bistable regimes of the underlying potential model structures can contribute at the model identification stage to a drastic reduction of the feasible region in the parameter space of search. In this work, we make use and extend previous results of the CRNT, aiming not only to discriminate whether a biochemical reaction network can exhibit multiple steady states, but also to determine the regions within the whole space of parameters capable of producing multistationarity. To that purpose we present and justify a condition on the parameters of biochemical networks for the appearance of multistationarity, and propose an efficient and reliable computational method to check its satisfaction through the parameter space.

  5. Evaluation of Haematological and Biochemical Parameters of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Evaluation of Haematological and Biochemical Parameters of Juvenile Oreochromis niloticus after Exposure to Water Soluble Fractions of ... niloticus were evaluated. After a preliminary determination of the 96 h-LC50 of ... evaporation, dissolution, emulsion, photolysis and biodegradation which generate a water soluble.

  6. Metabonomics and medicine: the Biochemical Oracle.

    Science.gov (United States)

    Mitchell, Steve; Holmes, Elaine; Carmichael, Paul

    2002-10-01

    Occasionally, a new idea emerges that has the potential to revolutionize an entire field of scientific endeavour. It is now within our grasp to be able to detect subtle perturbations within the phenomenally complex biochemical matrix of living organisms. The discipline of metabonomics promises an all-encompassing approach to understanding total, yet fundamental, changes occurring in disease processes, drug toxicity and cell function.

  7. Discordant results between biochemical and molecular transthyretin

    Indian Academy of Sciences (India)

    Discordant results between biochemical and molecular transthyretin assays: lessons learned from a unique testing algorithm at the Mayo Clinic. Honey V. Reddi Brittany C. Thomas Kurt S. Willkomm Matthew J. Ferber Kandelaria M. Rumilla Kimiyo M. Raymond John F. O'Brien W. Edward Highsmith. Research Note Volume ...

  8. Biochemical and microstructural characteristics of meat samples ...

    African Journals Online (AJOL)

    This study was conducted to compare the efficiency of different plant proteases for changing biochemical and microstructural characteristics in muscle foods. The meat samples from chicken, giant catfish, pork and beef were treated with four types of proteolytic enzymes: Calotropis procera latex proteases, papaya latex ...

  9. Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.

    Science.gov (United States)

    Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O

    1996-10-01

    This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.

  10. Ground-and satellite-based evidence of the biophysical mechanisms behind the greening Sahel

    DEFF Research Database (Denmark)

    Brandt, Martin Stefan; Mbow, Cheikh; Diouf, Abdoul A.

    2015-01-01

    After a dry period with prolonged droughts in the 1970s and 1980s, recent scientific outcome suggests that the decades of abnormally dry conditions in the Sahel have been reversed by positive anomalies in rainfall. Various remote sensing studies observed a positive trend in vegetation greenness...... over the last decades which is known as the re-greening of the Sahel. However, little investment has been made in including long-term ground-based data collections to evaluate and better understand the biophysical mechanisms behind these findings. Thus, deductions on a possible increment in biomass...... remain speculative. Our aim is to bridge these gaps and give specifics on the biophysical background factors of the re-greening Sahel. Therefore, a trend analysis was applied on long time series (1987-2013) of satellite-based vegetation and rainfall data, as well as on ground-observations of leaf biomass...

  11. Biophysics of skin and its treatments structural, nanotribological, and nanomechanical studies

    CERN Document Server

    Bhushan, Bharat

    2017-01-01

    This book provides a comprehensive overview of the structural, nanotribological and nanomechanical properties of skin with and without cream treatment as a function of operating environment. The biophysics of skin as the outer layer covering human or animal body is discussed as a complex biological structure. Skin cream is used to improve skin health and create a smooth, soft, and flexible surface with moist perception by altering the surface roughness, friction, adhesion, elastic modulus, and surface charge of the skin surface. .

  12. Materials science and biophysics applications at the ISOLDE radioactive ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, U., E-mail: uwahl@itn.pt [Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal)

    2011-12-15

    The ISOLDE isotope separator facility at CERN provides a variety of radioactive ion beams, currently more than 800 different isotopes from {approx}70 chemical elements. The radioisotopes are produced on-line by nuclear reactions from a 1.4 GeV proton beam with various types of targets, outdiffusion of the reaction products and, if possible, chemically selective ionisation, followed by 60 kV acceleration and mass separation. While ISOLDE is mainly used for nuclear and atomic physics studies, applications in materials science and biophysics account for a significant part (currently {approx}15%) of the delivered beam time, requested by 18 different experiments. The ISOLDE materials science and biophysics community currently consists of {approx}80 scientists from more than 40 participating institutes and 21 countries. In the field of materials science, investigations focus on the study of semiconductors and oxides, with the recent additions of nanoparticles and metals, while the biophysics studies address the toxicity of metal ions in biological systems. The characterisation methods used are typical radioactive probe techniques such as Moessbauer spectroscopy, perturbed angular correlation, emission channeling, and tracer diffusion studies. In addition to these 'classic' methods of nuclear solid state physics, also standard semiconductor analysis techniques such as photoluminescence or deep level transient spectroscopy profit from the application of radioactive isotopes, which helps them to overcome their chemical 'blindness' since the nuclear half life of radioisotopes provides a signal that changes in time with characteristic exponential decay or saturation curves. In this presentation an overview will be given on the recent research activities in materials science and biophysics at ISOLDE, presenting some of the highlights during the last five years, together with a short outlook on the new developments under way.

  13. Coexistence between silent and bursting states in a biophysical Hodgkin-Huxley-type of model

    DEFF Research Database (Denmark)

    Stankevich, Nataliya; Mosekilde, Erik

    2017-01-01

    in a slightly modified, biophysical model that describe the dynamics of pancreatic beta-cells. To realize this form of coexistence, we have introduced an additional voltage-dependent potassium current that is activated in the region around the original, unstable equilibrium point. It is interesting to note...... that this modification also leads the model to display a blue-sky catastrophe in the transition region between chaotic and bursting states....

  14. Enhancing the biophysical properties of mRFP1 through incorporation of fluoroproline

    Energy Technology Data Exchange (ETDEWEB)

    Deepankumar, Kanagavel; Nadarajan, Saravanan Prabhu; Ayyadurai, Niraikulam; Yun, Hyungdon, E-mail: hyungdon@ynu.ac.kr

    2013-11-01

    Graphical abstract: Enhancing the biophysical properties of mRFP1 through incorporation of (2S, 4R)-4-fluoroproline at proline residues after mutating non-permissive site Pro63 into Ala. -- Highlights: •We incorporate (4S)-FP into mRFP1 led to insoluble protein. •Whereas, incorporation of (4R)-FP resulted in soluble but lost its fluorescence. •mRFP1-P63A mutant accommodate (4R)-FP and gave soluble protein with fluorescence. •Moreover mRFP1-P63A[(4R)-FP] showed enhanced biophysical properties of protein. -- Abstract: Here we enhanced the stability and biophysical properties of mRFP1 through a combination of canonical and non-canonical amino acid mutagenesis. The global replacement of proline residue with (2S, 4R)-4-fluoroproline [(4R)-FP] into mRFP1 led to soluble protein but lost its fluorescence, whereas (2S, 4S)-4-fluoroproline [(4S)-FP] incorporation resulted in insoluble protein. The bioinformatics analysis revealed that (4R)-FP incorporation at Pro63 caused fluorescence loss due to the steric hindrance of fluorine atom of (4R)-FP with the chromophore. Therefore, Pro63 residue was mutated with the smallest amino acid Ala to maintain non coplanar conformation of the chromophore and helps to retain its fluorescence with (4R)-FP incorporation. The incorporation of (4R)-FP into mRFP1-P63A showed about 2–3-fold enhancement in thermal and chemical stability. The rate of maturation is also greatly accelerated over the presence of (4R)-FP into mRFP1-P63A. Our study showed that a successful enhancement in the biophysical property of mRFP1-P63A[(4R)-FP] using non-canonical amino acid mutagenesis after mutating non-permissive site Pro63 into Ala.

  15. Enhancing the biophysical properties of mRFP1 through incorporation of fluoroproline

    International Nuclear Information System (INIS)

    Deepankumar, Kanagavel; Nadarajan, Saravanan Prabhu; Ayyadurai, Niraikulam; Yun, Hyungdon

    2013-01-01

    Graphical abstract: Enhancing the biophysical properties of mRFP1 through incorporation of (2S, 4R)-4-fluoroproline at proline residues after mutating non-permissive site Pro63 into Ala. -- Highlights: •We incorporate (4S)-FP into mRFP1 led to insoluble protein. •Whereas, incorporation of (4R)-FP resulted in soluble but lost its fluorescence. •mRFP1-P63A mutant accommodate (4R)-FP and gave soluble protein with fluorescence. •Moreover mRFP1-P63A[(4R)-FP] showed enhanced biophysical properties of protein. -- Abstract: Here we enhanced the stability and biophysical properties of mRFP1 through a combination of canonical and non-canonical amino acid mutagenesis. The global replacement of proline residue with (2S, 4R)-4-fluoroproline [(4R)-FP] into mRFP1 led to soluble protein but lost its fluorescence, whereas (2S, 4S)-4-fluoroproline [(4S)-FP] incorporation resulted in insoluble protein. The bioinformatics analysis revealed that (4R)-FP incorporation at Pro63 caused fluorescence loss due to the steric hindrance of fluorine atom of (4R)-FP with the chromophore. Therefore, Pro63 residue was mutated with the smallest amino acid Ala to maintain non coplanar conformation of the chromophore and helps to retain its fluorescence with (4R)-FP incorporation. The incorporation of (4R)-FP into mRFP1-P63A showed about 2–3-fold enhancement in thermal and chemical stability. The rate of maturation is also greatly accelerated over the presence of (4R)-FP into mRFP1-P63A. Our study showed that a successful enhancement in the biophysical property of mRFP1-P63A[(4R)-FP] using non-canonical amino acid mutagenesis after mutating non-permissive site Pro63 into Ala

  16. Polish Academy of Sciences. Institute of Biochemistry and Biophysics. Research Report 1998-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The report presented research activities of the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, in 1998-1999. Research interests focus on: replication, mutagenesis and repair of DNA, regulation of gene expression, biosynthesis and post-translational modifications of proteins, gene sequencing and functional gene analysis, structure and function of enzymes, conformation of proteins and peptides, modeling of structures and prediction of function of proteins.

  17. Polish Academy of Sciences. Institute of Biochemistry and Biophysics. Research Report 1998-1999

    International Nuclear Information System (INIS)

    2000-01-01

    The report presented research activities of the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, in 1998-1999. Research interests focus on: replication, mutagenesis and repair of DNA, regulation of gene expression, biosynthesis and post-translational modifications of proteins, gene sequencing and functional gene analysis, structure and function of enzymes, conformation of proteins and peptides, modeling of structures and prediction of function of proteins

  18. Biophysical Assessment of Single Cell Cytotoxicity: Diesel Exhaust Particle-Treated Human Aortic Endothelial Cells

    OpenAIRE

    Wu, Yangzhe; Yu, Tian; Gilbertson, Timothy A.; Zhou, Anhong; Xu, Hao; Nguyen, Kytai Truong

    2012-01-01

    Exposure to diesel exhaust particles (DEPs), a major source of traffic-related air pollution, has become a serious health concern due to its adverse influences on human health including cardiovascular and respiratory disorders. To elucidate the relationship between biophysical properties (cell topography, cytoskeleton organizations, and cell mechanics) and functions of endothelial cells exposed to DEPs, atomic force microscope (AFM) was applied to analyze the toxic effects of DEPs on a model ...

  19. Enhancing Irreversible Electroporation by Manipulating Cellular Biophysics with a Molecular Adjuvant.

    Science.gov (United States)

    Ivey, Jill W; Latouche, Eduardo L; Richards, Megan L; Lesser, Glenn J; Debinski, Waldemar; Davalos, Rafael V; Verbridge, Scott S

    2017-07-25

    Pulsed electric fields applied to cells have been used as an invaluable research tool to enhance delivery of genes or other intracellular cargo, as well as for tumor treatment via electrochemotherapy or tissue ablation. These processes involve the buildup of charge across the cell membrane, with subsequent alteration of transmembrane potential that is a function of cell biophysics and geometry. For traditional electroporation parameters, larger cells experience a greater degree of membrane potential alteration. However, we have recently demonstrated that the nuclear/cytoplasm ratio (NCR), rather than cell size, is a key predictor of response for cells treated with high-frequency irreversible electroporation (IRE). In this study, we leverage a targeted molecular therapy, ephrinA1, known to markedly collapse the cytoplasm of cells expressing the EphA2 receptor, to investigate how biophysical cellular changes resulting from NCR manipulation affect the response to IRE at varying frequencies. We present evidence that the increase in the NCR mitigates the cell death response to conventional electroporation pulsed-electric fields (∼100 μs), consistent with the previously noted size dependence. However, this same molecular treatment enhanced the cell death response to high-frequency electric fields (∼1 μs). This finding demonstrates the importance of considering cellular biophysics and frequency-dependent effects in developing electroporation protocols, and our approach provides, to our knowledge, a novel and direct experimental methodology to quantify the relationship between cell morphology, pulse frequency, and electroporation response. Finally, this novel, to our knowledge, combinatorial approach may provide a paradigm to enhance in vivo tumor ablation through a molecular manipulation of cellular morphology before IRE application. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Interplay of mycolic acids, antimycobacterial compounds and pulmonary surfactant membrane: a biophysical approach to disease.

    Science.gov (United States)

    Pinheiro, Marina; Giner-Casares, Juan J; Lúcio, Marlene; Caio, João M; Moiteiro, Cristina; Lima, José L F C; Reis, Salette; Camacho, Luis

    2013-02-01

    This work focuses on the interaction of mycolic acids (MAs) and two antimycobacterial compounds (Rifabutin and N'-acetyl-Rifabutin) at the pulmonary membrane level to convey a biophysical perspective of their role in disease. For this purpose, accurate biophysical techniques (Langmuir isotherms, Brewster angle microscopy, and polarization-modulation infrared reflection spectroscopy) and lipid model systems were used to mimic biomembranes: MAs mimic bacterial lipids of the Mycobacterium tuberculosis (MTb) membrane, whereas Curosurf® was used as the human pulmonary surfactant (PS) membrane model. The results obtained show that high quantities of MAs are responsible for significant changes on PS biophysical properties. At the dynamic inspiratory surface tension, high amounts of MAs decrease the order of the lipid monolayer, which appears to be a concentration dependent effect. These results suggest that the amount of MAs might play a critical role in the initial access of the bacteria to their targets. Both molecules also interact with the PS monolayer at the dynamic inspiratory surface. However, in the presence of higher amounts of MAs, both compounds improve the phospholipid packing and, therefore, the order of the lipid surfactant monolayer. In summary, this work discloses the putative protective effects of antimycobacterial compounds against the MAs induced biophysical impairment of PS lipid monolayers. These protective effects are most of the times overlooked, but can constitute an additional therapeutic value in the treatment of pulmonary tuberculosis (Tb) and may provide significant insights for the design of new and more efficient anti-Tb drugs based on their behavior as membrane ordering agents. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Modeling the effects of noninvasive transcranial brain stimulation at the biophysical, network, and cognitive Level

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Bergmann, Til Ole; Herz, Damian Marc

    2015-01-01

    these approaches advance the scientific potential of NTBS as an interventional tool in cognitive neuroscience. (i) Leveraging the anatomical information provided by structural imaging, the electric field distribution in the brain can be modeled and simulated. Biophysical modeling approaches generate testable...... predictions regarding the impact of interindividual variations in cortical anatomy on the injected electric fields or the influence of the orientation of current flow on the physiological stimulation effects. (ii) Functional brain mapping of the spatiotemporal neural dynamics during cognitive tasks can...

  2. Combining Biophysical and Price Simulations to Assess the Economics of Long-Term Crop Rotations

    OpenAIRE

    Murray-Prior, Roy B.; Whish, J.; Carberry, Peter S.; Dalgleish, N.

    2003-01-01

    Biophysical simulation models (e.g. APSIM) using historical rainfall data are increasingly being used to provide yield and other data on crop rotations in various regions of Australia. However, to analyse the economics of these rotations it is desirable to incorporate the other main driver of profitability, price variation. Because the context was that APSIM was being used to simulate an existing trial site being monitored by a farmer group Gross Margin output was considered most appropriate....

  3. Biophysical and sociocultural factors underlying spatial trade-offs of ecosystem services in semiarid watersheds

    Directory of Open Access Journals (Sweden)

    Marina García-Llorente

    2015-09-01

    Full Text Available Biophysical and social systems are linked to form social-ecological systems whose sustainability depends on their capacity to absorb uncertainty and cope with disturbances. In this study, we explored the key biophysical and socio-cultural factors underlying ecosystem service supply in two semiarid watersheds of southern Spain. These included variables associated with the role that freshwater flows and biodiversity play in securing the system's capacity to sustain essential ecosystem services and their relationship with social demand for services, local water governance, and land-use intensification. Our results reveal the importance of considering the invisible dimensions of water and biodiversity, i.e. green freshwater flows and trait-based indicators, because of their relevance to the supply of ecosystem services. Furthermore, they uncover the importance of traditional irrigation canals, a local water governance system, in maintaining the ecosystems' capacity to supply services. The study also highlights the complex trade-offs that occur because of the spatial mismatch between ecosystem service supply (upstream and ecosystem service demand (downstream in watersheds. Finally, we found that land-use intensification generally resulted in losses of the biophysical factors that underpin the supply of some ecosystem services, increases in social demand for less diversified services, and the abandonment of local governance practices. Attempts to manage social-ecological systems toward sustainability at the local scale should identify the key biophysical and socio-cultural factors that are essential for maintaining ecosystem services and should recognize existing interrelationships between them. Land-use management should also take into account ecosystem service trade-offs and the consequences resulting from land-use intensification.

  4. Use of EPR to Solve Biochemical Problems

    Science.gov (United States)

    Sahu, Indra D.; McCarrick, Robert M.; Lorigan, Gary A.

    2013-01-01

    EPR spectroscopy is a very powerful biophysical tool that can provide valuable structural and dynamic information on a wide variety of biological systems. The intent of this review is to provide a general overview for biochemists and biological researchers on the most commonly used EPR methods and how these techniques can be used to answer important biological questions. The topics discussed could easily fill one or more textbooks; thus, we present a brief background on several important biological EPR techniques and an overview of several interesting studies that have successfully used EPR to solve pertinent biological problems. The review consists of the following sections: an introduction to EPR techniques, spin labeling methods, and studies of naturally occurring organic radicals and EPR active transition metal systems which are presented as a series of case studies in which EPR spectroscopy has been used to greatly further our understanding of several important biological systems. PMID:23961941

  5. A biotic video game smart phone kit for formal and informal biophysics education

    Science.gov (United States)

    Kim, Honesty; Lee, Seung Ah; Riedel-Kruse, Ingmar

    2015-03-01

    Novel ways for formal and informal biophysics education are important. We present a low-cost biotic game design kit that incorporates microbial organisms into an interactive gaming experience: A 3D-printable microscope containing four LEDs controlled by a joystick enable human players to provide directional light stimuli to the motile single-celled organism Euglena gracilis. These cellular behaviors are displayed on the integrated smart phone. Real time cell-tracking couples these cells into interactive biotic video game play, i.e., the human player steers Euglena to play soccer with virtual balls and goals. The player's learning curve in mastering this fun game is intrinsically coupled to develop a deeper knowledge about Euglena's cell morphology and the biophysics of its phototactic behavior. This kit is dual educational - via construction and via play - and it provides an engaging theme for a formal biophysics devices class as well as to be presented in informal outreach activities; its low cost and open soft- and hardware should enable wide adoption.

  6. Predicting the Presence of Scyphozoan Jellyfish in the Gulf of Mexico Using a Biophysical Model

    Science.gov (United States)

    Aleksa, K. T.; Nero, R. W.; Wiggert, J. D.; Graham, W. M.

    2016-02-01

    The study and quantification of jellyfish (cnidarian medusae and ctenophores) is difficult due to their fragile body plan and a composition similar to their environment. The development of a predictive biophysical jellyfish model would be the first of its kind for the Gulf of Mexico and could provide assistance in ecological research and human interactions. In this study, the collection data of two scyphozoan medusae, Chrysaora quinquecirrha and Aurelia spp., were extracted from SEAMAP trawling surveys and were used to determine biophysical predictors for the presence of large jellyfish medusae in the Gulf of Mexico. Both in situ and remote sensing measurements from 2003 to 2013 were obtained. Logistic regressions were then applied to 27 biophysical parameters derived from these data to explore and determine significant predictors for the presence of medusae. Significant predictors identified by this analysis included water temperature, chlorophyll a, turbidity, distance from shore, and salinity. Future application for this model include foraging assessment of gelatinous predators as well as possible near real time monitoring of the distribution and movement of these medusae in the Gulf of Mexico.

  7. A biophysical approach to the optimisation of dendritic-tumour cell electrofusion

    International Nuclear Information System (INIS)

    Sukhorukov, Vladimir L.; Reuss, Randolph; Endter, Joerg M.; Fehrmann, Steffen; Katsen-Globa, Alisa; Gessner, Petra; Steinbach, Andrea; Mueller, Kilian J.; Karpas, Abraham; Zimmermann, Ulrich; Zimmermann, Heiko

    2006-01-01

    Electrofusion of tumour and dendritic cells (DCs) is a promising approach for production of DC-based anti-tumour vaccines. Although human DCs are well characterised immunologically, little is known about their biophysical properties, including dielectric and osmotic parameters, both of which are essential for the development of efficient electrofusion protocols. In the present study, human DCs from the peripheral blood along with a tumour cell line used as a model fusion partner were examined by means of time-resolved cell volumetry and electrorotation. Based on the biophysical cell data, the electrofusion protocol could be rapidly optimised with respect to the sugar composition of the fusion medium, duration of hypotonic treatment, frequency range for stable cell alignment, and field strengths of breakdown pulses triggering membrane fusion. The hypotonic electrofusion consistently gave a tumour-DC hybrid rate of up to 19%, as determined by counting dually labelled fluorescent hybrids in a microscope. This fusion rate is nearly twice as high as that usually reported in the literature for isotonic media. The experimental findings and biophysical approach presented here are generally useful for the development of efficient electrofusion protocols, especially for rare and valuable human cells

  8. Final report for Conference Support Grant "From Computational Biophysics to Systems Biology - CBSB12"

    Energy Technology Data Exchange (ETDEWEB)

    Hansmann, Ulrich H.E.

    2012-07-02

    This report summarizes the outcome of the international workshop From Computational Biophysics to Systems Biology (CBSB12) which was held June 3-5, 2012, at the University of Tennessee Conference Center in Knoxville, TN, and supported by DOE through the Conference Support Grant 120174. The purpose of CBSB12 was to provide a forum for the interaction between a data-mining interested systems biology community and a simulation and first-principle oriented computational biophysics/biochemistry community. CBSB12 was the sixth in a series of workshops of the same name organized in recent years, and the second that has been held in the USA. As in previous years, it gave researchers from physics, biology, and computer science an opportunity to acquaint each other with current trends in computational biophysics and systems biology, to explore venues of cooperation, and to establish together a detailed understanding of cells at a molecular level. The conference grant of $10,000 was used to cover registration fees and provide travel fellowships to selected students and postdoctoral scientists. By educating graduate students and providing a forum for young scientists to perform research into the working of cells at a molecular level, the workshop adds to DOE's mission of paving the way to exploit the abilities of living systems to capture, store and utilize energy.

  9. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE.

    Science.gov (United States)

    Rao, Archana N; Grainger, David W

    2014-04-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA's persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools.

  10. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants.

    Science.gov (United States)

    Rae, Benjamin D; Long, Benedict M; Förster, Britta; Nguyen, Nghiem D; Velanis, Christos N; Atkinson, Nicky; Hee, Wei Yih; Mukherjee, Bratati; Price, G Dean; McCormick, Alistair J

    2017-06-01

    Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Biophysical Approach to Mechanisms of Cancer Prevention and Treatment with Green Tea Catechins.

    Science.gov (United States)

    Suganuma, Masami; Takahashi, Atsushi; Watanabe, Tatsuro; Iida, Keisuke; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Fujiki, Hirota

    2016-11-18

    Green tea catechin and green tea extract are now recognized as non-toxic cancer preventives for humans. We first review our brief historical development of green tea cancer prevention. Based on exciting evidence that green tea catechin, (-)-epigallocatechin gallate (EGCG) in drinking water inhibited lung metastasis of B16 melanoma cells, we and other researchers have studied the inhibitory mechanisms of metastasis with green tea catechins using biomechanical tools, atomic force microscopy (AFM) and microfluidic optical stretcher. Specifically, determination of biophysical properties of cancer cells, low cell stiffness, and high deformability in relation to migration, along with biophysical effects, were studied by treatment with green tea catechins. The study with AFM revealed that low average values of Young's moduli, indicating low cell stiffness, are closely associated with strong potential of cell migration and metastasis for various cancer cells. It is important to note that treatments with EGCG and green tea extract elevated the average values of Young's moduli resulting in increased stiffness (large elasticity) of melanomas and various cancer cells. We discuss here the biophysical basis of multifunctions of green tea catechins and green tea extract leading to beneficial effects for cancer prevention and treatment.

  12. Biophysical Approach to Mechanisms of Cancer Prevention and Treatment with Green Tea Catechins

    Directory of Open Access Journals (Sweden)

    Masami Suganuma

    2016-11-01

    Full Text Available Green tea catechin and green tea extract are now recognized as non-toxic cancer preventives for humans. We first review our brief historical development of green tea cancer prevention. Based on exciting evidence that green tea catechin, (−-epigallocatechin gallate (EGCG in drinking water inhibited lung metastasis of B16 melanoma cells, we and other researchers have studied the inhibitory mechanisms of metastasis with green tea catechins using biomechanical tools, atomic force microscopy (AFM and microfluidic optical stretcher. Specifically, determination of biophysical properties of cancer cells, low cell stiffness, and high deformability in relation to migration, along with biophysical effects, were studied by treatment with green tea catechins. The study with AFM revealed that low average values of Young’s moduli, indicating low cell stiffness, are closely associated with strong potential of cell migration and metastasis for various cancer cells. It is important to note that treatments with EGCG and green tea extract elevated the average values of Young’s moduli resulting in increased stiffness (large elasticity of melanomas and various cancer cells. We discuss here the biophysical basis of multifunctions of green tea catechins and green tea extract leading to beneficial effects for cancer prevention and treatment.

  13. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE

    Science.gov (United States)

    Rao, Archana N.; Grainger, David W.

    2014-01-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA’s persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools. PMID:24765522

  14. Variation of Biophysical Parameters of the Skin with Age, Gender, and Body Region

    Science.gov (United States)

    Firooz, Alireza; Sadr, Bardia; Babakoohi, Shahab; Sarraf-Yazdy, Maryam; Fanian, Ferial; Kazerouni-Timsar, Ali; Nassiri-Kashani, Mansour; Naghizadeh, Mohammad Mehdi; Dowlati, Yahya

    2012-01-01

    Background. Understanding the physiological, chemical, and biophysical characteristics of the skin helps us to arrange a proper approach to the management of skin diseases. Objective. The aim of this study was to measure 6 biophysical characteristics of normal skin (sebum content, hydration, transepidermal water loss (TEWL), erythema index, melanin index, and elasticity) in a normal population and assess the effect of sex, age, and body location on them. Methods. Fifty healthy volunteers in 5 age groups (5 males and females in each) were enrolled in this study. A multifunctional skin physiology monitor (Courage & Khazaka electronic GmbH, Germany) was used to measure skin sebum content, hydration, TEWL, erythema index, melanin index, and elasticity in 8 different locations of the body. Results. There were significant differences between the hydration, melanin index, and elasticity of different age groups. Regarding the locations, forehead had the highest melanin index, where as palm had the lowest value. The mean values of erythema index and melanin index and TEWL were significantly higher in males and anatomic location was a significant independent factor for all of 6 measured parameters. Conclusion. Several biophysical properties of the skin vary among different gender, age groups, and body locations. PMID:22536139

  15. The role of bio-physical cohesive substrates on sediment winnowing and bedform development

    Science.gov (United States)

    Ye, Leiping; Parsons, Daniel; Manning, Andrew

    2017-04-01

    Existing sediment transport and bedform size predictions for natural open-channel flows in many environments are seriously impeded by a lack of process-based knowledge concerning the dynamics of complex bed sediment mixtures comprising cohesionless sand and biologically-active cohesive muds. A series of flume experiments (14 experimental runs) with different substrate mixtures of sand-clay-EPS (Extracellular Polymeric Substance) are combined with a detailed estuarine field survey (Dee estuary, NW England) to investigate the development of bedform morphologies and characteristics of suspended sediment over bio-physical cohesive substrates. The experimental results indicate that winnowing and sediment sorting can occur pervasively in bio-physical cohesive sediment - flow systems. Importantly however, the evolution of the bed and bedform dynamics, and hence turbulence production, is significantly reduced as bed substrate cohesivity increases. The estuarine subtidal zone survey also revealed that the bio-physical cohesion provided by both the clay and microorganism fractions in the bed plays a significant role in controlling the interactions between bed substrate and sediment suspension, deposition and bedform generation. The work will be presented here concludes by outlining the need to extend and revisit the effects of cohesivity in morphodynamic systems and the sets of parameters presently used in numerical modelling, particularly in the context of the impact of climate change on estuarine and coastal systems.

  16. Assessment of the biophysical impacts of utility-scale photovoltaics through observations and modelling

    Science.gov (United States)

    Broadbent, A. M.; Georgescu, M.; Krayenhoff, E. S.; Sailor, D.

    2017-12-01

    Utility-scale solar power plants are a rapidly growing component of the solar energy sector. Utility-scale photovoltaic (PV) solar power generation in the United States has increased by 867% since 2012 (EIA, 2016). This expansion is likely to continue as the cost PV technologies decrease. While most agree that solar power can decrease greenhouse gas emissions, the biophysical effects of PV systems on surface energy balance (SEB), and implications for surface climate, are not well understood. To our knowledge, there has never been a detailed observational study of SEB at a utility-scale solar array. This study presents data from an eddy covariance observational tower, temporarily placed above a utility-scale PV array in Southern Arizona. Comparison of PV SEB with a reference (unmodified) site, shows that solar panels can alter the SEB and near surface climate. SEB observations are used to develop and validate a new and more complete SEB PV model. In addition, the PV model is compared to simpler PV modelling methods. The simpler PV models produce differing results to our newly developed model and cannot capture the more complex processes that influence PV SEB. Finally, hypothetical scenarios of PV expansion across the continental United States (CONUS) were developed using various spatial mapping criteria. CONUS simulations of PV expansion reveal regional variability in biophysical effects of PV expansion. The study presents the first rigorous and validated simulations of the biophysical effects of utility-scale PV arrays.

  17. Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts.

    Science.gov (United States)

    Schiavone, Marion; Sieczkowski, Nathalie; Castex, Mathieu; Dague, Etienne; Marie François, Jean

    2015-03-01

    The Saccharomyces cerevisiae cell surface is endowed with some relevant technological properties, notably antimicrobial and biosorption activities. For these purposes, yeasts are usually processed and packaged in an 'autolysed/dried' formula, which may have some impacts on cell surface properties. In this report, we showed using a combination of biochemical, biophysical and molecular methods that the composition of the cell wall of two wine yeast strains was not altered by the autolysis process. In contrast, this process altered the nanomechanical properties as shown by a 2- to 4-fold increased surface roughness and to a higher adhesion to the atomic force microscope tips of the autolysed cells as compared to live yeast cells. Besides, we found that the two strains harboured differences in biomechanical properties that could be due in part to higher levels of mannan in one of them, and to the fact that the surface of this mannan-enriched strain is decorated with highly adhesive patches forming nanodomains. The presence of these nanodomains could be correlated with the upregulation of flocculin encoding FLO11 as well as to higher expression of few other genes encoding cell wall mannoproteins in this mannan-enriched strain as compared to the other strain. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  18. Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L plants by regulating bio-physical processes and DNA methylation.

    Science.gov (United States)

    Rai, Krishna Kumar; Rai, Nagendra; Rai, Shashi Pandey

    2018-07-01

    Salicylic acid (SA) and sodium nitroprusside (SNP, NO donor) modulates plant growth and development processes and recent findings have also revealed their involvement in the regulation of epigenetic factors under stress condition. In the present study, some of these factors were comparatively studied in hyacinth bean plants subjected to high temperature (HT) environment (40-42 °C) with and without exogenous application of SA and SNP under field condition. Exogenous application of SA and SNP substantially modulated the growth and biophysical process of hyacinth bean plants under HT environment. Exogenous application of SA and SNP also remarkably regulated the activities of antioxidant enzymes, modulated mRNA level of certain enzymes, improves plant water relation, enhance photosynthesis and thereby increasing plant defence under HT. Coupled restriction enzyme digestion-random amplification (CRED-RA) technique revealed that many methylation changes were "dose dependent" and HT significantly increased DNA damages as evidenced by both increase and decrease in bands profiles, methylation and de-methylation pattern. Thus, the result of the present study clearly shows that exogenous SA and SNP regulates DNA methylation pattern, modulates stress-responsive genes and can impart transient HT tolerance by synchronizing growth and physiological acclimatization of plants, thus narrowing the gaps between physio-biochemical and molecular events in addressing HT tolerance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Epigenetic Modulation of the Biophysical Properties of Drug-Resistant Cell Lipids to Restore Drug Transport and Endocytic Functions

    OpenAIRE

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-01-01

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g....

  20. Final Technical Report "Multiscale Simulation Algorithms for Biochemical Systems"

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Linda R.

    2012-10-25

    Biochemical systems are inherently multiscale and stochastic. In microscopic systems formed by living cells, the small numbers of reactant molecules can result in dynamical behavior that is discrete and stochastic rather than continuous and deterministic. An analysis tool that respects these dynamical characteristics is the stochastic simulation algorithm (SSA, Gillespie, 1976), a numerical simulation procedure that is essentially exact for chemical systems that are spatially homogeneous or well stirred. Despite recent improvements, as a procedure that simulates every reaction event, the SSA is necessarily inefficient for most realistic problems. There are two main reasons for this, both arising from the multiscale nature of the underlying problem: (1) stiffness, i.e. the presence of multiple timescales, the fastest of which are stable; and (2) the need to include in the simulation both species that are present in relatively small quantities and should be modeled by a discrete stochastic process, and species that are present in larger quantities and are more efficiently modeled by a deterministic differential equation (or at some scale in between). This project has focused on the development of fast and adaptive algorithms, and the fun- damental theory upon which they must be based, for the multiscale simulation of biochemical systems. Areas addressed by this project include: (1) Theoretical and practical foundations for ac- celerated discrete stochastic simulation (tau-leaping); (2) Dealing with stiffness (fast reactions) in an efficient and well-justified manner in discrete stochastic simulation; (3) Development of adaptive multiscale algorithms for spatially homogeneous discrete stochastic simulation; (4) Development of high-performance SSA algorithms.

  1. Hierarchy and Interactions in Environmental Interfaces Regarded as Biophysical Complex Systems

    Science.gov (United States)

    Mihailovic, Dragutin T.; Balaz, Igor

    The field of environmental sciences is abundant with various interfaces and is the right place for the application of new fundamental approaches leading towards a better understanding of environmental phenomena. For example, following the definition of environmental interface by Mihailovic and Balaž [23], such interface can be placed between: human or animal bodies and surrounding air, aquatic species and water and air around them, and natural or artificially built surfaces (vegetation, ice, snow, barren soil, water, urban communities) and the atmosphere. Complex environmental interface systems are open and hierarchically organised, interactions between their constituent parts are nonlinear, and the interaction with the surrounding environment is noisy. These systems are therefore very sensitive to initial conditions, deterministic external perturbations and random fluctuations always present in nature. The study of noisy non-equilibrium processes is fundamental for modelling the dynamics of environmental interface systems and for understanding the mechanisms of spatio-temporal pattern formation in contemporary environmental sciences, particularly in environmental fluid mechanics. In modelling complex biophysical systems one of the main tasks is to successfully create an operative interface with the external environment. It should provide a robust and prompt translation of the vast diversity of external physical and/or chemical changes into a set of signals, which are "understandable" for an organism. Although the establishment of organisation in any system is of crucial importance for its functioning, it should not be forgotten that in biophysical systems we deal with real-life problems where a number of other conditions should be reached in order to put the system to work. One of them is the proper supply of the system by the energy. Therefore, we will investigate an aspect of dynamics of energy flow based on the energy balance equation. The energy as well as

  2. Representing biophysical landscape interactions in soil models by bridging disciplines and scales.

    Science.gov (United States)

    van der Ploeg, M. J.; Carranza, C.; Teixeira da Silva, R.; te Brake, B.; Baartman, J.; Robinson, D.

    2017-12-01

    The combination of climate change, population growth and soil threats including carbon loss, biodiversity decline and erosion, increasingly confront the global community (Schwilch et al., 2016). One major challenge in studying processes involved in soil threats, landscape resilience, ecosystem stability, sustainable land management and resulting economic consequences, is that it is an interdisciplinary field (Pelletier et al., 2012). Less stringent scientific disciplinary boundaries are therefore important (Liu et al., 2007), because as a result of disciplinary focus, ambiguity may arise on the understanding of landscape interactions. This is especially true in the interaction between a landscape's physical and biological processes (van der Ploeg et al. 2012). Biophysical landscape interactions are those biotic and abiotic processes in a landscape that have an influence on the developments within and evolution of a landscape. An important aspect in biophysical landscape interactions is the differences in scale related to the various processes that play a role in these systems. Moreover, the interplay between the physical landscape and the occurring vegetation, which often co-evolve, and the resulting heterogeneity and emerging patterns are the reason why it is so challenging to establish a theoretical basis to describe biophysical processes in landscapes (e.g. te Brake et al. 2013, Robinson et al. 2016). Another complicating factor is the response of vegetation to changing environmental conditions, including a possible, and often unknown, time-lag (e.g. Metzger et al., 2009). An integrative description for modelling biophysical interactions has been a long standing goal in soil science (Vereecken et al., 2016). We need the development of soil models that are more focused on networks, connectivity and feedbacks incorporating the most important aspects of our detailed mechanistic modelling (Paola & Leeder, 2011). Additionally, remote sensing measurement techniques

  3. The Use of Ultrashort Picosecond Laser Pulses to Generate Quantum Optical Properties of Single Molecules in Biophysics

    Science.gov (United States)

    Ly, Sonny

    Generation of quantum optical states from ultrashort laser-molecule interactions have led to fascinating discoveries in physics and chemistry. In recent years, these interactions have been extended to probe phenomena in single molecule biophysics. Photons emitted from a single fluorescent molecule contains important properties about how the molecule behave and function in that particular environment. Analysis of the second order coherence function through fluorescence correlation spectroscopy plays a pivotal role in quantum optics. At very short nanosecond timescales, the coherence function predicts photon antibunching, a purely quantum optical phenomena which states that a single molecule can only emit one photon at a time. Photon antibunching is the only direct proof of single molecule emission. From the nanosecond to microsecond timescale, the coherence function gives information about rotational diffusion coefficients, and at longer millisecond timescales, gives information regarding the translational diffusion coefficients. In addition, energy transfer between molecules from dipole-dipole interaction results in FRET, a highly sensitive method to probe conformational dynamics at nanometer distances. Here I apply the quantum optical techniques of photon antibunching, fluorescence correlation spectroscopy and FRET to probe how lipid nanodiscs form and function at the single molecule level. Lipid nanodiscs are particles that contain two apolipoprotein (apo) A-I circumventing a lipid bilayer in a belt conformation. From a technological point of view, nanodiscs mimics a patch of cell membrane that have recently been used to reconstitute a variety of membrane proteins including cytochrome P450 and bacteriorhodopsin. They are also potential drug transport vehicles due to its small and stable 10nm diameter size. Biologically, nanodiscs resemble to high degree, high density lipoproteins (HDL) in our body and provides a model platform to study lipid-protein interactions

  4. Kombucha tea fermentation: Microbial and biochemical dynamics.

    Science.gov (United States)

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-02

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and the beneficial properties of Kombucha tea. Moreover, an extensive study into the microbial and biochemical dynamics has also been missing. In this study, we thus explored the structure and dynamics of the microbial community along with the biochemical properties of Kombucha tea at different time points up to 21 days of fermentation. We hypothesized that several biochemical properties will change during the course of fermentation along with the shifts in the yeast and bacterial communities. The yeast community of the biofilm did not show much variation over time and was dominated by Candida sp. (73.5-83%). The soup however, showed a significant shift in dominance from Candida sp. to Lachancea sp. on the 7th day of fermentation. This is the first report showing Candida as the most dominating yeast genus during Kombucha fermentation. Komagateibacter was identified as the single largest bacterial genus present in both the biofilm and the soup (~50%). The bacterial diversity was higher in the soup than in the biofilm with a peak on the seventh day of fermentation. The biochemical properties changed with the progression of the fermentation, i.e., beneficial properties of the beverage such as the radical scavenging ability increased significantly with a maximum increase at day 7. We further observed a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations. Our

  5. Biochemical and toxicological studies of aqueous extract of ...

    African Journals Online (AJOL)

    Biochemical and toxicological studies of aqueous extract of Syzigium ... tract diseases and also used as food spices), on some biochemical indices, such as ... liver functions and blood parameters were studied in adult albino rats of both sexes.

  6. Biochemical changes during aging of soybean seed

    Directory of Open Access Journals (Sweden)

    Balešević-Tubić Svetlana

    2009-01-01

    Full Text Available Biochemical changes that occur in the seed as a result of ageing are very significant for seed quality and longevity. Because of its characteristic composition, processes occurring in the seed of oil crops during storage will be typical as well. Six soybean varieties developed in Institute of field and vegetable crops Novi Sad, submitted to accelerated and natural aging, under controlled and conventional storage conditions were used in these trials. The content of malondialdehyde, superoxide dismutase and peroxidase activities were studied. The biochemical processes i.e. lipid peroxidation, as well as the decrease in supeoxide dismutase and peroxidase activities (especially pronounced by applied accelerated aging were caused by both type of aging. The degree of seed damage and the ability of seed to resist the negative consequences of aging were influenced, beside duration of aging period, by type of storage and characteristics of soybean varieties. .

  7. Reconstructing biochemical pathways from time course data.

    Science.gov (United States)

    Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago

    2007-03-01

    Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data.

  8. Optical Slot-Waveguide Based Biochemical Sensors

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2009-06-01

    Full Text Available Slot-waveguides allow light to be guided and strongly confined inside a nanometer-scale region of low refractive index. Thus stronger light-analyte interaction can be obtained as compared to that achievable by a conventional waveguide, in which the propagating beam is confined to the high-refractive-index core of the waveguide. In addition, slot-waveguides can be fabricated by employing CMOS compatible materials and technology, enabling miniaturization, integration with electronic, photonic and fluidic components in a chip, and mass production. These advantages have made the use of slot-waveguides for highly sensitive biochemical optical integrated sensors an emerging field. In this paper, recent achievements in slot-waveguide based biochemical sensing will be reviewed. These include slot-waveguide ring resonator based refractometric label-free biosensors, label-based optical sensing, and nano-opto-mechanical sensors.

  9. Optimal Information Processing in Biochemical Networks

    Science.gov (United States)

    Wiggins, Chris

    2012-02-01

    A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.

  10. Some biochemical studies on thyroid immunity

    International Nuclear Information System (INIS)

    Shoush, M.A.M.

    1980-01-01

    The present study was carried out to investigate the effect of induced immunological environment on: a - Carbohydrate metabolism as reflected by immunoreactive insulin and blood sugar levels. b - Biochemical parameters, namely total protein, albumin, globulin, alkaline phosphatase and transaminases, reflecting liver function. c - Radioimmunological tests reflecting thyroid function. The study comprised 36 male rabbits, boscate strain of six months age assigned randomly to : control, albumin immunized and thyroglobulin immunized groups

  11. Biochemical composition and methane production correlations

    OpenAIRE

    Charnier, Cyrille; Latrille, Eric; Moscoviz, Roman; Miroux, Jérémie; Steyer, Jean-Philippe

    2016-01-01

    Substrates for anaerobic digestion are composed of heterogeneous and complex organic matter. General parameters of the organic matter can be used to describe its composition such as sugar, protein and lipid contents, Chemical Oxygen Demand (COD), Biochemical Methane Potential (BMP) and kinetic of methane production. These parameters are required for the monitoring of digesters but their characterization are time consuming and expensive; thus, these parameters are rarely assessed all together....

  12. Biochemical characterization of cholesterol-reducing Eubacterium.

    OpenAIRE

    Mott, G E; Brinkley, A W; Mersinger, C L

    1980-01-01

    We characterized two isolates of cholesterol-reducing Eubacterium by conducting conventional biochemical tests and by testing various sterols and glycerolipids as potential growth factors. In media containing cholesterol and plasmenylethanolamine, the tests for nitrate reduction, indole production, and gelatin and starch hydrolyses were negative, and no acid was produced from any of 22 carbohydrates. Both isolates hydrolyzed esculin to esculetin, indicating beta-glycosidase activity. In addit...

  13. Biochemical changes in ginger after gamma irradiation

    International Nuclear Information System (INIS)

    Kausar, T.; Salahuddin; Pervaiz, K.; Niazi, A.H.K.

    2001-01-01

    Ginger (Zingiber officinate) was irradiated with gamma rays (0.1Kgy, 1.0Kgy). Biochemical changes during storage at room temperature (23-28 degree centigrade), in sand (23-28 degree centigrade) and at cold (8 degree centigrade) temperature were observed. Changes in starch, soluble protein, fixed oil and volatile oil contents showed that treatment of ginger at 0.1Kgy radiation level was most appropriate for storage upto 45 days

  14. Biochemical Factors Modulating Cellular Neurotoxicity of Methylmercury

    Directory of Open Access Journals (Sweden)

    Parvinder Kaur

    2011-01-01

    Full Text Available Methylmercury (MeHg, an environmental toxicant primarily found in fish and seafood, poses a dilemma to both consumers and regulatory authorities, given the nutritional benefits of fish consumption versus the possible adverse neurological damage. Several studies have shown that MeHg toxicity is influenced by a number of biochemical factors, such as glutathione (GSH, fatty acids, vitamins, and essential elements, but the cellular mechanisms underlying these complex interactions have not yet been fully elucidated. The objective of this paper is to outline the cellular response to dietary nutrients, as well as to describe the neurotoxic exposures to MeHg. In order to determine the cellular mechanism(s of toxicity, the effect of pretreatment with biochemical factors (e.g., N-acetyl cysteine, (NAC; diethyl maleate, (DEM; docosahexaenoic acid, (DHA; selenomethionine, SeM; Trolox and MeHg treatment on intercellular antioxidant status, MeHg content, and other endpoints was evaluated. This paper emphasizes that the protection against oxidative stress offered by these biochemical factors is among one of the major mechanisms responsible for conferring neuroprotection. It is therefore critical to ascertain the cellular mechanisms associated with various dietary nutrients as well as to determine the potential effects of neurotoxic exposures for accurately assessing the risks and benefits associated with fish consumption.

  15. Multidimensional biochemical information processing of dynamical patterns.

    Science.gov (United States)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  16. Explorations into Chemical Reactions and Biochemical Pathways.

    Science.gov (United States)

    Gasteiger, Johann

    2016-12-01

    A brief overview of the work in the research group of the present author on extracting knowledge from chemical reaction data is presented. Methods have been developed to calculate physicochemical effects at the reaction site. It is shown that these physicochemical effects can quite favourably be used to derive equations for the calculation of data on gas phase reactions and on reactions in solution such as aqueous acidity of alcohols or carboxylic acids or the hydrolysis of amides. Furthermore, it is shown that these physicochemical effects are quite effective for assigning reactions into reaction classes that correspond to chemical knowledge. Biochemical reactions constitute a particularly interesting and challenging task for increasing our understanding of living species. The BioPath.Database is a rich source of information on biochemical reactions and has been used for a variety of applications of chemical, biological, or medicinal interests. Thus, it was shown that biochemical reactions can be assigned by the physicochemical effects into classes that correspond to the classification of enzymes by the EC numbers. Furthermore, 3D models of reaction intermediates can be used for searching for novel enzyme inhibitors. It was shown in a combined application of chemoinformatics and bioinformatics that essential pathways of diseases can be uncovered. Furthermore, a study showed that bacterial flavor-forming pathways can be discovered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Negligent and intentional fires in Portugal: the role of human and biophysical drivers on the spatial distribution

    Science.gov (United States)

    Parente, Joana; Pereira, Mário; Amraoui, Malik; Tedim, Fantina

    2017-04-01

    The European Mediterranean countries, such as Portugal, Spain, France, Italy and Greece, have the higher incidence of fire. Of these countries, Portugal present the highest average number of fires (NF) and one of the highest burnt area (BA), in spite of its relatively smaller land area. The study period is focused in the recent years of 2012 - 2014, when a total of 59 257 fires were recorded and the fire cause is known for more than 50% of the fire records. All fires with known causes were then classified into intentional (40% of the total number of fires) and negligent (60%), leading to a total of 45% of fires related with human factors and activities. Taking into account these values the authors believe it's necessary to better understand the fire regime of this type of fires for a better fire prevention, firefighting and crisis management. Accordingly, the use of statistical analysis and GIS techniques were used to assess the spatial distribution of the human caused fires in each of the NUTS (Nomenclature of Territorial Units for Statistics level I, which divides Portugal in 5 basic economic regions, namely Norte, Centro, Area Metropolitana de Lisboa, Alentejo, and Algarve. The number of fires distribution increases with latitude, making north of Portugal the region with the highest number of fires. The analysis will also aims to assess the role of the most important human and biophysical drivers of the spatial distribution, namely the population density, land use land cover (LULC), distance to communication routes (roads and railways) and topographic variables (altitude, slope). The results show that: a) population density is highly and positively correlated with the agglomeration of fire ignitions, but doesn't imply highest burned area; b) burnt area increase with the distance to roads and altitude; and, c) 58% of the fires occurred on agriculture areas and 33% of fires occurred in forest and scrubs areas. Acknowledgements: This work was supported by: (i) the

  18. Biophysical sciences

    International Nuclear Information System (INIS)

    1988-01-01

    One of the objectives of the National Accelerator Centre is to provide facilities for radiotherapy of cancer patients. It is therefore logical that some scientific effort be directed towards understanding the underlying molecular mechanisms involved in carcinogenesis and the genetic effects induced by radiation in cells in culture. 5 refs., 1 tab

  19. Biophysical sciences

    International Nuclear Information System (INIS)

    1988-01-01

    The neutron therapy system consists of an isocentric gantry capable of ± 185 degrees rotation. Field sizes of between 5 x 5 cm 2 and 30 x 30 cm 2 are defined by a rotatable continuously variable collimator. Neutrons are produced by the p(66 MeV)/Be(40 MeV) reaction. Basic neutron beam data were initially measured in order to provide sufficient information for radiobiological experiments to be undertaken. Some of these experiments indicated a differential in the biological effectiveness of the beam at the surface and at depth in a phantom. In order to reduce this differential at 2.5 cm thick polyethylene beam-hardening filter has been mounted in the treatment head. In addition beam-flattening filters are now also being used to flatten the beam profiles at depth in phantom. Measurements of the characteristics of the beam with the new configuration are still in progress. 12 figs., 6 refs

  20. Biophysical chemistry

    International Nuclear Information System (INIS)

    Klein, M.P.

    1987-01-01

    Phosphorus-31 NMR spectroscopy is evolving into an important means for determining the in vivo concentrations of phosphorylated metabolites and is now entering the clinical arena. Our previous contributions to this field demonstrated the feasibility of employing implanted radio frequency coils around organs of laboratory animals to permit eliciting the NMR spectra over long periods to establish normative spectra. Using these devices and techniques we have determined phosphorus exchange reactions in rat hearts and kidney, in situ, and have demonstrated that there are pools of metabolic intermediates that are not directly visible in the conventional high resolution NMR spectra. Comparison of the results from NMR spectroscopy with those obtained from radiolabeling studies on chick embryo fibroblasts also showed that there are significant pools of phosphorus not visible in the P-31 NMR spectrum. Both sets of studies suggest that compartmentation occurs. The invisibility of these pools is assumed to result from the immobilization of the molecules by cellular macromolecules or organelles

  1. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  2. Scalable production in human cells and biochemical characterization of full-length normal and mutant huntingtin.

    Directory of Open Access Journals (Sweden)

    Bin Huang

    Full Text Available Huntingtin (Htt is a 350 kD intracellular protein, ubiquitously expressed and mainly localized in the cytoplasm. Huntington's disease (HD is caused by a CAG triplet amplification in exon 1 of the corresponding gene resulting in a polyglutamine (polyQ expansion at the N-terminus of Htt. Production of full-length Htt has been difficult in the past and so far a scalable system or process has not been established for recombinant production of Htt in human cells. The ability to produce Htt in milligram quantities would be a prerequisite for many biochemical and biophysical studies aiming in a better understanding of Htt function under physiological conditions and in case of mutation and disease. For scalable production of full-length normal (17Q and mutant (46Q and 128Q Htt we have established two different systems, the first based on doxycycline-inducible Htt expression in stable cell lines, the second on "gutless" adenovirus mediated gene transfer. Purified material has then been used for biochemical characterization of full-length Htt. Posttranslational modifications (PTMs were determined and several new phosphorylation sites were identified. Nearly all PTMs in full-length Htt localized to areas outside of predicted alpha-solenoid protein regions. In all detected N-terminal peptides methionine as the first amino acid was missing and the second, alanine, was found to be acetylated. Differences in secondary structure between normal and mutant Htt, a helix-rich protein, were not observed in our study. Purified Htt tends to form dimers and higher order oligomers, thus resembling the situation observed with N-terminal fragments, although the mechanism of oligomer formation may be different.

  3. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions.

    Science.gov (United States)

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-09-04

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g., DNA hypermethylation) are essential to maintain this drug-resistant phenotype. Thus, altered lipid synthesis may be linked to epigenetic mechanisms of drug resistance. We hypothesize that reversing DNA hypermethylation in resistant cells with an epigenetic drug could alter lipid synthesis, changing the cell membrane's biophysical properties to facilitate drug delivery to overcome drug resistance. Herein we show that treating drug-resistant breast cancer cells (MCF-7/ADR) with the epigenetic drug 5-aza-2'-deoxycytidine (decitabine) significantly alters cell lipid composition and biophysical properties, causing the resistant cells to acquire biophysical characteristics similar to those of sensitive cell (MCF-7) lipids. Following decitabine treatment, resistant cells demonstrated increased sphingomyelinase activity, resulting in a decreased sphingomyelin level that influenced lipid domain structures, increased membrane fluidity, and reduced P-glycoprotein expression. Changes in the biophysical characteristics of resistant cell lipids facilitated doxorubicin transport and restored endocytic function for drug delivery with a lipid-encapsulated form of doxorubicin, enhancing the drug efficacy. In conclusion, we have established a new mechanism for efficacy of an epigenetic drug, mediated through changes in lipid composition and biophysical properties, in reversing cancer drug resistance.

  4. Linking biophysical models and public preferences for ecosystem service assessments: a case study for the Southern Rocky Mountains

    Science.gov (United States)

    Bagstad, Kenneth J.; Reed, James; Semmens, Darius J.; Sherrouse, Ben C.; Troy, Austin

    2016-01-01

    Through extensive research, ecosystem services have been mapped using both survey-based and biophysical approaches, but comparative mapping of public values and those quantified using models has been lacking. In this paper, we mapped hot and cold spots for perceived and modeled ecosystem services by synthesizing results from a social-values mapping study of residents living near the Pike–San Isabel National Forest (PSI), located in the Southern Rocky Mountains, with corresponding biophysically modeled ecosystem services. Social-value maps for the PSI were developed using the Social Values for Ecosystem Services tool, providing statistically modeled continuous value surfaces for 12 value types, including aesthetic, biodiversity, and life-sustaining values. Biophysically modeled maps of carbon sequestration and storage, scenic viewsheds, sediment regulation, and water yield were generated using the Artificial Intelligence for Ecosystem Services tool. Hotspots for both perceived and modeled services were disproportionately located within the PSI’s wilderness areas. Additionally, we used regression analysis to evaluate spatial relationships between perceived biodiversity and cultural ecosystem services and corresponding biophysical model outputs. Our goal was to determine whether publicly valued locations for aesthetic, biodiversity, and life-sustaining values relate meaningfully to results from corresponding biophysical ecosystem service models. We found weak relationships between perceived and biophysically modeled services, indicating that public perception of ecosystem service provisioning regions is limited. We believe that biophysical and social approaches to ecosystem service mapping can serve as methodological complements that can advance ecosystem services-based resource management, benefitting resource managers by showing potential locations of synergy or conflict between areas supplying ecosystem services and those valued by the public.

  5. Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters.

    Science.gov (United States)

    Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong

    2016-05-30

    Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.

  6. Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures

    Science.gov (United States)

    Hennige, S. J.; Suggett, D. J.; Warner, M. E.; McDougall, K. E.; Smith, D. J.

    2009-03-01

    Light is often the most abundant resource within the nutrient-poor waters surrounding coral reefs. Consequently, zooxanthellae ( Symbiodinium spp.) must continually photoacclimate to optimise productivity and ensure coral success. In situ coral photobiology is becoming dominated by routine assessments using state-of-the-art non-invasive bio-optical or chlorophyll a fluorescence (bio-physical) techniques. Multiple genetic types of Symbiodinium are now known to exist; however, little focus has been given as to how these types differ in terms of characteristics that are observable using these techniques. Therefore, this investigation aimed to revisit and expand upon a pivotal study by Iglesias-Prieto and Trench (1994) by comparing the photoacclimation characteristics of different Symbiodinium types based on their bio-physical (chlorophyll a fluorescence, reaction centre counts) and bio-optical (optical absorption, pigment concentrations) ‘signatures’. Signatures described here are unique to Symbiodinium type and describe phenotypic responses to set conditions, and hence are not suitable to describe taxonomic structure of in hospite Symbiodinium communities. In this study, eight Symbiodinium types from clades and sub-clades (A-B, F) were grown under two PFDs (Photon Flux Density) and examined. The photoacclimation response by Symbiodinium was highly variable between algal types for all bio-physical and for many bio-optical measurements; however, a general preference to modifying reaction centre content over effective antennae-absorption was observed. Certain bio-optically derived patterns, such as light absorption, were independent of algal type and, when considered per photosystem, were matched by reaction centre stoichiometry. Only by better understanding genotypic and phenotypic variability between Symbiodinium types can future studies account for the relative taxonomic and physiological contribution by Symbiodinium to coral acclimation.

  7. PyFolding: Open-Source Graphing, Simulation, and Analysis of the Biophysical Properties of Proteins.

    Science.gov (United States)

    Lowe, Alan R; Perez-Riba, Albert; Itzhaki, Laura S; Main, Ewan R G

    2018-02-06

    For many years, curve-fitting software has been heavily utilized to fit simple models to various types of biophysical data. Although such software packages are easy to use for simple functions, they are often expensive and present substantial impediments to applying more complex models or for the analysis of large data sets. One field that is reliant on such data analysis is the thermodynamics and kinetics of protein folding. Over the past decade, increasingly sophisticated analytical models have been generated, but without simple tools to enable routine analysis. Consequently, users have needed to generate their own tools or otherwise find willing collaborators. Here we present PyFolding, a free, open-source, and extensible Python framework for graphing, analysis, and simulation of the biophysical properties of proteins. To demonstrate the utility of PyFolding, we have used it to analyze and model experimental protein folding and thermodynamic data. Examples include: 1) multiphase kinetic folding fitted to linked equations, 2) global fitting of multiple data sets, and 3) analysis of repeat protein thermodynamics with Ising model variants. Moreover, we demonstrate how PyFolding is easily extensible to novel functionality beyond applications in protein folding via the addition of new models. Example scripts to perform these and other operations are supplied with the software, and we encourage users to contribute notebooks and models to create a community resource. Finally, we show that PyFolding can be used in conjunction with Jupyter notebooks as an easy way to share methods and analysis for publication and among research teams. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Similar Biophysical Abnormalities in Glomeruli and Podocytes from Two Distinct Models.

    Science.gov (United States)

    Embry, Addie E; Liu, Zhenan; Henderson, Joel M; Byfield, F Jefferson; Liu, Liping; Yoon, Joonho; Wu, Zhenzhen; Cruz, Katrina; Moradi, Sara; Gillombardo, C Barton; Hussain, Rihanna Z; Doelger, Richard; Stuve, Olaf; Chang, Audrey N; Janmey, Paul A; Bruggeman, Leslie A; Miller, R Tyler

    2018-03-23

    Background FSGS is a pattern of podocyte injury that leads to loss of glomerular function. Podocytes support other podocytes and glomerular capillary structure, oppose hemodynamic forces, form the slit diaphragm, and have mechanical properties that permit these functions. However, the biophysical characteristics of glomeruli and podocytes in disease remain unclear. Methods Using microindentation, atomic force microscopy, immunofluorescence microscopy, quantitative RT-PCR, and a three-dimensional collagen gel contraction assay, we studied the biophysical and structural properties of glomeruli and podocytes in chronic (Tg26 mice [HIV protein expression]) and acute (protamine administration [cytoskeletal rearrangement]) models of podocyte injury. Results Compared with wild-type glomeruli, Tg26 glomeruli became progressively more deformable with disease progression, despite increased collagen content. Tg26 podocytes had disordered cytoskeletons, markedly abnormal focal adhesions, and weaker adhesion; they failed to respond to mechanical signals and exerted minimal traction force in three-dimensional collagen gels. Protamine treatment had similar but milder effects on glomeruli and podocytes. Conclusions Reduced structural integrity of Tg26 podocytes causes increased deformability of glomerular capillaries and limits the ability of capillaries to counter hemodynamic force, possibly leading to further podocyte injury. Loss of normal podocyte mechanical integrity could injure neighboring podocytes due to the absence of normal biophysical signals required for podocyte maintenance. The severe defects in podocyte mechanical behavior in the Tg26 model may explain why Tg26 glomeruli soften progressively, despite increased collagen deposition, and may be the basis for the rapid course of glomerular diseases associated with severe podocyte injury. In milder injury (protamine), similar processes occur but over a longer time. Copyright © 2018 by the American Society of Nephrology.

  9. Quality Saving Mechanisms of Mitochondria during Aging in a Fully Time-Dependent Computational Biophysical Model.

    Directory of Open Access Journals (Sweden)

    Daniel Mellem

    Full Text Available Mitochondria are essential for the energy production of eukaryotic cells. During aging mitochondria run through various processes which change their quality in terms of activity, health and metabolic supply. In recent years, many of these processes such as fission and fusion of mitochondria, mitophagy, mitochondrial biogenesis and energy consumption have been subject of research. Based on numerous experimental insights, it was possible to qualify mitochondrial behaviour in computational simulations. Here, we present a new biophysical model based on the approach of Figge et al. in 2012. We introduce exponential decay and growth laws for each mitochondrial process to derive its time-dependent probability during the aging of cells. All mitochondrial processes of the original model are mathematically and biophysically redefined and additional processes are implemented: Mitochondrial fission and fusion is separated into a metabolic outer-membrane part and a protein-related inner-membrane part, a quality-dependent threshold for mitophagy and mitochondrial biogenesis is introduced and processes for activity-dependent internal oxidative stress as well as mitochondrial repair mechanisms are newly included. Our findings reveal a decrease of mitochondrial quality and a fragmentation of the mitochondrial network during aging. Additionally, the model discloses a quality increasing mechanism due to the interplay of the mitophagy and biogenesis cycle and the fission and fusion cycle of mitochondria. It is revealed that decreased mitochondrial repair can be a quality saving process in aged cells. Furthermore, the model finds strategies to sustain the quality of the mitochondrial network in cells with high production rates of reactive oxygen species due to large energy demands. Hence, the model adds new insights to biophysical mechanisms of mitochondrial aging and provides novel understandings of the interdependency of mitochondrial processes.

  10. From autopoiesis to neurophenomenology: Francisco Varela's exploration of the biophysics of being

    Directory of Open Access Journals (Sweden)

    DAVID RUDRAUF

    2003-01-01

    Full Text Available This paper reviews in detail Francisco Varela's work on subjectivity and consciousness in the biological sciences. His original approach to this "hard problem" presents a subjectivity that is radically intertwined with its biological and physical roots. It must be understood within the framework of his theory of a concrete, embodied dynamics, grounded in his general theory of autonomous systems. Through concepts and paradigms such as biological autonomy, embodiment and neurophenomenology, the article explores the multiple levels of circular causality assumed by Varela to play a fundamental role in the emergence of human experience. The concept of biological autonomy provides the necessary and sufficient conditions for characterizing biological life and identity as an emergent and circular self-producing process. Embodiment provides a systemic and dynamical framework for understanding how a cognitive -a mind- can arise in an organism in the midst of its operational cycles of internal regulation and ongoing sensorimotor coupling. Global subjective properties can emerge at different levels from the interactions of components and can reciprocally constrain local processes through an ongoing, recursive morphodynamics. Neurophenomenology is a supplementary step in the study of consciousness. Through a rigorous method, it advocates the careful examination of experience with first-person methodologies. It attempts to create heuristic mutual constraints between biophysical data and data produced by accounts of subjective experience. The aim is to explicitly ground the active and disciplined insight the subject has about his/her experience in a biophysical emergent process. Finally, we discuss Varela's essential contribution to our understanding of the generation of consciousness in the framework of what we call his "biophysics of being."

  11. Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Dan Qian

    Full Text Available Cyanate is toxic to all organisms. Cyanase converts cyanate to CO₂ and NH₃ in a bicarbonate-dependent reaction. The biophysical functions and biochemical characteristics of plant cyanases are poorly studied, although it has been investigated in a variety of proteobacteria, cyanobacteria and fungi. In this study, we characterised plant cyanases from Arabidopsis thaliana and Oryza sativa (AtCYN and OsCYN. Prokaryotic-expressed AtCYN and OsCYN both showed cyanase activity in vitro. Temperature had a similar influence on the activity of both cyanases, but pH had a differential impact on AtCYN and OsCYN activity. Homology modelling provided models of monomers of AtCYN and OsCYN, and a coimmunoprecipitation assay and gel filtration indicated that AtCYN and OsCYN formed homodecamers. The analysis of single-residue mutants of AtCYN indicated that the conserved catalytic residues also contributed to the stability of the homodecamer. KCNO treatment inhibited Arabidopsis germination and early seedling growth. Plants containing AtCYN or OsCYN exhibited resistance to KCNO stress, which demonstrated that one role of cyanases in plants is detoxification. Transcription level of AtCYN was higher in the flower than in other organs of Arabidopsis. AtCYN transcription was not significantly affected by KCNO treatment in Arabidopsis, but was induced by salt stress. This research broadens our knowledge on plant detoxification of cyanate via cyanase.

  12. Probing Dominant Negative Behavior of Glucocorticoid Receptor β through a Hybrid Structural and Biochemical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jungki; Perera, Lalith; Krahn, Juno M.; Jewell, Christine M.; Moon, Andrea F.; Cidlowski, John A.; Pedersen, Lars C.

    2018-02-05

    ABSTRACT

    Glucocorticoid receptor β (GRβ) is associated with glucocorticoid resistance via dominant negative regulation of GRα. To better understand how GRβ functions as a dominant negative inhibitor of GRα at a molecular level, we determined the crystal structure of the ligand binding domain of GRβ complexed with the antagonist RU-486. The structure reveals that GRβ binds RU-486 in the same ligand binding pocket as GRα, and the unique C-terminal amino acids of GRβ are mostly disordered. Binding energy analysis suggests that these C-terminal residues of GRβ do not contribute to RU-486 binding. Intriguingly, the GRβ/RU-486 complex binds corepressor peptide with affinity similar to that of a GRα/RU-486 complex, despite the lack of helix 12. Our biophysical and biochemical analyses reveal that in the presence of RU-486, GRβ is found in a conformation that favors corepressor binding, potentially antagonizing GRα function. This study thus presents an unexpected molecular mechanism by which GRβ could repress transcription.

  13. From dating to biophysics -- 20 years of progress in applied ESR spectroscopy

    International Nuclear Information System (INIS)

    Regulla, Dieter

    2000-01-01

    ESR spectroscopy represents a tool for quantitative radiation analysis that was developed somehow simultaneously for dating purposes in Japan and in Germany for high-level standardization, in the mid-seventies. Meanwhile, ESR dosimetry has reached an established metrology level. Present research fields of ESR dosimetry consider post-accident dose reconstruction in the environment, and biophysical dosimetry using human tissues. The latter promises a re-definition of radiation risk for chronicle exposure to be derived from individuals of the early nuclear facilities in Russia, and hopefully United States in the future. An attempt is made to sketch development and potential future of the ESR technique

  14. Exploring the biophysical properties of phytosterols in the plasma membrane for novel cancer prevention strategies.

    Science.gov (United States)

    Fakih, Omar; Sanver, Didem; Kane, David; Thorne, James L

    2018-05-03

    Cancer is a global problem with no sign that incidences are reducing. The great costs associated with curing cancer, through developing novel treatments and applying patented therapies, is an increasing burden to developed and developing nations alike. These financial and societal problems will be alleviated by research efforts into prevention, or treatments that utilise off-patent or repurposed agents. Phytosterols are natural components of the diet found in an array of seeds, nuts and vegetables and have been added to several consumer food products for the management of cardio-vascular disease through their ability to lower LDL-cholesterol levels. In this review, we provide a connected view between the fields of structural biophysics and cellular and molecular biology to evaluate the growing evidence that phytosterols impair oncogenic pathways in a range of cancer types. The current state of understanding of how phytosterols alter the biophysical properties of plasma membrane is described, and the potential for phytosterols to be repurposed from cardio-vascular to oncology therapeutics. Through an overview of the types of biophysical and molecular biology experiments that have been performed to date, this review informs the reader of the molecular and biophysical mechanisms through which phytosterols could have anti-cancer properties via their interactions with the plasma cell membrane. We also outline emerging and under-explored areas such as computational modelling, improved biomimetic membranes and ex vivo tissue evaluation. Focus of future research in these areas should improve understanding, not just of phytosterols in cancer cell biology but also to give insights into the interaction between the plasma membrane and the genome. These fields are increasingly providing meaningful biological and clinical data but iterative experiments between molecular biology assays, biosynthetic membrane studies and computational membrane modelling improve and refine our

  15. Biophysical Insights into the Inhibitory Mechanism of Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors

    Directory of Open Access Journals (Sweden)

    Nicolas Sluis-Cremer

    2013-11-01

    Full Text Available HIV-1 reverse transcriptase (RT plays a central role in HIV infection. Current United States Federal Drug Administration (USFDA-approved antiretroviral therapies can include one of five approved non-nucleoside RT inhibitors (NNRTIs, which are potent inhibitors of RT activity. Despite their crucial clinical role in treating and preventing HIV-1 infection, their mechanism of action remains elusive. In this review, we introduce RT and highlight major advances from experimental and computational biophysical experiments toward an understanding of RT function and the inhibitory mechanism(s of NNRTIs.

  16. Monitoring and ming bio-physical parameters for hypoxia hazard in a coastal sand pit

    DEFF Research Database (Denmark)

    Mariani, Patrizio; Benassai, Guido; Grieco, Luisa

    2018-01-01

    Management of coastal areas requires monitoring and modeling of the anthropogenic drivers and the bio-physical processes affecting water quality. To assess the range of hydrographic conditions controlling oxygen distribution in the bottom layers of sand pits, a multi-year oceanographic survey has...... of the sand pits is associated with higher temperatures and wind speed lower than 5 m/s, which is not infrequent during the summer season. However, the number of consecutive days of oxygen depletion can be considered lower than the danger threshold level assumed in the literature....

  17. Fluctuation theory of solutions applications in chemistry, chemical engineering, and biophysics

    CERN Document Server

    Smith, Paul E

    2013-01-01

    There are essentially two theories of solutions that can be considered exact: the McMillan-Mayer theory and Fluctuation Solution Theory (FST). The first is mostly limited to solutes at low concentrations, while FST has no such issue. It is an exact theory that can be applied to any stable solution regardless of the number of components and their concentrations, and the types of molecules and their sizes. Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics outlines the general concepts and theoretical basis of FST and provides a range of applications

  18. Microscale Ocean Biophysics, Aspen Center for Physics: January 11-16 2015

    Science.gov (United States)

    2017-04-19

    dissolved   organic  matter  persist  in  the  deep  ocean:  Is  the  solution   dilution ?”     8.45  –  Kwangmin  Son...AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES...Microscale Ocean Biophysics, Aspen Center for Physics, January 11-16, 2015 Microscopic organisms control ocean processes at global scales. However

  19. The design and analysis of a teaching and learning strategy in Biophysics Course

    Directory of Open Access Journals (Sweden)

    Beatriz Aiziczon

    2010-01-01

    Full Text Available This work presents the design and analysis of a teaching and learning strategy of Biophysics in the Medical career, in the mark of the Ausubelian Significant Learning Model, to overtake the Model of Transmission-Reception of knowledge. It is an integrative Module constructed from our previous theoretical Model and based on the authors' previous works (AIZICZON; CUDMANI, 2004, 2005, 2007. We analyze applications of conceptual maps strategy and the previous organizing in Medical Education (AUSUBEL, 1981; MOREIRA, 1983, 1999 promoting the integration of concepts allowing the progressive differentiation and the integrative reorganization as well as the formative evaluation. In this work we analyze the experience with teachers.

  20. Covariance of biophysical data with digital topograpic and land use maps over the FIFE site

    Science.gov (United States)

    Davis, F. W.; Schimel, D. S.; Friedl, M. A.; Michaelsen, J. C.; Kittel, T. G. F.; Dubayah, R.; Dozier, J.

    1992-01-01

    This paper discusses the biophysical stratification of the FIFE site, implementation of the stratification utilizing geographic information system methods, and validation of the stratification with respect to field measurements of biomass, Bowen ratio, soil moisture, and the greenness vegetation index (GVI) derived from TM satellite data. Maps of burning and topographic position were significantly associated with variation in GVI, biomass, and Bowen ratio. The stratified design did not significantly alter the estimated site-wide means for surface climate parameters but accounted for between 25 and 45 percent of the sample variance depending on the variable.

  1. [Fluctuations in biophysical measurements as a result of variations in solar activity].

    Science.gov (United States)

    Peterson, T F

    1995-01-01

    A theory is proposed to explain variations in the net electrical charge of biological substances at the Earth's surface. These are shown to occur in association with changes in the solar wind and geomagnetic field. It is suggested that a liquid dielectric's net volume charge will imitate pH effects, influence chemical reaction rates, and alter ion transfer mechanisms in biophysical systems. An experiment is described which measures dielectric volume charge, or non-neutrality, to allow correlation of this property with daily, 28-day, and 11-year fluctuation patterns in geophysical and satellite data associated with solar activity and the interplanetary magnetic field.

  2. Cellular Biophysics During Freezing of Rat and Mouse Sperm Predicts Post-thaw Motility1

    Science.gov (United States)

    Hagiwara, Mie; Choi, Jeung Hwan; Devireddy, Ramachandra V.; Roberts, Kenneth P.; Wolkers, Willem F.; Makhlouf, Antoine; Bischof, John C.

    2009-01-01

    Though cryopreservation of mouse sperm yields good survival and motility after thawing, cryopreservation of rat sperm remains a challenge. This study was designed to evaluate the biophysics (membrane permeability) of rat in comparison to mouse to better understand the cooling rate response that contributes to cryopreservation success or failure in these two sperm types. In order to extract subzero membrane hydraulic permeability in the presence of ice, a differential scanning calorimeter (DSC) method was used. By analyzing rat and mouse sperm frozen at 5°C/min and 20°C/min, heat release signatures characteristic of each sperm type were obtained and correlated to cellular dehydration. The dehydration response was then fit to a model of cellular water transport (dehydration) by adjusting cell-specific biophysical (membrane hydraulic permeability) parameters Lpg and ELp. A “combined fit” (to 5°C/min and 20°C/min data) for rat sperm in Biggers-Whitten-Whittingham media yielded Lpg = 0.007 μm min−1 atm−1 and ELp = 17.8 kcal/mol, and in egg yolk cryopreservation media yielded Lpg = 0.005 μm min−1 atm−1 and ELp = 14.3 kcal/mol. These parameters, especially the activation energy, were found to be lower than previously published parameters for mouse sperm. In addition, the biophysical responses in mouse and rat sperm were shown to depend on the constituents of the cryopreservation media, in particular egg yolk and glycerol. Using these parameters, optimal cooling rates for cryopreservation were predicted for each sperm based on a criteria of 5%–15% normalized cell water at −30°C during freezing in cryopreservation media. These predicted rates range from 53°C/min to 70°C/min and from 28°C/min to 36°C/min in rat and mouse, respectively. These predictions were validated by comparison to experimentally determined cryopreservation outcomes, in this case based on motility. Maximum motility was obtained with freezing rates between 50°C/min and 80

  3. Cellular biophysics during freezing of rat and mouse sperm predicts post-thaw motility.

    Science.gov (United States)

    Hagiwara, Mie; Choi, Jeung Hwan; Devireddy, Ramachandra V; Roberts, Kenneth P; Wolkers, Willem F; Makhlouf, Antoine; Bischof, John C

    2009-10-01

    Though cryopreservation of mouse sperm yields good survival and motility after thawing, cryopreservation of rat sperm remains a challenge. This study was designed to evaluate the biophysics (membrane permeability) of rat in comparison to mouse to better understand the cooling rate response that contributes to cryopreservation success or failure in these two sperm types. In order to extract subzero membrane hydraulic permeability in the presence of ice, a differential scanning calorimeter (DSC) method was used. By analyzing rat and mouse sperm frozen at 5 degrees C/min and 20 degrees C/min, heat release signatures characteristic of each sperm type were obtained and correlated to cellular dehydration. The dehydration response was then fit to a model of cellular water transport (dehydration) by adjusting cell-specific biophysical (membrane hydraulic permeability) parameters L(pg) and E(Lp). A "combined fit" (to 5 degrees C/min and 20 degrees C/min data) for rat sperm in Biggers-Whitten-Whittingham media yielded L(pg) = 0.007 microm min(-1) atm(-1) and E(Lp) = 17.8 kcal/mol, and in egg yolk cryopreservation media yielded L(pg) = 0.005 microm min(-1) atm(-1) and E(Lp) = 14.3 kcal/mol. These parameters, especially the activation energy, were found to be lower than previously published parameters for mouse sperm. In addition, the biophysical responses in mouse and rat sperm were shown to depend on the constituents of the cryopreservation media, in particular egg yolk and glycerol. Using these parameters, optimal cooling rates for cryopreservation were predicted for each sperm based on a criteria of 5%-15% normalized cell water at -30 degrees C during freezing in cryopreservation media. These predicted rates range from 53 degrees C/min to 70 degrees C/min and from 28 degrees C/min to 36 degrees C/min in rat and mouse, respectively. These predictions were validated by comparison to experimentally determined cryopreservation outcomes, in this case based on motility. Maximum

  4. On the Adaptive Design Rules of Biochemical Networks in Evolution

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2007-01-01

    Full Text Available Biochemical networks are the backbones of physiological systems of organisms. Therefore, a biochemical network should be sufficiently robust (not sensitive to tolerate genetic mutations and environmental changes in the evolutionary process. In this study, based on the robustness and sensitivity criteria of biochemical networks, the adaptive design rules are developed for natural selection in the evolutionary process. This will provide insights into the robust adaptive mechanism of biochemical networks in the evolutionary process. We find that if a mutated biochemical network satisfies the robustness and sensitivity criteria of natural selection, there is a high probability for the biochemical network to prevail during natural selection in the evolutionary process. Since there are various mutated biochemical networks that can satisfy these criteria but have some differences in phenotype, the biochemical networks increase their diversities in the evolutionary process. The robustness of a biochemical network enables co-option so that new phenotypes can be generated in evolution. The proposed robust adaptive design rules of natural selection gain much insight into the evolutionary mechanism and provide a systematic robust biochemical circuit design method of biochemical networks for biotechnological and therapeutic purposes in the future.

  5. Discerning the biochemical stability of pyrogenic C in soils

    Science.gov (United States)

    De la Rosa, José M.; Paneque, Marina; Contreras-Bernal, Lidia; Miller, Ana Z.; Knicker, Heike

    2016-04-01

    The soil organic matter (SOM) constitutes approximately 2/3 of the global terrestrial C pool, which corresponds to estimated 4000 Pg to a depth of 3 m [1] and therefore, the dynamics of organic carbon (OC) in soils control a large part of the terrestrial C cycle. The term Pyrogenic Carbon (PyC) comprises the whole range of pyrogenic organic materials, from partly charred material through charcoal to soot produced during fire, as well as technical chars (biochars) produced by pyrolysis of biomass. The previously common assumption of PyC being inert has long been proven wrong [2]. In theory, the pyrogenic process confers these materials a longer mean residence time in the soils than their precursors, thus the application of PyC in general and particularly biochar to soil is proposed as a valid approach to establish a significant, long-term sink for atmospheric carbon dioxide in terrestrial ecosystems [3]. Nevertheless, the knowledge concerning the biochemical recalcitrance of PyOM in soils is still limited. This study combines the analysis by 13C solid state Nuclear Magnetic Resonance Spectroscopy (13C NMR), Field Emission Scanning Electron Microscopy (FESEM), analytical pyrolysis (Py-GC/MS) and CO2 emissions in incubated pots of burned and unburned soils as well as in biochar amended and un-amended soils. By using this integrated approach we achieved a more complete understanding of the stability of different forms of PyC in the soil and the chemical changes occurring during aging. Significant differences are found between the stability of PyC. They depend on the nature of the source material, surficial properties of PyC, the pyrolysis process and the soil conditions during aging. Acknowledgements: The Marie Skłodowska-Curie actions (PCIG12-GA-2012-333784-Biocharisma project and PIEF-GA-2012-328689-DECAVE project), and the Spanish Ministry of Economy and Competitiveness (MINECO) (project PCGL2012-37041) are thanked for the financial support of the present study

  6. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  7. Projecting changes in the distribution and productivity of living marine resources: A critical review of the suite of modelling approaches used in the large European project VECTORS

    NARCIS (Netherlands)

    Peck, Myron A.; Arvanitidis, Christos; Butenschön, Momme; Canu, Donata Melaku; Chatzinikolaou, Eva; Cucco, Andrea; Domenici, Paolo; Fernandes, Jose A.; Gasche, Loic; Huebert, Klaus B.; Hufnagl, Marc; Jones, Miranda C.; Kempf, Alexander; Keyl, Friedemann; Maar, Marie; Mahévas, Stéphanie; Marchal, Paul; Nicolas, Delphine; Pinnegar, John K.; Rivot, Etienne; Rochette, Sébastien; Sell, Anne F.; Sinerchia, Matteo; Solidoro, Cosimo; Somerfield, Paul J.; Teal, Lorna R.; Travers-trolet, Morgan; De Wolfshaar, Van Karen E.

    2018-01-01

    We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of

  8. POTENTIALITIES AND RISKS OF BIOCHEMICAL EDUCATIONAL RESEARCH VIA INTERNET

    Directory of Open Access Journals (Sweden)

    M.C. Gomes

    2004-05-01

    Full Text Available The internet is more and more present in worldwide education. There are innumerable projects thatstimulate its usage for aiding the teaching-learning process. This new trend modies the reality of thewhole school. However, many copies of identical information are found in several sites: graphs, gures,texts, links and even errors. The aim of this work is to analyse the biochemical issues photosynthesisand cellular respiration available in web pages, taking into account contents quality, trustworthinessand eectiveness. Firstly, 6th secondary level students were inquired by a questionnaire on their use ofinternet resources. More than 80 percent of them were regular users. The result conrms the alreadyknown potential of internet in education. Fourteen sites were analysed regarding to contents, presenceof bibliographical references, authorship, titles of responsibles and adequacy to the target public. Inrelation to contents, presence of conceptual errors, illustrations and other stimulant elements wereanalysed. None of the sites presented biblioghraphic references; less than half divulged responsiblenames and their graduation. The great majority do not mention intended public target. In general,the sites did not contained grave conceptual errors, except for two that mention estoma insteadestroma, cilica/acilica phosphorylation (for cyclic and acyclic, grama (for grana and place oxygenas essential for anaerobic respiration. However, one of these sites was the only one that mentionedenzymes and regulation steps of cellular respiration. Half of the sites presented identical texts andgures. None used livened up resources. The majority showed contents as virtual versions of printedbooks. Illustrations did not present necessary legends. None of the analysed sites, thus, was consideredexcellent. Trustworthiness is also questionable as much of the contents arte clearly copies of otherpages, recurrent even on the errors. Our data strengthen the need for

  9. Trematode infection modulates cockles biochemical response to climate change.

    Science.gov (United States)

    Magalhães, Luísa; de Montaudouin, Xavier; Figueira, Etelvina; Freitas, Rosa

    2018-05-06

    Resulting mainly from atmospheric carbon dioxide (CO 2 ) build-up, seawater temperature rise is among the most important climate change related factors affecting costal marine ecosystems. Global warming will have implications on the water cycle, increasing the risk of heavy rainfalls and consequent freshwater input into the oceans but also increasing the frequency of extreme drought periods with consequent salinity increase. For Europe, by the end of the century, projections describe an increase of CO 2 concentration up to 1120 ppm (corresponding to 0.5 pH unit decrease), an increase in the water temperature up to 4 °C and a higher frequency of heavy precipitation. These changes are likely to impact many biotic interactions, including host-parasite relationships which are particularly dependent on abiotic conditions. In the present study, we tested the hypothesis that the edible cockle, Cerastoderma edule, exposed to different salinity, temperature and pH levels as proxy for climate change, modify the infection success of the trematode parasite Himasthla elongata, with consequences to cockles biochemical performance. The results showed that the cercariae infection success increased with acidification but higher biochemical alterations were observed in infected cockles exposed to all abiotic experimental stressful conditions tested. The present study suggested that changes forecasted by many models may promote the proliferation of the parasites infective stages in many ecosystems leading to enhanced transmission, especially on temperate regions, that will influence the geographical distribution of some diseases and, probably, the survival capacity of infected bivalves. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Biochemical Markers for Assessing Aquatic Contamination

    Directory of Open Access Journals (Sweden)

    Zdeňka Svobodová

    2007-11-01

    Full Text Available Biochemical markers, specifically enzymes of the first phase of xenobiotic transformation - cytochrome P450 and ethoxyresorufin-O-deethylase (EROD - were used to determine the quantities of persistent organic pollutants (POPs in fish muscle (PCB, HCB, HCH, OCS, DDT. Eight rivers were monitored (Orlice, Chrudimka, Cidlina, Jizera, Vltava, Ohře and Bílina; and the River Blanice was used as a control. The indicator species selected was the chub (Leuciscus cephalus L.. There were no significant differences in cytochrome P450 content between the locations monitored. The highest concentration of cytochrome P450 in fish liver was in the Vltava (0.241 nmol mg-1 protein, and the lowest was in the Orlice (0.120 nmol mg-1 protein. Analysis of EROD activity showed a significant difference between the Blanice and the Vltava (P< 0.05, and also between the Orlice and the Vltava (P< 0.01, the Orlice and the Bílina (P< 0.01, and the Orlice and the Ohře (P< 0.05. The highest EROD activity in fish liver was in the Vltava (576.4 pmol min-1 mg-1 protein, and the lowest was in the Orlice (63.05 pmol min-1 mg-1 protein. In individual locations, results of chemical monitoring and values of biochemical markers were compared. A significant correlation (P< 0.05 was found between biochemical markers and OCS, and PCB. Among the tributaries studied those that contaminated the Elbe most were the Vltava and the Bílina. These tributaries should not be considered the main sources of industrial contamination of the River Elbe, because the most important contamination sources were along the river Elbe itself.

  11. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  12. The biochemical womb of schizophrenia: A review.

    Science.gov (United States)

    Gaur, N; Gautam, S; Gaur, M; Sharma, P; Dadheech, G; Mishra, S

    2008-10-01

    The conclusive identification of specific etiological factors or pathogenic processes in the illness of schizophrenia has remained elusive despite great technological progress. The convergence of state-of-art scientific studies in molecular genetics, molecular neuropathophysiology, in vivo brain imaging and psychopharmacology, however, indicates that we may be coming much closer to understanding the genesis of schizophrenia. In near future, the diagnosis and assessment of schizophrenia using biochemical markers may become a "dream come true" for the medical community as well as for the general population. An understanding of the biochemistry/ visa vis pathophysiology of schizophrenia is essential to the discovery of preventive measures and therapeutic intervention.

  13. Conservation Laws in Biochemical Reaction Networks

    DEFF Research Database (Denmark)

    Mahdi, Adam; Ferragut, Antoni; Valls, Claudia

    2017-01-01

    We study the existence of linear and nonlinear conservation laws in biochemical reaction networks with mass-action kinetics. It is straightforward to compute the linear conservation laws as they are related to the left null-space of the stoichiometry matrix. The nonlinear conservation laws...... are difficult to identify and have rarely been considered in the context of mass-action reaction networks. Here, using the Darboux theory of integrability, we provide necessary structural (i.e., parameterindependent) conditions on a reaction network to guarantee the existence of nonlinear conservation laws...

  14. Lipoprotein (a) and biochemical parameters in elderly

    OpenAIRE

    Yuttana Sudjaroen

    2016-01-01

    Background: Lipoprotein (a) [Lp(a)] is an low-density lipoprotein like particle and is an important independent risk factor for coronary artery diseases (CAD). Few studies on Lp(a) level in Thai elderly to screening risk of CAD may concerned. Aims: To study the relation of Lp(a) level and routine biochemical parameters including lipid profiles and fasting blood glucose in elderly and to determine risk of subclinical symptoms by using Lp(a) levels as early risk predictor. Settings and Design: ...

  15. Radiation treatment of drugs, biochemicals and vaccines

    International Nuclear Information System (INIS)

    Nordheim, W.; Braeuniger, S.; Kirsch, B.; Kotowski, H.; Teupel, D.

    1984-12-01

    The concise and tabulated review reports experimental results on the effects of radiation treatment on drugs, vaccines, biochemicals and adjuvants including enzymes as well. Irradiation was mostly performed by γ-radiation using 60 Co and to a lesser extent by 137 Cs, 182 Ta, X-rays and accelerators. Ionizing radiation proved to be a useful tool for sterilization and inactivation in producing drugs, vaccines, and bioactive agents and will contribute to realize procedures difficultly solvable as to engineering and economy, respectively. 124 refs

  16. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part II: signal transduction.

    Science.gov (United States)

    Brady, Mariea A; Waldman, Stephen D; Ethier, C Ross

    2015-02-01

    The unique mechanoelectrochemical environment of cartilage has motivated researchers to investigate the effect of multiple biophysical cues, including mechanical, magnetic, and electrical stimulation, on chondrocyte biology. It is well established that biophysical stimuli promote chondrocyte proliferation, differentiation, and maturation within "biological windows" of defined dose parameters, including mode, frequency, magnitude, and duration of stimuli (see companion review Part I: Cellular Response). However, the underlying molecular mechanisms and signal transduction pathways activated in response to multiple biophysical stimuli remain to be elucidated. Understanding the mechanisms of biophysical signal transduction will deepen knowledge of tissue organogenesis, remodeling, and regeneration and aiding in the treatment of pathologies such as osteoarthritis. Further, this knowledge will provide the tissue engineer with a potent toolset to manipulate and control cell fate and subsequently develop functional replacement cartilage. The aim of this article is to review chondrocyte signal transduction pathways in response to mechanical, magnetic, and electrical cues. Signal transduction does not occur along a single pathway; rather a number of parallel pathways appear to be activated, with calcium signaling apparently common to all three types of stimuli, though there are different modes of activation. Current tissue engineering strategies, such as the development of "smart" functionalized biomaterials that enable the delivery of growth factors or integration of conjugated nanoparticles, may further benefit from targeting known signal transduction pathways in combination with external biophysical cues.

  17. Nanoscale quantification of the biophysical characterization of combretastatin A-4-treated tumor cells using atomic force microscopy.

    Science.gov (United States)

    Li, Yanchun; Chen, Jv; Liu, Yutong; Zhang, Weige; He, Wenhui; Xu, Hanying; Liu, Lianqing; Ma, Enlong

    2017-01-01

    As an inhibitor of microtubule assembly, combretastatin A-4 (CA-4)-induced biological responses in tumor cells have been well known, but the corresponding changes in nano-biophysical properties were not investigated given the lack of an ideal tool. Using AFM technique, we investigated the alteration of nano-biophysical properties when CA-4-treated tumor cells underwent the different biological processes, including cell cycle arrest, apoptosis and autophagy. We found that CA-4-resistant cells were rougher with the presence of characteristic "ridges", indicating that the development of "ridge" structure may be a determinant of the sensitivity of cells to CA-4 compounds. CA-4 induced G2/M arrest and apoptosis in sensitive cells but triggered anti-apoptotic autophagy in resistant cells. CA-4 treatment caused an increase in stiffness in both sensitive and resistant cells. However, these cells exhibited different changes in cell surface roughness. CA-4 decreased Ra and Rq values in sensitive cells but increased these values in resistant cells. The reorganization of F-actin might contribute to the different changes of nano-biophysical properties in CA-4-sensitive and-resistant cells. Our results suggest that cellular nano-biophysical properties, such as "ridges", roughness and stiffness, could be applied as potential biomarkers for evaluating CA-4 compounds, and knowledge regarding how biological alterations cause changes in cellular nano-biophysical properties is helpful to develop a new high-resolution screening tool for anti-tumor agents.

  18. Geothermal Energy Research and Development Program; Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  19. Evaluating impacts of climate change on future water scarcity in an intensively managed semi-arid region using a coupled model of biophysical processes and water rights

    Science.gov (United States)

    Han, B.; Flores, A. N.; Benner, S. G.

    2017-12-01

    In semiarid and arid regions where water supply is intensively managed, future water scarcity is a product of complex interactions between climate change and human activities. Evaluating future water scarcity under alternative scenarios of climate change, therefore, necessitates modeling approaches that explicitly represent the coupled biophysical and social processes responsible for the redistribution of water in these regions. At regional scales a particular challenge lies in adequately capturing not only the central tendencies of change in projections of climate change, but also the associated plausible range of variability in those projections. This study develops a framework that combines a stochastic weather generator, historical climate observations, and statistically downscaled General Circulation Model (GCM) projections. The method generates a large ensemble of daily climate realizations, avoiding deficiencies of using a few or mean values of individual GCM realizations. Three climate change scenario groups reflecting the historical, RCP4.5, and RCP8.5 future projections are developed. Importantly, the model explicitly captures the spatiotemporally varying irrigation activities as constrained by local water rights in a rapidly growing, semi-arid human-environment system in southwest Idaho. We use this modeling framework to project water use and scarcity patterns under the three future climate change scenarios. The model is built using the Envision alternative futures modeling framework. Climate projections for the region show future increases in both precipitation and temperature, especially under the RCP8.5 scenario. The increase of temperature has a direct influence on the increase of the irrigation water use and water scarcity, while the influence of increased precipitation on water use is less clear. The predicted changes are potentially useful in identifying areas in the watershed particularly sensitive to water scarcity, the relative importance of

  20. Urban thermal environment and its biophysical parameters derived from satellite remote sensing imagery

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2013-10-01

    In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  1. Simulation of Tillage Systems Impact on Soil Biophysical Properties Using the SALUS Model

    Directory of Open Access Journals (Sweden)

    Luigi Sartori

    2011-02-01

    Full Text Available A sustainable land management has been defined as the management system that allows for production, while minimizing risk, maintaining quality of soil and water. Tillage systems can significantly decrease soil carbon storage and influence the soil environment of a crop. Crop growth models can be useful tools in evaluating the impact of different tillage systems on soil biophysical properties and on the growth and final yield of the crops. The objectives of this paper were i to illustrate the SALUS model and its tillage component; ii to evaluate the effects of different tillage systems on water infiltration and time to ponding, iii to simulate the effect of tillage systems on some soil biophysical properties. The SALUS (System Approach to Land Use Sustainability model is designed to simulate continuous crop, soil, water and nutrient conditions under different tillage and crop residues management strategies for multiple years. Predictions of changes in surface residue, bulk density, runoff, drainage and evaporation were consistent with expected behaviours of these parameters as described in the literature. The experiment to estimate the time to ponding curve under different tillage system confirmed the theory and showed the beneficial effects of the residue on soil surface with respect to water infiltration. It also showed that the no-tillage system is a more appropriate system to adopt in areas characterized by high intensity rainfall.

  2. Synergistic linkage between remote sensing and biophysical models for estimating plant ecophysiological and ecosystem processes

    International Nuclear Information System (INIS)

    Inoue, Y.; Olioso, A.

    2004-01-01

    Abstract Information on the ecological and physiological status of crops is essential for growth diagnostics and yield prediction. Within-field or between-field spatial information is required, especially with the recent trend toward precision agriculture, which seeks the efficient use of agrochemicals, water, and energy. The study of carbon and nitrogen cycles as well as environmental management on local and regional scales requires assessment of the spatial variability of biophysical and ecophysiological variables, scaling up of which is also needed for scientific and decision-making purposes. Remote sensing has great potential for these applications because it enables wide-area non-destructive, and real-time acquisition of information about ecophysiological conditions of vegetation. With recent advances in sensor technology, a variety of electromagnetic signatures, such as hyperspectral reflectance, thermal-infrared temperature, and microwave backscattering coefficients, can be acquired for both plants and ecosystems using ground-based, airborne, and satellite platforms. Their spatial and temporal resolutions have both recently been improved. This article reviews the state of the art in the remote sensing of plant ecophysiological data, with special emphasis on the synergy between remote sensing signatures and biophysical and ecophysiological process models. Several case studies for the optical, thermal, and microwave domains have demonstrated the potential of this synergistic linkage. Remote sensing and process modeling methods complement each other when combined synergistically. Further research on this approach is needed f or a wide range of ecophysiological and ecosystem studies, as well as for practical crop management

  3. Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI.

    Science.gov (United States)

    Yu, T; Sejnowski, T J; Cauwenberghs, G

    2011-10-01

    We study a range of neural dynamics under variations in biophysical parameters underlying extended Morris-Lecar and Hodgkin-Huxley models in three gating variables. The extended models are implemented in NeuroDyn, a four neuron, twelve synapse continuous-time analog VLSI programmable neural emulation platform with generalized channel kinetics and biophysical membrane dynamics. The dynamics exhibit a wide range of time scales extending beyond 100 ms neglected in typical silicon models of tonic spiking neurons. Circuit simulations and measurements show transition from tonic spiking to tonic bursting dynamics through variation of a single conductance parameter governing calcium recovery. We similarly demonstrate transition from graded to all-or-none neural excitability in the onset of spiking dynamics through the variation of channel kinetic parameters governing the speed of potassium activation. Other combinations of variations in conductance and channel kinetic parameters give rise to phasic spiking and spike frequency adaptation dynamics. The NeuroDyn chip consumes 1.29 mW and occupies 3 mm × 3 mm in 0.5 μm CMOS, supporting emerging developments in neuromorphic silicon-neuron interfaces.

  4. Interactive Biophysics with Microswimmers: Education, Cloud Experimentation, Programmed Swarms, and Biotic Games

    Science.gov (United States)

    Riedel-Kruse, Ingmar

    Modern biotechnology gets increasingly powerful to manipulate and measure microscopic biophysical processes. Nevertheless, no platform exists to truly interact with these processes, certainly not with the convenience that we are accustomed to from our electronic smart devices. In my talk I will provide the rational for such Interactive Biotechnology and conceptualize its core component, the BPU (biotic processing unit), which is then connected to an according user interface. The biophysical phenomena currently featured on these platforms utilize the phototactic response of motile microorganisms, e.g., Euglena gracilis, resulting in spatio-temporal dynamics from the single cell to the self-organized multi-cellular scale. I will demonstrate multiple platforms, such as scalable biology cloud experimentation labs, tangible museum exhibits, biotic video games, low-cost interactive DIY kits using smartphones, and programming languages for swarm robotics. I will discuss applications for education as well as for professional and citizen science. Hence, we turn traditionally observational microscopy into an interactive experience. I was told that presenting in the educational section does not count against the ''one author - one talk policy'' - so I submit two abstracts. In case of conflict - please contact me: ingmar@stanford.edu.

  5. Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders.

    Science.gov (United States)

    Viganò, Marco; Sansone, Valerio; d'Agostino, Maria Cristina; Romeo, Pietro; Perucca Orfei, Carlotta; de Girolamo, Laura

    2016-12-16

    Musculoskeletal disorders are regarded as a major cause of worldwide morbidity and disability, and they result in huge costs for national health care systems. Traditional therapies frequently turned out to be poorly effective in treating bone, cartilage, and tendon disorders or joint degeneration. As a consequence, the development of novel biological therapies that can treat more effectively these conditions should be the highest priority in regenerative medicine. Mesenchymal stem cells (MSCs) represent one of the most promising tools in musculoskeletal tissue regenerative medicine, thanks to their proliferation and differentiation potential and their immunomodulatory and trophic ability. Indeed, MSC-based approaches have been proposed for the treatment of almost all orthopedic conditions, starting from different cell sources, alone or in combination with scaffolds and growth factors, and in one-step or two-step procedures. While all these approaches would require cell harvesting and transplantation, the possibility to stimulate the endogenous MSCs to enhance their tissue homeostasis activity represents a less-invasive and cost-effective therapeutic strategy. Nowadays, the role of tissue-specific resident stem cells as possible therapeutic target in degenerative pathologies is underinvestigated. Biophysical stimulations, and in particular extracorporeal shock waves treatment and pulsed electromagnetic fields, are able to induce proliferation and support differentiation of MSCs from different origins and affect their paracrine production of growth factors and cytokines. The present review reports the attempts to exploit the resident stem cell potential in musculoskeletal pathologies, highlighting the role of MSCs as therapeutic target of currently applied biophysical treatments.

  6. On the biophysics and kinetics of toehold-mediated DNA strand displacement.

    Science.gov (United States)

    Srinivas, Niranjan; Ouldridge, Thomas E; Sulc, Petr; Schaeffer, Joseph M; Yurke, Bernard; Louis, Ard A; Doye, Jonathan P K; Winfree, Erik

    2013-12-01

    Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.

  7. Biophysics environmental conditions of swamp buffalo Bubalus bubalis Pampangan in district Rambutan South Sumatera

    Directory of Open Access Journals (Sweden)

    Yuanita Windusari

    2015-06-01

    Full Text Available Swamp buffalo (Bubalus bubalis is a germ plasm specific of Pampangan and endemic in South Sumatera with low productivity and limited distribution. The aims of this study was to obtain information regarding biophysical conditions in the central areas of swamp buffalo in South Sumatera. The method used is purposive sampling method. Data collected in the form of quantitative and qualitative. Primary data were obtained through direct observation, interviews breeders selected as respondents while secondary data obtained from various related. The data obtained are presented descriptively and data tabulation. Productivity of swamp buffalo Pampangan can be increased by managing and maintaining habitat conditions although traditional maintenance. The results of observations of the biophysical condition of swamp buffalo (B. bubalis Pampangan showed that habitat of swamp buffalo Pampangan consists of dominated by lowland swamp area is overgrown with shrubs and grass. The conclution of the research are productivity and population of swamp buffalo (B. bubalis pampangan as specific plasma nutfah of South Sumatra can be improved by studying the characteristics and preferred habitat of the buffalo, although developed in a traditional farms but is good enough and so need to be developed, grass is most preferred by swamp buffalo Pampangan derived from ‘Kumpai’ grass group, and ‘Kasur’grass and ‘Kumpai’ grass is the dominant grass type found in habitat swamp buffalo Pampangan.

  8. Contributions of computational chemistry and biophysical techniques to fragment-based drug discovery.

    Science.gov (United States)

    Gozalbes, Rafael; Carbajo, Rodrigo J; Pineda-Lucena, Antonio

    2010-01-01

    In the last decade, fragment-based drug discovery (FBDD) has evolved from a novel approach in the search of new hits to a valuable alternative to the high-throughput screening (HTS) campaigns of many pharmaceutical companies. The increasing relevance of FBDD in the drug discovery universe has been concomitant with an implementation of the biophysical techniques used for the detection of weak inhibitors, e.g. NMR, X-ray crystallography or surface plasmon resonance (SPR). At the same time, computational approaches have also been progressively incorporated into the FBDD process and nowadays several computational tools are available. These stretch from the filtering of huge chemical databases in order to build fragment-focused libraries comprising compounds with adequate physicochemical properties, to more evolved models based on different in silico methods such as docking, pharmacophore modelling, QSAR and virtual screening. In this paper we will review the parallel evolution and complementarities of biophysical techniques and computational methods, providing some representative examples of drug discovery success stories by using FBDD.

  9. Simulation of Tillage Systems Impact on Soil Biophysical Properties Using the SALUS Model

    Directory of Open Access Journals (Sweden)

    Bruno Basso

    2006-12-01

    Full Text Available A sustainable land management has been defined as the management system that allows for production, while minimizing risk, maintaining quality of soil and water. Tillage systems can significantly decrease soil carbon storage and influence the soil environment of a crop. Crop growth models can be useful tools in evaluating the impact of different tillage systems on soil biophysical properties and on the growth and final yield of the crops. The objectives of this paper were i to illustrate the SALUS model and its tillage component; ii to evaluate the effects of different tillage systems on water infiltration and time to ponding, iii to simulate the effect of tillage systems on some soil biophysical properties. The SALUS (System Approach to Land Use Sustainability model is designed to simulate continuous crop, soil, water and nutrient conditions under different tillage and crop residues management strategies for multiple years. Predictions of changes in surface residue, bulk density, runoff, drainage and evaporation were consistent with expected behaviours of these parameters as described in the literature. The experiment to estimate the time to ponding curve under different tillage system confirmed the theory and showed the beneficial effects of the residue on soil surface with respect to water infiltration. It also showed that the no-tillage system is a more appropriate system to adopt in areas characterized by high intensity rainfall.

  10. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    Science.gov (United States)

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Biophysical and physicochemical methods differentiate highly ligand-efficient human D-amino acid oxidase inhibitors.

    Science.gov (United States)

    Lange, Jos H M; Venhorst, Jennifer; van Dongen, Maria J P; Frankena, Jurjen; Bassissi, Firas; de Bruin, Natasja M W J; den Besten, Cathaline; de Beer, Stephanie B A; Oostenbrink, Chris; Markova, Natalia; Kruse, Chris G

    2011-10-01

    Many early drug research efforts are too reductionist thereby not delivering key parameters such as kinetics and thermodynamics of target-ligand binding. A set of human D-Amino Acid Oxidase (DAAO) inhibitors 1-6 was applied to demonstrate the impact of key biophysical techniques and physicochemical methods in the differentiation of chemical entities that cannot be adequately distinguished on the basis of their normalized potency (ligand efficiency) values. The resulting biophysical and physicochemical data were related to relevant pharmacodynamic and pharmacokinetic properties. Surface Plasmon Resonance data indicated prolonged target-ligand residence times for 5 and 6 as compared to 1-4, based on the observed k(off) values. The Isothermal Titration Calorimetry-derived thermodynamic binding profiles of 1-6 to the DAAO enzyme revealed favorable contributions of both ΔH and ΔS to their ΔG values. Surprisingly, the thermodynamic binding profile of 3 elicited a substantially higher favorable contribution of ΔH to ΔG in comparison with the structurally closely related fused bicyclic acid 4. Molecular dynamics simulations and free energy calculations of 1, 3, and 4 led to novel insights into the thermodynamic properties of the binding process at an atomic level and in the different thermodynamic signatures of 3 and 4. The presented holistic approach is anticipated to facilitate the identification of compounds with best-in-class properties at an early research stage. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  12. [Biochemical principles of early saturnism recognition].

    Science.gov (United States)

    Tsimakuridze, M P; Mansuradze, E A; Zurashvili, D G; Tsimakuridze, M P

    2009-03-01

    The aim of the work is to determine the major sensitive criteria of biochemical indicators that allow timely discovery of negative influence of lead on organism and assist in early diagnosis of primary stages of saturnism. The workers of Georgian typographies, performing technological processes of letterpress printing were observed. Professional groups having contact with lead aerosols (main group of 66 people) and the workers of the same typography not being in touch with the poison (control group of 24 people) were studied. It was distinguished that, protracted professional contact with lead causes moderate increase of lead, coproporphyrin and DALA in daily urine in most cases; it is more clearly evidenced in the professional groups of lead smelters and lino operators and less clearly among typesetter and printers. Upon the checkup of people, having a direct contact with lead, biochemical analysis of urine should be given a preference, especially the determination of quantitative content of lead and coproporphyrin in urine with the aim of revealing the lead carrier, which is one of the first signals for occupational lookout and medical monitoring of the similar contingent.

  13. Identifying optimal models to represent biochemical systems.

    Directory of Open Access Journals (Sweden)

    Mochamad Apri

    Full Text Available Biochemical systems involving a high number of components with intricate interactions often lead to complex models containing a large number of parameters. Although a large model could describe in detail the mechanisms that underlie the system, its very large size may hinder us in understanding the key elements of the system. Also in terms of parameter identification, large models are often problematic. Therefore, a reduced model may be preferred to represent the system. Yet, in order to efficaciously replace the large model, the reduced model should have the same ability as the large model to produce reliable predictions for a broad set of testable experimental conditions. We present a novel method to extract an "optimal" reduced model from a large model to represent biochemical systems by combining a reduction method and a model discrimination method. The former assures that the reduced model contains only those components that are important to produce the dynamics observed in given experiments, whereas the latter ensures that the reduced model gives a good prediction for any feasible experimental conditions that are relevant to answer questions at hand. These two techniques are applied iteratively. The method reveals the biological core of a model mathematically, indicating the processes that are likely to be responsible for certain behavior. We demonstrate the algorithm on two realistic model examples. We show that in both cases the core is substantially smaller than the full model.

  14. Biochemical Manifestation of HIV Lipodystrophy Syndrome.

    Science.gov (United States)

    Ihenetu, Kenneth; Mason, Darius

    2012-01-01

    Highly active anti-retroviral therapy (HAART), including protease inhibitors (PI) have led to dramatic improvements in the quality and quantity of life in patients with acquired immunodeficiency syndrome (AIDS). However, a significant number of AIDS patients on HAART develop characteristic changes in body fat redistribution referred to as lipodystrophy syndrome (LDS). Features of LDS include hypertrophy in the neck fat pad (buffalo hump), increased fat in the abdominal region (protease paunch), gynecomastia and loss of fat in the mid-face and extremities. The aim of this paper is to review the current knowledge regarding this syndrome. This article reviews the published investigations on biochemical manifestation of HIV lipodystrophy syndrome. It is estimated that approximately 64% of patients treated with PI will experience this syndrome. Biochemically, these patients have increased triglycerides (Trig), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and extremely low high-density lipoprotein-cholesterol (HDL-C). It is hoped that awareness of this syndrome would aid in early diagnosis and better patient management, possibly leading to a lower incidence of cardiovascular complications among these patients.

  15. Biochemical research elucidating metabolic pathways in Pneumocystis*

    Directory of Open Access Journals (Sweden)

    Kaneshiro E.S.

    2010-12-01

    Full Text Available Advances in sequencing the Pneumocystis carinii genome have helped identify potential metabolic pathways operative in the organism. Also, data from characterizing the biochemical and physiological nature of these organisms now allow elucidation of metabolic pathways as well as pose new challenges and questions that require additional experiments. These experiments are being performed despite the difficulty in doing experiments directly on this pathogen that has yet to be subcultured indefinitely and produce mass numbers of cells in vitro. This article reviews biochemical approaches that have provided insights into several Pneumocystis metabolic pathways. It focuses on 1 S-adenosyl-L-methionine (AdoMet; SAM, which is a ubiquitous participant in numerous cellular reactions; 2 sterols: focusing on oxidosqualene cyclase that forms lanosterol in P. carinii; SAM:sterol C-24 methyltransferase that adds methyl groups at the C-24 position of the sterol side chain; and sterol 14α-demethylase that removes a methyl group at the C-14 position of the sterol nucleus; and 3 synthesis of ubiquinone homologs, which play a pivotal role in mitochondrial inner membrane and other cellular membrane electron transport.

  16. Pheochromocytoma-paraganglioma: Biochemical and genetic diagnosis.

    Science.gov (United States)

    Cano Megías, Marta; Rodriguez Puyol, Diego; Fernández Rodríguez, Loreto; Sención Martinez, Gloria Lisette; Martínez Miguel, Patricia

    Pheochromocytomas and paragangliomas are tumours derived from neural crest cells, which can be diagnosed by biochemical measurement of metanephrine and methoxytyramine. Advances in genetic research have identified many genes involved in the pathogenesis of these tumours, suggesting that up to 35-45% may have an underlying germline mutation. These genes have a singular transcriptional signature and can be grouped into 2 clusters (or groups): cluster 1 (VHL and SHDx), involved in angiogenesis and hypoxia pathways; and cluster 2 (MEN2 and NF1), linked to the kinase signalling pathway. In turn, these genes are associated with a characteristic biochemical phenotype (noradrenergic and adrenergic), and clinical features (location, biological behaviour, age of presentation, etc.) in a large number of cases. Early diagnosis of these tumours, accompanied by a correct genetic diagnosis, should eventually become a priority to enable better treatment, early detection of complications, proper screening of family members and related tumours, as well as an improvement in the overall prognosis of these patients. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Biomedical and biophysical research and calibration projects: radiobiology. Chromosomal aberrations in human lymphocytes - response to mixed neutron/photon exposures

    International Nuclear Information System (INIS)

    Slabbert, J.P.; Hough, J.H.; Jansen, S.

    1991-01-01

    Whether synergistic interaction damage is realized when lymphocytes are exposed to mixed high/low LET radiation fields, and if so, how well these effects can be predicted, was investigated. Whole-blood samples were exposed, at 37 degrees C, to neutrons, 60 Co gamma-rays and a mixture of 25% neutrons and 75% photons. The mixture was delivered both sequentially and simultaneously. A significant difference between the sequential and simultaneous irradiations was evident. Both mixed-field exposures yield aberration frequencies in excess of the sum predicted for individual irradiations. 5 refs., 2 figs., 1 tab

  18. Fundamental remote sensing science research program. Part 1: Scene radiation and atmospheric effects characterization project

    Science.gov (United States)

    Murphy, R. E.; Deering, D. W.

    1984-01-01

    Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest.

  19. BioNessie - a grid enabled biochemical networks simulation environment

    OpenAIRE

    Liu, X.; Jiang, J.; Ajayi, O.; Gu, X.; Gilbert, D.; Sinnott, R.O.

    2008-01-01

    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scale simulations.

  20. Possibilities and methods for biochemical assessment of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Minkova, M [Meditsinska Akademiya, Sofia (Bulgaria). Nauchen Inst. po Rentgenologiya i Radiobiologiya

    1986-01-01

    An extensitive review (77 references) is made of the application of biochemical diagnostic methods for assessment of radiation diseases. A brief characteristics of several biochemical indicators is given: deoxycytidine, thymidine, rho-aminoisocarboxylic acid, DNA-ase, nucleic acids. Influence of such factors as age, sex, season etc. is studied by means of functional biochemical indicators as: creatine, triptophanic metabolites, 5-hydroxy-indolacetic acid, biogenic amines, serum proteins, enzymes, etc.